Version 1.0 , September 2004 Application Note AN-CoolMOS-09 200W SMPS Demonstration Board II Author: Marko Scherf, Wolfgang Frank Published by Infineon Technologies AG http://www.infineon.com Power Conversion N e v e r s t o p t h i n k i n g 200W SMPS Demonstration Board II This application note describes the 200W SMPS Demonstration Board with Infineon power products like CoolMOS, OptiMOS, TDA16888, SiC Schottky diode thinQ!, small signal N- & Pchannel MOSFETs. Table of Contents 1 2 3 4 Features / Parameters ...........................................................................................................3 General Description / Main Function......................................................................................4 Construction / Heatsinks ........................................................................................................4 Description of Functional Part Groups ...................................................................................5 4.1 Power Stages (“Main Board”) ..........................................................................................5 4.1.1 AC input/ EMI Filter ....................................................................................................5 4.1.2 PFC Converter ...........................................................................................................5 4.1.3 PWM Converter (Two Transistor Forward)................................................................6 4.1.4 Synchronous Rectification .........................................................................................6 4.2 Controlling Circuitry (“Control Board”) .............................................................................6 4.2.1 General Description of the Combi-IC TDA16888 ......................................................6 4.2.2 PFC Control ...............................................................................................................7 4.2.3 PWM Control..............................................................................................................7 4.2.4 Gate Drive Circuitry....................................................................................................7 5 Power Losses / Efficiency ......................................................................................................8 6 Power Loss Sources ..............................................................................................................9 7 Conducted EMI Measurements ...........................................................................................10 8 Construction of magnetic components.................................................................................11 8.1 PFC choke......................................................................................................................11 8.2 Main transformer ............................................................................................................12 8.3 Output filter choke ..........................................................................................................13 9 PCB Layout ..........................................................................................................................14 9.1 Main Board - Scaling 1:1................................................................................................14 9.2 Control Board- Scaling 1:1.............................................................................................17 10 Bill of Materials..................................................................................................................17 10.1 Main Board .....................................................................................................................17 10.2 Control Board .................................................................................................................20 Danger! This demonstration board works with mortally high voltage. Do not touch it or any other connected equipment while powered. Be aware that the board could carry high voltage for at least 5 minutes after disconnecting from mains. The unit can heat up to a high temperature. Risk of burning is given when touching. Assure yourself when working with this unit that no danger or risk can occur to the user or any other person! Do not run the main board without properly inserted control board! 