高佳能 PFC 与 PWM 组合控制暴 TDA16888 及其雇用 高性能 PFC 与 PWM 组合控制器 TDA16888 及真应用 摘 山东省临沂市电子工业局 毛兴武 山东省临沂市银河电子研究应用中心 周建军 北京 9711 信箱 602 分箱 祝大卫 要: TDA16888 是为新一代带通用线路输入和功率因数校正 (PFC) 的离线开关型电源 (SMPS) 而 设计的 O 本文介绍了 TDA16888 的功能及其应用。 关键词 :PFC TDA16888 一、引言 开关电源 (SMPS) 、荧光灯交流电子镇流器和变 频调速器这类电力电子装置,采用传统的桥式整流、 电容滤波电路会使 AC 输入电流产生严重的波形畸 1.封装形式、内部结构及引脚功能 TDA16888 采用 P - DIP -20-5 和 P -DSO- 20 -1 封装,顶视图及引脚排列如图 la , b 所示。 PFCIAC 1 11 变。早在 80 年代初,人们已对这类装置产生的高次谐 波电流所造成的危害引起了关注。 1982 年,国际电工 委员会制订了 IEC55 一 2 限制高次谐波的规范(后来 的修订规范是 IEC1000 - 3 - 2) ,促使众多的电力电 子技术工作者开始了对谐波滤波和功率因数校正 (PFC) 技术的研究。 微电子技术日新月异地飞速发展,有源功率因数 控制器 IC 应运而生。自 80 年代中期开始,西门子等 公司推出了 TDA4814/TDA4815/TDA4816/TDA4817/ TDA4818 /TDA4819 /TDA4862 等系列 PFC 控制器单 片 IC ,其中 TDA4814/TDA4816/TDA4817/TDA4862 PWMCS 适合于在电子镇流器升压式 PFC 预调整器中用作控 制器,而 TDA4815/TDA4818/TDA4819 则适用于 图 1a P - DIP - 20 - 5 封装顶视图 SM凹的谐波滤波及功率因数校正。进入 90 年代后, 有源 PFC 控制器单片 IC 迅速发展,品种规格已达近 PFCIAC 百个,有源 PFC 升压变换器的输出功率可达 民ER 2 4.5kW 。为降低..SMPS 的成本,使其线路进→步简化, PFCCC PFCCS GNDS PFCCL GND PFC OUT Vcc PWMOUT 3 4 90 年代中期, PFC 与 PWM 二合一单片 IC 开始崭露· 头角。其代表性产品有线性技术 (LT) 公司的 LT1508/ LT1 509 和微线性 (ML)公司的 ML4819/M L4 82 1/ ML 4824/M L4826/ML4801/ML4 803 等。其中, ML4 803 采用 8 脚封装,是 1999 年 1 月公布的新产品。本文介 绍的高性能 PFC 与 PWM 控制器 TDA16888 ,是西门 子公司新推出的高集成度单片 IC ,为 PCs 、 CTVs 、监视 器和工业用新一代 SMPS ,并利用失效模式结果分析 (英文缩写为 FMEA) 规则而设计。 二、封装形式、内部结构及主要特点 12 图 1b O 5 6 7 8 9 10 P - DSO - 11 AUXVS PFCVS PFCVD PFC FB ROSC PWM RMP PWMIN PWMSS SYNC PWMCS 20-1 封装顶视图 TDA16888 由 PFC 和 PWM 控制器两部分组成。 PFC 控制器主要包含有电压误差放大器( OPl) 、乘法 器、电流放大器( OP2) 、比较器 (Cl-C3) 、运算跨导放 大器 (OTA1 - OTA3) 、触发器 (FF I)和 PFC 输出驱动 ·, rv {<é手无~ 件启用 hooo 年 5 月,第 2 卷 ,,苦 , 庐 , 亭 , rr , F 叫究开发应用;辛辛如 第5 期 器等电路。 PWM 部分主要包括振荡器(与 PFC 共 表 1 TDA1688 的引脚功能 用)、比较器( C4 - C to 人触发器 (FF2) 和 PWM 图腾柱 脚号 符号 (即推拉式)栅极驱动器等单元电路。此外, TDA16888 1 2 PFC AC VREF PFC CC PFC CS GND S PFC CL GND FPC OUT 还内置 7.5V 的精密带隙基准、欠电压锁定 ( UVLO) 3 和电源控制电路。图 2 为 TDA16888 内部结构方框 图O ,-pd 『伊 4 5 6 7 8 9 TDA16888 的引脚功能见表 10 2. 主要特点 TDA16888 内的 PFC 控制器可以组成升压式预 调整器,也可以组成回扫式拓扑,在连续或断续方式 10 下工作,采用平均电流和电压传感双环控制及前沿触 11 12 发宽度调制,最大占空比为 949毛。改进的电流型控制 13 PWM 电路可用作设计正向或回扫式变换器。为防止 14 15 16 17 18 19 20 变压器饱和、后沿触发的 PWM 最大占空比限制在 50% 0 PFC 和 PWM 控制器在内部保持同步,在相同 的频率上工作,固定频率范围从 15kHz 直至 200kHz o PFC 与 PWM 均采用快速软开关图腾柱栅极 驱动 (IA) 0TDA16888 启动电源电流典型值为 50μA , Vcc PWM OUT PWM CS SYNC PWM SS PWM IN PWM RMP ROSC PFC FB PFC VC PFC VS AUX VS 功 能 AC 线路电压传感器输入 7.5V 的基准 PFC 电流环路补偿 PFC 电流传感 电流传感输入地 FPC 电流限制传感输入 地 PFC 驱动器输出 电源电压 PWM 驱动器输出 PWM 电流传感 振荡器同步化输入 PWM 软启动 PWM 输出电压传感输入 PWM 斜坡电压 振荡器频率建立 PFC 电压环路反馈 PFC 电压环路补偿 PFC 输出电压传感输入 辅助电源电压传感 静态工作电流仅 15mA ,具有低待机功耗。监视和保 TDA16888 可用作设计适用于世界各国 AC 供电 护特征主要包括 PFC 直流输出过电压和欠电压监 线路、输入电压从 90V 到 270V 的高品质离线 SMPS , 测、峰值电流限制和 IC 电源欠电压闭锁等。 满足 IEC1000 - 3 - 2 关于 AC 输入电流的谐波限量 V C . < MUV 15 PVVM RMP 12 116 SYNC ROSC 卧2 T7 POCT8 EE川U 阿 FUC3 Hus 节 阿 2 口r T PFCIAC VREF ℃ S4 ℃ C1 问 V au FC 10 PVVM OUT TDA16888 内部结构方框图 13 高性能 PFC ~ PWM 组合拴喇森 TDA16888 及其应用 要求,实现高于 0.99 的线路功率因数,并具有低成 一样,通过内部的振荡器同步化。为确保时钟频率的 本、低损耗和高可靠等优点。此外, IC 的 PFC 还可用 精确度,时钟信号由三角波而不是锯齿波信号派生而 作辅助电隙。 来,并且提供一个占空比为 50% 的时钟参考信号。在 三、工作原理概述 馈送到 PFC 和 PWM 之前,振荡器时钟信号的频率通 1.电源 过 D 寄存器 (D - Latch) 减半。 PFC 斜坡信号由一个缓慢的下降沿和陡峭的上 TDA16888 的脚 9( Vcc) 内部并联一支 17.5V 的 升沿组成。考虑到在脚 5(GND S) 土的电流测量和 齐纳二极管 Z3( 见图 2) ,只要该脚上的电压达 OP2的脚 5 与脚 3(PFC CC) 之间外部有补偿, PFC 斜 17.5V 以上, IC 则被保护。在 IC 的任意脚都有专门的 坡极性先于其它波形反转。 静电放电 (ESD) 电路,用作 ESD 保护。只要 Vcc 脚上 IC 的振荡器也可与施加到脚 12(SYNC) 上的外 电压超过 14V 的门限, IC 则从待机状态进入操作模 部时钟脉冲信号同步化。但由于振荡频率在进入 PFC 式。当电游、电压降至 llV 的门限以下时, IC 则从操作 和 PWM 电路之前被二等分减半,故同步频率宜为工 模式进入待机状态。 作频率的 2 倍。只要同步信号处于高电平,振荡器的 通过 TDA16888 的电源控制和脚 13(PWM SS) 的 三角波信号则被阻断,并且其时钟信号是高电平。外 软启动特性,在电源电压进入稳态后, PWM 控制器通 部的时钟信号从高到低变化,振荡器就释放。施加到 过内部的偏置控制被赋能运行。 脚 12(SYNC) 上的一个外部时钟信号,通过脚 16 脚 2. 保护电路 (ROSC) 上的外接电阻,可使振荡频率 fosc 从 TDA16888 的比较器 C6 通过脚 19(PFC VS) 传 感过电压后,立即关闭 PFC 和 PWM 的栅极驱动,履 行过电压保护功能。运算跨导放大器。 TA2 除了用作 改进 PFC 预调整器的负载调整之外,也通过对脚 19 上的信号检测,实现对乘法器输出价的适度控制和 快速过电压保护 O 0.66focs 到 2fosc 变化。为减小在低负载条件下的总 电流消耗,在脚 13 (PWM SS) 上的电压只要低于 0.4V (PWM 控制器禁耗) ,振荡器频率则被平分。 4. PFC 控制器 TDA16888 中的 PFC 控制器带双环控制。其中, 内环控制由 OP2 , C 1 和 PFC 驱动器组成,利用连续 万 -PFC 输出出现欠电压,比较器 G 通过脚 19 或断续模式的平均电流控制,实现对 AC 线路输入电 检测。为提升 PFC 输出电压,减小负载电流, PWM 控 流波形的校正。外环控制主要由 OPl 、乘法器、 OP2 , 制器将关断其栅极驱动器输出。欠电压关闭必须在 C 1 、 FFl 和 PFC 驱动器支撑,控制 PFC 输出 DC 电 IC 欠电压自锁之前发生,也就是说,关闭 PWM 输出 压。此外 , OTAl 、 OP2 、 C h FFl 和 PFC 驱动器组成第 时,脚 9( Vcc) 上的电压恰好在 llV 的欠电压自锁门 三个控制环路,在 PWM 控制器被禁能时,允许 PFC 限以上。如果在脚 19 上的电压由于某种原因降至 lV 电路作为辅助电源工作。此情况下,为减小总电流消 以下,比较器 C2 则被触发 , IC 脚 8 上的 PFC 输出立 麓, PFC 电路工作频率应为正常工作频率的一半。为 即关闭。 得到最小的 AC 输入电流(过零时)间隙, PFC 驱动输 TDA16888 的比较器 G 和 G 分别通过脚 6 (PFC cL)和脚 11 (PWM CS) 传感器和检测 PFC 和 PWM 变换器的电流。只要脚 6 和脚 11 上的电压达到 峰值电流限制门限,则会立即关断脚 8(PFC OUT) 或 脚lO (PWM OUT) 栅极驱动输出。 此外, TDA16888 的每个引脚都具有抗 ESD 保护 功能。 3. 振荡器/同步化 出信号的最大占空比为 949毛。 5. PWM 控制器 与通常采用的前沿电流消隐比较" TDA16888 的 PWM 控制器采用改进的电流型控制,包含有效的斜 率补偿,以提高对尖峰脉冲噪声的抑制能力。该作用 的实现,通过 OP3、电压源 Vl (I .5V) 、低通滤波元件 R 1 及脚 15(PWM RMP) 上的外接电容实现。 PWM 负 载电流通过脚 11 (PWM CS) 外部的并联电阻检测,并 TDA16888 振荡器频率由一只连接于脚 16 由 OP3 进行放大。在功率晶体管开通时,由于电容放 (RSOC) 与地之间的外接电阻设定。为保证有一个低 电产生的超前尖峰,被一个低通滤波器所抑制。利用 电流消耗和对电磁干扰 (EMI)有一个高阻抗,相应的 电压 V1 与后随低通滤波器的结合,能产生一个带有 电容被集成。 PFC 和 PWM 时钟信号与 PFC 电压斜坡 超前陷波的阶跃斜坡,可完全补偿一个超前尖峰噪 14 绕开发应用 d 俨 (<tl乎无.a件应用 hooo 军 5 月,第 2 卷第 5 期 范围为 90 - 270V ,三路 DC 输出为一 12V /1 A 、 12V / 声。 PWM 控制器根据在脚 15(PWM RMP) 上的 4.2A 和 5V /20A ,辅助电源输出是 5V /0. lA; 系统功 PWM 斜坡电压和脚 14(PWM IN) 上的输入电压采用 率因数高于 0.99 , AC 输入电流总谐坡畸变率 (THD) 后沿调制。而 PFC 控制器的脉冲宽度调制采用前沿 及各次谐波分量值符合 IEC1000 - 3 - 2 规定的限制 触发,这样可以避免 PFC 与 PWM 控制器之间的电磁 要求,属于一种新一代绿色 SMPS o 干扰 (EMI)。为阻止变压器饱和, PMW 最大占空比限 1.有源 PFC 升压式预变换器 制到 50% 。通过改进的电流方式控制,从最大负载到 有桥式整流器 D , - D4 与铝电解电容 C3 之间, 无载,可得到稳定的脉冲宽度调制。 TDA16888 内的 PFC 控制器、升压电感 L 2 、升压二极 TDA16888 的振荡器频率设定电路及其相关披 管品、功率开关 Q , (MOSFET) 和电流传感电阻品 形如图 3 所示。 等,组成有源 PFC 升压式预变换器。 在 SMPS 接通 AC 输入电压之后,流经高阻电阻 品的电流对组合 IC(Combi - IC) 脚 9 上的外接电容 CllA 充电。只要 CllA 被充电到脚 9( Vcc) l1 V 的门限 电压以上, IC 中的 PFC 控制器则被触发启动。 Rosc COS E 电 Ljt 4 、 i 活,为 Q , 栅极发送驱动脉冲。为节省电路,在 PFC 控 制器触发过程中, Combi -IC 用正常王作频率的 112 驱动升压晶体管 Q" 同时 PWM 控制器尚未被触发赋 j ~tI (2) 内部 01钟 CllA 电跌落到 llV 的关断门坎电压之前, IC 可被激 路~/… 』 vv Internal 容量应足够大(至少不低于 22μF) ,在脚 9 上电压因 效\ 等〈、 定 :γili 设一 ---V 率… \ι 频汽… 器…/~ II I 荡← 〉 振飞\ 6 。。由 。。刀 压 振 OOUVEa-μlllllll :电 M 图踹 T DAtIRU4E 能。 IC 电源电压由 L2 的辅助绕组 AUXl 、 C'8 和 Dll 、 C! ock nι00 二I MAX Duty Cycle PWM tl11 (3) 最大 I ~I- 节比 PWM [1:. / MAX Duty Cy吧le RFq 1• (4) 最火山节比 PFC Cl , A 11 (/ R28 、 Q3 及 CllA 组成的电源电路提供。 1a 的另一个辅 助绕组及 D'6 - D'9 、 IC5 和 C'9 、 C20 组成辅助电源电 路,输出为 5V /0. 1 A o ' 在 Q , 漏极通过 D6 和 ι 与其栅极驱动电路相 连接,一旦在 DC 母线电压出现一个过冲,通过 D6 能 在 100μ 之内被检测,并使因过冲停止工作的升压开 关。l 开始运行。在 IC 待机工作时, DC 总线电压仍保 持在正常的电平上。如果 DC 总线电压低于正常值, IC 则依靠品和 R2 启动。 IC 的第一个过电压门限是 亡==::::J (6) PFC输山 L/ fWM RAMPVoltag斗(Pin 1 句 6.5VmaxT (7)咱:1坡咆压 V:!LL 马~; 1.0V 电j在(脚 1 1> ‘ 阻止 DC 总线电压的升高。当 DC 总线电压比设定值 高 20% 时,达到第二个过电压门限, IC 将迅速关闭 PFC 和 PWM 输出,并与输入端压敏兀件品。相结合, 履行过电压保护功能。 。 图 3b 况一旦发生,通过 IC 内的 OTA2 和乘法器关断矶,以 二,卢尺寸;三 A , qPWMCAmMs叫 Uol同创刊川) (8) PWM 电流传感 DC 母线电压比设定值 (380V) 高出 10% 以上时,此情 TDA16888 相关波形 四、 TDA16888 的典型应用 误差放大器 (OP1 )在脚 18 输出一个带有叠加 AC 小纹波的电压信号,与来自脚 1 的 AC 电流传感 信号相乘,在乘法器输出的电流波形如同 AC 输入电 TDA16888 适合于用作设计 AC 输入电压从 90V 压波形一样,按正弦规律变化。电流误差放大器 到 270V 、带 PFC 功能的新一代 SMPS 。利用 TDA16888 (OP2)用作控制乘法器输出,对乘法器包含的脚 18 能够组成多路输出回扫变换器,也可以组成多路输出 上的电压输入有二个扩充功能。在轻载和无载情况 前馈变换器等不同的拓扑。图 4 示出了用 TDA16888 下, IC 内的 OTA3 负责照管 PFC 电路 DC 输出总线电 作为控制器的 150W 高功率因数 PC 开关电源电路原 压的稳定性。只要 OP1 在脚 18 上的输出降至1. 2V 理图。该 150W 前馈多路输出 PC SMPS , AC 输入电压 以下,通过校正乘法器输出电流,就可实现对 DC 总 15 高性能 PFC ~旨 PWM 组合控制暴 TDA16888 及其雇用 R3 1 016-019 5V O.1A -12V 1A 12V 4.2A 5V 20A m 关断= - .待机 … . 旦' 11 |摆放大J ↑ • 1 111 l[j压误差放t大 A器 I |问 1 1 i IC4 .. 应 剧中'CT1A C1 宁 α咔|于C12 图4 EH E午 14宁|守.C22 R151j-干4 芹制E 用 TDA16888 作为控制器的 150W 高功率因数多路输出 PC 开关电源电路 不随 AC 输入电压波动变化的高度稳定的 DC 电压; 线电压的调节作用。 由 TDA16888 内的 PFC 控制器组成的有摞 PFC 二是 PFC 输出 DC 电压纹波 Vp - p 11i小,且呈 100Hz/ 升压变换器,主要作用有:一是在 AC 输入端产生与 120Hz( 工频 2 倍)的正弦波,可使用容量较小的滤波 AC 输入电压同相位的正弦电流披形(如图 5) ,具有 电容( C3) 。 低谐波畸变和几乎接近于 1 的高功率因数;二是输出 2.PWM 变换器 当 DC 总线电压升至设定值的 80% ν卢、 p 100% 90% -/- ./ 2ms 二、 --- 7Reσt lified 'il1D罚 、、 v J\ /. / ρ' Clnp 1 \11口 1I \ 飞 0% / v \ 10% --- ACI pulC rrenl (0.5 Div) X、 阳、 -f :l <- 10mV 图 5 16 100V AC 整流电压与 AC 输入电流波形 以上时, PWM 变换器通过软启动(脚 启动电容 C l4 短路时 , IC 的 PWM 控制器则禁能。 PFC \ 、/ =304V) 13) 用正常工作频率开始运行。当 Q4 饱和导通将软 \、 / / 队 γ 80% gs (即 380 x 升压变换器开关 Ql 随脉冲宽度调制前沿导通,而 N PWM 开关 Q2 则随后沿开通,延迟时间通常至少为 / 工作周期的 50% 0 PWM 开关 Q2 源极电阻 Rl5 上的电流信号,经 R32 和 C21 低通滤波器滤波,通过 IC 脚 11 检测。 Rl5 上的电压被 IC 内 OP3 放大 5 倍后,馈送到 IC 中 lOkn 电阻上。为进行斜举补偿,并抑制尖峰噪声, IC 脚 15 与地之间外接电容 C!3产生一个斜坡电压,与 〈也乎无~侍应用 hooo 军 5 月,第 2 卷 喝泛开发应用飞如 第5期 IC 中lOkfi( Rl) 电阻上的电压相叠加。斜坡电压高电 平为 6.5V ,脚 14 上相应的有源输入范围为 0.47V 。在 PWM 比较器上较高的电平,具有较好的操作 100V 0001c 回 0% i 左X 一PVVIv1一D-raLin一 -Sour一 ce V-olta-g3e --- (100V/Div, On-Ti me7.5μs , L) 稳定性和抗 EMI 性能。 IC 脚 11 上的电流传感输入同 2μs 关 \ 时还通过 IC 内门限电压是凹的快速比较器 (C9) , 履行最大电流限制功能。 SMPS 的次边 DC 输出电压 的波动,通过光电相合器 IC3 反馈到 IC 脚 14 ,以调节 PWM 占空因数,从而在输出端获得稳定的 DC 电 压。 PFC Drain-S口 urce Voltage (100V/Div, On-Ti me7.5μs , L) 10% 0% 产- --- 3.PFC 和 PWM 栅极驱动 100V 为避免产生交叉传导电流,并产生一个电压调 制开通斜面, TDA16888 的 PFC 和 PWM(MOSFET 或 IGBT)MOS 栅极驱动器采用图腾柱拓扑结构。导通斜 面(即栅极驱动电压上升前沿)从 OV 适度地升高到 3V ,再从 3V 缓慢地增加到 5V ,最后从 5V 适度地上 升到 12V ,如图 6 所示。这种栅极驱动电压上升沿有 利于在 IC 履行电流限制功能时,能快速关断功率开 关,并使占空比可连续不断地减小到零 c 当峰值电流 大约达l. 5A 时, PFC 和 PWM 栅极驱动输出将迅速 200ms 5V 图 7 PFC 与 PWM 开关漏源、极之间电压波形 内部振荡器上。 TDA16888 的开关频率可通过锁相环 (PLL) - CMOS - IC 4046 的 (CRT 监视器的)基准频率同步 化,如图 8 所示。 4046 控制 TDA168888 脚 16 上的输 出电流,从而确立内部振荡器开关频率。 TDA16888 脚 10 上的 PWM 输出信号通过几。、 R 51 电压分配器 馈送到 4046 的脚 3 。取自 CRT 偏转线圈上的参考频 率信号输入到 4046 的 14 脚,与内部的相位比较器进 行比较。在 4046 脚 13 上的输出信号,代表 PWM 输出 栅极驱动电压 100% --(5VlD iv) 90% I \ r 1/ /飞 气 、、 f 对 BUZ91 的驱动电压 O.5A1 Div 7 R" IpVVIv1 Driver Outpu 0% -町- 10mV 图 6 栅极驱动电压与对开关 (BUZ91 )的驱动电流波形 关闭。当 Combi 一 IC 在欠电压门限以下工作时,其驱 图 8 动输出为低电事。 PFC 与 PWM 开关( Ql 、 Q2) 的漏一源极之间的. 电压波形如图 7 所示。 4. 振荡器与同步 由锁相环 4046 COMS - IC 组成 的 TDA16888 同步化电路 与参考信号的相位差,通过 R55 和 C44 组成低通滤波 器馈送至脚 9(VOC) ,形成相位差的平均值信号。 Q6 的基板电流由 4046 的脚 10(DEM OUT) 控制 , R 24 、 R52 Combi 一 IC 的振荡器依靠内部集成的低容差小 可用作设定 TDA16888 振荡器最小和最大频率(从 电容、-个专门的电压和温度补偿的电流镜及脚 16 60kHz 到 120kHz 可调 )0 Q6 集电极上的动态信号经 上外接电阻 R 2 4 工作,内部振荡器频率为外部工作频 华及其 RC 网络反馈到 4046 的脚 9 0 C43 和 C7 用作 率的 2 倍,并通过触发器将 PWM 占空比限制在 50% 以内。通过改变 R24 上的电流可以使振荡器工作频率 旁路高频电流, PLL 的响应时间低于 10ms 。如果有些 PWM 输出脉冲错过,振荡器频率则偏移至最高值;女日 发生变化,同时影响脚 15 上外接电容 C 13 上的斜坡 果参考频率和触发器脉冲失踪,振荡器频率则降至最 电压。有一个外部同步信号可输入到脚 12 ,并叠加于 低值。 17 Da t a s h e e t , V 2 . 0 , 2 8 F e b 2 0 0 0 PWM+PFC Combi IC TDA 16888 / TDA 16888G High Performance Power Combi Controller Power Conversion N e v e r s t o p t h i n k i n g . TDA 16888/ TDA 16888G Revision History: 2000-02-28 Datasheet Previous Version: Page Subjects (major changes since last revision) For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com CoolMOS™, CoolSET™ are trademarks of Infineon Technologies AG. Edition 2000-02-28 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. High Performance Power Combi Controller 1 Overview 1.1 Features TDA 16888 PFC Section – – – – – – – – – IEC 1000-3 compliant Additional operation mode as auxiliary power supply Fast, soft switching totem pole gate drive (1 A) Dual loop control (average current and voltage sensing) Leading edge triggered pulse width modulation Peak current limitation Topologies of PFC preconverter are boost or flyback Continuous/discontinuous mode possible 94% maximum duty cycle P-DIP-20-5 P-DSO-20-1 /-6 /-7 PWM Section – – – – – – – Improved current mode control Fast, soft switching totem pole gate drive (1 A) Soft-start management Trailing edge triggered pulse width modulation Topologies of PWM converter are feed forward or flyback 50% maximum duty cycle to prevent transformer saturation fPWM = fPFC Type Ordering Code Package ▼ TDA 16888 Q67000-A9284-X201-K5 P-DIP-20-5 ▼ TDA 16888 G Q67000-A9310-A702 P-DSO-20-1 ▼ New type Version 2.0 3 28 Feb 2000 TDA 16888 Special Features – – – – – – – – – – High power factor Typical 50 µA start-up supply current Low quiescent current (15 mA) Undervoltage lockout with internal stand-by operation Internally synchronized fixed operating frequency ranging from 15 kHz to 200 kHz External synchronization possible Shutdown of both outputs externally triggerable Peak current limitation Overvoltage protection Average current sensing by noise filtering 1.2 General Remarks The TDA 16888 comprises the complete control for power factor controlled switched mode power supplies. With its PFC and PWM section being internally synchronized, it applies for off-line converters with input voltages ranging from 90 V to 270 V. While the preferred topologies of the PFC preconverter are boost or flyback, the PWM section can be designed as forward or flyback converter. In order to achieve minimal line current gaps the maximum duty cycle of the PFC is about 94%. The maximum duty cycle of the PWM, however, is limited to 50% to prevent transformer saturation. Version 2.0 4 28 Feb 2000 TDA 16888 P-DIP-20-5 P-DSO-20-1 PFC IAC 1 20 AUX VS VREF 2 19 PFC VS PFC CC 3 18 PFC VC PFC CS 4 17 PFC FB GND S 5 16 ROSC PFC CL 6 15 PWM RMP GND 7 14 PWM IN PFC OUT 8 13 PWM SS VCC 9 12 SYNC 10 11 PWM CS PWM OUT PFC IAC VREF PFC CC PFC CS GND S PFC CL GND PFC OUT VCC PWM OUT 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 AUX VS PFC VS PFC VC PFC FB ROSC PWM RMP PWM IN PWM SS SYNC PWM CS AEP02486 AEP02461 Figure 1 Version 2.0 Pin Configuration (top view) 5 28 Feb 2000 TDA 16888 1.3 Pin Definitions and Functions Pin No. Symbol Function 1 PFC IAC AC line voltage sensing input 2 VREF 7.5 V reference 3 PFC CC PFC current loop compensation 4 PFC CS PFC current sense 5 GND S Ground sensing input 6 PFC CL Sensing input for PFC current limitation 7 GND Ground 8 PFC OUT PFC driver output 9 VCC Supply voltage 10 PWM OUT PWM driver output 11 PWM CS PWM current sense 12 SYNC Oscillator synchronization input 13 PWM SS PWM soft-start 14 PWM IN PWM output voltage sensing input 15 PWM RMP PWM voltage ramp 16 ROSC Oscillator frequency set-up 17 PFC FB PFC voltage loop feedback 18 PFC VC PFC voltage loop compensation 19 PFC VS PFC output voltage sensing input 20 AUX VS Auxiliary power supply voltage sense Version 2.0 6 28 Feb 2000 R2 VS M1 M2 M 3 D1 QM 2 V REF Voltage Reference 7.5 V (Output Disable) Power Management Undervoltage Lockout 11 V-14 V Z3 17.5 V 10 k Ω 5V OP1 <_ 1 D2 OTA1 6V 12 16 SYNC ROSC + _ 13 PWM SS 7.4 V 5V D3 AUX VS 20 + _ OP2 0.45 V 0.4 V C5 Ι1 30 µ A GND S 5 PWM Bias Control + _ PFC CS 4 OTA3 1.2 V OTA2 C1 C4 14 PWM IN Osc PFC CC 3 C6 + _ C2 C7 C8 R1 0.4 V 10 k Ω 6V 5.5 V 15 PWM RMP R3 100 k Ω 4V 5.5 V 1 V PFC VS 19 + _ + _ 7 + _ + _ 1 C10 V1 1.5 V + _ + _ + _ Version 2.0 + _ PFC VC 18 FF1 R S 11 PWM CS _ FF2 S R 1V C9 OP3 1 V + 5 & & + _ C3 PFC CL 6 D4 & & 7 GND VS Z2 VS Z1 VS 9 V CC AEB02357 10 PWM OUT PFC OUT 8 1.4 + _ PFC PFC IAC FB 1 17 TDA 16888 Block Diagram Figure 2 28 Feb 2000 TDA 16888 2 Functional Description Power Supply The TDA 16888 is protected against overvoltages typically above 17.5 V by an internal Zener diode Z3 at pin 9 (VCC) and against electrostatic discharging at any pin by special ESD circuitry. By means of its power management the TDA 16888 will switch from internal stand-by, which is characterized by negligible current consumption, to operation mode as soon as a supply voltage threshold of 14 V at pin 9 (VCC) is exceeded. To avoid uncontrolled ringing at switch-over an undervoltage lockout is implemented, which will cause the power management to switch from operation mode to internal stand-by as soon as the supply voltage falls below a threshold of 11 V. Therefore, even if the supply voltage will fall below 14 V, operation mode will be maintained as long as the supply voltage is well above 11 V. As soon as the supply voltage has stabilized, which is determined by the TDA 16888’s power management and its soft-start feature at pin 13 (PWM SS), the PWM section will be enabled by means of its internal bias control. Protection Circuitry Both PFC and PWM section are equipped with a fast overvoltage protection (C6) sensing at pin 19 (PFC VS), which when being activated will immediately shut down both gate drives. In addition to improve the PFC section’s load regulation it uses a fast but soft overvoltage protection (OTA2) prior to the one described above, which when being activated will cause a well controlled throttling of the multiplier output QM. In case an undervoltage of the PFC output voltage is detected at pin 19 (PFC VS) by comparator C4 the gate drive of the PWM section will be shut down in order to reduce the load current and to increase the PFC output voltage. This undervoltage shutdown has to be prior to the undervoltage lockout of the internal power management and therefore has to be bound to a threshold voltage at pin 9 (VCC) well above 11 V. In order to prevent the external circuitry from destruction the PFC output PFC OUT (pin 8) will immediately be switched off by comparator C2, if the voltage at pin 19 (PFC VS) drops to ground caused by a broken wire. In a similar way measures are taken to handle a broken wire at any other pin in order to ensure a safe operation of the