PHOTOMULTIPLIER TUBES AND ASSEMBLIES PHOTOMULTIPLIER TUBES AND ASSEMBLIES WEB SITE www.hamamatsu.com INTRODUCTION In radiation measurements, scintillation counters which are combinations of scintillators and photomultiplier tubes are used as most common and useful devices in detecting X-, alpha-, beta-, gamma-rays and other high energy charged particles. A scintillator emits flashes of light in response to input radiations and a photomultiplier tube coupled to a scintillator detects these scintillation lights in a precise way. In high energy physics experiments, one of important apparatuses is a Cherenkov counter in which photomultiplier tubes detect Cherenkov radiations emitted by high energy charged particles passing through a dielectric material. To detect radiations accurately, photomultiplier tubes may be required to have high detecting efficiency (QE & energy resolution), wide dynamic range (pulse linearity), good time resolution (T.T.S.), high stablility & reliability, and to be operatable in high magnetic field environment or at high temperature condition. In addition, a ruggedized construction is required according to circumstances. On the other hand, several kinds of position sensitive photomultiplier tubes have been developed and are used in these measurements. This catalog provides a quick reference for Hamamatsu photomultiplier tubes, especially designed or selected for scintillation counters and Cherenkov radiation detectors, and includes most of types currently available ranging in size from 3/8" through 20" in diameter. It should be noted that this catalog is just a starting point in describing Hamamatsu product line since new types are continuously under-development. Please feel free to contact us with your specific requirements. Photomultiplier Tubes and Assemblies For Scintillation Counting and High Energy Physics TABLE OF CONTENTS Photomultiplier Tubes Page Operating Characteristics ........................................................................ 2 List Guide for Photomultiplier Tubes ..................................................... 18 Photomultiplier Tubes ........................................................................... 20 Dimensional Outlines and Basing Diagrams for Photomultiplier Tubes ........... 28 Typical Gain Characteristics .................................................................. 40 Position Sensitive Photomultiplier Tubes .............................................. 44 Voltage Distribution Ratios .................................................................... 46 Photomultiplier Tube Assemblies Quick Reference for PMT Hybrid Assemblies .................................... 48 Dimensional Outlines and Circuit Diagrams for PMT Hybrid Assemblies ............ 50 Quick Reference for PMT Socket Assemblies ..................................... 58 Dimensional Outlines and Circuit Diagrams for PMT Socket Assemblies ............. 60 Dimensional Outlines for E678 Series Sockets ..................... 68 Index by Type No. .................................................................... 70 Cautions and Warranty ............................................................ 72 Typical Photocathode Spectral Response and Emission Spectrum of Scintillators ................................. 73 Operating Characteristics This section describes the prime features of photomultiplier tube construction and basic operating characteristics. 1. GENERAL The photomultiplier tube (PMT) is a photosensitive device consisting of an input window, a photocathode, focusing electrodes, an electron multiplier (dynodes) and an anode in a vacuum tube, as shown in Figure 1. When light enters the photocathode, the photocathode emits photoelectrons into vacuum by the external photoelectric effect. These photoelectrons are directed by the potential of focusing electrode towards the electron multiplier where electrons are multiplied by the process of secondary electron emission. The multiplied electrons are collected to the anode to produce output signal. QE = Number of Photoelectrons ×100 (%) Number of Photons Radiant sensitivity (S) is the photoelectric current from the photocathode divided by the incident radiant power at a given wavelength, expressed in A/W (ampere per watt). The equation of S is as follows: S= Photoelectric Current (A/W) Radiant Power of Light Quantum efficiency and radiant sensitivity have the following relationship at a given wavelength. QE = S×1240 ×100 (%) λ where λ is the wavelength in nm (nanometer). 2.3 Window Materials Figure 1: Cross-Section of Head-On Type PMT The window materials commonly used in PMT are as follows: PHOTOCATHODE FOCUSING ELECTRODES STEM (1) Borosilicate glass INCIDENT LIGHT INPUT WINDOW PHOTOELECTRON ELECTRON MULTIPLIER (DYNODES) ANODE TPMHC0048EA This is the most frequently used material. It transmits light from the infrared to approximately down to 300 nm. For some scintillation applications where radioactivity of K40 contained in the glass affects the measurement, "K-free" glass is recommended. As "K-free" glass contains very little amount of Potassium, the background counts originated by 40K is minimized. (2) UV-transmitting glass 2. PHOTOCATHODE 2.1 Spectral Response The photocathode of PMT converts energy of incident light into photoelectrons by the external photoelectric effect. The conversion efficiency, that is photocathode sensitivity, varies with the wavelength of incident light. This relationship between the photocathode sensitivity and the wavelength is called the spectral response characteristics. Typical spectral response curves of the variation of bialkali photocathodes are shown on the inside of the back cover. The spectral response range is determined by the photocathode material on the long wavelength edge, and by the window material on the short wavelength edge. In this catalog, the long wavelength cut-off of spectral response range is defined as the wavelength at which the cathode radiant sensitivity drops to 1 % of the maximum sensitivity. 2.2 Quantum Efficiency and Radiant Sensitivity Spectral response is usually expressed in term of quantum efficiency and radiant sensitivity as shown on the inside the back cover. Quantum efficiency (QE) is defined as the ratio of the number of photoelectrons emitted from the photocathode to the number of incident photons. It's customarily stated as a percentage. The equation of QE is as follows: 2 This glass transmits ultraviolet light well as the name implies, and it is widely used. The UV cut-off wavelength is approximately 185 nm. (3) Synthetic silica This material transmits ultraviolet light down to 160 nm. Silica is not suitable for the stem material of tubes because it has a different thermal expansion coefficient from kovar metal which is used for the tube leads. Thus, borosilicate glass is used for the stem. In order to seal these two materials having different thermal expansion ratios, a technique called graded seal is used. This is a technique to seal several glass materials having gradually different thermal expansion ratios. Another feature of silica is superiority in radiation hardness. 2.4 Photocathode Materials The photocathode is a photoemissive surface with very low work and high energy physics applications: (1) Bialkali This has a spectral response which fits the emission spectra of most scintillators. Thus, it is frequently used for scintillator applications. (2) High Temperature Bialkali This is particularly useful at higher operating temperatures up to 175 °C. Its major application is oil well logging. Also it can be operated with very low dark current at the room temperature. As stated above, the spectral response range is determined by the materials of the photocathode and the window as shown in Figure 33. It is important to select appropriate materials which will suit the application. 2.5 Luminous and Blue Sensitivity Since the measurement of spectral response characteristics of a PMT requires a sophisticated system and time, it isn't practical to provide spectral response data on each tube. Instead, cathode and anode luminous sensitivity data are usually attached. 3. ELECTRON MULTIPLIER (DYNODES) The superior sensitivity (high gain and high S/N ratio) of PMT is due to a low noise electron multiplier which amplifies electrons in a vaccum with cascade secondary emission process. The electron multiplier consists of several to up to 19 stages of electrodes which are called dynodes. 3.1 Dynode Types There are several principal types of dynode structures. Features of each type are as follows: (1) Linear focused type The cathode luminous sensitivity is the photoelectric current from the photocathode per incident light flux (10-5 to 10-2 lumen) from a tungsten filament lamp operated at a distribution temperature of 2856 K. The cathode luminous sensitivity is expressed in the unit of µA/lm (micro amperes per lumen). Note that the lumen is a unit used for luminous flux in the visible region, therefore these values may be meaningless for tubes which are sensitive out of the visible region (refer to Figure 2). The cathode blue sensitivity is the photoelectric current from the photocathode per incident light flux of a tungsten filament lamp at 2856 K passing through a blue filter. Corning CS-5-58 filter which is polished to half stock thickness is used for the measurement of this sensitivity. This filter is a band-pass filter and its peak wavelength of transmittance is 400 nm. Since the light flux, once transmitted through the blue filter, can not be expressed in lumen, the blue sensitivity is usually represented by the blue sensitivity index. The blue sensitivity is a very important parameter in the scintillation counting since most of the scintillators produce emission spectrum in the blue region, and it may dominant factor of energy resolution. These parameters of cathode luminous and blue sensitivities are particularly useful when comparing tubes having the same or similar spectral response ranges. Hamamatsu final test sheets accompanied with tubes usually indicate these parameters. Fast time response, high pulse linearity (2) Box and grid type Good collection efficiency, good uniformity (3) Box and linear focused type Good collection efficiency, good uniformity, low profile (4) Circular cage type Fast time response, compactness (5) Venetian blind type Good uniformity, large output current (6) Fine mesh type High immunity to magnetic fields, good uniformity, high pulse linearity, position detection possible. (7) Coarse mesh type Immunity to magnetic fields, high pulse linearity, position detection possible. (8) Metal channel type Compact dynode construction, fast time response, position detection possible. Also hybrid dynodes combining two of the above dynodes have been developed. These hybrid dynodes are designed to provide the merits of each dynode type. Figure 2: Typical Human Eye Response and Spectral Distribution of 2856 K Tungsten Lamp 100 TPMOB0054EB 4. ANODE TUNGSTEN LAMP AT 2856 K RELATIVE VALUE (%) 80 The PMT anode output is the product of photoelectric current from the photocathode and gain. Photoelectric current is proportional to the intensity of incident light. Gain is determined by the applied voltage on a specified voltage divider. 60 40 4.1 Luminous sensitivity VISUAL SENSITIVITY 20 0 200 400 600 800 1000 WAVELENGTH (nm) 1200 1400 The anode luminous sensitivity is the anode output current per incident light flux (10-10 to 10-5 lumen) from a tungsten filament lamp operated at a distribution temperature of 2856 K. This is expressed in the unit of A/lm (amperes per lumen) at a specified anode-to-cathode voltage with a specified voltage divider. 3 4.2 Gain (Current Amplification) 5. ANODE DARK CURRENT Photoelectrons emitted from a photocathode are accelerated by an electric field so as to strike the first dynode and produce secondary electron emissions. These secondary electrons then impinge upon the next dynode to produce additional secondary electron emissions. Repeating this process over successive dynode stages (cascade process), a high gain is achieved. Therefore a very small photoelectric current from the photocathode can be observed as a large output current from the anode of the PMT. Gain is simply the ratio of the anode output current to the photoelectric current from the photocathode. Ideally, the gain of the PMT is defined as δn, where n is the number of dynode stage and δ is an average secondary emission ratio. While the secondary electron emission ratio δ is given by A small amount of output current flows in a PMT even when it is operated in complete darkness. This current is called the anode dark current. The dark current and the noise resulted from are critical factors to determin the lower limit of light detection. The causes of dark current may be categorized as follows: δ = A • Eα where A is constant, E is an interstage voltage, and α is a coefficient determined by the dynode material and geometric structure. It usually has a value of 0.7 to 0.8. When a voltage V is applied between the cathode and the anode of the PMT having n dynode stages, gain G becomes G = δn = (A • Eα)n = = An (n + 1)αn α {A • ( n V+ 1 ) } n 108 107 GA 106 100 GAIN 101 IN SE NS ITI VI TY 102 105 Ohmic leakage resulting from insufficient insulation of the glass stem base and socket may be another source of dark current. This is predominant when a PMT is operated at a low voltage or low temperature. Contamination by dirt and humidity on the surface of the tube may cause ohmic leakage, and therefore should be avoided. (5) Field emission 10-1 10-2 200 104 300 500 700 1000 103 1500 SUPPLY VOLTAGE (V) Figure 3 shows gain characteristics. Since generally PMTs have 8 to 12 dynode stages, the anode output varies directly with the 6th to 10th power of the change in applied voltage. The output signal of the PMT is extremely susceptible to fluctuations in the power supply voltage, thus the power supply should be very stable and exhibit minimum ripple, drift and temperature coefficient. Regulated high voltage power supplies designed with this consideration are available from Hamamatsu. 4 Residual gases inside the PMT can be ionized by the flow of photoelectrons. When these ions strike the photocathode or earlier stages of dynodes, secondary electrons may be emitted, thus resulting in relatively large output noise pulses. These noise pulses are usually observed as afterpulses following the primary signal pulses and may be a problem in detecting short light pulses. Present PMT's are designed to minimize afterpulses. (4) Ohmic leakage AN OD E ANODE LUMINOUS SENSITIVITY (A/lm) 109 103 (2) Ionization of residual gases In case electrons deviating from their normal trajectories strike the glass envelope, scintillations may occur and dark pulses may result. To eliminate these pulses, PMT's may be operated with the anode at high voltage and the cathode at the ground potential. Otherwise it is useful to coat the glass bulb with a conductive paint connected to the cathode (called HA treatment: see page 13). (K: constant) TPMOB0038EB Since the materials of the photocathode and dynodes have very low work functions, they emit thermionic electrons even at the room temperature. Most of the dark current originates from the thermionic emissions especially from the photocathode, and it is multiplied by the dynodes. (3) Glass scintillation Vαn = K • Vαn Figure 3: Example of Gain vs. Supply Voltage 104 (1) Thermionic emission of electrons When a PMT is operated at a voltage near the maximum rating value, some electrons may be emitted from electrodes by strong electric fields causing dark pulses. It is therefore recommended that the tube be operated at 100 volts to 300 volts lower than the maximum rating. The anode dark current decreases along time after a PMT is placed in darkness. In this catalog, anode dark currents are specified as the state after 30 minutes storage in darkness. 6. TIME RESPONSE In applications where forms of the incident light are pulses, the anode output signal should reproduce a waveform faithful to the incident pulse waveform. This reproducibility depends on the anode pulse time response. These parameters are affected by the dynode structure and applied voltage. In general, PMTs of the linear focused or circular cage structure exhibit better time response than that of the box-and-grid or venetian blind structure. (1) Rise Time (refer to Figure 4) Figure 6 shows typical time response characteristics vs. applied voltage for types R2059 (51 mm dia. head-on, 12-stage, linear-focused type). The time for the anode output pulse to rise from 10 % to 90 % of the peak amplitude when the whole photocathode is illuminated by a delta-function light pulse. Figure 6: Time Response Characteristics vs. Supply Voltage (2) Electron Transit Time (refer to Figure 4) 102 TYPE NO. : R2059 TPMOB0059EB The time interval between the arrival of a delta-function light pulse at the photocathode and the instant when the anode output pulse reaches its peak amplitude. TRANSIT TIME (3) T.T.S. (Transit Time Spread) (refer to Figure 5) 101 TIME (ns) This is also called the transit time jitter. This is the fluctuation in transit time between individual pulses, and is defined as the FWHM of the frequency distribution of electron transit times. T.T.S. depends on the number of incident photons. The values in this catalog are measured in the single photoelectron state. RISE TIME 100 Figure 4: Definition of Rise Time and Transit Time T. T. S. DELTA-FUNCTION LIGHT PULSE AT PHOTOCATHODE 500 TRANSIT TIME Tt 1000 1500 2000 2500 3000 SUPPLY VOLTAGE (V) 90% 10% RISE TIME TPMOC0041EA 7. PULSE LINEARITY Figure 5: Definition of T.T.S. Tt FREQUENCY FWHM=T.T.S. Tt TIME TPMOC0042EA (4) C.R.T. (Coincident Resolving Time) This is one of the important parameters in high energy physics applications and is defined as the FWHM of a coincident timing spectrum of a pair PMT's facing each other when they detect coincident gamma-ray emission due to positron annihilation of a radiation source (22Na). The scintillators used are CsF, BGO or BaF2 crystals. These PMT's can be selected for special requirements. The definition of the pulse linearity is proportionality between the input light amount and the output current in the pulse operation mode. When intense light pulses are to be measured, it's necessary to know the pulse linearity range of the PMT. In this catalog, typical values of pulse linearity are specified at two points (±2 % and ±5 % deviations from linear proportionality), as shown in Figure 7. The two-pulse technique is employed in this measurement. LED's are used for a pulsed light source. Its pulse width is 50 ns and the repetition rate is 1 kHz. The deviation from the proportionality is called non-linearity in this catalog. The cause of non-linearity is mainly a space charge effect in the later stages of an electron multiplier. This space charge effect depends on the pulse height of the PMT output current and the strength of electric fields between electrodes. 5 Figure 7: Example of Pulse Linearity Characteristic DEVIATION (%) 10 9. STABILITY TPMHB0094ED 0 2% In scintillation counting, there are two relevant stability characteristics for the PMT in pulse height mode operation, the long term and the short term. In each case a 137Cs source (662 keV), and an NaI(Tl) scintillator, and a multichannel pulse height analyzer are used. PMT's are warmed up for about one hour in the dark with voltage applied. 5% 9.1 Long Term Stability (Mean gain deviation) -10 This is defined as follows when the PMT is operated for 16 hours at a constant count rate of 1000 s-1: -20 100 101 102 n Σ P-Pi i =1 Dg = n 103 ANODE PEAK CURRENT (mA) The special voltage distribution ratios are designed to achieve strong electric fields in the later stages of the electron multiplier. Some types are specified with these special voltage dividers. 100 P • (%) where P is the mean pulse height averaged over n readings, Pi is the pulse height at the i-th reading, and n is the total number of readings. 9.2 Short Term Stability 8. UNIFORMITY Although the focusing electrodes of a PMT are designed so that electrons emitted from the photocathode or dynodes are collected efficiently by the first or following dynodes, some electrons may deviate from their desired trajectories and collection efficiency is degraded. The collection efficiency varies with the position on the photocathode from which the photoelectrons are emitted, and influences the spatial uniformity of a photomultiplier tube. The spatial uniformity is also determined by the photocathode surface uniformity itself. PMTs especially designed for gamma camera applications have excellent spatial uniformity. Example of spatial uniformity is shown in Figure 8. Figure 8: Example of Spatial Uniformity 9.3 Drift and Life Characteristics While operating a photomultiplier tube continuously over a long period, anode output current of the photomultiplier tube may vary slightly with time, although operating conditions have not changed. This change is reffered to as drift or in the case where the operating time is 1000 hours to 10000 hours it is called life characteristics. Figure 9 shows typical life characteristics. Drift is primarily caused by damage to the last dynode by heavy electron bombardment. Therefore the use of lower anode current is desirable. When stability is of prime importance, the use of average anode current of 1 µA or less is recommended. a' TOP VIEW OF PHOTOCATHODE This is the gain shift against count rate change. The tube is initially operated at about 10000 s-1. The photo-peak count rate is then decreased to approximately 1000 s-1 by increasing the distance between the 137Cs source and the scintillator coupled to the PMT. Figure 9: Examples of Life SENSITIVITY (%) 100 0 50 100 a RELATIVE ANODE SENSITIVITY (%) 150 SENSITIVITY (%) 50 0 a a' TPMHC0050EA TPMHB0794EA x+σ 125 x 100 x-σ 75 50 TEST CONDITIONS SUPPLY VOLTAGE: 1000 V INITIAL CURRENT: 100 µA LIGHT SOURCE: TUNGSTEN LAMP TEMPERATURE: 25 °C NUMBER OF SAMPLES: 10 25 0 1 10 100 OPERATING TIME (h) 6 1000 10000 10. ENVIRONMENT 10.1 Temperature Characteristics The sensitivity of the PMT varies with the temperature. Figure 10 shows typical temperature coefficients of anode sensitivity around the room temperature for bialkali and high temp. bialkali photocathode types. In the ultraviolet to visible region, the temperature coefficient of sensitivity has a negative value, while it has a positive value near the longer wavelength cut-off. Since the temperature coefficient change is large near the longer wavelength cut-off, temperature control may be required in some applications. For example, the shield case, of which inner diameter is 60 mm and the thickness is 0.8 mm, can be used in a magnetic field of around 5 mT without satulation. If a magnetic field strength is more than 10 mT, the double shielding method is necessary for a conventional PMT, otherwise proximity mesh types should be used. It should be noted that the magnetic shielding effect decreases towards the edge of the shield case as shown in Figure 12. It is suggested to cover a PMT with a shield case longer than the PMT length by at least half the PMT diameter. Figure 11: Typical Effects by Magnetic Fields Perpendicular to Tube Axis 1.0 Figure 10: Typical Temperature Coefficients of Anode Sensitivity 19 mm dia. HEAD-ON TYPE LINEAR-FOCUSED TYPE DYNODE TPMOB0036EC ( RELATIVE OUTPUT TEMPERATURE COEFFICIENT (%/°C) 0.5 TPMOB0017EB ) 0.1 51 mm dia. HEAD-ON TYPE BOX-AND-GRID TYPE DYNODE 0 ( ) HIGH TEMP. BIALKALI 0.01 -3 -2 400 0 1 2 3 MAGNETIC FLUX DENSITY (mT) BIALKALI -0.5 200 -1 600 800 Figure 12: Edge Effect of Magnetic Shield Case WAVELENGTH (nm) t LONGER than r SHIELDING FACTOR Most PMTs are affected by the presence of magnetic fields. Magnetic fields may deflect electrons from their normal trajectories and cause a loss of gain. The extent of the loss of gain depends on the type of the PMT and its orientation in the magnetic field. Figure 11 shows typical effects of magnetic fields on some types of PMTs. In general, a PMT having a long path from the photocathode to the first dynode are very sensitive to magnetic fields. Therefore head-on types, especially of large diameter, tend to be more adversely influenced by magnetic fields. When a PMT has to be operated in magnetic fields, it may be necessary to shield the PMT with a magnetic shield case. (Hamamatsu provides a variety of magnetic shield cases.) 2r 10.2 Magnetic Field PHOTOMULTIPLIER TUBE L 1000 100 10 1 r r TPMOB0011EB The proximity mesh made of non-magnetic material has been introduced as alternate dynodes in PMT's. These types (see page 24) exhibit much higher immunity to external magnetic fields than the conventional PMT's. Also triode and three types (see page 24) are useful for applications at high light intensities. 