Download (5.8 MB)

PHOTOMULTIPLIER TUBES AND ASSEMBLIES
PHOTOMULTIPLIER TUBES
AND ASSEMBLIES
WEB SITE www.hamamatsu.com
INTRODUCTION
In radiation measurements, scintillation counters which are combinations of scintillators and photomultiplier tubes are used as most
common and useful devices in detecting X-, alpha-, beta-, gamma-rays and other high energy charged particles. A scintillator
emits flashes of light in response to input radiations and a photomultiplier tube coupled to a scintillator detects these scintillation
lights in a precise way.
In high energy physics experiments, one of important apparatuses is a Cherenkov counter in which photomultiplier tubes detect
Cherenkov radiations emitted by high energy charged particles passing through a dielectric material.
To detect radiations accurately, photomultiplier tubes may be required to have high detecting efficiency (QE & energy resolution),
wide dynamic range (pulse linearity), good time resolution (T.T.S.), high stablility & reliability, and to be operatable in high magnetic field environment or at high temperature condition. In addition, a ruggedized construction is required according to circumstances. On the other hand, several kinds of position sensitive photomultiplier tubes have been developed and are used in these
measurements.
This catalog provides a quick reference for Hamamatsu photomultiplier tubes, especially designed or selected for scintillation
counters and Cherenkov radiation detectors, and includes most of types currently available ranging in size from 3/8" through 20"
in diameter. It should be noted that this catalog is just a starting point in describing Hamamatsu product line since new types are
continuously under-development.
Please feel free to contact us with your specific requirements.
Photomultiplier Tubes
and Assemblies
For Scintillation Counting
and High Energy Physics
TABLE OF CONTENTS
Photomultiplier Tubes
Page
Operating Characteristics ........................................................................ 2
List Guide for Photomultiplier Tubes ..................................................... 18
Photomultiplier Tubes ........................................................................... 20
Dimensional Outlines and Basing Diagrams for Photomultiplier Tubes ........... 28
Typical Gain Characteristics .................................................................. 40
Position Sensitive Photomultiplier Tubes .............................................. 44
Voltage Distribution Ratios .................................................................... 46
Photomultiplier Tube Assemblies
Quick Reference for PMT Hybrid Assemblies .................................... 48
Dimensional Outlines and Circuit Diagrams for PMT Hybrid Assemblies ............ 50
Quick Reference for PMT Socket Assemblies ..................................... 58
Dimensional Outlines and Circuit Diagrams for PMT Socket Assemblies ............. 60
Dimensional Outlines for E678 Series Sockets ..................... 68
Index by Type No. .................................................................... 70
Cautions and Warranty ............................................................ 72
Typical Photocathode Spectral Response
and Emission Spectrum of Scintillators ................................. 73
Operating Characteristics
This section describes the prime features of photomultiplier
tube construction and basic operating characteristics.
1. GENERAL
The photomultiplier tube (PMT) is a photosensitive device consisting of an input window, a photocathode, focusing electrodes, an electron multiplier (dynodes) and an anode in a vacuum tube, as shown in Figure 1. When light enters the photocathode, the photocathode emits photoelectrons into vacuum
by the external photoelectric effect. These photoelectrons are
directed by the potential of focusing electrode towards the electron multiplier where electrons are multiplied by the process of
secondary electron emission.
The multiplied electrons are collected to the anode to produce
output signal.
QE =
Number of Photoelectrons
×100 (%)
Number of Photons
Radiant sensitivity (S) is the photoelectric current from the photocathode divided by the incident radiant power at a given wavelength, expressed in A/W (ampere per watt).
The equation of S is as follows:
S=
Photoelectric Current
(A/W)
Radiant Power of Light
Quantum efficiency and radiant sensitivity have the following
relationship at a given wavelength.
QE =
S×1240
×100 (%)
λ
where λ is the wavelength in nm (nanometer).
2.3 Window Materials
Figure 1: Cross-Section of Head-On Type PMT
The window materials commonly used in PMT are as follows:
PHOTOCATHODE
FOCUSING ELECTRODES
STEM
(1) Borosilicate glass
INCIDENT
LIGHT
INPUT
WINDOW
PHOTOELECTRON
ELECTRON MULTIPLIER
(DYNODES)
ANODE
TPMHC0048EA
This is the most frequently used material. It transmits light from
the infrared to approximately down to 300 nm.
For some scintillation applications where radioactivity of K40
contained in the glass affects the measurement, "K-free" glass
is recommended.
As "K-free" glass contains very little amount of Potassium, the
background counts originated by 40K is minimized.
(2) UV-transmitting glass
2. PHOTOCATHODE
2.1 Spectral Response
The photocathode of PMT converts energy of incident light into
photoelectrons by the external photoelectric effect. The conversion efficiency, that is photocathode sensitivity, varies with the
wavelength of incident light. This relationship between the photocathode sensitivity and the wavelength is called the spectral
response characteristics.
Typical spectral response curves of the variation of bialkali
photocathodes are shown on the inside of the back cover.
The spectral response range is determined by the photocathode material on the long wavelength edge, and by the window material on the short wavelength edge.
In this catalog, the long wavelength cut-off of spectral response
range is defined as the wavelength at which the cathode radiant sensitivity drops to 1 % of the maximum sensitivity.
2.2 Quantum Efficiency and Radiant Sensitivity
Spectral response is usually expressed in term of quantum efficiency and radiant sensitivity as shown on the inside the back
cover.
Quantum efficiency (QE) is defined as the ratio of the number
of photoelectrons emitted from the photocathode to the number
of incident photons.
It's customarily stated as a percentage.
The equation of QE is as follows:
2
This glass transmits ultraviolet light well as the name implies,
and it is widely used. The UV cut-off wavelength is approximately 185 nm.
(3) Synthetic silica
This material transmits ultraviolet light down to 160 nm. Silica
is not suitable for the stem material of tubes because it has a
different thermal expansion coefficient from kovar metal which
is used for the tube leads. Thus, borosilicate glass is used for
the stem. In order to seal these two materials having different
thermal expansion ratios, a technique called graded seal is
used. This is a technique to seal several glass materials having
gradually different thermal expansion ratios. Another feature of
silica is superiority in radiation hardness.
2.4 Photocathode Materials
The photocathode is a photoemissive surface with very low
work and high energy physics applications:
(1) Bialkali
This has a spectral response which fits the emission spectra of
most scintillators. Thus, it is frequently used for scintillator applications.
(2) High Temperature Bialkali
This is particularly useful at higher operating temperatures up
to 175 °C. Its major application is oil well logging. Also it can be
operated with very low dark current at the room temperature.
As stated above, the spectral response range is determined by
the materials of the photocathode and the window as shown in
Figure 33.
It is important to select appropriate materials which will suit the
application.
2.5 Luminous and Blue Sensitivity
Since the measurement of spectral response characteristics of
a PMT requires a sophisticated system and time, it isn't practical to provide spectral response data on each tube. Instead,
cathode and anode luminous sensitivity data are usually attached.
3. ELECTRON MULTIPLIER (DYNODES)
The superior sensitivity (high gain and high S/N ratio) of PMT is
due to a low noise electron multiplier which amplifies electrons
in a vaccum with cascade secondary emission process. The
electron multiplier consists of several to up to 19 stages of
electrodes which are called dynodes.
3.1 Dynode Types
There are several principal types of dynode structures. Features of each type are as follows:
(1) Linear focused type
The cathode luminous sensitivity is the photoelectric current
from the photocathode per incident light flux (10-5 to 10-2 lumen) from a tungsten filament lamp operated at a distribution
temperature of 2856 K.
The cathode luminous sensitivity is expressed in the unit of
µA/lm (micro amperes per lumen).
Note that the lumen is a unit used for luminous flux in the visible
region, therefore these values may be meaningless for tubes
which are sensitive out of the visible region (refer to Figure 2).
The cathode blue sensitivity is the photoelectric current from
the photocathode per incident light flux of a tungsten filament
lamp at 2856 K passing through a blue filter. Corning CS-5-58
filter which is polished to half stock thickness is used for the
measurement of this sensitivity. This filter is a band-pass filter
and its peak wavelength of transmittance is 400 nm.
Since the light flux, once transmitted through the blue filter, can
not be expressed in lumen, the blue sensitivity is usually represented by the blue sensitivity index.
The blue sensitivity is a very important parameter in the scintillation counting since most of the scintillators produce emission
spectrum in the blue region, and it may dominant factor of energy resolution.
These parameters of cathode luminous and blue sensitivities are
particularly useful when comparing tubes having the same or
similar spectral response ranges. Hamamatsu final test sheets
accompanied with tubes usually indicate these parameters.
Fast time response, high pulse linearity
(2) Box and grid type
Good collection efficiency, good uniformity
(3) Box and linear focused type
Good collection efficiency, good uniformity, low profile
(4) Circular cage type
Fast time response, compactness
(5) Venetian blind type
Good uniformity, large output current
(6) Fine mesh type
High immunity to magnetic fields, good uniformity, high pulse
linearity, position detection possible.
(7) Coarse mesh type
Immunity to magnetic fields, high pulse linearity, position detection possible.
(8) Metal channel type
Compact dynode construction, fast time response, position detection possible.
Also hybrid dynodes combining two of the above dynodes have
been developed. These hybrid dynodes are designed to provide the merits of each dynode type.
Figure 2: Typical Human Eye Response and Spectral
Distribution of 2856 K Tungsten Lamp
100
TPMOB0054EB
4. ANODE
TUNGSTEN
LAMP
AT 2856 K
RELATIVE VALUE (%)
80
The PMT anode output is the product of photoelectric current
from the photocathode and gain. Photoelectric current is proportional to the intensity of incident light. Gain is determined by
the applied voltage on a specified voltage divider.
60
40
4.1 Luminous sensitivity
VISUAL SENSITIVITY
20
0
200
400
600
800
1000
WAVELENGTH (nm)
1200
1400
The anode luminous sensitivity is the anode output current per
incident light flux (10-10 to 10-5 lumen) from a tungsten filament
lamp operated at a distribution temperature of 2856 K. This is
expressed in the unit of A/lm (amperes per lumen) at a specified anode-to-cathode voltage with a specified voltage divider.
3
4.2 Gain (Current Amplification)
5. ANODE DARK CURRENT
Photoelectrons emitted from a photocathode are accelerated
by an electric field so as to strike the first dynode and produce
secondary electron emissions. These secondary electrons then
impinge upon the next dynode to produce additional secondary
electron emissions. Repeating this process over successive
dynode stages (cascade process), a high gain is achieved.
Therefore a very small photoelectric current from the photocathode can be observed as a large output current from the
anode of the PMT.
Gain is simply the ratio of the anode output current to the photoelectric current from the photocathode. Ideally, the gain of the
PMT is defined as δn, where n is the number of dynode stage
and δ is an average secondary emission ratio.
While the secondary electron emission ratio δ is given by
A small amount of output current flows in a PMT even when it
is operated in complete darkness. This current is called the
anode dark current. The dark current and the noise resulted
from are critical factors to determin the lower limit of light detection.
The causes of dark current may be categorized as follows:
δ = A • Eα
where A is constant, E is an interstage voltage, and α is a coefficient determined by the dynode material and geometric structure. It usually has a value of 0.7 to 0.8.
When a voltage V is applied between the cathode and the
anode of the PMT having n dynode stages, gain G becomes
G = δn = (A • Eα)n =
=
An
(n + 1)αn
α
{A • ( n V+ 1 ) }
n
108
107
GA
106
100
GAIN
101
IN
SE
NS
ITI
VI
TY
102
105
Ohmic leakage resulting from insufficient insulation of the glass
stem base and socket may be another source of dark current.
This is predominant when a PMT is operated at a low voltage
or low temperature.
Contamination by dirt and humidity on the surface of the tube
may cause ohmic leakage, and therefore should be avoided.
(5) Field emission
10-1
10-2
200
104
300
500
700
1000
103
1500
SUPPLY VOLTAGE (V)
Figure 3 shows gain characteristics.
Since generally PMTs have 8 to 12 dynode stages, the anode
output varies directly with the 6th to 10th power of the change
in applied voltage. The output signal of the PMT is extremely
susceptible to fluctuations in the power supply voltage, thus the
power supply should be very stable and exhibit minimum ripple, drift and temperature coefficient. Regulated high voltage
power supplies designed with this consideration are available
from Hamamatsu.
4
Residual gases inside the PMT can be ionized by the flow of
photoelectrons. When these ions strike the photocathode or
earlier stages of dynodes, secondary electrons may be emitted, thus resulting in relatively large output noise pulses. These
noise pulses are usually observed as afterpulses following the
primary signal pulses and may be a problem in detecting short
light pulses. Present PMT's are designed to minimize afterpulses.
(4) Ohmic leakage
AN
OD
E
ANODE LUMINOUS SENSITIVITY (A/lm)
109
103
(2) Ionization of residual gases
In case electrons deviating from their normal trajectories strike
the glass envelope, scintillations may occur and dark pulses
may result. To eliminate these pulses, PMT's may be operated
with the anode at high voltage and the cathode at the ground
potential. Otherwise it is useful to coat the glass bulb with a
conductive paint connected to the cathode (called HA treatment: see page 13).
(K: constant)
TPMOB0038EB
Since the materials of the photocathode and dynodes have
very low work functions, they emit thermionic electrons even at
the room temperature. Most of the dark current originates from
the thermionic emissions especially from the photocathode,
and it is multiplied by the dynodes.
(3) Glass scintillation
Vαn = K • Vαn
Figure 3: Example of Gain vs. Supply Voltage
104
(1) Thermionic emission of electrons
When a PMT is operated at a voltage near the maximum rating
value, some electrons may be emitted from electrodes by
strong electric fields causing dark pulses. It is therefore recommended that the tube be operated at 100 volts to 300 volts lower than the maximum rating.
The anode dark current decreases along time after a PMT is
placed in darkness. In this catalog, anode dark currents are
specified as the state after 30 minutes storage in darkness.
6. TIME RESPONSE
In applications where forms of the incident light are pulses, the
anode output signal should reproduce a waveform faithful to
the incident pulse waveform.
This reproducibility depends on the anode pulse time response.
These parameters are affected by the dynode structure and
applied voltage. In general, PMTs of the linear focused or circular cage structure exhibit better time response than that of
the box-and-grid or venetian blind structure.
(1) Rise Time (refer to Figure 4)
Figure 6 shows typical time response characteristics vs. applied voltage for types R2059 (51 mm dia. head-on, 12-stage,
linear-focused type).
The time for the anode output pulse to rise from 10 % to 90 %
of the peak amplitude when the whole photocathode is illuminated by a delta-function light pulse.
Figure 6: Time Response Characteristics vs. Supply
Voltage
(2) Electron Transit Time (refer to Figure 4)
102
TYPE NO. : R2059
TPMOB0059EB
The time interval between the arrival of a delta-function light
pulse at the photocathode and the instant when the anode output pulse reaches its peak amplitude.
TRANSIT TIME
(3) T.T.S. (Transit Time Spread) (refer to Figure 5)
101
TIME (ns)
This is also called the transit time jitter. This is the fluctuation in
transit time between individual pulses, and is defined as the
FWHM of the frequency distribution of electron transit times.
T.T.S. depends on the number of incident photons. The values
in this catalog are measured in the single photoelectron state.
RISE TIME
100
Figure 4: Definition of Rise Time and Transit Time
T. T. S.
DELTA-FUNCTION
LIGHT PULSE AT PHOTOCATHODE
500
TRANSIT TIME
Tt
1000
1500
2000 2500 3000
SUPPLY VOLTAGE (V)
90%
10%
RISE TIME
TPMOC0041EA
7. PULSE LINEARITY
Figure 5: Definition of T.T.S.
Tt
FREQUENCY
FWHM=T.T.S.
Tt
TIME
TPMOC0042EA
(4) C.R.T. (Coincident Resolving Time)
This is one of the important parameters in high energy physics
applications and is defined as the FWHM of a coincident timing
spectrum of a pair PMT's facing each other when they detect
coincident gamma-ray emission due to positron annihilation of
a radiation source (22Na). The scintillators used are CsF, BGO
or BaF2 crystals. These PMT's can be selected for special requirements.
The definition of the pulse linearity is proportionality between
the input light amount and the output current in the pulse operation mode. When intense light pulses are to be measured, it's
necessary to know the pulse linearity range of the PMT.
In this catalog, typical values of pulse linearity are specified at
two points (±2 % and ±5 % deviations from linear proportionality), as shown in Figure 7.
The two-pulse technique is employed in this measurement.
LED's are used for a pulsed light source. Its pulse width is
50 ns and the repetition rate is 1 kHz.
The deviation from the proportionality is called non-linearity in
this catalog. The cause of non-linearity is mainly a space
charge effect in the later stages of an electron multiplier. This
space charge effect depends on the pulse height of the PMT
output current and the strength of electric fields between electrodes.
5
Figure 7: Example of Pulse Linearity Characteristic
DEVIATION (%)
10
9. STABILITY
TPMHB0094ED
0
2%
In scintillation counting, there are two relevant stability characteristics for the PMT in pulse height mode operation, the long
term and the short term. In each case a 137Cs source (662 keV),
and an NaI(Tl) scintillator, and a multichannel pulse height analyzer are used. PMT's are warmed up for about one hour in the
dark with voltage applied.
5%
9.1 Long Term Stability (Mean gain deviation)
-10
This is defined as follows when the PMT is operated for 16
hours at a constant count rate of 1000 s-1:
-20
100
101
102
n
Σ P-Pi
i =1
Dg =
n
103
ANODE PEAK CURRENT (mA)
The special voltage distribution ratios are designed to achieve
strong electric fields in the later stages of the electron multiplier.
Some types are specified with these special voltage dividers.
100
P
•
(%)
where P is the mean pulse height averaged over n readings, Pi
is the pulse height at the i-th reading, and n is the total number
of readings.
9.2 Short Term Stability
8. UNIFORMITY
Although the focusing electrodes of a PMT are designed so
that electrons emitted from the photocathode or dynodes are
collected efficiently by the first or following dynodes, some
electrons may deviate from their desired trajectories and collection efficiency is degraded. The collection efficiency varies
with the position on the photocathode from which the photoelectrons are emitted, and influences the spatial uniformity of a
photomultiplier tube. The spatial uniformity is also determined
by the photocathode surface uniformity itself.
PMTs especially designed for gamma camera applications
have excellent spatial uniformity. Example of spatial uniformity
is shown in Figure 8.
Figure 8: Example of Spatial Uniformity
9.3 Drift and Life Characteristics
While operating a photomultiplier tube continuously over a long
period, anode output current of the photomultiplier tube may
vary slightly with time, although operating conditions have not
changed. This change is reffered to as drift or in the case where
the operating time is 1000 hours to 10000 hours it is called life
characteristics. Figure 9 shows typical life characteristics.
Drift is primarily caused by damage to the last dynode by
heavy electron bombardment. Therefore the use of lower
anode current is desirable. When stability is of prime importance, the use of average anode current of 1 µA or less is recommended.
a'
TOP VIEW OF
PHOTOCATHODE
This is the gain shift against count rate change. The tube is initially operated at about 10000 s-1. The photo-peak count rate is
then decreased to approximately 1000 s-1 by increasing the
distance between the 137Cs source and the scintillator coupled
to the PMT.
Figure 9: Examples of Life
SENSITIVITY (%)
100
0
50
100
a
RELATIVE ANODE SENSITIVITY (%)
150
SENSITIVITY (%)
50
0
a
a'
TPMHC0050EA
TPMHB0794EA
x+σ
125
x
100
x-σ
75
50
TEST CONDITIONS
SUPPLY VOLTAGE: 1000 V
INITIAL CURRENT: 100 µA
LIGHT SOURCE: TUNGSTEN LAMP
TEMPERATURE: 25 °C
NUMBER OF SAMPLES: 10
25
0
1
10
100
OPERATING TIME (h)
6
1000
10000
10. ENVIRONMENT
10.1 Temperature Characteristics
The sensitivity of the PMT varies with the temperature. Figure
10 shows typical temperature coefficients of anode sensitivity
around the room temperature for bialkali and high temp. bialkali
photocathode types. In the ultraviolet to visible region, the temperature coefficient of sensitivity has a negative value, while it
has a positive value near the longer wavelength cut-off.
Since the temperature coefficient change is large near the longer wavelength cut-off, temperature control may be required in
some applications.
For example, the shield case, of which inner diameter is 60 mm
and the thickness is 0.8 mm, can be used in a magnetic field of
around 5 mT without satulation. If a magnetic field strength is
more than 10 mT, the double shielding method is necessary for
a conventional PMT, otherwise proximity mesh types should be
used. It should be noted that the magnetic shielding effect decreases towards the edge of the shield case as shown in Figure 12. It is suggested to cover a PMT with a shield case longer than the PMT length by at least half the PMT diameter.
Figure 11: Typical Effects by Magnetic Fields
Perpendicular to Tube Axis
1.0
Figure 10: Typical Temperature Coefficients of Anode
Sensitivity
19 mm dia.
HEAD-ON TYPE
LINEAR-FOCUSED
TYPE DYNODE
TPMOB0036EC
(
RELATIVE OUTPUT
TEMPERATURE COEFFICIENT (%/°C)
0.5
TPMOB0017EB
)
0.1
51 mm dia.
HEAD-ON TYPE
BOX-AND-GRID
TYPE DYNODE
0
(
)
HIGH TEMP.
BIALKALI
0.01
-3
-2
400
0
1
2
3
MAGNETIC FLUX DENSITY (mT)
BIALKALI
-0.5
200
-1
600
800
Figure 12: Edge Effect of Magnetic Shield Case
WAVELENGTH (nm)
t
LONGER than r
SHIELDING FACTOR
Most PMTs are affected by the presence of magnetic fields.
Magnetic fields may deflect electrons from their normal trajectories and cause a loss of gain. The extent of the loss of gain
depends on the type of the PMT and its orientation in the magnetic field. Figure 11 shows typical effects of magnetic fields on
some types of PMTs. In general, a PMT having a long path
from the photocathode to the first dynode are very sensitive to
magnetic fields. Therefore head-on types, especially of large
diameter, tend to be more adversely influenced by magnetic
fields.
When a PMT has to be operated in magnetic fields, it may be
necessary to shield the PMT with a magnetic shield case. (Hamamatsu provides a variety of magnetic shield cases.)
2r
10.2 Magnetic Field
PHOTOMULTIPLIER TUBE
L
1000
100
10
1
r
r
TPMOB0011EB
The proximity mesh made of non-magnetic material has been
introduced as alternate dynodes in PMT's. These types (see
page 24) exhibit much higher immunity to external magnetic
fields than the conventional PMT's. Also triode and three types
(see page 24) are useful for applications at high light intensities.
7
11. VOLTAGE DIVIDER CIRCUITS
11.1 Anode Grounding and Photocathode Grounding
To operate a photomultiplier tube, a high voltage of 500 volts to
2000 volts is usually supplied between the photocathode (K)
and the anode (P), with a proper voltage gradient set up along
the photoelectron focusing electrode (F) or grid (G), secondary
electron multiplier electrodes or dynodes (Dy) and, depending
on photomultiplier tube type, an accelerating electrode (Acc).
Figure 13 shows a schematic representation of photomultiplier
tube operation using independent multiple power supplies, but
this is not a practical method. Instead, a voltage divider circuit
is commonly used to divide, by means of resistors, a high voltage supplied from a single power supply.
In order to eliminate the potential difference between the photomultiplier tube anode and external circuits such as an ammeter, and to facilitate the connection, the generally used technique for voltage divider circuits is to ground the anode and supply a high negative voltage (-HV) to the photocathode, as
shown in Figure 14. This scheme provides the signal output in
both DC and pulse operations, and is therefore used in a wide
range of applications.
Figure 13: Schematic Representation of Photomultiplier
Tube Operation
LIGHT
K
F
Dy1
ePHOTOELECTRONS
Dy2
Dy3
P
SECONDARY ELECTRONS
eeeANODE CURRENT
Ip
A
V2
V1
V3
V4
V5
POWER SUPPLIES
TACCC0055EA
In photon counting and scintillation counting applications, however, the photomultiplier tube is often operated with the photocathode grounded and a high positive voltage (+HV) supplied
to the anode mainly for purposes of noise reduction. This photocathode grounding scheme is shown in Figure 15, along with
the coupling capacitor Cc for isolating the high voltage from the
output circuit. Accordingly, this setup cannot provide a DC signal output and is only used in pulse output applications. The resistor RP is used to give a proper potential to the anode. The
resistor RL is placed as a load resistor, but the actual load resistance will be the combination of RP and RL.
Figure 15: Photocathode Grounded Voltage Divider Circuit
K
Figure 14 shows a typical voltage divider circuit using resistors,
with the anode side grounded. The capacitor C1 connected in
parallel to the resistor R5 in the circuit is called a decoupling
capacitor and improves the output linearity when the photomultiplier tube is used in pulse operation, and not necessarily used
in providing DC output. In some applications, transistors or
Zener diodes may be used in place of these resistors.
Figure 14: Anode Grounded Voltage Divider Circuit
K
F
Dy1
Dy2
Dy3
P
Ip
OUTPUT
RL
R1
R2
R3
R4
R5
C1
-HV
TACCC0056EB
8
F
Dy1
Dy2
Dy3
P
CC
OUTPUT
Ip
RP
R1
R2
R3
R4
R5
RL
C2
C1
+HV
TACCC0057EB
11.2 Standard Voltage Divider Circuits
Basically, the voltage divider circuits of socket assemblies listed in this catalog are designed for standard voltage distribution ratios which are suited for constant light measurement.
Socket assemblies for side-on photomultiplier tubes in particular mostly use a voltage divider circuit with equal interstage voltages allowing high gain as shown in Figure 16.
Figure 16: Equally Divided Voltage Divider Circuit
K
Dy1
Dy2
Dy3
Dy4
Dy5
P
OUTPUT
1R
1R
1R
1R
1R
1R
C1
C2
RL
11.4 Voltage Divider Circuit and Photomultiplier Tube
Output Linearity
In both DC and pulse operations, when the light incident on the
photocathode increases to a certain level, the relationship between the incident light level and the output current begins to
deviate from the ideal linearity. As can be seen from Figure 18,
region A maintains good linearity, and region B is the so-called
overlinearity range in which the output increase is larger than
the ideal level. In region C, the output goes into saturation and
becomes smaller than the ideal level. When accurate measurement with good linearity is essential, the maximum output current must be within region A. In contrast, the lower limit of the
output current is determined by the dark current and noise of
the photomultiplier tube as well as the leakage current and
noise of the external circuit.
Figure 18: Output Linearity of Photomultiplier Tube
-HV
TACCC0058EB
10
TACCB0005EA
11.3 Tapered Voltage Divider Circuits
B
1.0
ACTUAL
CURVE
0.1
IDEAL
CURVE
A
RATIO OUTPUT CURRENT
TO DIVIDER CURRENT
C
In most pulsed light measurement applications, it is often necessary to enhance the voltage gradient at the first and/or last
few stages of the voltage divider circuit, by using larger resistances as shown in Figure 17. This is called a tapered voltage
divider circuit and is effective in improving various characteristics. However it should be noted that the overall gain decreases as the voltage gradient becomes greater. In addition, care
is required regarding the interstage voltage tolerance of the
photomultiplier tube as higher voltage is supplied. The tapered
voltage circuit types and their suitable applications are listed
below.
0.01
0.001
0.001
0.01
Tapered circuit at the last few stages (resistance: small / large)
High pulsed light detection (improvement in output linearity)
High-speed pulsed light detection (improvement in timing properties)
Other applications requiring high output across the load resistor
Dy1
Dy2
Dy3
Dy4
Dy5
11.5 Output Linearity in DC Mode
Figure 19 is a simplified representation showing photomultiplier
tube operation in the DC output mode, with three stages of dynodes and four dividing resistors R1 through R4 having the
same resistance value.