IC and its adjoining circuitry. If necessary both outputs, PFC OUT (pin 8) and PWM OUT (pin 10), can be shutdown on external request. This is accomplished by shorting the external reference voltage at pin 2 (VREF) to ground. To protect the external reference, it is equipped with a foldback characteristic, which will cut down the output current when VREF (pin 2) is shorted (see Figure 4). Version 2.0 8 28 Feb 2000 TDA 16888 Both PFC and PWM section are equipped with a peak current limitation, which is realized by the comparators C3 and C9 sensing at pin 6 (PFC CL) and pin 11 (PWM CS) respectively. When being activated this current limitation will immediately shut down the respective gate drive PFC OUT (pin 8) or PWM OUT (pin 10). Finally each pin is protected against electrostatic discharge. Oscillator/Synchronization The PFC and PWM clock signals as well as the PFC voltage ramp are synchronized by the internal oscillator (see Figure 18). The oscillator’s frequency is set by an external resistor connected to pin 16 (ROSC) and ground (see Figure 5). The corresponding capacitor, however, is integrated to guarantee a low current consumption and a high resistance against electromagnetic interferences. In order to ensure superior precision of the clock frequency, the clock signal CLK OSC is derived from a triangular instead of a saw-tooth signal. Furthermore to provide a clock reference CLK OUT with exactly 50% duty cycle, the frequency of the oscillator’s clock signal CLK OSC is halved by a D-latch before being fed into the PFC and PWM section respectively (see Figure 18). The ramp signal of the PFC section VPFC RMP is composed of a slowly falling and a steeply rising edge. This ramp has been reversed in contrast to the common practice, in order to simultaneously allow for current measurement at pin 5 (GND S) and for external compensation of OP2 by means of pin 5 (GND S) and pin 3 (PFC CC). The oscillator can be synchronized with an external clock signal supplied at pin 12 (SYNC). However, since the oscillator’s frequency is halved before being fed into the PFC and PWM section, a synchronization frequency being twice the operating frequency is recommended. As long as the synchronization signal is H the oscillator’s triangular signal VOSC is interrupted and its clock signal CLK OSC is H (see Figure 19 and Figure 20). However, as soon as the external clock changes from H to L the oscillator is released. Correspondingly, by means of an external clock signal supplied at pin 12 (SYNC) the oscillator frequency fOSC set by an external resistor at pin 16 (ROSC) can be varied on principle only within the range from 0.66 fOSC to 2 fOSC. If the oscillator has to be synchronized over a wider frequency range, a synchronization by means of the sink current at pin 16 (ROSC) has to be preferred to a synchronization by means of pin 12 (SYNC). Anyhow, please note, that pin 12 (SYNC) is not meant to permanently shutdown both PFC and PWM section. It can be used to halt the oscillator freezing the prevailing state of both drivers but does not allow to automatically shut them down. A shutdown can be achieved by shorting pin 2 (VREF) to ground, instead. Finally, In order to reduce the overall current consumption under low load conditions, the oscillator frequency itself is halved as long as the voltage at pin 13 (PWM SS) is less than 0.4 V (disabled PWM section). Version 2.0 9 28 Feb 2000 TDA 16888 PFC Section At normal operation the PFC section operates with dual loop control. An inner loop, which includes OP2, C1, FF1 and the PFC’s driver, controls the shape of the line current by average current control enabling either continuous or discontinuous operation. By the outer loop, which is supported by OP1, the multiplier, OP2, C1, FF1 and the PFC's driver, the PFC output voltage is controlled. Furthermore there is a third control loop composed of OTA1, OP2, C1, FF1 and the PFC’s driver, which allows the PFC section to be operated as an auxiliary power supply even when the PWM section is disabled. With disabled PWM section, however, the PFC section is operated with half of its nominal operating frequency in order to reduce the overall current consumption. Based on a pulse-width-modulation, which is leading edge triggered with respect to the internal clock reference CLK OUT and which is trailing edge modulated according to the PFC ramp signal VPFC RMP and the output voltage of OP2 VPFC CC (see Figure 18), the PFC section is designed for a maximum duty cycle of ca. 94% to achieve minimal line current gaps. PWM Section The PWM section is equipped with improved current mode control containing effective slope compensation as well as enhanced spike suppression in contrast to the commonly used leading edge current blanking. This is achieved by the chain of operational amplifier OP3, voltage source V1 and the 1st order low pass filter composed of R1 and an external capacitor, which is connected to pin 15 (PWM RMP). For crosstalk suppression between PFC and PWM section a signal-to-noise ratio comparable to voltage mode controlled PWM’s is set by operational amplifier OP3 performing a fivefold amplification of the PWM load current, which is sensed by an external shunt resistor. In order to simultaneously perform effective slope compensation and to suppress leading spikes, which are due to parasitic capacitances being discharged whenever the power transistor is switched on, the resulting signal is subsequently increased by the constant voltage of V1 and finally fed into the 1st order low pass filter. The peak ramp voltage, that in this way can be reached, amounts to ca. 6.5 V. By combination of voltage source V1 and the following low pass filter a basic ramp (step response) with a leading notch is created, which will fully compensate a leading spike (see Figure 12) provided, the external capacitor at pin 15 (PWM RMP) and the external current sensing shunt resistor are scaled properly. Version 2.0 10 28 Feb 2000 TDA 16888 The pulse-width-modulation of the PWM section is trailing edge modulated according to the PWM ramp signal VPWM RMP at pin 15 (PWM RMP) and the input voltage VPWM IN at pin 14 (PWM IN) (see Figure 18). In contrast to the PFC section, however, the pulsewidth-modulation of the PWM section is trailing edge triggered with respect to the internal clock reference CLK OUT in order to avoid undesirable electromagnetic interference of both sections. Moreover the maximum duty cycle of the PWM is limited to 50% to prevent transformer saturation. By means of the above mentioned improved current mode control a stable pulse-widthmodulation from maximum load down to no load is achieved. Finally, in case of no load conditions the PWM section may as well be disabled by shorting pin 13 (PWM SS) to ground. Version 2.0 11 28 Feb 2000 TDA 16888 3 Functional Block Description Gate Drive Both PFC and PWM section use fast totem pole gate drives at pin 8 (PFC OUT) and pin 10 (PWM OUT) respectively, which are designed to avoid cross conduction currents and which are equipped with Zener diodes (Z1, Z2) in order to improve the control of the attached power transistors as well as to protect them against undesirable gate overvoltages. At voltages below the undervoltage lockout threshold these gate drives are active low. In order to keep the switching losses of the involved power diodes low and to minimize electromagnetic emissions, both gate drives are optimized for soft switching operation. This is achieved by a novel slope control of the rising edge at each driver’s output (see Figure 13). Oscillator The TDA 16888’s clock signals as well as the PFC voltage ramp are provided by the internal oscillator. The oscillator’s frequency is set by an external resistor connected to pin 16 (ROSC) and ground (see Figure 5). The corresponding capacitor, however, is integrated to guarantee a low current consumption and a high resistance against electromagnetic interferences. In order to ensure superior precision of the clock frequency, the clock signal CLK OSC is derived from the minima and maxima of a triangular instead of a saw-tooth signal (see Figure 18). Furthermore, to provide a clock reference CLK OUT with exactly 50% duty cycle, the frequency of the oscillator’s clock signal CLK OSC is halved by a D-latch before being fed into the PFC and PWM section respectively. The ramp signal of the PFC section VPFC RMP is composed of a slowly falling and a steeply rising edge, the latter of which is triggered by the rising edge of the clock reference CLK OUT. This ramp has been reversed in contrast to the common practice, in order to simultaneously allow for current measurement at pin 5 (GND S) and for external compensation of OP2 by means of pin 5 (GND S) and pin 3 (PFC CC). The slope of the falling edge, which in conjunction with the output of OP2 controls the pulsewidth-modulation of the PFC output signal VPFC OUT, is derived from the current set by the external resistor at pin 16 (ROSC). In this way a constant amplitude of the ramp signal (ca. 4.5 V) is ensured. In contrast, the slope of the rising edge, which marks the minimum blanking interval and therefore limits the maximum duty cycle ton,max of the PFC output signal, is determined by an internal current source. In contrast to the PFC section the ramp signal of the PWM section is trailing edge triggered with respect to the internal clock reference CLK OUT to avoid undesirable electromagnetic interference of both sections. Moreover, the maximum duty cycle of the PWM is limited by the rising edge of the clock reference CLK OUT to 50% to prevent transformer saturation. Version 2.0 12 28 Feb 2000 TDA 16888 The oscillator can be synchronized with an external clock signal supplied at pin 12 (SYNC). As long as this clock signal is H the oscillator’s triangular signal VOSC is interrupted and its clock signal CLK OSC is H (see Figure 19 and Figure 20). However, as soon as the external clock changes from H to L the oscillator is released. Correspondingly, by means of an external clock signal supplied at pin 12 (SYNC) the oscillator frequency fOSC set by an external resistor at pin 16 (ROSC) can be varied on principle only within the range from 0.66 fOSC to 2 fOSC. Please note, that the slope of the falling edge of the PFC ramp is not influenced by the synchronization frequency. Instead the lower voltage peak is modulated. Consequently, on the one hand at high synchronization frequencies fSYNC > fOSC the amplitude of the ramp signal and correspondingly its signal-to-noise ratio is decreased (see Figure 19). On the other hand at low synchronization frequencies fSYNC < fOSC the lower voltage peak is clamped to the minimum ramp voltage (typ. 1.1 V), that at least can be achieved (see Figure 20), which may cause undefined PFC duty cycles as the voltage VPFC CC at pin 3 (PFC CC) drops below this threshold. However, if the oscillator has to be synchronized over a wide frequency range, a synchronization by means of the sink current at pin 16 (ROSC) has to be preferred to a synchronization by means of pin 12 (SYNC). In order to reduce the overall current consumption under low load conditions, the oscillator frequency itself is halved as long as the voltage at pin 13 (PWM SS) is less than 0.4 V (disabled PWM section). Multiplier The multiplier serves to provide the controlled current IQM by combination of the shape of the sinusoidal input current IM1 derived from the voltage at pin 1 (PFC IAC) by means of the 10 kΩ resistor R2, the magnitude of the PFC output voltage VM2 given at pin 18 (PFC VC) and the possibility for soft overvoltage protection VM3 (see Chapter Protection Circuitry ). By means of this current the required power factor as well as the magnitude of the PFC output voltage is ensured. To achieve an excellent performance over a wide range of output power and input voltage, the input voltage VM2 is amplified by an exponential function before being fed into the multiplier (see Figure 8). Voltage Amplifier OP1 Being part of the outer loop the error amplifier OP1 controls the magnitude of the PFC output voltage by comparison of the PFC output voltage measured at pin 17 (PFC FB) with an internal reference voltage. The latter is fixed to 5 V in order to achieve immunity from external noise. To allow for individual feedback the output of OP1 is connected to pin 18 (PFC VC). Version 2.0 13 28 Feb 2000 TDA 16888 Current Amplifier OP2 Being part of the inner loop the error amplifier OP2 controls the shape of the line current by comparison of the controlled current IQM with the measured average line current. This is achieved by setting the pulse width of the PFC gate drive in conjunction with the comparator C1. In order to limit the voltage range supplied at pin 4 (PFC CS) and at pin 5 (GND S), clamping diodes D1, D2 and D3 are connected with these pins and ground. To allow for individual feedback the output of OP2 is connected to pin 3 (PFC CC). Ramp Amplifier OP3 For crosstalk suppression between PFC and PWM section a signal-to-noise ratio comparable to voltage mode controlled PWMs is set by operational amplifier OP3 performing a fivefold amplification of the PWM load current, which is sensed by an external shunt resistor. In order to suppress leading spikes, which are due to parasitic capacitances being discharged whenever the power transistor is switched on, the resulting signal is subsequently increased by the constant voltage of V1 and finally fed into a 1st order low pass filter. By combination of voltage source V1 and the following low pass filter a step response with a leading notch is created, which will fully compensate a leading spike (see Figure 12) provided, the external capacitor at pin 15 (PWM RMP) and the external current sensing shunt resistor are scaled properly. Operational Transconductance Amplifier OTA1 The TDA 16888’s auxiliary power supply mode is controlled by the fast operational transconductance amplifier OTA1. When under low load or no load conditions a voltage below 5 V is sensed at pin 20 (AUX VS), it will start to superimpose its output on the output QM of the multiplier and in this way will replace the error amplifier OP1 and the multiplier. At normal operation, however, when the voltage at pin 20 (AUX VS) is well above 5 V, this operational transconductance amplifier is disabled. Operational Transconductance Amplifier OTA2 By means of the operational transconductance amplifier OTA2 sensing at pin 19 (PFC VS) a fast but soft overvoltage protection of the PFC output voltage is achieved, which when being activated (VPFC VS > 5.5 V) will cause a well controlled throttling of the multiplier output QM (see Figure 9). Operational Transconductance Amplifier OTA3 In order to achieve offset compensation of error amplifier OP2 under low load conditions, that will not suffice to start OTA1, the operational transconductance amplifier OTA3 is introduced. It will start operation as soon as these conditions are reached, i.e. the voltage at pin 18 (PFC VC) falls below 1.2 V. Version 2.0 14 28 Feb 2000 TDA 16888 Comparator C1 The comparator C1 serves to adjust the duty cycle of the PFC gate drive. This is achieved by comparison of the output voltage of OP2 given at pin 3 (PFC CC) and the voltage ramp of the oscillator. Comparator C2 The comparator C2 serves to prevent the external circuitry from destruction by immediately switching the PFC output PFC OUT (pin 8) off, if the voltage at pin 19 (PFC VS) drops below 1 V due to a broken wire. Comparator C3 By means of this extremely fast comparator sensing at pin 6 (PFC CL) peak current limitation is realized. When being activated (VPFC CL < 1 V) it will immediately shut down the gate drive of the PFC section (pin 8, PFC OUT). In order to protect C3 against undervoltages at pin 6 (PFC CL) due to large inrush currents, this pin is equipped with an additional clamping diode D4. Comparator C4 This comparator along with the TDA 16888’s power management serves to reset the PWM section’s soft start at pin 13 (PWM SS). C4 becomes active as soon as an undervoltage (VPFC VS < 4 V) of the PFC output voltage is sensed at pin 19 (PFC VS). Comparator C5 Based on the status of the PWM section’s soft start at pin 13 (PWM SS), the comparator C5 controls the bias of the entire PWM section. In this way the PWM section is switched off giving a very low quiescent current, until its soft start is released. Comparator C6 Overvoltage protection of the PWM section’s input voltage sensed at pin 19 (PFC VS) is realized by comparator C6, which when being activated will immediately shut down both gate drives PFC OUT (pin 8) and PWM OUT (pin 10). Comparator C7 This comparator sensing at pin 13 (PWM SS) and at pin 15 (PWM RMP) controls the pulse width