7 11. VOLTAGE DIVIDER CIRCUITS 11.1 Anode Grounding and Photocathode Grounding To operate a photomultiplier tube, a high voltage of 500 volts to 2000 volts is usually supplied between the photocathode (K) and the anode (P), with a proper voltage gradient set up along the photoelectron focusing electrode (F) or grid (G), secondary electron multiplier electrodes or dynodes (Dy) and, depending on photomultiplier tube type, an accelerating electrode (Acc). Figure 13 shows a schematic representation of photomultiplier tube operation using independent multiple power supplies, but this is not a practical method. Instead, a voltage divider circuit is commonly used to divide, by means of resistors, a high voltage supplied from a single power supply. In order to eliminate the potential difference between the photomultiplier tube anode and external circuits such as an ammeter, and to facilitate the connection, the generally used technique for voltage divider circuits is to ground the anode and supply a high negative voltage (-HV) to the photocathode, as shown in Figure 14. This scheme provides the signal output in both DC and pulse operations, and is therefore used in a wide range of applications. Figure 13: Schematic Representation of Photomultiplier Tube Operation LIGHT K F Dy1 ePHOTOELECTRONS Dy2 Dy3 P SECONDARY ELECTRONS eeeANODE CURRENT Ip A V2 V1 V3 V4 V5 POWER SUPPLIES TACCC0055EA In photon counting and scintillation counting applications, however, the photomultiplier tube is often operated with the photocathode grounded and a high positive voltage (+HV) supplied to the anode mainly for purposes of noise reduction. This photocathode grounding scheme is shown in Figure 15, along with the coupling capacitor Cc for isolating the high voltage from the output circuit. Accordingly, this setup cannot provide a DC signal output and is only used in pulse output applications. The resistor RP is used to give a proper potential to the anode. The resistor RL is placed as a load resistor, but the actual load resistance will be the combination of RP and RL. Figure 15: Photocathode Grounded Voltage Divider Circuit K Figure 14 shows a typical voltage divider circuit using resistors, with the anode side grounded. The capacitor C1 connected in parallel to the resistor R5 in the circuit is called a decoupling capacitor and improves the output linearity when the photomultiplier tube is used in pulse operation, and not necessarily used in providing DC output. In some applications, transistors or Zener diodes may be used in place of these resistors. Figure 14: Anode Grounded Voltage Divider Circuit K F Dy1 Dy2 Dy3 P Ip OUTPUT RL R1 R2 R3 R4 R5 C1 -HV TACCC0056EB 8 F Dy1 Dy2 Dy3 P CC OUTPUT Ip RP R1 R2 R3 R4 R5 RL C2 C1 +HV TACCC0057EB 11.2 Standard Voltage Divider Circuits Basically, the voltage divider circuits of socket assemblies listed in this catalog are designed for standard voltage distribution ratios which are suited for constant light measurement. Socket assemblies for side-on photomultiplier tubes in particular mostly use a voltage divider circuit with equal interstage voltages allowing high gain as shown in Figure 16. Figure 16: Equally Divided Voltage Divider Circuit K Dy1 Dy2 Dy3 Dy4 Dy5 P OUTPUT 1R 1R 1R 1R 1R 1R C1 C2 RL 11.4 Voltage Divider Circuit and Photomultiplier Tube Output Linearity In both DC and pulse operations, when the light incident on the photocathode increases to a certain level, the relationship between the incident light level and the output current begins to deviate from the ideal linearity. As can be seen from Figure 18, region A maintains good linearity, and region B is the so-called overlinearity range in which the output increase is larger than the ideal level. In region C, the output goes into saturation and becomes smaller than the ideal level. When accurate measurement with good linearity is essential, the maximum output current must be within region A. In contrast, the lower limit of the output current is determined by the dark current and noise of the photomultiplier tube as well as the leakage current and noise of the external circuit. Figure 18: Output Linearity of Photomultiplier Tube -HV TACCC0058EB 10 TACCB0005EA 11.3 Tapered Voltage Divider Circuits B 1.0 ACTUAL CURVE 0.1 IDEAL CURVE A RATIO OUTPUT CURRENT TO DIVIDER CURRENT C In most pulsed light measurement applications, it is often necessary to enhance the voltage gradient at the first and/or last few stages of the voltage divider circuit, by using larger resistances as shown in Figure 17. This is called a tapered voltage divider circuit and is effective in improving various characteristics. However it should be noted that the overall gain decreases as the voltage gradient becomes greater. In addition, care is required regarding the interstage voltage tolerance of the photomultiplier tube as higher voltage is supplied. The tapered voltage circuit types and their suitable applications are listed below. 0.01 0.001 0.001 0.01 Tapered circuit at the last few stages (resistance: small / large) High pulsed light detection (improvement in output linearity) High-speed pulsed light detection (improvement in timing properties) Other applications requiring high output across the load resistor Dy1 Dy2 Dy3 Dy4 Dy5 11.5 Output Linearity in DC Mode Figure 19 is a simplified representation showing photomultiplier tube operation in the DC output mode, with three stages of dynodes and four dividing resistors R1 through R4 having the same resistance value. P K OUTPUT 2R 1.5R 1R 1R 2R C1 10 Figure 19: Basic Operation of Photomultiplier Tube and Voltage Divider Circuit Figure 17: Tapered Voltage Divider Circuit K 1.0 LIGHT FLUX (A.U.) Tapered circuit at the first few stages (resistance: large / small) Photon counting (improvement in pulse height distribution) Low-light-level detection (S/N ratio enhancement) High-speed pulsed light detection (improvement in timing properties) Other applications requiring better magnetic characteristics and uniformity 0.1 3R Dy1 Dy2 I2 I1 Dy3 P I3 I4 Ip RL IK C2 IDy1 IDy2 A IDy3 R1 R2 R3 R4 IR1 IR2 IR3 IR4 ID -HV -HV TACCC0059EB TACCC0060EA 9 [When light is not incident on the tube] In dark state operation where a high voltage is supplied to a photomultiplier tube without incident light, the current components flowing through the voltage divider circuit will be similar to those shown in Figure 20 (if we ignore the photomultiplier tube dark current). The relation of current and voltage through each component is given below Figure 21: Operation with Light Input I1' (=IK') K Ik' Dy2 IDy1' IR1' I4' (=IP') I3' I2' Dy1 Dy3 IDy2' P IDy3' IR2' IR3' R1 R2 R3 V1' V2' V3' IP' IR4' R4 V4' Interelectrode current of photomultiplier tube -HV I1=I2=I3=I4 (= 0 A) ID' =ID + ∆ID Electrode current of photomultiplier tube TACCC0062EA IK=IDy1=IDy2=IDy3=IP (= 0 A) Voltage divider circuit current Figure 22 shows changes in the interstage voltages as the incident light level varies. The interstage voltage V4' with light input drops significantly compared to V4 in dark state operation. This voltage loss is redistributed to the other stages, resulting an increases in V1', V2' and V3' which are higher than those in dark state operation. The interstage voltage V4' is only required to collect the secondary electrons emitted from the last dynode to the anode, so it has little effect on the anode current even if dropped to 20 or 30 volts. In contrast, the increases in V1', V2' and V3' directly raise the secondary emission ratios (δ1, δ2 and δ3) at the dynodes Dy1, Dy2 and Dy3, and thus boost the overall gain m (= δ1 • δ2 • δ3 ). This is the cause of overlinearity in region B in Figure 10. As the incident light level further increases so that V4' approaches 0 volts, output saturation occurs in region C. 4 IR1=IR2=IR3=IR4=ID= (HV/ Σ Rn) n=1 Voltage divider circuit voltage V1=V2=V3=V4=ID • Rn (= HV/4) Figure 20: Operation without Light Input K I1 (=IK) IK I2 Dy1 I3 Dy2 IDy1 IDy2 IR1 IR2 I4 (=IP) Dy3 P IP IDy3 IR3 IR4 R1 R2 R3 R4 V1 V2 V3 V4 -HV ID TACCC0061EA IRn' = ID' - In' Where In' is the interelectrode current which has the following relation: I1' < I2' < I3' < I4' Thus, the interstage voltage Vn' (=IRn' • Rn) becomes smaller at the latter stages, as follows: V1' > V2' > V3' > V4' 10 120 INTERSTAGE VOLTAGE (%) [When light is incident on the tube] When light is allowed to strike the photomultiplier tube under the conditions in Figure 20, the resulting currents can be considered to flow through the photomultiplier tube and the voltage divider circuit as schematically illustrated in Figure 21. Here, all symbols used to represent the current and voltage are expressed with a prime ( ' ), to distinguish them from those in dark state operation. The voltage divider circuit current ID' is the sum of the voltage divider circuit current ID in dark state operation and the current flowing through the photomultiplier tube ∆ID (equal to average interelectrode current). The current flowing through each dividing resistor Rn becomes as follows: Figure 22: Changes in Interstage Voltages at Different Incident Light Levels TACCB0017EA MODERATE LIGHT INPUT HIGH LIGHT INPUT 110 100 NO OR FAINT LIGHT INPUT 90 80 V1 V2 V3 POSITION OF INTERSTAGE VOLTAGE V4 11.6 Linearity Improvement in DC Output Mode To improve the linearity in DC output mode, it is important to minimize the changes in the interstage voltage when photocurrent flows through the photomultiplier tube. There are several specific methods for improving the linearity, as discussed below. 1Increasing the voltage divider current Figure 23 shows the relationship between the output linearity of a 28 mm (1-1/8") diameter side-on photomultiplier tube and the ratio of anode current to voltage divider current. For example, to obtain an output linearity of 1 %, it can be seen from the figure that the anode current should be set approximately 1.4 % of the divider circuit current. However, this is a calculated plot, so actual data may differ from tube to tube even for the same type of photomultiplier tube, depending on the supply voltage and individual dynode gains. To ensure high photometric accuracy, it is recommended that the voltage divider current be maintained at least twice the value obtained from this figure. 2Using the active voltage divider circuit Use of a voltage divider circuit having transistors in place of the dividing resistors in last few stages (for example, Hamamatsu E6270 series using FETs) is effective in improving the output linearity. This type of voltage divider circuit ensures good linearity up to an output current equal to 60 % to 70 % of the voltage divider current, since the interstage voltage is not affected by the interelectrode current inside the photomultiplier tube. A typical active voltage divider circuit is shown in Figure 24. Figure 24: Active Voltage Divider Circuit K Dy1 Dy2 OUTPUT LINEARITY (%) 10 TACCB0031EA 0.1 0.1 1 Dy5 P RL -HV TACCC0063EA 3Using Zener Diodes The output linearity can be improved by using Zener diodes in place of the dividing resistors in the last few stages, because the Zener diodes serve to maintain the interstage voltages at a constant level. However, if the supply voltage is greatly varied, the voltage distribution may be imbalanced compared to other interstage voltages, thus limiting the adjustable range of the voltage with this technique. In addition, if the supply voltage is reduced or if the current flowing through the Zener diodes becomes insufficient due to an increase in the anode current, noise may be generated from the Zener diodes. Precautions should be taken when using this type of voltage divider circuit. Figure 25 shows a typical voltage divider circuit using Zener diodes. 1 0.01 Dy4 TWO TRANSISTORS The maximum linear output in DC mode listed for the D-type socket assemblies in this catalog indicates the anode current equal to 1/20 of the voltage divider current. The output linearity at this point can be maintained within ±3 % to ±5 %. Figure 23: Output Linearity vs. Anode Current to Voltage Divider Current Ratio Dy3 10 Figure 25: Voltage Divider Circuit Using Zener Diodes RATIO OF ANODE CURRENT TO VOLTAGE DIVIDER CURRENT (%) K Dy1 Dy2 Dy3 As stated above, good output linearity can be obtained simply by increasing the voltage divider current. However, this is accompanied by heat emanating from the voltage divider. If this heat is conducted to the photomultiplier tube, it may cause problems such as an increase in the dark current, and variation in the output. Dy4 Dy5 P TWO ZENER DIODES RL -HV TACCC0064EA 11 4Using Cockcroft-Walton Circuit When a Cockcroft-Walton circuit as shown in Figure 26 is used to operate a 28 mm (1-1/8") diameter side-on photomultiplier tube with a supply voltage of 1000 volts, good DC linearity can be obtained up to 200 µA and even higher. Since a high voltage is generated by supplying a low voltage to the oscillator circuit, there is no need for using a high voltage power supply. This Cockcroft-Walton circuit achieves superior DC output linearity as well as low current consumption. Figure 26: Cockcroft-Walton Circuit K Dy1 Dy2 Dy3 Dy4 Dy5 11.7 Output Linearity in Pulsed Mode In applications such as scintillation counting where the incident light is in the form of pulses, individual pulses may range from a few to over 100 milliamperes even though the average anode current is small at low count rates. In this pulsed output mode, the peak current in extreme cases may reach a level hundreds of times higher than the voltage divider current. If this happens, it is not possible to supply interelectrode currents from the voltage divider circuit to the last few stages of the photomultiplier tube, thus leading to degradation in the output linearity. P 11.8 Improving Linearity in Pulsed Output Mode RL -HV GENERATED OSCILLATION CIRCUIT TACCC0065EA 5Using multiple high voltage power supplies As shown in Figure 27, this technique uses multiple power supplies to directly supply voltages to the last few stages near the anode. This is sometimes called the booster method, and is used for high pulse and high count rate applications in high energy physics experiments. Figure 27: Voltage Divider Circuit Using Multiple Power Supplies (Booster Method) K Dy1 Dy2 Dy3 Dy4 Dy5 P RL AUXILIARY POWER SUPPLY 2 AUXILIARY POWER SUPPLY 1 MAIN POWER SUPPLY 1Using decoupling capacitors Using multiple power supplies mentioned above is not popular in view of the cost. The most commonly used technique is to supply the interelectrode current by using decoupling capacitors as shown in Figure 28. There are two methods for connecting these decoupling capacitors: the serial method and the parallel method. As Figures 28 and 29 show, the serial method is more widely used since it requires lower tolerance voltages of the capacitors. The capacitance value C (farads) of the decoupling capacitor between the last dynode and the anode should be at least 100 times the output charge as follows: C > 100 • Q/V where Q is the charge of one output pulse (coulombs) and V is the voltage (volts) across the last dynode and the anode. Since this method directly supplies the pulse current with electrical charges from the capacitors, if the count rate is increased and the resulting duty factor becomes larger, the electrical charge will be insufficient. Therefore, in order to maintain good linearity, the capacitance value obtained from the above equation must be increased according to the duty factor, so that the voltage divider current is kept at least 50 times larger than the average anode current just as with the DC output mode. The active voltage divider circuit and the booster method using multiple power supplies discussed previously, provide superior pulse output linearity even at a higher duty factor. TACCC0066EA Figure 28: Equally Divided Voltage Divider Circuit and Decoupling Capacitors K Dy1 Dy2 Dy3 Dy4 Dy5 P RL 1R 1R 1R 1R 1R 1R CD1 CD2 TWO DECOUPLING CAPACITORS -HV TACCC0067EB 12 2Using tapered voltage divider circuit with decoupling capacitors Use of the above voltage divider circuit having decoupling capacitors is effective in improving pulse linearity. However, when the pulse current increases further, the electron density also increases, particularly in last stages. This may cause a space charge effect which prevents interelectrode current from flowing adequately and leading to output saturation. A commonly used technique for extracting a higher pulse current is the tapered voltage divider circuit in which the voltage distribution ratios in the latter stages are enhanced as shown in Figure 29. Care should be taken in this case regarding loss of the gain and the breakdown voltages between electrodes. Since use of a tapered voltage divider circuit allows an increase in the voltage between the last dynode and the anode, it is possible to raise the voltage across the load resistor when it is connected to the anode. It should be noted however, that if the output voltage becomes excessively high, the voltage between the last dynode and the anode may drop, causing a degradation in output linearity. Figure 29: Tapered Voltage Divider Circuit Using Decoupling Capacitors K Dy1 Dy2 Dy3 Dy4 Dy5 P RL 1R 1R 1R 1.5R 2.5R 3R CD1 CD2 TWO DECOUPLING CAPACITORS -HV Figure 30: HA Treatment CONDUCTIVE PAINT CONNECTED TO CATHODE PIN INSULATING BLACK COVER TPMHC0049EB 13. SCINTILLATION COUNTING 13.1 General Scintillation counting is one of the most common and effective methods in detecting radiation particles. It uses a PMT coupled to a scintillator which produces light by incidence of radiation particles. In radiation particle measurement, there are two parameters that should be measured. One is the energy of individual particle and the other is the amount of particles. When radiation particles enter the scintillator, they produce light flashes in response to each particle. The amount of flash is proportional to the energy of the incident particle and individual light flashes are detected by the PMT. Consequently, the output pulses obtained from the PMT contain information on both the energy and number of pulses, as shown in Figure 31. TACCC0068EB Figure 31: Incident Particles and PMT Output TIME 12. EXTERNAL POTENTIAL SCINTILLATOR PMT THE HEIGHT OF OUTPUT PULSE IS PROPORTIONAL TO THE ENERGY OF INCIDENT PARTICLE. CURRENT If the input window or glass envelope near the photocathode is grounded, slight conductivity of glass material causes a current flow between the photocathode, which has a high negative potential, and ground. This may cause electrolysis of photocathode, leading to significant deterioration. Also this may cause noise resulted from the light flashes at the above input window or glass envelope. For those reasons, when designing a PMT housing with an electrostatic or magnetic shield case, extreme care should be required. When the anode ground scheme is used, bringing a grounded metallic holder or magnetic shield case near the glass envelope of PMT can cause electrons to strike the inner glass wall, resulting in the noise. This problem can be solved by applying a black conductive paint around the glass envelope and connecting it to the cathode potential. Then PMT is wrapped with an insulating black cover, as shown in Figure 30. This method is called HA treatment. TIME TPMOC0039EA 13 Figure 32: Typical Pulse Height Distribution (Energy Spectral) Figure 33: Definition of Pulse Height Resolution b COUNTS 1000 NUMBER OF PULSES (a) 55Fe+Nal(TI) (51 mm dia. × 2.5 mm t) 500 a H H 2 PULSE HEIGHT 0 500 1000 a Energy Resolution (FWHM) = — × 100 % b ENERGY TPMOB0088EA (b) 137Cs+Nal(TI) The following factors determin the energy resolution. COUNTS 10000 (51 mm dia. × 51 mm t) (1) Energy conversion efficiency of the scintillator (2) Intrinsic energy resolution of the scintillator (3) Quantum efficiency of the photocathode (4) Collection efficiency of photoelectrons at the first dynode (5) Secondary emission yield of dynodes (especially first dynode) 5000 0 500 1000 ENERGY (c) 60Co+Nal(TI) COUNTS 10000 The equation of the pulse height resolution is described as follows: R(E)2 = RS(E)2 + RP(E)2 where R(E) : energy resolution RS(E) : energy resolution of a scintillator RP(E) : energy resolution of a PMT (51 mm dia. × 51 mm t) RP(E)2 is described as follows: 5000 R(E)2 = 0 500 1000 ENERGY TPMOB0087EC By analyzing these output pulses using a multichannel analyzer (MCA), pulse height distribution (PHD), or energy spectra, as shown in Figure 32, are obtained. From the PHD, the number of incident particles at various energy levels can be measured. 13.2 Energy Resolution For the energy spectrum measurement, it is very important to have a distinct peak at each energy level. This characteristic is evaluated as the pulse height resolution or the energy resolution and is most significant in the radiation particle identification. Figure 33 shows the definition of the energy resolution using NaI(Tl) scintillator and 137Cs γ-ray source. It is customarily stated as a percentage. 14 δ 2.352 × δ–1 Nηα where N : mean number of incident photon η : quantum efficiency α : collection efficiency δ : mean secondary emission yield of each dynode To obtain a good energy resolution, it is important to use a good scintillator having a high efficiency and a good intrinsic energy resolution. It is also important to reduce a light loss between a PMT and a scintillator. For this purpose, it is useful to couple them with silicon oil having a refractive index close to that of the faceplate window of the PMT or scintillator material or its protective window. 13.3 Emission Spectrum of Scintillator 13.4 Features of Scintillators The quantum efficiency of the PMT is one of the main factors to determine its energy resolution. It is necessary to choose a PMT whose spectral response matches the scintillator emission. Figure 34 shows PMT typical spectral response vs. emission spectra of scintillators. For NaI(Tl), which is the most popular scintillator, bialkali photocathode PMTs are widely used. Figure 35 shows typical temperature responses of various scintillators. These characteristics should be considered in the actual operation. Table 1 shows a summary of scintillator characteristics. These data are reported by scintillator manufactures. Figure 35: Typical Temperature Response of Various Scintillators Figure 34: Typical Spectral Response and Emission Spectra of Scintillators TPMOB0033EA TPMHB0342ED 100 D C H A 10 E B J LSO Nal (Tl) CsI (Tl) BGO LaBr3 1 100 80 60 BaF2 40 20 0.1 0 100 200 300 400 500 600 10 700 NaI (Tl) 100 80 60 BGO CsI (Tl) Pure CsI 40 20 -100 RELATIVE INTENSITY (%) QUANTUM EFFICIENCY (%) RELATIVE LIGHT OUTPUT (%) G F I -60 -20 0 +20 +60 +100 +140 SCINTILLATOR TEMPERATURE (°C) WAVELENGTH (nm) A: Bialkali Photocathode (Borosilicate Glass) B: Bialkali Photocathode (UV Glass) C: Bialkali Photocathode (Synthetic Silica) D: Bialkali Photocathode E: High Temp. Bialkali Photocathode F: Super Bialkali G: Ultra Bialkali H: Extended Green Bialkali I: Low Temp. (down to -110 °C) Bialkali Photocathode J: Low Temp. (down to -186 °C) Bialkali Photocathode Table 1: Summary of Scintillator Characteristics Nal(Tl) BGO Csl(Tl) Pure Csl BaF2 GSO: Ce Plastic LaBr3: Ce LSO: Ce YAP: Ce Density (g/cm3) 3.67 7.13 4.51 4.51 4.88 6.71 1.03 5.29 7.35 5.55 Lrad (cm) 2.59 1.12 1.85 1.85 2.10 1.38 40 2.1 0.88 2.70 Refractive Index 1.85 2.15 1.80 1.80 1.58 1.85 1.58 1.9 1.82 1.97 Hygroscopic Yes No Slightly Slightly Slightly No No Yes No No Luminescence (nm) 410 480 530 310 220 / 325 430 400 380 420 380 Decay time (ns) 230 300 1000 10 0.9 / 630 30 2.0 16 40 30 Relative Light Output 100 15 45 to 50 <10 20 20 25 165 70 40 15 In general including, the development of more compact and portable equipment has continuously progressed. This has led to a strong demand for miniaturization of highly sensitive photodetectors like PMTs. However, it is difficult to miniaturize conventional PMTs with glass envelopes and sophisticated electrode structures. Accordingly, PMTs have been mainly used in high-precision photometric systems, while semiconductor sensors have been used in general purpose, compact and portable equipments/applications. To meet the increasing needs for small photodetectors with high sensitivity, Hamamatsu has developed subminiature PMTs (R7400 series) using a metal package in place of the traditional glass envelope. These tubes have a size as small as semiconductor sensors, without sacrificing high sensitivity, and have the high speed response offered by conventional PMTs. The remarkable features of R7400 series are: smallest size, fast time response, ability of low light level detection and good immunity to magnetic fields. R7400 series are a subminiature PMT that incorporates an eight stages electron multiplier constructed with stacked thin electrodes (metal channel dynode) into a TO-8 type metal can package of 15 mm in diameter and 10 mm in height. The development of this metal package and its unique thin electrodes have made the fabrication of this subminiature PMT possible. The electrode structure of the electron multiplier was designed by means of advanced computer simulation and electron trajectory analysis. Furthermore, our long experience with micromachining technology has achieved a closed proximity assembly of these thin electrodes. Figure 36 shows a cross section of the metal channel dynode with simulated electron trajectories. Figure 36: Cross Section of Metal Channel Dynode with Electron Trajectories e e TPMHC0101EA 16 The R5900 / R7600 / R8900 series is another version of metal package PMT. It incorporates 10 to 12 stages of metal channel dynodes into a metal package of 26 mm × 26 mm square and 20 mm in height. The prime features are similar to those of R7400 series, but its effective area is 18 mm × 18 mm instead of 8 mm diameter of R7400. The dimensional outline of R7600U is shown in Figure 37. In this figure, "U" means a tube having an insulation plastic cover. It is necessary to prevent electric shock with some insulation material, because a metal package has a cathode potential voltage. Figure 37: Insulation Plastic Cover of R7600U 30.0 ± 0.5 25.7 ± 0.5 18 MIN. 22.0 ± 0.5 0.6 ± 0.4 4.4 ± 0.7 12.0 ± 0.5 14. METAL PACKAGE PHOTOMULTIPLIER TUBE 2.54 PITCH 4 MAX. PHOTOCATHODE EFFECTIVE AREA TOP VIEW 29- 0.45 INSULATION COVER SIDE VIEW BOTTOM VIEW TPMHA0278EI As the metal channel dynode is a sort of an array of small linear focused dynodes, secondary electrons hardly go to the adjacent dynode channel in a process of multiplication. It is possible to make multi-anode PMTs utilizing this feature. R7600 series is offering 6 various types of anode shapes as well as single channel type. These anode shapes are categorized into 3 groups. The first group is multianode in matrix. 