P
K
OUTPUT
2R
1.5R
1R
1R
2R
C1
10
Figure 19: Basic Operation of Photomultiplier Tube
and Voltage Divider Circuit
Figure 17: Tapered Voltage Divider Circuit
K
1.0
LIGHT FLUX (A.U.)
Tapered circuit at the first few stages (resistance: large / small)
Photon counting (improvement in pulse height distribution)
Low-light-level detection (S/N ratio enhancement)
High-speed pulsed light detection (improvement in timing properties)
Other applications requiring better magnetic characteristics and uniformity
0.1
3R
Dy1
Dy2
I2
I1
Dy3
P
I3
I4
Ip
RL
IK
C2
IDy1
IDy2
A
IDy3
R1
R2
R3
R4
IR1
IR2
IR3
IR4
ID
-HV
-HV
TACCC0059EB
TACCC0060EA
9
[When light is not incident on the tube]
In dark state operation where a high voltage is supplied to a
photomultiplier tube without incident light, the current components flowing through the voltage divider circuit will be similar
to those shown in Figure 20 (if we ignore the photomultiplier
tube dark current). The relation of current and voltage through
each component is given below
Figure 21: Operation with Light Input
I1' (=IK')
K
Ik'
Dy2
IDy1'
IR1'
I4' (=IP')
I3'
I2'
Dy1
Dy3
IDy2'
P
IDy3'
IR2'
IR3'
R1
R2
R3
V1'
V2'
V3'
IP'
IR4'
R4
V4'
Interelectrode current of photomultiplier tube
-HV
I1=I2=I3=I4 (= 0 A)
ID' =ID + ∆ID
Electrode current of photomultiplier tube
TACCC0062EA
IK=IDy1=IDy2=IDy3=IP (= 0 A)
Voltage divider circuit current
Figure 22 shows changes in the interstage voltages as the incident light level varies. The interstage voltage V4' with light input
drops significantly compared to V4 in dark state operation. This
voltage loss is redistributed to the other stages, resulting an increases in V1', V2' and V3' which are higher than those in dark
state operation. The interstage voltage V4' is only required to
collect the secondary electrons emitted from the last dynode to
the anode, so it has little effect on the anode current even if
dropped to 20 or 30 volts. In contrast, the increases in V1', V2'
and V3' directly raise the secondary emission ratios (δ1, δ2 and
δ3) at the dynodes Dy1, Dy2 and Dy3, and thus boost the overall gain m (= δ1 • δ2 • δ3 ). This is the cause of overlinearity in
region B in Figure 10. As the incident light level further increases so that V4' approaches 0 volts, output saturation occurs in
region C.
4
IR1=IR2=IR3=IR4=ID= (HV/ Σ Rn)
n=1
Voltage divider circuit voltage
V1=V2=V3=V4=ID • Rn (= HV/4)
Figure 20: Operation without Light Input
K
I1 (=IK)
IK
I2
Dy1
I3
Dy2
IDy1
IDy2
IR1
IR2
I4 (=IP)
Dy3
P
IP
IDy3
IR3
IR4
R1
R2
R3
R4
V1
V2
V3
V4
-HV
ID
TACCC0061EA
IRn' = ID' - In'
Where In' is the interelectrode current which has the following
relation:
I1' < I2' < I3' < I4'
Thus, the interstage voltage Vn' (=IRn' • Rn) becomes smaller at
the latter stages, as follows:
V1' > V2' > V3' > V4'
10
120
INTERSTAGE VOLTAGE (%)
[When light is incident on the tube]
When light is allowed to strike the photomultiplier tube under
the conditions in Figure 20, the resulting currents can be considered to flow through the photomultiplier tube and the voltage
divider circuit as schematically illustrated in Figure 21. Here, all
symbols used to represent the current and voltage are expressed with a prime ( ' ), to distinguish them from those in
dark state operation.
The voltage divider circuit current ID' is the sum of the voltage
divider circuit current ID in dark state operation and the current
flowing through the photomultiplier tube ∆ID (equal to average
interelectrode current). The current flowing through each dividing resistor Rn becomes as follows:
Figure 22: Changes in Interstage Voltages at Different
Incident Light Levels
TACCB0017EA
MODERATE
LIGHT INPUT
HIGH LIGHT INPUT
110
100
NO OR FAINT
LIGHT INPUT
90
80
V1
V2
V3
POSITION OF INTERSTAGE VOLTAGE
V4
11.6 Linearity Improvement in DC Output Mode
To improve the linearity in DC output mode, it is important to
minimize the changes in the interstage voltage when photocurrent flows through the photomultiplier tube. There are several
specific methods for improving the linearity, as discussed below.
1Increasing the voltage divider current
Figure 23 shows the relationship between the output linearity
of a 28 mm (1-1/8") diameter side-on photomultiplier tube and
the ratio of anode current to voltage divider current. For example, to obtain an output linearity of 1 %, it can be seen from the
figure that the anode current should be set approximately 1.4
% of the divider circuit current. However, this is a calculated
plot, so actual data may differ from tube to tube even for the
same type of photomultiplier tube, depending on the supply
voltage and individual dynode gains. To ensure high photometric accuracy, it is recommended that the voltage divider current
be maintained at least twice the value obtained from this figure.
2Using the active voltage divider circuit
Use of a voltage divider circuit having transistors in place of the
dividing resistors in last few stages (for example, Hamamatsu
E6270 series using FETs) is effective in improving the output
linearity. This type of voltage divider circuit ensures good linearity up to an output current equal to 60 % to 70 % of the voltage divider current, since the interstage voltage is not affected
by the interelectrode current inside the photomultiplier tube. A
typical active voltage divider circuit is shown in Figure 24.
Figure 24: Active Voltage Divider Circuit
K
Dy1
Dy2
OUTPUT LINEARITY (%)
10
TACCB0031EA
0.1
0.1
1
Dy5
P
RL
-HV
TACCC0063EA
3Using Zener Diodes
The output linearity can be improved by using Zener diodes in
place of the dividing resistors in the last few stages, because
the Zener diodes serve to maintain the interstage voltages at a
constant level. However, if the supply voltage is greatly varied,
the voltage distribution may be imbalanced compared to other
interstage voltages, thus limiting the adjustable range of the
voltage with this technique. In addition, if the supply voltage is
reduced or if the current flowing through the Zener diodes becomes insufficient due to an increase in the anode current,
noise may be generated from the Zener diodes. Precautions
should be taken when using this type of voltage divider circuit.
Figure 25 shows a typical voltage divider circuit using Zener diodes.
1
0.01
Dy4
TWO
TRANSISTORS
The maximum linear output in DC mode listed for the D-type
socket assemblies in this catalog indicates the anode current
equal to 1/20 of the voltage divider current. The output linearity
at this point can be maintained within ±3 % to ±5 %.
Figure 23: Output Linearity vs. Anode Current to
Voltage Divider Current Ratio
Dy3
10
Figure 25: Voltage Divider Circuit Using Zener Diodes
RATIO OF ANODE CURRENT TO VOLTAGE DIVIDER CURRENT (%)
K
Dy1
Dy2
Dy3
As stated above, good output linearity can be obtained simply
by increasing the voltage divider current. However, this is accompanied by heat emanating from the voltage divider. If this
heat is conducted to the photomultiplier tube, it may cause
problems such as an increase in the dark current, and variation
in the output.
Dy4
Dy5
P
TWO
ZENER DIODES
RL
-HV
TACCC0064EA
11
4Using Cockcroft-Walton Circuit
When a Cockcroft-Walton circuit as shown in Figure 26 is used
to operate a 28 mm (1-1/8") diameter side-on photomultiplier
tube with a supply voltage of 1000 volts, good DC linearity can
be obtained up to 200 µA and even higher. Since a high voltage is generated by supplying a low voltage to the oscillator
circuit, there is no need for using a high voltage power supply.
This Cockcroft-Walton circuit achieves superior DC output linearity as well as low current consumption.
Figure 26: Cockcroft-Walton Circuit
K
Dy1
Dy2
Dy3
Dy4
Dy5
11.7 Output Linearity in Pulsed Mode
In applications such as scintillation counting where the incident
light is in the form of pulses, individual pulses may range from
a few to over 100 milliamperes even though the average anode
current is small at low count rates. In this pulsed output mode,
the peak current in extreme cases may reach a level hundreds
of times higher than the voltage divider current. If this happens,
it is not possible to supply interelectrode currents from the voltage divider circuit to the last few stages of the photomultiplier
tube, thus leading to degradation in the output linearity.
P
11.8 Improving Linearity in Pulsed Output Mode
RL
-HV
GENERATED
OSCILLATION
CIRCUIT
TACCC0065EA
5Using multiple high voltage power supplies
As shown in Figure 27, this technique uses multiple power supplies to directly supply voltages to the last few stages near the
anode. This is sometimes called the booster method, and is
used for high pulse and high count rate applications in high energy physics experiments.
Figure 27: Voltage Divider Circuit Using Multiple Power
Supplies (Booster Method)
K
Dy1
Dy2
Dy3
Dy4
Dy5
P
RL
AUXILIARY
POWER SUPPLY 2
AUXILIARY POWER SUPPLY 1
MAIN POWER SUPPLY
1Using decoupling capacitors
Using multiple power supplies mentioned above is not popular
in view of the cost. The most commonly used technique is to
supply the interelectrode current by using decoupling capacitors as shown in Figure 28. There are two methods for connecting these decoupling capacitors: the serial method and the
parallel method. As Figures 28 and 29 show, the serial method
is more widely used since it requires lower tolerance voltages
of the capacitors. The capacitance value C (farads) of the decoupling capacitor between the last dynode and the anode
should be at least 100 times the output charge as follows:
C > 100 • Q/V
where Q is the charge of one output pulse (coulombs) and V is
the voltage (volts) across the last dynode and the anode.
Since this method directly supplies the pulse current with electrical charges from the capacitors, if the count rate is increased
and the resulting duty factor becomes larger, the electrical
charge will be insufficient. Therefore, in order to maintain good
linearity, the capacitance value obtained from the above equation must be increased according to the duty factor, so that the
voltage divider current is kept at least 50 times larger than the
average anode current just as with the DC output mode.
The active voltage divider circuit and the booster method using
multiple power supplies discussed previously, provide superior
pulse output linearity even at a higher duty factor.
TACCC0066EA
Figure 28: Equally Divided Voltage Divider Circuit and
Decoupling Capacitors
K
Dy1
Dy2
Dy3
Dy4
Dy5
P
RL
1R
1R
1R
1R
1R
1R
CD1
CD2
TWO DECOUPLING CAPACITORS
-HV
TACCC0067EB
12
2Using tapered voltage divider circuit with decoupling
capacitors
Use of the above voltage divider circuit having decoupling capacitors is effective in improving pulse linearity. However, when
the pulse current increases further, the electron density also increases, particularly in last stages. This may cause a space
charge effect which prevents interelectrode current from flowing adequately and leading to output saturation. A commonly
used technique for extracting a higher pulse current is the tapered voltage divider circuit in which the voltage distribution ratios in the latter stages are enhanced as shown in Figure 29.
Care should be taken in this case regarding loss of the gain
and the breakdown voltages between electrodes.
Since use of a tapered voltage divider circuit allows an increase in the voltage between the last dynode and the anode,
it is possible to raise the voltage across the load resistor when
it is connected to the anode. It should be noted however, that if
the output voltage becomes excessively high, the voltage between the last dynode and the anode may drop, causing a degradation in output linearity.
Figure 29: Tapered Voltage Divider Circuit Using
Decoupling Capacitors
K
Dy1
Dy2
Dy3
Dy4
Dy5
P
RL
1R
1R
1R
1.5R
2.5R
3R
CD1
CD2
TWO DECOUPLING CAPACITORS
-HV
Figure 30: HA Treatment
CONDUCTIVE PAINT
CONNECTED TO
CATHODE PIN
INSULATING BLACK COVER
TPMHC0049EB
13. SCINTILLATION COUNTING
13.1 General
Scintillation counting is one of the most common and effective
methods in detecting radiation particles. It uses a PMT coupled
to a scintillator which produces light by incidence of radiation
particles.
In radiation particle measurement, there are two parameters
that should be measured. One is the energy of individual particle and the other is the amount of particles. When radiation
particles enter the scintillator, they produce light flashes in response to each particle. The amount of flash is proportional to
the energy of the incident particle and individual light flashes
are detected by the PMT. Consequently, the output pulses obtained from the PMT contain information on both the energy
and number of pulses, as shown in Figure 31.
TACCC0068EB
Figure 31: Incident Particles and PMT Output
TIME
12. EXTERNAL POTENTIAL
SCINTILLATOR
PMT
THE HEIGHT OF OUTPUT
PULSE IS PROPORTIONAL
TO THE ENERGY OF
INCIDENT PARTICLE.
CURRENT
If the input window or glass envelope near the photocathode is
grounded, slight conductivity of glass material causes a current
flow between the photocathode, which has a high negative potential, and ground.
This may cause electrolysis of photocathode, leading to significant deterioration.
Also this may cause noise resulted from the light flashes at the
above input window or glass envelope.
For those reasons, when designing a PMT housing with an
electrostatic or magnetic shield case, extreme care should be
required.
When the anode ground scheme is used, bringing a grounded
metallic holder or magnetic shield case near the glass envelope of PMT can cause electrons to strike the inner glass wall,
resulting in the noise.
This problem can be solved by applying a black conductive
paint around the glass envelope and connecting it to the cathode potential. Then PMT is wrapped with an insulating black
cover, as shown in Figure 30. This method is called HA treatment.
TIME
TPMOC0039EA
13
Figure 32: Typical Pulse Height Distribution (Energy Spectral)
Figure 33: Definition of Pulse Height Resolution
b
COUNTS
1000
NUMBER OF PULSES
(a) 55Fe+Nal(TI)
(51 mm dia. × 2.5 mm t)
500
a
H
H
2
PULSE HEIGHT
0
500
1000
a
Energy Resolution (FWHM) = — × 100 %
b
ENERGY
TPMOB0088EA
(b) 137Cs+Nal(TI)
The following factors determin the energy resolution.
COUNTS
10000
(51 mm dia. × 51 mm t)
(1) Energy conversion efficiency of the scintillator
(2) Intrinsic energy resolution of the scintillator
(3) Quantum efficiency of the photocathode
(4) Collection efficiency of photoelectrons at the first dynode
(5) Secondary emission yield of dynodes (especially first dynode)
5000
0
500
1000
ENERGY
(c) 60Co+Nal(TI)
COUNTS
10000
The equation of the pulse height resolution is described as follows:
R(E)2 = RS(E)2 + RP(E)2
where R(E) : energy resolution
RS(E) : energy resolution of a scintillator
RP(E) : energy resolution of a PMT
(51 mm dia. × 51 mm t)
RP(E)2 is described as follows:
5000
R(E)2 =
0
500
1000
ENERGY
TPMOB0087EC
By analyzing these output pulses using a multichannel analyzer (MCA), pulse height distribution (PHD), or energy spectra, as
shown in Figure 32, are obtained. From the PHD, the number
of incident particles at various energy levels can be measured.
13.2 Energy Resolution
For the energy spectrum measurement, it is very important to
have a distinct peak at each energy level. This characteristic is
evaluated as the pulse height resolution or the energy resolution
and is most significant in the radiation particle identification.
Figure 33 shows the definition of the energy resolution using
NaI(Tl) scintillator and 137Cs γ-ray source. It is customarily stated as a percentage.
14
δ
2.352
×
δ–1
Nηα
where N : mean number of incident photon
η : quantum efficiency
α : collection efficiency
δ : mean secondary emission yield of each dynode
To obtain a good energy resolution, it is important to use a
good scintillator having a high efficiency and a good intrinsic
energy resolution. It is also important to reduce a light loss between a PMT and a scintillator. For this purpose, it is useful to
couple them with silicon oil having a refractive index close to
that of the faceplate window of the PMT or scintillator material
or its protective window.
13.3 Emission Spectrum of Scintillator
13.4 Features of Scintillators
The quantum efficiency of the PMT is one of the main factors
to determine its energy resolution. It is necessary to choose a
PMT whose spectral response matches the scintillator emission. Figure 34 shows PMT typical spectral response vs. emission spectra of scintillators. For NaI(Tl), which is the most popular scintillator, bialkali photocathode PMTs are widely used.
Figure 35 shows typical temperature responses of various scintillators. These characteristics should be considered in the actual operation.
Table 1 shows a summary of scintillator characteristics.
These data are reported by scintillator manufactures.
Figure 35: Typical Temperature Response of Various
Scintillators
Figure 34: Typical Spectral Response and Emission
Spectra of Scintillators
TPMOB0033EA
TPMHB0342ED
100
D
C
H
A
10
E
B
J
LSO
Nal (Tl)
CsI (Tl)
BGO
LaBr3
1
100
80
60
BaF2
40
20
0.1
0
100
200
300
400
500
600
10
700
NaI (Tl)
100
80
60
BGO
CsI (Tl)
Pure CsI
40
20
-100
RELATIVE INTENSITY (%)
QUANTUM EFFICIENCY (%)
RELATIVE LIGHT OUTPUT (%)
G
F
I
-60
-20
0
+20
+60
+100
+140
SCINTILLATOR TEMPERATURE (°C)
WAVELENGTH (nm)
A: Bialkali Photocathode (Borosilicate Glass)
B: Bialkali Photocathode (UV Glass)
C: Bialkali Photocathode (Synthetic Silica)
D: Bialkali Photocathode
E: High Temp. Bialkali Photocathode
F: Super Bialkali
G: Ultra Bialkali
H: Extended Green Bialkali
I: Low Temp. (down to -110 °C) Bialkali Photocathode
J: Low Temp. (down to -186 °C) Bialkali Photocathode
Table 1: Summary of Scintillator Characteristics
Nal(Tl)
BGO
Csl(Tl)
Pure Csl
BaF2
GSO: Ce
Plastic
LaBr3: Ce
LSO: Ce
YAP: Ce
Density (g/cm3)
3.67
7.13
4.51
4.51
4.88
6.71
1.03
5.29
7.35
5.55
Lrad (cm)
2.59
1.12
1.85
1.85
2.10
1.38
40
2.1
0.88
2.70
Refractive Index
1.85
2.15
1.80
1.80
1.58
1.85
1.58
1.9
1.82
1.97
Hygroscopic
Yes
No
Slightly
Slightly
Slightly
No
No
Yes
No
No
Luminescence (nm)
410
480
530
310
220 / 325
430
400
380
420
380
Decay time (ns)
230
300
1000
10
0.9 / 630
30
2.0
16
40
30
Relative Light Output
100
15
45 to 50
<10
20
20
25
165
70
40
15
In general including, the development of more compact and
portable equipment has continuously progressed. This has led
to a strong demand for miniaturization of highly sensitive photodetectors like PMTs. However, it is difficult to miniaturize conventional PMTs with glass envelopes and sophisticated electrode structures.
Accordingly, PMTs have been mainly used in high-precision
photometric systems, while semiconductor sensors have been
used in general purpose, compact and portable equipments/applications. To meet the increasing needs for small
photodetectors with high sensitivity, Hamamatsu has developed subminiature PMTs (R7400 series) using a metal package in place of the traditional glass envelope. These tubes
have a size as small as semiconductor sensors, without sacrificing high sensitivity, and have the high speed response offered by conventional PMTs. The remarkable features of
R7400 series are: smallest size, fast time response, ability of
low light level detection and good immunity to magnetic fields.
R7400 series are a subminiature PMT that incorporates an
eight stages electron multiplier constructed with stacked thin
electrodes (metal channel dynode) into a TO-8 type metal can
package of 15 mm in diameter and 10 mm in height. The development of this metal package and its unique thin electrodes
have made the fabrication of this subminiature PMT possible.
The electrode structure of the electron multiplier was designed
by means of advanced computer simulation and electron trajectory analysis.
Furthermore, our long experience with micromachining technology has achieved a closed proximity assembly of these thin
electrodes. Figure 36 shows a cross section of the metal channel dynode with simulated electron trajectories.
Figure 36: Cross Section of Metal Channel Dynode with
Electron Trajectories
e
e
TPMHC0101EA
16
The R5900 / R7600 / R8900 series is another version of metal
package PMT. It incorporates 10 to 12 stages of metal channel
dynodes into a metal package of 26 mm × 26 mm square and
20 mm in height. The prime features are similar to those of
R7400 series, but its effective area is 18 mm × 18 mm instead
of 8 mm diameter of R7400. The dimensional outline of
R7600U is shown in Figure 37. In this figure, "U" means a tube
having an insulation plastic cover. It is necessary to prevent
electric shock with some insulation material, because a metal
package has a cathode potential voltage.
Figure 37: Insulation Plastic Cover of R7600U
30.0 ± 0.5
25.7 ± 0.5
18 MIN.
22.0 ± 0.5
0.6 ± 0.4
4.4 ± 0.7
12.0 ± 0.5
14. METAL PACKAGE PHOTOMULTIPLIER TUBE
2.54 PITCH
4 MAX.
PHOTOCATHODE
EFFECTIVE AREA
TOP VIEW
29- 0.45
INSULATION
COVER
SIDE VIEW
BOTTOM VIEW
TPMHA0278EI
As the metal channel dynode is a sort of an array of small linear focused dynodes, secondary electrons hardly go to the adjacent dynode channel in a process of multiplication. It is possible to make multi-anode PMTs utilizing this feature. R7600 series is offering 6 various types of anode shapes as well as single channel type. These anode shapes are categorized into 3
groups. The first group is multianode in matrix. 4 (2 × 2), 16
(4 × 4) and 64 (8 × 8) matrix channels types are available. (see
Figure 38-A) Those are suitable for scintillating fiber readout as
well as RICH (Ring Image CHerenkov counter). The second
group is linear anode. 16 (1 × 16) and 32 (1 × 32) linear channels types are available. (see Figure 38-B) Those are suitable
for coupling with slit shape scintillators and ribbon-shaped scintillating fiber bundle. The third one is crossed-plate anode. 6X +
6Y type is available. (see Figure 38-C) It is possible to get position information by using a center-of-gravity method, this PMT
is suitable for compact PET and radiation imaging.
R8900 series are wider effective area and longer length compare with those of R7600 series. Those are also offering matrix
channel type as well as single channel type (see Figure 38-D).
Flat panel PMT assemblies use a 52 mm square photomultiplier tube having an effective area ratio of 89 % and a 64-channel
or 256-channel multianode. These flat panel PMTs offer a wide
photosensitive area and come in thin, compact shape. These
PMTs can be efficiently arrayed in rows or matrices with almost
no unused space between them. (See figure 38-E)
Figure 38: Various Anode Shape
(A) Matrix Channel Type
R7600U-00-M4
H8711
(R7600-00-M16)
H7546B
(R7600-00-M64)
(B) Liner Channel Type
R5900U-00-L16
H7260K
(R7259K)
* R5900 series has flange at the bottom of the metal package, whereas
R7600 series doesn't have it.
(C) Cross-plate Anode Type
R8900U-00-C12
(D) R8900 Series
R8900U
R8900U-00-M4
R8900-00-M16
* R8900 series have wider effective area and longer length compared
with those of R7600 series.
(E) Flat Panel Type
H8500C
(R10551-00-M64)
H9500
(R8400-00-M256)
TPMHC0204EB
17
List Guide for Photomultiplier Tubes
Tube
Diameter
q
w
Spectral
Response
Outline
Range (nm)
No.
/
Curve Code
Type
No.
e
Socket
&
Socket
Assembly
r
Cathode Sensitivity
t
y
u
Dynode
Blue
Structure
Q.E.
/ No. of Luminous Sens. at Peak
Typ. Index
Stages
Typ.
(CS 5-58)
(µA/lm) Typ.
(%)
q Spectral Response
The relationship between photocathode sensitivity and wavelength of input light.
Curve code corresponds to that of spectral response curve on
the inside back cover.
(Refer to section 2 on page 2 for further details.)
Anode Sensitivity
o
!0
Gain
Typ.
Luminous
Typ.
(A/lm)
Dark
Current
Typ.
(nA)
!1
Max.
(nA)
<No. of Stages>
The number of dynodes used.
(Refer to section 3 on page 4 for further details.)
t Cathode Sensitivity (Luminous)
The photoelectric current from the photocathode per incident
light flux from a tungsten filament lamp operated at 2856 K.
(Refer to section 2.5 on page 3 for further details.)
w Outline No.
This number corresponds to that of PMT dimensional outline
drawing shown on later pages.
Basing diagram symbols are explained as follows:
BASING DIAGRAM SYMBOLS
Short Index
Pin
Pin
Flying
Lead
DY
G(F)
ACC
K
P
SH
IC
y Cathode Blue Sensitivity Index
The photoelectric current from the photocathode per incident
light flux from a tungsten filament lamp operated at 2856 K
passing through a blue filter which is Corning CS 5-58 polished
to 1/2 stock thickness.
(Refer to section 2.5 on page 3 for further details.)
All base diagrams show terminals viewed from the
base end of the tube.
Key
i
Anode to
Cathode
Supply
Voltage
(V)
: Dynode
: Grid (Focusing Electrode)
: Accelerating Electrode
: Photocathode
: Anode
: Shield
: Internal Connection (Do not use)
u QE (Quantum Efficiency)
TPMOC0068EB
e Socket & Socket Assembly
★ mark : A socket will be supplied with a PMT.
no mark : A socket will be supplied as an option.
The number in square corresponds to the outline number of
the PMT socket assembly on page 58 and 59.
The ratio of the number of photoelectrons emitted from the photocathode to the number of incident photons.
This catalog shows quantum efficiency at the peak wavelength.
(Refer to section 2.2 on page 2 for further details.)
i Anode to Cathode Voltage
The voltage indicates a standard applied voltage used to measure characteristics. The number in circles corresponds to that of
the voltage distribution ratio on page 46 and 47.
r Dynode
<Dynode Structure>
Each mark means dynode structure as follows:
LINE : linear focused
BOX : box and grid
B + L : box and linear focused
C + L : circular and linear focused
CC : circular cage
VB : venetian blind
FM : fine mesh
CM : coarse mesh
MC : metal channel
18
o Gain (Current Amplification)
The ratio of the anode output current to the photoelectric current from the photocathode.
(Refer to section 4.2 on page 4 for further details.)
!0 Anode Sensitivity (Luminous)
The output current from the anode per incident light flux from a
tungsten filament lamp operated at 2856 K.
(Refer to section 4.1 on page 3 for further details.)
(at 25 °C)
Maximum Rating !2
!4
Time Response !3
Typical
Anode
Average Rise Transit T.T.S.
Pulse
to
Anode Time Time Typ.
Height
Cathode
Current Typ.
Typ. (FWHM) Resolution
Voltage
(V)
(mA)
(ns)
(ns)
(ns)
(%)
Stability !5
Long
Term
(%)
Pulse Linearity !6
Short ±2 % ±5 %
Term Deviation Deviation
(%)
(mA)
Type
No.
Note
(mA)
!1 Anode Dark Current
!4 Pulse Height Resolution (P.H.R.)
The output current from the anode measured after 30 minutes
storage in complete darkness.
(Refer to section 5 on page 4 for further details.)
The P.H.R. is measured with the combination of an NaI(Tl) scintillator and a 137Cs source as a standard measurement. If other
scintillators or γ-ray sources are used, note is attached.
(Refer to section 13.2 on page 14 for further details.)
!2 Maximum Rating
<Anode to Cathode Voltage>
The maximum anode to cathode voltages are limited by the internal structure of the PMT.
Excessive voltage causes electrical breakdown. The voltage
lower than the maximum rating should be applied to the PMT.
<Average Anode Current>
This indicates the maximum averaged current over any interval
of 30 seconds. For practical use, operating at lower average
anode current is recommended.
(Refer to section 9.3 on page 6 for further details)
★Operating ambient temperature range for the photomultiplier
itself is -30 °C to +50 °C except for some types of tubes.
