1.2A High Efficiency Buck-Boost Regulator ISL9110A Features The ISL9110A is a highly-integrated Buck-Boost switching regulator that accepts input voltages either above or below the regulated output voltage. Unlike other Buck-Boost regulators, this regulator automatically transitions between operating modes without significant output disturbance. • Accepts Input Voltages Above or Below Regulated Output Voltage This part is capable of delivering up to 1.2A output current, and provides excellent efficiency due to its fully synchronous 4-switch architecture. No-load quiescent current of only 35µA also optimizes efficiency under light-load conditions. Forced PWM and/or synchronization to an external clock may also be selected for noise sensitive applications. • Automatic and Seamless Transitions Between Buck and Boost Modes • Input Voltage Range: 1.8V to 5.5V • Output Current: Up to 1.2A • High Efficiency: Up to 95% • 35µA Quiescent Current Maximizes Light-load Efficiency • 2.5MHz Switching Frequency Minimizes External Component Size The ISL9110A is designed for standalone applications and supports 3.3V and 5V fixed output voltages or variable output voltages with an external resistor divider. Output voltages as low as 1V, or as high as 5.2V are supported using an external resistor divider. • Selectable Forced-PWM Mode and External Synchronization The ISL9110A requires only a single inductor and very few external components. Power supply solution size is minimized by a 2.4mm x 1.6mm WLCSP package and a 2.5MHz switching frequency, which further reduces the size of external components. Applications • Fully Protected for Overcurrent, Over-temperature and Undervoltage • Small 2.4mmx1.6mm WLCSP Package • Regulated 3.3V from a Single Li-Ion Battery • Smart Phones and Tablet Computers • Handheld Devices • Point-of-Load Regulators Related Literature • See AN1750 “ISL9110A Evaluation Board User Guide” 100 ISL9110AIITNZ A1 B1 PVIN LX1 A2 B2 LX2 A4 B4 VOUT A5 B5 C1 10µF STATUS OUTPUTS D2 D1 MODE EN BAT PG D4 C5 GND FB D5 L1 2.2µH VOUT = 3.3V/1A C2 10µF PGND C4 C2 C3 D3 VIN A3 B3 C1 95 EFFICIENCY (%) VIN = 1.8V TO 5.5V 90 VIN = 5V 85 80 VIN = 3V VIN = 2.5V 75 VOUT = 3.3V 70 0.01 0.05 0.25 1.25 IOUT (A) FIGURE 1. TYPICAL APPLICATION June 8, 2012 FN8299.1 1 FIGURE 2. EFFICIENCY CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2012. All Rights Reserved Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. All other trademarks mentioned are the property of their respective owners. ISL9110A Block Diagram LX1 A2 B2 A1 B1 A5 VOUT B5 EN C2 VIN C1 GATE DRIVERS & ANTISHOOT THRU EN VREF SOFT DISCHARGE REVERSE CURRENT PVIN LX2 A4 B4 EN EN BAT D2 A3 PGND B3 C3 C4 PVIN MONITOR THERMAL SHUTDOWN MODE/SYNC D3 VOUT CLAMP PWM CONTROL CURRENT DETECT EN EN D1 PG VOUT MONITOR D5 FB EN OSC REF ERROR AMP VOLTAGE PROG. C5 D4 GND Pin Configurations ISL9110A (20 BALL WLCSP) TOP VIEW A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4 A5 B5 C5 D5 2 Pin Descriptions PIN # PIN NAMES A5, B5 VOUT Buck/boost output. Connect a 10µF capacitor to PGND. A4, B4 LX2 Inductor connection, output side. A3, B3, C3, C4 PGND A2, B2 LX1 Inductor connection, input side. A1, B1 PVIN Power input. Range: 1.8V to 5.5V. Connect a 10µF capacitor to PGND. C1 VIN Supply input. Range: 1.8V to 5.5V. D1 PG Open drain output. Provides output-power-good status. D2 BAT Open drain output. Provides input-power-good status. C2 EN Logic input, drive high to enable device. D3 MODE/ SYNC C5, D4 GND D5 FB DESCRIPTION Power ground for high switching current. Logic input, high for auto PFM mode. Low for forced PWM operation. Ext. clock sync input. Range: 2.75MHz to 3.25MHz. Analog ground pin. Voltage feedback pin. FN8299.1 June 8, 2012 ISL9110A Ordering Information PART NUMBER (Note 3) PART MARKING VOUT (V) TEMP RANGE (°C) PACKAGE Tape and Reel (Pb-free) PKG. DWG. # ISL9110AIITNZ-T (Notes 1, 2) DZBE 3.3 -40 to +85 20 Ball WLCSP W4x5.20A ISL9110AIITAZ-T (Notes 1, 2) DZBD ADJ -40 to +85 20 Ball WLCSP W4x5.20A ISL9110AIITNZ-EVAL1Z Evaluation Board ISL9110AIITAZ-EVAL1Z Evaluation Board NOTES: 1. Please refer to TB347 for details on reel specifications. 