200W Sec Edition Board

Version 1.0 , September 2004
Application Note
AN-CoolMOS-09
200W SMPS Demonstration Board II
Author:
Marko Scherf, Wolfgang Frank
Published by Infineon Technologies AG
http://www.infineon.com
Power Conversion
N e v e r
s t o p
t h i n k i n g
200W SMPS Demonstration Board II
This application note describes the 200W SMPS Demonstration Board with Infineon power
products like CoolMOS, OptiMOS, TDA16888, SiC Schottky diode thinQ!, small signal N- & Pchannel MOSFETs.
Table of Contents
1
2
3
4
Features / Parameters ...........................................................................................................3
General Description / Main Function......................................................................................4
Construction / Heatsinks ........................................................................................................4
Description of Functional Part Groups ...................................................................................5
4.1 Power Stages (“Main Board”) ..........................................................................................5
4.1.1 AC input/ EMI Filter ....................................................................................................5
4.1.2 PFC Converter ...........................................................................................................5
4.1.3 PWM Converter (Two Transistor Forward)................................................................6
4.1.4 Synchronous Rectification .........................................................................................6
4.2 Controlling Circuitry (“Control Board”) .............................................................................6
4.2.1 General Description of the Combi-IC TDA16888 ......................................................6
4.2.2 PFC Control ...............................................................................................................7
4.2.3 PWM Control..............................................................................................................7
4.2.4 Gate Drive Circuitry....................................................................................................7
5 Power Losses / Efficiency ......................................................................................................8
6 Power Loss Sources ..............................................................................................................9
7 Conducted EMI Measurements ...........................................................................................10
8 Construction of magnetic components.................................................................................11
8.1 PFC choke......................................................................................................................11
8.2 Main transformer ............................................................................................................12
8.3 Output filter choke ..........................................................................................................13
9 PCB Layout ..........................................................................................................................14
9.1 Main Board - Scaling 1:1................................................................................................14
9.2 Control Board- Scaling 1:1.............................................................................................17
10 Bill of Materials..................................................................................................................17
10.1 Main Board .....................................................................................................................17
10.2 Control Board .................................................................................................................20
Danger!
This demonstration board works with mortally high voltage. Do not touch it or any
other connected equipment while powered. Be aware that the board could carry
high voltage for at least 5 minutes after disconnecting from mains.
The unit can heat up to a high temperature. Risk of burning is given when
touching.
Assure yourself when working with this unit that no danger or risk can occur to
the user or any other person!
Do not run the main board without properly inserted control board!
2 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
1
Features / Parameters
Features:
- Infineon & EPCOS components on board
- Third generation of CoolMOS C3 as PFC, PWM switches
- Silicon Carbide (SiC) Schottky diode thinQ! as PFC diode
- OptiMOS2 as synchronous rectification switches
- PFC and PWM controller in one IC
- High efficiency
- No external heat sink required
- No minimum output load required
- Output over load protected
- Output short circuit protected
Parameters:
- wide input voltage range 90-265V
- output power 200W
- output voltages
- 5V / 20A max (load resistance = 0.25Ohm)
- 12V / 8.3A max (load resistance = 1.45Ohm)
- active Power Factor Correction boost converter operates at 200kHz
- hard switching two transistor forward converter operates at 200kHz
- synchronous rectification for 5V output operates at 200kHz
3 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
2
General Description / Main Function
Boost inductor
~
SIC
SDD04S60
+
CoolMOS
SPB07N60C3
EMCON
IDD03E60
+12V
8A
Tr. 1
EMI
AC in
90-275V
Line
rectification
Filter
2 parallel
CoolMOS
SPB07N60C3
+5V
20A
EMCON
IDD03E60
~
fPFC =fPWM = 200 kHz
-
CoolMOS
SPB07N60C3
PFC/PWM
Control
TDA 16888
High and
Low Side
Driver
OPTIMOS 2
BSC022N03S
2 parallel
OPTIMOS 2
BSC022N03S
Block Diagram
The SMPS Demoboard consists of two power stages, a AC-DC- converter for power factor correction (PFC
section) and a PWM-controlled DC-DC-converter configured as a two-transistor forward topology (PWM section).