modulation of the PWM section during the soft start. This is done right after the PWM section is biased by comparator C5. Version 2.0 15 28 Feb 2000 TDA 16888 Comparator C8 The control of the pulse width modulation of the PWM section is taken over by comparator C8 as soon as the soft start is finished. This is achieved by comparison of the PWM output voltage at pin 14 (PWM IN) and the PWM voltage ramp at pin 15 (PWM RMP). Comparator C9 By means of this extremely fast comparator sensing at pin 11 (PWM CS) peak current limitation is realized. When being activated (VPWM CS > 1 V) it will immediately shut down the gate drive of the PWM section (PWM OUT). Comparator C10 By means of the threshold of 0.4 V the comparator C10 allows the PWM duty cycle to be continuously controlled from 0 to 50%. As long as the ramp voltage at pin 15 (PWM RMP) is below this threshold the gate drive of the PWM section (pin 10, PWM OUT) is turned off. Version 2.0 16 28 Feb 2000 TDA 16888 4 Electrical Characteristics 4.1 Absolute Maximum Ratings TA = – 25 to 85 °C Parameter# Symbol Limit Values Unit Remarks min. max. VS IZ3 VVREF VROSC VSYNC VPFC FB VPFC IAC VAUX VS VPFC VS VPFC CL VPWM SS VPWM IN VPWM RMP VPWM CS VPFC VC IPFC VC IPFC CS IGND S VPFC CC IPFC CC IOUT – 0.3 VZ3 V VZ3 = Zener voltage of Z3 – 50 mA – – 0.3 8 V – 0.3 8 V VVREF < VS VROSC < VS – 0.3 8 V – – 0.3 8 V – – 0.3 15 V – – 0.3 8 V – – 0.3 8 V |IPFC VS| < 1 mA –1 3 V |IPFC CL| < 1 mA – 0.3 8 V VPWM SS < VVREF – 0.3 8 V – – 0.3 8 V VPWM RMP < VVREF – 0.3 3 V – – 0.3 8 V – – 20 20 mA – –5 5 mA – –5 5 mA – – 0.3 8 V – – 20 20 mA – – 100 100 mA – PFC/PWM OUT peak clamping current IOUT – mA VOUT = High PFC/PWM OUT peak clamping current IOUT – 500 – mA VOUT = Low Junction temperature TJ – 40 °C – VCC supply voltage Zener current of Z3 VREF voltage ROSC voltage SYNC voltage PFC FB voltage PFC IAC voltage AUX VS voltage PFC VS voltage PFC CL voltage PWM SS voltage PWM IN voltage PWM RMP voltage PWM CS voltage PFC VC voltage PFC VC current PFC CS current GND S current PFC CC voltage PFC CC current PFC/PWM OUT DC current Version 2.0 200 150 17 28 Feb 2000 TDA 16888 4.1 Absolute Maximum Ratings (cont’d) TA = – 25 to 85 °C Parameter# Storage temperature Thermal resistance Thermal resistance Symbol TS RthJA RthJA Limit Values Unit Remarks min. max. – 65 150 °C – – 60 K/W P-DIP-20-5 – 70 K/W P-DSO-20-1 Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of the integrated circuit. To avoid destruction make sure, that for any pin except for pins PFC OUT and PWM OUT the currents caused by transient processes stay well below 100 mA. For the same reason make sure, that any capacitor that will be connected to pin 9 (VCC) is discharged before assembling the application circuit. In order to characterize the gate driver’s output performance Figure 14, Figure 15, Figure 16 and Figure 17 are provided, instead of referring just to a single parameter like the maximum gate charge or the maximum output energy. 4.2 Operating Range Parameter VCC supply voltage Symbol VS IZ3 Zener current PFC/PWM OUT current IOUT IPFC IAC PFC IAC input current fOUT PFC/PWM frequency TJ Junction temperature Limit Values Unit Remarks min. max. 0 VZ3 V 0 50 mA VZ3 = Zener voltage of Z3 Limited by TJ,max –1 1.5 A – 0 1 mA – 15 200 kHz – – 25 125 °C – Note: Within the operating range the IC operates as described in the functional description. In order to characterize the gate driver’s output performance Figure 14, Figure 15, Figure 16 and Figure 17 are provided, instead of referring just to a single parameter like the maximum gate charge or the maximum output energy. Version 2.0 18 28 Feb 2000 TDA 16888 4.3 Characteristics Supply Section Parameter Symbol 1) Zener voltage Zener current Quiescent supply current VZ3 IZ3 IS Limit Values Unit Test Condition IZ3 = 30 mA VS ≤ 15.5 V2) VPWM SS = 0 V RROSC = 51 kΩ CL = 0 V min. typ. max. 16.0 17.5 19.0 V – – 500 µA – – 12 mA PFC enabled PWM disabled – – 15 mA VPWM SS = 6 V RROSC = 51 kΩ CL = 0 F PFC enabled PWM enabled Supply current IS – – 40 mA VPWM SS = 6 V RROSC = 51 kΩ CL = 4.7 nF PFC enabled PWM enabled 1) 2) See Figure 3 Design characteristics (not meant for production testing) Note: The electrical characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range TA from – 25 °C to 85 °C Typical values represent the median values, which are related to production processes. If not otherwise stated, a supply voltage of VS = 15 V is assumed. Version 2.0 19 28 Feb 2000 TDA 16888 Undervoltage Lockout Parameter Symbol Limit Values min. typ. max. Unit Test Condition Power up, rising voltage threshold1) VS,UP 13.0 14.0 14.5 V – Power down, falling voltage threshold1) VS,DWN 10.5 11.0 11.5 V – Power up, threshold current IS,UP – 23 100 µA VS = VS,UP – 0.1 V VPFC CL < 0.3 V2) Stand-by mode 1) 2) See Figure 3 To ensure the voltage fallback of pin PFC CL is disabled. Internal Voltage Reference Parameter Symbol Limit Values min. typ. max. Unit Test Condition Trimmed reference voltage VREF 4.9 5.0 5.1 V Measured at pin PFC VC Line regulation ∆VREF – – 40 mV ∆VS = 3 V Version 2.0 20 28 Feb 2000 TDA 16888 External Voltage Reference Parameter Symbol Limit Values Unit Test Condition min. typ. max. VVREF ∆VVREF ∆VVREF IVREF 7.2 7.5 7.8 V – 3 mA ≤ IVREF ≤ 0 – – 50 mV ∆VS = 3 V 0 40 100 mV ∆IVREF = 2 mA – 10 –6 –4 mA VVREF = 6.5 V IVREF VVREF – –2 – mA VVREF = 0 V – 6.6 – V – VVREF Shutdown hysteresis, falling voltage threshold – 6.2 – V – td,VREF – 500 – ns VVREF = 5 V2)3) VPFC OUT = 3 V2)3) VPWM OUT = 3 V2)3) Unit Test Condition RROSC = 110 kΩ RROSC = 51 kΩ ∆VS = 3 V RROSC = 51 kΩ Buffered output voltage Line regulation Load regulation Maximum output current1) Short circuit current1) Shutdown hysteresis, rising voltage threshold Shutdown delay 1) 2) 3) See Figure 4 Design characteristics (not meant for production testing) Transient reference value Oscillator Parameter PFC/PWM frequency1) PFC/PWM frequency1) PFC/PWM frequency, line regulation Symbol fOUT50 fOUT100 ∆fOUT Limit Values min. typ. max. 43 50 57 kHz 87 100 113 kHz – – 1 % 5.4 5.6 V – VPFC RMP 5.0 Minimum ramp voltage VPFC RMP 0.8 – SYNC, low level voltage VSYNC 1.1 1.4 V – – 0.4 V – SYNC, high level voltage VSYNC 3.5 – VVREF V – – – 20 µA – – 150 µA Maximum ramp voltage SYNC, input current 1) ISYNC VSYNC < 0.4 V VSYNC = 3.5 V See Figure 5 Version 2.0 21 28 Feb 2000 TDA 16888 PFC Section Parameter Symbol Limit Values min. typ. max. Unit Test Condition VPFC OUT = 2 V3) RROSC = 51 kΩ CL = 4.7 nF 0.9 IPFC CS IPFC IAC = 100 µA VPFC VC = 6 V Max duty cycle1) Don,PFC 91 94 98 % Multiplier throttling (OTA2), threshold voltage2) VPFC VS 5.2 5.5 5.8 V OTA1 disabled Overvoltage protection (C6), rising voltage threshold VPFC VS 5.8 6 6.2 V – Overvoltage protection (C6), falling voltage threshold VPFC VS 5.3 5.5 5.7 V – Overvoltage protection (C6), turn-off delay td,OV – 2 – µs VPFC VS = 6.5 V3)4) VPFC OUT = 3 V3)4) Broken wire detection (C2), threshold voltage VPFC VS 0.93 1 1.07 V – Voltage sense, input current IPFC VS 0.2 0.45 0.7 µA VPFC VS = 1 V Current limitation (C3), threshold voltage VPFC CL 0.93 1 1.07 V – Current limitation (C3), input current IPFC CL 1 – 10 µA VPFC CL = 1 V Current limitation (C3, D4), clamping voltage VPFC CL – 0.9 – – 0.1 V IPFC CL = – 500 µA Current limitation (C3), turn-off delay td,CL 30 – 150 ns VPFC CL = 0.75 V3) VPFC OUT = 3 V3) CL = 4.7 nF 1) 2) 3) 4) See Figure 6 See Figure 9 Transient reference value Design characteristics (not meant for production testing) Version 2.0 22 28 Feb 2000 TDA 16888 Multiplier Parameter Input current Input voltage Exponential function, threshold voltage Symbol IPFC IAC VPFC VC VPFC VC Limit Values Unit Test Condition min. typ. max. 0 – 1 mA – 0 – 6.7 V – – 1.1 – V 1)2) Maximum output current IPFC CS – 320 – 420 – 550 µA OTA1 disabled Output current3) – IPFC IAC = 0 A VPFC VC = 2 V IPFC CS – 100 – 500 nA OTA1 disabled – – 1.2 – µA IPFC IAC = 25 µA VPFC VC = 2 V OTA1 disabled – – 10 – µA IPFC IAC = 25 µA VPFC VC = 4 V OTA1 disabled – – 40 – µA IPFC IAC = 100 µA VPFC VC = 4 V OTA1 disabled – – 150 – µA IPFC IAC = 400 µA VPFC VC = 4 V OTA1 disabled – – 170 – µA IPFC IAC = 100 µA VPFC VC = 6 V OTA1 disabled 1) 2) 3) Design characteristics (not meant for production testing) For input voltages below this threshold the multiplier output current remains constant. For input voltages above this threshold the output rises exponentially (see Figure 8). See Figure 7 Version 2.0 23 28 Feb 2000 TDA 16888 Operational Transconductance Amplifier (OTA1) Parameter Symbol Auxiliary power supply, threshold voltage1) VAUX VS Input current IAUX VS Output current 1) Limit Values min. typ. max. 4.8 5.0 5.2 Unit Test Condition V IPFC CS = – 1 µA Multiplier disabled IPFC CS – – 15 µA – 20 – – µA – 0 – µA – – 30 – µA VAUX VS > 5.2 V VAUX VS < 4.8 V VAUX VS > 5.2 V1) VAUX VS < 4.8 V For input voltages below this threshold the output current is linearly increasing until at ca. 4.8 V the maximum output current is reached. Operational Transconductance Amplifier (OTA3) Parameter Symbol Limit Values min. typ. max. Unit Test Condition Offset compensation, threshold voltage VPFC VC 1.1 1.2 – V – Input current IPFC VC IGND S –1 – – µA 1) – 0 – µA – – 10 – µA VPFC VC > 1.2 V VPFC VC < 1.1 V Output current 1) Design characteristics (not meant for production testing) Version 2.0 24 28 Feb 2000 TDA 16888 Voltage Amplifier (OP1) Parameter Symbol Limit Values Unit Test Condition min. typ. max. VOff IPFC FB APFC VC VPFC FB VPFC FB –4 – 4 mV 1) –1 – 1 µA VPFC FB = 4 V – 85 – dB 2) 0 – 6 V – 4.9 5 5.1 V – Output, maximum voltage VPFC VC 6.3 – VVREF V IPFC VC = – 500 µA Output, minimum voltage VPFC VC 0.5 – 1.1 V IPFC VC = 500 µA Output, short circuit source current IPFC VC – – 10 – mA Output, short circuit sink IPFC VC current – 10 – mA VPFC VC = 0 V VPFC FB = 4.9 V VPFC VC = 6.4 V VPFC FB = 5.1 V Offset voltage Input current Open loop gain Input voltage range Voltage sense, threshold voltage 1) 2) Guaranteed by wafer test Design characteristics (not meant for production testing) Version 2.0 25 28 Feb 2000 TDA 16888 Current Amplifier (OP2) Parameter Symbol VOff IPFC CS Input current IGND S Open loop gain APFC CC Gain bandwidth product fT Offset voltage Phase margin ϕ Common mode voltage VCMVR range Limit Values Unit Test Condition min. typ. max. –5 –1 3 mV – – 500 – 500 nA – – 110 – dB – – 2.5 – MHz 1) – 60 – ° 1) – 0.2 – 0.5 V 1) 0.4 – 1.0 V IPFC CS = 500 µA IGND S = 500 µA Clamped input voltage, upper threshold (D2, D3) VPFC CS VGND S Clamped input voltage, lower threshold (D1) VPFC CS Output, maximum voltage VPFC CC 6.3 – VVREF V IPFC CC = – 500 µA Output, minimum voltage VPFC CC 0.5 – 1.1 V IPFC CC = 500 µA Output, short circuit source current IPFC CC – – 10 – mA Output, short circuit sink IPFC CC current – 10 – mA VPFC CC = 0 V VPFC CS = 0 V VGND S = 0.5 V VPFC CC = 6.5 V VPFC CS = 0.5 V VGND S = 0 V 1) Multiplier, OTA1 and OTA3 disabled – 0.9 – – 0.1 V IPFC CS = – 500 µA Multiplier and OTA1 disabled Design characteristics (not meant for production testing) Version 2.0 26 28 Feb 2000 TDA 16888 PWM Section Parameter Symbol Undervoltage protection (C4), VPFC VS threshold voltage Limit Values Unit Test Condition min. typ. max. 3.8 4.0 4.2 V – Bias control (C5), rising voltage threshold VBC,Th – 0.45 – V – Bias control (C5), falling voltage threshold VBC,Th – 0.4 – V – Softstart (I1), charging current II1 20 30 40 µA – Softstart, maximum voltage VPWM SS VPWM IN R3 AOP3 VRMP – 6.7 – V – 0.4 – 7.4 V – 75 100 150 kΩ – – 5 – V/V – 0.36 0.4 0.5 V – VRMP VV1 ZRMP – 6.5 – V – – 1.5 – V – – 10 – kΩ – Input voltage PWM IN – GND resistance Ramp (OP3), voltage gain Ramp (C10), pulse start threshold voltage Ramp, maximum voltage Ramp (V1), voltage offset Ramp (R1), output impedance Maximum duty cycle Don,PWM 41 – 50 % VPWM OUT = 2 V1) RROSC = 51 kΩ CL = 4.7 nF Current sense (C9), voltage threshold VCS,Th 0.9 1.0 1.1 V – Current sense (C9), overload turn-off delay td,CS 30 – 250 ns VPWM CS = 1.25 V1) VPWM OUT = 3 V1) CL = 4.7 nF 1) Transient reference value Version 2.0 27 28 Feb 2000 TDA 16888 Gate Drive (PWM and PFC Section) Parameter Symbol Limit Values Unit Test Condition min. typ. max. VOUT – – 1.2 V VS = 5 V IOUT = 5 mA – – 1.5 V – 0.8 – V – 1.6 2.0 V – 0.2 0.2 – V 10 11 12 V 10.0 10.5 – V 8.8 – V – 150 – ns – 100 – ns – 30 – ns – 40 – ns Output current, rising edge3) IOUT –1 – – A Output current, falling edge3) IOUT – – 1.5 A VS = 5 V IOUT = 20 mA IOUT = 0 A IOUT = 50 mA IOUT = – 50 mA VS = 16 V tH = 10 µs CL = 4.7 nF VS = 12 V tH = 10 µs CL = 4.7 nF VS = VS,DWN + 0.2 V tH = 10 µs CL = 4.7 nF VOUT = 2 V … 8 V2) CL = 4.7 nF VOUT = 3 V … 6 V2) CL = 4.7 nF VOUT = 9 V … 3 V2) CL = 4.7 nF VOUT = 9 V … 2 V2) CL = 4.7 nF CL = 4.7 nF4) CL = 4.7 nF4) Output, minimum voltage Output, maximum voltage Rise time1) Fall time 1) 2) 3) 4) VOUT tr tf – See Figure 13 Transient reference value The gate driver’s output performance is characterized in Figure 14, Figure 15, Figure 16 and Figure 17. Design characteristics (not meant for production testing) Note: If not otherwise stated the figures shown in this section represent typical performance characteristics. Version 2.0 28 28 Feb 2000 TDA 16888 AED02462 Ι VCC ΙS Ι S, UP V S, DWN Figure 3 V S, UP V Z3 V VCC Undervoltage Lockout Hysteresis and Zener Diode Overvoltage Protection Ι VREF AED02463 -8 mA -7 -6 -5 -4 -3 -2 -1 0 Figure 4 Version 2.0 0 1 2 3 4 5 6 7 V V VREF 8 Foldback Characteristic of Pin 2 (VREF) 29 28 Feb 2000 TDA 16888 AED02464 400 kHz f OUT 100 10 10 100 kΩ 500 R OSC Figure 5 PFC/PWM Frequency AED02465 100 % Don, PFC, max 95 90 85 80 0 100 200 300 kΩ 400 R OSC Figure 6 Version 2.0 Maximum PFC Duty Cycle 30 28 Feb 2000 TDA 16888 AED02466 500 µA VPFC VC = 7 V Ι PFC CCS 400 6V 5V 4V 300 200 3V 100 2V 0 0 0.2 0.4 0.6 0.8 mA 1 Ι PFC IAC Figure 7 Multiplier Linearity AED02356 500 µA Ι PFC CCS Ι PFC IAC = 800 µA 400 µA 200 µA 100 µA 50 µA 25 µA 400 300 200 100 0 Figure 8 Version 2.0 0 1 2 3 4 5 6 V 7 VPFC VC Multiplier Dynamic 31 28 Feb 2000 TDA 16888 AED02467 500 µA Ι PFC IAC > 300 µA VPFC VC = 6 V Ι PFC CCS 250 µA 400 200 µA 300 150 µA 200 100 µA 100 50 µA 0 5.0 5.25 5.5 5.75 V 6.0 VPFC VS Figure 9 Multiplier Throttling by OTA2 AED02468 100 dB φ A PFC VC 80 -30 φ 60 Version 2.0 A PFC VC -60 40 -90 20 -120 0 10 -2 Figure 10 0 deg 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 -150 10 6 Hz 10 7 Frequency Open Loop Gain and Phase Characteristic of Voltage Amplifier OP1 32 28 Feb 2000 TDA 16888 AED02469 120 dB A PFC CC 100 φ -30 φ A PFC CC 80 -60 60 -90 40 -120 20 -150 0 10 -2 Figure 11 0 deg 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 -180 10 6 Hz 10 7 Frequency Open Loop Gain and Phase Characteristic of Current Amplifier OP2 AED02470 V1 VPWM CS V1 /2 0 4V1 VPWM RMP 3V1 VPWMCS = 0 2V1 V1 0 T/2 0 T Time Figure 12 Version 2.0 PWM Ramp Composition Scheme 33 28 Feb 2000 TDA 16888 AED02471 12 V VPFC OUT 10 8 6 4 2 0 0 0.1 0.2 µs 0.4 0.3 Time Figure 13 Rising Edge of Driver Output AED02542 150 PD RL = 0 Ω RL = 1 Ω RL = 2 Ω RL = 5 Ω R L = 10 Ω mW 100 50 f OUT = 15 kHz P D0 = 0.194 W 0 0 10 20 30 40 nF 50 CL Figure 14 Power Dissipation of Single Gate Driver at fOUT = 15 kHz Version 2.0 34 28 Feb 2000 TDA 16888 AED02543 500 PD RL = 0 Ω RL = 1 Ω RL = 2 Ω RL = 5 Ω R L = 10 Ω mW 400 300 200 100 f OUT = 50 kHz P D0 = 0.197 W 0 0 10 20 30 40 nF 50 CL Power Dissipation of Single Gate Driver at fOUT = 50 kHz Figure 15 AED02544 1 PD RL = 0 Ω RL = 1 Ω RL = 2 Ω RL = 5 Ω R L = 10 Ω mW 0.8 0.6 0.4 0.2 f OUT = 100 kHz P D0 = 0.201 W 0 0 10 20 30 40 nF 50 CL Figure 16 Version 2.0 Power Dissipation of Single Gate Driver at fOUT = 100 kHz 35 28 Feb 2000 TDA 16888 AED02545 1.5 PD RL = 0 Ω RL = 1 Ω RL = 2 Ω RL = 5 Ω R L = 10 Ω mW 1.0 0.5 f OUT = 200 kHz P D0 = 0.212 W 0 0 10 20 30 40 nF 50 CL Figure 17 Version 2.0 Power Dissipation of Single Gate Driver at fOUT = 200 kHz 36 28 Feb 2000 TDA 16888 VOSC CLK OSC CLK OUT VPFC RMP VPFC CC VPFC OUT t on, max VPWM RMP VPWM IN VBC, Th VPWM OUT t on, max Time Figure 18 Version 2.0 AET02546 Timing Diagram without Synchronization 37 28 Feb 2000 TDA 16888 VOSC VSYNC CLK OSC CLK OUT VPFC RMP VPFC CC VPFC OUT t on, max VPWM RMP VPWM IN VBC, Th VPWM OUT t on, max Time Figure 19 Version 2.0 AET02547 Timing Diagram with Synchronization (fSYNC > fOSC) 38 28 Feb 2000 TDA 16888 VOSC VSYNC CLK OSC CLK OUT VPFC RMP VPFC CC VPFC OUT t on, max VPWM RMP VPWM IN VBC, Th VPWM OUT t on, max Time Figure 20 Version 2.0 AET02548 Timing Diagram with Synchronization (fSYNC < fOSC) 39 28 Feb 2000 TDA 16888 5 Package Outlines GPD05587 P-DIP-20-5 (Plastic Dual In-line Package) Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book “Package Information”. Version 2.0 40 Dimensions in mm 28 Feb 2000 TDA 16888 1.27 x 8˚ ma 7.6 -0.2 1) +0.09 0.35 