2 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 1 Features / Parameters Features: - Infineon & EPCOS components on board - Third generation of CoolMOS C3 as PFC, PWM switches - Silicon Carbide (SiC) Schottky diode thinQ! as PFC diode - OptiMOS2 as synchronous rectification switches - PFC and PWM controller in one IC - High efficiency - No external heat sink required - No minimum output load required - Output over load protected - Output short circuit protected Parameters: - wide input voltage range 90-265V - output power 200W - output voltages - 5V / 20A max (load resistance = 0.25Ohm) - 12V / 8.3A max (load resistance = 1.45Ohm) - active Power Factor Correction boost converter operates at 200kHz - hard switching two transistor forward converter operates at 200kHz - synchronous rectification for 5V output operates at 200kHz 3 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 2 General Description / Main Function Boost inductor ~ SIC SDD04S60 + CoolMOS SPB07N60C3 EMCON IDD03E60 +12V 8A Tr. 1 EMI AC in 90-275V Line rectification Filter 2 parallel CoolMOS SPB07N60C3 +5V 20A EMCON IDD03E60 ~ fPFC =fPWM = 200 kHz - CoolMOS SPB07N60C3 PFC/PWM Control TDA 16888 High and Low Side Driver OPTIMOS 2 BSC022N03S 2 parallel OPTIMOS 2 BSC022N03S Block Diagram The SMPS Demoboard consists of two power stages, a AC-DC- converter for power factor correction (PFC section) and a PWM-controlled DC-DC-converter configured as a two-transistor forward topology (PWM section). The PFC stage is a step up (boost) converter which serves to provide a 380V DC-bus at its output while consuming sinusoidal line current (near a unity power factor) at the input. Another PFC related feature is the ability to supply the converter with a wide range input voltage (90-265VAC) without range switches to re-configure the rectifier assembly. The power semiconductors used are two CoolMOS SPB07N60C3 in parallel and a silicon carbide diode prototype SDD04S60 (4A/600V). The two-transistor forward-converter provides isolation from the AC line. There are two output voltages, 5VDC and 12VDC. At the primary side the power semiconductors are two CoolMOS SPB07N60C3 and two EMCON diodes IDD03E60 (3A/600V). At the secondary side the rectification principle is different for each output. At the 12V-path there is a conventional rectification with Schottky diodes. The 5V output is realized as synchronous rectification using low voltage MOSFETS BSC022N03S. One single integrated circuit, a TDA16888, provides control for both power stages, the PFC and PWM sections. 3 Construction / Heatsinks A larger PCB (called “main board”) is the mechanical base of the SMPS. It carries the power semiconductors (in SMD lead frame technology) and the passive devices of the power stages. No additional heatsink is used. The copper layers of the board serve to distribute the dissipated energy with the help of a metal plate at the bottom of the board. A smaller PCB (called “control board”) carries the controlling circuitry and is plugged to the “main board” at its top. 4 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 4 Description of Functional Part Groups 4.1 Power Stages (“Main Board”) D10 BAV99 VCC C101 100n Q3 BSP129 R28 4k7 D11 13V D12 TMBYV10-60 C18 47µ C87 0µ47 R29 1R C88 0µ47 D13 TMBYV10-60 D79 BAV99 Q5 BSP129 