4 (2 × 2), 16 (4 × 4) and 64 (8 × 8) matrix channels types are available. (see Figure 38-A) Those are suitable for scintillating fiber readout as well as RICH (Ring Image CHerenkov counter). The second group is linear anode. 16 (1 × 16) and 32 (1 × 32) linear channels types are available. (see Figure 38-B) Those are suitable for coupling with slit shape scintillators and ribbon-shaped scintillating fiber bundle. The third one is crossed-plate anode. 6X + 6Y type is available. (see Figure 38-C) It is possible to get position information by using a center-of-gravity method, this PMT is suitable for compact PET and radiation imaging. R8900 series are wider effective area and longer length compare with those of R7600 series. Those are also offering matrix channel type as well as single channel type (see Figure 38-D). Flat panel PMT assemblies use a 52 mm square photomultiplier tube having an effective area ratio of 89 % and a 64-channel or 256-channel multianode. These flat panel PMTs offer a wide photosensitive area and come in thin, compact shape. These PMTs can be efficiently arrayed in rows or matrices with almost no unused space between them. (See figure 38-E) Figure 38: Various Anode Shape (A) Matrix Channel Type R7600U-00-M4 H8711 (R7600-00-M16) H7546B (R7600-00-M64) (B) Liner Channel Type R5900U-00-L16 H7260K (R7259K) * R5900 series has flange at the bottom of the metal package, whereas R7600 series doesn't have it. (C) Cross-plate Anode Type R8900U-00-C12 (D) R8900 Series R8900U R8900U-00-M4 R8900-00-M16 * R8900 series have wider effective area and longer length compared with those of R7600 series. (E) Flat Panel Type H8500C (R10551-00-M64) H9500 (R8400-00-M256) TPMHC0204EB 17 List Guide for Photomultiplier Tubes Tube Diameter q w Spectral Response Outline Range (nm) No. / Curve Code Type No. e Socket & Socket Assembly r Cathode Sensitivity t y u Dynode Blue Structure Q.E. / No. of Luminous Sens. at Peak Typ. Index Stages Typ. (CS 5-58) (µA/lm) Typ. (%) q Spectral Response The relationship between photocathode sensitivity and wavelength of input light. Curve code corresponds to that of spectral response curve on the inside back cover. (Refer to section 2 on page 2 for further details.) Anode Sensitivity o !0 Gain Typ. Luminous Typ. (A/lm) Dark Current Typ. (nA) !1 Max. (nA) <No. of Stages> The number of dynodes used. (Refer to section 3 on page 4 for further details.) t Cathode Sensitivity (Luminous) The photoelectric current from the photocathode per incident light flux from a tungsten filament lamp operated at 2856 K. (Refer to section 2.5 on page 3 for further details.) w Outline No. This number corresponds to that of PMT dimensional outline drawing shown on later pages. Basing diagram symbols are explained as follows: BASING DIAGRAM SYMBOLS Short Index Pin Pin Flying Lead DY G(F) ACC K P SH IC y Cathode Blue Sensitivity Index The photoelectric current from the photocathode per incident light flux from a tungsten filament lamp operated at 2856 K passing through a blue filter which is Corning CS 5-58 polished to 1/2 stock thickness. (Refer to section 2.5 on page 3 for further details.) All base diagrams show terminals viewed from the base end of the tube. Key i Anode to Cathode Supply Voltage (V) : Dynode : Grid (Focusing Electrode) : Accelerating Electrode : Photocathode : Anode : Shield : Internal Connection (Do not use) u QE (Quantum Efficiency) TPMOC0068EB e Socket & Socket Assembly ★ mark : A socket will be supplied with a PMT. no mark : A socket will be supplied as an option. The number in square corresponds to the outline number of the PMT socket assembly on page 58 and 59. The ratio of the number of photoelectrons emitted from the photocathode to the number of incident photons. This catalog shows quantum efficiency at the peak wavelength. (Refer to section 2.2 on page 2 for further details.) i Anode to Cathode Voltage The voltage indicates a standard applied voltage used to measure characteristics. The number in circles corresponds to that of the voltage distribution ratio on page 46 and 47. r Dynode <Dynode Structure> Each mark means dynode structure as follows: LINE : linear focused BOX : box and grid B + L : box and linear focused C + L : circular and linear focused CC : circular cage VB : venetian blind FM : fine mesh CM : coarse mesh MC : metal channel 18 o Gain (Current Amplification) The ratio of the anode output current to the photoelectric current from the photocathode. (Refer to section 4.2 on page 4 for further details.) !0 Anode Sensitivity (Luminous) The output current from the anode per incident light flux from a tungsten filament lamp operated at 2856 K. (Refer to section 4.1 on page 3 for further details.) (at 25 °C) Maximum Rating !2 !4 Time Response !3 Typical Anode Average Rise Transit T.T.S. Pulse to Anode Time Time Typ. Height Cathode Current Typ. Typ. (FWHM) Resolution Voltage (V) (mA) (ns) (ns) (ns) (%) Stability !5 Long Term (%) Pulse Linearity !6 Short ±2 % ±5 % Term Deviation Deviation (%) (mA) Type No. Note (mA) !1 Anode Dark Current !4 Pulse Height Resolution (P.H.R.) The output current from the anode measured after 30 minutes storage in complete darkness. (Refer to section 5 on page 4 for further details.) The P.H.R. is measured with the combination of an NaI(Tl) scintillator and a 137Cs source as a standard measurement. If other scintillators or γ-ray sources are used, note is attached. (Refer to section 13.2 on page 14 for further details.) !2 Maximum Rating <Anode to Cathode Voltage> The maximum anode to cathode voltages are limited by the internal structure of the PMT. Excessive voltage causes electrical breakdown. The voltage lower than the maximum rating should be applied to the PMT. <Average Anode Current> This indicates the maximum averaged current over any interval of 30 seconds. For practical use, operating at lower average anode current is recommended. (Refer to section 9.3 on page 6 for further details) ★Operating ambient temperature range for the photomultiplier itself is -30 °C to +50 °C except for some types of tubes. However, when photomultiplier tubes are operated below -30 °C at their base section, please consult us in advance. !3 Time Response <Rise Time> The time for the anode output pulse to rise from 10 % to 90 % of the peak amplitude. <Electron Transit Time> The time interval between the arrival of a delta function light pulse at the photocathode and the instant when the anode output pulse reaches its peak amplitude. !5 Stability <Long Term Stability (Mean Gain Deviation)> This is defined as follows under the operation for 16 hours at a constant count rate of 1000 s-1: n Σ P-Pi i =1 Dg = n • 100 P (%) where P is the mean pulse height averaged over n readings, Pi is the pulse height at the i-th reading, and n is the total number of readings. <Short Term Stability> This is the gain shift on count rate charge. The tube is first operated at about 10000 s-1. The photo-peak count rate is then decreased to about 1000 s-1 by increasing the distance between the 137Cs source and the tube coupled to the NaI(Tl) scintillator. (Refer to section 9 on page 6 for further details.) !6 Pulse Linearity Typical values of pulse linearity are specified at two points (±2 % and ±5 % deviation points from linear proportionality). (Refer to section 7 on page 5 and 6 for further details.) <T.T.S. (Transit Time Spread)> This is the fluctuation in transit time among individual pulses, and is defined as the FWHM of the frequency distribution of transit time. <C.R.T. (Coincident Resolving Time)> This is defined as the FWHM of a coincident timing spectrum of a pair PMT's. The scintillator used are BGO, BaF2 or CsF crystals. (Refer to section 6 on page 5 for further details.) 19 Photomultiplier Tubes Tube Diameter Type No. q w Spectral Response Outline Range (nm) No. / Curve Code e Socket & Socket Assembly r Cathode Sensitivity t y u Dynode Blue Structure Q.E. / No. of Luminous Sens. at Peak Typ. Index Stages Typ. (CS 5-58) (µA/lm) Typ. (%) i Anode to Cathode Supply Voltage (V) Anode Sensitivity o !0 Gain Typ. Luminous Typ. !1 Dark Current (A/lm) Typ. (nA) Max. (nA) 10 mm (3/8 inch) to 38 mm (1-1/2 inch) Dia. Types 300 to 650/A-D q E678-11N* z 160 to 650/C-D q E678-11N* z LINE / 8 100 300 to 650/A-D e E678-13F* x LINE / 10 110 13 mm R4124 300 to 650/A-D (1/2") R4177-06 300 to 650/A-E w E678-13F* c LINE / 10 100 e E678-13E* LINE / 10 30 10 mm R1635 (3/8") R2496 R647-01 LINE / 8 100 25 1250 r 1.0 × 106 100 1 50 10.0 25 1250 y 6 1.0 × 10 100 2 50 10.0 25 1000 !7 1.4 × 106 150 1 2 10.0 25 1000 #0 1.0 × 10 100 1 15 4.5 12 1500 !7 5.0 × 105 15 0.5 10 6 10.0 6 R1166 300 to 650/A-D r E678-12L* v LINE / 10 110 10.5 26 1000 @1 1.0 × 10 110 1 5 R1450 300 to 650/A-D t E678-12L* v LINE / 10 115 11.0 27 1500 @7 1.7 × 106 200 3 50 300 to 650/A-D 19 mm R3478 (3/4") R3991A-04 300 to 650/A-E y E678-12L* b LINE / 8 115 11.0 27 1700 !1 1.7 × 106 200 10 300 u E678-12R* LINE / 10 30 4.5 12 1500 @9 3.3 × 105 10 0.1 10 300 to 650/A-D t E678-12L* n LINE / 10 115 11.0 27 1500 @2 8.7 × 10 100 10 50 R5611A-01 300 to 650/A-D u E678-12A* LINE / 10 90 10.5 26 1000 @9 5.5 × 105 50 3 20 R1288A-06 300 to 650/A-E i E678-14-03* LINE / 10 30 4.5 12 1500 @9 3.3 × 10 10 0.1 10 R1924A 300 to 650/A-D i E678-14C* ⁄1 LINE / 10 90 10.5 26 1000 @9 2.0 × 106 180 3 20 300 to 650/A-D o E678-12A* 22 2250 !9 5.7 × 10 400 100 800 25 mm R5505-70 300 to 650/A-D (1") R7899-01 300 to 650/A-D !0 E678-17A* , 23 2000 ^5 5.0 × 10 40 5 30 2.0 × 106 1.7 × 106 190 160 2 2 15 20 R4125 R4998 LINE / 10 FM / 15 70 80 9.0 9.5 5 5 6 5 !1 E678-12A* LINE / 10 95 11.0 27 1250 #0 1500 #1 300 to 650/A-D !2 E678-12A* LINE / 10 95 11.0 27 1000 #0 2.6 × 106 250 2 15 300 to 650/A-D !3 E678-12A* LINE / 8 95 11.0 27 1300 !0 6 1.1 × 10 100 5 50 R3998-02 300 to 650/A-D !4 E678-14C* B+L / 9 90 10.5 26 1000 !5 1.3 × 106 120 2 10 5.0 × 106 2.0 × 106 475 190 10 4 200 80 R8619 R9800 R6427 28 mm (1-1/8") R7111 300 to 650/A-D !5 E678-14C* ⁄2⁄3 LINE / 10 95 11.0 27 1500 #3 1500 #4 300 to 650/A-D !6 E678-14C* ⁄1 90 10.5 26 1000 @9 2.0 × 106 180 3 20 u i @4 @6 5.0 × 105 2.0 × 105 1.1 × 106 7.9 × 105 45 19 100 75 5 2 3 2 100 40 20 15 2 20 LINE / 10 1500 1500 1250 1500 R7525 300 to 650/A-D !7 E678-14C* LINE / 8 95 11.0 27 R580 300 to 650/A-D !8 E678-12A* ⁄4 LINE / 10 95 11.0 27 R11102 300 to 650/A-D 38 mm (1-1/2") R3886A 300 to 650/A-D R7761-70 300 to 650/A-D !9 E678-12A* ⁄4 C+L / 10 120 11.5 28 1000 @4 1.0 × 106 120 @0 E678-12A* ⁄4 6 R9420 300 to 650/A-D @1 @2 — E678-12A* CC / 10 90 10.5 26 1000 @4 2.0 × 10 180 3 20 FM / 19 80 9.5 23 2000 ^6 1.0 × 107 800 15 100 LINE / 8 95 11.0 27 1300 !0 5.0 × 105 47 10 100 Note: The data shown in is measured with tapered voltage distribution ratio. Please refer to page 18 and 19 for each item in the above list. 20 (at 25 °C) Maximum Rating !2 !4 Time Response !3 Typical Anode Average Rise Transit T.T.S. Pulse to Anode Time Time Typ. Height Cathode Current Typ. Typ. (FWHM) Resolution Voltage Stability !5 Long Term Pulse Linearity !6 Short ±2 % ±5 % Term Deviation Deviation Note Assembly Type Type No. (V) (mA) (ns) (ns) (ns) (%) (%) (%) (mA) (mA) 1500 0.03 0.8 9 0.5 23 / BGO *1 1.0 2.0 3 7 H3164-10 R1635 H3695-10 R2496 UV type (R3878) 1500 0.03 0.7 9 0.5 23 / BGO *1 1.0 2.0 3 7 1250 0.1 2.1 22 2.0 7.8 1.0 2.0 3 7 SILICA (R760) and UV (R960) types H3165-10 R647-01 1250 0.03 1.1 12 0.5 8.1 1.0 2.0 2 5 UV type (R4141) R4124 1800 0.02 2.0 20 — 12.0 2.0 2.0 8 13 Flying Lead type (R4177-04) R4177-06 1250 0.1 2.5 27 2.8 7.8 1.0 2.0 4 7 SILICA (R762) and UV (R750) types H6520 R1166 1800 0.1 1.8 19 0.76 7.8 1.0 2.0 4 8 H6524 R1450 1800 0.1 1.3 14 0.36 7.8 1.0 2.0 4 8 SILICA (R2076) and UV (R3479) types H6612 1800 0.02 1.0 10 — 11.0 2.0 2.0 20 40 1800 0.1 2.5 16 0.85 7.8 1.0 2.0 100 170 1250 0.1 1.3 12 0.8 8.0 1.0 2.0 10 20 Glass Base type (R5611A) 1800 0.02 1.3 13 — 9.0 1.0 2.0 20 40 Flying Lead type (R1288A-04) R1288A-06 1250 0.1 1.5 17 0.9 7.8 1.0 2.0 20 40 Flying Lead type (R1924A-01) R1924A 2500 0.1 0.7 10 0.16 8.0 1.0 2.0 40 70 SILICA type (R5320) H6533 R4998 2300 0.01 1.5 5.6 0.35 9.5 2.0 2.0 180 250 For +HV operation H6152-70 R5505-70 1800 1800 0.1 0.1 1.6 1.6 17 16 0.6 0.7 7.8 7.8 1.0 1.0 2.0 2.0 30 100 50 150 Glass Base type (R7899) H8643 R7899-01 1500 0.1 2.5 28 1.2 10 / LSO 1.0 2.0 5 8 1500 0.1 1.0 11 0.27 7.8 1.0 2.0 30 50 1500 0.1 4.4 32 3.5 7.5 1.0 1.0 8 10 2000 2000 0.2 0.2 1.7 1.8 16 17 0.5 0.5 7.8 7.8 1.0 1.0 2.0 2.0 10 100 30 150 1250 0.1 1.6 18 0.9 7.8 1.0 2.0 30 50 1750 1750 1750 1750 1250 0.2 0.2 0.1 0.1 0.1 1.3 1.3 2.7 2.7 3.2 14 15 37 40 34 — — 4.5 4.5 4.8 7.8 7.8 7.7 7.7 2.0 2.0 1.0 1.0 10 100 40 150 30 150 60 200 7.6 1.0 1.0 1.0 1.0 0.5 0.5 10 30 1250 0.1 2.6 30 2.0 7.5 1.0 2.0 10 20 2300 0.01 2.1 7.5 0.35 9.5 2.0 2.0 350 500 1500 0.1 1.6 17 0.55 7.8 1.0 2.0 30 50 R3478 R3991A-04 R4125 H8135 R5611A-01 R8619 H10580 R9800 R3998-02 UV type (R7056) H7415 R6427 R7111 R7525 H3178-51 R580 R11102 R3886A For +HV operation R7761-70 R9420 Note 1: This data is measured with 22Na source and BGO scintillator. 21 Tube Diameter Type No. q w Spectral Response Outline Range (nm) No. / Curve Code e Socket & Socket Assembly r Cathode Sensitivity t y u Dynode Blue Structure Q.E. / No. of Luminous Sens. at Peak Typ. Index Stages Typ. (CS 5-58) (µA/lm) Typ. (%) i Anode to Cathode Supply Voltage (V) Anode Sensitivity o !0 Gain Typ. Luminous Typ. Dark Current !1 (A/lm) Typ. (nA) Max. (nA) 6 10 40 100 51 mm (2 inch) to 508 mm (20 inch) Dia. Types R329-02 300 to 650/A-D @3 E678-21C* ¤0 LINE / 12 90 10.5 26 1500 %2 2000 %6 1.1 × 106 3.0 × 106 100 270 R331-05 300 to 650/A-D @4 E678-21C* ¤0 LINE / 12 90 10.5 26 1500 %2 1.3 × 106 120 R1306 300 to 650/A-D @5 E678-14W ⁄7⁄8 BOX / 8 110 12.0 30 1000 w 2.7 × 105 30 2 20 $4 $5 @4 @5 2.0 × 107 1.0 × 107 1.7 × 105 1.3 × 105 1800 900 10 8 50 25 5 5 400 200 50 50 2500 2500 1250 1250 1000 s-1*2 2000 s-1*2 R1828-01 300 to 650/A-D @6 E678-20B* ⁄6 LINE / 12 90 10.5 26 R1840 300 to 650/A-D @7 E678-14W CM / 10 60 8.0 20 R2083 300 to 650/A-D @8 E678-19J* LINE / 8 80 10.0 25 3000 !2 2.5 × 106 200 100 800 1.0 × 106 6.0 × 105 90 54 5 3 20 15 R2154-02 300 to 650/A-D @9 E678-14W ⁄5 LINE / 10 90 10.5 26 1250 @4 1500 @6 R4607A-06 300 to 650/A-E 51 mm R5924-70 300 to 650/A-D (2") 300 to 650/A-D R6041 #0 E678-15C* CC / 10 30 4.5 12 1500 @4 3.3 × 105 10 3 50 #1 — FM / 19 70 9.0 22 2000 ^6 1.0 × 10 700 30 200 #2 — MC / 12 60 8.5 20 800 $8 1.0 × 106 60 5 50 7 R6041-406 160 to 650/I #3 — MC / 12 100 12.5 30 800 $8 1.0 × 106 100 5 50 R6041-506 160 to 650/J #3 — MC / 12 100 11.5 25 800 $8 1.0 × 106 100 5 50 R6231 300 to 650/A-D #4 E678-14W ⁄9 B+L / 8 110 12.0 30 1000 t 5 2.7 × 10 30 2 20 R7723 300 to 650/A-D #5 E678-21C* LINE / 8 90 10.5 26 1750 o 1.0 × 106 90 3 20 300 to 650/A-D #5 26 1750 #5 3.3 × 10 300 6 40 R7725 300 to 650/A-D #5 E678-21C* LINE / 12 90 10.5 26 R9779 300 to 650/A-D #6 E678-20B* LINE / 8 95 11.0 27 R10533 300 to 650/A-D #7 E678-14W LINE / 8 95 11.0 300 to 650/A-D #8 E678-14W ⁄9 B+L / 8 110 12.0 300 to 650/A-D #9 E678-14W ⁄7⁄8 BOX / 8 R7724 60 mm R6232 R1307 E678-21C* LINE / 10 90 110 10.5 12.0 6 1750 %3 6 6.7 × 10 600 9 60 1500 e 5.0 × 105 47.5 15 100 — 1750 @0 4.0 × 106 400 50 300 30 1000 t 2.7 × 105 30 2 20 30 1000 w 2500 2500 1500 2000 2.7 × 10 30 2 20 $3 $4 %1 %4 5.0 × 106 5.6 × 105 5.0 × 106 1.0 × 107 400 45 450 900 50 10 10 30 500 50 60 120 5 R4143 300 to 650/A-D $0 E678-20B* LINE / 12 80 9.5 23 R6091 76 mm (3") R6233 300 to 650/A-D $1 E678-21C* ¤0 LINE / 12 90 10.5 26 300 to 650/A-D $2 E678-14W ⁄9 B+L / 8 110 12.0 30 1000 t 2.7 × 105 30 2 20 R11065 200 to 650/J $3 E678-20B* B+L / 12 60 10 — 1500 %7 8.3 × 106 500 6 40 R11410 160 to 650/I $3 E678-20B* B+L / 12 90 10 — 1500 %4 5.0 × 106 450 10 100 R10233 300 to 650/A-D $4 E678-14W ⁄9 B+L / 8 110 12.0 30 1000 y 2.7 × 105 30 2 20 R877 300 to 650/A-D $5 E678-14W ¤1¤2 BOX / 10 90 10.5 26 1250 !8 4.4 × 105 40 10 50 1.4 × 107 4.0 × 107 1000 2800 50 300 300 1800 90 mm (3.5") R1250 127 mm (5") R1584 300 to 650/A-D $6 E678-20B* ¤3 LINE / 14 70 9.0 22 2000 ^0 2500 ^1 185 to 650/B-D $7 E678-20B* ¤3 LINE / 14 70 9.0 22 2000 ^0 1.4 × 107 1000 50 300 3.0 × 106 2.0 × 106 240 160 30 20 300 200 300 to 650/A-D $8 E678-20B* B+L / 10 80 10.0 25 1500 #6 1500 #7 300 to 650/A-D 204 mm R5912 (8") R5912-02 300 to 650/A-D $9 E678-20B* ¤4 B+L / 10 80 10.0 25 1500 ^2 1.0 × 107 800 100 1000 $9 E678-20B* B+L / 14 80 10.0 25 1500 ^4 1.0 × 10 80 000 5000 10 000 300 to 650/A-D 254 mm R7081 (10") R7081-20 300 to 650/A-D %0 E678-20B* ¤4 B+L / 10 80 10.0 25 1500 ^2 1.0 × 107 800 100 1000 %0 E678-20B* B+L / 14 80 10.0 25 1500 ^4 1.0 × 10 80 000 5000 10 000 332 mm (13") 300 to 650/A-D %1 E678-20B* B+L / 10 60 8.0 20 2000 ^3 5.0 × 107 3000 200 1000 508 mm R3600-02 300 to 650/A-D (20") R7250 300 to 650/A-D %2 E678-20B* VB / 11 60 8.0 20 2000 $0 7 1.0 × 10 600 200 1000 %3 E678-20B* B+L / 10 60 8.0 20 2000 ^3 1.0 × 107 600 200 1000 R6594 R8055 Note: The data shown in is measured with tapered voltage distribution ratio. Please refer to page 18 and 19 for each item in the above list. 22 9 9 Note 2: Dark count (at 25 °C) Maximum Rating !2 !4 Time Response !3 Typical Anode Average Rise Transit T.T.S. Pulse to Anode Time Time Typ. Height Cathode Current Typ. Typ. (FWHM) Resolution Voltage Stability !5 Long Term Pulse Linearity !6 Short ±2 % ±5 % Term Deviation Deviation Note Assembly Type Type No. (V) (mA) (ns) (ns) (ns) (%) (%) (%) (mA) (mA) 2700 2700 0.2 0.2 2.6 2.7 48 40 1.1 1.1 7.6 7.6 1.0 1.0 1.0 1.0 15 100 30 200 2500 0.2 2.6 48 1.1 — — — 15 30 1500 0.1 7.0 60 — 6.3 (8.5) *3 0.5 0.5 1 5 3000 3000 1500 1500 0.2 0.2 0.1 0.1 1.3 1.7 5.0 5.0 28 32 15 17 0.55 0.55 0.7 1.3 7.8 7.8 8.5 8.5 1.0 1.0 0.5 0.5 1.0 1.0 1.0 1.0 100 250 80 200 200 500 200 400 SILICA type (R2059) UV type (R4004) 3500 0.2 0.7 16 0.37 7.8 1.0 2.0 100 150 SILICA type (R3377) 1750 1750 0.1 0.1 3.4 3.4 31 33 3.6 3.6 7.6 7.6 1.0 1.0 1.0 1.0 50 150 70 200 Glass Base type (R3149) 1800 0.02 2.6 28 — 10.0 2.0 2.0 30 60 2300 0.1 2.5 9.5 0.44 9.5 2.0 2.0 500 700 1000 0.1 2.3 16 0.75 — — — 40 — 1000 0.1 2.3 16 0.75 — — — 40 — 1000 0.1 2.3 16 0.75 — — — 40 — 1500 0.1 8.5 48 6.9 6.3 (8.5) *3 0.5 0.5 5 10 2000 0.2 1.7 23 1.1 7.6 1.0 1.0 80 100 R7723 2000 0.2 2.1 29 1.2 7.6 1.0 1.0 60 90 R7724 2000 0.2 2.5 35 1.3 7.6 1.0 1.0 40 80 1750 0.1 1.8 20 0.25 7.6 1.0 1.0 50 80 2000 0.1 2.0 24 0.28 — — — 50 80 1500 0.1 9.5 52 8.5 6.3 (8.5) *3 0.5 0.5 5 10 Semiflexible Lead type (R6232-01) R6232 1500 0.1 8.0 64 — 6.3 (8.5) *3 0.5 0.5 1 5 K-FREE type (R1307-07) R1307 3000 3000 2500 2500 0.2 0.2 0.2 0.2 1.8 1.8 2.6 2.7 32 36 48 40 0.6 0.6 2 1.5 7.8 7.8 7.8 7.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 100 150 40 80 180 250 60 110 1500 0.1 9.5 52 8.5 6.3 (8.5) *3 0.5 0.5 5 10 SILICA type (R2256-02) UV type (R5113-02) H6410 / H7195 R329-02 R331-05 K-FREE type (R1306-15) R1306 H1949-50 / H1949-51 R1828-01 R1840 H2431-50 R2083 R2154-02 R4607A-06 For +HV operation H6614-70 R5924-70 R6041 For Low Temperature Operation Down to -110 °C Low Radicoactivity Material For Low Temperature Operation Down to -186 °C Low Radicoactivity Material R6041-406 R6041-506 Semiflexible Lead type (R6231-01) R6231 R7725 H10570 R9779 R10533 UV type (R4885) H6525 R4143 H6559 R6091 Semiflexible Lead type (R6233-01) R6233 For Low Temperature Operation Down to -186 °C Low Radicoactivity Material For Low Temperature Operation Down to -110 °C Low Radicoactivity Material 1750 0.1 — 41 — — — — 13 — 1750 0.1 5.5 46 — — — — 20 50 1500 0.1 10.0 52 9.4 6.3 (8.5) 0.5 0.5 5 10 Semiflexible Lead type (R10233-01) R10233 1500 0.1 20.0 115 — 8.0 0.5 0.5 10 20 K-FREE type (R877-01) R877 3000 3000 0.2 0.2 2.5 2.2 54 53 1.2 1.2 8.3 8.3 1.0 1.0 1.0 1.0 100 160 150 250 H6527 R1250 3000 0.2 2.5 54 1.2 — — — 100 150 H6528 R1584 2000 2000 0.1 0.1 3.5 3.5 45 45 1.5 1.5 — — — — — — 30 100 50 150 R6594 2000 0.1 3.6 54 2.4 — — — 40 60 R5912 2000 0.1 4.4 72 3.0 — — — 30 60 R5912-02 2000 0.1 3.8 62 3.4 — — — 40 60 R7081 2000 0.1 5.0 80 3.9 — — — 30 60 R7081-20 2500 0.1 5.3 88 2.8 — — — 60 80 R8055 2500 0.1 10.0 95 5.5 — — — 20 40 2500 0.1 7.0 110 3.5 — — — 60 80 R11065 R11410 R3600-06 R3600-02 R7250 Note 3: This data in parenthese is measured with 57Co. 23 Tube Diameter Type No. q w Spectral Response Outline Range (nm) No. / Curve Code e Socket & Socket Assembly r Cathode Sensitivity t y u Dynode Blue Structure Q.E. / No. of Luminous Sens. at Peak Typ. Index Stages Typ. (CS 5-58) (µA/lm) Typ. (%) i Anode to Cathode Supply Voltage (V) Anode Sensitivity o !0 Gain Typ. Luminous Typ. !1 Dark Current (A/lm) Typ. (nA) Max. (nA) Metal Package Photomultiplier and Assemblies R8520-406 160 to 650/I %4 E678-32B MC / 10 100 11.0 — 800 !6 1.0 × 106 100 2 20 R8520-506 160 to 650/J %4 E678-32B MC / 10 100 9.0 — 800 !6 1.0 × 106 100 2 20 300 to 650/A-D %5 E678-32B ¤5 MC / 10 80 9.5 24 800 @3 2.0 × 106 160 2 20 R7600U 300 to 650/A-D -00-M4 R5900U 300 to 650/A-D 30 mm -00-L16 square type R8900U-00-M4 300 to 650/A-D %6 E678-32B ¤6 MC / 10 80 9.5 24 800 @3 1.8 × 106 140 0.5/ch 5/ch %7 E678-32B ¤7 MC / 10 70 8.5 21 800 !7 4.0 × 10 280 0.2 2 %8 E678-32B MC / 10 80 9.5 24 800 !6 1.0 × 106 80 1/ch 5/ch R8900-00-M16 300 to 650/A-D %9 MC / 12 80 9.5 24 800 $1 1.0 × 106 80 0.8/ch 4/ch R7600U R11265U 300 to 650/A-D ^0 — ‹0 E678-19K ‹1 6 MC / 12 80 9.5 24 900 900 $9 %1 9.4 × 10 3.8 × 105 75 30 2 2 20 20 5 H8711 300 to 650/A-D P55@7 — MC / 12 80 9.5 24 800 $7 3.5 × 106 280 0.8/ch 4/ch H7546B 300 to 650/A-D P55@8 — MC / 12 80 9.5 24 800 %0 6.0 × 105 50 0.2/ch 2/ch H8804 300 to 650/A-D P56@9 — MC / 12 80 9.5 24 800 %0 6.0 × 105 50 0.2/ch 2/ch AssemH7260 blies 300 to 650/A-D P56#0 — MC / 10 70 8.5 21 800 !7 2.0 × 106 140 0.2 2 6 H8500C 300 to 650/A-D P56#1 — MC / 12 60 9.5 24 1000 %8 1.5 × 10 90 0.1/ch — H9500 300 to 650/A-D P57#3 — MC / 12 60 9.5 24 1000 %9 1.5 × 106 90 0.05/ch — H10966A 300 to 650/A-D P56#1 — MC / 8 60 9.5 24 1000 !3 3.3 × 105 20 0.06/ch — FM / 15 80 9.5 23 2000 ^5 5.0 × 105 40 5 30 7 Fine Mesh Photomultipliers 25 mm R5505-70 300 to 650/A-D (1") 39 mm R7761-70 300 to 650/A-D (1.5") 51 mm R5924-70 300 to 650/A-D (2") !0 E678-17A* , @1 — FM / 19 80 9.5 23 2000 ^6 1.0 × 10 800 15 100 #1 — FM / 19 70 9.0 22 2000 ^6 1.0 × 107 700 30 200 Square, Rectangular Shape Photomultipliers 10 mm R2248 (3/8") 300 to 650/A-D ^1 E678-11N* z LINE / 8 95 9.5 23 1250 r 1.1 × 106 100 1 50 60 mm R6236 300 to 650/A-D ^2 E678-14W ⁄9 B+L / 8 110 12.0 30 1000 t 2.7 × 105 30 2 20 76 mm 300 to 650/A-D R6237 (3") 25 mm R1548-07 300 to 650/A-D (1") ^3 E678-14W ⁄9 B+L / 8 110 12.0 30 1000 t 2.7 × 105 30 2 20 ^4 E678-17A* m LINE / 10 80 9.5 23 1250 #3 6 2.5 × 10 200 20 250 R8997 300 to 650/A-D ^5 E678-20B* L+VB / 10 80 9.5 23 1250 #2 1.2 × 106 100 10 200 R10550 300 to 650/A-D ^6 E678-20B* LINE / 8 100 10.0 — 1300 !0 1.0 × 106 100 10 100 B+L / 8 110 12.0 30 1000 t 2.7 × 105 30 2 20 38 mm (1-1/2") Hexagonal Shape Photomultipliers 60 mm R6234 76 mm R6235 (3") 300 to 650/A-D ^7 E678-14W ⁄9 300 to 650/A-D ^8 E678-14W ⁄9 B+L / 8 110 12.0 30 1000 t 2.7 × 10 30 2 20 5 2π Shape Photomultipliers 25 mm R7373A-01 300 to 650/A-D (1") 28 mm R8143 300 to 650/A-D (1-1/8") ^9 E678-12A* LINE / 10 90 10.5 26 1000 @9 1.1 × 106 100 3 20 &0 E678-14C* BOX / 11 90 10.5 26 1000 #9 2.2 × 106 200 2 10 Note: The data shown in is measured with tapered voltage distribution ratio. Please refer to page 18 and 19 for each item in the above list. 24 (at 25 °C) Maximum Rating !2 !4 Time Response !3 Typical Anode Average Rise Transit T.T.S. Pulse to Anode Time Time Typ. Height Cathode Current Typ. Typ. (FWHM) Resolution Voltage Stability !5 Long Term Pulse Linearity !6 Short ±2 % ±5 % Term Deviation Deviation Note Type No. (V) (mA) (ns) (ns) (ns) (%) (%) (%) (mA) (mA) 900 0.1 1.8 12.4 0.8 — — — 30 60 900 0.1 1.8 12.4 0.8 — — — 30 60 900 0.1 1.6 9.6 0.35 — 1.0 2.0 30 60 UV type (R7600U-03) is available 900 0.1 1.2 9.5 0.36 — — — 10 30 *4 900 0.1 0.60 7.4 0.18 — — — 0.8 1.2 *4 900 0.1 1.4 11.4 0.95 — — — 5 10 *4 R8900U-00-M4 1000 0.1 1.3 13 0.75 — — — 1.5 3.5 *4 R8900-00-M16 1000 1000 0.1 0.1 1.3 1.3 5.8 5.8 0.27 0.3 — — — — — — 20 300 60 400 1000 0.017 0.83 12 0.33 — — — 0.5 1 *4, Assembly with divider network H8711 1000 0.023 1.0 12 0.38 — — — 0.3 0.6 *4, Assembly with divider network H7546B 1000 0.023 1.0 12 0.38 — — — 0.3 0.6 *4, Assembly with divider network H8804 900 0.1 0.60 6.8 0.18 — — — 0.6 0.8 *4, Assembly with divider network H7260 1100 0.1 0.8 6.0 0.4 — — — 1/ch 2/ch *4, Assembly with divider network H8500C 1100 0.1 0.8 6.0 0.4 — — — 0.2/ch 1/ch *4, Assembly with divider network H9500 1100 0.1 0.4 4.0 — — — — 1.2/ch 3/ch *4, Assembly with divider network H10966A 2300 0.01 1.5 5.6 0.35 9.5 2.0 2.0 180 250 For +HV operation R5505-70 2300 0.01 2.1 7.5 0.35 9.5 2.0 2.0 350 500 For +HV operation R7761-70 2300 0.1 2.5 9.5 0.44 9.5 2.0 2.0 500 700 For +HV operation R5924-70 1500 0.03 0.9 9.0 0.6 23 / BGO*1 1.0 2.0 3 7 1500 0.1 9.5 52 8.5 6.3 (8.5)*3 0.5 0.5 5 10 Semiflexible Lead type (R6236-01) is available R6236 1500 0.1 9.5 52 8.5 6.3 (8.5)*3 0.5 0.5 5 10 Semiflexible Lead type (R6237-01) is available R6237 1750 0.1 1.8 20 1.0 20 / BGO*1 1.0 2.0 10 15 *4, Dual (2) channel R1548-07 1600 0.1 5.0 25 2.8 16 / BGO*1 2.0 2.0 4 10 *4, Quadrant (4) channel R8997 1600 0.1 1.3 12 0.6 — — — 10 30 *4, Quadrant (4) channel R10550 1500 0.1 9.5 52 8.5 6.3 (8.5)*3 0.5 0.5 5 10 Semiflexible Lead type (R6234-01) is available R6234 1500 0.1 9.5 52 8.5 6.3 (8.5)*3 0.5 0.5 5 10 Semiflexible Lead type (R6235-01) is available R6235 1250 0.1 2 19 1.1 7.8 1.0 2.0 15 30 R7373A-01 1250 0.1 25 72 — 8 1.0 2.0 0.2 0.5 R8143 For Low Temperature Operation Down to -110 °C Low Radioactivity Material For Low Temperature Operation Down to -186 °C Low Radioactivity Material R8520-406 R8520-506 R7600U R7600U -00-M4 R5900U -00-L16 R11265U R2248 Note 1: This data is measured with 22Na source and BGO scintillator. Note 3: This data in parenthese is measured with 57Co. Note 4: Dark current, time response and pulse linearity data is typical value for channel. 