The PFC stage is a step up (boost) converter which serves to provide a 380V DC-bus at its output while
consuming sinusoidal line current (near a unity power factor) at the input. Another PFC related feature is the
ability to supply the converter with a wide range input voltage (90-265VAC) without range switches to re-configure
the rectifier assembly. The power semiconductors used are two CoolMOS SPB07N60C3 in parallel and a silicon
carbide diode prototype SDD04S60 (4A/600V).
The two-transistor forward-converter provides isolation from the AC line. There are two output voltages, 5VDC
and 12VDC. At the primary side the power semiconductors are two CoolMOS SPB07N60C3 and two EMCON
diodes IDD03E60 (3A/600V). At the secondary side the rectification principle is different for each output. At the
12V-path there is a conventional rectification with Schottky diodes. The 5V output is realized as synchronous
rectification using low voltage MOSFETS BSC022N03S.
One single integrated circuit, a TDA16888, provides control for both power stages, the PFC and PWM sections.
3
Construction / Heatsinks
A larger PCB (called “main board”) is the mechanical base of the SMPS. It carries the power semiconductors (in
SMD lead frame technology) and the passive devices of the power stages. No additional heatsink is used. The
copper layers of the board serve to distribute the dissipated energy with the help of a metal plate at the bottom of
the board. A smaller PCB (called “control board”) carries the controlling circuitry and is plugged to the “main
board” at its top.
4 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
4
Description of Functional Part Groups
4.1
Power Stages (“Main Board”)
D10
BAV99
VCC
C101
100n
Q3
BSP129
R28
4k7
D11
13V
D12
TMBYV10-60
C18
47µ
C87
0µ47
R29
1R
C88
0µ47
D13
TMBYV10-60
D79
BAV99
Q5
BSP129
VCCtop
C100
100n
R81
4k7
D78
13V
SDD04S60
D5
D76
TMBYV10-60
C91
47µ
GNDtop
C89
0µ47
R80
1R
L2
500µH
C90
0µ47
L1
Fuse
rec AC+
L4
~
AC in R102
901M2
255V
C86
µ47
D6
VBus2
R2
220k
C4
2n2
Q2B
D82
D77
TMBYV10-60
VBus =380V
VCC
G2B
SPB
07N60
C3
C33
R45
4R7
+12V
8A
C36
2200µ
D21
C32
2n2
C36
2200µ
L3A
R48
1k8
L6
R99
1k8
LED1
1N5408
C3B
C2
µ47
C3A
100n
Q1B
Q1A
rec AC-
D27
G1B
R6
0R15
SPB
07N60
C3
G1A
SPB
07N60
C3
BSC022N03S BSC022N03S
R100
Q19
1R
Q19A
R103 47R
Q2A
G2A
-
R98
1R
R97
10R
C3
150µ
R30
~
R44
4R7
+
D1...D4
KBU8K
C26
4n7
Tr. 1
2n2
C25
4n7
C24
µ47
D20
D22
GNDtop
SPB
07N60
C3
S2A
R15
0R47
C97
4n7
Q18
BSP318
C98
4n7
R101
1R
L3B
C15
4700µ
C28
4700µ
L5
R104
1k8
+5V
20A
LED2
(LC)
Q21
BSC022N03S
C39
4n7
XS
IC3
CNY17-3
C99
2n2
R39
1k
R22
680R
C16
68n
C17
2n2
R20
5k1
R21
10k
IC2
TL431CD
R19
5k1
4.1.1
AC input/ EMI Filter
The input voltage of the SMPS is 90 to 265Vac (50/60Hz). A Fuse prevents greater damage in the case of
catastrophic failure. The function of the line EMI Filter (C86, L1, L4, C24...26, C2) is to suppress the high
frequency noise caused by the switching transitions of both power stages. Varistor R30 serves to suppress high
voltage line transients to protect the input. The line rectifier (D1...4) consists of standard silicon diodes.