VCCtop C100 100n R81 4k7 D78 13V SDD04S60 D5 D76 TMBYV10-60 C91 47µ GNDtop C89 0µ47 R80 1R L2 500µH C90 0µ47 L1 Fuse rec AC+ L4 ~ AC in R102 901M2 255V C86 µ47 D6 VBus2 R2 220k C4 2n2 Q2B D82 D77 TMBYV10-60 VBus =380V VCC G2B SPB 07N60 C3 C33 R45 4R7 +12V 8A C36 2200µ D21 C32 2n2 C36 2200µ L3A R48 1k8 L6 R99 1k8 LED1 1N5408 C3B C2 µ47 C3A 100n Q1B Q1A rec AC- D27 G1B R6 0R15 SPB 07N60 C3 G1A SPB 07N60 C3 BSC022N03S BSC022N03S R100 Q19 1R Q19A R103 47R Q2A G2A - R98 1R R97 10R C3 150µ R30 ~ R44 4R7 + D1...D4 KBU8K C26 4n7 Tr. 1 2n2 C25 4n7 C24 µ47 D20 D22 GNDtop SPB 07N60 C3 S2A R15 0R47 C97 4n7 Q18 BSP318 C98 4n7 R101 1R L3B C15 4700µ C28 4700µ L5 R104 1k8 +5V 20A LED2 (LC) Q21 BSC022N03S C39 4n7 XS IC3 CNY17-3 C99 2n2 R39 1k R22 680R C16 68n C17 2n2 R20 5k1 R21 10k IC2 TL431CD R19 5k1 4.1.1 AC input/ EMI Filter The input voltage of the SMPS is 90 to 265Vac (50/60Hz). A Fuse prevents greater damage in the case of catastrophic failure. The function of the line EMI Filter (C86, L1, L4, C24...26, C2) is to suppress the high frequency noise caused by the switching transitions of both power stages. Varistor R30 serves to suppress high voltage line transients to protect the input. The line rectifier (D1...4) consists of standard silicon diodes. 4.1.2 PFC Converter The PFC converter is a step up topology with continuous inductor current at full load. The switching frequency is 200kHz. The output voltage is approximately 380Vdc. Main parts of the PFC are the boost inductor L2, switches Q1A/Q1B, boost diode D5 and the bulk capacitor C3. L2 is an iron powder toroidal core with a single layer of copper wire to keep stray capacitance small. Q1A/Q1B are CoolMOS SPB07N60C3 because of their high switching speed and their very low on-resistance (important at low input voltagesÎhigher current, duty cycle). The only reason for paralleling is to get larger cooling areas for better heat distribution at the PCB. The boost diode is a 600V silicon carbide Schottky diode, which has an excellent switching characteristic (no charge storage). D82, a conventional silicon diode, is used to initially charge the bulk capacitor from the rectified AC voltage, avoiding high surge current in the unipolar SiC diode. The bulk capacitor C3 serves to store energy to reduce the second harmonic voltage ripple and it must carry the switching frequency current. C3A keeps the commutation circuit short, it’s a bypass for high frequency currents. 5 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 4.1.3 PWM Converter (Two Transistor Forward) The PWM converter is a two transistor forward topology. The operating frequency of 200 kHz is same as at the PFC section. Main parts at the primary side are Q2A/Q2B and D22/D27. When the forward transistors Q2A/Q2B are switched on simultaneously, energy is transferred to the output through the transformer. The transistors are chosen as CoolMOS SPB07N60C3 because of their high switching speed. D22/D27 are EMCON diodes. They serve to clamp the flyback voltages from the transformer leakage inductance, during reset of the transformer magnetization, in every turn off cycle. The transformer Tr.1 provides galvanic isolation of the output from the line and adapts the output voltages from the voltage of the bulk capacitor. The transformer consists of a ETD29/N97core by EPCOS with tape windings. The windings are interleaved to reduce leakage inductance and winding losses. Main parts at the secondary are D20/D21, L3A, L6 and C36/C37 (12V-output) and Q19/Q21, L3B, L5 and C15, C28 (5V-output). D20/D21 are 45-volts standard Schottky diodes, which handle the current in both sequences, when the transistors are on in series rectifier mode or as freewheeling path if the transistors are off. 4.1.4 Synchronous Rectification At the 5V-path there is used a synchronous rectifier with 30V-MOSFETs BSC022N03S featuring the