Datasheet, Version 2.1, 22 Feb 2005 PFC-DCM IC Boost Controller TDA4863-2/TDA4863-2G Power-Factor Controller (PFC) IC for High Power Factor and Low THD Power Management & Supply N e v e r s t o p t h i n k i n g . TDA4863-2/TDA4863-2G Revision History: 2005-02-22 Datasheet Previous Version: V2.0 Page Subjects ( major changes since last revision ) Update package information For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http:// www.infineon.com CoolMOST™, CoolSET™ are trademarks of Infineon Technologies AG. Edition 2005-02-22 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. TDA4863-2 Table of Contents Page 1 1.1 1.2 1.3 1.4 1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Improvements Referred to TDA 4862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 IC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Voltage Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Overvoltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Current Sense Comparator, LEB and RS Flip-Flop . . . . . . . . . . . . . . . . . . 10 Zero Current Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Restart Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Gate Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Signal Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 3.1 3.2 3.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1 Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Results of THD Measurements with Application Board Pout = 110 W . . . . 22 5 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Version 2.1 3 4 4 4 5 6 8 13 13 14 17 22 Feb 2005 Power-Factor Controller (PFC) IC for High Power Factor and Low THD TDA4863-2 Final Data 1 Overview 1.1 Features Boost Controller • IC for sinusoidal line-current consumption • Power factor achieves nearly 1 • Controls boost converter as active harmonic filter for low THD • Start up with low current consumption • Zero current detector for discontinuous operation mode • Output overvoltage protection • Output undervoltage lockout • Internal start up timer • Totem pole output with active shut down • Internal leading edge blanking LEB • Pb-free lead plating ; RoHS compliant 1.2 • • • • • • PG-DIP-8-4 PG-DSO-8-3 Improvements Referred to TDA 4862 and TDA 4863 Suitable for universal input applications with low THD at low load conditions Very low start up current Accurate OVR and VISENSEmax threshold Competition compatible VCC thresholds Enable threshold referred to VVSENSE Compared to TDA4863 a bigger MOS Transistor can be driven (see 2.10) Type Ordering Code Package TDA4863-2 Q67040-S4620 PG-DIP-8-4 TDA4863-2G Q67040-S4621 PG-DSO-8-3 Version 2.1 4 22 Feb 2005 TDA4863-2 Overview AC line RF-Filter and Rectifier DC Output Volage TDA4863-2 GND Figure 1 1.3 Typical application Description The TDA4863-2 IC controls a boost converter in a way that sinusoidal current is taken from the single phase line supply and stabilized DC voltage is available at the output. This active harmonic filter limits the harmonic currents resulting from the capacitor pulsed charge currents during rectification. The power factor which decibels the ratio between active and apparent power is almost one. Line voltage fluctuations can be compensated very efficiently. Version 2.1 5 22 Feb 2005 TDA4863-2 Overview 1.4 Figure 2 Version 2.1 Pin Configuration 1 VSENSE 8 VCC 2 VAOUT 7 GTDRV 3 MULTIN 6 GND 4 ISENSE 5 DETIN Pin Configuration of TDA4863-2 6 22 Feb 2005 TDA4863-2 Overview Pin Definitions and Functions Pin Symbol 1 VSENSE Voltage Amplifier Inverting Input VSENSE is connected via a resistive divider to the boost converter output. With a capacitor connected to VAOUT the internal error amplifier acts as an integrator. 