However, when photomultiplier tubes are operated below
-30 °C at their base section, please consult us in advance.
!3 Time Response
<Rise Time>
The time for the anode output pulse to rise from 10 % to 90 %
of the peak amplitude.
<Electron Transit Time>
The time interval between the arrival of a delta function light
pulse at the photocathode and the instant when the anode output pulse reaches its peak amplitude.
!5 Stability
<Long Term Stability (Mean Gain Deviation)>
This is defined as follows under the operation for 16 hours at a
constant count rate of 1000 s-1:
n
Σ P-Pi
i =1
Dg =
n
•
100
P
(%)
where P is the mean pulse height averaged over n readings, Pi
is the pulse height at the i-th reading, and n is the total number
of readings.
<Short Term Stability>
This is the gain shift on count rate charge. The tube is first operated at about 10000 s-1. The photo-peak count rate is then decreased to about 1000 s-1 by increasing the distance between
the 137Cs source and the tube coupled to the NaI(Tl) scintillator.
(Refer to section 9 on page 6 for further details.)
!6 Pulse Linearity
Typical values of pulse linearity are specified at two points
(±2 % and ±5 % deviation points from linear proportionality).
(Refer to section 7 on page 5 and 6 for further details.)
<T.T.S. (Transit Time Spread)>
This is the fluctuation in transit time among individual pulses,
and is defined as the FWHM of the frequency distribution of
transit time.
<C.R.T. (Coincident Resolving Time)>
This is defined as the FWHM of a coincident timing spectrum of
a pair PMT's. The scintillator used are BGO, BaF2 or CsF crystals.
(Refer to section 6 on page 5 for further details.)
19
Photomultiplier Tubes
Tube
Diameter
Type
No.
q
w
Spectral
Response
Outline
Range (nm)
No.
/
Curve Code
e
Socket
&
Socket
Assembly
r
Cathode Sensitivity
t
y
u
Dynode
Blue
Structure
Q.E.
/ No. of Luminous Sens. at Peak
Typ. Index
Stages
Typ.
(CS 5-58)
(µA/lm) Typ.
(%)
i
Anode to
Cathode
Supply
Voltage
(V)
Anode Sensitivity
o
!0
Gain
Typ.
Luminous
Typ.
!1
Dark
Current
(A/lm)
Typ.
(nA)
Max.
(nA)
10 mm (3/8 inch) to 38 mm (1-1/2 inch) Dia. Types
300 to 650/A-D
q
E678-11N* z
160 to 650/C-D
q
E678-11N* z
LINE / 8
100
300 to 650/A-D
e
E678-13F* x
LINE / 10
110
13 mm
R4124
300 to 650/A-D
(1/2")
R4177-06 300 to 650/A-E
w
E678-13F* c
LINE / 10
100
e
E678-13E*
LINE / 10
30
10 mm R1635
(3/8") R2496
R647-01
LINE / 8
100
25
1250 r
1.0 × 106
100
1
50
10.0
25
1250 y
6
1.0 × 10
100
2
50
10.0
25
1000 !7
1.4 × 106
150
1
2
10.0
25
1000 #0
1.0 × 10
100
1
15
4.5
12
1500 !7
5.0 × 105
15
0.5
10
6
10.0
6
R1166
300 to 650/A-D
r
E678-12L* v
LINE / 10
110
10.5
26
1000 @1
1.0 × 10
110
1
5
R1450
300 to 650/A-D
t
E678-12L* v
LINE / 10
115
11.0
27
1500 @7
1.7 × 106
200
3
50
300 to 650/A-D
19 mm R3478
(3/4") R3991A-04 300 to 650/A-E
y
E678-12L* b
LINE / 8
115
11.0
27
1700 !1
1.7 × 106
200
10
300
u
E678-12R*
LINE / 10
30
4.5
12
1500 @9
3.3 × 105
10
0.1
10
300 to 650/A-D
t
E678-12L* n
LINE / 10
115
11.0
27
1500 @2
8.7 × 10
100
10
50
R5611A-01 300 to 650/A-D
u
E678-12A*
LINE / 10
90
10.5
26
1000 @9
5.5 × 105
50
3
20
R1288A-06 300 to 650/A-E
i
E678-14-03*
LINE / 10
30
4.5
12
1500 @9
3.3 × 10
10
0.1
10
R1924A
300 to 650/A-D
i
E678-14C* ⁄1
LINE / 10
90
10.5
26
1000 @9
2.0 × 106
180
3
20
300 to 650/A-D
o
E678-12A*
22
2250 !9
5.7 × 10
400
100
800
25 mm R5505-70 300 to 650/A-D
(1")
R7899-01 300 to 650/A-D
!0
E678-17A* ,
23
2000 ^5
5.0 × 10
40
5
30
2.0 × 106
1.7 × 106
190
160
2
2
15
20
R4125
R4998
LINE / 10
FM / 15
70
80
9.0
9.5
5
5
6
5
!1
E678-12A*
LINE / 10
95
11.0
27
1250 #0
1500 #1
300 to 650/A-D
!2
E678-12A*
LINE / 10
95
11.0
27
1000 #0
2.6 × 106
250
2
15
300 to 650/A-D
!3
E678-12A*
LINE / 8
95
11.0
27
1300 !0
6
1.1 × 10
100
5
50
R3998-02 300 to 650/A-D
!4
E678-14C*
B+L / 9
90
10.5
26
1000 !5
1.3 × 106
120
2
10
5.0 × 106
2.0 × 106
475
190
10
4
200
80
R8619
R9800
R6427
28 mm
(1-1/8") R7111
300 to 650/A-D
!5
E678-14C* ⁄2⁄3 LINE / 10
95
11.0
27
1500 #3
1500 #4
300 to 650/A-D
!6
E678-14C* ⁄1
90
10.5
26
1000 @9
2.0 × 106
180
3
20
u
i
@4
@6
5.0 × 105
2.0 × 105
1.1 × 106
7.9 × 105
45
19
100
75
5
2
3
2
100
40
20
15
2
20
LINE / 10
1500
1500
1250
1500
R7525
300 to 650/A-D
!7
E678-14C*
LINE / 8
95
11.0
27
R580
300 to 650/A-D
!8
E678-12A* ⁄4
LINE / 10
95
11.0
27
R11102 300 to 650/A-D
38 mm
(1-1/2") R3886A 300 to 650/A-D
R7761-70 300 to 650/A-D
!9
E678-12A* ⁄4
C+L / 10
120
11.5
28
1000 @4
1.0 × 106
120
@0
E678-12A* ⁄4
6
R9420
300 to 650/A-D
@1
@2
—
E678-12A*
CC / 10
90
10.5
26
1000 @4
2.0 × 10
180
3
20
FM / 19
80
9.5
23
2000 ^6
1.0 × 107
800
15
100
LINE / 8
95
11.0
27
1300 !0
5.0 × 105
47
10
100
Note: The data shown in
is measured with tapered voltage distribution ratio.
Please refer to page 18 and 19 for each item in the above list.
20
(at 25 °C)
Maximum Rating !2
!4
Time Response !3
Typical
Anode
Average Rise Transit T.T.S.
Pulse
to
Anode Time Time Typ.
Height
Cathode
Current Typ.
Typ. (FWHM) Resolution
Voltage
Stability !5
Long
Term
Pulse Linearity !6
Short ±2 % ±5 %
Term Deviation Deviation
Note
Assembly
Type
Type
No.
(V)
(mA)
(ns)
(ns)
(ns)
(%)
(%)
(%)
(mA)
(mA)
1500
0.03
0.8
9
0.5
23 / BGO *1
1.0
2.0
3
7
H3164-10
R1635
H3695-10
R2496
UV type (R3878)
1500
0.03
0.7
9
0.5
23 / BGO *1
1.0
2.0
3
7
1250
0.1
2.1
22
2.0
7.8
1.0
2.0
3
7
SILICA (R760) and UV (R960) types H3165-10
R647-01
1250
0.03
1.1
12
0.5
8.1
1.0
2.0
2
5
UV type (R4141)
R4124
1800
0.02
2.0
20
—
12.0
2.0
2.0
8
13
Flying Lead type (R4177-04)
R4177-06
1250
0.1
2.5
27
2.8
7.8
1.0
2.0
4
7
SILICA (R762) and UV (R750) types H6520
R1166
1800
0.1
1.8
19
0.76
7.8
1.0
2.0
4
8
H6524
R1450
1800
0.1
1.3
14
0.36
7.8
1.0
2.0
4
8
SILICA (R2076) and UV (R3479) types H6612
1800
0.02
1.0
10
—
11.0
2.0
2.0
20
40
1800
0.1
2.5
16
0.85
7.8
1.0
2.0
100
170
1250
0.1
1.3
12
0.8
8.0
1.0
2.0
10
20
Glass Base type (R5611A)
1800
0.02
1.3
13
—
9.0
1.0
2.0
20
40
Flying Lead type (R1288A-04)
R1288A-06
1250
0.1
1.5
17
0.9
7.8
1.0
2.0
20
40
Flying Lead type (R1924A-01)
R1924A
2500
0.1
0.7
10
0.16
8.0
1.0
2.0
40
70
SILICA type (R5320)
H6533
R4998
2300
0.01
1.5
5.6
0.35
9.5
2.0
2.0
180
250
For +HV operation
H6152-70
R5505-70
1800
1800
0.1
0.1
1.6
1.6
17
16
0.6
0.7
7.8
7.8
1.0
1.0
2.0
2.0
30
100
50
150
Glass Base type (R7899)
H8643
R7899-01
1500
0.1
2.5
28
1.2
10 / LSO
1.0
2.0
5
8
1500
0.1
1.0
11
0.27
7.8
1.0
2.0
30
50
1500
0.1
4.4
32
3.5
7.5
1.0
1.0
8
10
2000
2000
0.2
0.2
1.7
1.8
16
17
0.5
0.5
7.8
7.8
1.0
1.0
2.0
2.0
10
100
30
150
1250
0.1
1.6
18
0.9
7.8
1.0
2.0
30
50
1750
1750
1750
1750
1250
0.2
0.2
0.1
0.1
0.1
1.3
1.3
2.7
2.7
3.2
14
15
37
40
34
—
—
4.5
4.5
4.8
7.8
7.8
7.7
7.7
2.0
2.0
1.0
1.0
10
100
40
150
30
150
60
200
7.6
1.0
1.0
1.0
1.0
0.5
0.5
10
30
1250
0.1
2.6
30
2.0
7.5
1.0
2.0
10
20
2300
0.01
2.1
7.5
0.35
9.5
2.0
2.0
350
500
1500
0.1
1.6
17
0.55
7.8
1.0
2.0
30
50
R3478
R3991A-04
R4125
H8135
R5611A-01
R8619
H10580
R9800
R3998-02
UV type (R7056)
H7415
R6427
R7111
R7525
H3178-51
R580
R11102
R3886A
For +HV operation
R7761-70
R9420
Note 1: This data is measured with 22Na source and BGO scintillator.
21
Tube
Diameter
Type
No.
q
w
Spectral
Response
Outline
Range (nm)
No.
/
Curve Code
e
Socket
&
Socket
Assembly
r
Cathode Sensitivity
t
y
u
Dynode
Blue
Structure
Q.E.
/ No. of Luminous Sens. at Peak
Typ. Index
Stages
Typ.
(CS 5-58)
(µA/lm) Typ.
(%)
i
Anode to
Cathode
Supply
Voltage
(V)
Anode Sensitivity
o
!0
Gain
Typ.
Luminous
Typ.
Dark
Current
!1
(A/lm)
Typ.
(nA)
Max.
(nA)
6
10
40
100
51 mm (2 inch) to 508 mm (20 inch) Dia. Types
R329-02
300 to 650/A-D
@3
E678-21C* ¤0
LINE / 12
90
10.5
26
1500 %2
2000 %6
1.1 × 106
3.0 × 106
100
270
R331-05
300 to 650/A-D
@4
E678-21C* ¤0
LINE / 12
90
10.5
26
1500 %2
1.3 × 106
120
R1306
300 to 650/A-D
@5
E678-14W ⁄7⁄8 BOX / 8
110
12.0
30
1000 w
2.7 × 105
30
2
20
$4
$5
@4
@5
2.0 × 107
1.0 × 107
1.7 × 105
1.3 × 105
1800
900
10
8
50
25
5
5
400
200
50
50
2500
2500
1250
1250
1000 s-1*2 2000 s-1*2
R1828-01 300 to 650/A-D
@6
E678-20B* ⁄6
LINE / 12
90
10.5
26
R1840
300 to 650/A-D
@7
E678-14W
CM / 10
60
8.0
20
R2083
300 to 650/A-D
@8
E678-19J*
LINE / 8
80
10.0
25
3000 !2
2.5 × 106
200
100
800
1.0 × 106
6.0 × 105
90
54
5
3
20
15
R2154-02 300 to 650/A-D
@9
E678-14W ⁄5
LINE / 10
90
10.5
26
1250 @4
1500 @6
R4607A-06 300 to 650/A-E
51 mm R5924-70 300 to 650/A-D
(2")
300 to 650/A-D
R6041
#0
E678-15C*
CC / 10
30
4.5
12
1500 @4
3.3 × 105
10
3
50
#1
—
FM / 19
70
9.0
22
2000 ^6
1.0 × 10
700
30
200
#2
—
MC / 12
60
8.5
20
800
$8
1.0 × 106
60
5
50
7
R6041-406
160 to 650/I
#3
—
MC / 12
100
12.5
30
800
$8
1.0 × 106
100
5
50
R6041-506
160 to 650/J
#3
—
MC / 12
100
11.5
25
800
$8
1.0 × 106
100
5
50
R6231
300 to 650/A-D
#4
E678-14W ⁄9
B+L / 8
110
12.0
30
1000 t
5
2.7 × 10
30
2
20
R7723
300 to 650/A-D
#5
E678-21C*
LINE / 8
90
10.5
26
1750 o
1.0 × 106
90
3
20
300 to 650/A-D
#5
26
1750 #5
3.3 × 10
300
6
40
R7725
300 to 650/A-D
#5
E678-21C*
LINE / 12
90
10.5
26
R9779
300 to 650/A-D
#6
E678-20B*
LINE / 8
95
11.0
27
R10533
300 to 650/A-D
#7
E678-14W
LINE / 8
95
11.0
300 to 650/A-D
#8
E678-14W ⁄9
B+L / 8
110
12.0
300 to 650/A-D
#9
E678-14W ⁄7⁄8 BOX / 8
R7724
60 mm R6232
R1307
E678-21C*
LINE / 10
90
110
10.5
12.0
6
1750 %3
6
6.7 × 10
600
9
60
1500 e
5.0 × 105
47.5
15
100
—
1750 @0
4.0 × 106
400
50
300
30
1000 t
2.7 × 105
30
2
20
30
1000 w
2500
2500
1500
2000
2.7 × 10
30
2
20
$3
$4
%1
%4
5.0 × 106
5.6 × 105
5.0 × 106
1.0 × 107
400
45
450
900
50
10
10
30
500
50
60
120
5
R4143
300 to 650/A-D
$0
E678-20B*
LINE / 12
80
9.5
23
R6091
76 mm
(3") R6233
300 to 650/A-D
$1
E678-21C* ¤0
LINE / 12
90
10.5
26
300 to 650/A-D
$2
E678-14W ⁄9
B+L / 8
110
12.0
30
1000 t
2.7 × 105
30
2
20
R11065
200 to 650/J
$3
E678-20B*
B+L / 12
60
10
—
1500 %7
8.3 × 106
500
6
40
R11410
160 to 650/I
$3
E678-20B*
B+L / 12
90
10
—
1500 %4
5.0 × 106
450
10
100
R10233
300 to 650/A-D
$4
E678-14W ⁄9
B+L / 8
110
12.0
30
1000 y
2.7 × 105
30
2
20
R877
300 to 650/A-D
$5
E678-14W ¤1¤2 BOX / 10
90
10.5
26
1250 !8
4.4 × 105
40
10
50
1.4 × 107
4.0 × 107
1000
2800
50
300
300
1800
90 mm
(3.5")
R1250
127 mm
(5") R1584
300 to 650/A-D
$6
E678-20B* ¤3
LINE / 14
70
9.0
22
2000 ^0
2500 ^1
185 to 650/B-D
$7
E678-20B* ¤3
LINE / 14
70
9.0
22
2000 ^0
1.4 × 107
1000
50
300
3.0 × 106
2.0 × 106
240
160
30
20
300
200
300 to 650/A-D
$8
E678-20B*
B+L / 10
80
10.0
25
1500 #6
1500 #7
300 to 650/A-D
204 mm R5912
(8") R5912-02 300 to 650/A-D
$9
E678-20B* ¤4
B+L / 10
80
10.0
25
1500 ^2
1.0 × 107
800
100
1000
$9
E678-20B*
B+L / 14
80
10.0
25
1500 ^4
1.0 × 10
80 000
5000
10 000
300 to 650/A-D
254 mm R7081
(10") R7081-20 300 to 650/A-D
%0
E678-20B* ¤4
B+L / 10
80
10.0
25
1500 ^2
1.0 × 107
800
100
1000
%0
E678-20B*
B+L / 14
80
10.0
25
1500 ^4
1.0 × 10
80 000
5000
10 000
332 mm
(13")
300 to 650/A-D
%1
E678-20B*
B+L / 10
60
8.0
20
2000 ^3
5.0 × 107
3000
200
1000
508 mm R3600-02 300 to 650/A-D
(20") R7250
300 to 650/A-D
%2
E678-20B*
VB / 11
60
8.0
20
2000 $0
7
1.0 × 10
600
200
1000
%3
E678-20B*
B+L / 10
60
8.0
20
2000 ^3
1.0 × 107
600
200
1000
R6594
R8055
Note: The data shown in
is measured with tapered voltage distribution ratio.
Please refer to page 18 and 19 for each item in the above list.
22
9
9
Note 2: Dark count
(at 25 °C)
Maximum Rating !2
!4
Time Response !3
Typical
Anode
Average Rise Transit T.T.S.
Pulse
to
Anode Time Time Typ.
Height
Cathode
Current Typ.
Typ. (FWHM) Resolution
Voltage
Stability !5
Long
Term
Pulse Linearity !6
Short ±2 % ±5 %
Term Deviation Deviation
Note
Assembly
Type
Type
No.
(V)
(mA)
(ns)
(ns)
(ns)
(%)
(%)
(%)
(mA)
(mA)
2700
2700
0.2
0.2
2.6
2.7
48
40
1.1
1.1
7.6
7.6
1.0
1.0
1.0
1.0
15
100
30
200
2500
0.2
2.6
48
1.1
—
—
—
15
30
1500
0.1
7.0
60
—
6.3 (8.5) *3
0.5
0.5
1
5
3000
3000
1500
1500
0.2
0.2
0.1
0.1
1.3
1.7
5.0
5.0
28
32
15
17
0.55
0.55
0.7
1.3
7.8
7.8
8.5
8.5
1.0
1.0
0.5
0.5
1.0
1.0
1.0
1.0
100
250
80
200
200
500
200
400
SILICA type (R2059)
UV type (R4004)
3500
0.2
0.7
16
0.37
7.8
1.0
2.0
100
150
SILICA type (R3377)
1750
1750
0.1
0.1
3.4
3.4
31
33
3.6
3.6
7.6
7.6
1.0
1.0
1.0
1.0
50
150
70
200
Glass Base type (R3149)
1800
0.02
2.6
28
—
10.0
2.0
2.0
30
60
2300
0.1
2.5
9.5
0.44
9.5
2.0
2.0
500
700
1000
0.1
2.3
16
0.75
—
—
—
40
—
1000
0.1
2.3
16
0.75
—
—
—
40
—
1000
0.1
2.3
16
0.75
—
—
—
40
—
1500
0.1
8.5
48
6.9
6.3 (8.5) *3
0.5
0.5
5
10
2000
0.2
1.7
23
1.1
7.6
1.0
1.0
80
100
R7723
2000
0.2
2.1
29
1.2
7.6
1.0
1.0
60
90
R7724
2000
0.2
2.5
35
1.3
7.6
1.0
1.0
40
80
1750
0.1
1.8
20
0.25
7.6
1.0
1.0
50
80
2000
0.1
2.0
24
0.28
—
—
—
50
80
1500
0.1
9.5
52
8.5
6.3 (8.5) *3
0.5
0.5
5
10
Semiflexible Lead type (R6232-01)
R6232
1500
0.1
8.0
64
—
6.3 (8.5) *3
0.5
0.5
1
5
K-FREE type (R1307-07)
R1307
3000
3000
2500
2500
0.2
0.2
0.2
0.2
1.8
1.8
2.6
2.7
32
36
48
40
0.6
0.6
2
1.5
7.8
7.8
7.8
7.8
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
100
150
40
80
180
250
60
110
1500
0.1
9.5
52
8.5
6.3 (8.5) *3
0.5
0.5
5
10
SILICA type (R2256-02)
UV type (R5113-02)
H6410 / H7195 R329-02
R331-05
K-FREE type (R1306-15)
R1306
H1949-50 /
H1949-51
R1828-01
R1840
H2431-50
R2083
R2154-02
R4607A-06
For +HV operation
H6614-70
R5924-70
R6041
For Low Temperature Operation Down to -110 °C
Low Radicoactivity Material
For Low Temperature Operation Down to -186 °C
Low Radicoactivity Material
R6041-406
R6041-506
Semiflexible Lead type (R6231-01)
R6231
R7725
H10570
R9779
R10533
UV type (R4885)
H6525
R4143
H6559
R6091
Semiflexible Lead type (R6233-01)
R6233
For Low Temperature Operation Down to -186 °C
Low Radicoactivity Material
For Low Temperature Operation Down to -110 °C
Low Radicoactivity Material
1750
0.1
—
41
—
—
—
—
13
—
1750
0.1
5.5
46
—
—
—
—
20
50
1500
0.1
10.0
52
9.4
6.3 (8.5)
0.5
0.5
5
10
Semiflexible Lead type (R10233-01)
R10233
1500
0.1
20.0
115
—
8.0
0.5
0.5
10
20
K-FREE type (R877-01)
R877
3000
3000
0.2
0.2
2.5
2.2
54
53
1.2
1.2
8.3
8.3
1.0
1.0
1.0
1.0
100
160
150
250
H6527
R1250
3000
0.2
2.5
54
1.2
—
—
—
100
150
H6528
R1584
2000
2000
0.1
0.1
3.5
3.5
45
45
1.5
1.5
—
—
—
—
—
—
30
100
50
150
R6594
2000
0.1
3.6
54
2.4
—
—
—
40
60
R5912
2000
0.1
4.4
72
3.0
—
—
—
30
60
R5912-02
2000
0.1
3.8
62
3.4
—
—
—
40
60
R7081
2000
0.1
5.0
80
3.9
—
—
—
30
60
R7081-20
2500
0.1
5.3
88
2.8
—
—
—
60
80
R8055
2500
0.1
10.0
95
5.5
—
—
—
20
40
2500
0.1
7.0
110
3.5
—
—
—
60
80
R11065
R11410
R3600-06
R3600-02
R7250
Note 3: This data in parenthese is measured with 57Co.
23
Tube
Diameter
Type
No.
q
w
Spectral
Response
Outline
Range (nm)
No.
/
Curve Code
e
Socket
&
Socket
Assembly
r
Cathode Sensitivity
t
y
u
Dynode
Blue
Structure
Q.E.
/ No. of Luminous Sens. at Peak
Typ. Index
Stages
Typ.
(CS 5-58)
(µA/lm) Typ.
(%)
i
Anode to
Cathode
Supply
Voltage
(V)
Anode Sensitivity
o
!0
Gain
Typ.
Luminous
Typ.
!1
Dark
Current
(A/lm)
Typ.
(nA)
Max.
(nA)
Metal Package Photomultiplier and Assemblies
R8520-406
160 to 650/I
%4
E678-32B
MC / 10
100
11.0
—
800
!6
1.0 × 106
100
2
20
R8520-506
160 to 650/J
%4
E678-32B
MC / 10
100
9.0
—
800
!6
1.0 × 106
100
2
20
300 to 650/A-D
%5
E678-32B ¤5
MC / 10
80
9.5
24
800
@3
2.0 × 106
160
2
20
R7600U
300 to 650/A-D
-00-M4
R5900U
300 to 650/A-D
30 mm
-00-L16
square
type R8900U-00-M4 300 to 650/A-D
%6
E678-32B ¤6
MC / 10
80
9.5
24
800
@3
1.8 × 106
140
0.5/ch
5/ch
%7
E678-32B ¤7
MC / 10
70
8.5
21
800
!7
4.0 × 10
280
0.2
2
%8
E678-32B
MC / 10
80
9.5
24
800
!6
1.0 × 106
80
1/ch
5/ch
R8900-00-M16 300 to 650/A-D
%9
MC / 12
80
9.5
24
800
$1
1.0 × 106
80
0.8/ch
4/ch
R7600U
R11265U 300 to 650/A-D
^0
—
‹0
E678-19K ‹1
6
MC / 12
80
9.5
24
900
900
$9
%1
9.4 × 10
3.8 × 105
75
30
2
2
20
20
5
H8711
300 to 650/A-D P55@7
—
MC / 12
80
9.5
24
800
$7
3.5 × 106
280
0.8/ch
4/ch
H7546B
300 to 650/A-D P55@8
—
MC / 12
80
9.5
24
800
%0
6.0 × 105
50
0.2/ch
2/ch
H8804
300 to 650/A-D P56@9
—
MC / 12
80
9.5
24
800
%0
6.0 × 105
50
0.2/ch
2/ch
AssemH7260
blies
300 to 650/A-D P56#0
—
MC / 10
70
8.5
21
800
!7
2.0 × 106
140
0.2
2
6
H8500C
300 to 650/A-D P56#1
—
MC / 12
60
9.5
24
1000 %8
1.5 × 10
90
0.1/ch
—
H9500
300 to 650/A-D P57#3
—
MC / 12
60
9.5
24
1000 %9
1.5 × 106
90
0.05/ch
—
H10966A 300 to 650/A-D P56#1
—
MC / 8
60
9.5
24
1000 !3
3.3 × 105
20
0.06/ch
—
FM / 15
80
9.5
23
2000 ^5
5.0 × 105
40
5
30
7
Fine Mesh Photomultipliers
25 mm
R5505-70 300 to 650/A-D
(1")
39 mm
R7761-70 300 to 650/A-D
(1.5")
51 mm
R5924-70 300 to 650/A-D
(2")
!0
E678-17A* ,
@1
—
FM / 19
80
9.5
23
2000 ^6
1.0 × 10
800
15
100
#1
—
FM / 19
70
9.0
22
2000 ^6
1.0 × 107
700
30
200
Square, Rectangular Shape Photomultipliers
10 mm
R2248
(3/8")
300 to 650/A-D
^1
E678-11N* z
LINE / 8
95
9.5
23
1250 r
1.1 × 106
100
1
50
60 mm R6236
300 to 650/A-D
^2
E678-14W ⁄9
B+L / 8
110
12.0
30
1000 t
2.7 × 105
30
2
20
76 mm
300 to 650/A-D
R6237
(3")
25 mm
R1548-07 300 to 650/A-D
(1")
^3
E678-14W ⁄9
B+L / 8
110
12.0
30
1000 t
2.7 × 105
30
2
20
^4
E678-17A* m
LINE / 10
80
9.5
23
1250 #3
6
2.5 × 10
200
20
250
R8997
300 to 650/A-D
^5
E678-20B*
L+VB / 10
80
9.5
23
1250 #2
1.2 × 106
100
10
200
R10550
300 to 650/A-D
^6
E678-20B*
LINE / 8
100
10.0
—
1300 !0
1.0 × 106
100
10
100
B+L / 8
110
12.0
30
1000 t
2.7 × 105
30
2
20
38 mm
(1-1/2")
Hexagonal Shape Photomultipliers
60 mm R6234
76 mm
R6235
(3")
300 to 650/A-D
^7
E678-14W ⁄9
300 to 650/A-D
^8
E678-14W ⁄9
B+L / 8
110
12.0
30
1000 t
2.7 × 10
30
2
20
5
2π Shape Photomultipliers
25 mm
R7373A-01 300 to 650/A-D
(1")
28 mm
R8143
300 to 650/A-D
(1-1/8")
^9
E678-12A*
LINE / 10
90
10.5
26
1000 @9
1.1 × 106
100
3
20
&0
E678-14C*
BOX / 11
90
10.5
26
1000 #9
2.2 × 106
200
2
10
Note: The data shown in
is measured with tapered voltage distribution ratio.