4.1.2
PFC Converter
The PFC converter is a step up topology with continuous inductor current at full load. The switching frequency is
200kHz. The output voltage is approximately 380Vdc.
Main parts of the PFC are the boost inductor L2, switches Q1A/Q1B, boost diode D5 and the bulk capacitor C3.
L2 is an iron powder toroidal core with a single layer of copper wire to keep stray capacitance small.
Q1A/Q1B are CoolMOS SPB07N60C3 because of their high switching speed and their very low on-resistance
(important at low input voltagesÎhigher current, duty cycle). The only reason for paralleling is to get larger
cooling areas for better heat distribution at the PCB. The boost diode is a 600V silicon carbide Schottky diode,
which has an excellent switching characteristic (no charge storage). D82, a conventional silicon diode, is used to
initially charge the bulk capacitor from the rectified AC voltage, avoiding high surge current in the unipolar SiC
diode. The bulk capacitor C3 serves to store energy to reduce the second harmonic voltage ripple and it must
carry the switching frequency current. C3A keeps the commutation circuit short, it’s a bypass for high frequency
currents.
5 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
4.1.3
PWM Converter (Two Transistor Forward)
The PWM converter is a two transistor forward topology. The operating frequency of 200 kHz is same as at the
PFC section. Main parts at the primary side are Q2A/Q2B and D22/D27. When the forward transistors Q2A/Q2B
are switched on simultaneously, energy is transferred to the output through the transformer. The transistors are
chosen as CoolMOS SPB07N60C3 because of their high switching speed. D22/D27 are EMCON diodes. They
serve to clamp the flyback voltages from the transformer leakage inductance, during reset of the transformer
magnetization, in every turn off cycle. The transformer Tr.1 provides galvanic isolation of the output from the line
and adapts the output voltages from the voltage of the bulk capacitor. The transformer consists of a ETD29/N97core by EPCOS with tape windings. The windings are interleaved to reduce leakage inductance and winding
losses. Main parts at the secondary are D20/D21, L3A, L6 and C36/C37 (12V-output) and Q19/Q21, L3B, L5 and
C15, C28 (5V-output). D20/D21 are 45-volts standard Schottky diodes, which handle the current in both
sequences, when the transistors are on in series rectifier mode or as freewheeling path if the transistors are off.
4.1.4
Synchronous Rectification
At the 5V-path there is used a synchronous rectifier with 30V-MOSFETs BSC022N03S featuring the Super-SO8package. It uses control waveforms generated by the secondary side of the transformer. Two MOSFETs in
parallel, Q19 and Q19A handle the freewheeling current in the “low” PWM state, and one MOSFET, Q21, handles
the series rectifier circuitry. The freewheeling synchronous rectifiers are turned on in the absence of the PWM
pulse output, driven through the body diode of Q18 during the primary transformer reset interval. When the
primary switches turn on, the gate of Q18 (previously biased negative), driven through R97 connected to the dot
transformer winding, starts switching positive.