2 VAOUT Voltage Amplifier Output VVAOUT is connected internally to the first multiplier input. To prevent overshoot the input voltage is clamped internally at 5 V. IfVVAOUT is less then 2.2 V the gate driver is inhibited. If the current flowing into this pin exceeds an internal threshold the multiplier output voltage is reduced to prevent the MOSFET from overvoltage damage. 3 MULTIN Multiplier Input MULTIN is the second multiplier input and is connected via a resistive divider to the rectifier output voltage. 4 ISENSE Current Sense Input ISENSE is connected to a sense resistor controlling the MOSFET source current. The input is internally clamped at -0.3 V to prevent negative input voltage interaction. A leading edge blanking circuitry suppresses voltage spits when turning the MOSFET on. 5 DETIN Zero Current Detector Input DETIN is connected to an auxiliary winding monitoring the zero crossing of the inductor current. 6 GND Ground 7 GTDRV Gate Driver Output GTDRV is the output of a totem-pole circuitry for direct driving a MOSFET. Compared with TDA4863 the TDA4863-2 can drive 20A MOSFETS. To achieve this the gate output voltage VGTLat IGT =0A has been set to 0.85V. An active shutdown circuitry ensures that GTDRV is set to low if the IC is switched off. 8 VCC Positive Voltage Supply If VCC excees the turn-on threshold the IC is switched on. When Vcc falls below the turn-off threshold the IC is switched off. In switch off mode power consumption is very low. Two capacitors should be connected to Vcc. An electrolytic capacitor and 100nF cermanic capacitor which is used to absorb fast supply current spikes. Make sure that the electrolytic capacitor is discharged before the IC is plugged into the application board. Version 2.1 Description 7 22 Feb 2005 TDA4863-2 Overview 1.5 Block Diagram VCC GND DETIN tres=150us 5V 20V + - 0.5V + 12.5V 0.2V Restart Timer Clamp Current Reference Voltage Vref UVLO 10V - + Detector - Enable 1.0V RS Flip-Flop Gate Drive GTDRV 1.5V + 2.2V - Inhibit time delay Inhibit - tdVA=2us + LEB 2.5V + Voltage Amp Multiplier - multout + + 1V tdsd=70ns Current Comp 1V + 3.5V - Vref + uvlo active shut down - OVR 5.4V VSENSE Figure 3 Version 2.1 VAOUT MULTIN ISENSE Internal Bolck Diagram 8 22 Feb 2005 TDA4863-2 Functional Description 2 Functional Description 2.1 Introduction Conventional electronic ballasts and switch mode power supplies are designed with a bridge rectifier and a bulk capacitor. Their disadvantage is that the circuit draws power from the line when the instantaneous AC voltage exceeds the capacitors voltage. This occurs near the line voltage peak and causes a high charge current spike with following characteristics: The apparent power is higher than the real power that means low power factor condition, the current spikes are non sinusoidal with a high content of harmonics causing line noise, the rectified voltage depends on load condition and requires a large bulk capacitor, special efforts in noise suppression are necessary. With the TDA4863-2 preconverter a sinusoidal current is achieved which varies in direct instantaneous proportional to the input voltage half sine wave and so provides a power factor near 1. This is due to the appearance of almost any complex load like a resistive one at the AC line. The harmonic distortions are reduced and comply with the IEC555 standard requirements. 