25 Tube Diameter Type No. q w Spectral Response Outline Range (nm) No. / Curve Code e Socket & Socket Assembly r Cathode Sensitivity t y u i Dynode Blue Structure Q.E. Anode to / No. of Luminous Sens. at Peak Cathode Supply Stages Typ. Index Typ. Voltage (CS 5-58) (µA/lm) Typ. (%) (V) Anode Sensitivity o !0 Anode Gain Luminous Sensitivity Typ. Typ. (A/lm) !1 Dark Current (After 30 min) Typ. (nA) Max. (nA) UBA (Ultra Biallali), SBA (Super Bialkali), Extended Green Bialkali Photomultipliers R5900U-100-L16 300 to 650 / F %7 E678-32B ¤7 MC / 10 105 13.5 35 800 !7 3.0 × 106 320 0.2/ch 2/ch R5900U-200-L16 300 to 650 / G %7 E678-32B ¤7 MC / 10 135 15.5 43 800 !7 3.0 × 106 400 0.2/ch 2/ch R7600U-100 300 to 650 / F %5 E678-32B ¤5 MC / 10 105 13.5 35 800 @3 1.0 × 106 105 2 20 300 to 650 / G %5 E678-32B ¤5 MC / 10 135 15.5 43 800 @3 6 1.0 × 10 135 2 20 300 to 650 / F %6 E678-32B ¤6 MC / 10 105 13.5 35 800 @3 1.3 × 106 140 0.5/ch 5/ch 300 to 650 / G %6 E678-32B ¤6 MC / 10 135 15.5 43 800 @3 1.3 × 106 175 0.5/ch 5/ch 300 to 650 / F %8 E678-32B MC / 10 105 13.5 35 800 !6 1.0 × 106 105 1/ch 5/ch 300 to 650 / F %9 R7600U-200 R7600U-100-M4 Metal Package R7600U-200-M4 PMT 30 mm R8900U-100-M4 square type R8900-100-M16 ‹0 MC / 12 105 13.5 35 800 $1 1.0 × 10 105 0.8/ch 8/ch R8900U-100-C12 300 to 650 / F P44q E678-32B ¤8 MC / 11 105 13.5 35 800 #8 5.4 × 105 70 2 20 900 900 900 900 $9 %1 $9 %1 8.4 × 105 3.7 × 105 1.3 × 106 5.0 × 105 80 35 160 60 2 2 2 2 20 20 20 20 — 6 R11265U-100 300 to 650 / F ^0 E678-19K ‹1 MC / 12 95 13.5 35 R11265U-200 300 to 650 / G ^0 E678-19K ‹1 MC / 12 120 15.5 43 H8711-100 300 to 650 / F P55@7 — MC / 12 105 13.5 35 -800 $7 2.0 × 106 210 0.8/ch 4/ch H8711-200 300 to 650 / G P55@7 — MC / 12 135 15.5 43 -800 $7 2.0 × 106 270 0.8/ch 4/ch H7546B-100 300 to 650 / F P55@8 — MC / 12 105 13.5 35 -800 %0 5.0 × 105 53 0.2/ch 2/ch H7546B-200 Metal Package H8804-100 PMT assem- H8804-200 blies H7260-100 300 to 650 / G P55@8 — MC / 12 135 15.5 43 -800 %0 5.0 × 105 68 0.2/ch 2/ch 5 H7260-200 76 mm (3") 90 mm (3.5") 127 mm (5") 204 mm (8") 254 mm (10") Metal Package PMT 30 mm square type MC / 12 105 13.5 35 -800 %0 5.0 × 10 53 0.2/ch 2/ch 300 to 650 / G P56@9 — MC / 12 135 15.5 43 -800 %0 5.0 × 105 68 0.2/ch 2/ch 300 to 650 / F P56#0 — MC / 10 105 13.5 35 -800 !7 2.0 × 106 210 0.2/ch 2/ch 300 to 650 / G P56#0 — MC / 10 135 15.5 43 -800 !7 2.0 × 106 270 0.2/ch 2/ch 5 300 to 650 / F P56#1 — MC / 8 95 13.5 35 -1000 !3 3.2 × 10 30 0.1/ch — H10966B-100 300 to 650 / F P57#2 — MC / 8 95 13.5 35 -1000 !3 3.2 × 105 30 0.1/ch — 300 to 650 / F !3 E678-12A ⁄0 L/8 130 13.5 35 1300 !0 1.1 × 106 140 10 100 300 to 650 / F !4 E678-14C B+L / 9 130 13.5 35 1000 !5 1.0 × 106 130 5 25 300 to 650 / F @2 E678-12A ⁄9 L/8 130 13.5 35 1300 !0 5 3.7 × 10 48 10 100 R6231-100 300 to 650 / F #4 E678-14W ⁄9 B+L / 8 130 13.5 35 1000 t 2.3 × 105 30 10 30 R7724-100 300 to 650 / F #5 E678-21C ⁄9 L / 10 130 13.5 35 1750 #5 2.0 × 106 430 10 50 R6233-100 300 to 650 / F $2 E678-14W ⁄9 B+L / 8 130 13.5 35 1000 t 2.3 × 105 30 10 30 R10233-100 300 to 650 / F $4 E678-14W ⁄9 B+L / 8 130 13.5 35 1000 y 5 2.3 × 10 30 10 30 R877-100 300 to 650 / F $5 E678-14W B / 10 105 13.5 35 1250 !8 4.4 × 105 46 20 100 R5912-100 300 to 650 / F $9 E678-20B B+L / 10 130 13.5 35 1500 ^2 1.0 × 107 1300 500 1000 R7081-100 300 to 650 / F %0 E678-20B B+L / 10 130 13.5 35 1500 ^2 1.0 × 107 1300 500 1000 @3 @8 2.0 × 106 5.0 × 105 320 80 2 1 20 10 R7600U-300 300 to 700 / H %5 E678-32B ¤5 MC / 10 160 14 39 800 800 R7600U-300-M4 300 to 700 / H %6 E678-32B ¤6 MC / 10 160 14 39 800 @3 1.3 × 106 210 0.5/ch 5/ch Metal H8711-300 Package PMT H7546B-300 assemblies H8804-300 26 — H10966A-100 25 mm R9800-100 (1") 28 mm R3998-100-02 (1-1/8") 38 mm R9420-100 (1-1/2") 51 mm (2") 300 to 650 / F P56@9 300 to 700 / H P55@8 — MC / 12 160 14 39 -800 $7 2.5 × 106 400 0.8/ch 4/ch 300 to 700 / H P55@9 — MC / 12 160 14 39 -800 %0 5.0 × 105 80 0.2/ch 2/ch 39 -800 %0 5.0 × 10 80 0.2/ch 2/ch 300 to 650 / H P56#0 Note: The data shown in — MC / 12 160 is measured with tapered voltage distribution ratio. 14 5 Please refer to page 18 and 19 for each item in the above list. (at 25 °C) Maximum Rating !2 !4 Time Response !3 Typical Anode Average Rise Transit T.T.S. Pulse to Anode Time Time Typ. Height Cathode Current Typ. Typ. (FWHM) Resolution Voltage Stability !5 Long Term Pulse Linearity !6 Short ±2 % ±5 % Term Deviation Deviation Note Type No. (V) (mA) (ns) (ns) (ns) (%) (%) (%) (mA) (mA) 900 0.1 0.6 7.4 0.18 — — — 0.8/ch 1.2/ch SBA type R5900U-100-L16 900 0.1 0.6 7.4 0.18 — — — 0.8/ch 1.2/ch UBA type R5900U-200-L16 900 0.1 1.6 9.6 0.35 — — — 30 60 SBA type R7600U-100 900 0.1 1.6 9.6 0.35 — — — 30 60 UBA type R7600U-200 900 0.1 1.2 9.5 0.36 — — — 10/ch 30/ch SBA type R7600U-100-M4 900 0.1 1.2 9.5 0.36 — — — 10/ch 30/ch UBA type R7600U-200-M4 900 0.1 1.4 11.4 0.95 — — — 5/ch 10/ch SBA type R8900U-100-M4 1000 0.1 1.3 13 0.75 — — — — 3.5/ch SBA type R8900-100-M16 1000 0.1 2.2 11.9 0.75 — — — 2 15 1000 1000 1000 1000 0.1 0.1 0.1 0.1 1.3 1.3 1.3 1.3 5.8 5.8 5.8 5.8 0.27 0.3 0.27 0.3 — — — — — — — — — — — — 20 300 20 300 60 400 60 400 -1000 0.017 0.83 12 0.33 — — — 0.5/ch -1000 0.017 0.83 12 0.33 — — — 0.5/ch -1000 0.023 1.0 12 0.38 — — — 0.3/ch 0.6/ch SBA type H7546B-100 -1000 0.023 1.0 12 0.38 — — — 0.3/ch 0.6/ch UBA type H7546B-200 -1000 0.023 1.0 12 0.38 — — — 0.3/ch 0.6/ch SBA type H8804-100 -1000 0.023 1.0 12 0.38 — — — 0.3/ch 0.6/ch UBA type H8804-200 -900 0.1 0.6 6.8 0.18 — — — 0.6/ch 0.8/ch SBA type H7260-100 -900 0.1 0.6 6.8 0.18 — — — 0.6/ch 0.8/ch UBA type H7260-200 -1100 0.1 0.4 4 — — — — 1.2/ch 3/ch SBA type H10966A-100 -1100 0.1 0.4 4 — — — — 1.2/ch 3/ch SBA type H10966B-100 1500 0.1 1.0 11 0.27 — — — 30 — SBA type R9800-100 1500 0.1 3.4 23 3 7.0 1.0 1.0 8 10 SBA type R3998-100-02 1500 0.1 1.6 17 0.55 7.0 1.0 2.0 30 50 SBA type R9420-100 1500 0.1 8.5 48 6.9 6.1 0.5 0.5 5 10 SBA type R6231-100 2000 0.2 2.0 350 1.1 — 1.0 1.0 60 80 SBA type R7724-100 1500 0.1 9.5 52 8.5 6.1 0.5 0.5 5 10 SBA type R6233-100 1500 0.1 10 52 9.4 6.1 0.5 0.5 5 10 SBA type * R10233-100 1500 0.1 20 115 — 7.6 0.5 0.5 10 20 SBA type R877-100 2000 0.1 3.6 54 2.4 — — — 40 60 SBA type R5912-100 2000 0.1 3.8 62 3.4 — — — 40 60 SBA type R7081-100 900 900 0.1 0.1 1.6 1.6 9.6 9.6 0.35 0.35 — — — — — — 30 100 — — Extended Green Bialkali Photomultipliers R7600U-300 900 0.1 1.2 9.5 0.36 — — — 10/ch 30/ch Extended Green Bialkali Photomultipliers R7600U-300-M4 -1000 0.017 0.83 12 0.33 — — — 0.5/ch 1/ch Extended Green Bialkali Photomultipliers H8711-300 -1000 0.023 1.0 12 0.38 — — — 0.3/ch 0.6/ch Extended Green Bialkali Photomultipliers H7546B-300 -1000 0.023 1.0 12 0.38 — — — 0.3/ch 0.6/ch Extended Green Bialkali Photomultipliers H8804-300 SBA type R8900U-100-C12 SBA type R11265U-100 UBA type R11265U-200 1/ch SBA type H8711-100 1/ch UBA type H8711-200 27 Dimensional Outline and Basing Diagrams For Photomultiplier Tubes q R1635, R2496 w R4124 13.5 ± 0.5 A 8 MIN. P 6 DY5 45.0 ± 1.5 PHOTOCATHODE 10 MAX. 1 IC DY10 8 5 DY3 DY8 9 DY5 4 10 DY2 11 K 2 7 6 DY7 9 DY4 DY3 3 DY1 11 PIN BASE DY6 8 4 P DY9 DY8 7 50 ± 2 DY7 5 PHOTOCATHODE 10 MIN. FACEPLATE 10 DY6 3 11 2 DY4 12 1 DY1 DY2 13 K IC SHORT PIN SHORT PIN 13 PIN BASE 13 MAX. FACEPLATE A R1635 9.7 ± 0.4 R2496 10.5 ± 0.5 R2496 has a plano-concave faceplate. TPMHA0343EB e R647-01, R4177-06 TPMHA0102EA r R1166 18.6 ± 0.7 A 10 MIN. 15 MIN. FACEPLATE FACEPLATE DY9 DY10 7 DY8 8 5 P DY6 9 PHOTOCATHODE DY10 6 5 DY8 7 DY6 8 10 DY4 DY9 4 9 DY4 DY5 3 11 DY2 12 IC 13 K DY7 3 10 DY2 B DY7 4 2 DY3 1 DY1 88 ± 2 PHOTOCATHODE P 6 11 2 DY5 1 SHORT PIN K 12 DY3 DY1 SHORT PIN A B R647-01 13.5 ± 0.5 71 ± 2 R4177-06 14.5 ± 0.7 61 ± 2 12 PIN BASE 13 MAX. 13 MAX. 13 PIN BASE TPMHA0120EA t R1450, R4125 TPMHA0344EA y R3478 18.6 ± 0.7 18.6 ± 0.7 15 MIN. DY10 6 P 5 DY8 7 DY6 8 DY9 4 PHOTOCATHODE DY5 1 DY3 12 K DY1 DY6 8 10 DY2 DY7 3 DY5 11 2 1 12 K DY1 13 MAX. 13 MAX. SHORT PIN 12 PIN BASE TPMHA0307EA 28 7 9 DY4 DY3 SHORT PIN 12 PIN BASE 6 5 IC 4 10 DY2 11 2 DY8 IC P PHOTOCATHODE 9 DY4 DY7 3 88 ± 2 15 MIN. FACEPLATE 65 ± 2 FACEPLATE TPMHA0431EB (Unit: mm) u R3991A-04, R5611A-01 i R1288A-06, R1924A 25.4 ± 0.5 18.6 ± 0.7 A TEMPORARY BASE REMOVED 15 MIN. FACEPLATE FACEPLATE 22 MIN. P 6 10 DY8 DY7 4 13 MAX. B LEAD LENGTH 45 MIN. A 12PIN BASE JEDEC No.B12-43 12 2 DY3 1 13 DY2 14 DY1 K R5611A-01 30 ± 1.5 14 PIN GLASS BASE IC 9 10 DY10 DY5 4 11 DY8 DY3 3 12 DY6 13 DY4 14 DY2 DY1 DY10 P 6 2 1 SHORT PIN DY8 7 8 DY7 4 9 DY6 DY5 3 10 DY4 11 2 DY3 A 28 ± 1.5 IC 8 DY7 5 DY4 B BOTTOM VIEW 5 R3991A-04 7 K DY9 37.3 ± 0.5 PHOTOCATHODE 11 DY6 DY5 3 6 13 MAX. A P.C.D. 12.0 ± 0.5 SEMIFLEXIBLE LEADS 14- 0.7 P DY9 9 5 43.0 ± 1.5 DY9 PHOTOCATHODE DY10 1 DY2 12 DY1 K TPMHA0117EC TPMHA0040EC !0 R5505-70 o R4998 A Temporary Base Removed Bottom View 20° 40° 20 MIN. 25.8 ± 0.7 FACEPLATE 17.5 MIN. 7 40.0 ± 1.5 PHOTOCATHODE PHOTOCATHODE 71 ± 1 ( 17.3) IC P 7 13 MAX. HA TREATMENT SMA CONNECTOR A 12 PIN BASE JEDEC No. B12-43 DY 3 3 2 1 DY 1 IC K 11 DY10 12 13 DY8 17 PIN BASE DY7 4 (Acc) 3 DY5 14 DY6 15 DY4 16 2 1 18 17 DY2 DY3 G DY1 K LEAD LENGTH 52 MIN. P.C.D. 17.3 SEMIFLEXIBLE LEADS 18- 0.7 DY9 5 13 DY 10 14 DY 8 15 DY 6 16 DY 4 17 DY 2 DY 7 5 DY 5 4 HA TREATMENT IC 9 10 DY 15 P DY 13 9 10 DY 14 DY 11 7 8 11 12 DY 12 DY 9 6 SHORT PIN 13 MAX. 26 ± 1 FACEPLATE B Bottom View P DY10 6 DY9 DY8 7 DY6 8 5 DY7 4 (Acc) B DY5 9 DY4 10 DY2 3 37.3 ± 0.5 2 DY3 11 1 12 G K DY1 TPMHA0093EE !1 R7899-01 TPMHA0236EB !2 R8619 25.4 ± 0.5 25.4 ± 0.5 FACEPLATE 22 MIN. FACE PLATE 22 MIN. A Temporary Base Removed A TEMPORARY BASE REMOVED DY10 DY8 10 11 DY6 12 13 DY4 7 6 LEAD LENGTH 50 MIN. 3 DY3 A 18 17 DY1 K 12 PIN BASE JEDEC No. B12-43 B 4 DY10 DY8 7 8 9 DY6 DY5 3 10 DY4 DY9 5 DY7 DY3 2 1 DY1 12 DY7 4 DY5 P.C.D. 17.3 ± 0.2 SEMIFLEXIBLE LEADS 18- 0.7 A 12 PIN BASE JEDEC No. B12-43 11 DY2 12 K B 37.3 ± 0.5 DY10 13 DY8 14 DY6 15 DY4 16 DY2 3 DY3 B BOTTOM VIEW P 6 6 13 MAX. P.C.D. 17.3 ± 0.5 SEMIFLEXIBLE LEADS 18- 0.7 P DY9 5 14 DY2 DY5 4 13 MAX. 68.0 ± 1.5 DY9 DY7 5 PHOTOCATHODE 79 ± 2 P 2 1 18 DY1 K B Bottom View LEAD LENGTH 55 MIN. PHOTOCATHODE P 6 DY9 DY10 7 DY8 5 8 DY7 4 9 DY6 DY5 3 10 DY4 11 2 DY3 1 DY1 12 DY2 K 37.3 ± 0.5 TPMHA0474EB TPMHA0551EC 29 !3 R9800 !4 R3998-02, R3998-100-02 25.4 ± 0.5 7 13 12 PIN BASE JEDEC No. B12-43 B DY6 14 DY4 DY1 5 15 DY2 DY9 DY7 8 9 10 DY5 P PHOTOCATHODE DY8 DY6 5 7 6 11 IC IC 4 60 ± 2 DY3 6 13 MAX. 55 ± 2 12 1 K DY4 12 3 DY3 13 14 DY1 K 2 1 DY2 G LEAD LENGTH 55 MIN. A 25 MIN. DY8 8 DY5 PHOTOCATHODE FACEPLATE P 10 DY7 P.C.D. 17.3 ± 0.2 SEMIFLEXIBLE LEADS 18- 0.7 28.5 ± 0.5 A Temporary Base Removed 22 MIN. SHORT PIN B Bottom View P 6 NC NC 7 DY8 5 8 DY7 4 9 DY6 DY5 3 10 DY4 2 1 DY1 DY3 37.3 ± 0.5 11 12 14 PIN BASE 13 MAX. FACE PLATE DY2 K TPMHA0521EC TPMHA0114EA !6 R7111 !5 R6427 28.5 ± 0.5 28.5 ± 0.5 25 MIN. FACEPLATE P IC 7 6 PHOTOCATHODE 85 ± 2 DY9 5 DY10 DY8 8 9 10 DY6 DY7 4 11 DY4 DY5 3 12 DY2 13 K 14 DY1 2 DY3 1 IC 25 MIN. DY9 PHOTOCATHODE 43.0 ± 1.5 FACEPLATE IC 8 P 7 IC 9 10 DY10 DY7 5 DY5 4 11 DY8 12 DY6 13 DY4 14 DY2 DY3 3 DY1 2 1 K SHORT PIN 13 MAX. 14 PIN BASE 13 MAX. SHORT PIN 14 PIN BASE 6 TPMHA0387EB !7 R7525 TPMHA0506EA !8 R580 28.5 ± 0.5 FACEPLATE 25 MIN. 38 ± 1 34 MIN. IC 6 DY7 5 P DY8 DY6 7 8 9 10 IC DY5 4 85 ± 2 2 1 IC DY10 6 DY9 9 DY6 10 DY4 DY5 3 12 DY2 13 K 14 DY1 11 2 DY3 1 12 DY1 R580 IC IC 6 7 5 IC 8 IC 4 9 DY6 10 DY4 13 MAX. DY5 3 DY3 11 2 1 12 DY1 37.3 ± 0.5 TPMHA0450EB DY2 K P 12 PIN BASE JEDEC No. B12-43 30 DY8 8 DY7 4 SHORT PIN 14 PIN BASE 7 5 11 DY4 IC 3 DY3 P PHOTOCATHODE 127 MAX. PHOTOCATHODE 109 ± 2 FACEPLATE DY2 K R5330 TPMHA0121EA (Unit: mm) @0 R3886A !9 R11102 38.0 ± 0.7 FACEPLATE 38 ± 1 FACEPLATE 34 MIN. A Temporary Base Removed 34 MIN. DY10 6 DY9 7 5 DY5 3 10 DY4 11 2 1 DY1 12 DY10 9 DY8 10 11 DY6 P 6 DY9 5 9 DY6 116 MAX. DY2 12 DY4 DY7 4 13 DY2 DY5 3 2 1 DY1 DY3 K P.C.D. 23.0 ± 0.5 SEMIFLEXIBLE LEADS 16- 0.7 15 K B Bottom View P 13 MAX. 12 PIN BASE JEDEC No. B12-43 A 12 PIN BASE JEDEC No. B12-43 37.3 ± 0.5 LEAD LENGTH 70 MIN. 99 ± 2 DY8 8 DY7 4 DY3 PHOTOCATHODE 63.5 ± 1.5 P PHOTOCATHODE DY10 6 DY9 7 5 DY8 8 DY7 4 9 DY6 10 3 DY5 1 12 DY1 K DY3 DY4 11 2 DY2 B 37.3 ± 0.5 TPMHA0228EA TPMHA0104EB @2 R9420, R9420-100 @1 R7761-70 38 ± 1 39 ± 1 FACEPLATE 34 MIN. FACE PLATE 27 MIN. A Temporary Base Removed 16 DY12 17 DY10 18 DY8 19 20 DY6 21 DY4 DY2 SEMIFLEXIBLE LEADS 21- 0.7 11 DY8 12 DY6 DY5 5 13 DY4 14 DY2 DY3 4 2 DY1 13 MAX. 3 DY3 2 1 DY1 K 7 DY7 6 87 ± 2 DY9 6 DY7 5 4 DY5 P PHOTOCATHODE 1 K B Bottom View P.C.D. 23.0 ± 0.1 SEMIFLEXIBLE LEADS 16- 0.7 NC 13 MAX. HA TREATMENT DY17 DY19 P DY18 DY15 10 11 12 9 13 DY16 DY13 8 14 DY11 7 15 DY14 A 27 12 PIN BASE JEDEC No. B12-43 LEAD LENGTH 70 MIN. 50 ± 2 PHOTOCATHODE P 6 NC 7 DY8 5 8 DY7 4 DY5 DY3 9 DY6 10 DY4 3 11 2 1 DY1 12 DY2 K B 37.3 ± 0.5 TPMHA0469ED @3 R329-02 @4 R331-05 53.0 ± 1.5 53.0 ± 1.5 FACEPLATE 46 MIN. 46 MIN. SH IC DY10 DY8 IC 10 11 12 DY12 13 9 DY6 14 8 P 7 15 DY4 HA TREATMENT LIGHT TIGHT SHIELD 50.0 ± PHOTOCATHODE SH IC DY10 DY8 IC DY12 9 10 11 12 13 DY6 14 DY4 P 8 15 7 DY11 6 16 DY2 DY9 5 17 G 18 IC DY7 4 19 3 20 2 DY5 IC 1 21 DY3 IC DY1 K HA TREATMENT DY11 6 DY9 5 126 ± 2 127 ± 2 0.2 PHOTOCATHODE 4 16 DY2 17 G 18 IC 19 IC 21 20 DY7 3 2 DY5 1 IC DY3 K DY1 SHORT PIN *CONNECT SH TO DY5 21 PIN BASE 13 MAX. *CONNECT SH TO DY5 21 PIN BASE TPMHA0123EG 13 MAX. FACEPLATE TPMHA0519ED TPMHA0072EF 31 @5 R1306 @6 R1828-01 53.0 ± 1.5 51.0 ± 0.5 FACEPLATE 46 MIN. DY7 7 DY6 DY8 IC 8 9 10 IC 6 DY5 5 DY2 P DY12 IC DY10 DY11 9 10 11 12 DY8 13 DY6 DY9 8 14 7 DY7 6 15 DY4 16 DY4 DY5 5 17 DY2 IC 4 18 3 DY3 19 IC 2 20 G DY1 1 K IC PHOTOCATHODE 11 P 12 IC DY3 3 137 MAX. 114 ± 2 DY4 4 13 2 1 DY1 G 14 K 170 ± 3 PHOTOCATHODE 46 MIN. HA TREATMENT 192 MAX. FACEPLATE 56.5 ± 0.5 14 PIN BASE JEDEC No. B14-38 20 PIN BASE JEDEC No. B20-102 51.2 ± 0.5 TPMHA0089EC @7 R1840 TPMHA0064EE @8 R2083 A TEMPORARY BASE REMOVED 46 MIN. 10 FACEPLATE DY10 55 ± 1 B PHOTOCATHODE IC IC IC DY6 3 15 DY5 16 DY4 1 18 17 DY3 DY2 K DY1 2 LEAD LENGTH 65 MIN. A 13 DY7 HA TREATMENT P DY10 7 6 DY8 5 DY9 DY7 8 9 10 DY5 IC 9 10 11 8 6 DY7 5 19 DY8 DY6 13 DY4 14 15 DY4 16 DY2 17 IC 18 K G SHORT PIN SMA CONNECTOR 12 IC 12 7 19 PIN BASE 11 DY3 DY4 3 14PIN BASE JEDEC No.B14-38 P DY5 4 3 DY3 2 1 DY1 ACC B BOTTOM VIEW DY6 4 56.5 ± 0.5 121 ± 2 13 MAX. DY8 5 P.C.D. 34 ± 0.3 SEMIFLEXIBLE LEADS 18- 0.8 46 MIN. 12 DY9 6 PHOTOCATHODE 53.0 ± 1.5 FACEPLATE P 13 MAX. 51.0 ± 0.5 13 2 1 DY2 DY1 14 K TPMHA0185EE TPMHA0095EC @9 R2154-02 #0 R4607A-06 51.0 ± 0.5 52 ± 1 46 MIN. FACEPLATE DY7 7 6 DY5 5 DY8 DY9 8 9 10 DY10 14 PIN BASE JEDEC No. B14-38 12 IC 13 2 DY2 P 11 P DY3 3 147 MAX. 124 ± 2 DY4 4 1 DY1 IC 14 IC IC PHOTOCATHODE 80 ± 2 DY6 PHOTOCATHODE 46 MIN. DY9 K DY3 15 PIN BASE 7 6 5 8 DY10 9 DY8 10 DY6 11 DY7 4 DY5 13 MAX. FACEPLATE 12 DY4 3 2 1 DY1 13 DY2 14 IC 15 K SHORT PIN 56.5 ± 0.5 TPMHA0296EB 32 TPMHA0003EC (Unit: mm) #1 R5924-70 #2 R6041 52 ± 1 39 MIN. DY18 DY16 DY14 14 15 16 DY12 17 DY10 18 DY8 9 DY15 8 DY13 7 HA TREATMENT 6 13 MAX. DY11 5 DY9 4 3 2 1 26 DY7 DY5 DY3 DY1 K SEMIFLEXIBLE LEADS 21- 0.7 TEMPORARY BASE REMOVED 19 20 DY6 21 DY4 22 DY7 DY8 DY9 DY6 DY10 8 9 10 11 7 45 MIN. DY5 5 DY2 57.0 ± 0.5 55.0 ± 0.5 METAL (CONNECTED WITH CATHODE) (Ni PLATING) 31 13 DY11 14 DY12 15 P DY4 4 DY3 3 2 1 18 DY2 DY1 K 53.0 ± 0.5 45 MIN. PHOTOCATHODE 9 MAX. P.C.D. 34.0 ± 0.3 SEMI-FLEXIBLE LEADS (Ni PLATING) 18- 0.75 ± 0.10 BOTTOM VIEW 32 ± 1 50 ± 2 P DY19 11 DY17 10 29.5 ± 0.5 PHOTOCATHODE DY8 DY7 DY6 6 DY5 70 ± 10 FACEPLATE 7 DY9 8 9 5 10 DY4 4 3 DY3 DY10 11 DY11 12 2 DY2 1 DY1 K K P DY12 P TPMHA0578EA TPMHA0490EB #3 R6041-406, R6041-506 #4 R6231, R6231-100 51.0 ± 0.5 FACEPLATE 46 MIN. PHOTOCATHODE DY5 DY6 7 6 IC 8 90 ± 3 45 MIN. 57.0 ± 0.5 113 MAX. DY4 5 10 DY7 DY3 4 11 DY8 DY2 3 2 1 DY1 IC 55.6 ± 0.5 12 P 13 G 14 K 50.5 ± 0.5 32.5 ± 1.0 P.C.D. 34.0 ± 0.3 SEMI-FLEXIBLE LEADS (Ni PLATING) 18- 0.75 ± 0.10 70 ± 10 PHOTOCATHODE 31.0 ± 0.5 45 MIN. 9 MAX. METAL (CONNECTED WITH CATHODE) (Ni PLATING) IC 9 56.5 ± 0.5 DY7 DY8 DY9 DY6 DY10 8 9 10 7 11 DY5 5 DY4 4 DY3 3 14 PIN BASE JEDEC No. B14-38 13 DY11 14 DY12 2 1 18 DY2 DY1 K 16 P BOTTOM VIEW TPMHA0579EA #5 R7723, R7724, R7725 TPMHA0388EB #6 R9779 52 ± 1 51.0 ± 1.0 46 MIN. 46 MIN. R7723 FACEPLATE A TEMPORARY BASE REMOVED 98 ± 2 PHOTOCATHODE P.C.D. 34.0 ± 0.3 SEMIFLEXIBLE LEADS 18- 0.8 R7724 R7725 IC IC DY8 IC DY6 DY10 9 10 11 12 13 IC 14 DY4 8 P 15 7 DY9 6 16 DY2 17 IC DY7 5 18 4 IC 3 19 IC 20 2 DY5 IC 1 21 DY3 IC DY1 K IC IC DY10 IC DY8 DY12 9 10 11 12 13 DY6 14 DY4 8 P 15 7 DY11 6 16 DY2 17 IC DY9 5 18 4 DY7 19 IC 3 20 2 DY5 IC 1 21 DY3 IC DY1 K TPMHA0509EC DY7 8 DY5 7 DY3 6 P 10 15 DY2 3 A 12 PIN BASE JEDEC No. B20-102 B 51.2 ± 0.5 DY8 12 DY6 13 14 DY4 DY1 5 Acc 13 MAX. 21 PIN BASE 13 MAX. 112 ± 2 PHOTOCATHODE IC IC DY6 IC IC 10 11 12 13 IC DY8 9 14 DY4 P 8 15 7 DY7 6 16 DY2 DY5 5 17 IC 18 4 IC IC 19 3 20 2 IC IC 1 21 DY3 IC DY1 K LEAD LENGTH 70 MIN. FACEPLATE 1 K 17 G B BOTTOM VIEW P IC IC DY8 9 10 11 12 13 DY6 7 14 DY5 6 15 DY4 16 DY2 DY3 5 17 4 DY1 3 18 IC 2 1 20 19 G IC IC Acc IC K IC IC DY7 8 TPMHA0520EF 33 #7 R10533 #8 R6232 51 ± 1 46 MIN. 59.5 ± 0.5 FACE PLATE FACEPLATE 55 MIN. A Temporary Base Removed PHOTOCATHODE 15 DY2 3 Acc 1 K 51.5 ± 1.5 13 MAX. 20 PIN BASE JEDEC No. B20-102 B 11 DY8 DY2 3 IC 2 1 DY1 12 P 13 G 14 K 56.5 ± 0.5 TPMHA0556EB 51.2 ±0.5 #9 R1307 TPMHA0510EA $0 R4143 76.0 ± 0.8 77.0 ± 1.5 70 MIN. FACEPLATE DY7 DY6 7 6 DY5 5 PHOTOCATHODE 7 11 P DY5 5 IC 4 3 DY3 2 1 DY1 IC 13 2 1 DY1 DY7 6 PHOTOCATHODE 12 IC DY3 3 DY2 DY12 IC P DY10 DY11 DY8 9 10 11 12 13 8 DY9 DY6 G 14 K 192 ± 5 127 ± 3 14 PIN BASE JEDEC No. B14-38 150 MAX. DY4 4 51.5 ± 1.5 65 MIN. DY8 IC 8 9 10 IC HA TREATMENT 20 14 15 IC 16 DY4 17 DY2 18 IC 19 K G 215 MAX. FACEPLATE 10 DY7 14 PIN BASE JEDEC No. B14-38 P IC IC DY10 DY9 9 10 11 12 DY8 13 DY6 8 DY7 14 7 DY5 6 15 DY4 16 DY2 DY3 5 17 DY1 4 3 18 IC 2 1 20 19 G IC Acc IC K IC LEAD LENGTH 70 MIN. A IC 9 DY3 4 17 G B Bottom View P.C.D. 34.0 ± 0.3 SEMIFLEXIBLE LEADS 18- 0.8 IC 8 DY4 5 100 ± 3 107 ± 2 DY1 5 6 123 MAX. PHOTOCATHODE DY6 7 DY5 DY9 P DY10 DY7 9 10 11 DY8 8 12 DY5 DY6 7 13 DY3 6 14 DY4 20 PIN BASE JEDEC No. B20-102 56.5 ± 0.5 51.2 ± 0.5 TPMHA0112ED TPMHA0078EA $1 R6091 FACEPLATE $2 R6233, R6233-100 76.0 ± 0.8 76 ± 1 FACEPLATE 65 MIN. 70 MIN SH IC DY10 IC DY8 DY12 9 10 11 12 13 DY6 14 P 8 DY4 15 16 DY2 17 G 18 IC 19 IC 21 20 K SHORT PIN DY4 5 PHOTOCATHODE 14 PIN BASE JEDEC No. B14-38 IC 51.5 ± 1.5 100 ± 3 3 2 DY5 1 DY3 DY1 DY6 7 6 123 MAX. 137 ± 2 PHOTOCATHODE 7 DY11 6 DY9 5 DY7 4 DY5 IC 9 10 DY7 DY3 4 11 DY8 DY2 3 IC IC 8 2 1 DY1 12 P 13 G 14 K * CONNECT SH TO DY5 21 PIN BASE 13 MAX. 56.5 ± 0.5 TPMHA0285ED 34 TPMHA0389EB (Unit: mm) $3 R11065, R11410 $4 R10233, R10233-100 77.5 ± 1.0 76 ± 1 90 MIN. FACEPLATE ( 64 MIN.) DY5 PHOTOCATHODE 53.3 ± 1.0 P.C.D. 31.0 ± 0.3 SEMIFLEXIBLE LEADS 20- 0.8 (Ni Plating) 51.5 ± 1.5 10 MAX. LEAD LENGTH 65 MIN. B 11 DY8 DY2 3 NC NC 9 10 DY7 DY3 4 14 PIN BASE JEDEC No. B14-38 2 1 DY1 12 P 13 G 14 K 56.5 ± 0.5 DY12 A 104.5 ± 3.0 PHOTOCATHODE B Bottom View SH IC DY10 IC DY8 9 10 11 12 8 13 P 7 14 DY6 NC 8 DY4 5 127.5 MAX. SH IC DY10 DY12 9 10 11 12 DY8 8 13 P DY6 7 14 DY11 6 15 DY4 16 DY2 DY9 5 4 17 DY7 G 3 18 2 1 20 19 IC DY5 DY3 IC DY1 K 123.0 ± 1.5 METAL TUBE (Ni Plating) DY6 7 6 A Temporary Base Removed IC 20 PIN BASE JEDEC No. B20-102 Operating Ambient Temperature for JEDEC BASE and E678-20B : -30 °C to +50 °C 85 MIN. DY11 6 DY9 5 4 DY7 3 15 DY4 16 DY2 17 18 G DY5 2 1 20 19 IC DY3 IC DY1 K 51.2 ± 0.5 Note: E678-20B will be supplied with PMT TPMHA0573EA $5 R877, R877-100 TPMHA0580EA $6 R1250 133 ± 2 133.0 ± 1.5 120 MIN. FACEPLATE 111 MIN. DY7 7 6 DY5 5 55 MAX. 11 P DY3 3 12 IC 13 G 14 K 2 1 DY1 DY14 DY12 IC P DY13 DY10 9 10 11 12 13 DY8 8 DY11 14 7 DY9 6 15 DY6 16 DY4 DY7 5 17 4 DY2 DY5 18 3 DY3 19 IC 2 1 20 DY1 G IC K PHOTOCATHODE HA TREATMENT 259 ± 5 171 ± 3 PHOTOCATHODE DY4 4 DY2 194 MAX. FACEPLATE DY8 DY9 8 9 10 DY10 276 ± 5 DY6 14 PIN BASE JEDEC No. B14-38 20 PIN BASE JEDEC No. B20-102 56.5 ± 0.5 51.2 ± 0.5 TPMHA0074EC TPMHA0018ED $8 R6594 $7 R1584 133 ± 2 128 ± 2 120 MIN. 110 MIN. DY14 IC P DY12 DY13 DY10 9 10 11 12 13 DY8 DY11 8 14 7 DY9 6 15 DY6 16 DY4 DY7 5 17 DY2 DY5 4 18 3 DY3 IC 19 2 20 1 DY1 G IC K 2.0 .5 ± DY3 4 PHOTOCATHODE 178 ± 2 R132 DY10 P DY9 9 10 DY7 8 7 DY5 6 R82 PHOTOCATHODE A TEMPORARY BASE REMOVED 276 ± 5 259 ± 5 HA TREATMENT 84.5 ± 2 265 MAX. FACEPLATE 2 FOCUS3 1 DY1 23 K DY8 14 DY6 15 16 DY4 19 20 FOCUS1 21 DY2 FOCUS2 B BOTTOM VIEW IC IC DY10 DY8 9 10 11 12 13 14 DY6 7 IC 6 15 IC 16 DY4 DY7 5 17 DY5 4 18 FOCUS1 3 19 DY2 DY3 2 1 20 FOCUS3 FOCUS2 K DY1 IC P.C.D. 46.6 ± 0.3 SEMIFLEXIBLE LEADS 24- 0.8 P 13 MAX. A 20 PIN BASE JEDEC No. B20-102 20 PIN BASE JEDEC No. B20-102 B 51.2 ± 0.5 LEAD LENGTH 70 MIN. DY9 8 51.2 ± 0.5 TPMHA0187EE TPMHA0373EE 35 $9 R5912, R5912-02 %0 R7081, R7081-20 202 ± 5 INPUT WINDOW 253 ± 5 190 MIN. R5912/-100 IC IC DY10 P 9 10 11 12 DY8 13 DY9 8 14 DY6 7 IC 6 15 IC INPUT WINDOW 220 MIN. R7081/-100 IC IC DY10 P 9 10 11 12 DY8 13 DY9 8 14 DY6 7 IC 6 15 IC IC 16 DY4 17 DY2 18 19 G1 (Bottom View) R5912-20 IC DY14 DY12 DY13 9 10 11 12 DY10 13 8 DY11 14 DY8 7 DY9 6 15 DY6 P 84.5 ± 2.0 DY7 5 DY5 4 3 G3 2 DY3 1 DY1 20-PIN BASE JEDEC No. B20-102 51.2 ± 0.5 20 300 MAX. G2 245 ± 5 K DY7 5 DY5 4 3 DY3 2 G3 1 DY1 PHOTOCATHODE 275 ± 7 275 MAX. 220 ± 5 250 ± 7 20 7 36. R1 1 R13 DY7 5 DY5 4 3 DY3 2 G3 1 DY1 PHOTOCATHODE IC 84.5 ± 2.0 16 G1 17 DY4 18 19 DY2 K G2 G2 R7081-20 IC DY14 DY12 DY13 9 10 11 12 DY10 13 8 DY11 14 DY8 7 DY9 6 15 DY6 P 20-PIN BASE JEDEC No. B20-102 20 16 G1 17 DY4 18 19 DY2 K G2 (Bottom View) IC: Internal Connection (Do not use) 51.2 ± 0.5 IC: Internal Connection (Do not use) TPMHA0500EC %1 R8055 K (Bottom View) DY7 5 DY5 4 3 G3 2 DY3 1 DY1 (Bottom View) 20 16 DY4 17 DY2 18 19 G1 TPMHA0501EC %2 R3600-02 508 ± 10 INPUT WINDOW 332 ± 5 460 MIN. DY10 IC DY8 P DY11 9 10 11 12 DY6 13 DY4 8 DY9 14 7 DY7 6 15 IC 16 DY2 IC 5 17 G2 DY5 4 18 3 DY3 K 19 2 1 20 DY1 G3 IC G1 312 MIN. INPUT WINDOW P 9 10 11 12 3.4 R22 IC 5 DY5 4 3 DY3 2 G3 1 DY1 PHOTOCATHODE 20 DY8 13 14 DY6 15 DY4 16 DY2 17 G2 18 19 G1 K 15 R3 IC DY9 8 7 DY7 6 IC DY10 IC PHOTOCATHODE IC IC: Internal Connection (Do not use) 680 MAX. 610 ± 20 IC: Internal Connection (Do not use) 640 ± 22 343 ± 7 368 MAX. 333 ± 5 (Bottom View) 254 ± 10 202 ± 3 82 ± 2 20-PIN BASE JEDEC No. B20-102 51.2 ± 0.5 METAL STEM FLANGE 213 ± 3 20PIN BASE JEDEC No.B20-102 51.2 ± 0.5 TPMHA0502EC %3 R7250 TPMHA0092EG %4 R8520-406, -506 508 ± 10 680 MAX. 640 ± 22 4-R3.2 610 ± 20 USEFUL AREA PHOTOCATHODE TOP VIEW 254 ± 10 7.0 ± 0.5 5 MAX. 1.2 MAX. 2.5 MAX. SIDE VIEW 8×2.54=20.32 GUIDE MARK 2.54 PITCH 45°±10° 25- 1.5 10.16 BOTTOM VIEW CUT (Dy10) P 1 2 3 4 5 6 7 8 9 23 10 22 CUT (Dy10) CUT (Dy10) 25 IC 11 21 24 IC 20 19 18 17 16 15 14 13 12 CUT (Dy10) 20.32 1.2 15.24 QUARTZ GLASS 5.08 20.5 MIN. 28.25 ± 1.00 5 MAX. 15 R3 AL RING 13- 0.45 PHOTOCATHODE Ni PLATING 25.7 ± 0.4 24 IC IC P DY10 DY9 9 10 11 12 IC 13 DY8 DY7 8 14 7 DY5 6 15 DY6 16 DY4 DY3 5 17 DY2 IC 4 18 3 G3 2 19 IC 1 20 G2 DY1 G1 K IC: Internal Connection (Do not use) G CUT (Dy10) K Dy1 Dy2 Dy3 Dy4 CUT (Dy10) CUT (G) 430 MIN. CUT (G) Dy10 Dy9 Dy8 Dy7 Dy6 Dy5 CUT (Dy10) CUT (G) INPUT WINDOW BASING DIAGRAM K : Photocathode Dy : Dynode P : Anode CUT : Cut Pin IC : Internal Connection (Don't Use) 82 ± 2 20PIN BASE JEDEC No.B20-102 51.2 ± 0.5 TPMHA0475EG 36 TPMHA0575EA (Unit: mm) K IC (Dy10) IC Dy1 Dy2 Dy3 Dy4 IC (Dy10) CUT (K) 12.0 ± 0.5 2.54 PITCH 4 MAX. 29- 0.45 PHOTOCATHODE EFFECTIVE AREA 1 2 3 4 5 6 7 8 9 32 10 11 31 30 12 GUIDE 29 13 CORNER 28 14 15 27 16 26 25 24 23 22 21 20 19 18 17 TOP VIEW SIDE VIEW BOTTOM VIEW 4.4 ± 0.7 20.32 K 0.6 ± 0.4 2.54 PITCH CUT (IC) P1 CUT (IC) CUT (IC) CUT (IC) P4 CUT (IC) PHOTOCATHODE 4 MAX. 15- 0.45 PHOTOCATHODE CUT (K) Dy10 Dy9 Dy8 Dy7 Dy6 Dy5 IC (Dy10) CUT (K) INSULATION COVER IC IC IC IC IC IC IC 22.0 ± 0.5 18 MIN. 20.32 IC IC P IC IC IC IC 18 MIN. 0.6 ± 0.4 18 MIN. 30.0 ± 0.5 25.7 ± 0.5 BASING DIAGRAM P2 P1 P3 P4 INSULATION COVER SIDE VIEW 1 2 3 4 5 6 7 8 9 32 10 11 31 30 12 13 29 GUIDE CORNER 28 14 15 27 16 26 25 24 23 22 21 20 19 18 17 BOTTOM VIEW BASING DIAGRAM 18 MIN. : Photocathode K Dy : Dynode : Anode P CUT : Short Pin IC : Internal Connection (Don't Use) K : Photocathode Dy : Dynode P : Anode CUT : Short Pin IC : Internal Connection (Do not Use) TOP VIEW TPMHA0297EJ TPMHA0278EJ 4 MAX. 30- 0.45 SIDE VIEW BOTTOM VIEW P16 1.0 PITCH P2 K : Photocathode Dy : Dynode P : Anode CUT : Short Pin IC : Internal Connection (Do not Use) 0.8 TOP VIEW 4 MAX. INSULATION COVER P1 P3 P4 1 2 3 4 5 6 7 8 9 32 10 11 31 30 12 29 13 GUIDE CORNER 28 14 15 27 16 26 25 24 23 22 21 20 19 18 17 SIDE VIEW BOTTOM VIEW BASING DIAGRAM 23.5 G : Grid K : Photocathode Dy : Dynode P : Anode CUT : Short Pin IC : Internal Connection (Do not Use) TOP VIEW TPMHA0530EA TPMHA0298EH ^0 R11265U, R11265U-100, R11265U-200 %9 R8900-00-M16, R8900-100-M16 30 ± 0.5 P4 P1 23.5 SIDE VIEW P16 P13 23.5 TOP VIEW 12.5 MAX. 19- 0.45 22.95 22.2 4.2 MAX. 4-R1.35 USEFUL AREA TOP VIEW BOTTOM VIEW 3.5 ± 0.7 2.22 PITCH CUT (IC) CUT (IC) CUT (IC) 0.6 ± 0.4 Dy5 CUT (IC) 18.7 ± 0.5 23 Dy6 CUT (IC) 26.2 - 0.5 CUT (IC) CUT (IC) Dy3 Dy4 P4 CUT (IC) P8 P12 CUT (IC) P16 Dy7 Dy1 Dy2 P3 P7 P15 P11 Dy8 K P1 P2 P5 P6 P9 P10 Dy9 15.24 CUT (IC) 5.08 30- 0.45 P13 P14 EPOXY 2.5 MAX. Dy10 1.2 MAX. PHOTOCATHODE Dy11 PHOTOCATHODE Dy12 16 15 14 13 CUT (IC) CUT (IC) G 8×2.54=20.32 5.08 10.16 15.24 1 25.5 ± 0.5 2 2.54 PITCH 3.5 MAX. 3 +0 6 MAX. CUT (IC) CUT (IC) CUT (IC) 0.8 23.5 4 7.0 ± 0.5 12.0 ± 0.5 20.32 27.2 ± 0.5 +0 26.2 - 0.5 CUT (IC) P2 CUT (IC) CUT (IC) CUT (IC) P3 CUT (IC) 16- 0.45 PHOTOCATHODE BASING DIAGRAM 15.8 CUT (IC) P1 CUT (IC) CUT (IC) CUT (IC) P4 CUT (IC) 23.5 16 INSULATION COVER P1 PHOTOCATHODE CUT (K) Dy8 P12 P10 P8 P6 P4 Dy5 K PHOTOCATHODE 20.32 2.54 PITCH Dy9 P3 P1 P2 IC Dy3 Dy1 GUIDE CORNER 4.4 ± 0.7 20.32 PHOTOCATHODE 29.0 ± 0.5 0.6 ± 0.4 23.5 1 2 3 4 5 6 7 8 9 Dy2 Dy4 IC P15 P16 P14 Dy10 G CUT (Dy10) K Dy1 Dy2 Dy3 Dy4 CUT (Dy10) CUT (G) 30.0 ± 0.5 26.2 ± 0.5 CUT (G) Dy10 Dy9 Dy8 Dy7 Dy6 Dy5 CUT (Dy10) CUT (G) 20.32 2.54 PITCH 20.32 12.0 ± 0.5 15.8 4.4 ± 0.7 25 26 27 28 29 30 31 32 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 22.0 ± 0.5 0.6 ± 0.4. 