Super-SO8package. It uses control waveforms generated by the secondary side of the transformer. Two MOSFETs in parallel, Q19 and Q19A handle the freewheeling current in the “low” PWM state, and one MOSFET, Q21, handles the series rectifier circuitry. The freewheeling synchronous rectifiers are turned on in the absence of the PWM pulse output, driven through the body diode of Q18 during the primary transformer reset interval. When the primary switches turn on, the gate of Q18 (previously biased negative), driven through R97 connected to the dot transformer winding, starts switching positive. 4.2 Controlling Circuitry (“Control Board”) R4B C9A 470k 2n2 R4A 470k recAC+ 1 C12 µ47 Vref 4 PFCCS R7 1k8 R3 10k Vref 3 PFCCC C7 220p 5 GNDS C10 47p 6 PFCCL R26 33k 7 GND PFCout VCC C11A 220µ PWMout C11 µ47 PFCVC 18 14 PWMSS 13 9 VCC SYNC 10 PWMout PWMCS 11 R93 10R 12 820k C41 220p 1M 1M VBus2 VBus = 380V 1M R82 10R R14 R13D R13C R13B R13A 1M 1M 51k 820k 1M R24 Vref 22k R25 C22 C13 10k 4n7 47p C14 R35 R23 µ47 1k 33k PWMRMP 15 PWMIN R1A 1M C6 100n R16 390k 16 8 PFCout VCCtop C5 47n PFCFB 17 Rosc R1B 1M R12D R12C R12B R12A R11 51k PFCVS 19 IC1 TDA 16888 R5 C8 1k8 2n2 Aux vs 20 ac 2 Vref R8 10k recAC- R1D R1C 820k 1M R27 51k VDD VCC C92 µ47 14 XS D80 BAV99 C95 47µ 4 5 6 IC9 HEF40106BT C96 µ47 R83 4R7 S2A R32 1k VDDtop IC8 SFH6711 C94 100n 3 Q7 BC807 C21 100p 1 R92 1k 2 open 2 3 4 5 6 9 C93 100p 1 8 11 10 13 12 Q14 BC817 R94 4R7 Q16 BSP613P R95 68R G2B 9 8 11 10 13 12 Q10 BC817 R88 4R7 PWMout 7 Q8 BSP613P Q6 BC817 PFCout 14 R91 1k D81 BAV99 IC7 HEF40106BT R84 68R R86 68R G1A G1B R85 10R R87 10R Q9 BSP320S Q12 BSP613P R89 68R G2A R90 10R Q11 BC807 Q13 BSP320S R96 10R Q15 BC807 Q17 BSP320S 7 GNDtop 4.2.1 General Description of the Combi-IC TDA16888 6 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II The TDA 16888 comprises the complete control for power factor controlled switched mode power supplies. With its PFC and PWM section being internally synchronized, it is suitable for two stage off-line converters with worldwide input voltage range. It is designed to reduce system costs by less external parts count. Special PFC features include: • Dual loop control (average current and voltage sensing) • Additional operation mode as auxiliary power supply • Fast, soft switching totem pole gate drive (1A) • Leading edge pulse width modulation • Peak current limitation • Overvoltage protection Special PWM features include: • Improved current mode control • Fast, soft switching totem pole gate drive (1A) • Soft-start management • Trailing edge pulse width modulation • 50% maximum duty cycle to prevent transformer saturation • Individually adjustable Power Management 4.2.2 PFC Control The TDA 16888 provides active power factor control in average current control mode. The “heart” of the PFC section is an analog multiplier. It creates the current programming signal for the current amplifier OP2 by multiplying the rectified line voltage with the output of the voltage amplifier so that the current programming signal has the shape of the input voltage and an average amplitude which controls the output voltage. At the Demoboard the external circuitry of the voltage amplifier (voltage sensing, compensating) consists of R13, R14, R16, C5, and C6. The resistor R4 serves to monitor the actual rectified line voltage. R5, R7, R8, C7, and C8 are the components belonging to the current amplifier, the inductor current is monitored as a voltage drop at R6 (located at “main board”). R3, R26 determine the PFC current limit (approx. 6,5A). R11, R12 fix the overvoltage thresholds. 