Please refer to page 18 and 19 for each item in the above list.
24
(at 25 °C)
Maximum Rating !2
!4
Time Response !3
Typical
Anode
Average Rise Transit T.T.S.
Pulse
to
Anode Time Time Typ.
Height
Cathode
Current Typ.
Typ. (FWHM) Resolution
Voltage
Stability !5
Long
Term
Pulse Linearity !6
Short ±2 % ±5 %
Term Deviation Deviation
Note
Type
No.
(V)
(mA)
(ns)
(ns)
(ns)
(%)
(%)
(%)
(mA)
(mA)
900
0.1
1.8
12.4
0.8
—
—
—
30
60
900
0.1
1.8
12.4
0.8
—
—
—
30
60
900
0.1
1.6
9.6
0.35
—
1.0
2.0
30
60
UV type (R7600U-03) is available
900
0.1
1.2
9.5
0.36
—
—
—
10
30
*4
900
0.1
0.60
7.4
0.18
—
—
—
0.8
1.2
*4
900
0.1
1.4
11.4
0.95
—
—
—
5
10
*4
R8900U-00-M4
1000
0.1
1.3
13
0.75
—
—
—
1.5
3.5
*4
R8900-00-M16
1000
1000
0.1
0.1
1.3
1.3
5.8
5.8
0.27
0.3
—
—
—
—
—
—
20
300
60
400
1000
0.017
0.83
12
0.33
—
—
—
0.5
1
*4, Assembly with divider network
H8711
1000
0.023
1.0
12
0.38
—
—
—
0.3
0.6
*4, Assembly with divider network
H7546B
1000
0.023
1.0
12
0.38
—
—
—
0.3
0.6
*4, Assembly with divider network
H8804
900
0.1
0.60
6.8
0.18
—
—
—
0.6
0.8
*4, Assembly with divider network
H7260
1100
0.1
0.8
6.0
0.4
—
—
—
1/ch
2/ch
*4, Assembly with divider network
H8500C
1100
0.1
0.8
6.0
0.4
—
—
—
0.2/ch
1/ch
*4, Assembly with divider network
H9500
1100
0.1
0.4
4.0
—
—
—
—
1.2/ch
3/ch
*4, Assembly with divider network
H10966A
2300
0.01
1.5
5.6
0.35
9.5
2.0
2.0
180
250
For +HV operation
R5505-70
2300
0.01
2.1
7.5
0.35
9.5
2.0
2.0
350
500
For +HV operation
R7761-70
2300
0.1
2.5
9.5
0.44
9.5
2.0
2.0
500
700
For +HV operation
R5924-70
1500
0.03
0.9
9.0
0.6
23 / BGO*1
1.0
2.0
3
7
1500
0.1
9.5
52
8.5
6.3 (8.5)*3
0.5
0.5
5
10
Semiflexible Lead type (R6236-01) is available
R6236
1500
0.1
9.5
52
8.5
6.3 (8.5)*3
0.5
0.5
5
10
Semiflexible Lead type (R6237-01) is available
R6237
1750
0.1
1.8
20
1.0
20 / BGO*1
1.0
2.0
10
15
*4, Dual (2) channel
R1548-07
1600
0.1
5.0
25
2.8
16 / BGO*1
2.0
2.0
4
10
*4, Quadrant (4) channel
R8997
1600
0.1
1.3
12
0.6
—
—
—
10
30
*4, Quadrant (4) channel
R10550
1500
0.1
9.5
52
8.5
6.3 (8.5)*3
0.5
0.5
5
10
Semiflexible Lead type (R6234-01) is available
R6234
1500
0.1
9.5
52
8.5
6.3 (8.5)*3
0.5
0.5
5
10
Semiflexible Lead type (R6235-01) is available
R6235
1250
0.1
2
19
1.1
7.8
1.0
2.0
15
30
R7373A-01
1250
0.1
25
72
—
8
1.0
2.0
0.2
0.5
R8143
For Low Temperature Operation Down to -110 °C
Low Radioactivity Material
For Low Temperature Operation Down to -186 °C
Low Radioactivity Material
R8520-406
R8520-506
R7600U
R7600U
-00-M4
R5900U
-00-L16
R11265U
R2248
Note 1: This data is measured with 22Na source and BGO scintillator.
Note 3: This data in parenthese is measured with 57Co.
Note 4: Dark current, time response and pulse linearity data is typical value for channel.
25
Tube
Diameter
Type
No.
q
w
Spectral
Response
Outline
Range (nm)
No.
/
Curve Code
e
Socket
&
Socket
Assembly
r
Cathode Sensitivity
t
y
u
i
Dynode
Blue
Structure
Q.E. Anode to
/ No. of Luminous Sens. at Peak Cathode
Supply
Stages Typ. Index Typ.
Voltage
(CS 5-58)
(µA/lm) Typ.
(%)
(V)
Anode Sensitivity
o
!0
Anode
Gain
Luminous
Sensitivity
Typ.
Typ.
(A/lm)
!1
Dark Current
(After 30 min)
Typ.
(nA)
Max.
(nA)
UBA (Ultra Biallali), SBA (Super Bialkali), Extended Green Bialkali Photomultipliers
R5900U-100-L16 300 to 650 / F
%7
E678-32B ¤7
MC / 10
105
13.5
35
800
!7
3.0 × 106
320
0.2/ch
2/ch
R5900U-200-L16 300 to 650 / G
%7
E678-32B ¤7
MC / 10
135
15.5
43
800
!7
3.0 × 106
400
0.2/ch
2/ch
R7600U-100
300 to 650 / F
%5
E678-32B ¤5
MC / 10
105
13.5
35
800
@3
1.0 × 106
105
2
20
300 to 650 / G
%5
E678-32B ¤5
MC / 10
135
15.5
43
800
@3
6
1.0 × 10
135
2
20
300 to 650 / F
%6
E678-32B ¤6
MC / 10
105
13.5
35
800
@3
1.3 × 106
140
0.5/ch
5/ch
300 to 650 / G
%6
E678-32B ¤6
MC / 10
135
15.5
43
800
@3
1.3 × 106
175
0.5/ch
5/ch
300 to 650 / F
%8
E678-32B
MC / 10
105
13.5
35
800
!6
1.0 × 106
105
1/ch
5/ch
300 to 650 / F
%9
R7600U-200
R7600U-100-M4
Metal
Package
R7600U-200-M4
PMT
30 mm
R8900U-100-M4
square
type
R8900-100-M16
‹0
MC / 12
105
13.5
35
800
$1
1.0 × 10
105
0.8/ch
8/ch
R8900U-100-C12 300 to 650 / F P44q E678-32B ¤8
MC / 11
105
13.5
35
800
#8
5.4 × 105
70
2
20
900
900
900
900
$9
%1
$9
%1
8.4 × 105
3.7 × 105
1.3 × 106
5.0 × 105
80
35
160
60
2
2
2
2
20
20
20
20
—
6
R11265U-100
300 to 650 / F
^0
E678-19K ‹1
MC / 12
95
13.5
35
R11265U-200
300 to 650 / G
^0
E678-19K ‹1
MC / 12
120
15.5
43
H8711-100
300 to 650 / F P55@7
—
MC / 12
105
13.5
35
-800 $7
2.0 × 106
210
0.8/ch
4/ch
H8711-200
300 to 650 / G P55@7
—
MC / 12
135
15.5
43
-800 $7
2.0 × 106
270
0.8/ch
4/ch
H7546B-100
300 to 650 / F P55@8
—
MC / 12
105
13.5
35
-800 %0
5.0 × 105
53
0.2/ch
2/ch
H7546B-200
Metal
Package H8804-100
PMT
assem- H8804-200
blies
H7260-100
300 to 650 / G P55@8
—
MC / 12
135
15.5
43
-800 %0
5.0 × 105
68
0.2/ch
2/ch
5
H7260-200
76 mm
(3")
90 mm
(3.5")
127 mm
(5")
204 mm
(8")
254 mm
(10")
Metal
Package
PMT
30 mm
square
type
MC / 12
105
13.5
35
-800 %0
5.0 × 10
53
0.2/ch
2/ch
300 to 650 / G P56@9
—
MC / 12
135
15.5
43
-800 %0
5.0 × 105
68
0.2/ch
2/ch
300 to 650 / F P56#0
—
MC / 10
105
13.5
35
-800 !7
2.0 × 106
210
0.2/ch
2/ch
300 to 650 / G P56#0
—
MC / 10
135
15.5
43
-800 !7
2.0 × 106
270
0.2/ch
2/ch
5
300 to 650 / F P56#1
—
MC / 8
95
13.5
35
-1000 !3
3.2 × 10
30
0.1/ch
—
H10966B-100
300 to 650 / F P57#2
—
MC / 8
95
13.5
35
-1000 !3
3.2 × 105
30
0.1/ch
—
300 to 650 / F
!3
E678-12A ⁄0
L/8
130
13.5
35
1300 !0
1.1 × 106
140
10
100
300 to 650 / F
!4
E678-14C
B+L / 9
130
13.5
35
1000 !5
1.0 × 106
130
5
25
300 to 650 / F
@2
E678-12A ⁄9
L/8
130
13.5
35
1300 !0
5
3.7 × 10
48
10
100
R6231-100
300 to 650 / F
#4
E678-14W ⁄9
B+L / 8
130
13.5
35
1000 t
2.3 × 105
30
10
30
R7724-100
300 to 650 / F
#5
E678-21C ⁄9
L / 10
130
13.5
35
1750 #5
2.0 × 106
430
10
50
R6233-100
300 to 650 / F
$2
E678-14W ⁄9
B+L / 8
130
13.5
35
1000 t
2.3 × 105
30
10
30
R10233-100
300 to 650 / F
$4
E678-14W ⁄9
B+L / 8
130
13.5
35
1000 y
5
2.3 × 10
30
10
30
R877-100
300 to 650 / F
$5
E678-14W
B / 10
105
13.5
35
1250 !8
4.4 × 105
46
20
100
R5912-100
300 to 650 / F
$9
E678-20B
B+L / 10
130
13.5
35
1500 ^2
1.0 × 107
1300
500
1000
R7081-100
300 to 650 / F
%0
E678-20B
B+L / 10
130
13.5
35
1500 ^2
1.0 × 107
1300
500
1000
@3
@8
2.0 × 106
5.0 × 105
320
80
2
1
20
10
R7600U-300
300 to 700 / H
%5
E678-32B ¤5
MC / 10
160
14
39
800
800
R7600U-300-M4
300 to 700 / H
%6
E678-32B ¤6
MC / 10
160
14
39
800
@3
1.3 × 106
210
0.5/ch
5/ch
Metal H8711-300
Package
PMT H7546B-300
assemblies H8804-300
26
—
H10966A-100
25 mm
R9800-100
(1")
28 mm
R3998-100-02
(1-1/8")
38 mm
R9420-100
(1-1/2")
51 mm
(2")
300 to 650 / F P56@9
300 to 700 / H P55@8
—
MC / 12
160
14
39
-800 $7
2.5 × 106
400
0.8/ch
4/ch
300 to 700 / H P55@9
—
MC / 12
160
14
39
-800 %0
5.0 × 105
80
0.2/ch
2/ch
39
-800 %0
5.0 × 10
80
0.2/ch
2/ch
300 to 650 / H P56#0
Note: The data shown in
—
MC / 12
160
is measured with tapered voltage distribution ratio.
14
5
Please refer to page 18 and 19 for each item in the above list.
(at 25 °C)
Maximum Rating !2
!4
Time Response !3
Typical
Anode
Average Rise Transit T.T.S.
Pulse
to
Anode Time Time Typ.
Height
Cathode
Current Typ.
Typ. (FWHM)
Resolution
Voltage
Stability !5
Long
Term
Pulse Linearity !6
Short ±2 % ±5 %
Term Deviation Deviation
Note
Type No.
(V)
(mA)
(ns)
(ns)
(ns)
(%)
(%)
(%)
(mA)
(mA)
900
0.1
0.6
7.4
0.18
—
—
—
0.8/ch 1.2/ch SBA type
R5900U-100-L16
900
0.1
0.6
7.4
0.18
—
—
—
0.8/ch 1.2/ch UBA type
R5900U-200-L16
900
0.1
1.6
9.6
0.35
—
—
—
30
60
SBA type
R7600U-100
900
0.1
1.6
9.6
0.35
—
—
—
30
60
UBA type
R7600U-200
900
0.1
1.2
9.5
0.36
—
—
—
10/ch
30/ch
SBA type
R7600U-100-M4
900
0.1
1.2
9.5
0.36
—
—
—
10/ch
30/ch
UBA type
R7600U-200-M4
900
0.1
1.4
11.4
0.95
—
—
—
5/ch
10/ch
SBA type
R8900U-100-M4
1000
0.1
1.3
13
0.75
—
—
—
—
3.5/ch SBA type
R8900-100-M16
1000
0.1
2.2
11.9
0.75
—
—
—
2
15
1000
1000
1000
1000
0.1
0.1
0.1
0.1
1.3
1.3
1.3
1.3
5.8
5.8
5.8
5.8
0.27
0.3
0.27
0.3
—
—
—
—
—
—
—
—
—
—
—
—
20
300
20
300
60
400
60
400
-1000 0.017
0.83
12
0.33
—
—
—
0.5/ch
-1000 0.017
0.83
12
0.33
—
—
—
0.5/ch
-1000 0.023
1.0
12
0.38
—
—
—
0.3/ch 0.6/ch SBA type
H7546B-100
-1000 0.023
1.0
12
0.38
—
—
—
0.3/ch 0.6/ch UBA type
H7546B-200
-1000 0.023
1.0
12
0.38
—
—
—
0.3/ch 0.6/ch SBA type
H8804-100
-1000 0.023
1.0
12
0.38
—
—
—
0.3/ch 0.6/ch UBA type
H8804-200
-900
0.1
0.6
6.8
0.18
—
—
—
0.6/ch 0.8/ch SBA type
H7260-100
-900
0.1
0.6
6.8
0.18
—
—
—
0.6/ch 0.8/ch UBA type
H7260-200
-1100
0.1
0.4
4
—
—
—
—
1.2/ch
3/ch
SBA type
H10966A-100
-1100
0.1
0.4
4
—
—
—
—
1.2/ch
3/ch
SBA type
H10966B-100
1500
0.1
1.0
11
0.27
—
—
—
30
—
SBA type
R9800-100
1500
0.1
3.4
23
3
7.0
1.0
1.0
8
10
SBA type
R3998-100-02
1500
0.1
1.6
17
0.55
7.0
1.0
2.0
30
50
SBA type
R9420-100
1500
0.1
8.5
48
6.9
6.1
0.5
0.5
5
10
SBA type
R6231-100
2000
0.2
2.0
350
1.1
—
1.0
1.0
60
80
SBA type
R7724-100
1500
0.1
9.5
52
8.5
6.1
0.5
0.5
5
10
SBA type
R6233-100
1500
0.1
10
52
9.4
6.1
0.5
0.5
5
10
SBA type *
R10233-100
1500
0.1
20
115
—
7.6
0.5
0.5
10
20
SBA type
R877-100
2000
0.1
3.6
54
2.4
—
—
—
40
60
SBA type
R5912-100
2000
0.1
3.8
62
3.4
—
—
—
40
60
SBA type
R7081-100
900
900
0.1
0.1
1.6
1.6
9.6
9.6
0.35
0.35
—
—
—
—
—
—
30
100
—
—
Extended Green Bialkali Photomultipliers
R7600U-300
900
0.1
1.2
9.5
0.36
—
—
—
10/ch
30/ch
Extended Green Bialkali Photomultipliers
R7600U-300-M4
-1000 0.017
0.83
12
0.33
—
—
—
0.5/ch
1/ch
Extended Green Bialkali Photomultipliers
H8711-300
-1000 0.023
1.0
12
0.38
—
—
—
0.3/ch 0.6/ch Extended Green Bialkali Photomultipliers
H7546B-300
-1000 0.023
1.0
12
0.38
—
—
—
0.3/ch 0.6/ch Extended Green Bialkali Photomultipliers
H8804-300
SBA type
R8900U-100-C12
SBA type
R11265U-100
UBA type
R11265U-200
1/ch
SBA type
H8711-100
1/ch
UBA type
H8711-200
27
Dimensional Outline and Basing Diagrams
For Photomultiplier Tubes
q R1635, R2496
w R4124
13.5 ± 0.5
A
8 MIN.
P
6
DY5
45.0 ± 1.5
PHOTOCATHODE
10 MAX.
1
IC
DY10
8
5
DY3
DY8
9
DY5 4
10
DY2
11
K
2
7
6
DY7
9 DY4
DY3 3
DY1
11 PIN BASE
DY6
8
4
P
DY9
DY8
7
50 ± 2
DY7
5
PHOTOCATHODE
10 MIN.
FACEPLATE
10 DY6
3
11
2
DY4
12
1
DY1
DY2
13
K
IC
SHORT PIN
SHORT PIN
13 PIN BASE
13 MAX.
FACEPLATE
A
R1635
9.7 ± 0.4
R2496
10.5 ± 0.5
R2496 has a plano-concave faceplate.
TPMHA0343EB
e R647-01, R4177-06
TPMHA0102EA
r R1166
18.6 ± 0.7
A
10 MIN.
15 MIN.
FACEPLATE
FACEPLATE
DY9
DY10
7
DY8
8
5
P
DY6
9
PHOTOCATHODE
DY10
6
5
DY8
7
DY6
8
10 DY4
DY9 4
9 DY4
DY5 3
11 DY2
12
IC
13
K
DY7 3
10 DY2
B
DY7 4
2
DY3
1
DY1
88 ± 2
PHOTOCATHODE
P
6
11
2
DY5
1
SHORT PIN
K
12
DY3
DY1
SHORT PIN
A
B
R647-01
13.5 ± 0.5
71 ± 2
R4177-06
14.5 ± 0.7
61 ± 2
12 PIN BASE
13 MAX.
13 MAX.
13 PIN BASE
TPMHA0120EA
t R1450, R4125
TPMHA0344EA
y R3478
18.6 ± 0.7
18.6 ± 0.7
15 MIN.
DY10
6
P
5
DY8
7
DY6
8
DY9 4
PHOTOCATHODE
DY5
1
DY3
12
K
DY1
DY6
8
10 DY2
DY7 3
DY5
11
2
1
12
K
DY1
13 MAX.
13 MAX.
SHORT PIN
12 PIN BASE
TPMHA0307EA
28
7
9 DY4
DY3
SHORT PIN
12 PIN BASE
6
5
IC 4
10 DY2
11
2
DY8
IC
P
PHOTOCATHODE
9 DY4
DY7 3
88 ± 2
15 MIN.
FACEPLATE
65 ± 2
FACEPLATE
TPMHA0431EB
(Unit: mm)
u R3991A-04, R5611A-01
i R1288A-06, R1924A
25.4 ± 0.5
18.6 ± 0.7
A TEMPORARY BASE REMOVED
15 MIN.
FACEPLATE
FACEPLATE
22 MIN.
P
6
10 DY8
DY7 4
13 MAX.
B
LEAD LENGTH 45 MIN.
A
12PIN BASE
JEDEC
No.B12-43
12
2
DY3
1
13
DY2
14
DY1
K
R5611A-01
30 ± 1.5
14 PIN
GLASS BASE
IC
9
10 DY10
DY5 4
11 DY8
DY3 3
12 DY6
13
DY4
14
DY2
DY1
DY10
P
6
2
1
SHORT PIN
DY8
7
8
DY7 4
9 DY6
DY5 3
10 DY4
11
2
DY3
A
28 ± 1.5
IC
8
DY7 5
DY4
B BOTTOM VIEW
5
R3991A-04
7
K
DY9
37.3 ± 0.5
PHOTOCATHODE
11 DY6
DY5 3
6
13 MAX.
A
P.C.D. 12.0 ± 0.5
SEMIFLEXIBLE
LEADS 14- 0.7
P
DY9
9
5
43.0 ± 1.5
DY9
PHOTOCATHODE
DY10
1
DY2
12
DY1
K
TPMHA0117EC
TPMHA0040EC
!0 R5505-70
o R4998
A Temporary Base Removed
Bottom View
20°
40°
20 MIN.
25.8 ± 0.7
FACEPLATE
17.5 MIN.
7
40.0 ± 1.5
PHOTOCATHODE
PHOTOCATHODE
71 ± 1
( 17.3)
IC
P
7
13 MAX.
HA TREATMENT
SMA
CONNECTOR
A
12 PIN BASE
JEDEC
No. B12-43
DY 3 3
2
1
DY 1
IC
K
11
DY10
12
13 DY8
17 PIN BASE
DY7 4
(Acc)
3
DY5
14 DY6
15
DY4
16
2
1 18 17
DY2
DY3
G
DY1 K
LEAD LENGTH 52 MIN.
P.C.D. 17.3
SEMIFLEXIBLE
LEADS 18- 0.7
DY9 5
13 DY 10
14 DY 8
15 DY 6
16
DY 4
17
DY 2
DY 7 5
DY 5 4
HA TREATMENT
IC
9 10
DY 15 P
DY 13
9 10 DY 14
DY 11 7 8
11
12 DY 12
DY 9 6
SHORT PIN
13 MAX.
26 ± 1
FACEPLATE
B Bottom View
P
DY10
6
DY9
DY8
7
DY6
8
5
DY7 4
(Acc)
B
DY5
9
DY4
10 DY2
3
37.3 ± 0.5
2
DY3
11
1
12
G
K
DY1
TPMHA0093EE
!1 R7899-01
TPMHA0236EB
!2 R8619
25.4 ± 0.5
25.4 ± 0.5
FACEPLATE
22 MIN.
FACE PLATE
22 MIN.
A Temporary Base Removed
A TEMPORARY BASE REMOVED
DY10
DY8
10
11 DY6
12
13 DY4
7
6
LEAD LENGTH 50 MIN.
3
DY3
A
18 17
DY1 K
12 PIN BASE
JEDEC
No. B12-43
B
4
DY10
DY8
7
8
9 DY6
DY5 3
10 DY4
DY9
5
DY7
DY3
2
1
DY1
12
DY7 4
DY5
P.C.D. 17.3 ± 0.2
SEMIFLEXIBLE
LEADS 18- 0.7
A
12 PIN BASE
JEDEC
No. B12-43
11
DY2
12
K
B
37.3 ± 0.5
DY10
13 DY8
14 DY6
15
DY4
16
DY2
3
DY3
B BOTTOM VIEW
P
6
6
13 MAX.
P.C.D. 17.3 ± 0.5
SEMIFLEXIBLE
LEADS 18- 0.7
P
DY9 5
14 DY2
DY5 4
13 MAX.
68.0 ± 1.5
DY9
DY7 5
PHOTOCATHODE
79 ± 2
P
2
1 18
DY1 K
B Bottom View
LEAD LENGTH 55 MIN.
PHOTOCATHODE
P
6
DY9
DY10
7
DY8
5
8
DY7 4
9 DY6
DY5 3
10 DY4
11
2
DY3
1
DY1
12
DY2
K
37.3 ± 0.5
TPMHA0474EB
TPMHA0551EC
29
!3 R9800
!4 R3998-02, R3998-100-02
25.4 ± 0.5
7
13
12 PIN BASE
JEDEC
No. B12-43
B
DY6
14 DY4
DY1 5
15 DY2
DY9
DY7
8
9
10 DY5
P
PHOTOCATHODE
DY8
DY6 5
7
6
11 IC
IC 4
60 ± 2
DY3 6
13 MAX.
55 ± 2
12
1
K
DY4
12
3
DY3
13
14
DY1
K
2
1
DY2
G
LEAD LENGTH 55 MIN.
A
25 MIN.
DY8
8
DY5
PHOTOCATHODE
FACEPLATE
P
10
DY7
P.C.D. 17.3 ± 0.2
SEMIFLEXIBLE
LEADS 18- 0.7
28.5 ± 0.5
A Temporary Base Removed
22 MIN.
SHORT PIN
B Bottom View
P
6
NC
NC
7
DY8
5
8
DY7 4
9 DY6
DY5 3
10 DY4
2
1
DY1
DY3
37.3 ± 0.5
11
12
14 PIN BASE
13 MAX.
FACE PLATE
DY2
K
TPMHA0521EC
TPMHA0114EA
!6 R7111
!5 R6427
28.5 ± 0.5
28.5 ± 0.5
25 MIN.
FACEPLATE
P
IC
7
6
PHOTOCATHODE
85 ± 2
DY9 5
DY10
DY8
8
9
10 DY6
DY7 4
11 DY4
DY5 3
12 DY2
13
K
14
DY1
2
DY3
1
IC
25 MIN.
DY9
PHOTOCATHODE
43.0 ± 1.5
FACEPLATE
IC
8
P
7
IC
9
10 DY10
DY7 5
DY5 4
11 DY8
12 DY6
13
DY4
14
DY2
DY3 3
DY1
2
1
K
SHORT PIN
13 MAX.
14 PIN BASE
13 MAX.
SHORT PIN
14 PIN BASE
6
TPMHA0387EB
!7 R7525
TPMHA0506EA
!8 R580
28.5 ± 0.5
FACEPLATE
25 MIN.
38 ± 1
34 MIN.
IC
6
DY7 5
P DY8
DY6
7 8
9
10 IC
DY5 4
85 ± 2
2
1
IC
DY10
6
DY9
9 DY6
10 DY4
DY5 3
12 DY2
13
K
14
DY1
11
2
DY3
1
12
DY1
R580
IC
IC
6
7
5
IC
8
IC 4
9 DY6
10 DY4
13 MAX.
DY5 3
DY3
11
2
1
12
DY1
37.3 ± 0.5
TPMHA0450EB
DY2
K
P
12 PIN BASE
JEDEC
No. B12-43
30
DY8
8
DY7 4
SHORT PIN
14 PIN BASE
7
5
11 DY4
IC 3
DY3
P
PHOTOCATHODE
127 MAX.
PHOTOCATHODE
109 ± 2
FACEPLATE
DY2
K
R5330
TPMHA0121EA
(Unit: mm)
@0 R3886A
!9 R11102
38.0 ± 0.7
FACEPLATE
38 ± 1
FACEPLATE
34 MIN.
A Temporary Base Removed
34 MIN.
DY10
6
DY9
7
5
DY5 3
10 DY4
11
2
1
DY1
12
DY10
9
DY8
10
11 DY6
P
6
DY9 5
9 DY6
116 MAX.
DY2
12 DY4
DY7 4
13 DY2
DY5 3
2
1
DY1
DY3
K
P.C.D. 23.0 ± 0.5
SEMIFLEXIBLE
LEADS 16- 0.7
15
K
B Bottom View
P
13 MAX.
12 PIN BASE
JEDEC
No. B12-43
A
12 PIN BASE
JEDEC
No. B12-43
37.3 ± 0.5
LEAD LENGTH 70 MIN.