12.0 ± 0.5 30.0 ± 0.5 25.7 ± 0.5 %8 R8900U-00-M4, R8900U-100-M4 K Dy6 P13 P11 P9 P7 P5 Dy7 CUT (K) %7 R5900U-00-L16, R5900U-100-L16/-200-L16 CUT (IC) P2 CUT (IC) CUT (IC) CUT (IC) P3 CUT (IC) CUT (K) Dy10 Dy9 Dy8 Dy7 Dy6 Dy5 CUT (IC) CUT (K) 4.4 ± 0.7 22.0 ± 0.5 12.0 ± 0.5 30.0 ± 0.5 25.7 ± 0.5 CUT (IC) CUT (IC) Dy1 Dy2 Dy3 Dy4 CUT (IC) CUT (K) %6 R7600U-00-M4, R7600U-100-M4/-200-M4/-300-M4 %5 R7600U, R7600U-100/-200/-300 4-R3.5 22.56 K IC (P) Dy1 Dy2 Dy3 IC (P) Dy4 Dy5 Dy6 IC (P) 1 28 27 26 25 24 23 22 21 20 7 8 9 10 11 12 13 14 15 P Dy12 Dy11 Dy10 IC (P) Dy9 Dy8 Dy7 IC (P) PHOTOCATHODE SIDE VIEW BOTTOM VIEW BASING DIAGRAM BASING DIAGRAM G : Grid K : Photocathode Dy : Dynode P : Anode CUT : Short Pin IC : Internal Connection (Don't Use) TPMHA0531EB K Dy P IC : Photocathode : Dynode : Anode : Internal Connection (Don't Use) TPMHA0577EB 37 ^2 R6236 54 MIN. 59.5 ± 1.0 8 MIN. 9.8 ± 0.4 ^1 R2248 9.8 ± 0.4 8 MIN. FACEPLATE 59.5 ± 1.0 8 4 DY6 PHOTOCATHODE DY5 11 K 10 MAX. 1 IC IC 8 IC 9 DY4 5 10 DY2 51.5 ± 1.5 14 PIN BASE JEDEC No. B14-38 SHORT PIN 10 DY7 DY3 4 123 MAX. 2 DY6 7 6 9 DY4 DY3 3 DY1 11 PIN BASE 54 MIN. DY8 7 100 ± 3 DY5 45.0 ± 1.5 PHOTOCATHODE FACEPLATE P 6 DY7 5 11 DY8 DY2 3 IC 2 1 DY1 12 P 13 G 14 K 56.5 ± 0.5 TPMHA0098EC ^3 R6237 TPMHA0392EB ^4 R1548-07 18 MIN. 24.0 ± 0.5 70 MIN. 76 ± 1.5 8 MIN. 8 MIN. 24.0 ± 0.5 FACEPLATE 76 ± 1.5 FACEPLATE P2 DY10 DY8 8 9 10 DY7-2 11 DY6 7 12 6 DY7-1 5 13 DY4 4 14 DY2 DY5 15 DY3 3 2 16 IC 1 17 IC DY1 IC K PHOTOCATHODE 70 MIN. P1 DY9 DY6 7 6 DY4 5 14 PIN BASE JEDEC No. B14-38 10 DY7 DY3 4 11 DY8 DY2 3 IC IC 9 2 1 DY1 12 P 13 G 14 K SHORT PIN 17 PIN BASE 56.5 ± 0.5 13 MAX. 100 ± 3 51.5 ± 1.5 123 MAX. PHOTOCATHODE IC 8 70 ± 2 DY5 TPMHA0393EC ^5 R8997 TPMHA0511EA ^6 R10550 16 MIN. 33 MIN. A TEMPORARY BASE REMOVED 18 16 MIN. 33 MIN. 16 MIN. 33 MIN. A Temporary Base Removed 18 16 MIN. FACE PLATE FACE PLATE +0 +0 39 - 1 39 - 1 ( 26) ( 26) DY9 8 DY7-D 7 P-D 6 13 MAX. DY3 LEAD LENGTH 45 MIN. P.C.D. 26 SEMI-FLEXIBLE LEADS 20- 0.7 A 20 PIN BASE JEDEC No. B20-102 B 51.2 ± 0.5 38 2 16 DY7-A 17 18 DY6 84 ± 2 3 DY7 9 8 38 MAX. DY6-2 13 14 P-2 3 16 DY6-1 17 18 DY4 P-3 5 1 20 19 DY4 DY1 K DY2 15 P-1 DY6-3 4 DY4 DY3 P.C.D. 26 SEMIFLEXIBLE LEADS 20- 0.7 B Bottom View IC DY10 IC DY8 DY9 9 10 11 12 DY7-B 13 DY7-D 8 7 14 P-B P-D 6 15 P-A A 20 PIN BASE JEDEC No. B20-102 P-C 5 4 DY7-C 16 DY7-A 17 DY6 3 18 2 1 20 19 DY5 DY4 DY3 DY1 K DY2 B TPMHA0552EC 51.2 ± 0.5 DY8 11 7 P-4 6 15 P-A DY7-C 4 DY5 DY6-4 13 MAX. 38.1 MAX. P-C 5 DY5 PHOTOCATHODE LEAD LENGTH 45 MIN. 84 ± 2 PHOTOCATHODE DY10 11 DY8 12 DY7-B 13 14 P-B 2 1 20 19 DY3 DY1 K DY2 B BOTTOM VIEW NC DY8 DY7 NC DY5 9 10 11 12 DY6-2 13 DY6-4 8 7 14 P-2 P-4 6 15 P-1 P-3 5 4 16 DY6-1 17 DY4 3 18 2 1 20 19 DY4 DY3 DY3 DY2 DY1 K DY6-3 TPMHA0576EC (Unit: mm) 79 MIN. 60 MIN. 85 ± 1 ^8 R6235 67.5 ± 0.6 ^7 R6234 59.5 ± 0.5 76.0 ± 1.5 55 MIN. FACEPLATE DY6 DY5 7 6 DY4 5 IC 8 6 10 DY7 DY3 4 IC PHOTOCATHODE IC 9 51.5 ± 1.5 12 P 1 DY1 IC 9 10 DY7 DY3 4 13 G 14 K 2 IC 8 DY4 5 11 DY8 DY2 3 14 PIN BASE JEDEC No. B14-38 DY6 7 DY5 100 ± 3 100 ± 3 51.5 ± 1.5 123 MAX. PHOTOCATHODE 70 MIN. 123 MAX. FACEPLATE 11 DY8 12 P 13 G 14 K DY2 3 2 1 DY1 IC 14 PIN BASE JEDEC No. B14-38 56.5 ± 0.5 56.5 ± 0.5 TPMHA0391EB TPMHA0390EB ^9 R7373A-01 &0 R8143 28.5 ± 0.5 B DY9 DY5 9 DY6 10 DY4 11 2 1 DY1 12 1 IC B BOTTOM VIEW P DY10 6 7 DY9 DY8 5 8 8 DY8 9 10 DY6 11 DY4 3 2 29.0 ± 0.7 DY5 3 7 5 DY3 17 K DY7 4 6 DY7 4 13 DY4 14 DY2 DY1 2 DY3 37.3 PHOTOCATHODE 12 DY6 DY3 3 DY10 P DY11 DY10 10 DY8 11 20 MIN. DY9 6 DY7 5 DY5 4 25 MIN. 112 ± 2 LEAD LENGTH 50 MIN. A 12 PIN BASE JEDEC No. B12-43 P 8 12 DY2 13 14 K DY1 SHORT PIN HA TREATMENT DY2 K 14 PIN BASE 13 MAX. 13 MAX. PHOTOCATHODE P.C.D. 17.3 ± 0.5 SEMIFLEXIBLE LEADS 18- 0.7 FACE PLATE A TEMPORARY BASE REMOVED FACEPLATE 43.0 ± 1.5 R13 ± 1 25.4 ± 0.5 TPMHA0460EB TPMHA0507EA 39 Typical Gain Characteristics ● 10 mm (3/8") Dia. and TO-8 Types ● 13 mm (1/2") Dia. Types 10 8 TPMHB0095EE+TPMHB0096ED 108 7 107 R647-01 GAIN 106 106 R1635 R2248 R2496 R4124 10 5 GAIN 10 ● 19 mm (3/4") Dia. Types 700 1000 1500 R5611A-01 105 R3478 104 103 102 500 10 3 10 2 2000 2500 3000 500 R3991A-04 700 SUPPLY VOLTAGE (V) 10 R7111 R4998 R8619 10 7 10 6 R8143 R9800 R7373A-01 R3998-02 6 R1924A R5505-70 105 104 GAIN GAIN 2000 2500 3000 8 TPMHB0100EE R7899-01 R1548-07 10 1500 ● 28 mm (1-1/8") Dia. Types TPMHB0099ED 107 1000 SUPPLY VOLTAGE (V) ● 25 mm (1") Dia. Types 108 R1450 R1166 R4125 R4177-06 104 TPMHB0097EF R7525 105 R6427 10 4 10 3 R1288A-06 103 102 500 700 1000 1500 2000 2500 3000 SUPPLY VOLTAGE (V) 40 102 500 700 1000 1500 2000 2500 3000 SUPPLY VOLTAGE (V) ● 38 mm (1-1/2") Dia. Types 10 ● 51 mm (2") Dia. Types 8 TPMHB0101EE 10 8 TPMHB0858EA R331-05 R6041 R6041-406 R6041-506 R580 10 7 R11102 10 7 10 6 R3886A 10 6 R7725 R329-02 R1306 R8997 R10550 R7723 10 R7761-70 5 R9420 GAIN GAIN R6231 10 5 R1828-01 10 4 104 10 3 103 R2083 R9779 10 2 500 700 1000 1500 102 500 2000 2500 3000 700 108 1500 2000 2500 3000 3500 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) ● 51 mm (2") Dia. Types ● 60 mm (2.5") Dia. Types 1000 ● 76 mm (3") Dia. Types and 90 mm (3.5") Dia. Types TPMHB0859EA 10 8 TPMHB0107EE 10 7 10 6 10 10 6 10 5 10 4 10 3 R6091 R2154-02 R7724 R6232 R6234 R6236 R4607A-06 GAIN GAIN R5924-70 7 10 5 10 4 10 3 R11265 R1307 R10233 R6233 R6235 R6237 R4143 R1840 R11410 R10533 10 2 500 700 1000 1500 2000 2500 3000 3500 SUPPLY VOLTAGE (V) 102 500 700 1000 1500 2000 2500 3000 SUPPLY VOLTAGE (V) 41 ● 127 mm (5"), 204 mm (8"), 254 mm (10"), 332 mm (13") and 508 mm (20") Dia. Types 10 9 TPMHB0860EA 10 10 TPMHB0657EB R1250 R1584 10 8 10 7 10 9 10 8 10 7 R5912-02 R7081-20 R6594 10 GAIN GAIN R877 R5912 R7081 6 R8055 106 105 R3600-02 R7250 105 104 103 500 700 1000 1500 104 500 2000 2500 3000 700 108 1500 2000 2500 3000 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) ● Metal Package Types 1000 ● Metal Package Types and Assembly Type TPMHB0788EB 108 TPMHB0789EB R5900U-00-L16 R8900U-00-M16 107 107 R7600U 6 10 10 5 10 4 6 H7260 R7600U-00-M4 GAIN GAIN 10 H8711 R8520-406 R8520-506 R8900U-00-C12 10 5 H8500C H9500 R11265U H10966A 104 R8900U-00-M4 H7546B H8804 10 3 102 500 10 700 1000 1500 2000 2500 3000 SUPPLY VOLTAGE (V) 42 3 102 500 700 1000 1500 2000 2500 3000 SUPPLY VOLTAGE (V) ● UBA / SBA Metal Package Types 10 ● UBA / SBA Metal Package Types and Assembly Types 8 TPMHB0854EA 10 8 TPMHB0855EA H8711-100 H8711-200 R5900U-100-L16 R5900U-200-L16 10 7 10 6 10 5 10 7 10 6 10 5 10 4 R7600U-100-M4 R7600U-200-M4 R11265U-200 R8900U-100-C12 10 H7260-100/-200 GAIN GAIN R8900U-100-M16 R8900U-100-M4 4 R7600U-100 R7600U-200 10 H7546B-100, -200 H8804-100, -200 R11265U-100 3 102 500 700 1000 H10966A/B H10966A/B-100 10 1500 3 102 500 2000 2500 3000 700 10 1500 2000 2500 3000 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) ● SBA PMT Series 1000 ● Extended Green Metal Package Types and Assembly Types 8 TPMHB0856EA 10 8 TPMHB0857EA H8711-300 R7724-100 10 7 10 6 R3998-100-02 R6233-100 R10233-100 10 7 10 6 10 5 10 4 10 3 H7546A/B-300, -20 H8804-300 R9420-100 10 5 10 4 GAIN GAIN R9800-100 R7600U-300-M4 R6231-100 10 3 10 2 R877-100 500 700 1000 1500 2000 2500 3000 SUPPLY VOLTAGE (V) 102 500 700 1000 1500 2000 2500 3000 SUPPLY VOLTAGE (V) 43 Position Sensitive Photomultiplier Tubes Tube Diameter q Spectral Response Range (nm) / Curve Code Type No. w Outline No. e Anode Sensitivity Number of Plates or wires Effective Area (mm) Anode Pitch Socket & Socket Assembly (mm) r Cathode Sensitivity t y u Dynode Blue Structure Q.E. / No. of Luminous Sens. at Peak Typ. Index Stages Typ. (CS 5-58) (µA/lm) Typ. (%) Position Sensitive Photomultiplier Tubes with Metal Channel Dynodes 30 mm R8900U Square -00-C12 q 300 to 650/A-D 23.5 × 23.5 6(X) + 6(Y) Plates 4.0 E678-32B ¤8 MC / 11 85 10.0 25 CM / 12 80 9.0 23 Position Sensitive Photomultiplier Tubes 5" round R3292-02 w 300 to 650/A-D 100 28(X) + 28(Y) Wires — 4.0 Note: Please refer to page 18 and 19 for each item in the above list. G CUT (Dy11) Dy1 Dy3 Dy5 Dy7 Dy9 Dy11 CUT (G) q R8900U-00-C12, R8900U-100-C12 30.0 ± 0.5 29.0 ± 0.5 26.2 ± 0.5 4.4 ± 0.7 0.6 ± 0.4 20.32 2.54 PITCH K Dy2 Dy4 Dy6 Dy8 Dy10 CUT (Dy11) 4 MAX. 23.5 PY1 PY2 PY3 PY4 PY5 PY6 23.5 TOP VIEW INSULATION COVER SIDE VIEW PX1 PX2 PX3 PY1 PX4 PX5 PX6 25- 0.45 PHOTOCATHODE PX1 PX2 PX3 PX4 PX5 PX6 1 2 3 4 5 6 7 8 9 32 10 11 31 30 12 29 13 GUIDE CORNER 28 14 15 27 16 26 25 24 23 22 21 20 19 18 17 CUT (G) PY6 PY5 PY4 CUT (IC) PY3 PY2 CUT (Dy11) CUT (G) PHOTOCATHODE 12.0 ± 0.5 20.32 23.5 BOTTOM VIEW BASING DIAGRAM G K Dy P : Grid : Photocathode : Dynode : Anode (PX1-PX6) (PY1-PY6) CUT : Short Pin IC : Internal Connection (Do not Use) TPMHA0524EB 44 i Anode to Cathode Supply Voltage Anode Sensitivity o !0 Gain Typ. Luminous Typ. Maximum Rating !2 Typical Time Response !3 !1 Dark Current (A/lm) Typ. (nA) Max. (nA) Anode Average Rise Transit T.T.S. to Anode Time Time Typ. Cathode Current Typ. Typ. (FWHM) Voltage (V) (mA) (ns) (ns) (ns) 800 #8 7.0 × 105 60 2 10 1000 0.1 2.2 11.9 0.75 1250 $2 1.3 × 105 10 40 150 1300 0.06 6.0 20 — Type No. Note R8900-00-C12, without cover type, is available. R8900U -00-C12 No suffix number: PMT + HA -01: PMT + HA +Voltage Divider -02: -01 + Resistor Chain R3292-02 w R3292-02 Y1 Y2 Y3 Y4 Y5 Y24 Y25 Y26 Y27 Y28 132 ± 3 100 MIN. X1 X2 X3 X4 X5 HA TREATMENT X24 X25 X26 X27 X28 133 ± 3 113 ± 2 PHOTOCATHODE -HV : RG-174/U R 2R 2R 2R C2 2R 2R 1R : 180 kΩ 2R : 360 kΩ C1 : 0.002 µF/2 kV C2 : 0.01 µF/500 V C3 : 0.01 µF/500 V 2R 2R 2R 2R 2R 1R C1 HV IN RG-174/U XA TPMHA0162EE 2R 2R 10 kΩ 20 ± 1 SIGNAL OUTPUT : 0.8D COAXIAL CABLES 1000 ± 100 EACH RESISTOR: 1 kΩ C3 DY12 DY11 DY10 DY9 DY8 DY7 DY6 DY5 DY4 DY3 DY2 DY1 K XB YC YD TPMHC0088EE 45 Voltage Distribution Ratios Interstages for the dynodes of a PMT are supplied by a voltage divider network consisting of series resistors, as shown on the right page. The cathode ground scheme (1) is usually used in scintillation counting because it reduces noise resulting from glass scintillation. In fast-pulse light applications, use of the anode ground scheme (2) is suggested. Either scheme requires decoupling (charge-storage) capacitors connected to the last few stages of dynodes in order to maintain the dynode vol- tage at a constant value during pulse duration. refer to section 11 and 12 on page 8 to 13 for further details. To free the user from the necessity of designing voltage divider and performing troublesome parts selection, Hamamatsu provides a variety of socket assemblies which enable sufficient performance to be derived from PMT's by making simple connections only. Voltage Distribution Ratio Voltage Number of Distribution stages No. 6 q Voltage Distribution Ratios K 2 K No. w e r t y u i o !0 !1 stages No. !2 stages 8 K No. !3 stages 8 K No. !4 !5 stages K No. !6 !7 !8 !9 @0 @1 @2 @3 @4 @5 @6 @7 @8 @9 #0 #1 #2 #3 #4 #5 stages No. #6 #7 stages G Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4.8 1.5 1.5 1 1 1 1 1 1 2 1 — 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 — 1.5 1.5 1.5 1 1 1 1 1 1 1 — 1.5 1 3.3 1.2 1.5 3 2 1 — 2 1 2 1 1 1 1 1 — 1 1 1 1 1 1 — 1.5 1.5 1.5 1 1 1 1 1 1 1 — G Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Acc Dy7 Dy8 P 4.8 1.2 1.8 1 1 1 1 0.5 3 2.5 1 1.3 2 2 3 4 4 4 4 7 8 1.3 1 K 0.5 1 1 1.3 1.3 1.5 1.5 1.5 2 2 2 2 2 3 3 3 3 4 4 4 10 K 8 8 G Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 P — 1 1 1 1.5 1 1 1 1 1 1 1 1 1 1 1.5 1 1 1 1 G Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 P 1 1 1 1 1 1 1 1 0.5 2 1.5 1 1 1 1 1 1 1 1 1 1 — 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.5 3 2.5 4.8 1.2 1.8 1 1 1 1 1 1 1 1 4.8 1.5 1.5 1 1 1 1 1 1 1 1 1 1 — 1 1 1 1 1 1.2 1.8 3.6 3.3 1 — 1 1 1 1 1 1 1 1 — 1.5 1.5 1 1 1 1 1 1 1 1 1 1 — 1 1 1 1 1 1.2 1.5 1.8 2 1 — 1 1 1 1 1.2 1.5 2.2 3.6 3 1 — 1.5 1 1 1 1 1 1 1 0.75 1 — 2 1 1 1 1 1 2 3 2 2 — 1 1 1 1 1 1 1 1 1 1 — 1.5 1 1 1 1 1 1 1 1 1 — 1.5 1 1 1 1 2 3 3.6 3.3 1 — 1 1 1 1 1 1 1 1 1 — 1.5 1.5 1 1 1 1 1 1 1 1 1 — 1.5 1 1 1 1.2 1.5 2 3.3 3 1 — 2 1 1 1 1 1 1 2 1 1 — (Note 1) Dy1 F1 F3 F2 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 P 1 1 1 1 1 0.18 0 0.17 0.85 1.5 1 1 1 1 1 1 1.2 1.5 2.1 0.18 0 0.17 0.85 1.5 3 2.4 Note 1: Acc should be connected to Dy7 except R4998. 46 Acc: Grid (Accelerating Electrode) Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 GR P 1 1 1 1 1 1 1 1 0.5 3 3 9 10 Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 P 1 1 1 2 4 2 <Symbols> K: Photocathode G: Grid F: Focusing Electrode Dy: Dynode GR: Guard Ring P: Anode Acc: Accelerating Electrode Schematic Diagram of Voltage Divider Networks (1) Cathode Ground Scheme (+HV) (2) Anode Ground Scheme (-HV) CATHODE CATHODE ANODE DY.1 DY.… ANODE Cc DY.1 DY.2… DY.n DY.n Rd R R R : 100kΩ C : 0.01µF R 1MΩ 0.1µF R R Rd : Cc : R 1MΩ 0.005µF R R R R C C C C R -HV +HV R R R R R R : 100k 1MΩ C : 0.01µF 0.1µF R R R R C C C C TPMOC0043EB RL TPMOC0044EB Voltage Distribution Ratio Voltage Number Distribution of No. stages #8 11 #9 Voltage Distribution Ratios K G 0.5 2 No. $0 stages 11 K No. $1 $2 $3 $4 $5 $6 $7 $8 $9 %0 %1 %2 %3 %4 %5 %6 stages K No. %7 stages 12 K No. %8 %9 stages K No. ^0 ^1 stages No. ^2 ^3 ^4 stages No. ^5 ^6 stages 15 19 F2 5 12 G 10 14 F3 Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 P 1 1 0.02 3 1 1 1 1 1 1 1 1 Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 P 1 1 — 1.8 2.4 1 1 1 1 1 1 1 1 1 1 1 1 — 1 1 1 1 1 1 1 1 1.2 1.8 2.5 1 3 1 1 1 1 1.5 1.5 1 3 1.2 1.8 4 1 3 1 1 1 1.5 2.5 3.6 4.5 8.6 2.5 2.8 1.2 1.8 1 1 1 1 1 1.5 1.5 1 3 5 2.8 1.2 1.8 1 1 1.2 1.5 2.8 2 4 5.7 8 1 2 2 — 1 1 1 1 1 1 1 1 1 1.2 2 2 — 1 1 1 1 1 1 1 1 1 0.5 — 1.3 0.8 0.8 1 1 1 1 1 1 1 1 5 2 2 — 1 1 1 1 1 1 1 1 2 1 1.6 0 1 1 1 1 1 1 1 1 2.7 0.5 1 1.4 1 — 1 1 1 1 1 1 1 1 1 1 2 1 — 1 1 1 1 1 1 1 1 2 1 2 — 1.5 1 1 1 1 1 1 1 1 2 2 1.6 1 0 1 1 1 1 1 1 1.6 2 3.3 3 1.6 1 0 1 1 1 2 1.2 1.5 2.4 3 3.9 Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 P 1.5 2 1 1 1 1 1 1 1 1 2 1 1 1 P Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 GR 1 1 1 1 1 1 1 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.9 0.1 1 1 G 2.5 2.5 K 2 4 K 14 F1 1 0.6 1 1 1 1.2 1.2 2 2 2.5 3 3.3 4 4 4 4.3 4.3 12 Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 P 1 1 1 1 1 1 1 1 1.5 2 1 0.5 1 1 1 1 1 1 1 1 1 — 1 1 (Note 2) (Note 2) (Note 2) (Note 2) Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 Dy13 Dy14 P 7.5 1.2 1.8 3 2.5 1 1 1 1 1 1 1 1.5 1.5 1 7.5 1.2 1.8 5.7 8 5 1 1 1 1 1.2 1.5 2 2.8 4 Dy1 F2 F1 F3 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 Dy13 Dy14 P 16.8 0 0.6 3.4 — — 2.4 0 5 3.33 1.67 1 1.2 1.5 2.2 — 1 — 3.4 18.5 0 0.6 0 — — 4 5 3.3 1.7 1 1 1 2 3 — — 3.4 0 5 3.33 1.67 1 11.3 0 0.6 3 2.4 1 1 1 1 1.2 1.5 2.2 K 2 2 Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 Dy13 Dy14 Dy15 Dy16 Dy17 Dy18 Dy19 P 1 1 1 1 — — — — 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Note 2: Shield should be connected to Dy5. 47 Quick Reference for PMT Hybrid Assemblies PMT Characteristics Assembly Tube Type Diameter No. Tube Type No. / Voltage Distribution Ratio Reference Outline Page for No. PMT Feature H.V Input Terminal SHIELD CABLE* SHIELD CABLE* SHIELD CABLE* SHIELD CABLE* SHIELD CABLE* SHIELD CABLE* SHIELD CABLE* SHIELD CABLE* SHIELD CABLE* SHIELD CABLE* SHIELD CABLE* SHIELD CABLE* SHIELD CABLE* Assembly Characteristics Standard Maximum Signal Rating Rating Output 1 2 Overall Terminal Overall Divider Voltage Current Voltage Gain Typ. (V) (mA) (V) RG-174/U -1250 0.34 -1500 1.0 × 106 RG-174/U -1250 0.31 -1500 1.0 × 106 RG-174/U -1000 0.27 -1250 1.4 × 106 RG-174/U -1000 0.26 -1250 1.0 × 106 RG-174/U -1500 0.36 -1800 1.7 × 106 RG-174/U -1700 0.33 -1800 1.0 × 106 RG-174/U -1700 0.33 -1800 1.7 × 106 RG-174/U -1000 0.23 -1250 5.5 × 105 RG-174/U -2250 0.32 -2500 5.7 × 106 H6610 (R5320) RG-174/U +2000 0.36 +2300 5.0 × 105 +HV RG-174/U -1500 0.35 -1800 1.7 × 106 RG-174/U -1300 0.33 -1500 1.1 × 106 RG-174/U -1500 0.31 -2000 5.0 × 106 H7416 (R7056) R1635 r 20 q R2496 y 20 w R647-01 !7 20 e H6520 R1166 @1 20 r H6524 R1450 @7 20 t R2076 !1 21 y H6612 R3478 !1 20 u H8135 R5611A @9 21 i H6533 R4998 !9 20 o R5505-70 ^5 20 !0 R7899-01 #1 20 !1 R9800 !0 20 !2 28 mm R6427 (1-1/8") #3 20 !3 R580 @4 20 !4 SHV BNC -1500 0.54 -1750 7.9 × 105 R7761-70 ^6 20 !5 SHIELD CABLE* RG-174/U +2000 0.29 +2300 1.0 × 107 +HV H3164-10 H3695-10 H3165-10 H6613 H6152-70 H8643 10 mm (3/8") 13 mm (1/2") 19 mm (3/4") 25 mm (1") H10580 H7415 H3178-51 H8409-70 38 mm (1-1/2") Note : 1: When overall voltage is negative (-HV), DC and pulse signals are obtained. When it's positive (+HV), pulse signal is obtained. 2: The maximum average anode current is defined as 5 % of divider current. * mark: It's possible to attach an SHV connector to the shield cable. 48 Notes PMT Characteristics Assembly Tube Type Diameter No. Tube Type No. / Voltage Distribution Ratio Reference Outline Page for No. PMT Feature H.V Input Terminal Assembly Characteristics Maximum Standard Signal Rating Rating Output 1 2 Overall Terminal Overall Divider Voltage Current Voltage (V) (mA) (V) Gain Typ. Notes H6521 (R2256-02) H6522 (R5113-02) H6410 R329-02 %6 22 !6 SHV BNC -2000 0.49 -2700 3.0 × 106 H7195 R329-02 %5 22 !7 SHV BNC × 3** -2000 0.91 -2700 3.0 × 106 H1949-50 R1828-01 $5 22 !8 SHV BNC × 3** -2500 1.15 -3000 1.0 × 107 R1828-01 $5 22 !9 SHV BNC -2500 0.58 -3000 1.0 × 107 H2431-50 R2083 !2 22 @0 SHV BNC -3000 0.52 -3500 2.5 × 106 H3378-50 (R3377) H6614-70 R5924-70 ^6 22 @1 SHIELD CABLE* RG-174/U +2000 0.29 +2300 1.0 × 107 +HV H10570 R9779 e 22 @2 SHV BNC -1500 0.33 -1750 5.0 × 105 R4143 $3 22 @3 SHV BNC -2500 0.58 -3000 5.0 × 106 H6526 (R4885) R6091 %6 22 @4 SHV BNC -2000 0.49 -2500 1.0 × 107 R1250 ^0 22 @5 SHV BNC -2000 0.68 -3000 1.4 × 107 R1584 ^0 22 @5 SHV BNC -2000 0.68 -3000 1.4 × 107 $0 22 @6 +2000 0.35 +2500 1.0 × 107 H8711 16 ch (4 × 4) $7 24 @7 -800 0.28 -1000 3.5 × 106 H7546B 64 ch (8 × 8) %0 24 @8 -800 0.36 -1000 6.0 × 105 H8804 64 ch (8 × 8) %0 24 @9 -800 0.36 -1000 6.0 × 105 H7260 Metal 32 ch (1 × 32) !7 Package PMT 64 ch (8 × 8) %8 24 #0 -800 0.33 -900 2.0 × 106 24 #1 -1000 0.16 -1100 1.5 × 106 H10966A 64 ch (8 × 8) !3 24 #1 -1100 0.25 -1100 3.3 × 105 H10966B 64 ch (8 × 8) !3 — #2 -1000 0.25 -1100 3.3 × 105 H9500 256 ch (16 × 16) %9 24 #3 -1000 0.16 -1100 1.5 × 106 H1949-51 H6525 H6559 H6527 H6528 R3600-06 H8500C 51 mm (2") 76 mm (3") 127 mm (5") 508 mm R3600-02 (20") HYBRID CABLE H.V=SINGLE WIRE (SIGNAL=RG-58C/U ) TERMINAL PIN TERMINAL PIN TERMINAL PIN TERMINAL PIN TERMINAL SHV PIN TERMINAL SHV PIN TERMINAL TERMINAL PIN PIN TERMINAL SHV PIN TERMINAL PIN TERMINAL PIN TERMINAL PIN TERMINAL PIN H3177-50 (R2059) H4022-50 (R4004) H3177-51 (R2059) H4022-51 (R4004) (14 µA is total anode current of 16 ch.) (18 µA is total anode current of 64 ch.) (18 µA is total anode current of 64 ch.) (100 µA is total anode current of 32 ch.) (100 µA is total anode current of 64 ch.) (100 µA is total anode current of 64 ch.) (100 µA is total anode current of 64 ch.) (100 µA is total anode current of 256 ch.) Note : 1: When overall voltage is negative (-HV), DC and pulse signals are obtained. When it's positive (+HV), pulse signal is obtained. 2: The maximum average anode current is defined as 5 % of divider current. * mark: It's possible to attach an SHV connector to the shield cable. ** mark: It has 2 anode outputs and 1 dynode output. 49 Dimensional Outlines and Circuit Diagrams For PMT Hybrid Assemblies q H3164-10 w H3695-10 10.5 ± 0.6 11.3 ± 0.7 8 MIN. 8 MIN. SIGNAL OUTPUT : RG-174/U (BLACK) SIGNAL OUTPUT : RG-174/U (BLACK) PMT: R1635 WITH HA TREATMENT R10 C2 R9 C1 DY7 *MAGNETIC SHIELD MAGNETIC SHIELD (t=0.2 mm) WITH HEAT SHRINKABLE TUBE DY6 R8 DY5 R7 P MAGNETIC SHIELD (t=0.2 mm) WITH HEAT SHRINKABLE TUBE DY4 R6 DY3 R5 DY2 R6 DY4 R5 DY3 R4 DY2 R2 R1 -H.V : SHIELD CABLE (RED) SIGNAL OUTPUT : RG-174/U (BLACK) R1 K -H.V : SHIELD CABLE (RED) 10.6 ± 0.2 1500 MIN. 1500 MIN. POTTING COMPOUND R1 to R11 : 330 kΩ C1 to C3 : 0.01 µF -H.V : SHIELD CABLE (RED) C1 R7 DY5 DY1 R2 K C2 R8 DY6 R3 R4 DY1 10.6 ± 0.2 C3 R9 DY7 R3 POTTING COMPOUND R10 DY8 PMT: R2496 WITH HA TREATMENT 95.0 ± 2.5 95.0 ± 2.5 C3 DY8 *MAGNETIC SHIELD P R11 PHOTOCATHODE 45.0 ± 1.5 45.0 ± 1.5 PHOTOCATHODE R1 to R4 : 510 kΩ R5 to R10 : 330 kΩ C1 to C3 : 0.01 µF -H.V : SHIELD CABLE (RED) * MAGNETIC SHIELD IS CONNECTED TO -H.V INSIDE OF THIS PRODUCT. THE H3695-11 IS A VARIANT OF H3695-10 WITH A TERMINAL RESISTOR (50Ω). SIGNAL OUTPUT : RG-174/U (BLACK) * MAGNETIC SHIELD IS CONNECTED TO -H.V INSIDE OF THIS PRODUCT. THE H3164-11 IS A VARIANT OF H3164-10 WITH A TERMINAL RESISTOR (50Ω). TPMHA0309EC e H3165-10 TPMHA0310EB r H6520 23.5 ± 0.5 14.3 ± 0.6 19.3 ± 0.7 10 MIN. 1 MAX. 15 MIN. PHOTOCATHODE PMT: R647-01 WITH HA TREATMENT R11 C3 R10 C2 R9 C1 PMT: R1166 WITH HA TREATMENT 88 ± 2 DY9 R8 DY7 R7 DY6 R6 R7 R6 R5 R4 DY4 DY3 R4 DY3 R3 DY2 R1 R2 -H.V : SHIELD CABLE (RED) DY1 K 12.4 ± 0.5 R1 -H.V : SHIELD CABLE (RED) POTTING COMPOUND R1 to R11 : 330 kΩ C1 to C3 : 0.01 µF 1500 MIN. 1500 MIN. C1 DY5 R2 SIGNAL OUTPUT : RG-174/U (BLACK) C2 R9 DY8 DY6 R5 DY4 R3 -H.V : SHIELD CABLE (RED) C3 R10 R8 DY5 DY1 K R11 DY9 DY7 DY2 POTTING COMPOUND P DY10 MAGNETIC SHIELD CASE (t=0.5 mm) 130.0 ± 0.8 DY8 SIGNAL OUTPUT : RG-174/U (BLACK) PHOTOCATHODE P DY10 MAGNETIC SHIELD (t=0.2 mm) WITH HEAT SHRINKABLE TUBE *MAGNETIC SHIELD 116.0 ± 3.0 71 ± 2 SIGNAL OUTPUT : RG-174/U (BLACK) * MAGNETIC SHIELD IS CONNECTED TO -H.V INSIDE OF THIS PRODUCT. THE H3165-11 IS A VARIANT OF H3165-10 WITH A TERMINAL RESISTOR (50Ω). -H.V : SHIELD CABLE (RED) R1 : 510 kΩ R2 to R11 : 330 kΩ C1 to C3 : 0.01 µF * TO MAGNETIC SHIELD CASE * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. THE H6520-01 IS A VARIANT OF H6520 WITH A TERMINAL RESISTOR (50Ω). SIGNAL OUTPUT : RG-174/U (BLACK) TPMHA0311EC y H6613 23.5 ± 0.5 19.3 ± 0.7 18.7 ± 1.0 15 MIN. 15 MIN. 88 ± 2 130.0 ± 0.8 SIGNAL OUTPUT : RG-174/U (BLACK) PHOTOCATHODE P R11 C3 R10 C2 R9 C1 65 ± 2 PMT: R1450 WITH HA TREATMENT 1 MAX. 23.5 ± 0.5 MAGNETIC SHIELD CASE (t=0.5 mm) SIGNAL OUTPUT : RG-174/U (BLACK) PHOTOCATHODE PMT: R2076 WITH HA TREATMENT DY10 P DY9 DY8 R8 DY7 R7 DY6 MAGNETIC SHIELD CASE (t=0.5 mm) R7 R6 DY3 R5 R5 DY2 R4 R4 DY3 DY1 R3 R3 DY2 R2 R2 R1 -H.V : SHIELD CABLE (RED) : 680 kΩ : 510 kΩ : 330 kΩ : 0.01 µF POTTING COMPOUND * TO MAGNETIC SHIELD CASE 1500 MIN. 1500 MIN. POTTING COMPOUND SIGNAL OUTPUT : RG-174/U (BLACK) * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. THE H6524-01 IS A VARIANT OF H6524 WITH A TERMINAL RESISTOR (50Ω). -H.V : SHIELD CABLE (RED) SIGNAL OUTPUT : RG-174/U (BLACK) TPMHA0313EB 50 C1 DY6 DY4 DY4 -H.V : SHIELD CABLE (RED) C2 R9 DY5 R6 R1 R3 R2, R4 to R11 C1 to C3 C3 R10 DY7 R8 DY5 DY1 K R11 DY8 130.0 ± 0.8 1 MAX. t H6524 TPMHA0312EB K R1 R1 R2 R3 R4, R6 to R11 R5 C1 to C3 -H.V : SHIELD CABLE (RED) : 1 MΩ : 750 kΩ : 560 kΩ : 330 kΩ : 510 kΩ : 0.01 µF * TO MAGNETIC SHIELD CASE * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. THE H6613-01 IS A VARIANT OF H6613 WITH A TERMINAL RESISTOR (50Ω). TPMHA0314EA (Unit: mm) u H6612 i H8135 23.5 ± 0.5 19.3 ± 0.7 24.0 ± 0.5 15 MIN. 19.3 ± 1.0 15 MIN. PHOTOCATHODE 1 MAX. 1 MAX. SIGNAL OUTPUT : RG-174/U (BLACK) PHOTOCATHODE R11 C3 R10 C2 R9 C1 DY8 DY7 DY6 130.0 ± 0.8 MAGNETIC SHIELD CASE (t=0.5 mm) MAGNETIC SHIELD CASE (t=0.5 mm) 60.0 ± 0.8 65 ± 2 P PMT: R3478 WITH HA TREATMENT SIGNAL OUTPUT : RG-174/U (BLACK) P PMT: R5611A WITH HA TREATMENT R8 DY10 R7 DY9 R6 DY8 DY5 DY4 DY3 R1 1500 MIN. -H.V : SHIELD CABLE (RED) R1 R2 R3 R4, R6 to R11 R5 C1 to C3 R6 1500 MIN. R2 SIGNAL OUTPUT : RG-174/U (BLACK) R1 : 1 MΩ R2 to R11 : 330 kΩ C1 to C3 : 0.01 µF DY6 R3 -H.V : SHIELD CABLE (RED) C1 R7 R4 POTTING COMPOUND C2 R9 DY7 DY1 K C3 R10 R8 POTTING COMPOUND R5 DY2 R11 DY5 R5 DY4 -H.V : RG-174/U (RED) R4 DY3 R3 DY2 * TO MAGNETIC SHIELD CASE : 1 MΩ : 750 kΩ : 560 kΩ : 330 kΩ : 510 kΩ : 0.01 µF R2 DY1 K SIGNAL OUTPUT : RG-174/U (BLACK) R1 -H.V : SHIELD CABLE (RED) * TO MAGNETIC SHIELD CASE * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. THE H6612-01 IS A VARIANT OF H6612 WITH A TERMINAL RESISTOR (50Ω). * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. TPMHA0315EA o H6533 TPMHA0513EB !0 H6152-70 31.0 ± 0.5 26 ± 1 P 20 MIN. 31.0 ± 0.5 SIGNAL OUTPUT : RG-174/U (BLACK) 25.8 ± 0.7 R19 SIGNAL OUTPUT : RG-174/U (BLACK) 17.5 MIN. C4 R23 R22 R18 1 MAX. DY10 71 ± 1 PMT: R4998 (H6533) R5320 (H6610) WITH HA TREATMENT R16 1 MAX. R17 PHOTOCATHODE C3 R21 R15 C6 P PMT: R5505-70 WITH HA TREATMENT DY9 R14 C2 120.0 ± 0.8 R20 R13 R11 DY6 R10 R9 DY4 R8 R19 R15 C3 R14 C2 R13 C1 R12 DY10 R11 DY9 POM CASE R10 R7 DY8 R6 DY7 R5 DY6 +H.V : SHIELD CABLE (RED) R1 to R17 R18, R23 R19 to R21 R22 R24 C1 to C5 C6, C7 R9 : 330 kΩ : 1 MΩ : 51 Ω : 100 kΩ : 10 kΩ : 0.01 µF : 0.0047 µF R8 DY2 R7 DY1 POTTING COMPOUND R4 DY5 R6 R3 ACC F K DY4 R2 R1 -H.V : SHIELD CABLE (RED) SIGNAL OUTPUT : RG-174/U (BLACK) R1, R3, R19 : 430 kΩ R2, R7 to R12, R15 to R17 : 330 kΩ R4 : 820 kΩ R5, R18 : 390 kΩ R6, R14 : 270 kΩ R13 : 220 kΩ R20 to R22 : 51 Ω * MAGNETIC SHIELD IS CONNECTED C1 to C3 : 0.022 µF TO GND INSIDE OF THIS PRODUCT. C4 : 0.033 µF 1500 MIN. 1500 MIN. C4 DY14 DY11 DY3 -H.V : SHIELD CABLE (RED) R20 R16 R24 DY12 DY5 POTTING COMPOUND C5 DY15 C1 DY7 100.0 ± 0.8 MAGNETIC SHIELD CASE (t=0.8 mm) R21 R17 DY13 DY8 R12 C7 R22 PHOTOCATHODE R5 +H.V : SHIELD CABLE (RED) DY3 R4 DY2 R3 DY1 R2 * TO MAGNETIC SHIELD CASE SIGNAL OUTPUT : RG-174/U (BLACK) K R18 R1 TPMHA0317EB !2 H10580 31.5 ± 0.5 26 ± 1 25.4 ± 0.5 1 MAX. 31.0 ± 0.5 PHOTOCATHODE C4 R19 R15 R14 DY9 R12 C2 DY8 R17 R11 R10 MAGNETIC SHIELD CASE (t=0.8 mm) R9 R11 C3 R10 C2 R9 C1 DY8 C3 PMT: R7899-01 WITH HA TREATMENT R18 R13 120.0 ± 0.8 120.0 ± 0.8 P R16 DY10 ANODE OUTPUT : RG-174/U (BLACK) 22 MIN. ANODE OUTPUT : RG-174/U (BLACK) P PHOTOCATHODE 68 ± 1 1 MAX. 22 MIN. ACTIVE VOLTAGE DIVIDER !1 H8643 TPMHA0470EB MAGNETIC SHIELD CASE DY7 DY6 DY5 R8 C1 DY7 DY4 R8 R7 DY6 DY3 R7 R6 DY5 R6 R5 DY4 R5 DY2 DY3 R4 R4 R3 R3 DY1 1500 MIN. POTTING COMPOUND DY2 1500 MIN. R2 K R1 -H.V : SHIELD CABLE (RED) ANODE OUTPUT : RG-174/U (BLACK) -H.V : SHIELD CABLE (RED) * TO MAGNETIC SHIELD CASE R2 ANODE OUTPUT : RG-174/U (BLACK) WITH BNC -H.V : SHIELD CABLE (RED) WITH SHV R1, R2, R4, R11, R12: 300 kΩ R3, R5 to R10: 200 kΩ R13, R14: 360 kΩ R15, R16: 330 kΩ R17 to R19: 51 Ω C1, C2: 0.01 µF C3: 0.022 µF C4: 0.033 µF * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. DY1 K R1 -H.V : SHIELD CABLE (RED) R1: 1 MΩ R2: 200 kΩ R3, R5: 150 kΩ R4, R6 to R8: 300 kΩ R9 to R11: 51 Ω C1 to C3: 0.01 µF * TO MAGNETIC SHIELD CASE VOLTAGE DIVIDER CURRENT =383 µA / 1500 V INPUT TPMHA0514EA * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. TPMHA0554EA 51 !4 H3178-51 33.0 ± 0.5 SIGNAL OUTPUT : RG-174/U (BLACK) 29.0 ± 0.7 25 MIN. P * TO MAGNETIC SHIELD CASE 47.0 ± 0.5 SIGNAL OUTPUT : BNC-R 39 ± 1 1 MAX. !3 H7415 34 MIN. P R13 C4 PHOTOCATHODE DY10 PMT: R6427 (H7415) R7056 (H7416) WITH HA TREATMENT DY9 R16 R13 C3 R15 R12 C2 R14 R11 C1 R11 R10 DY9 DY8 R10 R1,R2 : 430 kΩ R3 : 470 kΩ R5 : 510 kΩ R4,R6 to R13 : 330 kΩ R14 to R16 : 51 Ω C1 to C3 : 0.01 µF DY7 130.0 ± 0.8 R9 DY6 R8 MAGNETIC SHIELD CASE (t=1.0 mm) C3 PHOTOCATHODE PMT: R580 WITH HA TREATMENT DY5 R7 C1 R7 DY6 MAGNETIC SHIELD CASE (t=0.8 mm) R6 DY5 R5 R6 DY4 R5 DY3 R4 DY2 R3 DY1 R4 DY3 R3 DY2 C5 R2 DY1 K R1 R15 R2 -H.V R1 K : SHIELD CABLE (RED) -H.V : SHIELD CABLE (RED) SIGNAL OUTPUT : RG-174/U (BLACK) SIG * TO MAGNETIC SHIELD CASE -HV 1500 MIN. C2 R8 DY8 DY4 POTTING COMPOUND R9 DY7 162.0 ± 0.8 85 ± 2 1 MAX. R14 R12 DY10 SIGNAL OUTPUT : BNC-R * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. THE H7415-01 IS A VARIANT OF H7415 WITH A TERMINAL RESISTOR (50Ω). -H.V : SHV-R R1, R10, R12 R2 to R6, R13 R7 R8 R9 R11 R14 R15 C1 C2 C3 C4 C5 -H.V : SHV-R : 300 kΩ : 150 kΩ : 180 kΩ : 220 kΩ : 330 kΩ : 240 kΩ : 51 Ω : 10 kΩ : 0.01 µF : 0.022 µF : 0.047 µF : 0.1 µF : 4700 pF * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. TPMHA0320EB TPMHA0318EC !5 H8409-70 !6 H6410 45.0 ± 0.5 PHOTOCATHODE C7 50 ± 2 80.0 ± 0.8 PMT: R7761-70 WITH HA TREATMENT C6 R27 R25 R21 C5 R24 R20 C4 R23 R19 C3 R18 C2 R17 C1 DY19 1 MAX. 27 MIN. R26 46 MIN. P +H.V : SHIELD CABLE (RED) DY12 PHOTOCATHODE DY18 DY17 POM CASE POTTING COMPOUND DY15 R16 R15 DY13 R14 DY12 R13 DY11 SIGNAL OUTPUT : RG-174/U (BLACK) PMT: R329-02 (H6410) R2256-02 (H6521) R5113-02 (H6522) WITH HA TREATMENT DY16 DY14 +H.V : SHIELD CABLE (RED) * TO MAGNETIC SHIELD CASE SIGNAL OUTPUT : BNC-R 53.0 ± 1.5 R1 to R21 R22, R28 R23 to R25 R26 R27 C1 to C5 C6, C7 : 330 kΩ : 1 MΩ : 51 Ω : 10 kΩ : 100 kΩ : 0.01 µF : 0.0047 µF 200.0 ± 0.5 1 MAX. R28 P 1500 MIN. 60.0 ± 0.5 SIGNAL OUTPUT : RG-174/U (BLACK) 39 ± 1 DY11 DY10 DY9 DY8 DY7 DY6 DY5 SH MAGNETIC SHIELD CASE (t=0.8 mm) R12 R11 C5 C4 C3 C2 C1 R7 DY4 DY3 DY2 DY1 G K DY10 R18 R21 R17 R16 R20 R15 R14 R19 R13 R12 R11 R10 R9 R8 R6 R5 R4 R3 R2 R1 C6 R22 DY9 -H.V : SHV-R R10 DY8 R9 DY7 R8 DY6 R7 DY5 R6 DY4 R5 DY3 R4 SIGNAL OUTPUT : BNC-R R2 K R22 R1 -H.V : SHV-R : 240 kΩ : 220 kΩ : 180 kΩ : 150 kΩ : 300 kΩ : 360 kΩ : 51 Ω : 100 Ω : 10 kΩ : 0.022 µF : 0.047 µF : 0.1 µF : 0.22 µF : 0.47 µF : 470 pF * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. TPMHA0476EB 52 SIG R3 DY1 -HV DY2 R1, R5 R2, R10, R16 R3, R9 R4, R6 to R8, R14, R18 R11, R13, R17 R12, R15 R19 R20, R21 R22 C1 C2 C3 C4 C5 C6 TPMHA0324EC (Unit: mm) !7 H7195 !8 H1949-50 * TO MAGNETIC SHIELD CASE ANODE OUTPUT 2 : BNC-R ANODE OUTPUT 1 : BNC-R DYNODE OUTPUT : BNC-R 1 MAX. 53.0 ± 1.5 46 MIN. R25 C7 DY12 PMT: R329-02 WITH HA TREATMENT DY11 MAGNETIC SHIELD CASE (t=0.8 mm) 215 ± 1 DY10 DY9 DY8 DY7 DY6 DY5 R21 R24 R20 R19 R18 R23 R17 R16 R22 R15 R14 R13 R12 R11 R10 SH DY -HV A1 ANODE OUTPUT 1 : BNC-R C3 C2 A2 C1 C11 DY12 DY11 DY10 DY9 DY8 DY7 DY6 DY5 DY4 DY3 DY2 DY1 Acc K R1 -H.V : SHV-R : 10 kΩ : 110 kΩ : 100 kΩ : 160 kΩ : 51 Ω : 100 Ω : 470 pF : 0.022 µF : 0.047 µF : 0.1 µF : 0.22 µF : 0.47 µF : 0.01 µF DYNODE OUTPUT : BNC-R -HV A1 ANODE OUTPUT 1 : BNC-R A2 -H.V : SHV-R ANODE OUTPUT 2 : BNC-R * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. G R17 R20 R16 R19 R15 R18 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 C7 C10 C6 C5 C4 C3 C2 C9 C8 C12 C1 R1 R1, R21 R2, R5 R3, R7 to R12, R16 R4, R6 R13, R14, R17 R15 R18 to R20 C1 C2 to C4, C10 C5, C6 C7 C8, C9 C11, C12 DY - H.V : SHV-R ANODE OUTPUT 2 : BNC-R MAGNETIC SHIELD CASE (t=0.8 mm) DYNODE OUTPUT : BNC-R R21 P PMT: R1828-01 (H1949-50) R2059 (H3177-50) R4004 (H4022-50) WITH HA TREATMENT C4 R1, R25 R2 to R4, R17 to R19 R5, R6, R8 to R13, R15 R16, R20, R21 R7, R14 R22 R23, R24 C1 C2 C3 C4 C5 C6 C7 DYNODE OUTPUT : BNC-R PHOTOCATHODE C5 R8 R7 R6 R5 R4 R3 R2 K ANODE OUTPUT 2 : BNC-R ANODE OUTPUT 1 : BNC-R 46 MIN. C6 R9 DY4 DY3 DY2 DY1 G 53.0 ± 1.5 235.0 ± 0.5 P PHOTOCATHODE * TO MAGNETIC SHIELD CASE 60.0 ± 0.5 1 MAX. 60.0 ± 0.5 * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. TPMHA0325EC TPMHA0323EC !9 H1949-51 @0 H2431-50 * TO MAGNETIC SHIELD CASE 1 MAX. 53.0 ± 1.5 SIGNAL OUTPUT : BNC-R 46 MIN. P R17 C6 C9 * TO MAGNETIC SHIELD CASE 60.0 ± 0.5 53.0 ± 1.5 1 MAX. 60.0 ± 0.5 SIGNAL OUTPUT : BNC-R 46 MIN. P R16 R20 R16 C5 C8 C4 R12 C3 R11 C2 R10 C1 C7 PMT: R2083 (H2431-50) R3377 (H3378-50) DY6 WITH HA TREATMENT DY5 200 ± 1 DY8 R9 235.0 ± 0.5 C5 R12 DY7 DY6 R8 MAGNETIC SHIELD CASE (t=0.8 mm) R7 R9 C2 R8 C1 R7 DY2 R6 R5 DY3 R5 R4 DY2 R4 ACC R3 F K R3 DY1 -HV A1 R1, R4 R2, R5 R3, R6 to R11, R17 R12 to R16 R18 to R20 R21 C1 to C7 C8 C9 C10 C11 C3 DY1 R6 R1 R10 DY3 DY5 R2 C12 R11 DY4 DY4 -H.V : SHV-R C4 C13 R13 R18 R13 DY9 Acc G1 K C7 C11 DY7 DY10 MAGNETIC SHIELD CASE (t=0.8 mm) C6 C10 R14 PHOTOCATHODE C10 R19 R14 DY11 PMT: R1828-01 (H1949-51) R2059 (H3177-51) R4004 (H4022-51) WITH HA TREATMENT C9 DY8 R15 PHOTOCATHODE C8 R17 R15 DY12 SIGNAL OUTPUT : BNC-R -H.V : SHV-R : 10 kΩ : 120 kΩ : 100 kΩ : 180 kΩ : 150 kΩ : 300 kΩ : 51 Ω : 470 pF : 0.01 µF : 0.022 µF : 0.033 µF : 4700 pF : 0.01 µF C11 R21 -H.V : SHV-R : 240 kΩ : 360 kΩ : 200 kΩ : 300 kΩ : 51 Ω : 10 kΩ : 0.01 µF : 0.022 µF : 0.033 µF : 0.01 µF : 470 pF SIGNAL OUTPUT : BNC-R SIG -HV -H.V : SHV-R R2 C1 R1 -H.V : SHV-R R1: 33 kΩ R2, R15: 390 kΩ R3, R4, R13: 470 kΩ R5: 499 kΩ R6, R16: 360 kΩ R7: 536 kΩ R8 to R11: 300 kΩ R12: 150 kΩ R14: 430 kΩ R17: 51 Ω C1, C2: 4700 pF C3 to C11: 0.01 µF C12, C13: 1000 pF C14: 2200 pF * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. TPMHA0326EC TPMHA0327EB 53 @2 H10570 60.0 ± 0.5 SIGNAL OUTPUT : RG-174/U (BLACK) R29 60.0 ± 0.5 52.0 ± 1.5 39 MIN. C7 P PHOTOCATHODE C6 R28 R27 +H.V : SHIELD CABLE (RED) +0 80- 1 ANODE OUTPUT : BNC-R 46 MIN. P R26 R21 C5 R25 R20 C4 R24 R19 C3 R23 R18 C2 DY8 R17 C1 DY7 DY19 PMT: R5924-70 WITH HA TREATMENT 1 MAX. 1 MAX. 52 ± 1 DY18 PHOTOCATHODE DY17 BLACK COATING DY16 POM CASE DY15 R10 R16 AL PANEL DY14 +H.V : SHIELD CABLE (RED) DY13 DY6 R15 R1 to R21 R22, R29 R23 to R26 R27 R28 C1 to C5 C6, C7 R14 DY12 R13 DY11 R12 DY10 R11 SIGNAL OUTPUT : RG-174/U (BLACK) DY9 200.0 ± 0.5 1500 MIN. ACTIVE VOLTAGE DIVIDER @1 H6614-70 : 330 kΩ : 1 MΩ : 51 Ω : 10 kΩ : 100 kΩ : 0.01 µF : 0.0047 µF C3 R9 C2 R8 C1 DY5 R7 DY4 R6 MAGNETIC SHIELD CASE DY3 R5 R10 DY2 R9 DY1 R4 DY8 DY7 R11 R8 DY6 Acc R8 DY5 R3 R2 G R6 R1 K DY4 -H.V INPUT : SHV-R R5 DY3 R4 DY2 R1 to R7: 300 kΩ R8 to R10: 51 Ω R11: 1 MΩ C1 to C3: : 0.022 µF R3 DY1 R2 R22 K ANODE OUTPUT : BNC-R R1 SIG -HV -H.V INPUT : SHV-R VOLTAGE DIVIDER CURRENT =383 µA / 1750 V (MAX.) INPUT TPMHA0472EB @3 H6525, H6526 @4 H6559 * TO MAGNETIC SHIELD CASE 77.0 ± 1.5 SIGNAL OUTPUT : BNC-R 65 MIN. P R17 C6 C9 83 ± 1 77.0 ± 1.5 1 MAX. 84.5 ± 0.5 1 MAX. TPMHA0555EA * TO MAGNETIC SHIELD CASE SIGNAL OUTPUT : BNC-R 65 MIN. P R20 R16 R15 PHOTOCATHODE C5 C8 R18 R13 C4 C7 R12 C3 R11 C2 R10 C1 C10 R19 R14 PHOTOCATHODE 40 ± 1 DY12 DY11 205.0 ± 0.8 DY11 DY10 DY9 PMT: R6091 WITH HA TREATMENT DY8 DY7 MAGNETIC SHIELD CASE (t=0.8 mm) R9 218 ± 1 285 ± 6 PMT: R4143 (H6525) R4885 (H6526) WITH HA TREATMENT DY6 R8 DY5 SH 104.0 ± 0.5 (ASSY PARTS LENGTH) R6 G K DY3 R5 DY2 R18 R21 R17 R16 R20 R15 R14 R19 R13 R12 R11 R10 R9 R8 C5 C4 C3 C2 C1 R7 DY4 DY3 DY2 DY1 DY4 R6 R5 R4 R3 R2 R1 C6 R22 R4 -H.V : SHV-R DY1 R3 G2 Acc G1 K 67.0 ± 0.5 -H.V : SHV-R R21 -H.V : SHV-R : 240 kΩ : 360 kΩ : 200 kΩ : 300 kΩ : 51 Ω : 10 kΩ : 0.01 µF : 0.022 µF : 0.033 µF : 0.01 µF : 470 pF 70 ± 1 SIG -HV R1 R3, R4 R2, R5 R1, R6 to R11, R17 R12 to R16 R18 to R20 R21 C1 to C7 C8 C9 C10 C11 R1, R5 R2, R10, R16 R3, R9 R4, R6 to R8, R14, R18 R11, R13, R17 R12, R15 R19 R20, R21 R22 C1 C2 C3 C4 C5 C6 C11 SIGNAL OUTPUT : BNC-R TPMHA0330EB : 240 kΩ : 220 kΩ : 180 kΩ : 150 kΩ : 300 kΩ : 360 kΩ : 51 Ω : 100 Ω : 10 kΩ : 0.022 µF : 0.047 µF : 0.1 µF : 0.22 µF : 0.47 µF : 470 pF * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. -HV SIG R2 * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. 54 DY10 DY9 DY8 DY7 DY6 DY5 MAGNETIC SHIELD CASE (t=0.8 mm) R7 SIGNAL OUTPUT : BNC-R DY12 -H.V : SHV-R TPMHA0331EB (Unit: mm) H6527 H6528 142.0 ± 0.8 142.0 ± 0.8 508 ± 10 131 ± 2 131 ± 2 460 MIN. 120 MIN. SIGNAL/HV GND H6527=Flat window, Borosilicate H6528=Curved window, UV glass 120 MIN. PHOTOCATHODE C4 P DY11 R20 R17 C5 R19 R16 C4 R12 R11 R18 R15 C3 R14 C2 R13 C1 R10 R1, R17 : 240 kΩ R2 : 360 kΩ R3 : 390 kΩ R4 : 120 kΩ R5 : 180 kΩ R6 to R13 : 100 kΩ R14, R15 : 150 kΩ R16 : 300 kΩ R18 : 51 Ω R19, R20 : 100 Ω R21 : 10 kΩ C1 : 0.022 µF C2 : 0.047 µF C3 : 0.1 µF C4 : 0.22 µF C5 : 0.47 µF C6 : 470 pF DY11 DY10 R12 BLACK TAPE DY9 SOCKET ASSY HOUSING DY8 R11 R10 DY7 R9 DY6 R8 40 DY5 R7 DY4 R6 R9 DY5 R8 DY4 R7 DY3 R6 R5 DY2 254 ± 10 R4 F3 R3 R2 HEAT SHRINKABLE TUBE 82.7 ± 2.0 SIG -HV R3 CABLE LENGTH 5000 116 C6 R2 G1 K R1 R21 F2 R1 F1 K HYBRID CABLE * R4 -H.V : SHV-R R5 DY1 DY1 G2 DY2 PMT: R3600-02 (85) DY3 SIGNAL OUTPUT : BNC-R C1 DY6 DY12 74 R14 +H.V : SINGLE WIRE DY7 DY13 MAGNETIC SHIELD CASE (t=0.8 mm) C2 DY8 DY14 77 R15 R13 610 ± 20 259 ± 2 PMT: R1250 (H6527) R1584 (H6528) WITH HA TREATMENT R16 DY9 SIGNAL OUTPUT : BNC-R P C3 R18 DY10 695 TYP. 140 ± 1 PHOTOCATHODE SIGNAL OUTPUT : RG-58C/U (BLACK) R17 * TO MAGNETIC SHIELD CASE 56 356 ± 6 @6 R3600-06 2 MAX. 2 MAX. @5 H6527, H6528 -H.V : SHV-R R1 R3 R4 R5 R2,R6 to R15 R16 R17, R18 C1, C2 C3, C4 : 1.3 MΩ : 549 kΩ : 5.49 kΩ : 820 kΩ : 274 kΩ : 200 kΩ : 10 kΩ : 0.001 µF : 4700 pF * HYBRID CABLE CONTAINS A SIGNAL CABLE AND HV WIRE WITH ADDITIONAL COVER. * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. TPMHA0156EC TPMHA0332EE GND P8 P9 P15 P16 45 ± 0.8 P1 P2 R18 0.3 2 P63 R20 C4 R19 PMT: R7600-M64 SERIES C4 R13 C2 C3 C1 4-SCREWS (M2) Dy8 R7 Dy6 R6 DY P1 2.54×9=22.86 R8 Dy7 P8 Dy5 GND R5 P8 Dy12 OUTPUT TERMINAL PIN ( 0.64) Dy4 -HV P16 GND 12.7 P9 2.54 R9 7.62 Dy12 OUTPUT TERMINAL PIN ( 0.46) R4 Dy3 -HV INPUT TERMINAL PINS ( 0.46) R10 Dy8 P1 P64 R9 -HV INPUT TERMINAL PINS ( 0.64) Dy7 ANODE OUTPUT TERMINAL PINS ( 0.64) 2.54 PITCH 8 × 8 Dy5 R8 Dy6 R7 R6 Dy4 P57 R5 R1, R5 to R14: 100 kΩ R2 to R4, R15: 200 kΩ R16: 300 kΩ R17 to R19: 51 Ω R20: 10 kΩ R21: 1 MΩ C1 to C3: 0.022 µF C4: 0.01 µF Dy3 R4 GND TERMINAL PIN ( 0.64) Dy2 R3 Dy1 Dy2 R2 F R1 K Dy1 F K R12 R11 R3 R1 to R3 : 360 kΩ R4 to R13 : 180 kΩ R14 : 1 MΩ R15 to R17 : 51 Ω R18 : 10 kΩ C1 to C4 : 0.01 µF C1 2.54 2.54×7=17.78 R10 2.54 R17 Dy9 4.2 C2 R15 R11 5.2 R16 R12 Dy9 BOTTOM VIEW R14 R13 POM CASE 2.54 2.8 Dy10 R17 Dy10 ANODE OUTPUT TERMINAL PIN ( 0.46, 2.54 PITCH 8 × 4) R16 R15 R18 Dy12 SIDE VIEW 5.08 C3 Dy12 Dy11 Dy11 2.54 ANODE64 OUTPUT Dy12 OUTPUT TERMINAL PIN ( 0.64) GND TERMINAL PIN ( 0.64) × 2 P64 4- 0.3 GUIDE MARKS POM CASE 4-SCREWS (M2) 2.54 PITCH .. ( 0.64) . ANODE63 OUTPUT 8 × 8 .. . X Y 0.95 18.1 25.7 -HV INPUT TERMINAL PINS TERMINAL PINS DY12 OUTPUT ANODE16 OUTPUT ANODE15 OUTPUT ANODE9 OUTPUT TERMINAL PINS INSULATING TAPE ANODE1 OUTPUT ANODE2 OUTPUT P1 P2 SOFT TAPE R34 DIVIDER ASSEMBLY 2.54 × 7=17.78 30.0 ± 0.5 0.8 MAX. 0.8 MAX. PMT: R7600-M16 SERIES 45.0 ± 0.8 GND GND GND GND GND GND GND ANODE8 OUTPUT ANODE2 OUTPUT ANODE1 OUTPUT 0.3 4.2 1 TERMINAL PINS 2 13 30.0 ± 0.5 1 2 3 4 5 6 7 8 3 14 TOP VIEW 4- 0.3 GUIDE MARKS 57 58 59 60 61 6263 64 15 18.1 4- 0.3 GUIDE MARKS 4 16 25.7 4 × 16 4.5 PITCH 5 25.7 @8 H7546B, H7546B-100, H7546B-200, H7546B-300 4 @7 H8711, H8711-100, H8711-200, H8711-300 R14 TPMHA0487ED TPMHA0506EC R2 R21 R1 -HV INPUT TERMINAL PIN ( 0.64) TPMHC0223EB 55 #0 H7260, H7260-100, H7260-200 BOTTOM VIEW SHIELD P1 P2 P31 P32 35.0 ± 0.5 5 0.95 P1 P9 P17 P25 P33 P41 P49 P57 -HV Y GND *A C4 DY10 HOUSING (POM) 3.3 GND 1.27 2.54 × 15 = 38.1 DY9 2.54 C3 R9 ACTIVE BASE CIRCUIT 4 R11 SHIELD (PINS CONNECTION: BOTTOM VIEW) 4- 0.3 GUIDE MARKS -HV INPUT TERMINAL PIN 0.8 SIDE VIEW X VOLTAGE DIVIDER CURRENT = 0.37 mA at -900 V (MAX. RATING) INPUT ANODE WINDOW #1 GND TERMINAL PIN 7 24.0 ± 0.5 P57 4-SCREWS (M2) 5.2 45.0 ± 0.8 FILLED WITH INSULATOR ANODE WINDOW #32 DY12 OUTPUT TERMINAL PIN ( 0.64) TS-101-T-A-1, SAMTEC 0.8 TYP. +0.5 5 -0 TOP VIEW P64 P1 4.2 30 - 0 GND TERMINAL PIN ( 0.64) TS-101-T-A-1, SAMTEC P8 2.54 +0.5 ANODE OUTPUT TERMINAL PINS ( 0.64, 2.54 PITCH, 8 × 8) TD-108-T-A-1, SAMTEC × 4 PCS 2.54×7=17.78 30.0 ± 0.5 48.0 ± 0.5 1 2 3 4 5 6 7 8 57 58 59 60 61 6263 64 40.0 ± 0.3 DIVIDER ASSEMBLY 25.7 1 2.54 POM CASE DY10 OUTPUT 31.8 ANODE32 OUTPUT PMT: R7600-M64 SERIES 0.3 2.54×9=22.86 ANODE1 OUTPUT -HV TERMINAL PINS ( 0.64) ASP-23882-A-1, SAMTEC 2 ANODE31 OUTPUT 8 × 2 LINE 2.54 PITCH 52.0 ± 0.5 2- 3.5 4- 0.3 GUIDE MARKS ANODE2 OUTPUT @9 H8804, H8804-100, H8804-200, H8804-300 C2 R8 C1 DY8 DY12 OUT P8 P16 P24 P32 P40 P48 P56 P64 DY7 R7 *A: THROUGH HOLE (NO CONNECTION) DY6 R6 K DY5 F R5 Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 P64 P63 P2 P1 DY4 . .. Dy12 R4 R3 DY2 GND TERMINAL PIN ( 0.5) R2 DY1 R1 7.5 R1, R5 to R14: 100 kΩ R2 to R4, R15: 200 kΩ R16: 300 kΩ R17 to R19: 51 Ω R20: 10 kΩ R21: 1 MΩ C1 to C3: 0.022 µF C4: 0.01 µF DY10 OUTPUT PIN ( 0.5) ANODE #1 R9 R10 R11 R12 R13 R14 R15 R16 ANODE2 OUTPUT ANODE1 OUTPUT R8 . .. -HV INPUT TERMINAL PIN ( 0.64) R6 R7 ANODE63 OUTPUT R5 ANODE64 OUTPUT R4 ANODE #31 C3 GND TERMINAL PIN ( 0.64) × 2 Dy12 OUTPUT TERMINAL PIN ( 0.64) R3 DY3 R20 G K DY OUT A31-ANODE - A1 GND A32-ANODE - A2 -HV ANODE #32 ANODE #2 ANODE #1 to #32 OUTPUT ( 0.46) (16 PIN × 2 LINE 2.54 PITCH) 2.54 PITCH ( 0.64) 8 × 8 R10 7.62 C2 C1 R1 R2 R19 2.54 R21 R18 5.08 R17 C4 R1 to R7 : 220 kΩ R8, R9 : 51 Ω R10 : 1 MΩ R11 : 10 kΩ C1 to C4 : 0.01 µF -HV INPUT TERMINAL ( 0.5) TPMHA0550EA TPMHA0455ED #1 H8500C, H10966A, H10966A-100 A B 6.08 × 6=36.48 6.26 PC BOARD 14, 13, 6, 12, 11, 4, 10, 9, 2, 1 3 5 16, 15, 8, 7 PLASTIC BASE TOP VIEW 57, 50, 49 52, 51 58, SIG1 62 60, 59 61, 54, 53 56, 55 36 GND -HV 2 INSULATING TAPE CONNECTION FOR SIGNAL CONNECTORS (BOTTOM VIEW) GND P7 GND P5 GND P3 GND P1 GND P8 GND P6 GND P4 GND P2 GND P15 GND P13 GND P11 GND P9 GND P16 GND P14 GND P12 GND P10 GND P23 GND P21 GND P19 GND P17 GND P24 GND P22 GND P20 GND P18 GND P31 GND P29 GND P27 GND P25 GND P32 GND P30 GND P28 GND P26 GND P39 GND P37 GND P35 GND P33 GND P40 GND P38 GND P36 GND P34 GND P47 GND P45 GND P43 GND P41 GND P48 GND P46 GND P44 GND P42 GND P55 GND P53 GND P51 GND P49 GND P56 GND P54 GND P52 GND P50 GND P63 GND P61 GND P59 GND P57 M3 DEPTH 2.5 GND P64 GND P62 GND P60 GND P58 GND *C GND GND *B GND GND *B GND GND GND GND *B GND GND *B 4-SIGNAL OUTPUT CONNECTOR *A SIG4 SIG3 SIG2 SIG1 TMM-118-03-G-D, mfg. SAMTEC SIG2 P57 P58 P59 P60 P61 P62 P63 P64 6.26 DY, 64, 63 6.26 P49 P50 P51 P52 P53 P54 P55 P56 SIG4 P41 P42 P43 P44 P45 P46 P47 P48 450 ± 20 P33 P34 P35 P36 P37 P38 P39 P40 0.5 2 × 17=34 52.0 ± 0.3 P25 P26 P27 P28 P29 P30 P31 P32 52.0 ± 0.3 6.08 × 6=36.48 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 PHOTOCATHODE (EFFECTIVE AREA) 49 6.26 P1 P2 P3 P4 P5 P6 P7 P8 12 × 3=36 4.5 ± 0.3 4 2 4 SIG3 C 1.5 START MARK SIDE VIEW A B C H8500C SERIES H10966A SERIES 32.7 ± 1.0 31.1 ± 1.0 27.4 ± 0.9 25.8 ± 0.9 16.4 ± 0.5 14.8 ± 0.5 -HV: SHV-P (SHIELD CABLE, RED) NOTE *A: Suitable sockets for the signal connectors will be attached. The equivalent socket is SQT-118-01-L-D (SAMTEC). *B: No pin. *C: Dy12 (H8500 SERIES) Dy8 (H10966 SERIES) BOTTOM VIEW K DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12 GR P8 P64 P7 P63 P6 P62 P5 P61 P4 P60 P3 P59 P2 P58 P1 P57 C7 R16 C1 R20 R1 R2 R3 R4 R5 R6 R7 R8 R17 C2 R18 C3 R19 R9 ACTIVE VOLTAGE DIVIDER DIVIDER CURRENT 173 µA at -1100 V ANODE OUTPUT (P64) ANODE OUTPUT (P63) ANODE OUTPUT (P62) ANODE OUTPUT (P61) ANODE OUTPUT (P60) ANODE OUTPUT (P8) ANODE OUTPUT (P7) ANODE OUTPUT (P6) ANODE OUTPUT (P5) ANODE OUTPUT (P4) ANODE OUTPUT (P3) ANODE OUTPUT (P2) ANODE OUTPUT (P1) SIGNAL GND -HV SHV-P (SHIELD CABLE, RED) DY12 OUTPUT ...... R1 to R9: 470 kΩ R16 to R18: 51 Ω R19: 10 kΩ R20: 1 MΩ R21, R22: 4.99 kΩ C1: 0.01 µF C2: 0.022 µF C3: 0.033 µF C7: 0.0047 µF C8, C9: 0.0015 µF ANODE OUTPUT (P59) .... ANODE OUTPUT (P58) R21 (P49 to P56) C9 R22 ANODE OUTPUT (P57) (P9 to P16) C8 4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR TPMHA0571EA 56 (Unit: mm) #2 H8500D, H10966B, H10966B-100 1 10, 9, 2, 3 12, 11, 4, 14, 13, 6, 16, 15, GND 2 -HV 2 57, 50, 49 -HV -HV 58, SIG1 SIG2 62 60, 59 61, 54, 53 56, 55 52, 51 36 SIG3 P57 P58 P59 P60 P61 P62 P63 P64 GND 6.08 × 6=36.48 6.26 DY, 64, 63 6.26 P49 P50 P51 P52 P53 P54 P55 P56 SIG4 P41 P42 P43 P44 P45 P46 P47 P48 GND P33 P34 P35 P36 P37 P38 P39 P40 12 4 2 P25 P26 P27 P28 P29 P30 P31 P32 0.5 2 × 17=34 52.0 ± 0.3 52.0 ± 0.3 6.08 × 6=36.48 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 12 × 3=36 4.5 ± 0.3 4 2 8, 7 PHOTOCATHODE (EFFECTIVE AREA) 49 6.26 P1 P2 P3 P4 P5 P6 P7 P8 -HV CONNECTOR *B TMM-102-03-G-S, mfg. SAMTEC 4 5 A B C 1.5 START MARK 6.26 GND CONNECTOR *B TMM-102-03-G-S, mfg. SAMTEC PLASTIC BASE PC BOARD TOP VIEW M3 DEPTH 2.5 GND 2 INSULATING TAPE SIDE VIEW 23.5 4-SIGNAL OUTPUT CONNECTOR *A TMM-118-03-G-D, mfg. SAMTEC CONNECTION FOR SIGNAL CONNECTORS (BOTTOM VIEW) GND P7 GND P5 GND P3 GND P1 GND P8 GND P6 GND P4 GND P2 GND P15 GND P13 GND P11 GND P9 GND P16 GND P14 GND P12 GND P10 GND P23 GND P21 GND P19 GND P17 GND P24 GND P22 GND P20 GND P18 GND P31 GND P29 GND P27 GND P25 GND P32 GND P30 GND P28 GND P26 GND P39 GND P37 GND P35 GND P33 GND P40 GND P38 GND P36 GND P34 GND P47 GND P45 GND P43 GND P41 GND P48 GND P46 GND P44 GND P42 GND P55 GND P53 GND P51 GND P49 GND P56 GND P54 GND P52 GND P50 GND P63 GND P61 GND P59 GND P57 GND P64 GND P62 GND P60 GND P58 GND *C GND GND *B GND GND *B GND GND GND GND *B GND GND *B SIG4 SIG3 SIG2 SIG1 BOTTOM VIEW NOTE *A: Suitable sockets for the signal connectors will be attached. The equivalent socket for signal output is SQT-118-01-L-D (SAMTEC). The equivalent socket for -HV, GND is SQT-102-01-L-S (SAMTEC). *B: No pin. *C: Dy12 (H8500 SERIES) Dy8 (H10966 SERIES) H8500D SERIES H10966B SERIES A 32.7 ± 1.0 31.1 ± 1.0 B 27.4 ± 0.9 25.8 ± 0.9 C 16.4 ± 0.5 14.8 ± 0.5 K DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 GR P8 P64 P7 P63 P6 P62 P5 P61 P4 P60 P3 P59 P2 P58 P1 P57 C7 R20 R1 R2 R3 R4 R16 R17 R18 C1 C2 C3 R19 R5 ACTIVE VOLTAGE DIVIDER DIVIDER CURRENT 245 µA at -1100 V ANODE OUTPUT (P64) ANODE OUTPUT (P63) ANODE OUTPUT (P62) ANODE OUTPUT (P61) ANODE OUTPUT (P60) ANODE OUTPUT (P8) ANODE OUTPUT (P7) ANODE OUTPUT (P6) ANODE OUTPUT (P5) ANODE OUTPUT (P4) ANODE OUTPUT (P3) ANODE OUTPUT (P2) ANODE OUTPUT (P1) SIGNAL GND R1 to R5: 470 kΩ R16 to R18: 51 Ω R19: 10 kΩ R20: 1 MΩ R21, R22: 4.99 kΩ C1: 0.01 µF C2: 0.022 µF C3: 0.033 µF C7: 0.0047 µF C8, C9: 0.0015 µF GND DY8 OUTPUT ...... -HV ANODE OUTPUT (P59) .... ANODE OUTPUT (P58) R21 ANODE OUTPUT (P57) (P9 to P16) C9 R22 (P49 to P56) C8 4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR TPMHA0572EA #3 H9500 CONNECTION FOR SIGNAL CONNECTORS (BOTTOM VIEW) (MATES WITH QSE-040-01 -F-D-A) DY12 OUTPUT ...... P241 C7 R20 R1 R2 R3 C8 R4 R5 R6 R7 R8 R16 R17 R18 C1 C2 C3 R19 R9 ACTIVE VOLTAGE DIVIDER R21 R22 -HV SHV-P (SHIELD CABLE, RED) R1 to R9: 470 kΩ (±5 %, 0.125 W) R16 to R18: 51 Ω (±5 %, 0.125 W) R19: 10 kΩ (±5 %, 0.125 W) R20: 1 MΩ (±5 %, 0.125 W) R21, R22: 4.99 kΩ (±5 %, 0.125 W) C1, C7: 0.01 µF (200 V) C2: 0.022 µF (200 V) C3: 0.033 µF (200 V) C8: 0.0047 µF (2 kV) DIVIDER CURRENT 180 µA at -1100 V ...... .... ...... ...... ANODE OUTPUT (P256) (MATES WITH QTE-040-03 -F-D-A) 50.8 CABLE ASSEMBLY (SUPPLIED) P242 P1 ANODE OUTPUT (P255) BOTTOM VIEW P2 ANODE OUTPUT (P242) SIDE VIEW M3 DEPTH: 4 P129 P130 P145 P146 P161 P162 P177 P178 P193 P194 P209 P210 P225 P226 P241 P242 GND GND GND GND GR ANODE OUTPUT (P241) TOP VIEW 4-SIGNAL CONNECTOR ; QTE-040-03-F-D-A, SAMTEC (0.8 mm PITCH. DOUBLE ROW WITH INTEGRAL GND PLATE) P131 P132 P147 P148 P163 P164 P179 P180 P195 P196 P211 P212 P227 P228 P243 P244 GND GND GND GND P133 P134 P149 P150 P165 P166 P181 P182 P197 P198 P213 P214 P229 P230 P245 P246 GND GND GND GND DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12 (P225 to P240) 36.4 ± 0.9 P135 P136 P151 P152 P167 P168 P183 P184 P199 P200 P215 P216 P231 P232 P247 P248 GND GND GND GND P137 P138 P153 P154 P169 P170 P185 P186 P201 P202 P217 P218 P233 P234 P249 P250 GND GND GND GND K (P17 to P32) 33.3 ± 0.9 8.6 P139 P140 P155 P156 P171 P172 P187 P188 P203 P204 P219 P220 P235 P236 P251 P252 GND GND GND GND P255 ANODE OUTPUT (P16) +20 14.4 ± 0.5 49 23.65 P141 P142 P157 P158 P173 P174 P189 P190 P205 P206 P221 P222 P237 P238 P253 P254 GND GND GND GND P256 P15 ANODE OUTPUT (P15) 52.0 ± 0.3 3.04 3.04 × 14=42.56 PHOTOCATHODE (EFFECTIVE AREA) 49 8.6 1.5 P143 P144 P159 P160 P175 P176 P191 P192 P207 P208 P223 P224 P239 P240 P255 P256 GND GND GND P16 ANODE OUTPUT (P2) 3.04 × 14=42.56 SIG2 SIG1 SIG1 GND GND GND GND GND GND GND GND P3 P1 P4 P2 P19 P17 P20 P18 P35 P33 P36 P34 P51 P49 P52 P50 P67 P65 P68 P66 P83 P81 P84 P82 P99 P97 P100 P98 P115 P113 P116 P114 ANODE OUTPUT (P1) 3.04 6 SIG3 50.8 46.24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 SIG4 SIG2 GND GND GND GND GND GND GND GND P7 P5 P8 P6 P23 P21 P24 P22 P39 P37 P40 P38 P55 P53 P56 P54 P71 P69 P72 P70 P87 P85 P88 P86 P103 P101 P104 P102 P119 P117 P120 P118 ...... 