2. These Intersil Pb-free WLCSP and BGA packaged products employ special Pb-free material sets; molding compounds/die attach materials and SnAgCu - e1 solder ball terminals, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free WLCSP and BGA packaged products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL9110A. For more information on MSL please see techbrief TB363. 3 FN8299.1 June 8, 2012 ISL9110A Table of Contents Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Recommended Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Analog Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Internal Supply and References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Enable Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Soft Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 POR Sequence and Soft-start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Short Circuit Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 PG Status Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 BAT Status Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Ultrasonic Mode (Available Upon Request) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 External Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Buck-Boost Conversion Topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 PWM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 PFM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Operation With VIN Close to VOUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Output Voltage Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Output Voltage Programming, Adj. Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Feed-Forward Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Non-Adjustable Version FB Pin Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 PVIN and VOUT Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Application Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Application Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Package Outline Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 FN8299.1 June 8, 2012 ISL9110A Absolute Maximum Ratings Thermal Information PVIN, VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V LX1, LX2 (Note 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V FB (Adjustable Version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 2.7V FB (Fixed VOUT Versions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V GND, PGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 0.3V All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V ESD Rating Human Body Model (Tested per JESD22-A114E) . . . . . . . . . . . . . . . . 3kV Machine Model (Tested per JESD22-A115-A) . . . . . . . . . . . . . . . . . 250V Latch Up (Tested per JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . 100mA Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W) 20 Ball WLSCP Package (Notes 4, 5) . . . . 66 1 Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+125°C Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp Recommended Operating Conditions Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8V to 5.5V Load Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0A to 1.2A CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 4. θJA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech Brief TB379 5. For θJC, the “case temp” location is taken at the package top center. 