4.2
Controlling Circuitry (“Control Board”)
R4B C9A
470k 2n2
R4A
470k
recAC+
1
C12
µ47
Vref
4 PFCCS
R7
1k8
R3
10k
Vref
3 PFCCC
C7
220p
5 GNDS
C10
47p
6 PFCCL
R26
33k
7 GND
PFCout
VCC
C11A
220µ
PWMout
C11
µ47
PFCVC 18
14
PWMSS 13
9 VCC
SYNC
10 PWMout
PWMCS 11
R93
10R
12
820k
C41 220p
1M
1M
VBus2
VBus = 380V
1M
R82
10R
R14 R13D R13C R13B R13A
1M
1M
51k 820k 1M
R24
Vref
22k
R25
C22
C13
10k
4n7
47p
C14
R35
R23
µ47
1k
33k
PWMRMP 15
PWMIN
R1A
1M
C6 100n
R16 390k
16
8 PFCout
VCCtop
C5 47n
PFCFB 17
Rosc
R1B
1M
R12D R12C R12B R12A
R11 51k
PFCVS 19
IC1 TDA 16888
R5 C8
1k8 2n2
Aux vs 20
ac
2 Vref
R8
10k
recAC-
R1D R1C
820k 1M
R27 51k
VDD
VCC
C92
µ47
14
XS
D80
BAV99
C95
47µ
4
5
6
IC9
HEF40106BT
C96
µ47
R83
4R7
S2A
R32
1k
VDDtop
IC8
SFH6711
C94
100n
3
Q7
BC807
C21
100p
1
R92
1k
2
open
2
3
4
5
6
9
C93
100p
1
8
11
10
13
12
Q14
BC817
R94
4R7
Q16
BSP613P
R95
68R
G2B
9
8
11
10
13
12
Q10
BC817
R88
4R7
PWMout
7
Q8
BSP613P
Q6
BC817
PFCout
14
R91
1k
D81
BAV99
IC7
HEF40106BT
R84
68R
R86
68R
G1A
G1B
R85
10R
R87
10R
Q9
BSP320S
Q12
BSP613P
R89
68R
G2A
R90
10R
Q11
BC807
Q13
BSP320S
R96
10R
Q15
BC807
Q17
BSP320S
7
GNDtop
4.2.1
General Description of the Combi-IC TDA16888
6 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
The TDA 16888 comprises the complete control for power factor controlled switched mode power supplies. With
its PFC and PWM section being internally synchronized, it is suitable for two stage off-line converters with
worldwide input voltage range. It is designed to reduce system costs by less external parts count.
Special PFC features include:
• Dual loop control (average current and voltage sensing)
• Additional operation mode as auxiliary power supply
• Fast, soft switching totem pole gate drive (1A)
• Leading edge pulse width modulation
• Peak current limitation
• Overvoltage protection
Special PWM features include:
• Improved current mode control
• Fast, soft switching totem pole gate drive (1A)
• Soft-start management
• Trailing edge pulse width modulation
• 50% maximum duty cycle to prevent transformer saturation
• Individually adjustable Power Management
4.2.2
PFC Control
The TDA 16888 provides active power factor control in average current control mode. The “heart” of the PFC
section is an analog multiplier. It creates the current programming signal for the current amplifier OP2 by
multiplying the rectified line voltage with the output of the voltage amplifier so that the current programming signal
has the shape of the input voltage and an average amplitude which controls the output voltage.
At the Demoboard the external circuitry of the voltage amplifier (voltage sensing, compensating) consists of R13,
R14, R16, C5, and C6. The resistor R4 serves to monitor the actual rectified line voltage. R5, R7, R8, C7, and C8
are the components belonging to the current amplifier, the inductor current is monitored as a voltage drop at R6
(located at “main board”). R3, R26 determine the PFC current limit (approx. 6,5A). R11, R12 fix the overvoltage
thresholds.
4.2.3
PWM Control
The TDA 16888 provides an improved current mode control containing effective slope compensation as well as
enhanced spike suppression. The converter primary side switch current is monitored as voltage drop at R15
(located at “main board”). The amplified and “cleaned” current signal sensed at PWMCS (11), measurable at
PWMRMP (15), together with the output voltage control loop feedback signal at PWMIN (14), are both inputs of
the PWM comparator C8. Together they determine the actual duty cycle. C14 provides soft start of the PWM
section. The components of the output voltage control loop are located at the secondary side of the converter (on
the “main board”). The feedback signal is transferred across the isolation barrier via a low cost optocoupler, IC3.
4.2.4
Auxiliary Power Supply /Gate Drive Circuitry
The supply voltage of the control circuitry is generated by an additional winding of the PFC choke L2. This costefficient technique is featured by the TDA 16888 because of a special control loop, which ensures a continuous
generation of auxiliary power even at no load condition and sudden load drops.