99 ± 2
DY8
8
DY7 4
DY3
PHOTOCATHODE
63.5 ± 1.5
P
PHOTOCATHODE
DY10
6
DY9
7
5
DY8
8
DY7 4
9 DY6
10
3
DY5
1
12
DY1
K
DY3
DY4
11
2
DY2
B
37.3 ± 0.5
TPMHA0228EA
TPMHA0104EB
@2 R9420, R9420-100
@1 R7761-70
38 ± 1
39 ± 1
FACEPLATE
34 MIN.
FACE PLATE
27 MIN.
A Temporary Base Removed
16 DY12
17 DY10
18
DY8
19
20 DY6
21
DY4
DY2
SEMIFLEXIBLE
LEADS 21- 0.7
11
DY8
12 DY6
DY5 5
13 DY4
14 DY2
DY3 4
2
DY1
13 MAX.
3
DY3
2
1
DY1
K
7
DY7 6
87 ± 2
DY9 6
DY7 5
4
DY5
P
PHOTOCATHODE
1
K
B Bottom View
P.C.D. 23.0 ± 0.1
SEMIFLEXIBLE
LEADS 16- 0.7
NC
13 MAX.
HA TREATMENT
DY17 DY19 P
DY18
DY15
10 11 12
9
13 DY16
DY13
8
14
DY11
7
15 DY14
A
27
12 PIN BASE
JEDEC
No. B12-43
LEAD LENGTH 70 MIN.
50 ± 2
PHOTOCATHODE
P
6
NC
7
DY8
5
8
DY7 4
DY5
DY3
9 DY6
10 DY4
3
11
2
1
DY1
12
DY2
K
B
37.3 ± 0.5
TPMHA0469ED
@3 R329-02
@4 R331-05
53.0 ± 1.5
53.0 ± 1.5
FACEPLATE
46 MIN.
46 MIN.
SH IC DY10
DY8
IC
10 11 12
DY12
13
9
DY6
14
8
P 7
15 DY4
HA TREATMENT
LIGHT
TIGHT SHIELD
50.0
±
PHOTOCATHODE
SH IC DY10
DY8
IC
DY12 9 10 11 12 13
DY6
14 DY4
P 8
15
7
DY11 6
16 DY2
DY9 5
17 G
18 IC
DY7 4
19
3
20
2
DY5
IC
1 21
DY3
IC
DY1
K
HA TREATMENT
DY11 6
DY9 5
126 ± 2
127 ± 2
0.2
PHOTOCATHODE
4
16 DY2
17 G
18
IC
19
IC
21 20
DY7
3
2
DY5
1
IC
DY3
K
DY1
SHORT PIN
*CONNECT SH TO DY5
21 PIN BASE
13 MAX.
*CONNECT SH TO DY5
21 PIN BASE
TPMHA0123EG
13 MAX.
FACEPLATE
TPMHA0519ED
TPMHA0072EF
31
@5 R1306
@6 R1828-01
53.0 ± 1.5
51.0 ± 0.5
FACEPLATE
46 MIN.
DY7
7
DY6
DY8
IC
8
9
10 IC
6
DY5 5
DY2
P DY12
IC
DY10
DY11 9 10 11 12
DY8
13 DY6
DY9 8
14
7
DY7 6
15 DY4
16 DY4
DY5 5
17 DY2
IC 4
18
3
DY3
19 IC
2
20 G
DY1 1
K
IC
PHOTOCATHODE
11 P
12 IC
DY3 3
137 MAX.
114 ± 2
DY4 4
13
2
1
DY1
G
14
K
170 ± 3
PHOTOCATHODE
46 MIN.
HA TREATMENT
192 MAX.
FACEPLATE
56.5 ± 0.5
14 PIN BASE
JEDEC No. B14-38
20 PIN BASE
JEDEC
No. B20-102
51.2 ± 0.5
TPMHA0089EC
@7 R1840
TPMHA0064EE
@8 R2083
A TEMPORARY BASE REMOVED
46 MIN.
10
FACEPLATE
DY10
55 ± 1
B
PHOTOCATHODE
IC IC IC
DY6 3
15 DY5
16
DY4
1 18 17 DY3
DY2
K DY1
2
LEAD LENGTH 65 MIN.
A
13 DY7
HA TREATMENT
P
DY10
7
6
DY8 5
DY9
DY7
8
9
10 DY5
IC
9 10 11
8
6
DY7 5
19
DY8
DY6
13
DY4
14
15 DY4
16 DY2
17
IC
18
K
G
SHORT PIN
SMA
CONNECTOR
12 IC
12
7
19 PIN BASE
11 DY3
DY4 3
14PIN BASE
JEDEC No.B14-38
P
DY5 4
3
DY3
2
1
DY1
ACC
B BOTTOM VIEW
DY6 4
56.5 ± 0.5
121 ± 2
13 MAX.
DY8 5
P.C.D. 34 ± 0.3
SEMIFLEXIBLE
LEADS 18- 0.8
46 MIN.
12 DY9
6
PHOTOCATHODE
53.0 ± 1.5
FACEPLATE
P
13 MAX.
51.0 ± 0.5
13
2
1
DY2
DY1
14
K
TPMHA0185EE
TPMHA0095EC
@9 R2154-02
#0 R4607A-06
51.0 ± 0.5
52 ± 1
46 MIN.
FACEPLATE
DY7
7
6
DY5 5
DY8
DY9
8
9
10 DY10
14 PIN BASE
JEDEC
No. B14-38
12 IC
13
2
DY2
P
11 P
DY3 3
147 MAX.
124 ± 2
DY4 4
1
DY1
IC
14
IC
IC
PHOTOCATHODE
80 ± 2
DY6
PHOTOCATHODE
46 MIN.
DY9
K
DY3
15 PIN BASE
7
6
5
8
DY10
9
DY8
10
DY6
11
DY7 4
DY5
13 MAX.
FACEPLATE
12 DY4
3
2
1
DY1
13 DY2
14
IC
15
K
SHORT PIN
56.5 ± 0.5
TPMHA0296EB
32
TPMHA0003EC
(Unit: mm)
#1 R5924-70
#2 R6041
52 ± 1
39 MIN.
DY18 DY16
DY14
14 15
16 DY12
17 DY10
18
DY8
9
DY15 8
DY13 7
HA TREATMENT
6
13 MAX.
DY11 5
DY9 4 3
2 1 26
DY7
DY5 DY3
DY1 K
SEMIFLEXIBLE
LEADS 21- 0.7
TEMPORARY BASE REMOVED
19
20 DY6
21 DY4
22
DY7 DY8 DY9
DY6
DY10
8 9 10
11
7
45 MIN.
DY5 5
DY2
57.0 ± 0.5
55.0 ± 0.5
METAL
(CONNECTED
WITH CATHODE)
(Ni PLATING)
31
13 DY11
14 DY12
15
P
DY4 4
DY3 3
2
1 18
DY2
DY1
K
53.0 ± 0.5
45 MIN.
PHOTOCATHODE
9 MAX.
P.C.D. 34.0 ± 0.3
SEMI-FLEXIBLE
LEADS
(Ni PLATING)
18- 0.75 ± 0.10
BOTTOM VIEW
32 ± 1
50 ± 2
P
DY19 11
DY17 10
29.5 ± 0.5
PHOTOCATHODE
DY8
DY7
DY6
6
DY5
70 ± 10
FACEPLATE
7
DY9
8
9
5
10
DY4 4
3
DY3
DY10
11 DY11
12
2
DY2
1
DY1
K
K
P
DY12
P
TPMHA0578EA
TPMHA0490EB
#3 R6041-406, R6041-506
#4 R6231, R6231-100
51.0 ± 0.5
FACEPLATE
46 MIN.
PHOTOCATHODE
DY5
DY6
7
6
IC
8
90 ± 3
45 MIN.
57.0 ± 0.5
113 MAX.
DY4 5
10 DY7
DY3 4
11 DY8
DY2 3
2
1
DY1
IC
55.6 ± 0.5
12 P
13
G
14
K
50.5 ± 0.5
32.5 ± 1.0
P.C.D. 34.0 ± 0.3
SEMI-FLEXIBLE
LEADS
(Ni PLATING)
18- 0.75 ± 0.10
70 ± 10
PHOTOCATHODE
31.0 ± 0.5
45 MIN.
9 MAX.
METAL
(CONNECTED
WITH CATHODE)
(Ni PLATING)
IC
9
56.5 ± 0.5
DY7 DY8 DY9
DY6
DY10
8 9 10
7
11
DY5 5
DY4 4
DY3 3
14 PIN BASE
JEDEC No. B14-38
13 DY11
14 DY12
2
1 18
DY2
DY1
K
16
P
BOTTOM VIEW
TPMHA0579EA
#5 R7723, R7724, R7725
TPMHA0388EB
#6 R9779
52 ± 1
51.0 ± 1.0
46 MIN.
46 MIN.
R7723
FACEPLATE
A TEMPORARY BASE REMOVED
98 ± 2
PHOTOCATHODE
P.C.D. 34.0 ± 0.3
SEMIFLEXIBLE
LEADS 18- 0.8
R7724
R7725
IC IC DY8
IC
DY6
DY10 9 10 11 12 13 IC
14 DY4
8
P
15
7
DY9 6
16 DY2
17 IC
DY7 5
18
4
IC 3
19 IC
20
2
DY5
IC
1 21
DY3
IC
DY1
K
IC IC DY10
IC
DY8
DY12 9 10 11 12 13 DY6
14 DY4
8
P
15
7
DY11 6
16 DY2
17 IC
DY9 5
18
4
DY7
19 IC
3
20
2
DY5
IC
1 21
DY3
IC
DY1
K
TPMHA0509EC
DY7
8
DY5
7
DY3 6
P
10
15 DY2
3
A
12 PIN BASE
JEDEC
No. B20-102
B
51.2 ± 0.5
DY8
12
DY6
13
14 DY4
DY1 5
Acc
13 MAX.
21 PIN BASE
13 MAX.
112 ± 2
PHOTOCATHODE
IC IC DY6
IC
IC
10 11 12 13 IC
DY8
9
14 DY4
P 8
15
7
DY7 6
16 DY2
DY5 5
17 IC
18
4
IC
IC
19
3
20
2
IC
IC
1 21
DY3
IC
DY1
K
LEAD LENGTH 70 MIN.
FACEPLATE
1
K
17
G
B BOTTOM VIEW
P IC IC
DY8
9 10 11 12
13 DY6
7
14
DY5 6
15 DY4
16 DY2
DY3 5
17
4
DY1 3
18 IC
2 1 20 19 G
IC
IC
Acc IC
K
IC
IC
DY7
8
TPMHA0520EF
33
#7 R10533
#8 R6232
51 ± 1
46 MIN.
59.5 ± 0.5
FACE PLATE
FACEPLATE
55 MIN.
A Temporary Base Removed
PHOTOCATHODE
15 DY2
3
Acc
1
K
51.5 ± 1.5
13 MAX.
20 PIN BASE
JEDEC
No. B20-102
B
11 DY8
DY2 3
IC
2
1
DY1
12 P
13
G
14
K
56.5 ± 0.5
TPMHA0556EB
51.2 ±0.5
#9 R1307
TPMHA0510EA
$0 R4143
76.0 ± 0.8
77.0 ± 1.5
70 MIN.
FACEPLATE
DY7
DY6
7
6
DY5 5
PHOTOCATHODE
7
11 P
DY5 5
IC 4
3
DY3
2
1
DY1
IC
13
2
1
DY1
DY7 6
PHOTOCATHODE
12 IC
DY3 3
DY2
DY12
IC P
DY10
DY11
DY8
9 10 11 12
13
8
DY9
DY6
G
14
K
192 ± 5
127 ± 3
14 PIN BASE
JEDEC
No. B14-38
150 MAX.
DY4 4
51.5 ± 1.5
65 MIN.
DY8
IC
8
9
10 IC
HA
TREATMENT
20
14
15 IC
16 DY4
17 DY2
18
IC
19
K
G
215 MAX.
FACEPLATE
10 DY7
14 PIN BASE
JEDEC
No. B14-38
P IC
IC
DY10
DY9
9 10 11 12 DY8
13 DY6
8
DY7
14
7
DY5 6
15 DY4
16 DY2
DY3 5
17
DY1 4
3
18 IC
2 1 20 19 G
IC
Acc
IC K IC
LEAD LENGTH 70 MIN.
A
IC
9
DY3 4
17
G
B Bottom View
P.C.D. 34.0 ± 0.3
SEMIFLEXIBLE
LEADS 18- 0.8
IC
8
DY4 5
100 ± 3
107 ± 2
DY1 5
6
123 MAX.
PHOTOCATHODE
DY6
7
DY5
DY9 P DY10
DY7 9 10 11
DY8
8
12
DY5
DY6
7
13
DY3 6
14 DY4
20 PIN BASE
JEDEC
No. B20-102
56.5 ± 0.5
51.2 ± 0.5
TPMHA0112ED
TPMHA0078EA
$1 R6091
FACEPLATE
$2 R6233, R6233-100
76.0 ± 0.8
76 ± 1
FACEPLATE
65 MIN.
70 MIN
SH IC DY10
IC
DY8
DY12 9 10 11 12 13
DY6
14
P 8
DY4
15
16 DY2
17 G
18 IC
19
IC
21 20
K
SHORT PIN
DY4 5
PHOTOCATHODE
14 PIN BASE
JEDEC
No. B14-38
IC
51.5 ± 1.5
100 ± 3
3
2
DY5
1
DY3
DY1
DY6
7
6
123 MAX.
137 ± 2
PHOTOCATHODE
7
DY11 6
DY9 5
DY7 4
DY5
IC
9
10 DY7
DY3 4
11 DY8
DY2 3
IC
IC
8
2
1
DY1
12 P
13
G
14
K
* CONNECT SH TO DY5
21 PIN BASE
13 MAX.
56.5 ± 0.5
TPMHA0285ED
34
TPMHA0389EB
(Unit: mm)
$3 R11065, R11410
$4 R10233, R10233-100
77.5 ± 1.0
76 ± 1
90 MIN.
FACEPLATE
( 64 MIN.)
DY5
PHOTOCATHODE
53.3 ± 1.0
P.C.D. 31.0 ± 0.3
SEMIFLEXIBLE
LEADS 20- 0.8
(Ni Plating)
51.5 ± 1.5
10 MAX.
LEAD LENGTH 65 MIN.
B
11 DY8
DY2 3
NC
NC
9
10 DY7
DY3 4
14 PIN BASE
JEDEC
No. B14-38
2
1
DY1
12 P
13
G
14
K
56.5 ± 0.5
DY12
A
104.5 ± 3.0
PHOTOCATHODE
B Bottom View
SH IC DY10
IC
DY8
9 10 11 12
8
13
P 7
14 DY6
NC
8
DY4 5
127.5 MAX.
SH IC DY10
DY12
9 10 11 12 DY8
8
13
P
DY6
7
14
DY11 6
15 DY4
16 DY2
DY9 5
4
17
DY7
G
3
18
2 1 20 19 IC
DY5
DY3
IC
DY1 K
123.0 ± 1.5
METAL TUBE
(Ni Plating)
DY6
7
6
A Temporary Base Removed
IC
20 PIN BASE
JEDEC No. B20-102
Operating Ambient
Temperature for
JEDEC BASE
and E678-20B
: -30 °C to +50 °C
85 MIN.
DY11 6
DY9 5
4
DY7 3
15 DY4
16 DY2
17
18 G
DY5 2 1 20 19 IC
DY3
IC
DY1 K
51.2 ± 0.5
Note: E678-20B will be supplied with PMT
TPMHA0573EA
$5 R877, R877-100
TPMHA0580EA
$6 R1250
133 ± 2
133.0 ± 1.5
120 MIN.
FACEPLATE
111 MIN.
DY7
7
6
DY5 5
55 MAX.
11 P
DY3 3
12 IC
13
G
14
K
2
1
DY1
DY14
DY12
IC P
DY13
DY10
9 10 11 12
13 DY8
8
DY11
14
7
DY9 6
15 DY6
16 DY4
DY7 5
17
4
DY2
DY5
18
3
DY3
19 IC
2
1
20
DY1
G
IC
K
PHOTOCATHODE
HA TREATMENT
259 ± 5
171 ± 3
PHOTOCATHODE
DY4 4
DY2
194 MAX.
FACEPLATE
DY8
DY9
8
9
10 DY10
276 ± 5
DY6
14 PIN BASE
JEDEC
No. B14-38
20 PIN BASE
JEDEC
No. B20-102
56.5 ± 0.5
51.2 ± 0.5
TPMHA0074EC
TPMHA0018ED
$8 R6594
$7 R1584
133 ± 2
128 ± 2
120 MIN.
110 MIN.
DY14
IC P
DY12
DY13
DY10
9 10 11 12
13 DY8
DY11 8
14
7
DY9 6
15 DY6
16 DY4
DY7 5
17 DY2
DY5 4
18
3
DY3
IC
19
2
20
1
DY1
G
IC
K
2.0
.5 ±
DY3 4
PHOTOCATHODE
178 ± 2
R132
DY10
P
DY9 9 10
DY7 8
7
DY5 6
R82
PHOTOCATHODE
A TEMPORARY BASE REMOVED
276 ± 5
259 ± 5
HA TREATMENT
84.5 ± 2
265 MAX.
FACEPLATE
2
FOCUS3 1
DY1
23
K
DY8
14 DY6
15
16 DY4
19
20 FOCUS1
21 DY2
FOCUS2
B BOTTOM VIEW
IC IC
DY10
DY8
9 10 11 12
13
14 DY6
7
IC 6
15 IC
16 DY4
DY7 5
17
DY5 4
18 FOCUS1
3
19 DY2
DY3
2
1
20
FOCUS3
FOCUS2
K
DY1
IC
P.C.D. 46.6 ± 0.3
SEMIFLEXIBLE
LEADS 24- 0.8
P
13 MAX.
A
20 PIN BASE
JEDEC No. B20-102
20 PIN BASE
JEDEC No. B20-102
B
51.2 ± 0.5
LEAD LENGTH 70 MIN.
DY9
8
51.2 ± 0.5
TPMHA0187EE
TPMHA0373EE
35
$9 R5912, R5912-02
%0 R7081, R7081-20
202 ± 5
INPUT WINDOW
253 ± 5
190 MIN.
R5912/-100
IC IC DY10
P 9 10 11 12 DY8
13
DY9 8
14 DY6
7
IC 6
15 IC
INPUT
WINDOW
220 MIN.
R7081/-100
IC IC
DY10
P 9 10 11 12 DY8
13
DY9 8
14 DY6
7
IC 6
15 IC
IC
16 DY4
17 DY2
18
19 G1
(Bottom View)
R5912-20
IC DY14
DY12
DY13 9 10 11 12 DY10
13
8
DY11
14 DY8
7
DY9 6
15 DY6
P
84.5 ± 2.0
DY7 5
DY5 4
3
G3
2
DY3 1
DY1
20-PIN BASE
JEDEC No. B20-102
51.2 ± 0.5
20
300 MAX.
G2
245 ± 5
K
DY7 5
DY5 4
3
DY3
2
G3 1
DY1
PHOTOCATHODE
275 ± 7
275 MAX.
220 ± 5
250 ± 7
20
7
36.
R1
1
R13
DY7 5
DY5 4
3
DY3
2
G3 1
DY1
PHOTOCATHODE
IC
84.5 ± 2.0
16 G1
17 DY4
18
19 DY2
K
G2
G2
R7081-20
IC DY14
DY12
DY13 9 10 11 12 DY10
13
8
DY11
14 DY8
7
DY9 6
15 DY6
P
20-PIN BASE
JEDEC No. B20-102
20
16 G1
17 DY4
18
19 DY2
K
G2
(Bottom View)
IC: Internal Connection
(Do not use)
51.2 ± 0.5
IC: Internal Connection
(Do not use)
TPMHA0500EC
%1 R8055
K
(Bottom View)
DY7 5
DY5 4
3
G3
2
DY3 1
DY1
(Bottom View)
20
16 DY4
17 DY2
18
19 G1
TPMHA0501EC
%2 R3600-02
508 ± 10
INPUT
WINDOW
332 ± 5
460 MIN.
DY10 IC DY8
P
DY11
9 10 11 12 DY6
13 DY4
8
DY9
14
7
DY7 6
15 IC
16 DY2
IC 5
17 G2
DY5 4
18
3
DY3
K
19
2
1
20
DY1
G3
IC
G1
312 MIN.
INPUT
WINDOW
P
9 10 11 12
3.4
R22
IC 5
DY5 4
3
DY3
2
G3 1
DY1
PHOTOCATHODE
20
DY8
13
14 DY6
15 DY4
16 DY2
17 G2
18
19 G1
K
15
R3
IC
DY9 8
7
DY7 6
IC DY10
IC
PHOTOCATHODE
IC
IC: Internal Connection
(Do not use)
680 MAX.
610 ± 20
IC: Internal Connection
(Do not use)
640 ± 22
343 ± 7
368 MAX.
333 ± 5
(Bottom View)
254 ± 10
202 ± 3
82 ± 2
20-PIN BASE
JEDEC No. B20-102
51.2 ± 0.5
METAL STEM FLANGE
213 ± 3
20PIN BASE
JEDEC No.B20-102
51.2 ± 0.5
TPMHA0502EC
%3 R7250
TPMHA0092EG
%4 R8520-406, -506
508 ± 10
680 MAX.
640 ± 22
4-R3.2
610 ± 20
USEFUL AREA
PHOTOCATHODE
TOP VIEW
254 ± 10
7.0 ± 0.5
5 MAX.
1.2 MAX.
2.5 MAX.
SIDE VIEW
8×2.54=20.32
GUIDE
MARK
2.54 PITCH
45°±10°
25- 1.5
10.16
BOTTOM VIEW
CUT
(Dy10)
P
1 2 3 4 5 6 7 8 9
23
10
22
CUT
(Dy10)
CUT
(Dy10)
25 IC 11
21 24 IC
20 19 18 17 16 15 14 13 12
CUT
(Dy10)
20.32
1.2
15.24
QUARTZ
GLASS
5.08
20.5 MIN.
28.25 ± 1.00
5 MAX.
15
R3
AL RING
13- 0.45
PHOTOCATHODE
Ni PLATING
25.7 ± 0.4
24
IC
IC P
DY10
DY9 9 10 11 12 IC
13 DY8
DY7 8
14
7
DY5 6
15 DY6
16 DY4
DY3 5
17 DY2
IC 4
18
3
G3
2
19 IC
1 20 G2
DY1
G1
K
IC: Internal Connection
(Do not use)
G
CUT (Dy10)
K
Dy1
Dy2
Dy3
Dy4
CUT (Dy10)
CUT (G)
430 MIN.
CUT (G)
Dy10
Dy9
Dy8
Dy7
Dy6
Dy5
CUT (Dy10)
CUT (G)
INPUT
WINDOW
BASING DIAGRAM
K
: Photocathode
Dy : Dynode
P
: Anode
CUT : Cut Pin
IC : Internal Connection
(Don't Use)
82 ± 2
20PIN BASE
JEDEC No.B20-102
51.2 ± 0.5
TPMHA0475EG
36
TPMHA0575EA
(Unit: mm)
K
IC (Dy10)
IC
Dy1
Dy2
Dy3
Dy4
IC (Dy10)
CUT (K)
12.0 ± 0.5
2.54 PITCH
4 MAX.
29- 0.45
PHOTOCATHODE
EFFECTIVE AREA
1 2 3 4 5 6 7 8 9
32
10
11
31
30
12
GUIDE
29
13
CORNER
28
14
15
27
16
26
25 24 23 22 21 20 19 18 17
TOP VIEW
SIDE VIEW
BOTTOM VIEW
4.4 ± 0.7
20.32
K
0.6 ± 0.4
2.54 PITCH
CUT (IC)
P1
CUT (IC)
CUT (IC)
CUT (IC)
P4
CUT (IC)
PHOTOCATHODE
4 MAX.
15- 0.45
PHOTOCATHODE
CUT (K)
Dy10
Dy9
Dy8
Dy7
Dy6
Dy5
IC (Dy10)
CUT (K)
INSULATION
COVER
IC
IC
IC
IC
IC
IC
IC
22.0 ± 0.5
18 MIN.
20.32
IC
IC
P
IC
IC
IC
IC
18 MIN.
0.6 ± 0.4
18 MIN.
30.0 ± 0.5
25.7 ± 0.5
BASING DIAGRAM
P2
P1
P3
P4
INSULATION COVER
SIDE VIEW
1 2 3 4 5 6 7 8 9
32
10
11
31
30
12
13
29
GUIDE
CORNER
28
14
15
27
16
26
25 24 23 22 21 20 19 18 17
BOTTOM VIEW
BASING DIAGRAM
18 MIN.
: Photocathode
K
Dy : Dynode
: Anode
P
CUT : Short Pin
IC : Internal Connection
(Don't Use)
K
: Photocathode
Dy : Dynode
P
: Anode
CUT : Short Pin
IC : Internal Connection
(Do not Use)
TOP VIEW
TPMHA0297EJ
TPMHA0278EJ
4 MAX.
30- 0.45
SIDE VIEW
BOTTOM VIEW
P16
1.0 PITCH
P2
K
: Photocathode
Dy : Dynode
P
: Anode
CUT : Short Pin
IC : Internal Connection
(Do not Use)
0.8
TOP VIEW
4 MAX.
INSULATION COVER
P1
P3
P4
1 2 3 4 5 6 7 8 9
32
10
11
31
30
12
29
13
GUIDE
CORNER
28
14
15
27
16
26
25 24 23 22 21 20 19 18 17
SIDE VIEW
BOTTOM VIEW
BASING DIAGRAM
23.5
G
: Grid
K
: Photocathode
Dy : Dynode
P
: Anode
CUT : Short Pin
IC : Internal Connection
(Do not Use)
TOP VIEW
TPMHA0530EA
TPMHA0298EH
^0 R11265U, R11265U-100, R11265U-200
%9 R8900-00-M16, R8900-100-M16
30 ± 0.5
P4
P1
23.5
SIDE VIEW
P16
P13
23.5
TOP VIEW
12.5 MAX.
19- 0.45
22.95
22.2
4.2 MAX.
4-R1.35
USEFUL AREA
TOP VIEW
BOTTOM VIEW
3.5 ± 0.7
2.22 PITCH
CUT (IC)
CUT (IC)
CUT (IC)
0.6 ± 0.4
Dy5
CUT (IC)
18.7 ± 0.5
23
Dy6
CUT (IC)
26.2 - 0.5
CUT (IC)
CUT (IC)
Dy3
Dy4
P4 CUT (IC)
P8
P12
CUT (IC) P16
Dy7
Dy1
Dy2
P3
P7
P15 P11
Dy8
K
P1
P2
P5
P6
P9
P10
Dy9
15.24
CUT (IC)
5.08
30- 0.45
P13
P14
EPOXY
2.5 MAX.
Dy10
1.2 MAX.
PHOTOCATHODE
Dy11
PHOTOCATHODE
Dy12
16 15 14 13
CUT (IC) CUT (IC) G
8×2.54=20.32
5.08
10.16
15.24
1
25.5 ± 0.5
2
2.54 PITCH
3.5 MAX.
3
+0
6 MAX.
CUT (IC) CUT (IC) CUT (IC)
0.8
23.5
4
7.0 ± 0.5
12.0 ± 0.5
20.32
27.2 ± 0.5
+0
26.2 - 0.5
CUT (IC)
P2
CUT (IC)
CUT (IC)
CUT (IC)
P3
CUT (IC)
16- 0.45
PHOTOCATHODE
BASING DIAGRAM
15.8
CUT (IC)
P1
CUT (IC)
CUT (IC)
CUT (IC)
P4
CUT (IC)
23.5
16
INSULATION COVER
P1
PHOTOCATHODE
CUT (K)
Dy8
P12
P10
P8
P6
P4
Dy5
K
PHOTOCATHODE
20.32
2.54 PITCH
Dy9
P3
P1
P2
IC
Dy3
Dy1
GUIDE
CORNER
4.4 ± 0.7
20.32
PHOTOCATHODE
29.0 ± 0.5
0.6 ± 0.4
23.5
1
2
3
4
5
6
7
8
9
Dy2
Dy4
IC
P15
P16
P14
Dy10
G
CUT (Dy10)
K
Dy1
Dy2
Dy3
Dy4
CUT (Dy10)
CUT (G)
30.0 ± 0.5
26.2 ± 0.5
CUT (G)
Dy10
Dy9
Dy8
Dy7
Dy6
Dy5
CUT (Dy10)
CUT (G)
20.32
2.54 PITCH
20.32
12.0 ± 0.5
15.8
4.4 ± 0.7
25 26 27 28 29 30 31 32
24
23
22
21
20
19
18
17 16 15 14 13 12 11 10
22.0 ± 0.5
0.6 ± 0.4.