2.2 IC Description The TDA4863-2 contains a wide bandwidth voltage amplifier used in a feedback loop, an overvoltage regulator, an one quadrant multiplier with a wide linear operating range, a current sense comparator, a zero current detector, a PWM and logic circuitry, a totempole MOSFET driver, an internal trimmed voltage reference, a restart timer and an undervoltage lockout circuitry. 2.3 Voltage Amplifier With an external capacitor between the pins VSENSE and VAOUT the voltage amplifier acts like an integrator. The integrator monitors the average output voltage over several line cycles. Typically the integrator´s bandwidth is set below 20 Hz in order to suppress the 100 Hz ripple of the rectified line voltage. The voltage amplifier is internally compensated and has a gain bandwidth of 5 MHz (typ.) and a phase margin of 80 degrees. The non-inverting input is biased internally at 2.5 V. The output is directly connected to the multiplier input. The gate drive is disabled when VSENSE voltage is less than 0.2 V or VAOUT voltage is less than 2.2 V. If the MOSFET is placed nearby the controller switching interferences have to be taken into account. The output of the voltage amplifier is designed in a way to minimize these inteferences. Version 2.1 9 22 Feb 2005 TDA4863-2 Functional Description 2.4 Overvoltage Regulator Because of the integrator´s low bandwidth fast changes of the output voltage can’t be regulated within an adequate time. Fast output changes occur during initial start-up, sudden load removal, or output arcing. While the integrator´s differential input voltage remains zero during this fast changes a peak current is flowing through the external capacitor into pin VAOUT. If this current exceeds an internal defined margin the overvoltage regulator circuitry reduces the multiplier output voltage. As a result the on time of the MOSFET is reduced. 2.5 Multiplier The one quadrant multiplier regulates the gate driver with respect of the DC output voltage and the AC half wave rectified input voltage. Both inputs are designed to achieve good linearity over a wide dynamic range to represent an AC line free from distortion. Special efforts are made to assure universal line applications with respect to a 90 to 270 V AC range. The multiplier output is internally clamped at 1.3 V. So the MOSFET is protected against critical operating during start up. 2.6 Current Sense Comparator, LEB and RS Flip-Flop The source current of the MOS transistor is transferred into a sense voltage via the external sense resistor. The multiplier output voltage is compared with this sense voltage. Switch on time of the MOS transistor is determined by the comparison result. To protect the current comparator input from negative pulses a current source is inserted which sends current out of the ISENSE pin every time when VISENSE-signal is falling below ground potential. An internal RC-filter is connected to the ISENSE pin which smoothes the switch-on current spike. The remaining switch-on current spike is blanked out via a leading edge blanking circuit with a blanking time of typ. 200 ns. The RS Flip-Flop ensures that only one single switch-on and switch-off pulse appears at the gate drive output during a given cycle (double pulse suppression). 