Because of the very high operating frequency the PFC section power transistors (Q1A, Q1B) and the low side
power transistor (Q2A) of the PWM stage are driven by discrete high speed, high current driver stages using
small signal bipolar transistors and MOSFETs. That’s why the original gate drive signals at PFCOUT/ PWMOUT
are schmitt-trigerred and used as inputs of the discrete drivers. The gate drive signal of the high side power
transistor (Q2B) is transferred via a high-speed optocoupler, IC8 (SFH 6711), and amplified as described before.
The floating supply voltage for the high side driver circuitry is generated by another separate winding of L2.
7 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
5
Power Losses / Efficiency
Measured power losses at nearly full load and different input voltages:
Vinac/V
Pin/W Pout/W V12v/V I12v/A V5v/V I5v/A
90
110
150
200
230
275
225
222
218
217
215
215
185,0
185,0
185,0
185,0
185,0
185,0
10,25
10,25
10,25
10,25
10,25
10,25
7,2
7,2
7,2
7,2
7,2
7,2
5,03
5,03
5,03
5,03
5,03
5,03
22,1
22,1
22,1
22,1
22,1
22,1
η/%
82,2
83,3
84,9
85,3
86,0
86,0
The best efficiency appears at high input voltage, the worst at the lowest. The reason is the variation of the line
current. Higher input currents result in increased conduction losses at the input rectifier, EMI Filter, PFC choke
and PFC current sense resistor. The RMS value of the PFC transistor current is much higher at low line
conditions, when the switches have to carry higher peak currents. Furthermore, the transistors switch at twice the
effective duty cycle in order to provide a higher step up rate for the PFC stage. The higher current values also
cause increased switching losses of the PFC stage. The behavior of the PWM stage doesn’t depend on the input
voltage, due to the pre-regulated bulk bus from the output of the PFC stage.
90
85
82,2
80
Efficiency [%]
83,3
84,9
85,3
86
86
75
70
65
60
55
50
50
100
150
200
250
300
Vin AC [V]
8 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
6
Power Loss Sources
The highest power dissipation appears at full load and low line condition.
Operation point:
Vin AC = 90V
Pin
= 225W
Pout = 185W
⇒Ploss = 40W
The distribution of the power losses is calculated or assumed by the help of measured device temperatures.
Power Loss Sources
Assumed Power
Dissipation/ W
1.5
3.5
3
1.5
5
1.5
2
3
3
4
3
2
3
4
40
EMI Filter
Line Rectifier (D1...4)
PFC Choke L2
Bulk Capacitor C3
PFC Transistors Q1
PFC Diode D5
Forward Transistors Q2
Transformer Tr.1
5V Rectifiers Q19, Q21
12V Rectifiers D20, D21
Output Choke L3
Output Capacitors C36, C37, C15, C28
Controlling, Driver, Supply Circuitry
Others
∑
5
4
4
2
4
3,5
3
3
3
2
1,5
1,5
3
3
3
2
1,5
1
ne
R
ie
r
ec
tif
EM
IF
ilt
PF (D er
Bu C C 1...
lk
ho 4)
PF Ca ke
pa
L
C
Tr cit 2
an or
C
s
Fo
PF isto 3
rw
r
ar C D s Q
d
Tr iod 1
e
an
D
5
5V Tra sist
o
ns
R
rs
Q
12 ect for
m 2
ifi
V
e
e
R
O
ec rs Q r Tr
ut
.
tif
pu
ie 19, 1
tC
rs
Q
C
21
D
on ap
O
2
ut
tro ac
0,
p
u
llin ito
D
g, rs C t Ch 21
D
riv 36, oke
er
L3
C
, S 37
up , .
pl ..
y
C
irc
u.
O ..
th
er
s
0
Li
Assumed Power Dissipation [W]
5
9 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
7
Conducted EMI Measurements
Measuring of conducted noise with an EMI-Receiver FMLK 1518 at a Line-Impedance Stabilization Network
(LISN) NSLK 8128.
Conditions:
VAC in = 230V, Pout = 181,4W, main board in a metal case.
Phase 1, Average
Phase 2, Average
As it can be seen from the figures above the measured EMI spectra are below the norm limit lines.