12.0 ± 0.5
30.0 ± 0.5
25.7 ± 0.5
%8 R8900U-00-M4, R8900U-100-M4
K
Dy6
P13
P11
P9
P7
P5
Dy7
CUT (K)
%7 R5900U-00-L16, R5900U-100-L16/-200-L16
CUT (IC)
P2
CUT (IC)
CUT (IC)
CUT (IC)
P3
CUT (IC)
CUT (K)
Dy10
Dy9
Dy8
Dy7
Dy6
Dy5
CUT (IC)
CUT (K)
4.4 ± 0.7
22.0 ± 0.5
12.0 ± 0.5
30.0 ± 0.5
25.7 ± 0.5
CUT (IC)
CUT (IC)
Dy1
Dy2
Dy3
Dy4
CUT (IC)
CUT (K)
%6 R7600U-00-M4, R7600U-100-M4/-200-M4/-300-M4
%5 R7600U, R7600U-100/-200/-300
4-R3.5
22.56
K
IC (P)
Dy1
Dy2
Dy3
IC (P)
Dy4
Dy5
Dy6
IC (P)
1
28
27
26
25
24
23
22
21
20
7
8
9
10
11
12
13
14
15
P
Dy12
Dy11
Dy10
IC (P)
Dy9
Dy8
Dy7
IC (P)
PHOTOCATHODE
SIDE VIEW
BOTTOM VIEW
BASING DIAGRAM
BASING DIAGRAM
G
: Grid
K
: Photocathode
Dy : Dynode
P
: Anode
CUT : Short Pin
IC : Internal Connection
(Don't Use)
TPMHA0531EB
K
Dy
P
IC
: Photocathode
: Dynode
: Anode
: Internal Connection
(Don't Use)
TPMHA0577EB
37
^2 R6236
54 MIN.
59.5 ± 1.0
8 MIN.
9.8 ± 0.4
^1 R2248
9.8 ± 0.4
8 MIN.
FACEPLATE
59.5 ± 1.0
8
4
DY6
PHOTOCATHODE
DY5
11
K
10 MAX.
1
IC
IC
8
IC
9
DY4 5
10
DY2
51.5 ± 1.5
14 PIN BASE
JEDEC
No. B14-38
SHORT PIN
10 DY7
DY3 4
123 MAX.
2
DY6
7
6
9 DY4
DY3 3
DY1
11 PIN BASE
54 MIN.
DY8
7
100 ± 3
DY5
45.0 ± 1.5
PHOTOCATHODE
FACEPLATE
P
6
DY7
5
11 DY8
DY2 3
IC
2
1
DY1
12 P
13
G
14
K
56.5 ± 0.5
TPMHA0098EC
^3 R6237
TPMHA0392EB
^4 R1548-07
18 MIN.
24.0 ± 0.5
70 MIN.
76 ± 1.5
8 MIN. 8 MIN.
24.0 ± 0.5
FACEPLATE
76 ± 1.5
FACEPLATE
P2 DY10 DY8
8 9 10 DY7-2
11 DY6
7
12
6
DY7-1 5
13 DY4
4
14 DY2
DY5
15
DY3 3
2
16 IC
1
17 IC
DY1
IC
K
PHOTOCATHODE
70 MIN.
P1
DY9
DY6
7
6
DY4 5
14 PIN BASE
JEDEC
No. B14-38
10 DY7
DY3 4
11 DY8
DY2 3
IC
IC
9
2
1
DY1
12 P
13
G
14
K
SHORT PIN
17 PIN BASE
56.5 ± 0.5
13 MAX.
100 ± 3
51.5 ± 1.5
123 MAX.
PHOTOCATHODE
IC
8
70 ± 2
DY5
TPMHA0393EC
^5 R8997
TPMHA0511EA
^6 R10550
16 MIN.
33 MIN.
A TEMPORARY BASE REMOVED
18
16 MIN.
33 MIN.
16 MIN.
33 MIN.
A Temporary Base Removed
18
16 MIN.
FACE PLATE
FACE PLATE
+0
+0
39 - 1
39 - 1
( 26)
( 26)
DY9
8
DY7-D
7
P-D 6
13 MAX.
DY3
LEAD LENGTH 45 MIN.
P.C.D. 26
SEMI-FLEXIBLE
LEADS 20- 0.7
A
20 PIN BASE
JEDEC
No. B20-102
B
51.2 ± 0.5
38
2
16 DY7-A
17
18 DY6
84 ± 2
3
DY7
9
8
38 MAX.
DY6-2
13
14 P-2
3
16 DY6-1
17
18 DY4
P-3 5
1 20 19 DY4
DY1 K DY2
15 P-1
DY6-3 4
DY4
DY3
P.C.D. 26
SEMIFLEXIBLE
LEADS 20- 0.7
B Bottom View
IC DY10
IC
DY8
DY9
9 10 11 12
DY7-B
13
DY7-D 8
7
14 P-B
P-D
6
15 P-A
A
20 PIN BASE
JEDEC
No. B20-102
P-C 5
4
DY7-C
16 DY7-A
17
DY6
3
18
2 1 20 19
DY5
DY4
DY3
DY1 K DY2
B
TPMHA0552EC
51.2 ± 0.5
DY8
11
7
P-4 6
15 P-A
DY7-C 4
DY5
DY6-4
13 MAX.
38.1 MAX.
P-C 5
DY5
PHOTOCATHODE
LEAD LENGTH 45 MIN.
84 ± 2
PHOTOCATHODE
DY10
11 DY8
12
DY7-B
13
14 P-B
2
1 20 19 DY3
DY1 K DY2
B BOTTOM VIEW
NC DY8
DY7
NC
DY5
9 10 11 12
DY6-2
13
DY6-4 8
7
14 P-2
P-4
6
15 P-1
P-3 5
4
16 DY6-1
17
DY4
3
18
2 1 20 19
DY4
DY3
DY3
DY2
DY1 K
DY6-3
TPMHA0576EC
(Unit: mm)
79 MIN.
60 MIN.
85 ± 1
^8 R6235
67.5 ± 0.6
^7 R6234
59.5 ± 0.5
76.0 ± 1.5
55 MIN.
FACEPLATE
DY6
DY5
7
6
DY4 5
IC
8
6
10 DY7
DY3 4
IC
PHOTOCATHODE
IC
9
51.5 ± 1.5
12 P
1
DY1
IC
9
10 DY7
DY3 4
13
G
14
K
2
IC
8
DY4 5
11 DY8
DY2 3
14 PIN BASE
JEDEC
No. B14-38
DY6
7
DY5
100 ± 3
100 ± 3
51.5 ± 1.5
123 MAX.
PHOTOCATHODE
70 MIN.
123 MAX.
FACEPLATE
11 DY8
12 P
13
G
14
K
DY2 3
2
1
DY1
IC
14 PIN BASE
JEDEC
No. B14-38
56.5 ± 0.5
56.5 ± 0.5
TPMHA0391EB
TPMHA0390EB
^9 R7373A-01
&0 R8143
28.5 ± 0.5
B
DY9
DY5
9 DY6
10 DY4
11
2
1
DY1
12
1
IC
B BOTTOM VIEW
P
DY10
6
7
DY9
DY8
5
8
8
DY8
9
10 DY6
11 DY4
3
2
29.0 ± 0.7
DY5 3
7
5
DY3
17
K
DY7 4
6
DY7 4
13 DY4
14
DY2
DY1 2
DY3
37.3
PHOTOCATHODE
12 DY6
DY3 3
DY10
P
DY11
DY10
10
DY8
11
20 MIN.
DY9
6
DY7
5
DY5 4
25 MIN.
112 ± 2
LEAD LENGTH 50 MIN.
A
12 PIN BASE
JEDEC
No. B12-43
P
8
12 DY2
13
14
K
DY1
SHORT PIN
HA TREATMENT
DY2
K
14 PIN BASE
13 MAX.
13 MAX.
PHOTOCATHODE
P.C.D. 17.3 ± 0.5
SEMIFLEXIBLE
LEADS 18- 0.7
FACE PLATE
A TEMPORARY BASE REMOVED
FACEPLATE
43.0 ± 1.5
R13 ± 1
25.4 ± 0.5
TPMHA0460EB
TPMHA0507EA
39
Typical Gain Characteristics
● 10 mm (3/8") Dia. and TO-8 Types
● 13 mm (1/2") Dia. Types
10
8 TPMHB0095EE+TPMHB0096ED
108
7
107
R647-01
GAIN
106
106
R1635
R2248
R2496
R4124
10
5
GAIN
10
● 19 mm (3/4") Dia. Types
700
1000
1500
R5611A-01
105
R3478
104
103
102
500
10
3
10
2
2000 2500 3000
500
R3991A-04
700
SUPPLY VOLTAGE (V)
10
R7111
R4998
R8619
10
7
10
6
R8143
R9800
R7373A-01
R3998-02
6
R1924A
R5505-70
105
104
GAIN
GAIN
2000 2500 3000
8 TPMHB0100EE
R7899-01
R1548-07
10
1500
● 28 mm (1-1/8") Dia. Types
TPMHB0099ED
107
1000
SUPPLY VOLTAGE (V)
● 25 mm (1") Dia. Types
108
R1450
R1166
R4125
R4177-06
104
TPMHB0097EF
R7525
105
R6427
10
4
10
3
R1288A-06
103
102
500
700
1000
1500
2000 2500 3000
SUPPLY VOLTAGE (V)
40
102
500
700
1000
1500
2000 2500 3000
SUPPLY VOLTAGE (V)
● 38 mm (1-1/2") Dia. Types
10
● 51 mm (2") Dia. Types
8 TPMHB0101EE
10
8 TPMHB0858EA
R331-05
R6041
R6041-406
R6041-506
R580
10
7
R11102
10
7
10
6
R3886A
10
6
R7725
R329-02
R1306
R8997
R10550
R7723
10
R7761-70
5
R9420
GAIN
GAIN
R6231
10
5
R1828-01
10
4
104
10
3
103
R2083
R9779
10
2
500
700
1000
1500
102
500
2000 2500 3000
700
108
1500
2000 2500 3000 3500
SUPPLY VOLTAGE (V)
SUPPLY VOLTAGE (V)
● 51 mm (2") Dia. Types
● 60 mm (2.5") Dia. Types
1000
● 76 mm (3") Dia. Types
and 90 mm (3.5") Dia. Types
TPMHB0859EA
10
8 TPMHB0107EE
10
7
10
6
10
10
6
10
5
10
4
10
3
R6091
R2154-02
R7724
R6232
R6234
R6236
R4607A-06
GAIN
GAIN
R5924-70
7
10
5
10
4
10
3
R11265
R1307
R10233
R6233
R6235
R6237
R4143
R1840
R11410
R10533
10
2
500
700
1000
1500
2000 2500 3000 3500
SUPPLY VOLTAGE (V)
102
500
700
1000
1500
2000 2500 3000
SUPPLY VOLTAGE (V)
41
● 127 mm (5"), 204 mm (8"), 254 mm (10"), 332 mm (13") and 508 mm (20") Dia. Types
10
9 TPMHB0860EA
10
10 TPMHB0657EB
R1250
R1584
10
8
10
7
10
9
10
8
10
7
R5912-02
R7081-20
R6594
10
GAIN
GAIN
R877
R5912
R7081
6
R8055
106
105
R3600-02
R7250
105
104
103
500
700
1000
1500
104
500
2000 2500 3000
700
108
1500
2000 2500 3000
SUPPLY VOLTAGE (V)
SUPPLY VOLTAGE (V)
● Metal Package Types
1000
● Metal Package Types and Assembly Type
TPMHB0788EB
108
TPMHB0789EB
R5900U-00-L16
R8900U-00-M16
107
107
R7600U
6
10
10
5
10
4
6
H7260
R7600U-00-M4
GAIN
GAIN
10
H8711
R8520-406
R8520-506
R8900U-00-C12
10
5
H8500C
H9500
R11265U
H10966A
104
R8900U-00-M4
H7546B
H8804
10
3
102
500
10
700
1000
1500
2000 2500 3000
SUPPLY VOLTAGE (V)
42
3
102
500
700
1000
1500
2000 2500 3000
SUPPLY VOLTAGE (V)
● UBA / SBA Metal Package Types
10
● UBA / SBA Metal Package Types
and Assembly Types
8 TPMHB0854EA
10
8 TPMHB0855EA
H8711-100
H8711-200
R5900U-100-L16
R5900U-200-L16
10
7
10
6
10
5
10
7
10
6
10
5
10
4
R7600U-100-M4
R7600U-200-M4
R11265U-200
R8900U-100-C12
10
H7260-100/-200
GAIN
GAIN
R8900U-100-M16
R8900U-100-M4
4
R7600U-100
R7600U-200
10
H7546B-100, -200
H8804-100, -200
R11265U-100
3
102
500
700
1000
H10966A/B
H10966A/B-100
10
1500
3
102
500
2000 2500 3000
700
10
1500
2000 2500 3000
SUPPLY VOLTAGE (V)
SUPPLY VOLTAGE (V)
● SBA PMT Series
1000
● Extended Green Metal Package Types
and Assembly Types
8 TPMHB0856EA
10
8 TPMHB0857EA
H8711-300
R7724-100
10
7
10
6
R3998-100-02
R6233-100
R10233-100
10
7
10
6
10
5
10
4
10
3
H7546A/B-300, -20
H8804-300
R9420-100
10
5
10
4
GAIN
GAIN
R9800-100
R7600U-300-M4
R6231-100
10
3
10
2
R877-100
500
700
1000
1500
2000 2500 3000
SUPPLY VOLTAGE (V)
102
500
700
1000
1500
2000 2500 3000
SUPPLY VOLTAGE (V)
43
Position Sensitive Photomultiplier Tubes
Tube
Diameter
q
Spectral
Response
Range (nm)
/
Curve Code
Type
No.
w
Outline
No.
e
Anode Sensitivity
Number of Plates
or wires
Effective
Area
(mm)
Anode
Pitch
Socket
&
Socket
Assembly
(mm)
r
Cathode Sensitivity
t
y
u
Dynode
Blue
Structure
Q.E.
/ No. of Luminous Sens. at Peak
Typ.
Index
Stages
Typ.
(CS 5-58)
(µA/lm)
Typ.
(%)
Position Sensitive Photomultiplier Tubes with Metal Channel Dynodes
30 mm R8900U
Square -00-C12
q
300 to 650/A-D
23.5 × 23.5
6(X) + 6(Y) Plates
4.0
E678-32B ¤8
MC / 11
85
10.0
25
CM / 12
80
9.0
23
Position Sensitive Photomultiplier Tubes
5"
round
R3292-02
w
300 to 650/A-D
100
28(X) + 28(Y) Wires
—
4.0
Note: Please refer to page 18 and 19 for each item in the above list.
G
CUT (Dy11)
Dy1
Dy3
Dy5
Dy7
Dy9
Dy11
CUT (G)
q R8900U-00-C12, R8900U-100-C12
30.0 ± 0.5
29.0 ± 0.5
26.2 ± 0.5
4.4 ± 0.7
0.6 ± 0.4
20.32
2.54 PITCH
K
Dy2
Dy4
Dy6
Dy8
Dy10
CUT (Dy11)
4 MAX.
23.5
PY1
PY2
PY3
PY4
PY5
PY6
23.5
TOP VIEW
INSULATION COVER
SIDE VIEW
PX1
PX2
PX3
PY1
PX4
PX5
PX6
25- 0.45
PHOTOCATHODE
PX1
PX2
PX3
PX4
PX5
PX6
1 2 3 4 5 6 7 8 9
32
10
11
31
30
12
29
13
GUIDE
CORNER
28
14
15
27
16
26
25 24 23 22 21 20 19 18 17
CUT (G)
PY6
PY5
PY4
CUT (IC)
PY3
PY2
CUT (Dy11)
CUT (G)
PHOTOCATHODE
12.0 ± 0.5
20.32
23.5
BOTTOM VIEW
BASING DIAGRAM
G
K
Dy
P
: Grid
: Photocathode
: Dynode
: Anode (PX1-PX6)
(PY1-PY6)
CUT : Short Pin
IC : Internal Connection
(Do not Use)
TPMHA0524EB
44
i
Anode to
Cathode
Supply
Voltage
Anode Sensitivity
o
!0
Gain
Typ.
Luminous
Typ.
Maximum Rating !2 Typical Time Response !3
!1
Dark
Current
(A/lm)
Typ.
(nA)
Max.
(nA)
Anode
Average Rise Transit T.T.S.
to
Anode Time Time Typ.
Cathode
Current Typ. Typ. (FWHM)
Voltage
(V)
(mA)
(ns)
(ns)
(ns)
800 #8
7.0 × 105
60
2
10
1000
0.1
2.2
11.9
0.75
1250 $2
1.3 × 105
10
40
150
1300
0.06
6.0
20
—
Type
No.
Note
R8900-00-C12, without cover type, is
available.
R8900U
-00-C12
No suffix number: PMT + HA
-01: PMT + HA +Voltage Divider
-02: -01 + Resistor Chain
R3292-02
w R3292-02
Y1
Y2
Y3
Y4
Y5
Y24
Y25
Y26
Y27
Y28
132 ± 3
100 MIN.
X1
X2
X3
X4
X5
HA
TREATMENT
X24
X25
X26
X27
X28
133 ± 3
113 ± 2
PHOTOCATHODE
-HV
: RG-174/U
R
2R
2R
2R
C2
2R
2R
1R : 180 kΩ
2R : 360 kΩ
C1 : 0.002 µF/2 kV
C2 : 0.01 µF/500 V
C3 : 0.01 µF/500 V
2R
2R
2R
2R
2R
1R
C1
HV
IN
RG-174/U
XA
TPMHA0162EE
2R
2R
10 kΩ
20 ± 1
SIGNAL OUTPUT
: 0.8D COAXIAL CABLES
1000 ± 100
EACH
RESISTOR: 1 kΩ
C3
DY12
DY11
DY10
DY9
DY8
DY7
DY6
DY5
DY4
DY3
DY2
DY1
K
XB
YC
YD
TPMHC0088EE
45
Voltage Distribution Ratios
Interstages for the dynodes of a PMT are supplied by a voltage
divider network consisting of series resistors, as shown on the
right page. The cathode ground scheme (1) is usually used in
scintillation counting because it reduces noise resulting from
glass scintillation. In fast-pulse light applications, use of the
anode ground scheme (2) is suggested. Either scheme requires decoupling (charge-storage) capacitors connected to the
last few stages of dynodes in order to maintain the dynode vol-
tage at a constant value during pulse duration. refer to section
11 and 12 on page 8 to 13 for further details.
To free the user from the necessity of designing voltage divider
and performing troublesome parts selection, Hamamatsu provides a variety of socket assemblies which enable sufficient
performance to be derived from PMT's by making simple connections only.
Voltage Distribution Ratio
Voltage Number
of
Distribution
stages
No.
6
q
Voltage Distribution Ratios
K
2
K
No.
w
e
r
t
y
u
i
o
!0
!1
stages
No.
!2
stages
8
K
No.
!3
stages
8
K
No.
!4
!5
stages
K
No.
!6
!7
!8
!9
@0
@1
@2
@3
@4
@5
@6
@7
@8
@9
#0
#1
#2
#3
#4
#5
stages
No.
#6
#7
stages
G
Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 P
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4.8 1.5 1.5
1
1
1
1
1
1
2
1
—
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
— 1.5 1.5
1.5
1
1
1
1
1
1
1
—
1.5
1
3.3
1.2 1.5
3
2
1
—
2
1
2
1
1
1
1
1
—
1
1
1
1
1
1
— 1.5 1.5
1.5
1
1
1
1
1
1
1
—
G
Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Acc Dy7 Dy8 P
4.8 1.2 1.8
1
1
1
1
0.5
3
2.5
1
1.3
2
2
3
4
4
4
4
7
8
1.3
1
K
0.5
1
1
1.3
1.3
1.5
1.5
1.5
2
2
2
2
2
3
3
3
3
4
4
4
10
K
8
8
G
Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 P
—
1
1
1
1.5
1
1
1
1
1
1
1
1
1
1
1.5
1
1
1
1
G
Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 P
1
1
1
1
1
1
1
1
0.5
2
1.5
1
1
1
1
1
1
1
1
1
1
—
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1.5
3
2.5
4.8 1.2 1.8
1
1
1
1
1
1
1
1
4.8 1.5 1.5
1
1
1
1
1
1
1
1
1
1
—
1
1
1
1
1
1.2 1.8 3.6 3.3
1
—
1
1
1
1
1
1
1
1
— 1.5 1.5
1
1
1
1
1
1
1
1
1
1
—
1
1
1
1
1
1.2 1.5 1.8
2
1
—
1
1
1
1
1.2 1.5 2.2 3.6
3
1
—
1.5
1
1
1
1
1
1
1 0.75
1
—
2
1
1
1
1
1
2
3
2
2
—
1
1
1
1
1
1
1
1
1
1
—
1.5
1
1
1
1
1
1
1
1
1
—
1.5
1
1
1
1
2
3
3.6 3.3
1
—
1
1
1
1
1
1
1
1
1
— 1.5
1.5
1
1
1
1
1
1
1
1
1
—
1.5
1
1
1
1.2 1.5
2
3.3
3
1
—
2
1
1
1
1
1
1
2
1
1
—
(Note 1)
Dy1 F1
F3
F2 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 P
1
1
1
1
1
0.18 0 0.17 0.85 1.5
1
1
1
1
1
1
1.2 1.5 2.1
0.18 0 0.17 0.85 1.5
3
2.4
Note 1: Acc should be connected to Dy7 except R4998.
46
Acc: Grid (Accelerating Electrode)
Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 GR
P
1
1
1
1
1
1
1
1
0.5
3
3
9
10
Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 P
1
1
1
2
4
2
<Symbols>
K: Photocathode G: Grid F: Focusing Electrode
Dy: Dynode GR: Guard Ring P: Anode
Acc: Accelerating Electrode
Schematic Diagram of Voltage Divider Networks
(1) Cathode Ground Scheme (+HV)
(2) Anode Ground Scheme (-HV)
CATHODE
CATHODE
ANODE
DY.1 DY.…
ANODE
Cc
DY.1 DY.2…
DY.n
DY.n
Rd
R
R
R : 100kΩ
C : 0.01µF
R
1MΩ
0.1µF
R
R
Rd :
Cc :
R
1MΩ
0.005µF
R
R
R
R
C
C
C
C
R
-HV
+HV
R
R
R
R
R
R : 100k 1MΩ
C : 0.01µF 0.1µF
R
R
R
R
C
C
C
C
TPMOC0043EB
RL
TPMOC0044EB
Voltage Distribution Ratio
Voltage Number
Distribution
of
No.
stages
#8
11
#9
Voltage Distribution Ratios
K
G
0.5
2
No.
$0
stages
11
K
No.
$1
$2
$3
$4
$5
$6
$7
$8
$9
%0
%1
%2
%3
%4
%5
%6
stages
K
No.
%7
stages
12
K
No.
%8
%9
stages
K
No.
^0
^1
stages
No.
^2
^3
^4
stages
No.
^5
^6
stages
15
19
F2
5
12
G
10
14
F3 Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 P
1
1
0.02 3
1
1
1
1
1
1
1
1
Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 P
1
1
— 1.8 2.4
1
1
1
1
1
1
1
1
1
1
1
1
—
1
1
1
1
1
1
1
1
1.2 1.8
2.5
1
3
1
1
1
1
1.5 1.5
1
3
1.2 1.8
4
1
3
1
1
1
1.5 2.5 3.6 4.5 8.6
2.5
2.8 1.2 1.8
1
1
1
1
1
1.5 1.5
1
3
5
2.8 1.2 1.8
1
1
1.2 1.5
2.8
2
4
5.7
8
1
2
2
—
1
1
1
1
1
1
1
1
1
1.2
2
2
—
1
1
1
1
1
1
1
1
1
0.5
— 1.3 0.8 0.8
1
1
1
1
1
1
1
1
5
2
2
—
1
1
1
1
1
1
1
1
2
1
1.6
0
1
1
1
1
1
1
1
1
2.7 0.5
1
1.4
1
—
1
1
1
1
1
1
1
1
1
1
2
1
—
1
1
1
1
1
1
1
1
2
1
2
— 1.5
1
1
1
1
1
1
1
1
2
2
1.6
1
0
1
1
1
1
1
1
1.6
2
3.3
3
1.6
1
0
1
1
1
2
1.2 1.5
2.4
3
3.9
Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 P
1.5
2
1
1
1
1
1
1
1
1
2
1
1
1
P
Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 GR
1
1
1
1
1
1
1
0.5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0.9 0.1
1
1
G
2.5
2.5
K
2
4
K
14
F1
1
0.6
1
1
1
1.2
1.2
2
2
2.5
3
3.3
4
4
4
4.3
4.3
12
Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 P
1
1
1
1
1
1
1
1
1.5
2
1
0.5
1
1
1
1
1
1
1
1
1
—
1
1
(Note 2)
(Note 2)
(Note 2)
(Note 2)
Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 Dy13 Dy14 P
7.5 1.2 1.8
3
2.5
1
1
1
1
1
1
1
1.5 1.5
1
7.5 1.2 1.8
5.7
8
5
1
1
1
1
1.2 1.5
2
2.8
4
Dy1 F2 F1 F3 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 Dy13 Dy14 P
16.8 0
0.6
3.4
—
— 2.4
0
5 3.33 1.67 1
1.2 1.5 2.2
—
1
—
3.4
18.5 0
0.6
0
—
—
4
5
3.3 1.7
1
1
1
2
3
—
—
3.4
0
5 3.33 1.67 1
11.3 0
0.6
3
2.4
1
1
1
1
1.2 1.5 2.2
K
2
2
Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 Dy13 Dy14 Dy15 Dy16 Dy17 Dy18 Dy19 P
1
1
1
1
—
—
—
—
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Note 2: Shield should be connected to Dy5.
47
Quick Reference for PMT Hybrid Assemblies
PMT Characteristics
Assembly
Tube
Type
Diameter
No.
Tube Type No.
/
Voltage
Distribution
Ratio
Reference Outline
Page for No.
PMT
Feature
H.V
Input
Terminal
SHIELD
CABLE*
SHIELD
CABLE*
SHIELD
CABLE*
SHIELD
CABLE*
SHIELD
CABLE*
SHIELD
CABLE*
SHIELD
CABLE*
SHIELD
CABLE*
SHIELD
CABLE*
SHIELD
CABLE*
SHIELD
CABLE*
SHIELD
CABLE*
SHIELD
CABLE*
Assembly Characteristics
Standard
Maximum
Signal
Rating
Rating
Output
1
2
Overall
Terminal Overall Divider
Voltage Current Voltage
Gain
Typ.