2.6 MAX. 450 - 0 BASE (POM) INSULATING TAPE START MARK SIG3 GND GND GND GND GND GND GND GND P11 P9 P12 P10 P27 P25 P28 P26 P43 P41 P44 P42 P59 P57 P60 P58 P75 P73 P76 P74 P91 P89 P92 P90 P107 P105 P108 P106 P123 P121 P124 P122 GND CAP HOUSING (POM) SOCKET HOUSING (POM) SEPARATION MARK ON FOCUSING ELECTRODE SIG4 GND GND GND GND GND GND GND GND P15 P13 P16 P14 P31 P29 P32 P30 P47 P45 P48 P46 P63 P61 P64 P62 P79 P77 P80 P78 P95 P93 P96 P94 P111 P109 P112 P110 P127 P125 P128 P126 DY12 OUTPUT -HV: SHV-P (SHIELD CABLE, RED) 4 × 0.8 mm PITCH HEADER (P/N QTE-040-03-F-D-A, SAMTEC) METAL PLATE (GND) RIBBONIZED COAXIAL CABLE (50 Ω IMPEDANCE) 14.98 6.88 15.72 170 ± 5 NOTE: 4 SETS OF SOCKET AND CABLE ASSEMBLY WILL BE ATTACHED. (SOCKET: QSE-040-01-F-D-A, SAMTEC / CABLE ASSEMBLY: EQCD-040-06, 00-SEU-TEU-1, SAMTEC) TPMHA0504EB 57 Quick Reference for PMT Socket Assemblies PMT Characteristics Assembly Tube Type Diameter No. Tube Type No. / Voltage Distribution Ratio R1635 10 mm R2248 (3/8") R2496 E1761-22 13 mm R647-01 E849-90 (1/2") R4124 E849-68 R1166 E974-17 19 mm R1450 E974-22 E2253-05 (3/4") R3478 R4125 E974-19 R1548-07 E2037-02 R5505-70 E6133-04 25 mm R7899 E2924-11 (1") R3998-02 E990-29 R3998-100-02 25 mm R1924A (1") E2924-500 28 mm R7111 (1-1/8") E2624-14 28 mm R6427 E2624-04 (1-1/8") E1761-21 E2183-500 E2183-501 R580 38 mm R11102 (1-1/2") R3886A r y !7 #0 @1 @7 !1 @2 #3 ^5 #0 !4 #3 #4 @4 @6 w E1198-26 E1198-27 E5859 E5859-01 R6231 R6231-100 R6232 R6233 R6233-100 R6234 R6235 R6236 R6237 R10233 R10233-100 R329-02 51 mm R6091 (2") R329-02 76 mm R331-05 (3") R6091 z SHV BNC -1250 0.35 -1500 z x c v v b n m , . SHV SHV AWG22 SHV SHV SHV AWG22 AWG24 SHV AWG22 BNC BNC RG-174/U BNC BNC BNC RG-174/U AWG24 BNC RG-174/U -1250 -1000 -1000 -1000 -1500 -1700 -1500 -1250 +2000 -1250 0.32 0.28 0.23 0.27 0.37 0.34 0.27 0.13 0.36 0.28 -1500 -1250 -1250 -1800 -1800 -1800 -1800 -1750 +2300 -1800 ⁄0 AWG22 RG-174/U -1000 0.23 -1500 ⁄1 SHV BNC -1000 0.24 -1250 w t %6 %2 20 20 20 20 20 20 20 20 22 22 22 22 22 22 22 26 22 22 26 24 24 24 24 22 26 22 22 22 22 22 ⁄2 ⁄3 SHV AWG22 BNC RG-174/U ⁄4 SHV BNC ⁄4 SHV BNC ⁄5 ⁄6 AWG22 SHV RG-174/U BNC -1500 -1500 -1250 -1000 -1000 -1500 -1000 -1000 -1250 -2500 0.32 0.37 0.32 0.26 0.26 0.54 0.36 0.36 0.32 0.58 -2000 -2000 -1750 -1250 -1250 -1750 -1250 -1250 -1750 -3000 ⁄7 AWG22 RG-174/U -1000 0.31 -1500 ⁄8 SHIELD CABLE RG-174/U +1000 0.28 +1500 ⁄9 SHIELD CABLE RG-174/U -1000 0.25 -1500 ⁄9 SHIELD CABLE RG-174/U +1000 0.25 +1500 ¤0 SHV BNC -2000 0.5 -2700 -2500 shield case is available. +HV type (E5859-02) is available. ¤0 SHV BNC -1500 0.42 -2700 -2500 shield case is available. +HV type (E5859-03) is available. Note: 1: When overall voltage is negative (-HV), DC and pulse signals are obtained. When it's positive (+HV), pulse signal is obtained. 2: The maximum average anode current is defined as 5 % of divider current. 58 Notes 6 µA is for total of 2 anodes. E6133-03 (-HV) is available. For R7899 (Glass Base Type) 20 E1198-05 51 mm (2") 60 mm (2.4") 76 mm (3") 90 mm (3.5") H.V Input Terminal Assembly Characteristics Standard Maximum Signal Rating Rating Output 1 2 Overall Divider Overall Terminal Voltage Current Voltage (V) (mA) (V) 20 @4 $5 E1198-20 20 24 20 20 20 20 20 20 20 24 20 21 20 26 @9 E1198-07 51 mm R2154-02 R1828-01 E2979-500 (2") R1306 R1307 Reference Outline Page for No. PMT Feature with shield case PMT Characteristics Assembly Tube Type Diameter No. Tube Type No. / Voltage Distribution Ratio Reference Outline Page for No. PMT Feature E1198-22 E1198-23 R877 127 mm R877-100 (5") !8 22 26 E6316-01 E7693 E7694 E5996 E7083 E6736 E7514 E10411 E9349 E11807 E11807-01 R1250 R1584 204 mm R5912 (8") 254 mm R7081 (10") R7600U R7600U-03 R7600U-100 R7600U-200 R7600U-300 R7600U-00-M4 R7600U-100-M4 R7600U-200-M4 R7600U-300-M4 R5900U-00-L16 R5900U-100-L16 30 mm R5900U-200-L16 Square Type R8900U-00-C12 R8900U-100 R8900-00-M16 R8900-100-M16 R11265U R11265U-100 R11265U-200 R11265U R11265U-100 R11265U-200 ^0 22 22 H.V Input Terminal Assembly Characteristics Standard Maximum Signal Rating Rating Output Notes 1 2 Overall Divider Overall Terminal Voltage Current Voltage (V) (mA) (V) -1250 0.32 -1500 RG-174/U -1250 0.32 -1500 -1500 0.38 -2000 +1250 0.32 +1500 RG-174/U +1250 0.32 +1500 shield case is available. +1500 0.38 +2000 -1250 0.32 -1500 BNC -1250 0.32 -1500 -1500 0.38 -2000 ¤1 SHIELD CABLE ¤1 SHIELD CABLE ¤2 SHV ¤3 SHV BNC -2000 0.68 -3000 ¤4 SHV BNC -1500 0.32 -1800 ¤5 SHIELD CABLE RG-174/U -800 0.3 -900 ¤6 SHIELD CABLE 0.8D-QEV -800 0.3 -900 ¤7 SHIELD CABLE 0.8D-QEV -800 0.34 -900 SHIELD CABLE SHIELD CABLE 0.8D-QEV -800 0.27 -1000 RG-174/U -800 0.3 -1000 22 ^2 22 @3 @3 !7 24 24 26 26 26 24 26 26 26 24 26 26 #8 44 ¤8 !6 26 ¤9 24 26 24 26 26 24 26 26 ‹0 PIN PIN -800 0.28 -1000 ‹1 RG-174/U RG-174/U 900 0.32 1000 ‹1 RG-174/U RG-174/U 900 0.32 1000 $1 $9 %1 $9 %1 +HV type (E7694-01) is available. Active base type (E6572) is available. Note: 1: When overall voltage is negative (-HV), DC and pulse signals are obtained. When it's positive (+HV), pulse signal is obtained. 2: The maximum average anode current is defined as 5 % of divider current. 59 Dimensional Outline and Circuit Diagrams For PMT Socket Assemblies z E1761-21, E1761-22 E1761-21 SOCKET PMT PIN No. 6 3 10.6 ± 0.2 SIGNAL OUTPUT : RG-174/U (BLACK) BNC CONNECTOR 50.0 ± 0.5 SOCKET: E678-11N PMT SOCKET PIN No. P R10 C3 R11 C3 SIGNAL OUTPUT : RG-174/U (BLACK) BNC CONNECTOR -H.V : SHIELD CABLE (RED) SHV CONNECTOR DY8 7 DY7 5 DY6 8 DY5 4 DY4 9 DY3 3 DY2 10 DY1 K SIGNAL OUTPUT : RG-174/U (BLACK) BNC CONNECTOR 6 P HOUSING (INSULATOR) 450 E1761-22 R10 C2 R9 C1 R8 R7 R1 to R11 : 330 kΩ C1 to C3 : 10 nF R6 R5 R4 R3 DY8 7 DY7 5 DY6 8 DY5 4 DY4 9 DY3 3 DY2 10 DY1 2 R9 C2 R8 C1 R1 to R4 : 510 kΩ R5 to R10 : 330 kΩ C1 to C3 : 10 nF R6 R5 R4 R3 R2 R1 2 11 R7 R2 R1 -H.V : SHIELD CABLE (RED) SHV CONNECTOR K -H.V : SHIELD CABLE (RED) SHV CONNECTOR 11 TACCA0075EB x E849-90 TACCA0076EC c E849-68 PMT SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) SOCKET PIN No. 6 P 12.6 0.5 MAX. PMT SIGNAL OUTPUT : RG-174/U (BLACK) BNC CONNECTOR DY10 12.4 7 R10 C2 HOUSING (INSULATOR) 45.0 ± 0.5 R11 C3 DY9 5 DY8 8 R9 C1 R1 to R11: 330 kΩ C1 to C3: 10 nF 14.0 ± 0.3 10 5 14.0 ± 0.3 12.6 12.4 4 DY6 9 450 ± 10 3 DY4 10 2 11 DY1 1 K 13 C3 R10 C2 R9 C1 POWER SUPPLY GND AWG22 (BLACK) 9 DY7 5 DY6 10 DY5 4 R7 R5 11 DY3 3 R3 DY2 12 R2 DY1 K 2 R4 DY3 6 DY4 R5 DY2 DY9 R11 R6 POTTING COMPOUND R6 DY5 8 DY8 HOUSING (INSULATOR) R7 POTTING COMPOUND DY10 R8 R8 DY7 P 450 ± 10 0.5 MAX. 7 10 5 45.0 ± 0.5 SOCKET PIN No. R1: 1 MΩ R3: 510 kΩ R2, R4 to R11: 330 kΩ C1 to C3: 10 nF R4 R3 R2 R1 -HV : SHIELD CABLE (RED) SHV CONNECTOR R1 -HV AWG22 (VIOLET) 13 TACCA0077ED TACCA0210EB v E974-17, E974-22 E974-17 PMT SOCKET PIN No. SIGNAL OUTPUT : RG-174/U (BLACK) BNC CONNECTOR 5 P 23.0 ± 0.5 DY10 DY9 4 DY8 7 DY7 3 DY6 8 DY5 2 C3 C2 DY10 6 R9 C1 DY9 4 DY8 7 P 450 ± 10 R8 9 8 DY5 2 DY4 9 DY3 1 DY2 10 DY1 K 10 12 R1 DY1 12 11 R1: 680 kΩ R3: 510 kΩ R2, R4 to R11: 330 kΩ C1 to C3: 10 nF R6 R5 R4 1 R2 -HV : SHIELD CABLE (RED) SHV CONNECTOR TACCA0212EB 60 3 DY6 R3 DY2 E974-17, -18 attaches BNC and SHV connector at the end of cables. DY7 R7 R1 : 510 kΩ R2 to R11 : 330 kΩ C1 to C3 : 10 nF R4 DY3 R11 C3 R9 C1 R6 DY4 SIGNAL OUTPUT : RG-174/U(BLACK) BNC CONNECTOR R10 C2 R5 POTTING COMPOUND 5 R10 R7 HOUSING (INSULATOR) PMT R11 6 R8 43.0 ± 0.5 47.5 ± 1.0 17.4 ± 0.2 E974-22 SOCKET PIN No. R3 R2 R1 K 11 -HV : SHIELD CABLE(RED) SHV CONNECTOR TACCA0078EC (Unit: mm) b E2253-05 n E974-19 SOCKET PIN No. PMT SIGNAL OUTPUT : RG-174/U (BLACK) 5 SOCKET PIN No. P SIGNAL OUTPUT : RG-174/U (BLACK) BNC CONNECTOR 5 +0 55.0 ± 0.5 6.2 18.6 - 0.4 HOUSING (INSULATOR) P R11 DY8 7 DY7 3 DY6 8 DY5 2 DY4 9 C3 R10 C2 R9 C1 R8 R7 R6 450 ± 10 POTTING COMPOUND DY3 1 DY2 10 DY1 12 23.0 ± 0.5 R15 17.4 ± 0.2 R14 DY10 R1: 1 MΩ R2: 750 kΩ R3: 560 kΩ R4, R6 to R11: 330 kΩ R5: 510 kΩ C1 to C3: 10 nF C3 6 R13 SOCKET : E678-12H C2 R12 R11 HOUSING (INSULATOR) DY9 4 R10 C1 R9 R5 DY8 7 R8 R4 -HV : AWG22 (VIOLET) +20 -HV : SHIELD CABLE (RED) SHV CONNECTOR DY7 3 DY6 8 DY5 2 R7 R1: 499 kΩ R2 to R7: 330 kΩ R8,R11 to R13: 390 kΩ R9, R10: 300 kΩ R14 to R16: 360 kΩ C1 to C3: 10 nF R6 GND : AWG22 (BLACK) 450 -0 R3 R2 R1 11 K GND : AWG22 (BLACK) R16 47.5 ± 1.0 43.0 ± 0.5 PMT R5 DY4 SIGNAL OUTPUT : RG-174/U (BLACK) 9 R4 DY3 1 DY2 10 DY1 12 R3 5 10 5 R2 K R1 -HV : AWG22 (VIOLET) 11 TACCA0079EB m E2037-02 , E6133-04 10 SIGNAL OUTPUT2 : AWG24(RED) SIGNAL OUTPUT1 : AWG24(YELLOW) SIGNAL GND : AWG24(BLACK) 7 24 ± 0.5 21.9 2 HOUSING (INSULATOR) 2 C3 R10 C2 24.0 ± 0.5 POWER SUPPLY GND : AWG24(BLACK) 9 DY9 6 DY8 10 DY7 11 R9 P 22.0 ± 0.5 C1 HOUSING (INSULATOR) DY15 9 DY14 11 DY13 8 DY12 12 DY11 7 R18 C5 R23 R17 C4 R22 R16 C3 R15 C2 R14 C1 DY10 13 R8 POTTING COMPOUND DY7 5 DY6 12 R12 POTTING COMPOUND DY9 6 DY8 14 SIGNAL OUTPUT : RG-174/U (BLACK) BNC CONNECTOR DY7 5 DY6 15 +H.V : SHIELD CABLE (RED) SHV CONNECTOR DY5 4 DY4 16 DY3 3 R3 DY2 17 R2 DY1 2 R1 : 2.7 MΩ R2, R4 to R11 : 680 kΩ R3 : 1 MΩ C1 to C3 : 10 nF 450 ± 10 R7 R6 DY5 4 DY4 13 R5 R11 DY2 DY1 +H.V : SHIELD CABLE (RED) SHV CONNECTOR R1: 10 kΩ R2 to R18: 330 kΩ R19: 100 kΩ R20, R21: 1 MΩ R22 to R24: 51 Ω C1 to C5: 10 nF C6, C7: 4.7 nF R9 R8 R7 R6 3 R5 14 R4 2 R3 K R1 K SIGNAL OUTPUT : RG-174/U (BLACK) BNC CONNECTOR R10 R4 DY3 C7 R1 R24 R13 450 ± 10 30.0 ± 0.5 DY10 R11 R19 2 8 P SOCKET R20 PIN No. C6 PMT SOCKET PIN No. 55.0 ± 0.5 PMT R21 -HV : AWG24(VIOLET) 17 R2 1 TACCA0028EC . E2924-11 R13 DY10 10 DY9 6 DY8 11 R12 R11 26.0 ± 0.3 7 12 R8 0.8 2- 3.5 DY5 4 DY4 13 R1 to R4, R6 to R13 : 330 kΩ R5 : 510 kΩ C1 to C3 : 10 nF HOUSING (INSULATOR) 43.0 ± 0.5 R7 28.0 ± 0.5 R6 DY3 3 R5 POTTING COMPOUND DY2 14 DY1 2 P R11 C3 8 DY8 6 DY7 9 DY6 5 DY5 10 R2 SIGNAL OUTPUT RG-174/U (BLACK) POWER SUPPLY GND AWG22 (BLACK) R9 C1 26.0 ± 0.3 R8 R7 R6 DY4 3 DY3 12 DY2 2 R1 : 1 MΩ R2 to R6,R8 to R11 : 330 kΩ R7 : 510 kΩ C1 to C3 : 10 nF R5 28.0 ± 0.5 HOUSING (INSULATOR) R4 R3 DY1 R3 K DY9 SIGNAL GND R10 C2 R4 450 ± 10 43.0 ± 0.5 DY6 PMT SOCKET PIN No. 7 C1 5 R9 35.0 ± 0.3 C2 R10 DY7 450 ± 10 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) POWER SUPPLY GND C3 AWG22 (BLACK) 30.0 ± 0.3 30.0 ± 0.3 P 44.0 ± 0.3 SOCKET PIN No. 7 7 PMT 0.8 44.0 ± 0.3 3.5 TACCA0231EB ⁄0 E990-29 35.0 ± 0.3 2- TACCA0230EB POTTING COMPOUND 13 R2 G 1 R1 K 14 -HV AWG22 (VIOLET) R1 1 -HV AWG22 (VIOLET) TACCA0032EC TACCA0215EC 61 ⁄1 E2924-500 ⁄2 E2624-14 44.0 ± 0.3 44.0 ± 0.3 35.0 ± 0.3 35.0 ± 0.3 6 Dy8 11 7 0.8 28.0 ± 0.5 HOUSING (INSULATOR) 450 ± 10 POTTING COMPOUND Dy7 5 Dy6 12 Dy5 4 Dy4 13 Dy3 3 Dy2 14 Dy1 2 R13 C3 R12 C2 R11 C1 Dy9 5 Dy8 9 Dy7 4 Dy6 10 Dy5 3 Dy4 11 Dy3 2 Dy2 12 K Dy1 14 26.0 ± 0.3 R9 R8 R1 to R13: 330 kΩ C1 to C3: 10 nF C4: 4.7 nF R7 R6 R5 28.0 ± 0.5 R4 HOUSING (INSULATOR) R3 R2 1 8 2- 3.5 R10 K P Dy10 7 10 Dy9 C4 -HV SHIELD CABLE (RED) SHV CONNECTOR R1 SIGNAL OUTPUT : RG-174/U (BLACK) BNC CONNECTOR 7 0.8 Dy10 30.0 ± 0.3 P 43.0 ± 0.5 2- 3.5 POTTING COMPOUND 450 ± 10 30.0 ± 0.3 SIGNAL OUTPUT RG-174/U (BLACK) BNC CONNECTOR 7 26.0 ± 0.3 43.0 ± 0.5 PMT SOCKET PIN No. PMT SOCKET PIN No. R14 R11 C3 R13 R10 C2 R12 R9 C1 R1: R3: R2, R4 to R11: R12 to R14: C1 to C3: C4: R8 R7 R6 R5 R4 R3 R2 C4 -H.V : SHIELD CABLE (RED) SHV CONNECTOR R1 13 TACCA0081EC ⁄3 E2624-04 1320 kΩ 510 kΩ 330 kΩ 51 Ω 10 nF 4.7 nF TACCA0082EC ⁄4 E2183-500, E2183-501 E2183-500 SOCKET PIN NO. 6 PMT SIGNAL GND PMT SOCKET PIN No. 7 8 Dy9 5 HOUSING (INSULATOR) Dy8 9 Dy7 4 450 ± 10 POTTING COMPOUND Dy6 R13 R10 3 Dy4 11 Dy3 2 Dy2 12 K Dy1 14 C4 C3 R8 C2 R7 C1 R1: 800 kΩ R2, R4 to R6: 200 kΩ R3, R8: 300 kΩ R7: 240 kΩ R9: 400 kΩ R10: 660 kΩ R11: 600 kΩ R12 to R14: 51 Ω C1: 10 nF C2, C3: 22 nF C4 to C6: 33 nF R6 R5 R4 R3 R2 DY10 C3 R11 C2 R10 C1 5 DY8 HOUSING (INSULATOR) R12 7 DY9 8 R9 DY7 R1 : 10 kΩ R2 : 660 kΩ R3 to R12 : 330 kΩ C1 to C3 : 10 nF C4 : 4.7 nF 4 R8 POTTING COMPOUND DY6 9 DY5 3 DY4 10 DY3 2 DY2 11 DY1 1 R7 R6 R5 -H.V : AWG22/TFE (VIOLET) R1 R4 5 10 13 P 52.0 ± 0.5 34.0 ± 0.3 R12 R9 10 Dy5 C6 8.2 Dy10 C5 40.0 ± 0.5 R14 R11 4 49.0 ± 0.5 GND : AWG22 (BLACK) P 450 ± 10 32.0 ± 0.5 25.2 ± 0.5 SIGNAL OUTPUT :RG-174/U (BLACK) BNC CONNECTOR SIGNAL OUTPUT : RG-174/U (BLACK) K R3 C4 R2 R1 -HV : SHIELD CABLE(RED) SHV CONNECTOR 12 TACCA0084ED TACCA0166EC ⁄5 E1198-07 E2183-501 PMT SOCKET PIN No. PMT SOCKET PIN No. 11 P DY10 SIGNAL OUTPUT RG-174/U (BLACK) R11 C3 R10 C2 10 DY9 9 DY8 8 64.0 ± 0.3 DY7 7 56.0 ± 0.3 DY6 6 DY5 5 R9 3 DY2 2 DY1 1 450 ± 10 8 Dy7 4 Dy6 9 3 Dy3 2 Dy2 11 K Dy1 1 C4 12 C4 R12 R11 C3 R10 C2 R9 C1 R8 R7 R6 R5 R4 R3 C5 R2 R1 R1: 10 kΩ R2, R11, R13: 300 kΩ R3 to R7, R14: 150 kΩ R8: 180 kΩ R9: 220 kΩ R10: 330 kΩ R12: 240 kΩ R15: 51 Ω C1:10 nF C2: 22 nF C3: 47 nF C4: 100 nF C5: 4.7 nF -H.V : SHIELD CABLE (RED) SHV CONNECTOR R3 R2 R1 K 14 TACCA0086EC -HV AWG22 (VIOLET) The housing is internally connected to the GND. TACCA0220EB 62 5 Dy8 10 4 DY3 Dy9 Dy4 R1 : 680 kΩ R2 to R11 : 330 kΩ C1 to C3 : 10 nF C4 : 4.7 nF R14 R15 R13 7 Dy5 R4 HOUSING (METAL) Dy10 R7 R5 38.0 ± 0.5 C1 P R8 R6 DY4 POWER SUPPLY GND AWG22 (BLACK) SIGNAL OUTPUT : RG-174/U (BLACK) BNC CONNECTOR 6 SIGNAL GND (Unit: mm) ⁄6 E2979-500 ⁄7 E1198-05 62.0 ± 0.5 SOCKET PIN No. 3-M2 HOUSING (METAL) 11 DY11 8 DY10 12 DY9 7 DY8 13 DY7 6 DY6 14 DY5 5 DY4 15 DY3 3 DY2 17 DY1 G2 ACC G1 K 2 R18 R21 R17 C7 C10 R16 R20 R15 C6 C9 R19 R14 R13 C5 C8 R12 R11 C3 C4 R1: 10 kΩ R2, R5: 240 kΩ R3, R7 to R12, R18: 200 kΩ R4, R6: 360 kΩ R13 to R17: 300 kΩ R19 to R21: 51 Ω C1: 470 pF C2 to C8, C11: 10 nF C9: 22 nF C10: 33 nF C2 R9 R8 R7 R6 7 C1 C3 R9 C2 R8 C1 GND AWG22 (BLACK) 6 64.0 ± 0.3 DY5 5 56.0 ± 0.3 DY4 4 DY3 3 R6 R5 R4 -HV SHV CONNECTOR DY2 2 DY1 1 C4 R1 to R10 : 330 kΩ C1 to C3 : 10 nF C4 : 4.7 nF R3 HOUSING (METAL) R2 13 G K R1 14 SIG -H.V The housing is internally connected to the GND. The housing is internally connected to the GND. -H.V : SHV-R DY7 R10 R7 R4 20 8 DY6 R5 R3 R2 DY8 C11 R10 19 SIGNAL OUTPUT RG-174/U (BLACK) P R1 SIGNAL OUTPUT : BNC-R 11 38.0 ± 0.5 MAGNETIC SHILD CASE 11 82.0 ± 0.5 164.0 ± 0.5 P DY12 SOCKET PIN No. PMT SIGNAL OUTPUT BNC CONNECTOR 10 450 ± 10 PMT -HV AWG22 (VIOLET) TACCA0093EB TACCA0221EB ⁄8 E1198-20 PMT SOCKET PIN No. 11 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) C5 C4 R11 P DY8 8 DY7 7 DY6 6 64.0 ± 0.3 R10 C3 R9 C2 R8 C1 +HV SHIELD CABLE (RED) POWER SUPPLY GND R1 to R11: 330 kΩ C1 to C3: 10 nF C4, C5: 4.7 nF R7 DY5 56.0 ± 0.3 5 R6 DY4 4 DY3 3 DY2 2 DY1 1 38.0 ± 0.5 R5 R4 HOUSING (METAL) R3 R2 450 ± 10 G 13 R1 K 14 The housing is internally connected to the GND. TACCA0223EC ⁄9 E1198-26, E1198-27 E1198-26 PMT SOCKET PIN No. E1198-27 SIGNAL GND PMT SIGNAL OUTPUT RG-174/U (BLACK) 12 SOCKET PIN No. 12 R13 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) C5 R11 C4 R12 P R11 DY8 11 DY7 10 DY6 7 R10 R9 64.0 ± 0.3 DY5 6 DY4 5 R1: 10 kΩ R2, R3: 680 kΩ R4 to R11: 330 kΩ C1 to C3: 10 nF C4: 4.7 nF 38.0 ± 0.5 450 ± 10 R6 4 DY2 3 11 DY7 10 DY6 7 C1 R7 DY3 DY8 C2 R8 56.0 ± 0.3 P C3 DY5 6 DY4 5 DY1 DY3 4 DY2 3 R2 14 The housing is internally connected to the GND. R8 C1 DY1 1 R4 R3 R3 K C2 R5 1 13 R9 +HV SHIELD CABLE (RED) POWER SUPPLY GND R6 R4 G C3 R7 R5 HOUSING (METAL) R10 R1 to R2 : 680 kΩ R3 to R11 : 330 kΩ R12 : 10 kΩ R13 : 1 MΩ C1 to C3 : 10 nF C4, C5 : 4.7 nF R2 C4 G R1 K -HV SHIELD CABLE (RED) POWER SUPPLY GND TACCA0224EB 13 R1 14 The housing is internally connected to the GND. TACCA0225EB 63 ¤0 E5859, E5859-01 E5859 PMT SOCKET PIN No. SIGNAL OUTPUT : BNC-R 7 P R24 C6 R27 R23 Dy12 8 Dy11 6 Dy10 12.5 9 55.0 ± 0.5 51.0 ± 0.4 3-M2 (THREADED HOLES FOR INSTALLATION OF MAGNETIC SHIELD CASE) HOUSING (METAL) SIG -H.V -H.V :SHV-R 5 Dy8 Dy7 13 Dy6 Dy5 14 R1 : 10 kΩ R2, R12, R16, R17, R20, R21 : 180 kΩ R3, R13, R18, R19, R22 to R24 : 226 kΩ R4, R5, R7, R8 : 121 kΩ R6, R9 to R11, R14, R15 : 150 kΩ R25 : 51 kΩ R26, R27 : 100 Ω C1 : 470 pF C2 : 22 nF C3 : 47 nF C4 : 100 nF C5 to C7 : 220 nF C2 R14 R13 R12 4 R11 3 Dy4 Dy3 15 Dy2 Dy1 G R9 R8 R7 16 2 R6 R5 R4 R3 R2 1 17 21 C4 R27 R23 Dy12 8 Dy11 6 Dy10 12 Dy9 5 Dy8 Dy7 13 Dy6 Dy5 14 R22 R21 C3 R15 R10 K C7 C4 R17 R16 10 60.0 ± 0.5 SIGNAL OUTPUT :BNC-R 12 Dy9 SH R24 C5 R26 R20 R19 R25 R18 SIGNAL OUTPUT BNC-R 7 P R22 R21 58.0 ± 0.5 E5859-01 SOCKET PIN No. PMT 4 3 R14 R13 R12 R11 R10 Dy4 Dy3 15 Dy2 Dy1 G R9 R8 R7 16 2 R6 R5 R4 R3 R2 1 17 R1 K R1 : 10 kΩ R2 to R6,R9 to R13 : 220 kΩ R7,R8 : 154 kΩ R14 to R21,R23,R24 : 110 kΩ R22 : 0 Ω R25 : 51 Ω R26,R27 : 100 Ω C1 : 470 pF C2,C3 : 10 nF C4 : 22 nF R15 C1 -HV SHV-R C2 R17 R16 10 SH C3 R26 R20 R19 R25 R18 21 C1 R1 The housing is internally connected to the GND. -HV SHV-R The housing is internally connected to the GND. TACCA0176EC TACCA0178EC ¤1 E1198-22, E1198-23 E1198-22 PMT P DY10 E1198-23 SOCKET PIN No. 11 PMT SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) R13 C3 R12 9 C2 P DY10 C1 DY9 9 DY8 8 DY8 8 R11 R10 DY7 7 DY6 6 38.0 ± 0.5 DY5 5 DY4 4 7 DY6 6 DY5 5 R6 DY4 4 R5 DY3 3 R4 DY2 2 DY1 1 R7 HOUSING (METAL) DY3 3 DY2 2 DY1 1 450 ± 10 G R6 C4 R2 R1 R2 -HV SHIELD CABLE (RED) 9 Dy8 8 Dy7 7 Dy6 6 51.5 ± 0.5 THREADED HOLES FOR INSTALLATION OF MAGNETIC SHIELD CASE (e. g; E989-60 FOR R877 E989-61 FOR R878) HOUSING (METAL) G K Dy5 5 Dy4 4 Dy3 3 Dy2 2 Dy1 1 13 14 R13 C3 R12 R11 C2 TACCA0168EB C1 R10 R1: 10 kΩ R2 to R13: 330 kΩ C1 to C3: 10 nF C4: 4.7 nF R9 R8 R7 R6 R5 R4 R3 R2 C4 R1 SIG -H.V SIGNAL OUTPUT : BNC-R -H.V : SHV-R The housing is internally connected to the GND. -H.V : SHV-R Note: Magnetic shield case is available to order separately. TACCA0089EB 64 13 R1 14 * The housing is internally connected to the GND. ** High voltage shielded cable can be connected to a connector for RG-174/U. SIGNAL OUTPUT : BNC-R 11 G K POWER SUPPLY GND TO AL HOUSING P 10 R1 to R12 : 330 kΩ R13 : 1 MΩ R14 : 10 kΩ C1 to C4 : 10 nF C5, C6 : 4.7 nF R3 R3 SOCKET PIN No. Dy9 C1 POWER SUPPLY GND R7 ¤2 E6316-01 Dy10 R10 C4 R14 R4 * The housing is internally connected to the GND. ** High voltage shielded cable can be connected to a connector for RG-174/U. 64.0 ± 0.5 C2 R5 14 PMT C3 R11 R8 13 K R12 10 DY7 R1: 10 kΩ R2 to R13: 330 kΩ C1 to C3: 10 nF C4: 4.7 nF R8 56.0 ± 0.3 C5 R9 R9 64.0 ± 0.3 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) +HV SHIELD CABLE (RED) C6 R13 10 DY9 SOCKET PIN No. 11 TACCA0169EC (Unit: mm) ¤3 E7693 ¤4 E7694 SOCKET PIN No. 10 P Dy14 Dy13 8 Dy12 12 Dy11 7 Dy10 13 100.0 ± 0.5 74.0 ± 0.5 11 6 Dy8 14 Dy7 5 Dy6 15 Dy5 4 Dy4 16 Dy3 3 Dy2 17 Dy1 2 G1 G2 HOUSING (METAL) Dy9 PMT R21 R18 C5 R20 R17 C4 R19 R16 C3 R15 R1 : 10 kΩ R2, R18 : 240 kΩ R3 : 360 kΩ R4 : 390 kΩ R5 : 120 kΩ R6 : 180 kΩ R7 to R14 : 100 kΩ R15, R16 : 150 kΩ R17 : 300 kΩ R19 : 51 Ω R20, R21 : 100 Ω C1 : 22 nF C2 : 47 nF C3 : 100 nF C4 : 220 nF C5 : 470 nF C6 : 0.47 nF C1 R13 R12 R11 R10 R9 R8 R7 R6 R5 20 12 Dy9 7 Dy8 13 R4 R3 C6 R2 R1 Dy7 R17 C3 R19 R16 C2 R18 R15 C1 R14 5 Dy6 14 Dy5 4 R13 R1 : 10 kΩ R2, R3, R7 : 750 kΩ R4, R9 : 200 kΩ R5 : 91 kΩ R6 : 510 kΩ R8 : 300 kΩ R10 : 100 kΩ R11 to R17 : 150 kΩ R18 to R20 : 51 Ω C1 to C3 : 10 nF C4 : 4.7 nF R12 Dy4 16 Dy3 3 Dy2 17 Dy1 F3 F2 F1 1 2 19 18 K 20 R10 R9 SIG SIGNAL OUTPUT : BNC-R R8 R7 R6 -H.V SIG -H.V -HV : SHV-R -H.V : SHV-R R20 R11 HOUSING (METAL) The housing is internally connected to the GND. SIGNAL OUTPUT : BNC-R Dy10 74.0 ± 0.5 C2 R14 SIGNAL OUTPUT : BNC-R 8 P 19 K SOCKET PIN No. SIGNAL OUTPUT : BNC-R 100.0 ± 0.5 PMT R5 R4 C4 R3 R1 R2 -HV : SHV-R The housing is internally connected to the GND. -H.V : SHV-R TACCA0227EC TACCA0229EB ¤6 E7083 ¤5 E5996 SOCKET PIN No. SIGNAL GND PIN No.1 SIGNAL OUTPUT RG-174/U (BLACK) 30 PIN No.1 DY10 24 DY9 23 DY8 22 R14 R11 C3 R13 R10 C2 R9 HOUSING (INSULATOR) C1 R1 to R3 : 330 kΩ R4 to R11 : 220 kΩ R12 to R14 : 51 Ω R15 : 1 MΩ C1 to C3 : 10 nF DY10 24 DY9 23 DY6 20 DY5 19 R6 DY8 450 ± 10 15.0 ± 0.5 P3 21 R7 POTTING COMPOUND P4 15 SIGNAL OUTPUT P2 : 0.8D-QEV (GRAY) P1 P4 P3 P2 P1 R8 DY7 R14 R11 C3 R13 R10 C2 R12 R9 C1 22 R8 DY7 21 DY6 20 R7 450 ± 10 R5 DY4 R6 7 DY5 19 DY4 7 6 POTTING COMPUND R3 DY2 5 DY3 6 DY1 4 R1 R15 GUIDE MARK -HV 1 SHIELD CABLE (RED) POWER SUPPLY GND TACCA0234ED P2 P3 DY2 5 DY1 4 R4 -HV : SHIELD CABLE (RED) R2 K R1 to R3 : 330 kΩ R4 to R11 : 220 kΩ R12 to R14 : 51 Ω R15 : 1 MΩ C1 to C3 : 10 nF R5 R4 DY3 SIGNAL GND 27 31 R12 HOUSING (INSULATOR) SOCKET PIN No. 11 15.0 ± 0.5 30.0 ± 0.5 P PMT 30.0 ± 0.5 30.0 ± 0.5 PMT 30.0 ± 0.5 P1 P4 P1 to P4: SIGNAL OUTPUT 0.8D-QEV (GRAY) R3 R2 K R15 1 R1 -HV : SHIELD CABLE (RED) POWER SUPPLY GND TACCA0162ED ¤7 E6736 30.0 ± 0.5 SOCKET PIN No. 30.0 ± 0.5 PMT 450 ± 10 15.0 ± 0.5 Pin No.1 P1 P2 -HV : SHIELD CABLE (RED) Dy10 26 Dy9 10 Dy8 24 Dy7 8 Dy6 2 Dy5 P13 P9 P16 • • • • • • • P8 • • • • • • SIGANL OUTPUT : 0.8D-QEV (GRAY) P1 P16 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 HOUSING (INSULATOR) P3 P11 SIGNAL GND 28 29 27 3 23 4 22 5 21 6 20 7 19 11 13 12 P4 P7 P5 P6 P8 P10 P12 K GUIDE MARKE P15 P16 P14 P1 to P16 : SIGNAL OUTPUT 0.8D-QEV (GRAY) R14 R11 C3 R13 R10 C2 R12 R9 C1 R8 R1 to R11 : 220 kΩ R12 to R14 : 51 Ω R15 : 1 MΩ C1 to C3 : 10 nF R7 R6 18 R5 Dy4 31 Dy3 15 Dy2 32 Dy1 16 R4 R3 R2 R15 R1 17 -HV : SHIELD CABLE (RED) POWER SUPPLY GND TACCA0158EE 65 ¤8 E7514 PMT 25.4 ± 0.5 PIN No. 1 PX6 25.4 ± 0.5 PY6 PX5 PY5 PX4 15.0 ± 0.5 HOUSING (INSULATOR) PY4 PX3 PY3 PX2 450 PY2 PX1 SOCKET PIN No. SIGNAL GND 16 PX6 24 PY6 15 PX5 23 PY5 14 PX4 22 PY4 12 PX3 20 PY3 11 PX2 19 PY2 10 PX1 PY1 13 PY1 DY11 8 DY10 27 DY9 SIGNAL OUTPUT : 0.8D-QEV (GRAY) R18 R14 C3 R17 R13 C2 R16 R12 C1 7 R11 PX2 PX1 -HV : SHIELD CABLE (RED) DY7 6 R1, R14: 110 kΩ R2: 330 kΩ R3 to R13: 220 kΩ R15: 1 MΩ R16 to R18: 51 Ω C1 to C3: 10 nF DY6 29 DY5 5 DY4 30 DY3 4 DY2 31 R8 R7 PY4 PY5 PY6 GUIDE MARK 28 R9 PY2 PY3 POTTING COMPOUND DY8 R10 PY1 PX4 PX5 PX3 PX6 R6 R5 R4 PX1 to PX6 PY1 to PY6: SIGNAL OUTPUT 0.8D-QEV (GRAY) R3 DY1 G K 3 R2 1 R15 R1 -HV SHIELD CABLE (RED) 32 POWER SUPPLY GND TACCA0236EC ¤9 E10411 25.4 ± 0.5 PMT 15.0 ± 0.5 25.4 ± 0.5 PIN No.1 SIGNAL GND SOCKET PIN No. 31 SIGNAL OUTPUT RG-174/U (BLACK) P HOUSING (INSULATOR) DY10 24 DY9 23 DY8 22 DY7 21 DY6 20 DY5 19 DY4 7 DY3 6 DY2 5 DY1 4 R15 R12 C3 R14 R11 C2 R13 R10 C1 R9 R8 R7 450 R6 R1, R12 : 110 kΩ R2 : 330 kΩ R3 : 430 kΩ R4 to R11 : 220 kΩ R13 to R15 : 51 Ω R16 : 1 MΩ C1 to C3 : 10 nF R5 R4 R3 R2 1 K R16 3 R1 -HV SHIELD CABLE (RED) POWER SUPPLY GND TACCA0298EA 66 (Unit: mm) ‹0 E9349 PIN No.1 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 SOCKET PIN No. 28 29 30 31 39 40 41 32 38 43 42 33 37 36 35 34 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 DY12 OUTPUT ANODE OUTPUT 25.4 ± 0.5 21.0 ± 0.5 HOUSING (INSULATOR) GND GND R20 DY12 C4 24 DY11 23 DY10 22 DY9 21 DY8 20 DY7 19 R19 R15 C3 R18 R14 C2 R17 R13 C1 R12 5.5 R11 5.08 5.08 R10 2.54 × 3=7.62 14 DY5 12 DY4 7 DY3 6 DY2 5 R8 R7 R5 R4 19.5 -HV R1, R4 : 110 kΩ R2, R3 : 330 kΩ R5 to R15 : 180 kΩ R16 : 1 MΩ R17 to R19 : 51 Ω R20 : 10 kΩ C1 to C4 : 10 nF R6 19.5 GND P14 P15 DY6 DY OUT P1 P5 P9 P13 5.08 -HV P2 P3 7.62 GND GND ANODE OUTPUT PIN ( 0.64) GND P4 P8 P12 P16 4-M2 R9 R3 DY12 OUTPUT DY1 4 R2 G K 1 R16 R1 -HV 3 SOCKET PIN No. PMT TACCA0297EB ‹1 E11807, E11807-01 E11807 PMT 26.0 ± 0.5 26.0 ± 0.5 E11807-01 SOCKET PIN No. 7 PMT SIGNAL OUTPUT RG-174/U (BLACK) R17 P R20 DY12 C3 R16 R20 8 SIGNAL OUTPUT RG-174/U (BLACK) R17 P C3 PIN No.1 SOCKET PIN No. 7 DY12 R16 8 R15 R15 POM HOUSING DY11 9 DY10 10 R18 DY9 12 DY8 13 DY7 14 R13 R11 R10 R9 DY6 21 R8 5 10 DY5 22 R7 ORIENTATION BY MARKING DY4 23 DY3 25 C2 R14 R12 450 ± 10 15.0 ± 0.5 C2 R19 DY11 9 DY10 10 C1 R19 R14 R18 R13 R12 R1 : 300 kΩ R2, R7 to R13 : 200 kΩ R3, R4 : 130 kΩ R5, R6 : 160 kΩ R14 to R16 : 100 kΩ R17 : 0 Ω R18 to R20 : 51 Ω R21 : 1 MΩ C1 to C3 : 0.01 µF DY9 12 DY8 13 DY7 14 DY6 21 DY5 22 DY4 23 DY3 25 DY2 26 R11 R10 R9 R8 R6 R5 DY2 R5 26 R4 R4 R3 DY1 NOTE: Don't touch socket holes while high voltage is supplied in circuit. R1 : 300 kΩ R2, R14, R15 : 200 kΩ R3, R4 : 120 kΩ R5 to R13 : 150 kΩ R16, R17 : 100 kΩ R18 to R20 : 51 Ω R21 : 1 MΩ C1 to C3 : 0.01 µF R7 R6 POTTING COMPOUND C1 R3 27 DY1 27 R2 R2 K K R21 1 R1 -HV RG-174/U (RED) R21 1 R1 -HV RG-174/U (RED) TACCA0314EA 67 Dimensional Outline For E678 Series Sockets E678-12A, E678-12R* E678-12L 47 35 40 28.6 17 13 2- 3.2 2-R4 6.7 4.3 360 13 9 (23.6) E678-11N 10.5 9.5 18 3 2 2 (8) 9.5 15 5 3 34 7 10.5 9.5 3.3 3.7 11 2- 3.2 8 13 18 TACCA0043EA E678-12V * Gold plating type TACCA0009EB E678-13E TACCA0047EA E678-13F 12.4 12.7 2.54 11 24 5.5 18 6.0 2- 2.2 1.83 10.16 3 10 3.4 3.2 3 10.5 4.2 2.8 13 7 0.5 11 TACCA0164EC E678-14C TACCA0013EB E678-14-03 TACCA0005EA E678-14W 19.8 44 27.5 19.1 30 11.6 19.1 35 2- 3.5 62 25.2 56 25 14 TACCA0004EA 2 24.5 68 30 6.5 9 17 11 2 14 9.5 7 2.5 3.9 26 TACCA0184EA TACCA0200EA (Unit: mm) E678-15C E678-17A E678-19J 60 60 50 24.0 45 40 45 40 4 4 18.0 50 21.9 5 16.3 0.1 5 2 12 12.0 12 2 40 11.5 14.0 5 22.8 6.5 40 TACCA0201EA TACCA0046EB E678-19K TACCA0203EA E678-20B 57.8 52.5 8.88 +0 26.2 - 0.3 (WITH GATE) 20 22.95 12.7 22.56 GATE POSITION 2.22 × 8=17.76 5-R1.5 8.88 11.1 28 C5.0 34 (5.1) 13 6.0 3.0 ± 0.1 2.22 × 9=19.98 TACCA0313EA E678-21C TACCA0309EA E678-32B 51 19 22.86 12.7 20.32 R5 22.86 56.8 2.54 20.32 4 0.51 2.92 13 5 1.57 4.45 12.7 6.5 MATERIAL: Glass Epoxy TACCA0066EC TACCA0094ED 69 Index by Type No. Type Number Product R329-02 ................... R331-05 ................... R580 ........................ R647-01 ................... E678 SERIES .......... R750 ........................ R760 ........................ R762 ........................ E849-68 ................... E849-90 ................... R877 ........................ R877-01 ................... R877-100 ................. R960 ........................ E974-17 ................... E974-19 ................... E974-22 ................... E990-29 ................... R1166 ...................... E1198 SERIES......... R1250 ...................... R1288A-06 ............... R1306 ...................... R1306-15 ................. R1307 ...................... R1307-07 ................. R1450 ...................... R1548-07 ................. R1584 ...................... R1635 ...................... E1761-21 ................. E1761-22 ................. R1828-01 ................. R1840 ...................... R1924A .................... R1924A-01 ............... H1949-50 ................. H1949-51 ................. E2037-02 ................. R2059 ...................... R2076 ...................... R2083 ...................... R2154-02 ................. E2183-500 ............... E2183-501 ............... R2248 ...................... E2253-05 ................. R2256-02 ................. H2431-50 ................. R2496 ...................... E2624-04 ................. E2624-14 ................. E2924-11 ................. E2924-500 ............... E2979-500 ............... R3149 ...................... H3164-10 ................. H3165-10 ................. H3177-50 ................. 