10 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
8
Construction of magnetic components
8.1
PFC choke
Core: MAGNETICS Ringcore 77930 - A7; L = 490 µH (Pin1 - Pin8)
Hole arrangement
View in mounting direction
N3
N1
Pin 1
N2
N1: 56 turns 0,5mm ∅
N2: 4 turns 0,2mm ∅
N3: 4 turns 0,2mm ∅
2
N2
N1
Pin 8
11 of 21
3
7
4
N3
6
5
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
8.2
Main transformer
Core: ETD29/16/10, N97
without airgap
ratio: 23:2:1
N11= 23
N2= 4
N12= 23
N3= 2
N11/ N12 are series connected (on PCB)
Windings:
Cu-tape
N1:
13,4 x 0,035 mm
N2:
13,4 x 0,070 mm
N3:
13,4 x 0,100 mm
Design: interleaved
N12= 23
N2= 4
N3= 2
N11= 23
Core
12 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
8.3
Output filter choke
Core: ETD29/16/10, N97
Air gap (total): 1,5 mm Î Al= 93,4nH
ÎInductance: L1= 27µH
L2= 4,6µH
Windings:
Cu-tape
N1:
15,4 x 0,050 mm
N2:
15,4 x 0,150 mm
Design:
N1= 17
N2= 7
Core
13 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
9
9.1
PCB Layout
Main Board - Scaling 1:1
Main Board/ Top/ Components
14 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
Main Board /Top / Copper
15 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
Main Board/ Bottom/ Bottom View/ Copper
16 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
9.2
Control Board- Scaling 1:1
Control Board/ Top/ Components
Control Board/ Top/ Copper
Control Board/ Bottom/ Bottom View/ Components
Control Board/ Bottom/ Bottom View/ Copper
10 Bill of Materials
10.1 Main Board
Part
Value
+5V
Package
Position (mil)
FLSTL6,3
(500 3275)
+12V
FLSTL6,3
(500 4075)
AC_IN
KLEMME-3
(200 5150)
C22,5B11
(4650 5300)
C2
u47/X2
C3
150u/450V
EB35D
(6375 5053.74)
C3A
100n/630V
C15B7
(3375 4387.5)
C3B
100n/630V
C15B7
(6200 825)
C4
2n2/1kV
C7,5B4
(3937.5 4537.5)
C15
4m7/10V
C16
68n
1206
(700 200)
C17
2n2
1206
(500 200)
C18
47u/63V
E3,5-8
(5675 4375)
C24
u47/X2
C22,5B11
(2475 5300)
C25
4n7/Y
C10B6
(2125 5550)
C26
4n7/Y
C10B6
C28
4m7/10V
C32
2n2/1kV
C7,5B4
(2900 1800)
C33
2n2/1kV
C7,5B4
(2900 1625)
(1050 1525)
(2125 5025)
(1050 3275)
17 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
Value
Package
Position (mil)
C36
2m2/25V
(362.5 1112.5)
C37
2m2/25V
(362.5 2762.5)
C39
4n7/Y
C10B6
(1050 3800)
C86
u47/X2
C22,5B11
(1175 5300)
C87
u47
1812
(5450 4450)
C88
u47
1812
(5450 4175)
C89
u47
1812
(6425 3375)
C90
u47
1812
(6425 3200)
C91
47u/63V
E3,5-8
(6275 4150)
C97
4n7/Y
C10B6
(6812.5 4162.5)
C98
4n7
1206
(3362.5 1912.5)
C99
2n2
1206
(1143.75 250)
C100
100n
1206
(6750 3418.75)
C101
100n
1206
(5200 4075)
D1...4
KBU8K
KBU-L
(4375 5400)
D5
SDD04S60
DPAK
(4150 3925)
D6
IDD03E60
DPAK
(5837.5 3700)
D10
BAV99
SOT-23
(4681.25 4206.25)
D11
BZX84C13
SOT-23
(5287.5 4250)
D12
TMBYV10-60
MELF
(5062.5 4400)
D13
TMBYV10-60
MELF
(4725 4400)
D20
MBRB2545
D2PAK
(2737.5 2325)
D21
MBRB2545
D2PAK
(2100 2325)
D22
IDD03E60
DPAK
(6575 650)
D27
IDD03E60
DPAK
(5875 642.52)
D76
TMBYV10-60
MELF
(6425 3750)
D77
TMBYV10-60
MELF
(6425 3600)
D78
BZX84C13
SOT-23
(6725 3537.5)
D79
BAV99
SOT-23
(6862.5 2637.5)
D82
1N5408
DO201-15
(4531.25 4625)
BO3,2-P
(6889.76 3818.9)
BO3,2-P
(1574.8 3818.9)
SH22
(600 5300)
FLSTL6,3
(500 4325)
E$5
E$9
FUSE
4AT
GND
GND.