4.2.3 PWM Control The TDA 16888 provides an improved current mode control containing effective slope compensation as well as enhanced spike suppression. The converter primary side switch current is monitored as voltage drop at R15 (located at “main board”). The amplified and “cleaned” current signal sensed at PWMCS (11), measurable at PWMRMP (15), together with the output voltage control loop feedback signal at PWMIN (14), are both inputs of the PWM comparator C8. Together they determine the actual duty cycle. C14 provides soft start of the PWM section. The components of the output voltage control loop are located at the secondary side of the converter (on the “main board”). The feedback signal is transferred across the isolation barrier via a low cost optocoupler, IC3. 4.2.4 Auxiliary Power Supply /Gate Drive Circuitry The supply voltage of the control circuitry is generated by an additional winding of the PFC choke L2. This costefficient technique is featured by the TDA 16888 because of a special control loop, which ensures a continuous generation of auxiliary power even at no load condition and sudden load drops. Because of the very high operating frequency the PFC section power transistors (Q1A, Q1B) and the low side power transistor (Q2A) of the PWM stage are driven by discrete high speed, high current driver stages using small signal bipolar transistors and MOSFETs. That’s why the original gate drive signals at PFCOUT/ PWMOUT are schmitt-trigerred and used as inputs of the discrete drivers. The gate drive signal of the high side power transistor (Q2B) is transferred via a high-speed optocoupler, IC8 (SFH 6711), and amplified as described before. The floating supply voltage for the high side driver circuitry is generated by another separate winding of L2. 7 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 5 Power Losses / Efficiency Measured power losses at nearly full load and different input voltages: Vinac/V Pin/W Pout/W V12v/V I12v/A V5v/V I5v/A 90 110 150 200 230 275 225 222 218 217 215 215 185,0 185,0 185,0 185,0 185,0 185,0 10,25 10,25 10,25 10,25 10,25 10,25 7,2 7,2 7,2 7,2 7,2 7,2 5,03 5,03 5,03 5,03 5,03 5,03 22,1 22,1 22,1 22,1 22,1 22,1 η/% 82,2 83,3 84,9 85,3 86,0 86,0 The best efficiency appears at high input voltage, the worst at the lowest. The reason is the variation of the line current. Higher input currents result in increased conduction losses at the input rectifier, EMI Filter, PFC choke and PFC current sense resistor. The RMS value of the PFC transistor current is much higher at low line conditions, when the switches have to carry higher peak currents. Furthermore, the transistors switch at twice the effective duty cycle in order to provide a higher step up rate for the PFC stage. The higher current values also cause increased switching losses of the PFC stage. The behavior of the PWM stage doesn’t depend on the input voltage, due to the pre-regulated bulk bus from the output of the PFC stage. 90 85 82,2 80 Efficiency [%] 83,3 84,9 85,3 86 86 75 70 65 60 55 50 50 100 150 200 250 300 Vin AC [V] 8 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 6 Power Loss Sources The highest power dissipation appears at full load and low line condition. Operation point: Vin AC = 90V Pin = 225W Pout = 185W ⇒Ploss = 40W The distribution of the power losses is calculated or assumed by the help of measured device temperatures. Power Loss Sources Assumed Power Dissipation/ W 1.5 3.5 3 1.5 5 1.5 2 3 3 4 3 2 3 4 40 EMI Filter Line Rectifier (D1...4) PFC Choke L2 Bulk Capacitor C3 PFC Transistors Q1 PFC Diode D5 Forward Transistors Q2 Transformer Tr.1 5V Rectifiers Q19, Q21 12V Rectifiers D20, D21 Output Choke L3 Output Capacitors C36, C37, C15, C28 Controlling, Driver, Supply Circuitry Others ∑ 5 4 4 2 4 3,5 3 3 3 2 1,5 1,5 3 3 3 2 1,5 1 ne R ie r ec tif EM IF ilt PF (D er Bu C C 1... lk ho 4) PF Ca ke pa L C Tr cit 2 an or C s Fo PF isto 3 rw r ar C D s Q d Tr iod 1 e an D 5 5V Tra sist o ns R rs Q 12 ect for m 2 ifi V e e R O ec rs Q r Tr ut . tif pu ie 19, 1 tC rs Q C 21 D on ap O 2 ut tro ac 0, p u llin ito D g, rs C t Ch 21 D riv 36, oke er L3 C , S 37 up , . pl .. y C irc u. O .. th er s 0 Li Assumed Power Dissipation [W] 5 9 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 7 Conducted EMI Measurements Measuring of conducted noise with an EMI-Receiver FMLK 1518 at a Line-Impedance Stabilization Network (LISN) NSLK 8128. Conditions: VAC in = 230V, Pout = 181,4W, main board in a metal case. Phase 1, Average Phase 2, Average As it can be seen from the figures above the measured EMI spectra are below the norm limit lines. 