x 45˚ 0.23 2.65 max 2.45 -0.2 0.2 -0.1 P-DSO-20-1 (Plastic Dual Small Outline) 0.4 +0.8 0.35 +0.15 2) 0.2 24x 20 0.1 10.3 ±0.3 11 GPS05094 1 12.8 1) 10 -0.2 1) Does not include plastic or metal protrusions of 0.15 max per side 2) Does not include dambar protrusion of 0.05 max per side Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book “Package Information”. SMD = Surface Mounted Device Version 2.0 41 GPS 05094 Index Marking Dimensions in mm 28 Feb 2000 Total Quality Management Qualität hat für uns eine umfassende Bedeutung. Wir wollen allen Ihren Ansprüchen in der bestmöglichen Weise gerecht werden. Es geht uns also nicht nur um die Produktqualität – unsere Anstrengungen gelten gleichermaßen der Lieferqualität und Logistik, dem Service und Support sowie allen sonstigen Beratungs- und Betreuungsleistungen. Quality takes on an all encompassing significance at Semiconductor Group. For us it means living up to each and every one of your demands in the best possible way. So we are not only concerned with product quality. We direct our efforts equally at quality of supply and logistics, service and support, as well as all the other ways in which we advise and attend to you. Dazu gehört eine bestimmte Geisteshaltung unserer Mitarbeiter. Total Quality im Denken und Handeln gegenüber Kollegen, Lieferanten und Ihnen, unserem Kunden. Unsere Leitlinie ist jede Aufgabe mit „Null Fehlern“ zu lösen – in offener Sichtweise auch über den eigenen Arbeitsplatz hinaus – und uns ständig zu verbessern. Part of this is the very special attitude of our staff. Total Quality in thought and deed, towards co-workers, suppliers and you, our customer. Our guideline is “do everything with zero defects”, in an open manner that is demonstrated beyond your immediate workplace, and to constantly improve. Unternehmensweit orientieren wir uns dabei auch an „top“ (Time Optimized Processes), um Ihnen durch größere Schnelligkeit den entscheidenden Wettbewerbsvorsprung zu verschaffen. Geben Sie uns die Chance, hohe Leistung durch umfassende Qualität zu beweisen. Wir werden Sie überzeugen. http://www.infineon.com Published by Infineon Technologies AG Throughout the corporation we also think in terms of Time Optimized Processes (top), greater speed on our part to give you that decisive competitive edge. Give us the chance to prove the best of performance through the best of quality – you will be convinced. Version 1.1 , March 2001 Application Note AN-TDA16888-0-010323 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz Author: Michael Herfurth Published by Infineon Technologies AG http://www.infineon.com Power Management & Supply N e v e r s t o p t h i n k i n g TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz 150W Output: 5V/18A; 12V/4A; -12V/1A; Standby: 5V/100mA Operating Frequency: 100kHz Contents: 1.Circuit description................................................................... 2. Circuit diagram....................................................................... 3. Test results............................................................................. 4. Bill of materials...................................................................... 5. Control PCB layout................................................................ 6. Power PCB layout.................................................................. 7. Transformer design............................................................... 8. Smoothing choke design...................................................... 9. Boost inductor design........................................................... 10. RFI choke design................................................................. 11. Picture of testboard............................................................. 2 of 20 3 6 7 8 11 12 13 14 15 16 17 AN-TDA16888-0-010323 V1.1 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz Circuit description Multioutput single transistor forward converter with boost PFC preconverter The power supply for a PC using up to 150 W of power must, for example, provide the following voltages: 5V/18A; 12V/4A; -12V/0.7A; -5V/0,3A; and Standby 5V/0.1A. If any of the mains systems in use around the world may be used as a power source, then an input voltage range of 90V to 270V AC is required, taking into account the relevant tolerances. The application circuit using the TDA 16888 is able to cover universal input voltage range mentioned above (if required). In this circuit a boost converter (Q1, L2, D5, C3) works as an active harmonic filter to provide power factor correction, intermediate circuit voltage stabilization and to supply the primary and secondary side control logic in normal and standby operation. In addition, the bridging time for dips in the mains voltage is not dependent on the mains voltage level. How the IC works in a typical application circuit is described below. Start up When the mains voltage is switched on, the smoothing capacitor C3 is charged by a current pulse, the current being limited by the winding resistances of the chokes and NTC resistor R36. Start-up capacitor C11A is charged by a low current (<1mA) through resistors R2 and R43. Once the switch-on threshold (14V) is reached at pin 19, the TDA 16888 changes from the passive to the active state. In the passive state the IC draws a maximum current of 100µA while monitoring the switching thresholds and actively maintaining the driver outputs at the L-level. In the active state the chip first checks whether the intermediate circuit voltage at pin 19 lies between 20% and 120% of its nominal value (e.g. between 80V and 480V for a nominal value of 400V). If this is the case, the chip concludes that monitoring for the intermediate circuit voltage is connected (FMEA) and there is no risk to operation from an overvoltage. If the intermediate circuit voltage is found to be satisfactory, and no excess current is detected at pin 6, then the PFC converter starts working at half the rated frequency to cut the IC current consumption. During this process the TDA 16888 is initially powered from the start-up capacitor C11A until the boost converter starts to supply it, or, should the IC switch-off threshold (11V) be reached first, it switches into the passive state and a new start-up attempt is initiated. As soon as the intermediate circuit voltage has reached 80% of its nominal value, the PWM also starts running, with both converter sections now operating at the rated frequency. A soft-start procedure is used for the PMW converter, the rise time being set using C14 at pin 13. If the voltage at pin 13 is less than 0.4V, the chip interprets this condition as standby mode, and shuts off the PWM section. In standby mode the PFC converter again works at half the rated frequency to reduce current consumption. While the MOSFET Q1is switching, a modulated AC voltage appears at the secondary windings of choke L2. The voltage across the main winding of choke L2 varies during rated operation from 400V when Q1 is cut off and the AC input voltage passes through zero, to 400V when Q1 is conducting and the maximum input voltage is at its peak value. The lowest voltage across the main winding (±200V) arises when the input voltage is exactly half as large as the intermediate circuit voltage. This is why the standby and IC supply voltages are derived from bridge rectification of the auxiliary windings on L2, in order to use both the cut-off and conduction phase of the inductance. The voltage regulators IC5 and Q3/D11 are required because of the variation by a factor of 2 in the dc voltage obtained. When the PFC converter is run up, the intermediate circuit voltage overshoots. Under low load it takes a considerable time to return to its nominal level, because of the slow discharge of the smoothing capacitor C3. During this period the voltage regulator would cut off the MOSFET Q1(up to more than 100ms), which would prevent the control logic being supplied from the boost converter choke. This is why the TDA 16888 has a further control loop, using input pin 20, in addition to the two control loops for the intermediate circuit voltage and the input current. A second output path from the boost converter (D6, C4, R2) is taken via potential divider R1, R27 to detect whether Q1 is operating. 3 of 20 AN-TDA16888-0-010323 V1.1 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz This works by the voltage at C4 being set using voltage divider R1, R27 to the nominal value of the intermediate circuit voltage, or a few percent below. The short time constant of the second output path from the boost converter (C4≈10nF, R2≈500kΩ) means that any drop in the voltage at C4 is rapidly detected, and the MOSFET Q1 switched on via the PFC current regulator. If necessary this is done with such short pulses that the voltage at the main output from the boost converter does not rise, even with no load at all. The limited controllability of the boost converter during no-load conditions means that the power available at the standby output is limited. For example 5V/100mA is provided with a quite good efficiency. Normal operation The oscillator frequency is set by just one external resistor R24. The ramp voltages for the oscillator and the pulse width modulation (PWM) of the PFC section are generated across integrated capacitors. The duty cycle of the PFC section varies from 0 to over 90%, and for the PWM section from 0 to 50% maximum. During one switching period, the PFC MOSFET Q1 switches on first. The PWM MOSFET Q2 switches on half a period later. For greater reliability, flip-flops are used to control this timing sequence. The oscillator therefore runs at twice the rate of the external operating frequency. By integrating the capacitors, external circuitry is not required, and so the current consumption is reduced because of the smaller capacitances. The waveform of the rectified, unsmoothed mains voltage is detected across resistors R4A, R4B, and applied to the first input of an integrated multiplier. The output voltage from the PFC voltage control amplifier is taken to at the second input to the multiplier. The current at the output of the multiplier, pin 4, is a reference value having the waveform of the rectified mains voltage and an amplitude controlled by the voltage regulator. The PFC current regulator controls the rectified mains current such that the voltage drop across shunt R6 assumes exactly the same value as the voltage drop across R5 produced by the output current from the multiplier. The output current from the PFC current regulator (pin 3) sets up the duty cycle for the MOSFET Q1 by comparison with an internally generated ramp voltage. The intermediate circuit voltage is regulated by the PFC voltage regulator (pin 17, pin 18) at a level that is greater than or equal to the peak value of the maximum input voltage (270V⋅√2= 382V). An intermediate circuit voltage of 380V is often chosen, because one must expect a maximum voltage of this magnitude even without a PFC converter. A 450V type smoothing capacitor (C3) is used, however, to ensure that even under transient conditions, the voltage remains below the permitted capacitor voltage. In this case it is worth increasing the intermediate circuit voltage to 410V, and to design the onset threshold for overvoltage limiting to be 430V (R11, R12 to give 5.5V at pin 19). The intermediate circuit voltage still remains below 450V during transient conditions, and the benefit lies in the 40% higher hold time, which can be bridged if the mains drops out. The PWM converter is designed to work as a single-ended forward converter. The turn-on time is determined by the oscillator, as soon as the voltage at the soft start input pin 13 and the control input pin 14 exceeds 0.4V. After the soft start phase, the voltage at control input pin 14 together with the ramp voltage at pin 15 controls the turn-off time. An improved current ramp control technique (current mode control) is used here, where the ramp voltage has an amplitude 5 times higher than those traditionally used. The current in the Q2 source path is also measured across shunt resistor R15, and detected at pin 11. At a voltage of 1V at pin 11, the integrated overcurrent comparator switches off MOSFET Q2. The signal at pin 11 is also amplified by a factor of 5 by a linear amplifier, and taken via an internal 10k resistor to pin 15. A base ramp voltage with an amplitude of 1.5V is produced across capacitor C13 connected to this pin, even when there is no transistor current (slope compensation). This voltage can rise to over 6V when the maximum current flows through Q2. This allows pulse width modulation at higher signal levels, enabling stable operation right up to no-load conditions. The transformer Tr1 in the forward converter works at the pre-regulated intermediate circuit voltage. This means that a higher transformer ratio can be selected, reducing the current load for the MOSFET. Furthermore, a larger duty cycle can be set during normal operation because there is a smaller variation range for the input voltage. The magnetization energy can be fed back into the smoothing capacitor using a demagnetization winding and demagnetization diode D7. 4 of 20 AN-TDA16888-0-010323 V1.1 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz In forward converters with universal input voltage range this is not possible without pre-regulation, or causes significant losses in the required demagnetization network. In our application circuit, overvoltage peaks across MOSFET Q2 and diode D7 are efficiently limited using diodes D22 and D27 and network C31, R40. On the secondary side there is one rectifying and one freewheeling diode (D8, D9; D20, D21) for each output voltage. A damping network (e.g. R41, C29; R42, C30) is connected in parallel with every diode, to attenuate commutation-induced overvoltage spikes and transients. Another RC element (R47, C34) damps the voltage decay in intermittent dc flow, to avoid irregular premagnetization of the smoothing choke. The output voltages are taken via separate windings on a common smoothing choke L3 to convert the switched voltages into a flow of current. The smoothing capacitors (e.g. C15, C28) reduce the ripple on the output voltage and serve as a storage device when the load changes rapidly. For high output currents it is advisable to divide up the smoothing capacitance with small inductances (L5, L6), to compensate for the equivalent series resistance (ESR) of the capacitors. The output voltage with the highest stability specification is controlled directly by regulating amplifier IC2 and optocoupler IC3. The other output voltages are stabilized indirectly by the choice of winding ratio for transformer Tr1 and choke L3 according to the ratio of the output voltages. An extra comparator IC6 and optocoupler IC4 monitor the standby output voltage. When the standby switch is closed, the PWM converter is only started once the PFC converter has produced at least 90% of the nominal voltage at the standby output. Standby operation can be initiated by opening the switch. Transistor Q4 with low-pass filter at its base, prevents noise spikes and leakage currents from the optocoupler from discharging the soft-start capacitor during normal operation. Protective features When a short circuit occurs on the output side, the primary current is limited by measuring the drop across shunt R15. In applications with several output voltages, this only works as a short-term protective measure, because the output rectifier, for example, cannot withstand the overload. Extra protection can be provided by monitoring the output voltages for a minimum value, with a delayed switch into standby mode. To deal with overshoots in the intermediate circuit voltage, a switch-off threshold can be set as required (e.g. 5% above the nominal value) using potential divider R11, R12. If this is exceeded than the PFC converter cuts off the power to the intermediate circuit. When transient mains surges occur which charge the smoothing capacitor C3 to 10% above the PFC switch-off threshold, the PWM MOSFEET Q2 is also cut-off to protect the power supply unit. If the mains voltage rises still further, then varistor R30 can limit it. Using these protective devices, the application circuit can withstand transient mains surges of 600V and more. Figure 1: A 150W PC power supply design with power factor correction using TDA 16888 fits inside a typical PC power supply silver box. 5 of 20 AN-TDA16888-0-010323 V1.1 6 of 20 C18 + Q3 L4 D10 R1 = R36 C24 R27 D11 R28 D12...D15 RFI L1 = means two resistors in series R29 90V270V AC Fuse 6 1 4 = + - 3 C7 C13 15 PWM 8 13 C3 14 = C22 R35 10 PWM Q4 11 IC1 R34 R18 R35A C22A C21 R32 Voltage