IC2
TL431CD
FLSTL6,3
(500 3525)
SO-8
(250 600)
IC3
CNY17-3
DIL06
(987.5 475)
L1
2x1m2
82722J
(1700 5300)
L2
500u
INF-PFC
(5275 5262.5)
L3
36/6uH
RM14-12A
(2075 1000)
L4
2x1m2
82722J
(3000 5300)
L5
1u
INAIR20A
(1050 2400)
L6
1u
INAIR8A
(312.5 1937.5)
18 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
Part
Value
Package
Position (mil)
LED_5V
Green/LC
LED3
(400 3706.25)
LED_12V
Red
LED3
(400 3893.75)
Q1A
SPB07N60C3
D2PAK
(3400 3925)
Q1B
SPB07N60C3
D2PAK
(2650 3925)
Q2A
SPB07N60C3
D2PAK
(5862.5 1625)
Q2B
SPB07N60C3
D2PAK
(6700 1625)
Q3
BSP129
SOT-223
(4887.5 4100)
Q5
BSP129
SOT-223
(6787.5 3100)
Q18
BSP318
SOT-223
(3350 1587.5)
Q19
BSC022N03S
P-TDSON-8
(4012.5 2325)
Q19A
BSC022N03S
P-TDSON-8
(3375 2325)
Q21
BSC022N03S
P-TDSON-8
(4650 2325)
R2
220k/2W
0411/15
(4100 4375)
R6
0R15/1W
R-SMR
(4900 3700)
R15
R47
R-SMR
(6112.5 2337.5)
R19
5k1
1206
(450 500)
R20
5k1
1206
(700 650)
R21
10k
1206
(450 350)
R22
680R
1206
(700 500)
R28
4k7
1206
(5112.5 4168.75)
R29
1R
1206
(5300 4425)
R30
S14K275
S14K275
(3425 5300)
R39
1k
1206
(700 350)
R44
4R7/0,6W
0207/10
(2900 1925)
R45
4R7/0,6W
0207/10
(2900 1500)
R48
1k8
1206
(593.7 3897.98)
R80
1R
1206
(6375 3950)
R81
4k7
1206
(6750 3325)
R97
10R
1206
(3550 1712.5)
R98
1R
1206
(4387.5 2087.5)
R99
1k8
1206
(593.75 3806.25)
R100
1R
1206
(3750 2075)
R101
1R
1206
(3112.5 2075)
R102
1M2/Netz
0411/15
(875 5300)
R103
47R
1206
(3362.5 1812.5)
R104
1k8
1206
(593.75 3712.5)
S$63
BO3,2-P
(3825 5400)
SVB_M_C
1X20SMDI
(5575 2850)
TR.1
RM14-12A
(4550 1000)
19 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
10.2 Control Board
Part
Value
Package
Position (mil)
C5
47n
1206
(900 968.75)
C6
100n
1206
(818.75 968.75)
C7
220p
1206
(1699.36 1050)
C8
2n2
1206
(1699.36 968.75)
C9A
2n2
1206
(1699.36 1131.26)
C10
47p
1206
(1424.36 906.24)
C11
u47
1812
(1511.85 528.12)
C11A
220u/25V
E3,5-8
(150 1025)
C12
u47
1812
(1561.87 1103.13)
C13
47p
1206
(1424.37 825)
C14
u47
1812
(1252.48 528.12)
C21
100p
1206
(1424.37 656.25)
C22
4n7
1206
(1424.37 743.75)
C41
220p
1206
(1424.36 987.5)
C92
u47
1812
(975 749.36)
C93
100p
1206