(V)
(mA)
(V)
RG-174/U
-1250
0.34
-1500
1.0 × 106
RG-174/U
-1250
0.31
-1500
1.0 × 106
RG-174/U
-1000
0.27
-1250
1.4 × 106
RG-174/U
-1000
0.26
-1250
1.0 × 106
RG-174/U
-1500
0.36
-1800
1.7 × 106
RG-174/U
-1700
0.33
-1800
1.0 × 106
RG-174/U
-1700
0.33
-1800
1.7 × 106
RG-174/U
-1000
0.23
-1250
5.5 × 105
RG-174/U
-2250
0.32
-2500
5.7 × 106 H6610 (R5320)
RG-174/U
+2000
0.36
+2300
5.0 × 105 +HV
RG-174/U
-1500
0.35
-1800
1.7 × 106
RG-174/U
-1300
0.33
-1500
1.1 × 106
RG-174/U
-1500
0.31
-2000
5.0 × 106 H7416 (R7056)
R1635
r
20
q
R2496
y
20
w
R647-01
!7
20
e
H6520
R1166
@1
20
r
H6524
R1450
@7
20
t
R2076
!1
21
y
H6612
R3478
!1
20
u
H8135
R5611A
@9
21
i
H6533
R4998
!9
20
o
R5505-70
^5
20
!0
R7899-01
#1
20
!1
R9800
!0
20
!2
28 mm
R6427
(1-1/8")
#3
20
!3
R580
@4
20
!4
SHV
BNC
-1500
0.54
-1750
7.9 × 105
R7761-70
^6
20
!5
SHIELD
CABLE*
RG-174/U
+2000
0.29
+2300
1.0 × 107 +HV
H3164-10
H3695-10
H3165-10
H6613
H6152-70
H8643
10 mm
(3/8")
13 mm
(1/2")
19 mm
(3/4")
25 mm
(1")
H10580
H7415
H3178-51
H8409-70
38 mm
(1-1/2")
Note :
1: When overall voltage is negative (-HV), DC and pulse signals are obtained. When it's positive (+HV), pulse signal is obtained.
2: The maximum average anode current is defined as 5 % of divider current.
* mark: It's possible to attach an SHV connector to the shield cable.
48
Notes
PMT Characteristics
Assembly
Tube
Type
Diameter
No.
Tube Type No.
/
Voltage
Distribution
Ratio
Reference Outline
Page for No.
PMT
Feature
H.V
Input
Terminal
Assembly Characteristics
Maximum
Standard
Signal
Rating
Rating
Output
1
2
Overall
Terminal Overall Divider
Voltage Current Voltage
(V)
(mA)
(V)
Gain
Typ.
Notes
H6521 (R2256-02)
H6522 (R5113-02)
H6410
R329-02
%6
22
!6
SHV
BNC
-2000
0.49
-2700
3.0 × 106
H7195
R329-02
%5
22
!7
SHV
BNC × 3**
-2000
0.91
-2700
3.0 × 106
H1949-50
R1828-01
$5
22
!8
SHV
BNC × 3**
-2500
1.15
-3000
1.0 × 107
R1828-01
$5
22
!9
SHV
BNC
-2500
0.58
-3000
1.0 × 107
H2431-50
R2083
!2
22
@0
SHV
BNC
-3000
0.52
-3500
2.5 × 106 H3378-50 (R3377)
H6614-70
R5924-70
^6
22
@1
SHIELD
CABLE*
RG-174/U
+2000
0.29
+2300
1.0 × 107 +HV
H10570
R9779
e
22
@2
SHV
BNC
-1500
0.33
-1750
5.0 × 105
R4143
$3
22
@3
SHV
BNC
-2500
0.58
-3000
5.0 × 106 H6526 (R4885)
R6091
%6
22
@4
SHV
BNC
-2000
0.49
-2500
1.0 × 107
R1250
^0
22
@5
SHV
BNC
-2000
0.68
-3000
1.4 × 107
R1584
^0
22
@5
SHV
BNC
-2000
0.68
-3000
1.4 × 107
$0
22
@6
+2000
0.35
+2500
1.0 × 107
H8711
16 ch (4 × 4) $7
24
@7
-800
0.28
-1000
3.5 × 106
H7546B
64 ch (8 × 8) %0
24
@8
-800
0.36
-1000
6.0 × 105
H8804
64 ch (8 × 8) %0
24
@9
-800
0.36
-1000
6.0 × 105
H7260
Metal 32 ch (1 × 32) !7
Package
PMT
64 ch (8 × 8) %8
24
#0
-800
0.33
-900
2.0 × 106
24
#1
-1000
0.16
-1100
1.5 × 106
H10966A
64 ch (8 × 8) !3
24
#1
-1100
0.25
-1100
3.3 × 105
H10966B
64 ch (8 × 8) !3
—
#2
-1000
0.25
-1100
3.3 × 105
H9500
256 ch (16 × 16) %9
24
#3
-1000
0.16
-1100
1.5 × 106
H1949-51
H6525
H6559
H6527
H6528
R3600-06
H8500C
51 mm
(2")
76 mm
(3")
127 mm
(5")
508 mm
R3600-02
(20")
HYBRID CABLE
H.V=SINGLE WIRE
(SIGNAL=RG-58C/U
)
TERMINAL
PIN
TERMINAL
PIN
TERMINAL
PIN
TERMINAL
PIN
TERMINAL
SHV
PIN
TERMINAL
SHV
PIN
TERMINAL TERMINAL
PIN
PIN
TERMINAL
SHV
PIN
TERMINAL
PIN
TERMINAL
PIN
TERMINAL
PIN
TERMINAL
PIN
H3177-50 (R2059)
H4022-50 (R4004)
H3177-51 (R2059)
H4022-51 (R4004)
(14 µA is total anode
current of 16 ch.)
(18 µA is total anode
current of 64 ch.)
(18 µA is total anode
current of 64 ch.)
(100 µA is total anode
current of 32 ch.)
(100 µA is total anode
current of 64 ch.)
(100 µA is total anode
current of 64 ch.)
(100 µA is total anode
current of 64 ch.)
(100 µA is total anode
current of 256 ch.)
Note :
1: When overall voltage is negative (-HV), DC and pulse signals are obtained. When it's positive (+HV), pulse signal is obtained.
2: The maximum average anode current is defined as 5 % of divider current.
* mark: It's possible to attach an SHV connector to the shield cable.
** mark: It has 2 anode outputs and 1 dynode output.
49
Dimensional Outlines and Circuit Diagrams
For PMT Hybrid Assemblies
q H3164-10
w H3695-10
10.5 ± 0.6
11.3 ± 0.7
8 MIN.
8 MIN.
SIGNAL OUTPUT
: RG-174/U (BLACK)
SIGNAL OUTPUT
: RG-174/U (BLACK)
PMT: R1635
WITH HA TREATMENT
R10
C2
R9
C1
DY7
*MAGNETIC SHIELD
MAGNETIC
SHIELD (t=0.2 mm)
WITH HEAT
SHRINKABLE TUBE
DY6
R8
DY5
R7
P
MAGNETIC
SHIELD (t=0.2 mm)
WITH HEAT
SHRINKABLE TUBE
DY4
R6
DY3
R5
DY2
R6
DY4
R5
DY3
R4
DY2
R2
R1
-H.V
: SHIELD CABLE (RED)
SIGNAL OUTPUT
: RG-174/U (BLACK)
R1
K
-H.V
: SHIELD CABLE (RED)
10.6 ± 0.2
1500 MIN.
1500 MIN.
POTTING
COMPOUND
R1 to R11 : 330 kΩ
C1 to C3 : 0.01 µF
-H.V
: SHIELD CABLE (RED)
C1
R7
DY5
DY1
R2
K
C2
R8
DY6
R3
R4
DY1
10.6 ± 0.2
C3
R9
DY7
R3
POTTING
COMPOUND
R10
DY8
PMT: R2496
WITH HA TREATMENT
95.0 ± 2.5
95.0 ± 2.5
C3
DY8
*MAGNETIC SHIELD
P
R11
PHOTOCATHODE
45.0 ± 1.5
45.0 ± 1.5
PHOTOCATHODE
R1 to R4 : 510 kΩ
R5 to R10 : 330 kΩ
C1 to C3 : 0.01 µF
-H.V
: SHIELD CABLE (RED)
* MAGNETIC SHIELD IS CONNECTED
TO -H.V INSIDE OF THIS PRODUCT.
THE H3695-11 IS A VARIANT OF H3695-10
WITH A TERMINAL RESISTOR (50Ω).
SIGNAL OUTPUT
: RG-174/U (BLACK)
* MAGNETIC SHIELD IS CONNECTED
TO -H.V INSIDE OF THIS PRODUCT.
THE H3164-11 IS A VARIANT OF H3164-10
WITH A TERMINAL RESISTOR (50Ω).
TPMHA0309EC
e H3165-10
TPMHA0310EB
r H6520
23.5 ± 0.5
14.3 ± 0.6
19.3 ± 0.7
10 MIN.
1 MAX.
15 MIN.
PHOTOCATHODE
PMT: R647-01
WITH HA TREATMENT
R11
C3
R10
C2
R9
C1
PMT: R1166
WITH HA TREATMENT
88 ± 2
DY9
R8
DY7
R7
DY6
R6
R7
R6
R5
R4
DY4
DY3
R4
DY3
R3
DY2
R1
R2
-H.V
: SHIELD CABLE (RED)
DY1
K
12.4 ± 0.5
R1
-H.V
: SHIELD CABLE (RED)
POTTING
COMPOUND
R1 to R11 : 330 kΩ
C1 to C3 : 0.01 µF
1500 MIN.
1500 MIN.
C1
DY5
R2
SIGNAL OUTPUT
: RG-174/U (BLACK)
C2
R9
DY8
DY6
R5
DY4
R3
-H.V
: SHIELD CABLE (RED)
C3
R10
R8
DY5
DY1
K
R11
DY9
DY7
DY2
POTTING
COMPOUND
P
DY10
MAGNETIC SHIELD
CASE (t=0.5 mm)
130.0 ± 0.8
DY8
SIGNAL OUTPUT
: RG-174/U (BLACK)
PHOTOCATHODE
P
DY10
MAGNETIC
SHIELD (t=0.2 mm)
WITH HEAT
SHRINKABLE TUBE
*MAGNETIC SHIELD
116.0 ± 3.0
71 ± 2
SIGNAL OUTPUT
: RG-174/U (BLACK)
* MAGNETIC SHIELD IS CONNECTED
TO -H.V INSIDE OF THIS PRODUCT.
THE H3165-11 IS A VARIANT OF H3165-10
WITH A TERMINAL RESISTOR (50Ω).
-H.V
: SHIELD CABLE (RED)
R1 : 510 kΩ
R2 to R11 : 330 kΩ
C1 to C3 : 0.01 µF
* TO MAGNETIC
SHIELD CASE
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
THE H6520-01 IS A VARIANT OF H6520
WITH A TERMINAL RESISTOR (50Ω).
SIGNAL OUTPUT
: RG-174/U (BLACK)
TPMHA0311EC
y H6613
23.5 ± 0.5
19.3 ± 0.7
18.7 ± 1.0
15 MIN.
15 MIN.
88 ± 2
130.0 ± 0.8
SIGNAL OUTPUT
: RG-174/U (BLACK)
PHOTOCATHODE
P
R11
C3
R10
C2
R9
C1
65 ± 2
PMT: R1450
WITH HA TREATMENT
1 MAX.
23.5 ± 0.5
MAGNETIC SHIELD
CASE (t=0.5 mm)
SIGNAL OUTPUT
: RG-174/U (BLACK)
PHOTOCATHODE
PMT: R2076
WITH HA TREATMENT
DY10
P
DY9
DY8
R8
DY7
R7
DY6
MAGNETIC SHIELD
CASE (t=0.5 mm)
R7
R6
DY3
R5
R5
DY2
R4
R4
DY3
DY1
R3
R3
DY2
R2
R2
R1
-H.V
: SHIELD CABLE (RED)
: 680 kΩ
: 510 kΩ
: 330 kΩ
: 0.01 µF
POTTING
COMPOUND
* TO MAGNETIC
SHIELD CASE
1500 MIN.
1500 MIN.
POTTING
COMPOUND
SIGNAL OUTPUT
: RG-174/U (BLACK)
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
THE H6524-01 IS A VARIANT OF H6524
WITH A TERMINAL RESISTOR (50Ω).
-H.V
: SHIELD CABLE (RED)
SIGNAL OUTPUT
: RG-174/U (BLACK)
TPMHA0313EB
50
C1
DY6
DY4
DY4
-H.V
: SHIELD CABLE (RED)
C2
R9
DY5
R6
R1
R3
R2, R4 to R11
C1 to C3
C3
R10
DY7
R8
DY5
DY1
K
R11
DY8
130.0 ± 0.8
1 MAX.
t H6524
TPMHA0312EB
K
R1
R1
R2
R3
R4, R6 to R11
R5
C1 to C3
-H.V
: SHIELD CABLE (RED)
: 1 MΩ
: 750 kΩ
: 560 kΩ
: 330 kΩ
: 510 kΩ
: 0.01 µF
* TO MAGNETIC
SHIELD CASE
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
THE H6613-01 IS A VARIANT OF H6613
WITH A TERMINAL RESISTOR (50Ω).
TPMHA0314EA
(Unit: mm)
u H6612
i H8135
23.5 ± 0.5
19.3 ± 0.7
24.0 ± 0.5
15 MIN.
19.3 ± 1.0
15 MIN.
PHOTOCATHODE
1 MAX.
1 MAX.
SIGNAL OUTPUT
: RG-174/U (BLACK)
PHOTOCATHODE
R11
C3
R10
C2
R9
C1
DY8
DY7
DY6
130.0 ± 0.8
MAGNETIC SHIELD
CASE (t=0.5 mm)
MAGNETIC SHIELD
CASE (t=0.5 mm)
60.0 ± 0.8
65 ± 2
P
PMT: R3478
WITH HA TREATMENT
SIGNAL OUTPUT
: RG-174/U (BLACK)
P
PMT: R5611A
WITH HA TREATMENT
R8
DY10
R7
DY9
R6
DY8
DY5
DY4
DY3
R1
1500 MIN.
-H.V
: SHIELD CABLE (RED)
R1
R2
R3
R4, R6 to R11
R5
C1 to C3
R6
1500 MIN.
R2
SIGNAL OUTPUT
: RG-174/U (BLACK)
R1 : 1 MΩ
R2 to R11 : 330 kΩ
C1 to C3 : 0.01 µF
DY6
R3
-H.V
: SHIELD CABLE (RED)
C1
R7
R4
POTTING
COMPOUND
C2
R9
DY7
DY1
K
C3
R10
R8
POTTING
COMPOUND
R5
DY2
R11
DY5
R5
DY4
-H.V
: RG-174/U (RED)
R4
DY3
R3
DY2
* TO MAGNETIC
SHIELD CASE
: 1 MΩ
: 750 kΩ
: 560 kΩ
: 330 kΩ
: 510 kΩ
: 0.01 µF
R2
DY1
K
SIGNAL OUTPUT
: RG-174/U (BLACK)
R1
-H.V
: SHIELD CABLE (RED)
* TO MAGNETIC
SHIELD CASE
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
THE H6612-01 IS A VARIANT OF H6612
WITH A TERMINAL RESISTOR (50Ω).
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
TPMHA0315EA
o H6533
TPMHA0513EB
!0 H6152-70
31.0 ± 0.5
26 ± 1
P
20 MIN.
31.0 ± 0.5
SIGNAL OUTPUT
: RG-174/U (BLACK)
25.8 ± 0.7
R19
SIGNAL OUTPUT
: RG-174/U (BLACK)
17.5 MIN.
C4
R23
R22 R18
1 MAX.
DY10
71 ± 1
PMT: R4998 (H6533)
R5320 (H6610)
WITH HA TREATMENT
R16
1 MAX.
R17
PHOTOCATHODE
C3
R21 R15
C6
P
PMT: R5505-70
WITH HA TREATMENT
DY9
R14
C2
120.0 ± 0.8
R20 R13
R11
DY6
R10
R9
DY4
R8
R19 R15
C3
R14
C2
R13
C1
R12
DY10
R11
DY9
POM CASE
R10
R7
DY8
R6
DY7
R5
DY6
+H.V
: SHIELD CABLE (RED)
R1 to R17
R18, R23
R19 to R21
R22
R24
C1 to C5
C6, C7
R9
: 330 kΩ
: 1 MΩ
: 51 Ω
: 100 kΩ
: 10 kΩ
: 0.01 µF
: 0.0047 µF
R8
DY2
R7
DY1
POTTING COMPOUND
R4
DY5
R6
R3
ACC
F
K
DY4
R2
R1
-H.V
: SHIELD CABLE (RED)
SIGNAL OUTPUT
: RG-174/U (BLACK)
R1, R3, R19 : 430 kΩ
R2, R7 to R12, R15 to R17 : 330 kΩ
R4 : 820 kΩ
R5, R18 : 390 kΩ
R6, R14 : 270 kΩ
R13 : 220 kΩ
R20 to R22 : 51 Ω
* MAGNETIC SHIELD IS CONNECTED
C1 to C3 : 0.022 µF
TO GND INSIDE OF THIS PRODUCT.
C4 : 0.033 µF
1500 MIN.
1500 MIN.
C4
DY14
DY11
DY3
-H.V
: SHIELD CABLE (RED)
R20 R16
R24
DY12
DY5
POTTING
COMPOUND
C5
DY15
C1
DY7
100.0 ± 0.8
MAGNETIC SHIELD
CASE (t=0.8 mm)
R21 R17
DY13
DY8
R12
C7
R22
PHOTOCATHODE
R5
+H.V
: SHIELD CABLE (RED)
DY3
R4
DY2
R3
DY1
R2
* TO MAGNETIC
SHIELD CASE
SIGNAL OUTPUT
: RG-174/U (BLACK)
K
R18
R1
TPMHA0317EB
!2 H10580
31.5 ± 0.5
26 ± 1
25.4 ± 0.5
1 MAX.
31.0 ± 0.5
PHOTOCATHODE
C4
R19 R15
R14
DY9
R12
C2
DY8
R17 R11
R10
MAGNETIC SHIELD
CASE (t=0.8 mm)
R9
R11
C3
R10
C2
R9
C1
DY8
C3
PMT: R7899-01
WITH HA TREATMENT
R18 R13
120.0 ± 0.8
120.0 ± 0.8
P
R16
DY10
ANODE OUTPUT
: RG-174/U (BLACK)
22 MIN.
ANODE OUTPUT
: RG-174/U
(BLACK)
P
PHOTOCATHODE
68 ± 1
1 MAX.
22 MIN.
ACTIVE VOLTAGE DIVIDER
!1 H8643
TPMHA0470EB
MAGNETIC
SHIELD CASE
DY7
DY6
DY5
R8
C1
DY7
DY4
R8
R7
DY6
DY3
R7
R6
DY5
R6
R5
DY4
R5
DY2
DY3
R4
R4
R3
R3
DY1
1500 MIN.
POTTING
COMPOUND
DY2
1500 MIN.
R2
K
R1
-H.V
: SHIELD CABLE (RED)
ANODE OUTPUT
: RG-174/U (BLACK)
-H.V
: SHIELD
CABLE (RED)
* TO MAGNETIC
SHIELD CASE
R2
ANODE OUTPUT
: RG-174/U (BLACK)
WITH BNC
-H.V
: SHIELD CABLE (RED)
WITH SHV
R1, R2, R4, R11, R12: 300 kΩ
R3, R5 to R10: 200 kΩ
R13, R14: 360 kΩ
R15, R16: 330 kΩ
R17 to R19: 51 Ω
C1, C2: 0.01 µF
C3: 0.022 µF
C4: 0.033 µF
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
DY1
K
R1
-H.V
: SHIELD CABLE (RED)
R1: 1 MΩ
R2: 200 kΩ
R3, R5: 150 kΩ
R4, R6 to R8: 300 kΩ
R9 to R11: 51 Ω
C1 to C3: 0.01 µF
* TO MAGNETIC
SHIELD CASE
VOLTAGE DIVIDER CURRENT
=383 µA / 1500 V INPUT
TPMHA0514EA
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
TPMHA0554EA
51
!4 H3178-51
33.0 ± 0.5
SIGNAL OUTPUT
: RG-174/U
(BLACK)
29.0 ± 0.7
25 MIN.
P
* TO MAGNETIC
SHIELD CASE
47.0 ± 0.5
SIGNAL OUTPUT
: BNC-R
39 ± 1
1 MAX.
!3 H7415
34 MIN.
P
R13
C4
PHOTOCATHODE
DY10
PMT: R6427 (H7415)
R7056 (H7416)
WITH HA TREATMENT
DY9
R16 R13
C3
R15 R12
C2
R14 R11
C1
R11
R10
DY9
DY8
R10
R1,R2 : 430 kΩ
R3 : 470 kΩ
R5 : 510 kΩ
R4,R6 to R13 : 330 kΩ
R14 to R16 : 51 Ω
C1 to C3 : 0.01 µF
DY7
130.0 ± 0.8
R9
DY6
R8
MAGNETIC SHIELD
CASE (t=1.0 mm)
C3
PHOTOCATHODE
PMT: R580
WITH HA TREATMENT
DY5
R7
C1
R7
DY6
MAGNETIC SHIELD
CASE (t=0.8 mm)
R6
DY5
R5
R6
DY4
R5
DY3
R4
DY2
R3
DY1
R4
DY3
R3
DY2
C5
R2
DY1
K
R1
R15
R2
-H.V
R1
K
: SHIELD
CABLE (RED)
-H.V
: SHIELD CABLE (RED)
SIGNAL OUTPUT
: RG-174/U (BLACK)
SIG
* TO MAGNETIC
SHIELD CASE
-HV
1500 MIN.
C2
R8
DY8
DY4
POTTING
COMPOUND
R9
DY7
162.0 ± 0.8
85 ± 2
1 MAX.
R14 R12
DY10
SIGNAL
OUTPUT
: BNC-R
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
THE H7415-01 IS A VARIANT OF H7415
WITH A TERMINAL RESISTOR (50Ω).
-H.V
: SHV-R
R1, R10, R12
R2 to R6, R13
R7
R8
R9
R11
R14
R15
C1
C2
C3
C4
C5
-H.V
: SHV-R
: 300 kΩ
: 150 kΩ
: 180 kΩ
: 220 kΩ
: 330 kΩ
: 240 kΩ
: 51 Ω
: 10 kΩ
: 0.01 µF
: 0.022 µF
: 0.047 µF
: 0.1 µF
: 4700 pF
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
TPMHA0320EB
TPMHA0318EC
!5 H8409-70
!6 H6410
45.0 ± 0.5
PHOTOCATHODE
C7
50 ± 2
80.0 ± 0.8
PMT: R7761-70
WITH HA TREATMENT
C6
R27
R25 R21
C5
R24 R20
C4
R23 R19
C3
R18
C2
R17
C1
DY19
1 MAX.
27 MIN.
R26
46 MIN.
P
+H.V
: SHIELD CABLE
(RED)
DY12
PHOTOCATHODE
DY18
DY17
POM CASE
POTTING COMPOUND
DY15
R16
R15
DY13
R14
DY12
R13
DY11
SIGNAL OUTPUT
: RG-174/U (BLACK)
PMT: R329-02 (H6410)
R2256-02 (H6521)
R5113-02 (H6522)
WITH HA TREATMENT
DY16
DY14
+H.V
: SHIELD CABLE (RED)
* TO MAGNETIC
SHIELD CASE
SIGNAL OUTPUT
: BNC-R
53.0 ± 1.5
R1 to R21
R22, R28
R23 to R25
R26
R27
C1 to C5
C6, C7
: 330 kΩ
: 1 MΩ
: 51 Ω
: 10 kΩ
: 100 kΩ
: 0.01 µF
: 0.0047 µF
200.0 ± 0.5
1 MAX.
R28
P
1500 MIN.
60.0 ± 0.5
SIGNAL OUTPUT
: RG-174/U (BLACK)
39 ± 1
DY11
DY10
DY9
DY8
DY7
DY6
DY5
SH
MAGNETIC SHIELD
CASE (t=0.8 mm)
R12
R11
C5
C4
C3
C2
C1
R7
DY4
DY3
DY2
DY1
G
K
DY10
R18
R21 R17
R16
R20 R15
R14
R19 R13
R12
R11
R10
R9
R8
R6
R5
R4
R3
R2
R1
C6
R22
DY9
-H.V
: SHV-R
R10
DY8
R9
DY7
R8
DY6
R7
DY5
R6
DY4
R5
DY3
R4
SIGNAL
OUTPUT
: BNC-R
R2
K
R22
R1
-H.V
: SHV-R
: 240 kΩ
: 220 kΩ
: 180 kΩ
: 150 kΩ
: 300 kΩ
: 360 kΩ
: 51 Ω
: 100 Ω
: 10 kΩ
: 0.022 µF
: 0.047 µF
: 0.1 µF
: 0.22 µF
: 0.47 µF
: 470 pF
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
TPMHA0476EB
52
SIG
R3
DY1
-HV
DY2
R1, R5
R2, R10, R16
R3, R9
R4, R6 to R8, R14, R18
R11, R13, R17
R12, R15
R19
R20, R21
R22
C1
C2
C3
C4
C5
C6
TPMHA0324EC
(Unit: mm)
!7 H7195
!8 H1949-50
* TO MAGNETIC
SHIELD CASE
ANODE OUTPUT 2
: BNC-R
ANODE OUTPUT 1
: BNC-R
DYNODE OUTPUT
: BNC-R
1 MAX.
53.0 ± 1.5
46 MIN.
R25
C7
DY12
PMT: R329-02
WITH HA TREATMENT
DY11
MAGNETIC SHIELD
CASE (t=0.8 mm)
215 ± 1
DY10
DY9
DY8
DY7
DY6
DY5
R21
R24 R20
R19
R18
R23 R17
R16
R22 R15
R14
R13
R12
R11
R10
SH
DY
-HV
A1
ANODE
OUTPUT 1
: BNC-R
C3
C2
A2
C1
C11
DY12
DY11
DY10
DY9
DY8
DY7
DY6
DY5
DY4
DY3
DY2
DY1
Acc
K
R1
-H.V
: SHV-R
: 10 kΩ
: 110 kΩ
: 100 kΩ
: 160 kΩ
: 51 Ω
: 100 Ω
: 470 pF
: 0.022 µF
: 0.047 µF
: 0.1 µF
: 0.22 µF
: 0.47 µF
: 0.01 µF
DYNODE
OUTPUT
: BNC-R
-HV
A1
ANODE
OUTPUT 1
: BNC-R
A2
-H.V
: SHV-R
ANODE
OUTPUT 2
: BNC-R
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
G
R17
R20 R16
R19 R15
R18 R14
R13
R12
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
C7
C10
C6
C5
C4
C3
C2
C9
C8
C12
C1
R1
R1, R21
R2, R5
R3, R7 to R12, R16
R4, R6
R13, R14, R17
R15
R18 to R20
C1
C2 to C4, C10
C5, C6
C7
C8, C9
C11, C12
DY
- H.V
: SHV-R
ANODE
OUTPUT 2
: BNC-R
MAGNETIC SHIELD
CASE (t=0.8 mm)
DYNODE
OUTPUT
: BNC-R
R21
P
PMT: R1828-01 (H1949-50)
R2059 (H3177-50)
R4004 (H4022-50)