6. LX1 and LX2 pins can withstand switching transients of -1.5V for 100ns, and 7V for 20ms. Analog Specifications VVIN = VPVIN = VEN = 3.6V, VOUT = 3.3V, L1 = 2.2µH, C1 = C2 = 10µF, TA = +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C. SYMBOL PARAMETER TEST CONDITIONS MIN TYP MAX (Note 7) (Note 8) (Note 7) UNITS POWER SUPPLY VIN VUVLO Input Voltage Range 1.8 VIN Undervoltage Lockout Threshold Rising Falling IVIN VIN Supply Current PFM mode, no external load on Vout (Note 9) ISD VIN Supply Current, Shutdown EN = GND, VIN = 3.6V 5.5 1.725 1.550 V 1.775 1.650 V V 35 60 µA 0.05 1.0 µA OUTPUT VOLTAGE REGULATION VOUT Output Voltage Range ISL9110AIITAZ, IOUT = 100mA Output Voltage Accuracy VIN = 3.7V, VOUT = 3.3V, IOUT = 0mA, PWM mode VIN = 3.7V, VOUT = 3.3V, IOUT = 1mA, PFM mode 1.00 5.20 V -2 +2 % +4 % -3 VFB FB Pin Voltage Regulation For adjustable output version 0.79 0.80 IFB FB Pin Bias Current For adjustable output version ΔVOUT/ ΔVIN Line Regulation, PWM Mode IOUT = 500mA, VOUT = 3.3V, MODE = GND, VIN step from 2.3V to 5.5V ±0.005 mV/mV ΔVOUT/ ΔIOUT Load Regulation, PWM Mode VIN = 3.7V, VOUT = 3.3V, MODE = GND, IOUT step from 0mA to 500mA ±0.005 mV/mA ΔVOUT/ ΔVI Line Regulation, PFM Mode IOUT = 100mA, VOUT = 3.3V, MODE = VIN, VIN step from 2.3V to 5.5V ±12.5 mV/V ΔVOUT/ ΔIOUT Load Regulation, PFM Mode VIN = 3.7V, VOUT = 3.3V, MODE = VIN, IOUT step from 0mA to 100mA ±0.4 mV/mA VCLAMP Output Voltage Clamp Rising, VIN = 3.6V Output Voltage Clamp Hysteresis VIN = 3.6V 5.25 0.81 V 1 µA 5.95 400 V mV DC/DC SWITCHING SPECIFICATIONS fSW tONMIN Oscillator Frequency 2.25 Minimum On Time 2.50 2.75 80 MHz ns IPFETLEAK LX1 Pin Leakage Current -1 1 µA INFETLEAK LX2 Pin Leakage Current -1 1 µA 5 FN8299.1 June 8, 2012 ISL9110A Analog Specifications VVIN = VPVIN = VEN = 3.6V, VOUT = 3.3V, L1 = 2.2µH, C1 = C2 = 10µF, TA = +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued) SYMBOL MIN TYP MAX (Note 7) (Note 8) (Note 7) UNITS Time from when EN signal asserts to when output voltage ramp starts. 1 ms Time from when output voltage ramp starts to when output voltage reaches 95% of its nominal value with device operating in buck mode. VIN = 4V, VOUT = 3.3V, IO = 200mA 1 ms Time from when output voltage ramp starts to when output voltage reaches 95% of its nominal value with device operating in boost mode. VIN = 2V, VOUT = 3.3V, IO = 200mA 2 ms VIN = 3.6V, EN < VIL 120 Ω VIN = 3.6V, IO = 200mA 0.10 0.17 Ω VIN = 2.5V, IO = 200mA 0.13 0.23 Ω VIN = 3.6V, IO = 200mA 0.09 0.15 Ω VIN = 2.5V, IO = 200mA 0.11 0.23 Ω 2.4 2.8 A PARAMETER TEST CONDITIONS SOFT-START and SOFT DISCHARGE tSS RDISCHG Soft-start Time VOUT Soft-Discharge ON-Resistance POWER MOSFET RDSON_P RDSON_N IPK_LMT P-Channel MOSFET ON-Resistance N-Channel MOSFET ON-Resistance P-Channel MOSFET Peak Current Limit VIN = 3.6V 2.0 PFM/PWM TRANSITION Load Current Threshold, PFM to PWM VIN = 3.6V, VOUT = 3.3V 200 mA Load Current Threshold, PWM to PFM VIN = 3.6V, VOUT = 3.3V 75 mA External Synchronization Frequency Range 2.75 3.25 MHz Thermal Shutdown 155 °C Thermal Shutdown Hysteresis 30 °C BATTERY MONITOR AND POWER GOOD COMPARATORS VTBMON Battery Monitor Voltage Threshold VHBMON Battery Monitor Voltage Hysteresis 100 Battery Monitor Debounce Time 25 µs PG Delay Time (Rising) 1 ms 20 µs tBMON 1.85 PG Delay Time (Falling) Minimum Supply Voltage for Valid PG Signal EN = VIN 2.0 2.15 V mV 1.2 V PGRNGLR PG Range - Lower (Rising) Percentage of programmed voltage 90 % PGRNGLF PG Range - Lower (Falling) Percentage of programmed voltage 87 % PGRNGUR PG Range - Upper (Rising) Percentage of programmed voltage 112 % PGRNGUF PG Range - Upper (Falling) Percentage of programmed voltage 110 % Compliance Voltage - PG, BAT VIN = 3.6V, ISINK = 1mA 0.3 V 1 µA LOGIC INPUTS ILEAK Input Leakage VIH Input HIGH Voltage VIL Input LOW Voltage 0.05 1.4 V 0.4 V NOTES: 7. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested. 8. Typical values are for TA = +25°C and VIN = 3.6V. 9. Quiescent current measurements are taken when the output is not switching. 6 FN8299.1 June 8, 2012 ISL9110A Typical Performance Curves 100 100 VIN = 4V VIN = 3V 95 VIN = 4.5V EFFICIENCY (%) EFFICIENCY (%) 95 90 85 VIN = 2V 80 75 VIN = 5V 90 VIN = 5V VIN = 4V 85 80 VIN = 2V VIN = 3V VIN = 2.5V 75 VIN = 2.5V VOUT = 2.0V 70 0.01 VIN = 4.5V 0.05 0.25 VOUT = 3.3V 70 0.01 1.25 0.05 FIGURE 3. EFFICIENCY vs OUTPUT CURRENT, VOUT = 2V 100 2.5 VOUT = 2V 2.0 VIN = 4.5V 85 80 IOUT (A) EFFICIENCY (%) 95 90 VIN = 2V VIN = 2.5V VOUT = 4.0V 70 0.01 0.05 0.25 VOUT = 3.3V 1.5 1.0 VOUT = 5V VIN = 3V 0.5 75 0.0 1.5 1.25 2.0 2.5 FIGURE 5. EFFICIENCY vs OUTPUT CURRENT, VOUT = 4V 4.0 4.5 5.0 5.5 60 QUIESCENT CURRENT (µA) QUIESCENT CURRENT (mA) 3.5 FIGURE 6. MAXIMUM OUTPUT CURRENT vs INPUT VOLTAGE 9 8 +85°C +25°C 6 5 3.0 VIN (V) IOUT (A) 7 1.25 FIGURE 4. EFFICIENCY vs OUTPUT CURRENT, VOUT = 3.3V VIN = 4V VIN = 5V 0.25 IOUT (A) IOUT (A) 0°C -40°C VOUT = 3.3V 4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIN (V) FIGURE 7. PWM MODE QUIESCENT CURRENT, VOUT = 3.3V, NO LOAD 7 5.5 55 50 +85°C +25°C 45 40 35 0°C -40°C VOUT = 3.3V 30 1.5 2.5 3.5 4.5 5.5 VIN (V) FIGURE 8. PFM MODE QUIESCENT CURRENT, VOUT = 3.3V, NO LOAD FN8299.1 June 8, 2012 ISL9110A Typical Performance Curves (Continued) VIN = 4.5V → 2.5V VOUT = 3.3V IOUT = 500mA LX1 5V/DIV VIN = 2.5V → 4.5V VOUT = 3.3V IOUT = 500mA LX1 5V/DIV LX2 5V/DIV LX2 5V/DIV VOUT 50mV/DIV VOUT 50mV/DIV INDUCTOR CURRENT 0.5A/DIV INDUCTOR CURRENT 0.5A/DIV 400µs/DIV 400µs/DIV FIGURE 9. STEADY STATE TRANSITION FROM BUCK TO BOOST FIGURE 10. STEADY STATE TRANSITION FROM BOOST TO BUCK LX1 2V/DIV VOUT 50mV/DIV LX2 2V/DIV VIN 2V/DIV VOUT 50mV/DIV INDUCTOR CURRENT 0.5A/DIV VIN = 4.5V → 2.5V → 4.5V VOUT = 3.3V IOUT = 400mA VIN = 3.6V VOUT = 3.3V IOUT = 0.6A 50µs/DIV 400ns/DIV FIGURE 11. STEADY STATE VIN NEAR VOUT FIGURE 12. INPUT TRANSIENT LX1 5V/DIV LX1 5V/DIV LX2 5V/DIV LX2 5V/DIV VOUT 0.1V/DIV VOUT 0.1V/DIV INDUCTOR CURRENT 0.5A/DIV VIN = 2V VOUT = 3.3V IOUT = 0A TO 0.4A 100µs/DIV FIGURE 13. TRANSIENT LOAD RESPONSE 8 INDUCTOR CURRENT 0.5A/DIV VIN = 3.6V VOUT = 3.3V IOUT = 0A TO 1A 100µs/DIV FIGURE 14. TRANSIENT LOAD RESPONSE FN8299.1 June 8, 2012 ISL9110A Typical Performance Curves (Continued) LX1 2V/DIV LX1 5V/DIV LX2 2V/DIV LX2 5V/DIV VOUT 10mV/DIV VOUT 10mV/DIV INDUCTOR CURRENT 0.5A/DIV VIN = 2.5V VOUT = 3.3V IOUT = 500mA INDUCTOR CURRENT 0.5A/DIV VIN = 4.5V VOUT = 3.3V IOUT = 1A 400ns/DIV 400ns/DIV FIGURE 16. SWITCHING WAVEFORMS, BUCK MODE 0.25 0.25 0.20 0.20 +40°C 0.15 RDS(ON) (Ω) RDS(ON) (Ω) FIGURE 15. SWITCHING WAVEFORMS, BOOST MODE +85°C 0.10 0.00 1.5 2.0 2.5 +85°C 0.15 0.10 -40°C 0°C -40°C 0.05 +40°C 0.05 0°C 3.0 3.5 4.0 4.5 5.0 0.00 1.5 5.5 2.0 2.5 VIN (V) 0.805 3.285 VOUT (V) VREF (V) 3.290 0.800 3.275 0.790 -40 I = 0.4A (PWM) 3.270 OUT 1.5 2.5 40 60 80 TEMPERATURE (°C) FIGURE 19. VREF vs TEMPERATURE, TA = -40°C TO +85°C 9 4.5 5.0 5.5 100 NO LOAD (PFM) IOUT = 0.1A (PFM) 3.280 0.795 20 4.0 FIGURE 18. PFET rDS(ON) vs INPUT VOLTAGE 0.810 0 3.5 VIN (V) FIGURE 17. NFET rDS(ON) vs INPUT VOLTAGE -20 3.0 IOUT = 0.8A (PWM) IOUT = 1.2A (PWM) 3.5 4.5 5.5 VIN (V) FIGURE 20. OUTPUT VOLTAGE vs VIN VOLTAGE (VOUT = 3.3V) FN8299.1 June 8, 2012 ISL9110A Typical Performance Curves (Continued) VIN = 4V VOUT = 3.3V LX1 I = 200mA 2V/DIV OUT LX1 2V/DIV LX2 2V/DIV LX2 2V/DIV VOUT 2V/DIV VOUT 2V/DIV EN 2V/DIV VIN = 2V VOUT = 3.3V IOUT = 200mA EN 2V/DIV 400µs/DIV 400µs/DIV FIGURE 21. SOFT-START, VIN = 4V, VOUT = 3.3V FIGURE 22. SOFT-START, VIN = 2V, VOUT = 3.3V 3.315 3.310 3.310 3.305 LOAD CURRENT FALLING VOUT (V) 3.300 3.300 3.295 LOAD CURRENT RISING 3.285 3.285 3.280 0.0 3.295 3.290 LOAD CURRENT RISING 3.290 0.1 0.2 0.3 0.4 LOAD