2.7 Zero Current Detector The zero current detector senses the inductor current via an auxiliary winding and ensures that the next on-time of the MOSFET is initiated immediately when the inductor current has reached zero. This reduces the reverse recovery losses of the boost converter diode to a miniumum. The MOSFET is switched off when the voltage drop of the shunt resistor reaches the voltage level of the multiplier output. So the boost current waveform has a triangular shape and there are no deadtime gaps between the cycles. This leads to a continuous AC line current limiting the peak current to twice of the average current. Version 2.1 10 22 Feb 2005 TDA4863-2 Functional Description To prevent false tripping the zero current detector is designed as a Schmitt-Trigger with a hysteresis of 0.5 V. An internal 5 V clamp protects the input from overvoltage breakdown, a 0.6 V clamp prevents substrate injection. An external resistor has to be used in series with the auxiliary winding to limit the current through the clamps. 2.8 Restart Timer The restart timer function eliminates the need of an oscillator. The timer starts or restarts the TDA4863-2 when the driver output has been off for more than 150 µs after the inductor current reaches zero. 2.9 Undervoltage Lockout An undervoltage lockout circuitry switches the IC on when VCC reaches the upper threshold VCCH and switches the IC off when VCC is falling below the lower threshold VCCL. During start up the supply current is less then 100 µA. An internal voltage clamp has been added to protect the IC from VCC overvoltage condition. When using this clamp special care must be taken on power dissipation. Start up current is provided by an external start up resistor which is connected from the AC line to the input supply voltage VCC and a storage capacitor which is connected from VCC to ground. Be aware that this capacitor is discharged before the IC is plugged into the application board. Otherwise the IC can be destroyed due to the high capacitor voltage. Bootstrap power supply is created with the previous mentioned auxiliary winding and a diode (see “Application Circuit” on Page 21). 2.10 Gate Drive The TDA4863-2 totem pole output stage is MOSFET compatible. An internal protection ciruitry is activated when VCC is within the start up phase and ensures that the MOSFET is turned off. The totem pole output has been optimized to achieve minimized cross conduction current during high speed operation. Compared to TDA4863 a bigger MOS Transistor can be driven by the TDA4863-2. When a big MOSFET is used in applications with TDA4863, for example SPP20N60C3, the falling edge of the gate drive voltage can swing under GND and can cause false triggering of the IC. To prevent false traiggering the gate drive voltage of theTDA4863-2 at low state and gate current IGT = 0mA is set to VGTL= 0.85V (TDA4863: VGTL=0.25V). The difference between TDA4863-2 and TDA4863 is also depicted in the diagram: gate drive voltage low state on page 20. Version 2.1 11 22 Feb 2005 TDA4863-2 Functional Description 2.11 Signal Diagrams IVAOUT IOVR DETIN GTDRV LEB VISENSE multout Icoil Figure 4 Version 2.1 Typical signals 12 22 Feb 2005 TDA4863-2 Electrical Characteristics 3 Electrical Characteristics 3.1 Absolute Maximum Ratings Parameter Symbol Supply + Zener Current ICCH + IZ Supply Voltage VCC Limit Values min. Voltage at Pin 1,3,4 Current into Pin 2 Unit Remarks max. 20 mA -0.3 VZ V VZ = Zener Voltage ICC + IZ = 20 mA -0.3 6.5 mA VVAOUT = 4 V, VVSENSE = 2.8 V VVAOUT = 0 V, VVSENSE = 2.3 V t < 1 ms 30 IVAOUT -10 Current