EA R23 C29 R41 D9 D8 C33 R45 D21 D20 D24 SIPMOS 1000V Q2 R17 18 C5 D7 R16 R15 D27 D22 C31 Tr.1 C20 = + - = C6 R14 R40 17 R13 Overvoltage 19 C41 R12 R11 Softstart 7 C14 R9 R10 C4 C3A VBUS = 410V C19 IC5 R22 L3 C15 C36 R21 IC6 C39 C42 R33 IC4 + C38 C17 R39 L3 C34 R47 L3 C35 R46 IC2 C16 IC3 C30 R42 C32 R44 D23 L5 C28 L6 C37 C27 R19 R20 + + IC6 + C38A OFF = STANDBY + + R48 R38 R37 Circuit Diagram of single transistor multioutput forward converter with PFC R24 20 16 OSC D6 D5 R62 D16...D19 R43 Q1 R8 Current EA 5 + R25 C12 2 9 C23 VREF R26 C8 R5 R7 STANDBY EA C9A AUX1 L2 SIPMOS C2 600V R6 Startup UVLO 12 R3 R4B D1...D4 R4A Currentlimitation C10 C11 C11A + = R2 C26 R30 C1 C25 - R36A R31 5V 18A 12V 4A -12V 0,7A -5V/0,3A 5V 0,1A TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz AN-TDA16888-0-010323 V1.1 7 of 20 AN-TDA16888-0-010323 V1.1 0,85 196,0 99,4 4,0 0,59 135,0 98,9 4,5 0,24 51,0 94,0 14,0 4,6 2,5 0,73 196,0 98,9 4,4 0,51 134,0 98,3 5,1 0,21 51,0 90,4 16,0 4,4 2,5 230 230 230 230 230 270 270 270 270 270 380,00 380,00 380,00 380,00 380,00 380,00 380,00 380,00 380,00 380,00 380,00 380,00 380,00 380,00 380,00 380,00 380,00 380,00 380,00 380,00 5,00 5,00 5,00 5,00 0,00 5,00 5,00 5,00 5,00 0,00 5,00 5,00 5,00 5,00 0,00 5,00 5,00 5,00 5,00 0,00 18,10 18,00 5,00 0,00 18,10 18,00 5,00 0,00 18,10 18,00 5,00 0,00 18,10 18,00 5,00 0,00 12,60 13,10 12,20 12,10 0,00 12,60 13,10 12,20 12,10 0,00 12,60 13,10 12,20 12,10 0,00 12,60 13,10 12,20 12,10 0,00 V BUS V out1 I out1 V out2 V DC V DC A V DC 380,00 5,00 18,10 12,60 380,00 5,00 18,00 13,10 380,00 5,00 5,00 12,20 380,00 5,00 0,00 12,10 380,00 0,00 0,00 4,00 1,00 1,00 0,00 4,00 1,00 1,00 0,00 4,00 1,00 1,00 0,00 4,00 1,00 1,00 0,00 I out2 A 4,00 1,00 1,00 0,00 -12,70 -13,40 -12,30 -11,90 0,00 -12,70 -13,40 -12,30 -11,90 0,00 -12,70 -13,40 -12,30 -11,90 0,00 -12,70 -13,40 -12,30 -11,90 0,00 V out3 V DC -12,70 -13,40 -12,30 -11,90 0,00 0,70 0,10 0,10 0,00 0,70 0,10 0,10 0,00 0,70 0,10 0,10 0,00 0,70 0,10 0,10 0,00 I out3 A 0,70 0,10 0,10 0,00 -5,00 -5,00 -5,00 -5,00 0,00 -5,00 -5,00 -5,00 -5,00 0,00 -5,00 -5,00 -5,00 -5,00 0,00 -5,00 -5,00 -5,00 -5,00 0,00 V out4 V DC -5,00 -5,00 -5,00 -5,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,30 0,00 0,00 0,00 I out4 A 0,30 0,00 0,00 0,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 VStby V 5,00 5,00 5,00 5,00 5,00 Test Results of single transistor multioutput forward converter with PFC 1,10 198,0 99,7 3,6 0,76 136,0 99,5 1,5 0,29 51,0 97,0 12,5 4,5 2,6 180 180 180 180 180 THD % 4,6 3,5 2,8 1,70 205,0 99,9 3,4 1,17 140,0 99,9 2,8 0,44 53,0 99,4 6,0 4,7 2,7 PF % 99,8 99,9 99,8 120 120 120 120 120 P in W 220,0 146,0 54,0 4,8 2,7 I in A rms 2,45 1,62 0,60 V in V AC 90 90 90 90 90 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 IStby A 0,10 0,10 0,10 0,10 0,10 150,3 104,9 38,9 0,5 0,5 150,3 104,9 38,9 0,5 0,5 150,3 104,9 38,9 0,5 0,5 151,8 104,9 38,9 0,5 0,5 76,7 78,3 76,3 76,7 77,7 76,3 75,9 77,2 76,3 74,0 75,0 73,5 P out Efficiency W % 151,8 69,0 104,9 71,9 38,9 72,1 0,5 0,5 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz Bill of Materials Component Value IC 1 IC 2 IC 3 IC 4 IC 5 IC 6 * TDA 16888 TL 431 C CNY 17 F-3 CNY 17-3 TLE 4264 G TL 431 C Q1 Q2 Q3 Q4 BUZ 91 (600V/ 0,8 Ω) BUZ 51 (1000V/ 4Ω) BSS 129 (240V/ 20Ω, Depletion) * BC 338 (30V/ 800mA, NPN) D 1...D 4 D5 D6 D7 D 8, D 9 D 10 D 11 D 12...D 15 D 16...D 19 D 20, D 21 D 22 D 23, D 24 D 27 L1 L2 Order-Nr. Manufacturer Q67000-A9284 Infineon TI Infineon Infineon Infineon TI Q62703-N50 Q62703-N88 Q67006-A-9139 GR B250 C5000/3300 STTA506D (600V; 5A; 20ns) MUR 160 (600V; 1A; 75ns) BYT 11-1000 (1000V; 1A; 100ns) MBR 2535 CTL (Schottky 35V; 2x 12,5A) 1N4148 BZX 83 C13 UF 4003 (100V; 1A; 50ns) UF 4003 (100V; 1A; 50ns) BYV 32-100 (100V; 2x 10A; 25ns) BYT 11-1000 (1000V; 1A; 100ns) MUR 120 (200V; 1A; 50ns) BYT 11-1000 (1000V; 1A; 100ns) 2x 6,8mH/ 2A 1mH E36/11; N27; GAP 2mm 100turns, 0,6mm ∅ AUX 1: 8turns 0,33mm ∅ AUX 2: 5turns 0,33mm ∅ Q67078-S1342-A2 Q67078-S1344-A2 Q67000-S116 Q62702-C314 Infineon Infineon Infineon Infineon ST Motorola ST Motorola B82724-J2202-N1 B66389-G1000-X127 GI GI Eupec, Philips ST Motorola ST EPCOS EPCOS B66389-G1000-X127 EPCOS B66317-G1000-X127 EPCOS L5 L6 Fuse (W3) E36/11, N27, GAP 2mm W3: 9turns 2x 2x0,9mm ∅ W1: 21turns 0,7mm ∅ W2: 21turns 0,3mm ∅ 500µH EF25, N27, GAP 2mm 90turns, 0,45mm ∅ 1µH 9turns 2mm ∅ airchoke 1µH 10turns 1,2mm ∅ airchoke 2,5A MT Component Value Order-Nr. Manufacturer T1 E36/11, N27, without GAP Primary: 68 turns 0,40mm ∅ Demagn.: 68 turns 0,22mm ∅ Sec.1: 3 turns 4x 0,8mm ∅ Sec.2: 7 turns 2x 0,8mm ∅ Sec.3: 7 turns 0,4mm ∅ B66389-G-X127 EPCOS L3 L4 8µH 8 of 20 AN-TDA16888-0-010323 V1.1 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz Component Value Order-Nr. Manufacturer C1 C2 C3 C 3A C4 C5 C6 C7 C8 C9 C 9A C 10 C 11 C 11A C 11B C 12 C 13 C 14 C 15 C 16 C 17 C 18 C 19 C 20 C 21 C 22 C 22A C 23 C 24 C 25, C 26 C 25, C 26 C 27 C 28 C 29 C 30 C 31 C 32 C 33 0,33µF 275V AC, X2 not assembled 150µF/ 450V Elko 0,15µF/ 630V MKP 10nF/ 1000V MKP 47nF/63V MKT 100nF/63V MKT 1nF/63V MKT 10nF/63V MKT not assembled 6,8nF/63V MKT 10pF/100V CG 0,47µF/63V MKT 100µF/25V Elko 47nF/50V X7R 0,15µF/63V MKT 100pF/50V CG 100nF/63V MKT 2200µF/10V Elko 68nF/63V MKT 2,2nF/63V MKT 100µF/63V Elko 470µF/35V Elko 100µF/25V Elko 220pF/50V CG 4,7nF/63V MKT 10nF MKT not assembled 0,33µF 275V AC, X2 3,3nF 250V AC, Y2, lead spacing 15mm 3,3nF 250V AC, Y2, lead spacing 10mm 4,7nF/63V MKT 2200µF/10V Elko 1nF/63V MKT 1nF/63V MKT 1nF/630V Position R 40 2,2nF/63V MKT 2,2nF/63V MKT B81133-D1334-M EPCOS B43501-J5157-M B32652-A6154-K B32652-A103-K B32529-C473-K B32529-C104-K B32529-C102-K B32529-C103-K EPCOS EPCOS EPCOS EPCOS EPCOS EPCOS EPCOS B32529-C682-K B37979-G1100-J51 B32529-C474-K B41283-C5107-T90 B37981-F5473-K51 B32529-C154-K B37979-G5101-J51 B32529-C104-K B41822-A3228-M B32529-C683-K B32529-C222-K B41822-A8107-M B41822-A7477-M B41822-A1107-M B37979-G5221-J51 B32529-C472-K B32529-C103-K EPCOS EPCOS EPCOS EPCOS EPCOS EPCOS EPCOS EPCOS EPCOS EPCOS EPCOS EPCOS EPCOS EPCOS EPCOS EPCOS EPCOS B81133-D1334-M B81121-C-B142 B81122-C1332-M B32529-C472-K B41822-A3228-M B32529-C102-K B32529-C102-K EPCOS EPCOS EPCOS EPCOS EPCOS EPCOS EPCOS B32529-C222-K B32529-C222-K EPCOS EPCOS B41822-A4108-M B41822-A4108-M B41822-A4477-M B81123-C1332-M B37979-G5221-J51 EPCOS EPCOS EPCOS EPCOS EPCOS * * * * * * * * * * * * * * * * * C 34 C 35 C 36 C 37 C 38 C 39 C 41 C 40 C 42 C insert wire bridge insert wire bridge 1000µF/16V 1000µF/16V 470µF/16V 3,3nF 250V AC, Y1 * 220pF/50V CG not assembled insert wire bridge 1,5nF/630V assembled between Heatsink of Q2 and BUS Voltage * = located on control board 9 of 20 AN-TDA16888-0-010323 V1.1 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz Component Value R1 * 3825K 2x 1,91M metal R2 220K R 2A 220K R3 * 22K R 4A * 390K metal R 4B * 390K metal R5 * 2,2K R6 0,22 1 + 2x 0,56 parallel R7 * 2,2K R8 * 7,5K R9 3,3 R 10 18K R 11 * 51K metal R 12 * 3825K 2x 1,91M metal R 13 * 3825K 2x 1,91M metal R 14 * 51K metal R 15 0,50 2x 1 parallel R 16 * 390K R 17 18K R 18 3,3 R 19 5,1K metal R 20 5,1K metal R 21 10K R 22 680 R 23 * 33K R 24 * 51 K metal R 25 * 10K R 26 * 68K R 27 * 51K metal R 28 4,7K R 29 1 R 30 SIOV-S14K250G5 R 31 insert wire bridge R 32 * 1,1K R 33 470 R 34 * 56K R 35 * 1,1K R 35A * 680 R 36A 56 4W R 37 3,9K metal R 38 5,1K metal R 39 1K1 R 40 220K 2W R 41 33 R 42 33 R 43 not assembled R 43 A 330K 2W between VBUS and VCC R 44 56 R 45 56 R 46 470 R 47 100 R 48 470 R 49 not assembled • = located on control board Order-Nr. Manufacturer Q69x4603 EPCOS Warning: Heatsink of D5 is connected to 380V BUS Voltage ! 10 of 20 AN-TDA16888-0-010323 V1.1 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz Printed Circuit Board of control circuit 马8mm 8 I~-; 己一巳 5 .. r- ø /向 E P F" C CS GN 口 s P F" C CL GND VCC PIIH OUT P F" C OUT GND PIIH CS SYNC SS/ST 自 NDßY/O l< PIIH IN/Ol< V RE:F" DC ßUS VS 自 UX VS T 118M咽T ~a:Jqla:J 1 Board 忏 8 Name: ' 55mm x 66mm CB工 PCB1t 11 of 20 AN-TDA16888-0-010323 V1.1 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz zom=o 〉 ωDm 〉口∞伺OHZHBEgum-mO 宅星 ZEEZ-EEm 主 Printed Circuit Board of power circuit 』 EE曲皿 N ll EE-叫 -J 12 of 20 AN-TDA16888-0-010323 V1.1 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz Single ended feed forward Transformer 150W / 100kHz; Output voltage: 5V/18A; 12V/4A; -12V/1A Core E36/18/11; N27; without gap; ALMIN = 2330nH; coil former vertical 34 turns 0,22 mm Ø 34 turns 0,40 mm Ø MAG Pin 5 Pin 1 PRIM Pin 7 Pin 2 Pin 13 Pin 16 Pin 14 7 turns 0,4mm Ø SEC 7 turns 2 x 0,8mm Ø SEC 3 turns 4 x 0,8mm Ø SEC Pin 15 Pin 9+10 Pin 11+12 34 turns 0,40 mm Ø PRIM 34 turns 0,22 mm Ø MAG Pin 2 Pin 5 Pin 1 Pin 4 center means one layer Makrofol Primary winding 68 turns 0,40 mm ∅ transformer wire Demagnetization 68 turns 0,22 mm ∅ transformer wire Secondary winding1 3 turns 4 x 0,8 mm ∅ transformer wire Secondary winding2 7 turns 2 x 0,8 mm ∅ transformer wire 7 turns 0,4 mm ∅ transformer wire Secondary winding3 Top 5 11, 12 4 1 2 2 M A G P RI 1 5 M A G P RI 7 S E C S E C S E C 15 16 13 14 9, 10 13 of 20 Pin 1 • Pin 2 • • Pin 4 • Pin 5 • • Pin 7 • Pin 8 • • • • • • • • • Pin 16 Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Pin 9 AN-TDA16888-0-010323 V1.1 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz Smoothing Choke of single ended forward converter Core E36/18/11; N27; total gap = 2mm; AL = 100nH; coil former horizontal; L = 8µH; @5V output Pin 6 21 turns 0,3mm Ø w3 Pin 13 Pin 7 21 turns 0,7mm Ø w2 Pin 10 Pin 3 9 turns 2x 0,95mm Ø w1 Pin 14 Pin 2 9 turns 2x 0,95mm Ø w1 Pin 15 center Winding 1: 9 turns 2 x 2 x 0,95 mm ∅ transformer wire Winding 2: 21 turns 0,7 mm ∅ transformer wire 0,3 mm ∅ transformer wire Winding 2: 21 turns Top Pin Pin Pin Pin Pin Pin Pin Pin 8• 7• 6• 5• 4• 3• 2• 1• • Pin 9 • Pin 10 • Pin 11 • Pin 12 • Pin 13 • Pin 14 • Pin 15 • Pin 16 14 of 20 AN-TDA16888-0-010323 V1.1 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz Boost converter choke for PFC Core E36/18/11; N27; total gap = 2mm; AL = 100 nH; L = 1 mH; IPEAK = 3,5 A; coil former vertical Pin 11 W1: 25 turns 30x 0,1 mm Ø Pin 14 Pin 1 Pin 2 Pin 7 Pin 5 Pin 14 W1: 25 turns 30x 0,1 mm Ø W3: 5 turns 0,30 mm Ø W2: 8 turns 0,30 mm Ø W1: 25 turns 30x 0,1 mm Ø Pin 13 W1: 25 turns 30x 0,1 mm Ø center 1 layer W1 : 100 turns 30 x 0,1stranded wire w/ silk W2 : 8 turns 0,30 transformer wire W3 : 5 turns 0,30 transformer wire 15 of 20 Top Pin 1 • Pin 2 • • Pin 4 • Pin 5 • • Pin 7 • Pin 8 • • • • • • • • • Pin 16 Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Pin 9 AN-TDA16888-0-010323 V1.1 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz RFI Choke L= 470µH, IPEAK= 3,5A Core E 25/13/7 (EF25), N27, total gap= 2mm, AL=54 nH, coil former vertical 22,5 turns 0,55 mm Ø 22 turns 0,55 mm Ø 22 turns 0,55 mm Ø 22 turns 0,55 mm Ø Pin 4 Pin 9 means one layer of Makrofol 88,5 turns transformer wire 0,55 mm Ø Top Pin 1 • • • • Pin 5 • • Pin 10 • • • • Pin 6 16 of 20 AN-TDA16888-0-010323 V1.1 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz 17 of 20 AN-TDA16888-0-010323 V1.1 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz References: [1] nnn Revision History Application Note AN-TDA16888-0-010323 Actual Release: V1.1 Date:2001-03-23 Previous Release: V0.1 Page of actual Release Page of prev. Release Subjects changed since last release 18 of 20 AN-TDA16888-0-010323 V1.1 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see the address list on the last page or our webpage at http://www.infineon.com CoolMOS and CoolSET are trademarks of Infineon Technologies AG. Edition 2000-03--03 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2000. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 19 of 20 AN-TDA16888-0-010323 V1.1 TDA 16888: Multioutput Single Transistor Forward Converter 150W / 100kHz Infineon Technologies AG sales offices worldwide – partly represented by Siemens AG A F J RC Siemens AG Österreich Erdberger Lände 26 A-1031 Wien T (+43)1-17 07-3 56 11 Fax (+43)1-17 07-5 59 73 Infineon Technologies France, 39/47,Bd.Ornano F-93527 Saint-Denis CEDEX2 T (+33)1-49 22 31 00 Fax (+33)1-49 22 28 01 AUS FIN Siemens Ltd. 885 Mountain Highway Bayswater,Victoria 3153 T (+61)3-97 21 21 11 Fax (+61)3-97 21 72 75 Siemens Components Scandinavia P.O .Bo x 6 0 FIN-02601 Espoo (Helsinki) T (+3 58)10-5 11 51 51 Fax (+3 58)10-5 11 24 95 Email: [email protected] Siemens Components K.K. Talanawa Park Tower 12F &17F 3-20-14,Higashi-Gotanda, Shinagawa-ku Tokyo T (+81)3-54 49 64 11 Fax (+81)3 -54 49 64 01 Infineon Technologies Asia Pacific Pte.Ltd. Taiwan Branch 10F,No.136 Nan King East Road Section 23,Taipei T (+8 86)2-27 73 66 06 Fax (+8 86)2-27 71 20 76 MAL SGP Infineon Technologies AG Sdn Bhd Bayan Lepas Free Industrial Zone1 11900 Penang T (+60)4 -6 44 99 75 Fax (+60)4 -6 41 48 72 Infineon Technologies Asia Pacific,Pte.Ltd. 168 Kallang Way Singapore 349 253 T (+65)8 40 06 10 Fax (+65)7 42 62 39 GB N USA Infineon Technologies Siemens House Oldbury GB-Bracknell,Berkshire RG12 8FZ T (+44)13 44-39 66 18 Fax (+44)13 44-39 66 32 Siemens Components Scandinavia Østre Aker vei 24 Postboks 10,Veitvet N-0518 Oslo T (+47)22-63 30 00 Fax (+47)22-68 49 13 Email: [email protected] Infineon Technologies Corporation 1730 North First Street San Jose,CA 95112 T (+1)4 08-5 01 60 00 Fax (+1)4 08-5 01 24 24 Siemens Components,Inc. Optoelectronics Division 19000 Homestead Road Cupertino,CA 95014 T (+1)4 08-2 57 79 10 Fax (+1)4 08-7 25 34 39 Siemens Components,Inc. Special Products Division 186 Wood Avenue South Iselin,NJ 08830-2770 T (+1)7 32-9 06 43 00 Fax (+1)7 32-6 32 28 30 B Siemens Electronic Components Benelux Charleroisesteenweg 116/ Chaussée de Charleroi 116 B-1060 Brussel/Bruxelles T (+32)2-5 36 69 05 Fax (+32)2-5 36 28 57 Email:[email protected] BR Siemens Ltda. Semiconductores Avenida Mutinga,3800-Pirituba 05110-901 São Paulo-SP T (+55)11-39 08 25 64 Fax (+55)11-39 08 27 28 CDN Infineon Technologies Corporation 320 March Road,Suite 604 Canada,Ontario K2K 2E2 T (+1)6 13-5 91 63 86 Fax (+1)6 13-5 91 63 89 CH Siemens Schweiz AG Bauelemente Freilagerstrasse 40 CH-8047 Zürich T (+41)1-4 953065 Fax (+41)1-4 955050 D Infineon Technologies AG Völklinger Str.2 D-40219 Düsseldorf T (+49)2 11-3 99 29 30 Fax (+49)2 11-3 99 14 81 Infineon Technologies AG Werner-von-Siemens-Platz 1 D-30880 Laatzen (Hannover) T (+49)5 11-8 77 22 22 Fax (+49)5 11-8 77 15 20 Infineon Technologies AG Von-der-Tann-Straße 30 D-90439 Nürnberg T (+49)9 11-6 54 76 99 Fax (+49)9 11-6 54 76 24 Infineon Technologies AG Weissacher Straße 11 D-70499 Stuttgart T (+49)7 11-1 37 33 14 Fax (+49)7 11-1 37 24 48 D Infineon Technologies AG Halbleiter Distribution Richard-Strauss-Straße 76 D-81679 München T (+49)89-92 21 40 86 Fax (+49)89-92 21 20 71 DK Siemens A/S Borupvang 3 DK-2750 Ballerup T (+45)44 77-44 77 Fax (+45)44 77-40 17 E Siemens S.A. Dpto.Componentes Ronda de Europa,5 E-28760 Tres Cantos-Madrid T (+34)91-5 14 71 51 Fax (+34)91-5 14 70 13 H Simacomp Kft. Lajos u.103 H-1036 Budapest T (+36)1-4 57 16 90 Fax (+36)1-4 57 16 92 HK Infineon Technologies Hong Kong Ltd. Suite 302,Level 3, Festival Walk, 80 Tat Chee Avenue, Yam Yat Tsuen, Kowloon Tong Hong Kong T (+8 52)28 32 05 00 Fax (+8 52)28 27 97 62 NL Siemens Electronic Components Benelux Postbus 16068 NL-2500 BB Den Haag T (+31)70-3 33 20 65 Fax (+31)70-3 33 28 15 Email:[email protected] NZ Siemens Auckland 300 Great South Road Greenland Auckland T (+64)9-5 20 30 33 Fax (+64)9-5 20 15 56 I P Siemens S..A. Semiconductor Sales Via Piero e Alberto Pirelli,10 I-20126 Milano T (+39)02-66 76 -1 Fax (+39)02-66 76 43 95 Siemens S.A. an Componentes Electronicos R.Irmaos Siemens,1 Alfragide P-2720-093 Amadora T (+351)1-4 17 85 90 Fax (+351)1-4 17 80 83 IND Siemens Ltd. Components Division No.84 Keonics Electronic City Hosur Road Bangalore 561 229 T (+91)80-8 52 11 22 Fax (+91)80-8 52 11 80 Siemens Ltd. CMP Div,5th Floor 4A Ring Road,IP Estate New Delhi 110 002 T (+91)11-3 31 99 12 Fax (+91)11-3 31 96 04 Siemens Ltd. CMP Div,4th Floor 130,Pandurang Budhkar Marg, Worli Mumbai 400 018 T (+91)22-4 96 21 99 Fax (+91)22-4 96 22 01 IRL Siemens Ltd. Electronic Components Division 8,Raglan Road IRL-Dublin 4 T (+3 53)1-2 16 23 42 Fax (+3 53)1-2 16 23 49 IL Nisko Ltd. 2A,Habarzel St. P.O.Box 58151 61580 Tel Aviv –Isreal T (+9 72)3 -7 65 73 00 Fax (+9 72)3 -7 65 73 33 PK Siemens Pakistan Engineering Co.Ltd. PO Box 1129,Islamabad 44000 23 West Jinnah Ave Islamabad T (+92)51-21 22 00 Fax (+92)51-21 16 10 PL Siemens SP.z.o.o. ul.Zupnicza 11 PL-03-821 Warszawa T (+48)22-8 70 91 50 Fax (+48)22-8 70 91 59 ROK Siemens Ltd. Asia Tower,10th Floor 726 Yeoksam-dong,Kang-nam Ku CPO Box 3001 Seoul 135-080 T (+82)2-5 27 77 00 Fax (+82)2-5 27 77 79 RUS INTECH electronics ul.Smolnaya,24/1203 RUS-125 445 Moskva T (+7)0 95 -4 51 97 37 Fax (+7)0 95 -4 51 86 08 S Siemens Components Scandinavia Österögatan 1,Box 46 S-164 93 Kista T (+46)8-7 03 35 00 Fax (+46)8-7 03 35 01 Email: [email protected] 20 of 20 VRC Infineon Technologies Hong Kong Ltd. Beijing Office Room 2106,Building A Vantone New World Plaza No.2 Fu Cheng Men Wai Da Jie Jie 100037 Beijing T (+86)10 -68 57 90 -06,-07 Fax (+86)10 -68 57 90 08 Infineon Technologies Hong Kong Ltd. Chengdu Office Room14J1,Jinyang Mansion 58 Tidu Street Chengdu, Sichuan Province 610 016 T (+86)28-6 61 54 46 /79 51 Fax (+86)28 -6 61 01 59 Infineon Technologies Hong Kong Ltd. Shanghai Office Room1101,Lucky Target Square No.500 Chengdu Road North Shanghai 200003 T (+86)21-63 6126 18 /19 Fax (+86)21-63 61 11 67 Infineon Technologies Hong Kong Ltd. Shenzhen Office Room 1502,Block A Tian An International Building Renim South Road Shenzhen 518 005 T (+86)7 55 -2 28 91 04 Fax (+86)7 55-2 28 02 17 ZA Siemens Ltd. Components Division P.O.B.3438 Halfway House 1685 T (+27)11-6 52 -27 02 Fax (+27)11-6 52 20 42 AN-TDA16888-0-010323 V1.1 Power Semiconductors ht Product Information 01.98 tp :/ Se /ww m w ic .s on ie du me ct ns or .d / e/ TDA 16888 High Performance Power Combi Controller Edition 01.98 Published by Siemens AG, Bereich Halbleiter, MarketingKommunikation, Balanstraße 73, 81541 München. © Siemens AG 1997. All Rights Reserved. Attention please! As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list). Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group. Siemens AG is an approved CECC manufacturer. Packing Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems2 with the express written approval of the Semiconductor Group of Siemens AG. 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. 2 Life-support devices or systems are intended (a) to be implanted in the human body, or (b) support and/or maintain and sustain human life. If they fail, it is reasonably to assume that the health of the user may be endangered. TDA 16888 – High Performance Power Combi Controller Introduction Functionality and Benefits PFC Preconverter PWM Converter PFC and PWM Gate Drive Oscillator and Synchronisation 3 Siemens Aktiengesellschaft Introduction TDA 16888 is designed for new generations of off-line Switched Mode Power Supplies (SMPS) with optional universal input and Power Factor Correction (PFC) e.g. for PCs, Monitors, CTVs and industrial applications. AUX/ Standby 380 V DC AC/DC Input 90 V - 270V Output 1 TDA 16888 Output N Figure 1 Basic Application Circuitry Functionality and Benefits This high performance SMPS Power Combi Controller is optimized to reduce system costs, supports solutions for global requirements, generates less EMI and is designed by FMEA rules. The TDA 16888 allows load variations down to zero watts and controls low power standby operation by switching off its Pulse Width Modulation (PWM) stage. Siemens Aktiengesellschaft 4 TDA 16888 – High Performance Power Combi Controller The Power Combi Control-lC TDA 16888 includes the PWM control for an SMPS and the control for the preconverter to improve the power factor and to reduce the harmonics of the AC input current. Both sections are internally synchronized on the same operating frequency. 2 ms 100% Rectified AC Input Voltage (100 V/Div) 90% 10% 0% AC Input Current (0.5 A/Div) 10 mV 100 V Figure 2 Input Signals The preferred topology of the PFC preconverter is boost, but flyback is possible, too. The PWM section can be designed as a forward or as a flyback converter. Maximum duty cycle of the PFC is about 94%, in order to achieve minimal line current gaps. Maximum duty cycle of the PWM is limited to 50% to prevent transformer saturation. There are monitoring and protection functions such as broken wire detection, undervoltage and dual step overvoltage monitoring of the bus voltage, peak current limitation for PFC and PWM section and undervoltage lockout of the IC supply voltage. The Combi-lC TDA 16888 is designed with respect to a Failure Mode Effect Analysis (FMEA). 5 The limitation of the PWM duty cycle, i.e. the leading edge PFCand the trailing edge PWM operation, are done in a digital way by flip-flops. Handling the signals this way meets the requirements for an external synchronisation. On the other hand an oscillator is necessary that operates at twice of the operating frequency. For a lower current consumption and higher EMI resistance the capacitor of the oscillator is integrated. The operating frequency is set by only one resistor. The operating frequency can be increased by a sink current in parallel to this resistor. There is an additional synchronisation input that can be used for frequency adjustment or in connection with a phase locked operation. Siemens Aktiengesellschaft TDA 16888 – High Performance Power Combi Controller PFC Preconverter In normal operation the PFC section of TDA 16888 operates with dual loop control. A first control loop controls the shape of the line current by average current control enabling either continuous or discontinuous operation mode. The second loop controls the DC bus voltage. There is a third control loop available that enables the PFC section as an auxiliary power supply even when the PWM section is disabled. During standby operation mode (disabled PWM) the PFC section is operating with half of its nominal operating frequency in order to save operating power. Rectification of an AC voltage and smoothing with an electrolytic capacitor effects a peak current during the peak input voltage and a break in current flow during the rest of the half period of the line frequency. The RMS value of such a pulsed input current is about twice of a sinusoidal current and the harmonics of that pulsed current effect EMI to other devices. The power factor is the relation between real input power to apparent input power. With a typical main voltage rectification in electronic devices the power factor is about 0.5. Standards to improve the power factor will become effective in the near future. But system cost must not increase by introduction of power factor correction. It depends on the output power and features like the option to supply a device from different line voltages. R 36A L1 Fuse IIN 90 V – V 270 V AC IN C25 L4 C1 C24 RFI R 30 C26 2 µs 100 V 100% 90% 10% PWM Drain-Source Voltage (100 V/Div; On-Time 3.5 µs,L) PFC Drain-Source Voltage (100 V/Div; On-Time 7.5 µs,L) 0% PIN1 PIN2 PIN3 PIN4 PIN5 PIN6 PIN7 PIN8 PIN9 PIN10 PIN11 PIN12 PIN13 PIN14 PIN15 PIN16 PIN17 PIN18 PIN19 PIN20 PFC IAC VREF PFC CC PFC CS GND S PFC CL GND PFC OUT VCC PWM OUT PWM CS SYNC PWM SS PWM IN PWM RMP ROSC PFC FB PFC VC PFC VS AUX VS Input AC Reference Voltage Current Compensation Current Sense Ground Sense Current Limitation Ground Driver Output Supply Voltage Driver Output Current Sense Synchronisation Softstart Input RAMP Voltage Oscillator Feedback Voltage Compensation Voltage Sense Auxiliary Voltage Sense D10 100 V R 29 Q3 + Figure 3 Output Signals AUX1 R 28 C18 D11 D12...D15 Means two resistors in series R 27 150 W Feed-Forward Multioutput SMPS for PC Figure 4 Application Circuitry Siemens Aktiengesellschaft 6 The most efficient way to correct the power factor with an active circuitry is to use a boost converter. Most of the energy flowing from the input via rectifiers to the bus capacitor bypasses the switching transistor of the boost converter. Connecting the boost preconverter to the line, an inrush current occurs due to charging the bus capacitor. As the capacitance of the bus capacitor is between There is a peak current limitation (Pin 6) to prevent an overload of the boost transistor during inrush currents and during maximum load, which occurs for example after turn on to charge the bus capacitor. The turn off threshold D16...D19 IC5 + C19 -12 V 1A + C20 D24 D1...D4 D5 L2 V BUS = 380 V DC AUX1 + L3 D21 + R 46 R 44 C33 R 45 R 40 D6 D23 C38 R 48 D20 Tr.1 C31 6 is designed at +1 V to meet FMEA requirements. A broken wire to Pin 6 activates the current limitation. Another comparator (C2) at Pin 19 is detecting a broken wire to the bus voltage sense. At least 20% of nominal bus voltage is necessary to make the Combi-lC active. This feature has to be taken into account when testing the IC at low input voltages. 5V 100 mA R 31 5 three to ten times lower than with conventional rectification, the inrush current is much smaller even without additional measures like NTCs. C35 L3 C32 C36 L6 + 12 V 4.2 A C37 D8 C3A C4 D7 Q1 R 10 SIPMOS 600 V + C3 C2 R 4A C29 R 41 Q2 R 12 R3 R 4B R5 R7 C10 SIPMOS 1000 V IC3 R 39 R 13 R 11 R9 R8 C8 1 C28 L5 R 14 R 32 C5 C21 C6 C41 C7 R 16 R 22 R 20 C16 4 5 3 + Current limitation 8 7 PFC Current EA 17 19 Overvoltage Off= Standby C17 IC1 6 5V 20 A R 15 C9 R2 C15 C34 L3 C30 + R 43 R6 R1 D9 + R 47 R 42 R 21 18 5V IC2 R 19 R 17 Voltage EA STANDBY EA Startup UVLO 9 12 R 26 + VREF R18 PWM IC4 R 33 5 V 20 2 Soft Start OSC 16 15 13 14 10 C11A C11 R 37 R 25 R 35 + C27 11 C23 C39 C42 IC6 C12 R 24 C13 C14 C22 R 23 Q4 R 38 R 34 7 Siemens Aktiengesellschaft The power supply of the Combi-lC can be realized by a separate winding on the boost converter choke. Our proposal is to use a bridge rectifier on the auxiliary winding AUX 1. In this way a current can flow at low input voltages in flyback mode and at high input voltages in forward mode. The minimum supply voltage at capacitor C18 will occur at an input voltage level half of the bus voltage. There is another operating condition when the supply voltage at C18 becomes low, i.e. at disabled PWM section and high input voltages. This condition may be the worst for the auxiliary power supply. In this application we got the power to supply the Combi-lC during all operating conditions and in addition the circuit offers an isolated auxiliary voltage of 5 V / 100 mA. An increase of output power of the auxiliary power supply will be an option of future applications. In order to continue the description of the auxiliary power supply there is a separate control loop and a separate output of the boost converter via diode D6. This additional circuitry is necessary to get a fast response at load changes. There are operating conditions resulting in an overshoot at the bus voltage that would stop the boost transistor for more than 100 ms. With the second output of the boost converter via D6 a not working transistor can be detected within 100 µs and the transistor can be turned on in a way, that the auxiliary output gets power but not the main output to the bus capacitor. During the standby operation the bus voltage remains at nominal level. The separate control loop can be activated by itself, when the second output of the boost converter via D6 is designed for an output voltage slightly below the nominal bus voltage (e.g. 5%). The load (R2) which is necessary at the second output can be used for the startup of the Combi-lC. The PFC section is working initially at half of the nominal operating frequency until a level of 20% below the nominal bus voltage is reached. Then the PWM section is able to run with a soft start (Pin 13) with nominal operating frequency on both sections or if it is disabled by transistor Q4, then the system is running in the standby mode with half of its nominal operating frequency. Usually there is an overshoot during the charging of the bus capacitor. The reason is the long response time of the bus voltage control loop. There is a first overvoltage threshold at 10% above nominal bus voltage. The operation of the boost transistor is turned down via OTA2 and the Multiplier to avoid increasing bus voltage. A second threshold at 20% above nominal bus voltage will stop PFC and PWM section immediately until the bus voltage reaches a level of 10% above nominal bus voltage. This feature protects the power supply during hazardous mains overvoltages in combination with varistor R30. 500 Input Current (Pin 1) 800 µ A 400 µ A 200 µ A 100 µ A 50 µ A 25 µ A µA 400 Output Current (Pin 4) The typical startup of the Combi-lC is supported by the undervoltage lockout (UVLO) feature of the IC. Via a highly resistive resistor (R2) a capacitor (C11) is charged up to a threshold of 14 V at Pin 9. During this operation the current consumption of the IC is less than 100 µA. Reaching this threshold the IC becomes active sending drive pulses to the boost transistor Q1. During this operation the PWM section is not active yet in order to save supply current. The same reason is for driving the boost transistor with only half of the nominal operating frequency. Capacitor C11 has to be designed large enough that the circuitry is able to supply the IC before the voltage at Pin 9 reaches the turn off threshold of 11 V. 300 90 V AC 180 V AC 270 V AC for Nominal Output Power 200 90 V AC 180 V AC 270 V AC for 10% Nominal Output Power 100 0 0 1 2 Figure 5 Dynamic Characteristics of the Multiplier Siemens Aktiengesellschaft 8 3 4 5 Input Voltage (Pin 18) 6 V 7 TDA 16888 – High Performance Power Combi Controller PFC FB 17 OP1 PFC VC 18 PFC CS 4 AUX VS 20 OTA3 1.2 V – + 5V GND S 5 D1 + – D3 OP2 5V D2 RQ SQ Z1 C2 5.5 V + – 1V C4 C6 – + Z3 17.5 V – + 6V 5.5 V 4V VCC OSC 7.4 V Power Management 6V SQ RQ – + 0.45 V 0.4 V T1 R2 10 kΩ FF2 C7 I1=30 µA Z2 C8 – + – + V1=1.5 V R1 C5 10 kΩ PWM Bias Control 2 VREF D4 FF1 OTA2 Undervoltage Lockout 11 V - 14 V VCC 1V – + VCC Voltage Reference 7.5 V (output disable) PFC OUT 8 VCC 9 C1 + – – + 1 PFC IAC PFC CL 6 C3 – + M2 QM M3 PFC VS 19 + – OTA1 M1 PFC CC 3 12 16 SYNC ROSC 13 PWM SS 14 PWM IN C10 R3 100 kΩ 0.4 V OP3 C9 1V + – x5 + – 15 PWM RMP 11 PWM CS 7 GND 10 PWM OUT Figure 6 Block Diagram of TDA 16888 At typical operating mode of the PFC section a DC output signal with a small superimposed AC ripple can be found at the output of the voltage error amplifier OP1 at Pin 18. This signal is multiplied by the current at Pin 1, derived from the rectified AC input voltage. Consequently a multiplier output current shaped like the input voltage is achived, that can be varied in amplitude by the voltage error amplifier OP1. A second error amplifier OP2 controls the input current like the set value of the multiplier output. In order to enlarge the effect of the voltage error amplifier OP1 there is an exponential function at the voltage input (Pin 18) of the multiplier included (cf. Figure 5). 9 Furthermore there is an OTA3 that cares for the stability of the bus voltage during light load and no load conditions.This is achieved by compensating the multiplier output current as long as the output voltage of OP1 is well below 1.2 V. The ramp voltage of the PFC pulse width modulation starts from a higher voltage level of 6 V decreasing to the minimum of 1 V. The reason for this shape which is invers to commonly used ramp voltages is that the feedback of OP2 can be connected to the current sense input (Pin 4). In this way the sensed signal is smoothed and the levels at Pin 4 can be kept well above 0 V. Siemens Aktiengesellschaft PWM Converter The PWM section operates with improved current mode control, with effective slope compensation, spike suppression and especially with amplified signal levels at the pulse width comparator. The PWM section can be disabled by a short (controlled by transistor Q4) across the soft start capacitor. VREF = 7.5 V 2 Simplified Equivalent Circuit of the Oscillator Frequency Setting Circuitry ROSC 16 R OSC GND COSC 7 V COSC 5V 1V t 0 Internal Clock H t L MAX Duty Cycle PWM H t L MAX Duty Cycle PFC H t L Internal PFC RAMP Voltage 6V Output Current EA 1V t 0 PFC OUT H L t PWM RAMP Voltage (Pin 15) 6.5 V max V PIN 14 0.4 V t 0 PWM Current Sense Voltage (Pin 11) 1.0 V t 0 Figure 7 Typical Shape of Signals Siemens Aktiengesellschaft 10 TDA 16888 – High Performance Power Combi Controller The PWM converter starts with a soft start at a bus voltage higher than 80% of its nominal value. Operating frequency is the nominal and the same like that of the PFC preconverter. The transistor of the boost converter turns on with leading edge and that of the PWM turns on with trailing edge, delayed in minimum 50% of the operation period. The way of control is an improved current mode. There is a capacitor at Pin 15, by means of which a basic ramp voltage is generated for slope compensation. This voltage is superimposed by the times 5 amplified voltage drop across the shunt resistor (R15) fed over an internal 10 kΩ resistor in order to suppress spikes. The result is a ramp voltage with a maximum level up to 6.5 V. Correspondingly the active input range of the PWM input (Pin 14) is from 0.4 V to 7 V. The higher level on the PWM comparator cares for better resistance against EMI and better stability of operation (cf. Figure 3). In addition the current sense input (Pin 11) feeds a fast comparator (threshold = 1 V) for current limitation. PFC and PWM Gate Drive Oscillator and Synchronisation There is a new design for the gate drive of both sections. The employed totem pole configuration avoids cross conduction currents and has a voltage modulated turn on slope. The turn on slope increases moderately between 0 V and 3 V, increases slowly between 3 V and 5 V and increases moderately above 5 V up to the maximum of 12 V. The reason for this improved rising edge is a possible fast turn off as soon as the current limitation is activated, a continuously reduciable duty cycle down to zero and a soft current commutation from the boost or output diode to the transistor. The voltage modulation meets these demands independent of the load capacitance. The turn off is fast with a current capability of about 1.5 A peak. The oscillator operates with an integrated low tolerance capacitor and a special voltage and temperature compensated current mirror set by only one external resistor at Pin 16. The integration of this capacitor operating with a ramp voltage of 5 V increases the resistance against EMI and saves supply current due to its small value. The internal oscillator operates with twice of the external operating frequency for exact limitation of the PWM duty cycle below 50% by flip-flops. In the same way the leading edge turn on of the PFC and the trailing edge turn on of the PWM is generated. Therefore the operating frequency can be changed during operation only by bypassing a current to the set resistor R24. When operating the Combi-lC below the undervoltage threshold, the drive outputs are active low. 5V Changing the frequency by the set current at Pin 16 does not influence the amplitude of the internal ramp voltage of the PFC pulse width modulation but will influence the external ramp voltage of the PWM at the external capacitor C13. 