CURRENT FALLING 3.280 0.0 0.1 0.2 0.5 IOUT (mA) 0.3 0.4 0.5 IOUT (mA) FIGURE 23. OUTPUT VOLTAGE vs LOAD CURRENT (VIN = 2.5V, VOUT = 3.3V, AUTO PFM/PWM MODE) FIGURE 24. OUTPUT VOLTAGE vs LOAD CURRENT (VIN = 4.5V, VOUT = 3.3V, AUTO PFM/PWM MODE) 0.25 VIN = 3.7V VOUT = 3.3V EN 1V/DIV PFM to PWM TRANSITION 0.20 IOUT (A) VOUT (V) 3.305 0.15 0.10 PWM to PFM TRANSITION 0.05 VOUT 1V/DIV 0.00 2.0 4ms/DIV FIGURE 25. OUTPUT SOFT-DISCHARGE 10 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VIN (V) FIGURE 26. PFM to PWM MODE CHANGE THRESHOLD CURRENT vs INPUT VOLTAGE (VOUT = 3.3V) FN8299.1 June 8, 2012 ISL9110A Functional Description Functional Overview Refer to the “Block Diagram” on page 2. The ISL9110A implements a complete buck boost switching regulator, with PWM controller, internal switches, references, protection circuitry, and control inputs. The PWM controller automatically switches between buck and boost modes as necessary to maintain a steady output voltage, with changing input voltages and dynamic external loads. The ISL9110A provides output-power-good and input-power-good open-drain status outputs on pins 7 and 8. Internal Supply and References Referring to the “Block Diagram” on page 2, the ISL9110A provides two power input pins. The PVIN pin supplies input power to the DC/DC converter, while the VIN pin provides operating voltage source required for stable VREF generation. Separate ground pins (GND and PGND) are provided to avoid problems caused by ground shift due to the high switching currents. Enable Input A master enable pin EN allows the device to be enabled. Driving EN low invokes a power-down mode, where most internal device functions, including input and output power good detection, are disabled. Soft Discharge When the device is disabled by driving EN low, an internal resistor between VOUT and GND is activated. This internal resistor has a typical 120Ω resistance. POR Sequence and Soft-start Bringing the EN pin high allows the device to power-up. A number of events occur during the start-up sequence. The internal voltage reference powers up, and stabilizes. The device then starts operating. There is a typical 1ms delay between assertion of the EN pin and the start of switching regulator soft-start ramp. The soft-start feature minimizes output voltage overshoot and input inrush currents. During soft-start, the reference voltage is ramped to provide a ramping VOUT voltage. While output voltage is lower than approximately 20% of the target output voltage, switching frequency is reduced to a fraction of the normal switching frequency to aid in producing low duty cycles necessary to avoid input inrush current spikes. Once the output voltage exceeds 20% of the target voltage, switching frequency is increased to its nominal value. When the target output voltage is higher than the input voltage, there will be a transition from buck mode to boost mode during the soft-start sequence. At the time of this transition, the ramp rate of the reference voltage is decreased, such that the output voltage slew rate is decreased. This provides a slower output voltage slew rate. The VOUT ramp time is not constant for all operating conditions. Soft-start into boost mode will take longer than soft-start into buck mode. The total soft-start time into buck operating mode is 11 typically 2ms, whereas the typical soft-start time into boost mode operating mode is typically 3ms. Increasing the load current will increase these typical soft-start times. Overcurrent Protection When the current in the P-Channel MOSFET is sensed to reach the current limit for 16 consecutive switching cycles, the internal protection circuit is triggered, and switching is stopped for approximately 20ms. The device then performs a soft-start cycle. If the external output