10 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 8 Construction of magnetic components 8.1 PFC choke Core: MAGNETICS Ringcore 77930 - A7; L = 490 µH (Pin1 - Pin8) Hole arrangement View in mounting direction N3 N1 Pin 1 N2 N1: 56 turns 0,5mm ∅ N2: 4 turns 0,2mm ∅ N3: 4 turns 0,2mm ∅ 2 N2 N1 Pin 8 11 of 21 3 7 4 N3 6 5 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 8.2 Main transformer Core: ETD29/16/10, N97 without airgap ratio: 23:2:1 N11= 23 N2= 4 N12= 23 N3= 2 N11/ N12 are series connected (on PCB) Windings: Cu-tape N1: 13,4 x 0,035 mm N2: 13,4 x 0,070 mm N3: 13,4 x 0,100 mm Design: interleaved N12= 23 N2= 4 N3= 2 N11= 23 Core 12 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 8.3 Output filter choke Core: ETD29/16/10, N97 Air gap (total): 1,5 mm Î Al= 93,4nH ÎInductance: L1= 27µH L2= 4,6µH Windings: Cu-tape N1: 15,4 x 0,050 mm N2: 15,4 x 0,150 mm Design: N1= 17 N2= 7 Core 13 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 9 9.1 PCB Layout Main Board - Scaling 1:1 Main Board/ Top/ Components 14 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II Main Board /Top / Copper 15 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II Main Board/ Bottom/ Bottom View/ Copper 16 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 9.2 Control Board- Scaling 1:1 Control Board/ Top/ Components Control Board/ Top/ Copper Control Board/ Bottom/ Bottom View/ Components Control Board/ Bottom/ Bottom View/ Copper 10 Bill of Materials 10.1 Main Board Part Value +5V Package Position (mil) FLSTL6,3 (500 3275) +12V FLSTL6,3 (500 4075) AC_IN KLEMME-3 (200 5150) C22,5B11 (4650 5300) C2 u47/X2 C3 150u/450V EB35D (6375 5053.74) C3A 100n/630V C15B7 (3375 4387.5) C3B 100n/630V C15B7 (6200 825) C4 2n2/1kV C7,5B4 (3937.5 4537.5) C15 4m7/10V C16 68n 1206 (700 200) C17 2n2 1206 (500 200) C18 47u/63V E3,5-8 (5675 4375) C24 u47/X2 C22,5B11 (2475 5300) C25 4n7/Y C10B6 (2125 5550) C26 4n7/Y C10B6 C28 4m7/10V C32 2n2/1kV C7,5B4 (2900 1800) C33 2n2/1kV C7,5B4 (2900 1625) (1050 1525) (2125 5025) (1050 3275) 17 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II Value Package Position (mil) C36 2m2/25V (362.5 1112.5) C37 2m2/25V (362.5 2762.5) C39 4n7/Y C10B6 (1050 3800) C86 u47/X2 C22,5B11 (1175 5300) C87 u47 1812 (5450 4450) C88 u47 1812 (5450 4175) C89 u47 1812 (6425 3375) C90 u47 1812 (6425 3200) C91 47u/63V E3,5-8 (6275 4150) C97 4n7/Y C10B6 (6812.5 4162.5) C98 4n7 1206 (3362.5 1912.5) C99 2n2 1206 (1143.75 250) C100 100n 1206 (6750 3418.75) C101 100n 1206 (5200 4075) D1...4 KBU8K KBU-L (4375 5400) D5 SDD04S60 DPAK (4150 3925) D6 IDD03E60 DPAK (5837.5 3700) D10 BAV99 SOT-23 (4681.25 4206.25) D11 BZX84C13 SOT-23 (5287.5 4250) D12 TMBYV10-60 MELF (5062.5 4400) D13 TMBYV10-60 MELF (4725 4400) D20 MBRB2545 D2PAK (2737.5 2325) D21 MBRB2545 D2PAK (2100 2325) D22 IDD03E60 DPAK (6575 650) D27 IDD03E60 DPAK (5875 642.52) D76 TMBYV10-60 MELF (6425 3750) D77 TMBYV10-60 MELF (6425 3600) D78 BZX84C13 SOT-23 (6725 3537.5) D79 BAV99 SOT-23 (6862.5 2637.5) D82 1N5408 DO201-15 (4531.25 4625) BO3,2-P (6889.76 3818.9) BO3,2-P (1574.8 3818.9) SH22 (600 5300) FLSTL6,3 (500 4325) E$5 E$9 FUSE 4AT GND GND. IC2 TL431CD FLSTL6,3 (500 3525) SO-8 (250 600) IC3 CNY17-3 DIL06 (987.5 475) L1 2x1m2 82722J (1700 5300) L2 500u INF-PFC (5275 5262.5) L3 36/6uH RM14-12A (2075 1000) L4 2x1m2 82722J (3000 5300) L5 1u INAIR20A (1050 2400) L6 1u INAIR8A (312.5 1937.5) 18 