200 ms Gate Drive Voltage (5 V/Div) 100% 90% Drive Current to BUZ 91 (0.5 A/Div) 10% 0% 10 mV Figure 8 Gate Drive Signals 11 Siemens Aktiengesellschaft TDA 16888 – High Performance Power Combi Controller D75 R 31 D16...D19 R 36A Fuse IIN 90 V – 270 V AC V IN L1 IC5 + L4 C25 + C19 D5 L2 C82 V BUS = 380 V DC Tr.1 C79 C3A D6 R 49 R 4A C2 C76 C4 R 10 + R 43 C3 R6 C9 R 29 R1 = = R2 R3 R 4B R5 R7 C8 C10 R8 R 12 R 11 R9 C7 = = + R 76 R 13 R 14 SIPMOS 1000 V R 16 C41 C6 C77 + R 74 C74 L D71 R 15 C73 AUX1 C80 D72 D22 Q1 + R 78 C40 AUX1 SIPMOS 600 V C83 D73 R 30 C26 + R 80 D74 C20 D1...D4 C1 C24 RFI C85 + R 72 C71 IC3 C5 D12...D15 Q2 IC1 6 C18 D10 Q3 4 3 5 Current limitation + D11 1 8 7 19 OverVoltage PFC R 28 17 18 R 32 Voltage EA Current EA STANDBY EA Startup UVLO 3 Synchronisation 4 Circuit 1 5 SYNC Input 9 VREF 12 R 26 5 V 20 16 15 14 10 R 18 11 R 35 R 27 + C11A There is a synchronisation input Pin 12. A high level signal (3.5 V - 7.5 V) discharges the internal oscillator capacitor. Correspondingly a low level signal (below 0.4 V) enables the charging with the set current (R24). The internal oscillator can be completely superimposed by an external synchronisation signal. However the influence on the internal ramp voltages has to be taken into account. IC4 C39 Q4 C23 C12 C11 R 24 C13 C14 R 23 C22 R 34 Means two resistors in series Siemens Aktiengesellschaft 13 PWM R 25 R 60 = R 17 Soft Start OSC 2 R 22 C21 5V For a synchronisation over a wide frequency range the variation of the set current at Pin 16 is to be preferred. For a synchronisation, which will alter the set frequency up to 20% the synchronisation input may be the better choice. Example for External Synchronisation: Synchronisation of the Combi-lC TDA 16888 to a Reference Frequency by a Phase-Locked Loop (PLL) The switching frequency of the Power Factor- and PWM controller TDA 16888 may be synchronized to a reference frequency e.g. of a CRT monitor by using the standard PLL-CMOS-IC 4046. 12 5V 0.1 A L75 + 3 C84 R 79 -12 V 0.2 A 1 VREF = 7.5 V 2 3 R 59 C46 L74 + 0 C81 R 77 5V 2A C47 D26 14 4 16 13 + 7 C78 R 75 9 4 C75 R 73 3 85 V 0.28 A + 1 C72 R 39 R 71 5 10 7 R 24 R 54 PWM Driver Output R 57 8 R 51 TDA 16888 C45 Q5 10 C43 R 50 L71 R 58 16 R 52 C44 15 V 1A L72 + R 53 R 55 D25 4046 L73 C48 R 56 Q6 195 V 0.3 A 5 2 Figure 10 Synchronisation Circuitry of TDA 16888 with PLL R 20A R 20 C16 C17 Off= Standby R 21 IC2 R 19 R 33 C27 R 37 C42 IC6 R 38 Figure 9 Application Circuitry This device is supplied by the 7.5 V reference output VREF (Pin 2) of the TDA 16888. Generally the 4046 controls the output current of Pin 16, which allows to set-up the switching frequency by the internal oscillator. The PWM output signal at Pin 10 is fed back via a voltage divider (R50, R51) to Pin 3 of the 4046. Pin 14 of the 4046 is the input of the given reference frequency signal, fed from a separate winding on the deflection transformer, and compared internally by using phase comparator II. The level of the phase comparator II output signal (Pin 13) represents the phase difference between the PWM output and the reference signal. Pin 13 feeds a low pass filter to provide VCO IN (Pin 9) of the 4046 with the average of the phase difference value. The VCO is not used, but the signal is amplified by the internal source follower. The DEM OUT (Pin 10) controls the base current of Q6 and in this way the oscillator of the TDA 16888. R24 and R52 set the minimum and maximum limits of the frequency (adjusted to approximately 30 kHz and 120 kHz respectively). 13 The phase comparator II output signal at Pin 13 is filtered by R55 and C44 and fed into the VCO input at Pin 9. In addition a dynamic feedback from collector of Q6 is fed into Pin 9 via Q5 and its network. The capacitors C43 and C47 bypass high frequent currents. The response time of the phase locked loop is less than 10 ms. If there are some PWM output pulses missing, the oscillator frequency runs towards its maximum. If trigger pulses of the reference frequency are missing, the oscillator frequency decreases to the minimum set value. The design works independent of the duty cycle of the PWM output signal, as long as its level is high enough to be realized as 'high' by the CMOS-IC. The PLL frequency lock range and capture range are determined by R24 and R52. Siemens Aktiengesellschaft Version 1.0 , September 2004 Application Note AN-CoolMOS-09 200W SMPS Demonstration Board II Author: Marko Scherf, Wolfgang Frank Published by Infineon Technologies AG http://www.infineon.com Power Conversion N e v e r s t o p t h i n k i n g 200W SMPS Demonstration Board II This application note describes the 200W SMPS Demonstration Board with Infineon power products like CoolMOS, OptiMOS, TDA16888, SiC Schottky diode thinQ!, small signal N- & Pchannel MOSFETs. Table of Contents 1 2 3 4 Features / Parameters ...........................................................................................................3 General Description / Main Function......................................................................................4 Construction / Heatsinks ........................................................................................................4 Description of Functional Part Groups ...................................................................................5 4.1 Power Stages (“Main Board”) ..........................................................................................5 4.1.1 AC input/ EMI Filter ....................................................................................................5 4.1.2 PFC Converter ...........................................................................................................5 4.1.3 PWM Converter (Two Transistor Forward)................................................................6 4.1.4 Synchronous Rectification .........................................................................................6 4.2 Controlling Circuitry (“Control Board”) .............................................................................6 4.2.1 General Description of the Combi-IC TDA16888 ......................................................6 4.2.2 PFC Control ...............................................................................................................7 4.2.3 PWM Control..............................................................................................................7 4.2.4 Gate Drive Circuitry....................................................................................................7 5 Power Losses / Efficiency ......................................................................................................8 6 Power Loss Sources ..............................................................................................................9 7 Conducted EMI Measurements ...........................................................................................10 8 Construction of magnetic components.................................................................................11 8.1 PFC choke......................................................................................................................11 8.2 Main transformer ............................................................................................................12 8.3 Output filter choke ..........................................................................................................13 9 PCB Layout ..........................................................................................................................14 9.1 Main Board - Scaling 1:1................................................................................................14 9.2 Control Board- Scaling 1:1.............................................................................................17 10 Bill of Materials..................................................................................................................17 10.1 Main Board .....................................................................................................................17 10.2 Control Board .................................................................................................................20 Danger! This demonstration board works with mortally high voltage. Do not touch it or any other connected equipment while powered. Be aware that the board could carry high voltage for at least 5 minutes after disconnecting from mains. The unit can heat up to a high temperature. Risk of burning is given when touching. Assure yourself when working with this unit that no danger or risk can occur to the user or any other person! Do not run the main board without properly inserted control board! 2 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 1 Features / Parameters Features: - Infineon & EPCOS components on board - Third generation of CoolMOS C3 as PFC, PWM switches - Silicon Carbide (SiC) Schottky diode thinQ! as PFC diode - OptiMOS2 as synchronous rectification switches - PFC and PWM controller in one IC - High efficiency - No external heat sink required - No minimum output load required - Output over load protected - Output short circuit protected Parameters: - wide input voltage range 90-265V - output power 200W - output voltages - 5V / 20A max (load resistance = 0.25Ohm) - 12V / 8.3A max (load resistance = 1.45Ohm) - active Power Factor Correction boost converter operates at 200kHz - hard switching two transistor forward converter operates at 200kHz - synchronous rectification for 5V output operates at 200kHz 3 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 2 General Description / Main Function Boost inductor ~ SIC SDD04S60 + CoolMOS SPB07N60C3 EMCON IDD03E60 +12V 8A Tr. 1 EMI AC in 90-275V Line rectification Filter 2 parallel CoolMOS SPB07N60C3 +5V 20A EMCON IDD03E60 ~ fPFC =fPWM = 200 kHz - CoolMOS SPB07N60C3 PFC/PWM Control TDA 16888 High and Low Side Driver OPTIMOS 2 BSC022N03S 2 parallel OPTIMOS 2 BSC022N03S Block Diagram The SMPS Demoboard consists of two power stages, a AC-DC- converter for power factor correction (PFC section) and a PWM-controlled DC-DC-converter configured as a two-transistor forward topology (PWM section). The PFC stage is a step up (boost) converter which serves to provide a 380V DC-bus at its output while consuming sinusoidal line current (near a unity power factor) at the input. Another PFC related feature is the ability to supply the converter with a wide range input voltage (90-265VAC) without range switches to re-configure the rectifier assembly. The power semiconductors used are two CoolMOS SPB07N60C3 in parallel and a silicon carbide diode prototype SDD04S60 (4A/600V). The two-transistor forward-converter provides isolation from the AC line. There are two output voltages, 5VDC and 12VDC. At the primary side the power semiconductors are two CoolMOS SPB07N60C3 and two EMCON diodes IDD03E60 (3A/600V). At the secondary side the rectification principle is different for each output. At the 12V-path there is a conventional rectification with Schottky diodes. The 5V output is realized as synchronous rectification using low voltage MOSFETS BSC022N03S. One single integrated circuit, a TDA16888, provides control for both power stages, the PFC and PWM sections. 3 Construction / Heatsinks A larger PCB (called “main board”) is the mechanical base of the SMPS. It carries the power semiconductors (in SMD lead frame technology) and the passive devices of the power stages. No additional heatsink is used. The copper layers of the board serve to distribute the dissipated energy with the help of a metal plate at the bottom of the board. A smaller PCB (called “control board”) carries the controlling circuitry and is plugged to the “main board” at its top. 4 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 4 Description of Functional Part Groups 4.1 Power Stages (“Main Board”) D10 BAV99 VCC C101 100n Q3 BSP129 D12 TMBYV10-60 C87 0µ47 R28 4k7 D11 13V C18 47µ R29 1R C88 0µ47 D13 TMBYV10-60 D79 BAV99 Q5 BSP129 VCCtop C100 100n C89 0µ47 R81 4k7 D78 13V SDD04S60 D5 D76 TMBYV10-60 C91 47µ GNDtop R80 1R L2 500µH C90 0µ47 rec AC+ L4 L1 Fuse ~ AC in R102 901M2 255V D6 VBus2 R2 220k C4 2n2 Q2B D82 D77 TMBYV10-60 VBus =380V VCC G2B SPB 07N60 C3 C24 µ47 +12V 8A C33 R45 4R7 R44 4R7 C36 2200µ D21 C32 2n2 L3A R48 1k8 L6 R99 1k8 LED1 1N5408 C3B C2 µ47 C3A 100n R98 1R R97 10R C3 150µ BSC022N03S BSC022N03S R100 Q19 1R Q19A R103 47R R30 ~ C36 2200µ + D1...D4 KBU8K C26 4n7 Tr. 1 2n2 C25 4n7 C86 µ47 D20 D22 GNDtop Q2A G2A Q1B Q1A D27 rec ACG1B R6 0R15 SPB 07N60 C3 G1A SPB 07N60 C3 SPB 07N60 C3 S2A R15 0R47 C97 4n7 Q18 BSP318 C98 4n7 R101 1R L3B C15 4700µ C28 4700µ L5 R104 1k8 +5V 20A LED2 (LC) Q21 BSC022N03S C39 4n7 XS IC3 CNY17-3 C99 2n2 R39 1k R22 680R C16 68n C17 2n2 R20 5k1 R21 10k IC2 TL431CD R19 5k1 4.1.1 AC input/ EMI Filter The input voltage of the SMPS is 90 to 265Vac (50/60Hz). A Fuse prevents greater damage in the case of catastrophic failure. The function of the line EMI Filter (C86, L1, L4, C24...26, C2) is to suppress the high frequency noise caused by the switching transitions of both power stages. Varistor R30 serves to suppress high voltage line transients to protect the input. The line rectifier (D1...4) consists of standard silicon diodes. 4.1.2 PFC Converter The PFC converter is a step up topology with continuous inductor current at full load. The switching frequency is 200kHz. The output voltage is approximately 380Vdc. Main parts of the PFC are the boost inductor L2, switches Q1A/Q1B, boost diode D5 and the bulk capacitor C3. L2 is an iron powder toroidal core with a single layer of copper wire to keep stray capacitance small. Q1A/Q1B are CoolMOS SPB07N60C3 because of their high switching speed and their very low on-resistance (important at low input voltagesÎhigher current, duty cycle). The only reason for paralleling is to get larger cooling areas for better heat distribution at the PCB. The boost diode is a 600V silicon carbide Schottky diode, which has an excellent switching characteristic (no charge storage). D82, a conventional silicon diode, is used to initially charge the bulk capacitor from the rectified AC voltage, avoiding high surge current in the unipolar SiC diode. The bulk capacitor C3 serves to store energy to reduce the second harmonic voltage ripple and it must carry the switching frequency current. C3A keeps the commutation circuit short, it’s a bypass for high frequency currents. 