overcurrent condition exists after the soft-start cycle, the device will again detect 16 consecutive switching cycles reaching the peak current threshold. The process will repeat as long as the external overcurrent condition is present. This behavior is called ‘hiccup mode’. Short Circuit Protection The ISL9110A provides short-circuit protection by monitoring the feedback voltage. When feedback voltage is sensed to be lower than a certain threshold, the PWM oscillator frequency is reduced in order to protect the device from damage. The P-Channel MOSFET peak current limit remains active during this state. Undervoltage Lockout The undervoltage lockout (UVLO) feature prevents abnormal operation in the event that the supply voltage is too low to guarantee proper operation. When the VIN voltage falls below the UVLO threshold, the regulator is disabled. PG Status Output An open drain output-power-good signal is provided in the ISL9110A. An internal window comparator is used to detect when VOUT is significantly higher or lower than the target output voltage. The PG output will be driven low when sensed VOUT voltage is outside of this ‘power good’ window. When VOUT voltage is inside the ‘power-good’ window, the PG pin goes Hi-Z. The PG detection circuit detects this condition by monitoring voltage on the FB pin. Hysteresis is provided for the upper and lower PG thresholds to avoid oscillation of the PG output. BAT Status Output The ISL9110A provides an open drain input-power-good status output. The BAT status pin will be driven low when VIN rises above the VTBMON threshold. The BAT status output goes Hi-Z when VBAT falls below the VTBMON threshold. Hysteresis is provided for the VTBMON threshold to avoid oscillation of the BAT output. Ultrasonic Mode (Available Upon Request) The ISL9110A provides an ultrasonic mode that can be enabled during IC manufacturing upon request. In ultrasonic mode, the PFM switching frequency is forced to be above the audio frequency range. This ultrasonic mode applies only to PFM mode operation. When enabled, the PFM mode switching frequency is forced well above the audio frequency range (fSW becomes typically 60kHz). This mode of operation, however, reduces the efficiency at light load. FN8299.1 June 8, 2012 ISL9110A Thermal Shutdown A built-in thermal protection feature protects the ISL9110A, if the die temperature reaches +155°C (typical). At this die temperature, the regulator is completely shut down. The die temperature continues to be monitored in this thermal-shutdown mode. When the die temperature falls to +125°C (typical), the device will resume normal operation. When exiting thermal shutdown, the ISL9110A will execute its soft-start sequence. External Synchronization An external sync feature is provided. Applying a clock signal with a frequency between 2.75MHz and 3.25MHz at the MODE/SYNC input forces the ISL9110A to synchronize to this external clock. The MODE/SYNC input supports standard logic levels. Buck-Boost Conversion Topology The ISL9110A operates in either buck or boost mode. When operating in conditions where VIN is close to VOUT, the ISL9110A alternates between buck and boost mode as necessary to provide a regulated output voltage. L1 LX1 LX2 SWITCH A SWITCH D VOUT PVIN SWITCH B SWITCH C During PFM operation in boost mode, the ISL9110A closes Switch A and Switch C to ramp up the current in the inductor. When inductor current reaches a certain threshold, the device turns off Switches A and C, then turns on Switches B and D. With Switches B and D closed, output voltage increases as the inductor current ramps down. In most operating conditions, there will be multiple PFM pulses to charge up the output capacitor. These pulses continue until VOUT has achieved the upper threshold of the PFM