(1653.13 756.25)
C94
100n
1206
(2018.75 537.5)
C95
47u/63V
E3,5-8
(1965.63 993.75)
C96
u47
1812
(2287.5 703.13)
D80
BAV99
SOT-23
(1700 571.87)
D81
BAV99
SOT-23
(1678.12 734.37)
IC1
TDA16888
SO-20L
(1380.61 918.75)
IC7
HEF40106BT
SO-14
(849.36 981.25)
IC8
SFH6711
DIL-08
(1943.11 631.25)
IC9
HEF40106BT
SO-14
(2175 988.14)
Q6
BC817
SOT-23
(618.75 884.38)
Q7
BC807
SOT-23
(487.5 884.38)
Q8
BSP613P
SOT-223
(468.11 643.75)
Q9
BSP320S
SOT-223
(199.36 643.75)
Q10
BC817
SOT-23
(818.75 687.5)
Q11
BC807
SOT-23
(818.76 815.63)
Q12
BSP613P
SOT-223
(736.86 643.75)
Q13
BSP320S
SOT-223
(1005.61 643.75)
Q14
BC817
SOT-23
(2275.01 659.37)
Q15
BC807
SOT-23
(2275 471.88)
Q16
BSP613P
SOT-223
(1961.86 181.25)
Q17
BSP320S
SOT-223
(2224.35 181.25)
R1A
1M
1206
(568.11 550)
R1B
1M
1206
(568.11 725)
R1C
1M
1206
(568.11 900)
R1D
820k
1206
(568.11 1075)
20 of 21
AN-CoolMOS-09
V 1.0
200W SMPS Demonstration Board II
Part
Value
Package
Position (mil)
R3
10k
1206
(1549.36 478.13)
R4A
470k
1206
(180.61 550)
R4B
470k
1206
(180.61 725)
R5
1k8
1206
(1374.36 478.13)
R7
1k8
1206
(1233.74 587.5)
R8
10k
1206
(1699.36 887.5)
R11
51k
1206
(443.75 1087.5)
R12A
1M
1206
(443.11 550)
R12B
1M
1206
(443.11 725)
R12C
1M
1206
(443.11 900)
R12D
820k
1206
(443.11 1075)
R13A
1M
1206
(343.11 550)
R13B
1M
1206
(343.11 725)
R13C
1M
1206
(343.11 900)
R13D
820k
1206
(343.11 1075)
R14
51k
1206
(318.75 1087.5)
R16
390k
1206
(981.26 968.75)
R23
33k
1206
(1556.25 312.5)
R24
22k
1206
(1118.75 950)
R25
10k
1206
(1121.87 950)
R26
33k
1206
(1714.98 987.5)
R27
51k
1206
(568.76 1087.5)
R32
1k
1206
(1150 312.5)
R35
1k
1206
(1121.87 775)
R82
10R
1206
(1043.75 531.26)
R83
4R7
1206
(256.25 940.63)
R84
68R
1206
(700 187.5)
R85
10R
1206
(787.5 187.5)
R86
68RR
1206
(956.25 187.5)
R87
10R
1206
(868.75 187.5)
R88
4R7
1206
(718.75 706.25)
R89
68R
1206
(878.13 531.25)
R90
10R
1206
(962.5 531.25)
R91
1k
1206
(1700.01 584.38)
R92
1k
1206
(1718.76 756.25)
R93
10R
1206
(2168.75 687.5)
R94
4R7
1206
(2293.75 459.38)
R95
68R
1206
(1781.25 100)
R96
10R
1206
(1700 100)
1X20/90I
(1205.61 400)
SVB_C_M
21 of 21
AN-CoolMOS-09
V 1.0