into Pin 5 IDETIN 10 DETIN > 6 V DETIN < 0.4 V t < 1 ms 500 t < 1 ms -10 Current into Pin 7 IGTDRV -500 ESD Protection 2000 V °C Storage Temperature Tstg -50 150 Operating Junction Temperature TJ -40 150 Thermal Resistance Junction-Ambient RthJA Version 2.1 100 180 13 MIL STD 883C method 3015.6, 100 pF,1500 Ω K/W PG-DIP-8-4 PG-DSO-8-3 22 Feb 2005 TDA4863-2 Electrical Characteristics 3.2 Characteristics Unless otherwise stated, -40°C < Tj < 150°C, VCC = 14.5 V Parameter Symbol Limit Values min. typ. max. 18 Unit Test Condition Start-Up circuit Zener Voltage VZ 20 22 V ICC + IZ = 20 mA Start-up Supply Current ICCL 20 100 µA VCC = VCCON -0.5 V Operating Supply Current ICCH 4 6 mA Output low VCC Turn-ON Threshold VCCON 12 12.5 13 V VCC Turn-OFF Threshold VCCOFF 9.5 10 10. 5 VCC Hysteresis VCCHY 2.5 Voltage Amplifier Voltage feedback Input Threshold VFB Line Regulation 2.45 2.5 VFBLR Open Loop Voltage Gain 1) 2.55 V 5 mV VCC = 12 V to 16 V GV 100 dB Unity Gain Bandwidth BW 5 MHz Phase Margin1) M 80 Degr Bias Current VSENSE IBVSENSE -1.0 -0.3 µA Enable Threshold VVSENSE 0.17 0.2 0.25 Inhibit Threshold Voltage VVAOUTI 2.1 2.2 2.3 Inhibit Time Delay tdVA 3 µs VISENSE = -0.38 V Output Current Source IVAOUTH -6 mA VVAOUT = 0 V VVSENSE = 2.3 V, t < 1 ms Output Current Sink IVAOUTL 30 Upper Clamp Voltage VVAOUTH 4.8 5.4 6.0 V VVSENSE = 2.3 V, IVAOUT = -0.2 mA Lower Clamp Voltage VVAOUTL 0.8 1.1 1.4 V VVSENSE = 2.8 V, IVAOUT = 0.5 mA 1) 1) V VISENSE = -0.38 V VVAOUT = 4 V VVSENSE = 2.8 V, t < 1 ms Guaranteed by design, not tested Version 2.1 14 22 Feb 2005 TDA4863-2 Electrical Characteristics 3.2 Characteristics (cont’d) Unless otherwise stated, -40°C < Tj < 150°C, VCC = 14.5 V Parameter Symbol Limit Values Unit Test Condition 45 µA Tj = 25°C , VVAOUT = 3.5 V 1 µA VISENSE = 0 V mV VVAOUT = 2.7 V VMULTIN = 0 V min. typ. max. IOVR 35 40 Input Bias Current IBISENSE -1 -0.2 Input Offset Voltage (Tj = 25 °C) VISENSEO 25 Max Threshold Voltage VISENSEM 0.95 1.0 Threshold at OVR VISENOVR 0.05 Leading Edge Blanking tLEB Shut Down Delay tdISG Overvoltage Regulator Threshold Current Current Comparator 100 1.05 V IOVR = 50 µA 200 300 80 130 1.5 1.6 ns Detector Upper Threshold Voltage VDETINU Lower Threshold Voltage VDETINL 0.95 1.1 Hysteresis VDETINHY 0.25 0.4 0.55 Input Current IBDETIN -0.2 1 Input Clamp Voltage High State Low State -1 V µA VDETIN = 2 V V VDETINHC 4.5 VDETINLC 0.1 4.9 0.4 5.3 0.7 -0.2 1 IDETIN = 5 mA IDETIN = -5 mA Multiplier Input bias current IBMULTIN -1 µA VMULTIN = 0 V Dynamic voltage range MULTIN VMULTIN 0 to 4 V VVAOUT = 2.75 V Dynamic voltage range VAOUT VVAOUT VFB to VFB + 1.5 VMULTIN = 1 V Multiplier Gain Klow 0.3 Khigh 0.7 VVAOUT < 3 V, VMULTIN = 1 V VVAOUT > 3.5V, VMULTIN = 1 V K = deltaVISENSE / deltaVVAOUT at VMULTIN = constant Version 2.1 15 22 Feb 2005 TDA4863-2 Electrical Characteristics 3.2 Characteristics (cont’d) Unless otherwise stated, -40°C < Tj < 150°C, VCC = 14.5 V Parameter Symbol Limit Values min. typ. max. 100 160 250 Unit Test Condition Restart Timer Restart time tRES µs Gate Drive Gate drive voltage low state VGTL 0.85 V IGT = 0 mA VGTL 1.0 V IGT = 2 mA 1.7 IGT = 20 mA 2.2 IGT = 200 mA Gate drive voltage high state VGTH 10.8 IGT = -5 mA, see “Gate Drive Voltage High State versus Vcc” on Page 20 Output voltage active shut down VGTSD 1 1.25 Rise time trise 80 130 Fall time tfall 55 130 Version 2.1 16 IGT = 20 mA, VCC = 9 V ns CGT = 4.7 nF VGT = 2...8 V 22 Feb 2005 TDA4863-2 Electrical Characteristics 3.3 