hysteretic controller. Switching then stops, and remains stopped until VOUT decays to the lower threshold of the hysteretic PFM controller. Operation With VIN Close to VOUT When the output voltage is close to the input voltage, the ISL9110A will rapidly and smoothly switch from boost to buck mode as needed to maintain the regulated output voltage. This behavior provides excellent efficiency and very low output voltage ripple. Output Voltage Programming The ISL9110A is available in fixed and adjustable output voltage versions. To use the fixed output version, the VOUT pin must be connected directly to FB. In the adjustable output voltage version (ISL9110AIITAZ), an external resistor divider is required to program the output voltage. The FB pin has very low input leakage current, so it is possible to use large value resistors (e.g. R1 = 1MΩ and R2 = 324kΩ) in the resistor divider connected to the FB input. Applications Information Component Selection Figure 27 shows a simplified diagram of the internal switches and external inductor. PWM Operation In buck PWM mode, Switch D is continuously closed, and Switch C is continuously open. Switches A and B operate as a synchronous buck converter when in this mode. In boost PWM mode, Switch A remains closed and Switch B remains open. Switches C and D operate as a synchronous boost converter when in this mode. PFM Operation The fixed-output version of the ISL9110A requires only three external power components to implement the buck boost converter: an inductor, an input capacitor, and an output capacitor. The adjustable ISL9110A versions require three additional components to program the output voltage. Two external resistors program the output voltage, and a small capacitor is added to improve stability and response. An optional input supply filtering capacitor (“C3” in Figure 28) can be used to reduce the supply noise on the VIN pin, which provides power to the internal reference. In most applications, this capacitor is not needed. V IN = 1.8V TO 5.5V During PFM operation in buck mode, Switch D is continuously closed, and Switch C is continuously open. Switches A and B operate in discontinuous mode during PFM operation. ISL9110AIITAZ A1 B1 PVIN LX1 C1 10µF C3 1µF STATUS OUTPUTS C1 D3 C2 D2 D1 VIN MODE EN BAT PG C5 D4 GND LX2 VOUT FB PGND A2 B2 A4 B4 A5 B5 D5 L1 2.2µH R1 1M V OUT = 3.0V/1A C4 56pF C2 10µF R2 365k A3 B3 C3 C4 FIGURE 27. BUCK BOOST TOPOLOGY FIGURE 28. TYPICAL ISL9110AIITAZ APPLICATION 12 FN8299.1 June 8, 2012 ISL9110A Output Voltage Programming, Adj. Version PVIN and VOUT Capacitor Selection Setting and controlling the output voltage of the ISL9110AIITAZ (adjustable output version) can be accomplished by selecting the external resistor values. The input and output capacitors should be ceramic X5R type with low ESL and ESR. The recommended input capacitor value is 10µF. The recommended VOUT capacitor value is 10µF to 22µF. Equation 1 can be used to derive the R1 and R2 resistor values: TABLE 2. CAPACITOR VENDOR INFORMATION R1 V OUT = 0.8V • ⎛ 1 + --------⎞ ⎝ R2⎠ (EQ. 1) When designing a PCB, include a GND guard band around the feedback resistor network to reduce noise and improve accuracy and stability. Resistors R1 and R2 should be positioned close to the FB pin. Feed-Forward Capacitor Selection A small capacitor (C4 in Figure 28) in parallel with resistor R1 is required to provide the specified load and line regulation. The suggested value of this capacitor is 56pF for R1 = 1MΩ. An NPO type capacitor is recommended. Non-Adjustable Version FB Pin Connection MANUFACTURER X5R www.avx.com Murata X5R www.murata.com Taiyo Yuden X5R www.t-yuden.com TDK X5R www.tdk.com Application Example 1 An application using the fixed-output ISL9110AIITNZ is shown in Figure 30. This application requires