51mm (2") dia. PMT ......................... 22 51mm (2") dia. PMT ......................... 22 38mm (1-1/2") dia. PMT ................... 20 13mm (1/2") dia. PMT ...................... 20 Socket ........................................ 68, 69 19mm (3/4") dia. PMT ...................... 21 13mm (1/2") dia. PMT ...................... 21 19mm (3/4") dia. PMT ...................... 21 Socket Assembly .............................. 58 Socket Assembly .............................. 58 127mm (5") dia. PMT ....................... 22 127mm (5") dia. PMT ....................... 23 127mm (5") dia. PMT SBA Type ...... 26 13mm (1/2") dia. PMT ...................... 21 Socket Assembly .............................. 58 Socket Assembly .............................. 58 Socket Assembly .............................. 58 Socket Assembly .............................. 58 19mm (3/4") dia. PMT ...................... 20 Socket Assembly ........................ 58, 59 127mm (5") dia. PMT ....................... 22 25mm (1") dia. PMT ......................... 20 51mm (2") dia. PMT ......................... 22 51mm (2") dia. PMT ......................... 23 76mm (3") dia. PMT ......................... 22 76mm (3") dia. PMT ......................... 23 19mm (3/4") dia. PMT ...................... 20 25mm (1" Dual) Square PMT ........... 24 127mm (5") dia. PMT ....................... 22 10mm (3/8") dia. PMT ...................... 20 Socket Assembly .............................. 58 Socket Assembly .............................. 58 51mm (2") dia. PMT ......................... 22 51mm (2") dia. PMT ......................... 22 25mm (1") dia. PMT ......................... 20 25mm (1") dia. PMT ......................... 21 Hybrid Assembly .............................. 49 Hybrid Assembly .............................. 49 Socket Assembly ............................. 58 51mm (2") dia. PMT ......................... 23 19mm (3/4") dia. PMT ...................... 21 51mm (2") dia. PMT ......................... 22 51mm (2") dia. PMT ......................... 22 Socket Assembly .............................. 58 Socket Assembly .............................. 58 10mm (3/8") Square PMT ................. 24 Socket Assembly .............................. 58 51mm (2") dia. PMT ......................... 23 Hybrid Assembly .............................. 49 10mm (3/8") dia. PMT ...................... 20 Socket Assembly .............................. 58 Socket Assembly .............................. 58 Socket Assembly .............................. 58 Socket Assembly .............................. 58 Socket Assembly .............................. 58 51mm (2") dia. PMT ......................... 23 Hybrid Assembly .............................. 48 Hybrid Assembly .............................. 48 Hybrid Assembly .............................. 49 70 Page Type Number Product Page H3177-51 ................. Hybrid Assembly .............................. 49 H3178-51 ................. Hybrid Assembly .............................. 48 R3292-02 ................. Position Sensitive PMT .................... 44 R3377 ...................... 51mm (2") dia. PMT ......................... 23 H3378-50 ................. Hybrid Assembly .............................. 49 R3478 ...................... 19mm (3/4") dia. PMT ...................... 20 R3479 ...................... 19mm (3/4") dia. PMT ...................... 21 R3600-02 ................. 508mm (20") dia. PMT ..................... 22 R3600-06 ................. Hybrid Assembly .............................. 49 H3695-10 ................. Hybrid Assembly .............................. 48 R3878 ...................... 10mm (3/8") dia. PMT ...................... 21 R3886A .................... 38mm (1-1/2") dia. PMT ................... 20 R3991A-04 .............. 19mm (3/4") dia. PMT ...................... 20 R3998-02 ................. 28mm (1-1/8") dia. PMT ................... 20 R3998-100-02 .......... 28mm (1-1/8") dia. PMT SBA Type ... 26 R4004 ...................... 51mm (2") dia. PMT ......................... 23 H4022-50 ................. Hybrid Assembly .............................. 49 H4022-51 ................. Hybrid Assembly .............................. 49 R4124 ...................... 13mm (1/2") dia. PMT ...................... 20 R4125 ...................... 19mm (3/4") dia. PMT ...................... 20 R4141 ...................... 13mm (1/2") dia. PMT ...................... 21 R4143 ...................... 76mm (3") dia. PMT ......................... 22 R4177-04 ................. 13mm (1/2") dia. PMT ...................... 21 R4177-06 ................. 13mm (1/2") dia. PMT ...................... 20 R4607A-06 ............... 51mm (2") dia. PMT ......................... 22 R4885 ...................... 76mm (3") dia. PMT ......................... 23 R4998 ...................... 25mm (1") dia. PMT ......................... 20 R5113-02 ................. 51mm (2") dia. PMT ......................... 23 R5320 ...................... 25mm (1") dia. PMT ......................... 21 R5505-70 ................. 25mm (1") dia. PMT ......................... 20 R5505-70 ................. Fine Mesh PMT ................................ 24 R5611A .................... 19mm (3/4") dia. PMT ...................... 21 R5611A-01 ............... 19mm (3/4") dia. PMT ...................... 20 E5859 SERIES......... Socket Assembly .............................. 58 R5900U-00-L16 ....... Metal Package PMT ......................... 24 R5900U-100-L16....... Metal Package PMT SBA Type ........ 26 R5900U-200-L16....... Metal Package PMT UBA Type ........ 26 R5912 ...................... 204mm (8") dia. PMT ....................... 22 R5912-02 ................. 204mm (8") dia. PMT ....................... 22 R5912-100 ............... 204mm (8") dia. PMT SBA Type ...... 26 R5924-70 ................. 51mm (2") dia. PMT ......................... 22 R5924-70 ................. Fine Mesh PMT ................................ 24 E5996 ...................... Socket Assembly .............................. 59 R6041 ...................... 51mm (2") dia. PMT ......................... 22 R6041-406 ............... 51mm (2") dia. PMT ......................... 22 R6041-506 ............... 51mm (2") dia. PMT ......................... 22 R6091 ...................... 76mm (3") dia. PMT ......................... 22 E6133-03 ................. Socket Assembly .............................. 58 E6133-04 ................. Socket Assembly .............................. 58 H6152-70 ................. Hybrid Assembly .............................. 48 R6231 ...................... 51mm (2") dia. PMT ......................... 22 R6231-01 ................. 51mm (2") dia. PMT ......................... 23 R6231-100 ............... 51mm (2") dia. PMT SBA Type ........ 26 R6232 ...................... 60mm (2.5") dia. PMT ...................... 22 R6232-01 ................. 60mm (2.5") dia. PMT ...................... 23 R6233 ...................... 76mm (3") dia. PMT ......................... 22 R6233-01 ................. 76mm (3") dia. PMT ......................... 23 R6233-100 ............... 76mm (3") dia. PMT SBA Type ........ 26 R6234 ...................... 60mm (2.5") Hexagon PMT .............. 24 Type Number Product Page R6234-01 ................. R6235 ...................... R6235-01 ................. R6236 ...................... R6236-01 ................. R6237 ...................... R6237-01 ................. E6316-01 ................. H6410 ...................... R6427 ...................... H6520 ...................... H6521 ...................... H6522 ...................... H6524 ...................... H6525 ...................... H6526 ...................... H6527 ...................... H6528 ...................... H6533 ...................... H6559 ...................... E6572 ...................... R6594 ...................... H6610 ...................... H6612 ...................... H6613 ...................... H6614-70 ................. E6736 ...................... R7056 ...................... R7081 ...................... R7081-20 ................. R7081-100 ............... E7083 ...................... R7111 ...................... H7195 ...................... R7250 ...................... H7260....................... H7260-100 ............... H7260-200 ............... R7373A-01 ............... H7415 ...................... H7416 ...................... E7514 ...................... R7525 ...................... H7546B .................... H7546B-100 ............. H7546B-200 ............. H7546B-300 ............. R7600U ................... R7600U-100 ............. R7600U-200 ............. R7600U-300 ............. R7600U-300-M4....... R7600U-00-M4 ........ R7600U-100-M4 ...... R7600U-200-M4 ...... R7600U-03 .............. E7693 ...................... E7694 ...................... E7694-01.................. 60mm (2.5") Hexagon PMT .............. 25 76mm (3") Hexagon PMT ................. 24 76mm (3") Hexagon PMT ................. 25 60mm Square PMT .......................... 24 60mm Square PMT .......................... 25 76mm (3") Square PMT .................... 24 76mm (3") Square PMT .................... 25 Socket Assembly .............................. 59 Hybrid Assembly .............................. 49 28mm (1-1/8") dia. PMT ................... 20 Hybrid Assembly .............................. 48 Hybrid Assembly .............................. 49 Hybrid Assembly .............................. 49 Hybrid Assembly .............................. 48 Hybrid Assembly .............................. 49 Hybrid Assembly .............................. 49 Hybrid Assembly .............................. 49 Hybrid Assembly .............................. 49 Hybrid Assembly .............................. 48 Hybrid Assembly .............................. 49 Socket Assembly .............................. 59 127mm (5") dia. PMT ....................... 22 Hybrid Assembly .............................. 48 Hybrid Assembly .............................. 48 Hybrid Assembly .............................. 48 Hybrid Assembly .............................. 49 Socket Assembly .............................. 59 28mm (1-1/8") dia. PMT ................... 21 254mm (10") dia. PMT ..................... 22 254mm (10") dia. PMT ..................... 22 254mm (10") dia. PMT SBA Type .... 26 Socket Assembly .............................. 59 28mm (1-1/8") dia. PMT ................... 20 Hybrid Assembly .............................. 49 508mm (20") dia. PMT ..................... 22 Hybrid Assembly ........................ 24, 49 Hybrid Assembly SBA Type ............. 26 Hybrid Assembly UBA Type ............. 26 2π Shape PMT ................................. 24 Hybrid Assembly .............................. 48 Hybrid Assembly .............................. 48 Socket Assembly .............................. 59 28mm (1-1/8") dia. PMT ................... 20 Hybrid Assembly ........................ 24, 49 Hybrid Assembly SBA Type ............. 26 Hybrid Assembly UBA Type ............. 26 Hybrid Assembly Extended Green Bialkali Type... 26 Metal Package PMT ......................... 24 Metal Package PMT SBA Type ........ 26 Metal Package PMT UBA Type ........ 26 Metal Package PMT Extended Green Bialkali Type ... 26 Metal Package PMT Extended Green Bialkali Type ... 26 Metal Package PMT ......................... 24 Metal Package PMT SBA Type ........ 26 Metal Package PMT UBA Type ........ 26 Metal Package PMT ......................... 25 Socket Assembly .............................. 59 Socket Assembly ............................. 59 Socket Assembly ............................. 59 Type Number Product Page R7723 ...................... R7724 ...................... R7724-100 ............... R7725 ...................... R7761-70 ................. R7761-70 ................. R7899 ...................... R7899-01 ................. R8055 ...................... H8135 ...................... R8143 ...................... H8409-70 ................. H8500C .................... R8520-406 ............... R8520-506 ............... R8619 ...................... H8643 ...................... H8711 ...................... H8711-100 ............... H8711-200 ............... H8711-300 ............... H8804 ...................... H8804-100 ............... H8804-200 ............... H8804-300 ............... R8900U-00-M4 ........ R8900U-100-M4 ...... R8900-00-M16 ......... R8900-100-M16 ....... R8900U-00-C12 ....... R8900U-100-C12 ..... R8997 ...................... E9349 ...................... R9420 ...................... R9420-100 ............... H9500 ...................... R9779 ...................... R9800 ...................... R9800-100 ............... R10233 .................... R10233-100 ............. E10411 .................... R10533 .................... R10550 .................... H10570..................... H10580..................... H10966A .................. H10966A-100 ........... H10966B .................. H10966B-100 ........... R11065 .................... R11102 .................... R11265U .................. R11265U-100 ........... R11265U-200 ........... R11410 .................... E11807 .................... E11807-01 ............... 51mm (2") dia. PMT ......................... 22 51mm (2") dia. PMT ......................... 22 51mm (2") dia. PMT SBA Type ........ 26 51mm (2") dia. PMT ......................... 22 38mm (1-1/2") dia. PMT ................... 20 Fine Mesh PMT ................................ 24 25mm (1") dia. PMT ......................... 21 25mm (1") dia. PMT ......................... 20 332mm (13") dia. PMT ..................... 22 Hybrid Assembly .............................. 48 2π Shape PMT ................................. 24 Hybrid Assembly .............................. 48 Hybrid Assembly ........................ 24, 49 Metal Package PMT ......................... 24 Metal Package PMT ......................... 24 25mm (1") dia. PMT ......................... 20 Hybrid Assembly .............................. 48 Hybrid Assembly ........................ 24, 49 Hybrid Assembly SBA Type ............. 26 Hybrid Assembly UBA Type ............. 26 Hybrid Assembly Extended Green Bialkali Type... 26 Hybrid Assembly ........................ 24, 49 Hybrid Assembly SBA Type ............. 26 Hybrid Assembly UBA Type ............. 26 Hybrid Assembly Extended Green Bialkali Type... 26 Metal Package PMT ......................... 24 Metal Package PMT SBA Type ........ 26 Metal Package PMT ......................... 24 Metal Package PMT SBA Type ........ 26 Position Sensitive PMT .................... 44 Metal Package PMT SBA Type ........ 26 38mm (1-1/2") dia. PMT ................... 24 Socket Assembly .............................. 59 38mm (1-1/2") dia. PMT ................... 20 38mm (1-1/2") dia. PMT SBA Type ... 26 Hybrid Assembly ........................ 24, 49 51mm (2") dia. PMT ......................... 22 25mm (1") dia. PMT ......................... 20 25mm (1") dia. PMT SBA Type......... 26 90mm (3.5") dia. PMT ....................... 22 90mm (3.5") dia. PMT SBA Type...... 26 Socket Assembly .............................. 59 51mm (2") dia. PMT ......................... 22 38mm (1-1/2" Quadrant) Square PMT ... 24 Hybrid Assembly .............................. 49 Hybrid Assembly .............................. 48 Hybrid Assembly .............................. 49 Hybrid Assembly SBA Type.............. 26 Hybrid Assembly .............................. 49 Hybrid Assembly SBA Type.............. 26 76mm (3") dia. PMT ......................... 22 38mm (1-1/2") dia. PMT ................... 20 Metal Package PMT ......................... 24 Metal Package PMT SBA Type ........ 26 Metal Package PMT UBA Type ........ 26 76mm (3") dia. PMT ......................... 22 Socket Assembly .............................. 59 Socket Assembly .............................. 59 71 CAUTIONS AND WARRANTY WARNING HIGH VOLTAGE Take sufficient care to avoid an electric shock hazard ate interlocks to protect the operator and service personnel. A high voltage used in photomultiplier tube operaThe metal housing of the Metal Package PMT R7400 series, tion may present a shock hazard. Photomultiplier R5900 series and R7600 series are connected to the phototubes should be installed and handled only by cathode (potential) so that it becomes a high voltage potential qualified personnel that have been instructed in when the product is operated at a negative high voltage handling of high voltages. Designs of equipment (anode grounded). utilizing these devices should incorporate appropri- PRECAUTIONS FOR USE ● Handle tubes with extreme care Photomultiplier tubes have evacuated glass envelopes. Allowing the glass to be scratched or to be subjected to shock can cause cracks. Extreme care should be taken in handling, especially for tubes with graded sealing of synthetic silica. ● Keep faceplate and base clean Do not touch the faceplate and base with bare hands. Dirt and fingerprints on the faceplate cause loss of transmittance and dirt the base may cause ohmic leakage. Should they become soiled, wipe it clean using alcohol. ● Do not expose to strong light Direct sunlight and other strong illumination may cause damage the Photocathode. They must not be allowed to strike the photocathode, even when the tube is not operated. ● Handling of tubes with a glass base A glass base (also called button stem) is less rugged than a plastic base, so care should be taken in handling this type of tube. For example, when fabricating the voltage-divider circuit, solder the divider resistors to socket lugs while the tube is inserted in the socket. ● Cooling of tubes When cooling a photomultiplier tube, the photocathode section is usually cooled. However, if you suppose that the base is also cooled down to -30 °C or below, please consult our sales office in advance. ● Helium permeation through silica bulb Helium will permeate through the silica bulb, leading to an increase in noise. Avoid operating or storing tubes in an environment where helium is present. Data and specifications listed in this catalog are subject to change due to product improvement and other factors. before specifying any of the types in your production equipment, please consult our sales office. WARRANTY All Hamamatsu photomultiplier tubes and related products are warranted to the original purchaser for a period of 12 months following the date of shipment. The warranty is limited to repair or replacement of any defective material due to defects in workmanship or materials used in manufacture. A: Any claim for damage of shipment must be made directly to the delivering carrier within five days. B: Customers must inspect and test all detectors within 30 days after shipment. Failure to accomplish said incoming inspection shall limit all claims to 75 % of invoice value. C: No credit will be issued for broken detectors unless in the opinion of Hamamatsu the damage is due to a bulb crack or a crack in a graded seal traceable to a manufacturing defect. 72 D: No credit will be issued for any detector which in the judgment of Hamamatsu has been damaged, abused, modified or whose serial number or type number have been obliterated or defaced. E: No detectors will be accepted for return unless permission has been obtained from Hamamatsu in writing, the shipment has been returned prepaid and insured, the detectors are packed in their original box and accompanied by the original data sheet furnished to the customer with the tube, and a full written explanation of the reason for rejection of each detector. F: When products are used at a condition which exceeds the specified maximum ratings or which could hardly be anticipated, Hamamatsu will not be the guarantor of the products. Typical Photocathode Spectral Response and Emission Spectrum of Scintillators 100 TPMHB0342ED G F I D H A 10 E B J LSO Nal (Tl) CsI (Tl) BGO LaBr3 1 100 80 60 BaF2 40 20 0.1 0 100 200 300 400 500 600 10 700 RELATIVE INTENSITY (%) QUANTUM EFFICIENCY (%) C WAVELENGTH (nm) A: Bialkali Photocathode (Borosilicate Glass) B: Bialkali Photocathode (UV Glass) C: Bialkali Photocathode (Synthetic Silica) D: Bialkali Photocathode E: High Temp. Bialkali Photocathode F: Super Bialkali G: Ultra Bialkali H: Extended Green Bialkali I: Low Temp. (down to -110 °C) Bialkali Photocathode J: Low Temp. (down to -186 °C) Bialkali Photocathode 73 HAMAMATSU PHOTONICS K.K., Electron Tube Division 314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, Japan Telephone: (81)539/62-5248, Fax: (81)539/62-2205 www.hamamatsu.com Main Products Sales Offices Electron Tubes Photomultiplier Tubes Photomultiplier Tube Modules Microchannel Plates Image Intensifiers Xenon Lamps / Mercury Xenon Lamps Deuterium Lamps Light Source Applied Products Laser Applied Products Microfocus X-ray Sources X-ray Imaging Devices Japan: HAMAMATSU PHOTONICS K.K. 325-6, Sunayama-cho, Naka-ku, Hamamatsu City, Shizuoka Pref. 430-8587, Japan Telephone: (81)53-452-2141, Fax: (81)53-456-7889 E-mail: [email protected] Belgian Office Axisparc Technology, rue Andre Dumont 7 1435 Mont-Saint-Guibert, Belgium Telephone: (32)10 45 63 34 Fax: (32)10 45 63 67 E-mail: [email protected] China: HAMAMATSU PHOTONICS (CHINA) Co., Ltd. Main Office 1201 Tower B, Jiaming Center, 27 Dongsanhuan Beilu, Chaoyang District, 100020 Beijing, China Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866 E-mail: [email protected] Spanish Office C. Argenters, 4 edif 2 Parque Tecnológico del Vallés 08290 Cerdanyola (Barcelona), Spain Telephone: (34)93 582 44 30 Fax: (34)93 582 44 31 E-mail: [email protected] Opto-semiconductors Si photodiodes APD Photo IC Image sensors PSD Infrared detectors LED Optical communication devices Automotive devices X-ray flat panel sensors Mini-spectrometers Opto-semiconductor modules Imaging and Processing Systems Cameras / Image Processing Measuring Systems X-ray Products Life Science Systems Medical Systems Semiconductor Failure Analysis Systems FPD / LED Characteristic Evaluation Systems Spectroscopic and Optical Measurement Systems Laser Products Semiconductor lasers Applied products of semiconductor lasers Solid state lasers Shanghai Branch 4905 Wheelock Square, 1717 Nanjing Road West, Jingan District, 200040 Shanghai, China Telephone: (86)21-6089-7018, Fax: (86)21-6089-7017 U.S.A.: HAMAMATSU CORPORATION Main Office 360 Foothill Road, Bridgewater, NJ 08807, U.S.A. Telephone: (1)908-231-0960, Fax: (1)908-231-1218 E-mail: [email protected] Information in this catalog is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. © 2016 Hamamatsu Photonics K.K. Danish Office Lautruphøj 1-3, DK-2750 Ballerup, Denmark Telephone: (45)70-20-93-69, Fax: (45)44-20-99-10 Email: [email protected] California Office 2875 Moorpark Ave. San Jose, CA 95128, U.S.A. Telephone: (1)408-261-2022, Fax: (1)408-261-2522 E-mail: [email protected] Netherlands Office Televisieweg 2, NL-1322 AC Almere, The Netherlands Telephone: (31)36-5405384, Fax: (31)36-5244948 E-mail: [email protected] Chicago Office 4711 Golf Road, Suite 805, Skokie, IL 60076, U.S.A. Telephone: (1)847-725-6046, Fax: (1)847-825-2189 E-mail: [email protected] Poland Office 02-525 Warsaw, 8 St. A. Boboli Str., Poland Telephone: (48)22-646-0016, Fax: (48)22-646-0018 E-mail: [email protected] Boston Office 20 Park Plaza, Suite 312, Boston, MA 02116, U.S.A. Telephone: (1)617-536-9900, Fax: (1)408-261-2522 E-mail: [email protected] North Europe and CIS: HAMAMATSU PHOTONICS NORDEN AB Main Office Torshamnsgatan 35 16440 Kista, Sweden Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01 E-mail: [email protected] United Kingdom: HAMAMATSU PHOTONICS UK Limited Main Office 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, UK Telephone: (44)1707-294888, Fax: (44)1707-325777 E-mail: [email protected] South Africa Office: PO Box 1112, Buccleuch 2066, Johannesburg, South Africa Telephone/Fax: (27)11-802-5505 REVISED JAN. 2016 Germany, Denmark, The Netherlands, Poland: HAMAMATSU PHOTONICS DEUTSCHLAND GmbH Main Office Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany Telephone: (49)8152-375-0, Fax: (49)8152-265-8 E-mail: [email protected] France, Portugal, Belgium, Switzerland, Spain: HAMAMATSU PHOTONICS FRANCE S.A.R.L. Main Office 19, Rue du Saule Trapu Parc du Moulin de Massy, 91882 Massy Cedex, France Telephone: (33)1 69 53 71 00 Fax: (33)1 69 53 71 10 E-mail: [email protected] Russian Office 11, Christoprudny Boulevard, Building 1, Office 114, 101000, Moscow, Russia Telephone: (7)495 258 85 18, Fax: (7)495 258 85 19 E-mail: [email protected] Italy: HAMAMATSU PHOTONICS ITALIA S.r.l. Main Office Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy Telephone: (39)02-935-81-733, Fax: (39)02-935-81-741 E-mail: [email protected] Rome Office Viale Cesare Pavese, 435, 00144 Roma, Italy Telephone: (39)06-50513454, Fax: (39)06-50513460 E-mail: [email protected] Swiss Office Dornacherplatz 7 4500 Solothurn, Switzerland Telephone: (41)32-625-60-60, Fax: (41)32-625-60-61 E-mail: [email protected] Quality, technology and service are part of every product. TPMO0007E04 JAN. 2016 IP