Electrical Diagrams Icc versus Vcc VCCON/OFF versus Temperature 5 14 4,5 13 4 VCC ON 12 3,5 Vcc / V Icc / mA 3 2,5 VCC OFF 2 VCC ON 11 10 VCC OFF 1,5 9 1 8 0,5 0 7 0 5 10 15 20 -40 0 Vcc/V 80 120 160 Tj / °C Iccl versus Vcc ICCL versus Temperature, VCC = 10 V 50 50 45 45 40 40 35 35 30 30 ICCL / uA Iccl / uA 40 25 25 20 20 15 15 10 10 5 5 0 0 0 2 4 6 8 10 12 14 16 -40 Vcc / V Version 2.1 0 40 80 120 160 Tj / °C 17 22 Feb 2005 TDA4863-2 Electrical Characteristics VFB versus Temperature (pin1 connected to pin2) Open Loop Gain and Phase versus Frequency Phi/deg GV/dB 2,55 180 120 2,54 160 2,53 Gv 100 140 2,52 VFB / V 120 80 2,51 100 2,5 60 Phi 2,49 80 40 2,48 60 2,47 40 20 2,46 20 2,45 -40 0 40 80 120 0 0,01 160 0,1 1 10 Tj / °C 100 0 1000 10000 f/kHz Overvoltage Regulator VISENSE versus Threshold Voltage Leading Edge Blanking versus Temperature 300 1,2 VVAOUT = 3.5V 250 0,8 200 LEB / ns VISENSE / V VMULTIN = 3.0V 1 0,6 150 0,4 100 0,2 50 0 -40 0 35 37 39 41 43 45 Version 2.1 0 40 80 120 160 Tj / °C Iovp / uA 18 22 Feb 2005 TDA4863-2 Electrical Characteristics Current Sense Threshold VISENSE versus VMULTIN Current Sense Threshold VISENSE versus VVAOUT 1 1 4.5V 0,9 Vmultin=4.0 0,9 4.0V 0,8 3.0 0,8 3.5V 0,7 0,7 0,6 0,6 2.0 VISENSE / V VISENSE/ V 1.5 3.25V 0,5 0,4 0,3 1.0 0,5 0,4 0.5 0,3 3.0V 0,2 0,2 0,1 0,1 VAOUT=2.75V 0.25 0 0 0 1 2 3 2,5 4 3 3,5 4 4,5 VVAOUT / V VMULTIN / V Restart Time versus Temperature 220 200 trst / us 180 160 140 120 100 -40 0 40 80 120 160 Tj / °C Version 2.1 19 22 Feb 2005 TDA4863-2 Electrical Characteristics Gate Drive Rise Time and Fall Time versus Temperature Gate Drive Voltage High State versus Vcc 12 140 IGT =-2mA 11,5 120 IGT =-20mA 11 rise time 10,5 V GTH / V rise time / ns 100 80 IGT =-200mA 10 60 9,5 fall time 40 9 20 8,5 8 0 -40 0 40 80 120 11 160 13 15 Vcc / V Tj / °C Gate Drive Voltage Low State versus IGT 1,8 TDA4863-2 1,6 1,4 V GTL / V 1,2 1 0,8 dotted line: TDA4863 0,6 0,4 0,2 0 0 2 4 6 8 10 IGT / mA Version 2.1 20 22 Feb 2005 TDA4863-2 Application Circuit 4 Application Circuit Application circuit: Pout=110W, universal Input Vin=90-270V AC L1=750uH E36/11,N27; gap=2mm W1=85 turns,d=40x0.1 W2=17 turns, d=0.3 D5 MR856 RF filter Vin and 90-270V AC rectifier Vout 410V DC D7 D6 C13 3.3n 400V R12 470 R8A 120k R8B 120k R9 33k R6A 470k C10 47uF 25V 8 C9 220n 7 6 R10 12 CoolMOS SPP04N60C3 0.95 Ohm C8 47uF 450V 5 R4A 422k TDA4863-2 R6B 470k 1 2 3 4 R4B 422k C1 1u R7 9.1k R7 9.1k Figure 5 Version 2.1 C2 1u R11 0.5 C4 10n R5 5k1 GND Pout = 110 W, Universal Input Vin = 90 - 270 V AC 21 22 Feb 2005 TDA4863-2 Application Circuit 4.1 Results of THD Measurements with Application Board Pout = 110 W Current RMS(Amps) (Measurements according to IEC61000-3-2. 150% limit (red line): Momentary measured value must be below this limit. 100% limit (blue line): Average of measured values must be below this limit. The worst measured momentary value is shown in the diagrams.) 0,30 0,25 0,20 0,15 0,10 0,05 0,00 4 Current RMS(Amps) Figure 6 8 12 16 20 24 Harmonic # 28 32 36 40 THD Class C: Pmax = 110 W, Vinac = 90 V, Iout = 250 mA, Vout = 420 V, PF = 0.998 0,225 0,200 0,175 0,150 0,125 0,100 0,075 0,050 0,025 0,000 4 Figure 7 Version 2.1 8 12 16 20 24 Harmonic # 28 32 36 40 THD Class C: Pmax = 110 W, Vinac = 220 V, Iout = 250 mA, Vaout = 420 V, PF = 0.992 22 22 Feb 2005 TDA4863-2 Current RMS(Amps) Application Circuit 0,175 0,150 0,125 0,100 0,075 0,050 0,025 0,000 4 Current RMS(Amps) Figure 8 8 12 16 20 24 Harmonic # 28 