only three external components. A1 B1 C1 D3 A2 B2 D2 D1 A4 B4 EN VOUT A5 B5 BAT PG FB D5 VOUT A5 B5 STATUS OUTPUTS L1 2.2µH D1 MODE EN BAT PG FB D5 L1 2.2µH V OUT = 3.3V/1A C2 10µF PGND GND A3 B3 C3 C4 LX2 MODE LX2 A4 B4 V OUT = 3.3V/1A C2 10µF FIGURE 30. TYPICAL ISL9110AIITNZ APPLICATION PGND Application Example 2 A3 B3 C3 C4 C5 D4 GND FIGURE 29. TYPICAL ISL9110AIITNZ APPLICATION Inductor Selection An application requiring VOUT = 3.0V, using the adjustable-output ISL9110AIITAZ is shown in Figure 31. This application requires six external components. ISL9110AIITAZ V IN = 1.8V-5.5V An inductor with high frequency core material (e.g. ferrite core) should be used to minimize core losses and provide good efficiency. The inductor must be able to handle the peak switching currents without saturating. A 2.2µH inductor with ≥2.4A saturation current rating is recommended. Select an inductor with low DCR to provide good efficiency. In applications where radiated noise must be minimized, a toroidal or shielded inductor can be used. A1 B1 PVIN LX1 A2 B2 LX2 A4 B4 VOUT A5 B5 C1 10µF C1 D3 C2 STATUS OUTPUTS D2 D1 VIN MODE EN BAT PG GND FB D5 PGND L1 2.2µH R1 1M C4 56pF V OUT = 3.0V/1A C2 10µF R2 365k A3 B3 C3 C4 C2 VIN D2 C5 D4 C1 D3 A2 B2 VIN C5 D4 LX1 PVIN LX1 PVIN C1 10µF C2 C1 10µF STATUS OUTPUTS ISL9110AIITNZ V IN = 1.8V-5.5V ISL9110AIITNZ A1 B1 WEBSITE AVX The fixed output versions of the ISL9110A does not require external resistors or a capacitor on the FB pin. Simply connect VOUT to FB, as shown in Figure 29. V IN = 1.8V-5.5V SERIES TABLE 1. INDUCTOR VENDOR INFORMATION MANUFACTURER SERIES WEBSITE Coilcraft LPS4018 www.coilcraft.com Murata LQH44P www.murata.com Taiyo Yuden NRS4018 NRS5012 www.t-yuden.com Sumida CDRH3D23/HP CDRH4D22/HP www.sumida.com Toko DEM3518C www.toko.co.jp 13 FIGURE 31. TYPICAL ISL9110AIITAZ APPLICATION Recommended PCB Layout Correct PCB layout is critical for proper operation of the ISL9110A. The input and output capacitors should be positioned as closely to the IC as possible. The ground connections of the input and output capacitors should be kept as short as possible, and should be on the component layer to avoid problems that are caused by high switching currents flowing through PCB vias. FN8299.1 June 8, 2012 ISL9110A FIGURE 32. RECOMMENDED ISL9110AIITNZ PCB LAYOUT 14 FIGURE 33. RECOMMENDED ISL9110AIITAZ PCB LAYOUT FN8299.1 June 8, 2012 ISL9110A Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest revision. DATE REVISION CHANGE May 29, 2012 FN8299.1 Corrected “Pin Configuration” on page 2. May 11, 2012 FN8299.0 Initial Release. Products Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families. For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL9110A To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff FITs are available from our website at http://rel.intersil.com/reports/search.php For additional products, see www.intersil.com/product_tree Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com 15 FN8299.1 June 8, 2012 ISL9110A Package Outline Drawing W4x5.20A 20 BALL WAFER LEVEL CHIP SCALE PACKAGE (WLCSP) Rev 1, 1/12 1.200 X 1.595±0.02 Y 0.400 5 0.400 4 20x 0.270±0.03 3 2.335±0.02 1.600 2 1 0.367 (4X) 0.10 A TOP VIEW B C D 0.197 0.200 PIN 1 (A1 CORNER) BOTTOM VIEW Z 0.05 Z 3 SEATING PLANE PACKAGE OUTLINE 0.225 0.300±0.025 0.400 0.270±0.03 0.275 0.10 0.05 ZXY Z 0.175±0.03 0.530 MAX TYPICAL RECOMMENDED LAND PATTERN SIDE VIEW NOTES: 1. Dimensions and tolerance per ASME Y 14.5M - 1994. 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z. 3. Primary datum Z and seating plane are defined by the spherical crowns of the bump. 4. Bump position designation per JESD 95-1, SPP-010. 5. There shall be a minimum clearance of 0.10mm between the edge of the bump and the body edge. 16 FN8299.1 June 8, 2012