5 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 4.1.3 PWM Converter (Two Transistor Forward) The PWM converter is a two transistor forward topology. The operating frequency of 200 kHz is same as at the PFC section. Main parts at the primary side are Q2A/Q2B and D22/D27. When the forward transistors Q2A/Q2B are switched on simultaneously, energy is transferred to the output through the transformer. The transistors are chosen as CoolMOS SPB07N60C3 because of their high switching speed. D22/D27 are EMCON diodes. They serve to clamp the flyback voltages from the transformer leakage inductance, during reset of the transformer magnetization, in every turn off cycle. The transformer Tr.1 provides galvanic isolation of the output from the line and adapts the output voltages from the voltage of the bulk capacitor. The transformer consists of a ETD29/N97core by EPCOS with tape windings. The windings are interleaved to reduce leakage inductance and winding losses. Main parts at the secondary are D20/D21, L3A, L6 and C36/C37 (12V-output) and Q19/Q21, L3B, L5 and C15, C28 (5V-output). D20/D21 are 45-volts standard Schottky diodes, which handle the current in both sequences, when the transistors are on in series rectifier mode or as freewheeling path if the transistors are off. 4.1.4 Synchronous Rectification At the 5V-path there is used a synchronous rectifier with 30V-MOSFETs BSC022N03S featuring the Super-SO8package. It uses control waveforms generated by the secondary side of the transformer. Two MOSFETs in parallel, Q19 and Q19A handle the freewheeling current in the “low” PWM state, and one MOSFET, Q21, handles the series rectifier circuitry. The freewheeling synchronous rectifiers are turned on in the absence of the PWM pulse output, driven through the body diode of Q18 during the primary transformer reset interval. When the primary switches turn on, the gate of Q18 (previously biased negative), driven through R97 connected to the dot transformer winding, starts switching positive. 4.2 Controlling Circuitry (“Control Board”) R4B C9A 470k 2n2 R4A 470k recAC+ 1 C12 µ47 Vref 3 PFCCC 4 PFCCS 5 GNDS C10 47p 6 PFCCL R26 33k PFCout VCC 820k C41 220p 1M 1M 1M C11A 220µ C11 µ47 PWMout PFCVC 18 IC1 TDA 16888 C7 220p R7 1k8 Vref VBus = 380V C5 47n R5 C8 1k8 2n2 R3 10k R1A 1M R12D R12C R12B R12A PFCVS 19 2 Vref R1B 1M VBus2 Aux vs 20 ac R11 51k R8 10k recAC- R1D R1C 820k 1M R27 51k Rosc PWMRMP 15 PWMIN 8 PFCout PWMSS 13 9 VCC SYNC 10 PWMout PWMCS 11 R93 10R 14 12 R82 10R R14 R13D R13C R13B R13A 1M 1M 51k 820k 1M R24 Vref 22k R25 C22 10k C13 4n7 47p C14 R35 R23 µ47 1k 33k 16 7 GND VCCtop C6 100n R16 390k PFCFB 17 VDD C92 µ47 XS C95 47µ 5 6 IC9 HEF40106BT C96 µ47 R83 4R7 Q10 BC817 9 8 11 10 13 12 2 3 4 5 6 9 C94 100n 4 R84 68R R86 68R G1A G1B R85 10R R87 10R Q9 BSP320S R32 1k VDDtop IC8 SFH6711 R92 1k 3 Q7 BC807 Q14 BC817 R94 4R7 C93 100p 2 PFCout 14 D80 BAV99 1 S2A C21 100p Q8 BSP613P Q6 BC817 14 open 1 R91 1k D81 BAV99 IC7 HEF40106BT VCC Q16 BSP613P R95 68R 8 G2B 11 10 R96 10R 13 12 Q15 BC807 R88 4R7 R89 68R G2A PWMout 7 Q12 BSP613P R90 10R Q11 BC807 Q13 BSP320S Q17 BSP320S 7 GNDtop 4.2.1 General Description of the Combi-IC TDA16888 6 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II The TDA 16888 comprises the complete control for power factor controlled switched mode power supplies. With its PFC and PWM section being internally synchronized, it is suitable for two stage off-line converters with worldwide input voltage range. It is designed to reduce system costs by less external parts count. Special PFC features include: • Dual loop control (average current and voltage sensing) • Additional operation mode as auxiliary power supply • Fast, soft switching totem pole gate drive (1A) • Leading edge pulse width modulation • Peak current limitation • Overvoltage protection Special PWM features include: • Improved current mode control • Fast, soft switching totem pole gate drive (1A) • Soft-start management • Trailing edge pulse width modulation • 50% maximum duty cycle to prevent transformer saturation • Individually adjustable Power Management 4.2.2 PFC Control The TDA 16888 provides active power factor control in average current control mode. The “heart” of the PFC section is an analog multiplier. It creates the current programming signal for the current amplifier OP2 by multiplying the rectified line voltage with the output of the voltage amplifier so that the current programming signal has the shape of the input voltage and an average amplitude which controls the output voltage. At the Demoboard the external circuitry of the voltage amplifier (voltage sensing, compensating) consists of R13, R14, R16, C5, and C6. The resistor R4 serves to monitor the actual rectified line voltage. R5, R7, R8, C7, and C8 are the components belonging to the current amplifier, the inductor current is monitored as a voltage drop at R6 (located at “main board”). R3, R26 determine the PFC current limit (approx. 6,5A). R11, R12 fix the overvoltage thresholds. 4.2.3 PWM Control The TDA 16888 provides an improved current mode control containing effective slope compensation as well as enhanced spike suppression. The converter primary side switch current is monitored as voltage drop at R15 (located at “main board”). The amplified and “cleaned” current signal sensed at PWMCS (11), measurable at PWMRMP (15), together with the output voltage control loop feedback signal at PWMIN (14), are both inputs of the PWM comparator C8. Together they determine the actual duty cycle. C14 provides soft start of the PWM section. The components of the output voltage control loop are located at the secondary side of the converter (on the “main board”). The feedback signal is transferred across the isolation barrier via a low cost optocoupler, IC3. 4.2.4 Auxiliary Power Supply /Gate Drive Circuitry The supply voltage of the control circuitry is generated by an additional winding of the PFC choke L2. This costefficient technique is featured by the TDA 16888 because of a special control loop, which ensures a continuous generation of auxiliary power even at no load condition and sudden load drops. Because of the very high operating frequency the PFC section power transistors (Q1A, Q1B) and the low side power transistor (Q2A) of the PWM stage are driven by discrete high speed, high current driver stages using small signal bipolar transistors and MOSFETs. That’s why the original gate drive signals at PFCOUT/ PWMOUT are schmitt-trigerred and used as inputs of the discrete drivers. The gate drive signal of the high side power transistor (Q2B) is transferred via a high-speed optocoupler, IC8 (SFH 6711), and amplified as described before. The floating supply voltage for the high side driver circuitry is generated by another separate winding of L2. 7 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 5 Power Losses / Efficiency Measured power losses at nearly full load and different input voltages: Vinac/V Pin/W Pout/W V12v/V I12v/A V5v/V I5v/A 90 110 150 200 230 275 225 222 218 217 215 215 185,0 185,0 185,0 185,0 185,0 185,0 10,25 10,25 10,25 10,25 10,25 10,25 7,2 7,2 7,2 7,2 7,2 7,2 5,03 5,03 5,03 5,03 5,03 5,03 22,1 22,1 22,1 22,1 22,1 22,1 η/% 82,2 83,3 84,9 85,3 86,0 86,0 The best efficiency appears at high input voltage, the worst at the lowest. The reason is the variation of the line current. Higher input currents result in increased conduction losses at the input rectifier, EMI Filter, PFC choke and PFC current sense resistor. The RMS value of the PFC transistor current is much higher at low line conditions, when the switches have to carry higher peak currents. Furthermore, the transistors switch at twice the effective duty cycle in order to provide a higher step up rate for the PFC stage. The higher current values also cause increased switching losses of the PFC stage. The behavior of the PWM stage doesn’t depend on the input voltage, due to the pre-regulated bulk bus from the output of the PFC stage. 90 85 82,2 80 Efficiency [%] 83,3 84,9 85,3 86 86 75 70 65 60 55 50 50 100 150 200 250 300 Vin AC [V] 8 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 6 Power Loss Sources The highest power dissipation appears at full load and low line condition. Operation point: Vin AC = 90V Pin = 225W Pout = 185W ⇒Ploss = 40W The distribution of the power losses is calculated or assumed by the help of measured device temperatures. Power Loss Sources Assumed Power Dissipation/ W 1.5 3.5 3 1.5 5 1.5 2 3 3 4 3 2 3 4 40 EMI Filter Line Rectifier (D1...4) PFC Choke L2 Bulk Capacitor C3 PFC Transistors Q1 PFC Diode D5 Forward Transistors Q2 Transformer Tr.1 5V Rectifiers Q19, Q21 12V Rectifiers D20, D21 Output Choke L3 Output Capacitors C36, C37, C15, C28 Controlling, Driver, Supply Circuitry Others ∑ 5 5 4 3,5 3 3 3 3 3 3 2 2 1,5 1,5 2 1,5 1 ne R ie r ec tif EM IF ilt PF (D er Bu C C 1... lk ho 4) PF Ca ke pa L C Tr cit 2 an or C s Fo PF isto 3 rw r ar C D s Q d Tr iod 1 e an D 5 5V Tra sist o ns R rs Q 12 ect for m 2 ifi V e e R O ec rs Q r Tr ut . tif pu ie 19, 1 tC rs Q C 21 D on ap O 2 ut tro ac 0, p u llin ito D g, rs C t Ch 21 D riv 36, oke er L3 C , S 37 up , . pl .. y C irc u. O .. th er s 0 Li Assumed Power Dissipation [W] 4 4 9 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 7 Conducted EMI Measurements Measuring of conducted noise with an EMI-Receiver FMLK 1518 at a Line-Impedance Stabilization Network (LISN) NSLK 8128. Conditions: VAC in = 230V, Pout = 181,4W, main board in a metal case. Phase 1, Average Phase 2, Average As it can be seen from the figures above the measured EMI spectra are below the norm limit lines. 10 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 8 Construction of magnetic components 8.1 PFC choke Core: MAGNETICS Ringcore 77930 - A7; L = 490 µH (Pin1 - Pin8) Hole arrangement View in mounting direction N3 N1 Pin 1 N2 N1: 56 turns 0,5mm ∅ N2: 4 turns 0,2mm ∅ N3: 4 turns 0,2mm ∅ 2 N2 N1 Pin 8 11 of 21 3 7 4 N3 6 5 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 8.2 Main transformer Core: ETD29/16/10, N97 without airgap ratio: 23:2:1 N11= 23 N2= 4 N12= 23 N3= 2 N11/ N12 are series connected (on PCB) Windings: Cu-tape N1: 13,4 x 0,035 mm N2: 13,4 x 0,070 mm N3: 13,4 x 0,100 mm Design: interleaved N12= 23 N2= 4 N3= 2 N11= 23 Core 12 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 8.3 Output filter choke Core: ETD29/16/10, N97 Air gap (total): 1,5 mm Î Al= 93,4nH ÎInductance: L1= 27µH L2= 4,6µH Windings: Cu-tape N1: 15,4 x 0,050 mm N2: 15,4 x 0,150 mm Design: N1= 17 N2= 7 Core 13 of 21 AN-CoolMOS-09 V 1.0 AN-CoolMOS-09 V 1.0 [ u ) 『1E113飞「7 ~IIR2-1肿[]] []]n.. LJ( D 旧卢-------丁 QIA~ 口5 口18ERESzqY U I ZI O 明 E 门口6JJ? C8S 口 CS0 口 E UZ 14 of 21 200W SMPS Demonstration Board II m川巴 们们川川山 配旦 一---剧 J 中一 一门 U d n i - +12υ 0 。|。|。而 GN口 [ u ) D 日5 田气 Jm Main Board - Scaling 1:1 9.1 9 PCB Layout l二 1 口----------, 。 日卢----------, Main Board/ Top/ Components 979 200W SMPS Demonstration Board II Main Board /Top / Copper 15 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II Main Board/ Bottom/ Bottom View/ Copper 16 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 9.2 Control Board- Scaling 1:1 Control Board/ Top/ Components Control Board/ Top/ Copper Control Board/ Bottom/ Bottom View/ Components Control Board/ Bottom/ Bottom View/ Copper 10 Bill of Materials 10.1 Main Board Part Value +5V Package Position (mil) FLSTL6,3 (500 3275) +12V FLSTL6,3 (500 4075) AC_IN KLEMME-3 (200 5150) C22,5B11 (4650 5300) C2 u47/X2 C3 150u/450V EB35D (6375 5053.74) C3A 100n/630V C15B7 (3375 4387.5) C3B 100n/630V C15B7 (6200 825) C4 2n2/1kV C7,5B4 (3937.5 4537.5) C15 4m7/10V C16 68n 1206 (700 200) C17 2n2 1206 (500 200) C18 47u/63V E3,5-8 (5675 4375) C24 u47/X2 C22,5B11 (2475 5300) C25 4n7/Y C10B6 (2125 5550) C26 4n7/Y C10B6 (2125 5025) C28 4m7/10V C32 2n2/1kV C7,5B4 (2900 1800) C33 2n2/1kV C7,5B4 (2900 1625) (1050 1525) (1050 3275) 17 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II Value Package Position (mil) C36 2m2/25V (362.5 1112.5) C37 2m2/25V (362.5 2762.5) C39 4n7/Y C10B6 (1050 3800) C86 u47/X2 C22,5B11 (1175 5300) C87 u47 1812 (5450 4450) C88 u47 1812 (5450 4175) C89 u47 1812 (6425 3375) C90 u47 1812 (6425 3200) C91 47u/63V E3,5-8 (6275 4150) C97 4n7/Y C10B6 (6812.5 4162.5) C98 4n7 1206 (3362.5 1912.5) C99 2n2 1206 (1143.75 250) C100 100n 1206 (6750 3418.75) C101 100n 1206 (5200 4075) D1...4 KBU8K KBU-L (4375 5400) D5 SDD04S60 DPAK (4150 3925) D6 IDD03E60 DPAK (5837.5 3700) D10 BAV99 SOT-23 (4681.25 4206.25) D11 BZX84C13 SOT-23 (5287.5 4250) D12 TMBYV10-60 MELF (5062.5 4400) D13 TMBYV10-60 MELF (4725 4400) D20 MBRB2545 D2PAK (2737.5 2325) D21 MBRB2545 D2PAK (2100 2325) D22 IDD03E60 DPAK (6575 650) D27 IDD03E60 DPAK (5875 642.52) D76 TMBYV10-60 MELF (6425 3750) D77 TMBYV10-60 MELF (6425 3600) D78 BZX84C13 SOT-23 (6725 3537.5) D79 BAV99 SOT-23 (6862.5 2637.5) D82 1N5408 DO201-15 (4531.25 4625) BO3,2-P (6889.76 3818.9) BO3,2-P (1574.8 3818.9) SH22 (600 5300) FLSTL6,3 (500 4325) E$5 E$9 FUSE 4AT GND GND. FLSTL6,3 (500 3525) TL431CD SO-8 (250 600) IC3 CNY17-3 DIL06 (987.5 475) L1 2x1m2 82722J (1700 5300) L2 500u INF-PFC (5275 5262.5) L3 36/6uH RM14-12A (2075 1000) L4 2x1m2 82722J (3000 5300) L5 1u INAIR20A (1050 2400) L6 1u INAIR8A (312.5 1937.5) IC2 18 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II Part Value Package Position (mil) LED_5V LED_12V Green/LC LED3 (400 3706.25) Red LED3 (400 3893.75) Q1A SPB07N60C3 D2PAK (3400 3925) Q1B SPB07N60C3 D2PAK (2650 3925) Q2A SPB07N60C3 D2PAK (5862.5 1625) Q2B SPB07N60C3 D2PAK (6700 1625) Q3 BSP129 SOT-223 (4887.5 4100) Q5 BSP129 SOT-223 (6787.5 3100) Q18 BSP318 SOT-223 (3350 1587.5) Q19 BSC022N03S P-TDSON-8 (4012.5 2325) Q19A BSC022N03S P-TDSON-8 (3375 2325) Q21 BSC022N03S P-TDSON-8 (4650 2325) R2 220k/2W 0411/15 (4100 4375) R6 0R15/1W R-SMR (4900 3700) R15 R47 R-SMR (6112.5 2337.5) R19 5k1 1206 (450 500) R20 5k1 1206 (700 650) R21 10k 1206 (450 350) R22 680R 1206 (700 500) R28 4k7 1206 (5112.5 4168.75) R29 1R 1206 (5300 4425) R30 S14K275 S14K275 (3425 5300) R39 1k 1206 (700 350) R44 4R7/0,6W 0207/10 (2900 1925) R45 4R7/0,6W 0207/10 (2900 1500) R48 1k8 1206 (593.7 3897.98) R80 1R 1206 (6375 3950) R81 4k7 1206 (6750 3325) R97 10R 1206 (3550 1712.5) R98 1R 1206 (4387.5 2087.5) R99 1k8 1206 (593.75 3806.25) R100 1R 1206 (3750 2075) R101 1R 1206 (3112.5 2075) R102 1M2/Netz 0411/15 (875 5300) R103 47R 1206 (3362.5 1812.5) R104 1k8 1206 (593.75 3712.5) S$63 BO3,2-P (3825 5400) SVB_M_C 1X20SMDI (5575 2850) TR.1 RM14-12A (4550 1000) 19 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II 10.2 Control Board Part Value Package Position (mil) C5 47n 1206 (900 968.75) C6 100n 1206 (818.75 968.75) C7 220p 1206 (1699.36 1050) C8 2n2 1206 (1699.36 968.75) C9A 2n2 1206 (1699.36 1131.26) C10 47p 1206 (1424.36 906.24) C11 u47 1812 (1511.85 528.12) C11A 220u/25V E3,5-8 (150 1025) C12 u47 1812 (1561.87 1103.13) C13 47p 1206 (1424.37 825) C14 u47 1812 (1252.48 528.12) C21 100p 1206 (1424.37 656.25) C22 4n7 1206 (1424.37 743.75) C41 220p 1206 (1424.36 987.5) C92 u47 1812 (975 749.36) C93 100p 1206 (1653.13 756.25) C94 100n 1206 (2018.75 537.5) C95 47u/63V E3,5-8 (1965.63 993.75) C96 u47 1812 (2287.5 703.13) D80 BAV99 SOT-23 (1700 571.87) D81 BAV99 SOT-23 (1678.12 734.37) IC1 TDA16888 SO-20L (1380.61 918.75) IC7 HEF40106BT SO-14 (849.36 981.25) IC8 SFH6711 DIL-08 (1943.11 631.25) IC9 HEF40106BT SO-14 (2175 988.14) Q6 BC817 SOT-23 (618.75 884.38) Q7 BC807 SOT-23 (487.5 884.38) Q8 BSP613P SOT-223 (468.11 643.75) Q9 BSP320S SOT-223 (199.36 643.75) Q10 BC817 SOT-23 (818.75 687.5) Q11 BC807 SOT-23 (818.76 815.63) Q12 BSP613P SOT-223 (736.86 643.75) Q13 BSP320S SOT-223 (1005.61 643.75) Q14 BC817 SOT-23 (2275.01 659.37) Q15 BC807 SOT-23 (2275 471.88) Q16 BSP613P SOT-223 (1961.86 181.25) Q17 BSP320S SOT-223 (2224.35 181.25) R1A 1M 1206 (568.11 550) R1B 1M 1206 (568.11 725) R1C 1M 1206 (568.11 900) R1D 820k 1206 (568.11 1075) 20 of 21 AN-CoolMOS-09 V 1.0 200W SMPS Demonstration Board II Part Value Package Position (mil) R3 10k 1206 (1549.36 478.13) R4A 470k 1206 (180.61 550) R4B 470k 1206 (180.61 725) R5 1k8 1206 (1374.36 478.13) R7 1k8 1206 (1233.74 587.5) R8 10k 1206 (1699.36 887.5) R11 51k 1206 (443.75 1087.5) R12A 1M 1206 (443.11 550) R12B 1M 1206 (443.11 725) R12C 1M 1206 (443.11 900) R12D 820k 1206 (443.11 1075) R13A 1M 1206 (343.11 550) R13B 1M 1206 (343.11 725) R13C 1M 1206 (343.11 900) R13D 820k 1206 (343.11 1075) R14 51k 1206 (318.75 1087.5) R16 390k 1206 (981.26 968.75) R23 33k 1206 (1556.25 312.5) R24 22k 1206 (1118.75 950) R25 10k 1206 (1121.87 950) R26 33k 1206 (1714.98 987.5) R27 51k 1206 (568.76 1087.5) R32 1k 1206 (1150 312.5) R35 1k 1206 (1121.87 775) R82 10R 1206 (1043.75 531.26) R83 4R7 1206 (256.25 940.63) R84 68R 1206 (700 187.5) R85 10R 1206 (787.5 187.5) R86 68RR 1206 (956.25 187.5) R87 10R 1206 (868.75 187.5) R88 4R7 1206 (718.75 706.25) R89 68R 1206 (878.13 531.25) R90 10R 1206 (962.5 531.25) R91 1k 1206 (1700.01 584.38) R92 1k 1206 (1718.76 756.25) R93 10R 1206 (2168.75 687.5) R94 4R7 1206 (2293.75 459.38) R95 68R 1206 (1781.25 100) R96 10R 1206 (1700 100) 1X20/90I (1205.61 400) SVB_C_M 21 of 21 AN-CoolMOS-09 V 1.0