32 36 40 THD Class C: Pmax = 110 W, Vinac = 270 V, Iout = 250 mA, Vaout = 420 V, PF = 0.978 0,30 0,25 0,20 0,15 0,10 0,05 0,00 4 Figure 9 Version 2.1 8 12 16 20 24 Harmonic # 28 32 36 40 THD Class C: Pmax = 110 W, Vinac = 90 V, Iout = 140 mA, Vaout = 420 V, PF = 0.999 23 22 Feb 2005 TDA4863-2 Current RMS(Amps) Application Circuit 0,125 0,100 0,075 0,050 0,025 0,000 4 Current RMS(Amps) Figure 10 8 12 16 20 24 Harmonic # 28 32 36 40 THD Class C: Pmax = 110 W, Vinac = 220 V, Iout = 140 mA, Vaout = 420 V, PF = 0.975 0,10 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0,00 4 Figure 11 Version 2.1 8 12 16 20 24 Harmonic # 28 32 36 40 THD Class C: Pmax = 110 W, Vinac = 270 V, Iout = 140 mA, Vaout = 420 V, PF = 0.883 24 22 Feb 2005 TDA4863-2 Package Outlines 5 Package Outlines 2.54 0.46 ±0.1 0.35 8x 8 7.87 ±0.38 0.25 +0.1 3.25 MIN. 0.38 MIN. 1.7 MAX. 4.37 MAX. PG-DIP-8-4 (Plastic Dual In-line Package) 6.35 ±0.25 1) 8.9 ±1 5 1 4 9.52 ±0.25 1) 1) Does not include plastic or metal protrusion of 0.25 max. per side GPD05583 Index Marking Figure 12 Version 2.1 25 22 Feb 2005 TDA4863-2 Package Outlines PG-DSO-8-3 (Plastic Dual Small Outline) 1.27 0.1 0.41 +0.1 -0.05 +0.05 -0.01 0.2 C 0.64 ±0.25 0.2 M A C x8 8 5 Index Marking 1 4 5 -0.21) 8˚ MAX. 4 -0.21) 1.75 MAX. 0.1 MIN. (1.5) 0.33 ±0.08 x 45˚ 6 ±0.2 A Index Marking (Chamfer) Does not include plastic or metal protrusion of 0.15 max. per side GPS09032 1) Figure 13 You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products. Version 2.1 26 Dimensions in mm 22 Feb 2005 Total Quality Management Qualität hat für uns eine umfassende Bedeutung. Wir wollen allen Ihren Ansprüchen in der bestmöglichen Weise gerecht werden. Es geht uns also nicht nur um die Produktqualität – unsere Anstrengungen gelten gleichermaßen der Lieferqualität und Logistik, dem Service und Support sowie allen sonstigen Beratungs- und Betreuungsleistungen. Quality takes on an allencompassing significance at Semiconductor Group. For us it means living up to each and every one of your demands in the best possible way. So we are not only concerned with product quality. We direct our efforts equally at quality of supply and logistics, service and support, as well as all the other ways in which we advise and attend to you. Dazu gehört eine bestimmte Geisteshaltung unserer Mitarbeiter. Total Quality im Denken und Handeln gegenüber Kollegen, Lieferanten und Ihnen, unserem Kunden. Unsere Leitlinie ist jede Aufgabe mit „Null Fehlern“ zu lösen – in offener Sichtweise auch über den eigenen Arbeitsplatz hinaus – und uns ständig zu verbessern. Part of this is the very special attitude of our staff. Total Quality in thought and deed, towards co-workers, suppliers and you, our customer. Our guideline is “do everything with zero defects”, in an open manner that is demonstrated beyond your immediate workplace, and to constantly improve. Unternehmensweit orientieren wir uns dabei auch an „top“ (Time Optimized Processes), um Ihnen durch größere Schnelligkeit den entscheidenden Wettbewerbsvorsprung zu verschaffen. Geben Sie uns die Chance, hohe Leistung durch umfassende Qualität zu beweisen. Wir werden Sie überzeugen. http://www.infineon.com Published by Infineon Technologies AG Throughout the corporation we also think in terms of Time Optimized Processes (top), greater speed on our part to give you that decisive competitive edge. Give us the chance to prove the best of performance through the best of quality – you will be convinced.