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II Part Value Package Position (mil) LED_5V Green/LC LED3 (400 3706.25) LED_12V Red LED3 (400 3893.75) Q1A SPB07N60C3 D2PAK (3400 3925) Q1B SPB07N60C3 D2PAK (2650 3925) Q2A SPB07N60C3 D2PAK (5862.5 1625) Q2B SPB07N60C3 D2PAK (6700 1625) Q3 BSP129 SOT-223 (4887.5 4100) Q5 BSP129 SOT-223 (6787.5 3100) Q18 BSP318 SOT-223 (3350 1587.5) Q19 BSC022N03S P-TDSON-8 (4012.5 2325) Q19A BSC022N03S P-TDSON-8 (3375 2325) Q21 BSC022N03S P-TDSON-8 (4650 2325) R2 220k/2W 0411/15 (4100 4375) R6 0R15/1W R-SMR (4900 3700) R15 R47 R-SMR (6112.5 2337.5) R19 5k1 1206 (450 500) R20 5k1 1206 (700 650) R21 10k 1206 (450 350) R22 680R 1206 (700 500) R28 4k7 1206 (5112.5 4168.75) R29 1R 1206 (5300 4425) R30 S14K275 S14K275 (3425 5300) R39 1k 1206 (700 350) R44 4R7/0,6W 0207/10 (2900 1925) R45 4R7/0,6W 0207/10 (2900 1500) R48 1k8 1206 (593.7 3897.98) R80 1R 1206 (6375 3950) R81 4k7 1206 (6750 3325) R97 10R 1206 (3550 1712.5) R98 1R 1206 (4387.5 2087.5) R99 1k8 1206 (593.75 3806.25) R100 1R 1206 (3750 2075) R101 1R 1206 (3112.5 2075) R102 1M2/Netz 0411/15 (875 5300) R103 47R 1206 (3362.5 1812.5) R104 1k8 1206 (593.75 3712.5) S$63 BO3,2-P (3825 5400) SVB_M_C 1X20SMDI (5575 2850) TR.1 RM14-12A (4550 1000) 19 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 10.2 Control Board Part Value Package Position (mil) C5 47n 1206 (900 968.75) C6 100n 1206 (818.75 968.75) C7 220p 1206 (1699.36 1050) C8 2n2 1206 (1699.36 968.75) C9A 2n2 1206 (1699.36 1131.26) C10 47p 1206 (1424.36 906.24) C11 u47 1812 (1511.85 528.12) C11A 220u/25V E3,5-8 (150 1025) C12 u47 1812 (1561.87 1103.13) C13 47p 1206 (1424.37 825) C14 u47 1812 (1252.48 528.12) C21 100p 1206 (1424.37 656.25) C22 4n7 1206 (1424.37 743.75) C41 220p 1206 (1424.36 987.5) C92 u47 1812 (975 749.36) C93 100p 1206 (1653.13 756.25) C94 100n 1206 (2018.75 537.5) C95 47u/63V E3,5-8 (1965.63 993.75) C96 u47 1812 (2287.5 703.13) D80 BAV99 SOT-23 (1700 571.87) D81 BAV99 SOT-23 (1678.12 734.37) IC1 TDA16888 SO-20L (1380.61 918.75) IC7 HEF40106BT SO-14 (849.36 981.25) IC8 SFH6711 DIL-08 (1943.11 631.25) IC9 HEF40106BT SO-14 (2175 988.14) Q6 BC817 SOT-23 (618.75 884.38) Q7 BC807 SOT-23 (487.5 884.38) Q8 BSP613P SOT-223 (468.11 643.75) Q9 BSP320S SOT-223 (199.36 643.75) Q10 BC817 SOT-23 (818.75 687.5) Q11 BC807 SOT-23 (818.76 815.63) Q12 BSP613P SOT-223 (736.86 643.75) Q13 BSP320S SOT-223 (1005.61 643.75) Q14 BC817 SOT-23 (2275.01 659.37) Q15 BC807 SOT-23 (2275 471.88) Q16 BSP613P SOT-223 (1961.86 181.25) Q17 BSP320S SOT-223 (2224.35 181.25) R1A 1M 1206 (568.11 550) R1B 1M 1206 (568.11 725) R1C 1M 1206 (568.11 900) R1D 820k 1206 (568.11 1075) 20 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II Part Value Package Position (mil) R3 10k 1206 (1549.36 478.13) R4A 470k 1206 (180.61 550) R4B 470k 1206 (180.61 725) R5 1k8 1206 (1374.36 478.13) R7 1k8 1206 (1233.74 587.5) R8 10k 1206 (1699.36 887.5) R11 51k 1206 (443.75 1087.5) R12A 1M 1206 (443.11 550) R12B 1M 1206 (443.11 725) R12C 1M 1206 (443.11 900) R12D 820k 1206 (443.11 1075) R13A 1M 1206 (343.11 550) R13B 1M 1206 (343.11 725) R13C 1M 1206 (343.11 900) R13D 820k 1206 (343.11 1075) R14 51k 1206 (318.75 1087.5) R16 390k 1206 (981.26 968.75) R23 33k 1206 (1556.25 312.5) R24 22k 1206 (1118.75 950) R25 10k 1206 (1121.87 950) R26 33k 1206 (1714.98 987.5) R27 51k 1206 (568.76 1087.5) R32 1k 1206 (1150 312.5) R35 1k 1206 (1121.87 775) R82 10R 1206 (1043.75 531.26) R83 4R7 1206 (256.25 940.63) R84 68R 1206 (700 187.5) R85 10R 1206 (787.5 187.5) R86 68RR 1206 (956.25 187.5) R87 10R 1206 (868.75 187.5) R88 4R7 1206 (718.75 706.25) R89 68R 1206 (878.13 531.25) R90 10R 1206 (962.5 531.25) R91 1k 1206 (1700.01 584.38) R92 1k 1206 (1718.76 756.25) R93 10R 1206 (2168.75 687.5) R94 4R7 1206 (2293.75 459.38) R95 68R 1206 (1781.25 100) R96 10R 1206 (1700 100) 1X20/90I (1205.61 400) SVB_C_M 21 of 21 AN-CoolMOS-09 V 1.0