WITH HA TREATMENT
C4
R1, R25
R2 to R4, R17 to R19
R5, R6, R8 to R13, R15
R16, R20, R21
R7, R14
R22
R23, R24
C1
C2
C3
C4
C5
C6
C7
DYNODE
OUTPUT
: BNC-R
PHOTOCATHODE
C5
R8
R7
R6
R5
R4
R3
R2
K
ANODE
OUTPUT 2
: BNC-R
ANODE
OUTPUT 1
: BNC-R
46 MIN.
C6
R9
DY4
DY3
DY2
DY1
G
53.0 ± 1.5
235.0 ± 0.5
P
PHOTOCATHODE
* TO MAGNETIC
SHIELD CASE
60.0 ± 0.5
1 MAX.
60.0 ± 0.5
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
TPMHA0325EC
TPMHA0323EC
!9 H1949-51
@0 H2431-50
* TO MAGNETIC
SHIELD CASE
1 MAX.
53.0 ± 1.5
SIGNAL OUTPUT
: BNC-R
46 MIN.
P
R17
C6
C9
* TO MAGNETIC
SHIELD CASE
60.0 ± 0.5
53.0 ± 1.5
1 MAX.
60.0 ± 0.5
SIGNAL OUTPUT
: BNC-R
46 MIN.
P
R16
R20 R16
C5
C8
C4
R12
C3
R11
C2
R10
C1
C7
PMT: R2083 (H2431-50)
R3377 (H3378-50) DY6
WITH HA TREATMENT
DY5
200 ± 1
DY8
R9
235.0 ± 0.5
C5
R12
DY7
DY6
R8
MAGNETIC SHIELD
CASE (t=0.8 mm)
R7
R9
C2
R8
C1
R7
DY2
R6
R5
DY3
R5
R4
DY2
R4
ACC
R3
F
K
R3
DY1
-HV
A1
R1, R4
R2, R5
R3, R6 to R11, R17
R12 to R16
R18 to R20
R21
C1 to C7
C8
C9
C10
C11
C3
DY1
R6
R1
R10
DY3
DY5
R2
C12
R11
DY4
DY4
-H.V
: SHV-R
C4
C13
R13
R18 R13
DY9
Acc
G1
K
C7
C11
DY7
DY10
MAGNETIC SHIELD
CASE (t=0.8 mm)
C6
C10
R14
PHOTOCATHODE
C10
R19 R14
DY11
PMT: R1828-01 (H1949-51)
R2059 (H3177-51)
R4004 (H4022-51)
WITH HA TREATMENT
C9
DY8
R15
PHOTOCATHODE
C8
R17 R15
DY12
SIGNAL
OUTPUT
: BNC-R
-H.V
: SHV-R
: 10 kΩ
: 120 kΩ
: 100 kΩ
: 180 kΩ
: 150 kΩ
: 300 kΩ
: 51 Ω
: 470 pF
: 0.01 µF
: 0.022 µF
: 0.033 µF
: 4700 pF
: 0.01 µF
C11
R21
-H.V
: SHV-R
: 240 kΩ
: 360 kΩ
: 200 kΩ
: 300 kΩ
: 51 Ω
: 10 kΩ
: 0.01 µF
: 0.022 µF
: 0.033 µF
: 0.01 µF
: 470 pF
SIGNAL
OUTPUT
: BNC-R
SIG
-HV
-H.V
: SHV-R
R2
C1
R1
-H.V
: SHV-R
R1: 33 kΩ
R2, R15: 390 kΩ
R3, R4, R13: 470 kΩ
R5: 499 kΩ
R6, R16: 360 kΩ
R7: 536 kΩ
R8 to R11: 300 kΩ
R12: 150 kΩ
R14: 430 kΩ
R17: 51 Ω
C1, C2: 4700 pF
C3 to C11: 0.01 µF
C12, C13: 1000 pF
C14: 2200 pF
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
TPMHA0326EC
TPMHA0327EB
53
@2 H10570
60.0 ± 0.5
SIGNAL OUTPUT
: RG-174/U
(BLACK)
R29
60.0 ± 0.5
52.0 ± 1.5
39 MIN.
C7
P
PHOTOCATHODE
C6
R28
R27
+H.V
: SHIELD
CABLE (RED)
+0
80- 1
ANODE OUTPUT
: BNC-R
46 MIN.
P
R26 R21
C5
R25 R20
C4
R24 R19
C3
R23 R18
C2
DY8
R17
C1
DY7
DY19
PMT: R5924-70
WITH HA TREATMENT
1 MAX.
1 MAX.
52 ± 1
DY18
PHOTOCATHODE
DY17
BLACK COATING
DY16
POM CASE
DY15
R10
R16
AL PANEL
DY14
+H.V
: SHIELD CABLE (RED)
DY13
DY6
R15
R1 to R21
R22, R29
R23 to R26
R27
R28
C1 to C5
C6, C7
R14
DY12
R13
DY11
R12
DY10
R11
SIGNAL OUTPUT
: RG-174/U (BLACK)
DY9
200.0 ± 0.5
1500 MIN.
ACTIVE VOLTAGE DIVIDER
@1 H6614-70
: 330 kΩ
: 1 MΩ
: 51 Ω
: 10 kΩ
: 100 kΩ
: 0.01 µF
: 0.0047 µF
C3
R9
C2
R8
C1
DY5
R7
DY4
R6
MAGNETIC
SHIELD CASE
DY3
R5
R10
DY2
R9
DY1
R4
DY8
DY7
R11
R8
DY6
Acc
R8
DY5
R3
R2
G
R6
R1
K
DY4
-H.V INPUT
: SHV-R
R5
DY3
R4
DY2
R1 to R7: 300 kΩ
R8 to R10: 51 Ω
R11: 1 MΩ
C1 to C3: : 0.022 µF
R3
DY1
R2
R22
K
ANODE
OUTPUT
: BNC-R
R1
SIG
-HV
-H.V INPUT
: SHV-R
VOLTAGE DIVIDER CURRENT
=383 µA / 1750 V (MAX.) INPUT
TPMHA0472EB
@3 H6525, H6526
@4 H6559
* TO MAGNETIC
SHIELD CASE
77.0 ± 1.5
SIGNAL
OUTPUT
: BNC-R
65 MIN.
P
R17
C6
C9
83 ± 1
77.0 ± 1.5
1 MAX.
84.5 ± 0.5
1 MAX.
TPMHA0555EA
* TO MAGNETIC
SHIELD CASE
SIGNAL OUTPUT
: BNC-R
65 MIN.
P
R20 R16
R15
PHOTOCATHODE
C5
C8
R18 R13
C4
C7
R12
C3
R11
C2
R10
C1
C10
R19 R14
PHOTOCATHODE
40 ± 1
DY12
DY11
205.0 ± 0.8
DY11
DY10
DY9
PMT: R6091
WITH HA TREATMENT
DY8
DY7
MAGNETIC SHIELD
CASE (t=0.8 mm)
R9
218 ± 1
285 ± 6
PMT: R4143 (H6525)
R4885 (H6526)
WITH HA TREATMENT
DY6
R8
DY5
SH
104.0 ± 0.5
(ASSY PARTS LENGTH)
R6
G
K
DY3
R5
DY2
R18
R21 R17
R16
R20 R15
R14
R19 R13
R12
R11
R10
R9
R8
C5
C4
C3
C2
C1
R7
DY4
DY3
DY2
DY1
DY4
R6
R5
R4
R3
R2
R1
C6
R22
R4
-H.V
: SHV-R
DY1
R3
G2
Acc
G1
K
67.0 ± 0.5
-H.V
: SHV-R
R21
-H.V
: SHV-R
: 240 kΩ
: 360 kΩ
: 200 kΩ
: 300 kΩ
: 51 Ω
: 10 kΩ
: 0.01 µF
: 0.022 µF
: 0.033 µF
: 0.01 µF
: 470 pF
70 ± 1
SIG
-HV
R1
R3, R4
R2, R5
R1, R6 to R11, R17
R12 to R16
R18 to R20
R21
C1 to C7
C8
C9
C10
C11
R1, R5
R2, R10, R16
R3, R9
R4, R6 to R8, R14, R18
R11, R13, R17
R12, R15
R19
R20, R21
R22
C1
C2
C3
C4
C5
C6
C11
SIGNAL
OUTPUT
: BNC-R
TPMHA0330EB
: 240 kΩ
: 220 kΩ
: 180 kΩ
: 150 kΩ
: 300 kΩ
: 360 kΩ
: 51 Ω
: 100 Ω
: 10 kΩ
: 0.022 µF
: 0.047 µF
: 0.1 µF
: 0.22 µF
: 0.47 µF
: 470 pF
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
-HV
SIG
R2
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
54
DY10
DY9
DY8
DY7
DY6
DY5
MAGNETIC SHIELD
CASE (t=0.8 mm)
R7
SIGNAL
OUTPUT
: BNC-R
DY12
-H.V
: SHV-R
TPMHA0331EB
(Unit: mm)
H6527
H6528
142.0 ± 0.8
142.0 ± 0.8
508 ± 10
131 ± 2
131 ± 2
460 MIN.
120 MIN.
SIGNAL/HV GND
H6527=Flat window, Borosilicate
H6528=Curved window, UV glass
120 MIN.
PHOTOCATHODE
C4
P
DY11
R20 R17
C5
R19 R16
C4
R12
R11
R18 R15
C3
R14
C2
R13
C1
R10
R1, R17 : 240 kΩ
R2 : 360 kΩ
R3 : 390 kΩ
R4 : 120 kΩ
R5 : 180 kΩ
R6 to R13 : 100 kΩ
R14, R15 : 150 kΩ
R16 : 300 kΩ
R18 : 51 Ω
R19, R20 : 100 Ω
R21 : 10 kΩ
C1 : 0.022 µF
C2 : 0.047 µF
C3 : 0.1 µF
C4 : 0.22 µF
C5 : 0.47 µF
C6 : 470 pF
DY11
DY10
R12
BLACK TAPE
DY9
SOCKET ASSY
HOUSING
DY8
R11
R10
DY7
R9
DY6
R8
40
DY5
R7
DY4
R6
R9
DY5
R8
DY4
R7
DY3
R6
R5
DY2
254 ± 10
R4
F3
R3
R2
HEAT
SHRINKABLE
TUBE
82.7 ± 2.0
SIG
-HV
R3
CABLE LENGTH
5000
116
C6
R2
G1
K
R1
R21
F2
R1
F1
K
HYBRID CABLE *
R4
-H.V
: SHV-R
R5
DY1
DY1
G2
DY2
PMT: R3600-02
(85)
DY3
SIGNAL
OUTPUT
: BNC-R
C1
DY6
DY12
74
R14
+H.V
: SINGLE WIRE
DY7
DY13
MAGNETIC SHIELD
CASE (t=0.8 mm)
C2
DY8
DY14
77
R15
R13
610 ± 20
259 ± 2
PMT: R1250 (H6527)
R1584 (H6528)
WITH HA TREATMENT
R16
DY9
SIGNAL OUTPUT
: BNC-R
P
C3 R18
DY10
695 TYP.
140 ± 1
PHOTOCATHODE
SIGNAL OUTPUT
: RG-58C/U (BLACK)
R17
* TO MAGNETIC
SHIELD CASE
56
356 ± 6
@6 R3600-06
2 MAX.
2 MAX.
@5 H6527, H6528
-H.V
: SHV-R
R1
R3
R4
R5
R2,R6 to R15
R16
R17, R18
C1, C2
C3, C4
: 1.3 MΩ
: 549 kΩ
: 5.49 kΩ
: 820 kΩ
: 274 kΩ
: 200 kΩ
: 10 kΩ
: 0.001 µF
: 4700 pF
* HYBRID CABLE CONTAINS A SIGNAL CABLE
AND HV WIRE WITH ADDITIONAL COVER.
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
TPMHA0156EC
TPMHA0332EE
GND
P8
P9
P15 P16
45 ± 0.8
P1 P2
R18
0.3
2
P63
R20
C4
R19
PMT:
R7600-M64 SERIES
C4
R13
C2
C3
C1
4-SCREWS (M2)
Dy8
R7
Dy6
R6
DY
P1
2.54×9=22.86
R8
Dy7
P8
Dy5
GND
R5
P8
Dy12 OUTPUT
TERMINAL PIN
( 0.64)
Dy4
-HV
P16
GND
12.7
P9
2.54
R9
7.62
Dy12 OUTPUT
TERMINAL PIN
( 0.46)
R4
Dy3
-HV INPUT
TERMINAL PINS
( 0.46)
R10
Dy8
P1
P64
R9
-HV INPUT
TERMINAL PINS
( 0.64)
Dy7
ANODE OUTPUT
TERMINAL PINS ( 0.64)
2.54 PITCH 8 × 8
Dy5
R8
Dy6
R7
R6
Dy4
P57
R5
R1, R5 to R14: 100 kΩ
R2 to R4, R15: 200 kΩ
R16: 300 kΩ
R17 to R19: 51 Ω
R20: 10 kΩ
R21: 1 MΩ
C1 to C3: 0.022 µF
C4: 0.01 µF
Dy3
R4
GND TERMINAL
PIN ( 0.64)
Dy2
R3
Dy1
Dy2
R2
F
R1
K
Dy1
F
K
R12
R11
R3
R1 to R3 : 360 kΩ
R4 to R13 : 180 kΩ
R14 : 1 MΩ
R15 to R17 : 51 Ω
R18 : 10 kΩ
C1 to C4 : 0.01 µF
C1
2.54
2.54×7=17.78
R10
2.54
R17
Dy9
4.2
C2
R15 R11
5.2
R16 R12
Dy9
BOTTOM VIEW
R14
R13
POM CASE
2.54
2.8
Dy10
R17
Dy10
ANODE OUTPUT
TERMINAL PIN
( 0.46,
2.54 PITCH 8 × 4)
R16
R15
R18
Dy12
SIDE VIEW
5.08
C3
Dy12
Dy11
Dy11
2.54
ANODE64 OUTPUT
Dy12 OUTPUT
TERMINAL PIN ( 0.64)
GND TERMINAL PIN
( 0.64) × 2
P64
4- 0.3
GUIDE
MARKS
POM CASE
4-SCREWS
(M2)
2.54 PITCH
..
( 0.64)
.
ANODE63 OUTPUT 8 × 8
..
.
X
Y
0.95
18.1
25.7
-HV INPUT
TERMINAL PINS
TERMINAL PINS
DY12 OUTPUT
ANODE16 OUTPUT
ANODE15 OUTPUT
ANODE9 OUTPUT
TERMINAL PINS
INSULATING
TAPE
ANODE1 OUTPUT
ANODE2 OUTPUT
P1
P2
SOFT TAPE
R34
DIVIDER
ASSEMBLY
2.54 × 7=17.78
30.0 ± 0.5
0.8 MAX.
0.8 MAX.
PMT:
R7600-M16 SERIES
45.0 ± 0.8
GND
GND
GND
GND
GND
GND
GND
ANODE8 OUTPUT
ANODE2 OUTPUT
ANODE1 OUTPUT
0.3
4.2
1
TERMINAL PINS
2
13
30.0 ± 0.5
1 2 3 4 5 6 7 8
3
14
TOP VIEW
4- 0.3 GUIDE MARKS
57 58 59 60 61 6263 64
15
18.1
4- 0.3
GUIDE MARKS
4
16
25.7
4 × 16
4.5 PITCH
5
25.7
@8 H7546B, H7546B-100, H7546B-200, H7546B-300
4
@7 H8711, H8711-100, H8711-200, H8711-300
R14
TPMHA0487ED
TPMHA0506EC
R2
R21
R1
-HV INPUT
TERMINAL PIN
( 0.64)
TPMHC0223EB
55
#0 H7260, H7260-100, H7260-200
BOTTOM VIEW
SHIELD
P1 P2
P31 P32
35.0 ± 0.5
5
0.95
P1 P9 P17 P25 P33 P41 P49 P57
-HV
Y
GND
*A
C4
DY10
HOUSING (POM)
3.3
GND
1.27
2.54 × 15 = 38.1
DY9
2.54
C3
R9
ACTIVE BASE CIRCUIT
4
R11 SHIELD
(PINS CONNECTION: BOTTOM VIEW)
4- 0.3
GUIDE
MARKS
-HV INPUT TERMINAL PIN
0.8
SIDE VIEW
X
VOLTAGE DIVIDER CURRENT = 0.37 mA at -900 V (MAX. RATING) INPUT
ANODE
WINDOW #1
GND TERMINAL PIN
7
24.0 ± 0.5
P57
4-SCREWS (M2)
5.2
45.0 ± 0.8
FILLED
WITH
INSULATOR
ANODE
WINDOW #32
DY12 OUTPUT
TERMINAL PIN ( 0.64)
TS-101-T-A-1, SAMTEC
0.8 TYP.
+0.5
5 -0
TOP VIEW
P64
P1
4.2
30 - 0
GND TERMINAL PIN ( 0.64)
TS-101-T-A-1, SAMTEC
P8
2.54
+0.5
ANODE OUTPUT TERMINAL PINS
( 0.64, 2.54 PITCH, 8 × 8)
TD-108-T-A-1, SAMTEC × 4 PCS
2.54×7=17.78
30.0 ± 0.5
48.0 ± 0.5
1 2 3 4 5 6 7 8
57 58 59 60 61 6263 64
40.0 ± 0.3
DIVIDER ASSEMBLY
25.7
1
2.54
POM CASE
DY10 OUTPUT
31.8
ANODE32 OUTPUT
PMT:
R7600-M64 SERIES
0.3
2.54×9=22.86
ANODE1 OUTPUT
-HV TERMINAL PINS ( 0.64)
ASP-23882-A-1, SAMTEC
2
ANODE31 OUTPUT
8 × 2 LINE
2.54 PITCH
52.0 ± 0.5
2- 3.5
4- 0.3
GUIDE
MARKS
ANODE2 OUTPUT
@9 H8804, H8804-100, H8804-200, H8804-300
C2
R8
C1
DY8
DY12
OUT
P8 P16 P24 P32 P40 P48 P56 P64
DY7
R7
*A: THROUGH HOLE (NO CONNECTION)
DY6
R6
K
DY5
F
R5
Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11
P64 P63
P2 P1
DY4
.
..
Dy12
R4
R3
DY2
GND TERMINAL
PIN ( 0.5)
R2
DY1
R1
7.5
R1, R5 to R14: 100 kΩ
R2 to R4, R15: 200 kΩ
R16: 300 kΩ
R17 to R19: 51 Ω
R20: 10 kΩ
R21: 1 MΩ
C1 to C3: 0.022 µF
C4: 0.01 µF
DY10 OUTPUT
PIN ( 0.5)
ANODE #1
R9 R10 R11 R12 R13 R14 R15 R16
ANODE2 OUTPUT
ANODE1 OUTPUT
R8
.
..
-HV INPUT
TERMINAL PIN
( 0.64)
R6 R7
ANODE63 OUTPUT
R5
ANODE64 OUTPUT
R4
ANODE #31
C3
GND TERMINAL PIN
( 0.64) × 2
Dy12 OUTPUT
TERMINAL PIN ( 0.64)
R3
DY3
R20
G
K
DY OUT A31-ANODE - A1 GND
A32-ANODE - A2 -HV
ANODE #32
ANODE #2
ANODE #1 to #32 OUTPUT ( 0.46)
(16 PIN × 2 LINE 2.54 PITCH)
2.54 PITCH
( 0.64) 8 × 8
R10
7.62
C2
C1
R1 R2
R19
2.54
R21
R18
5.08
R17
C4
R1 to R7 : 220 kΩ
R8, R9 : 51 Ω
R10 : 1 MΩ
R11 : 10 kΩ
C1 to C4 : 0.01 µF
-HV INPUT
TERMINAL ( 0.5)
TPMHA0550EA
TPMHA0455ED
#1 H8500C, H10966A, H10966A-100
A
B
6.08 × 6=36.48
6.26
PC BOARD
14, 13, 6,
12, 11, 4,
10, 9, 2,
1
3
5
16, 15,
8, 7
PLASTIC BASE
TOP VIEW
57, 50, 49
52, 51
58,
SIG1
62
60, 59
61, 54, 53
56, 55
36
GND
-HV
2
INSULATING TAPE
CONNECTION FOR SIGNAL CONNECTORS
(BOTTOM VIEW)
GND P7
GND P5
GND P3
GND P1
GND P8
GND P6
GND P4
GND P2
GND P15 GND P13 GND P11 GND P9
GND P16 GND P14 GND P12 GND P10
GND P23 GND P21 GND P19 GND P17
GND P24 GND P22 GND P20 GND P18
GND P31 GND P29 GND P27 GND P25
GND P32 GND P30 GND P28 GND P26
GND P39 GND P37 GND P35 GND P33
GND P40 GND P38 GND P36 GND P34
GND P47 GND P45 GND P43 GND P41
GND P48 GND P46 GND P44 GND P42
GND P55 GND P53 GND P51 GND P49
GND P56 GND P54 GND P52 GND P50
GND P63 GND P61 GND P59 GND P57
M3 DEPTH 2.5 GND P64
GND P62 GND P60 GND P58
GND *C
GND GND
*B GND GND *B
GND GND GND GND
*B GND GND *B
4-SIGNAL OUTPUT CONNECTOR *A
SIG4
SIG3
SIG2
SIG1
TMM-118-03-G-D, mfg. SAMTEC
SIG2
P57 P58 P59 P60 P61 P62 P63 P64
6.26
DY, 64, 63
6.26
P49 P50 P51 P52 P53 P54 P55 P56
SIG4
P41 P42 P43 P44 P45 P46 P47 P48
450 ± 20
P33 P34 P35 P36 P37 P38 P39 P40
0.5
2 × 17=34
52.0 ± 0.3
P25 P26 P27 P28 P29 P30 P31 P32
52.0 ± 0.3
6.08 × 6=36.48
P9 P10 P11 P12 P13 P14 P15 P16
P17 P18 P19 P20 P21 P22 P23 P24
PHOTOCATHODE (EFFECTIVE AREA)
49
6.26
P1 P2 P3 P4 P5 P6 P7 P8
12 × 3=36
4.5 ± 0.3
4
2
4
SIG3
C
1.5
START MARK
SIDE VIEW
A
B
C
H8500C SERIES H10966A SERIES
32.7 ± 1.0
31.1 ± 1.0
27.4 ± 0.9
25.8 ± 0.9
16.4 ± 0.5
14.8 ± 0.5
-HV: SHV-P
(SHIELD CABLE, RED)
NOTE *A: Suitable sockets for the signal connectors will be attached.
The equivalent socket is SQT-118-01-L-D (SAMTEC).
*B: No pin.
*C: Dy12 (H8500 SERIES)
Dy8 (H10966 SERIES)
BOTTOM VIEW
K
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12
GR
P8
P64
P7
P63
P6
P62
P5
P61
P4
P60
P3
P59
P2
P58
P1
P57
C7
R16
C1
R20
R1
R2
R3
R4
R5
R6
R7
R8
R17
C2
R18
C3
R19
R9
ACTIVE VOLTAGE
DIVIDER
DIVIDER CURRENT
173 µA at -1100 V
ANODE OUTPUT (P64)
ANODE OUTPUT (P63)
ANODE OUTPUT (P62)
ANODE OUTPUT (P61)
ANODE OUTPUT (P60)
ANODE OUTPUT (P8)
ANODE OUTPUT (P7)
ANODE OUTPUT (P6)
ANODE OUTPUT (P5)
ANODE OUTPUT (P4)
ANODE OUTPUT (P3)
ANODE OUTPUT (P2)
ANODE OUTPUT (P1)
SIGNAL GND
-HV
SHV-P
(SHIELD CABLE, RED)
DY12 OUTPUT
......
R1 to R9: 470 kΩ
R16 to R18: 51 Ω
R19: 10 kΩ
R20: 1 MΩ
R21, R22: 4.99 kΩ
C1: 0.01 µF
C2: 0.022 µF
C3: 0.033 µF
C7: 0.0047 µF
C8, C9: 0.0015 µF
ANODE OUTPUT (P59)
....
ANODE OUTPUT (P58)
R21
(P49 to P56)
C9
R22
ANODE OUTPUT (P57)
(P9 to P16)
C8
4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR
TPMHA0571EA
56
(Unit: mm)
#2 H8500D, H10966B, H10966B-100
1
10, 9, 2,
3
12, 11, 4,
14, 13, 6,
16, 15,
GND
2
-HV
2
57, 50, 49
-HV
-HV
58,
SIG1
SIG2
62
60, 59
61, 54, 53
56, 55
52, 51
36
SIG3
P57 P58 P59 P60 P61 P62 P63 P64
GND
6.08 × 6=36.48
6.26
DY, 64, 63
6.26
P49 P50 P51 P52 P53 P54 P55 P56
SIG4
P41 P42 P43 P44 P45 P46 P47 P48
GND
P33 P34 P35 P36 P37 P38 P39 P40
12
4
2
P25 P26 P27 P28 P29 P30 P31 P32
0.5
2 × 17=34
52.0 ± 0.3
52.0 ± 0.3
6.08 × 6=36.48
P9 P10 P11 P12 P13 P14 P15 P16
P17 P18 P19 P20 P21 P22 P23 P24
12 × 3=36
4.5 ± 0.3
4
2
8, 7
PHOTOCATHODE (EFFECTIVE AREA)
49
6.26
P1 P2 P3 P4 P5 P6 P7 P8
-HV CONNECTOR *B
TMM-102-03-G-S,
mfg. SAMTEC
4
5
A
B
C
1.5
START MARK
6.26
GND CONNECTOR *B
TMM-102-03-G-S,
mfg. SAMTEC
PLASTIC BASE
PC BOARD
TOP VIEW
M3 DEPTH 2.5 GND
2
INSULATING TAPE
SIDE VIEW
23.5
4-SIGNAL OUTPUT CONNECTOR *A
TMM-118-03-G-D, mfg. SAMTEC
CONNECTION FOR SIGNAL CONNECTORS
(BOTTOM VIEW)
GND P7
GND P5
GND P3
GND P1
GND P8
GND P6
GND P4
GND P2
GND P15 GND P13 GND P11 GND P9
GND P16 GND P14 GND P12 GND P10
GND P23 GND P21 GND P19 GND P17
GND P24 GND P22 GND P20 GND P18
GND P31 GND P29 GND P27 GND P25
GND P32 GND P30 GND P28 GND P26
GND P39 GND P37 GND P35 GND P33
GND P40 GND P38 GND P36 GND P34
GND P47 GND P45 GND P43 GND P41
GND P48 GND P46 GND P44 GND P42
GND P55 GND P53 GND P51 GND P49
GND P56 GND P54 GND P52 GND P50
GND P63 GND P61 GND P59 GND P57
GND P64 GND P62 GND P60 GND P58
GND *C
GND GND
*B GND GND *B
GND GND GND GND
*B GND GND *B
SIG4
SIG3
SIG2
SIG1
BOTTOM VIEW
NOTE *A: Suitable sockets for the signal connectors will be attached.
The equivalent socket for signal output is SQT-118-01-L-D (SAMTEC).
The equivalent socket for -HV, GND is SQT-102-01-L-S (SAMTEC).
*B: No pin.
*C: Dy12 (H8500 SERIES)
Dy8 (H10966 SERIES)
H8500D SERIES H10966B SERIES
A
32.7 ± 1.0
31.1 ± 1.0
B
27.4 ± 0.9
25.8 ± 0.9
C
16.4 ± 0.5
14.8 ± 0.5
K
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8
GR
P8
P64
P7
P63
P6
P62
P5
P61
P4
P60
P3
P59
P2
P58
P1
P57
C7
R20
R1
R2
R3
R4
R16
R17
R18
C1
C2
C3
R19
R5
ACTIVE VOLTAGE
DIVIDER
DIVIDER CURRENT
245 µA at -1100 V
ANODE OUTPUT (P64)
ANODE OUTPUT (P63)
ANODE OUTPUT (P62)
ANODE OUTPUT (P61)
ANODE OUTPUT (P60)
ANODE OUTPUT (P8)
ANODE OUTPUT (P7)
ANODE OUTPUT (P6)
ANODE OUTPUT (P5)
ANODE OUTPUT (P4)
ANODE OUTPUT (P3)
ANODE OUTPUT (P2)
ANODE OUTPUT (P1)
SIGNAL GND
R1 to R5: 470 kΩ
R16 to R18: 51 Ω
R19: 10 kΩ
R20: 1 MΩ
R21, R22: 4.99 kΩ
C1: 0.01 µF
C2: 0.022 µF
C3: 0.033 µF
C7: 0.0047 µF
C8, C9: 0.0015 µF
GND
DY8 OUTPUT
......
-HV
ANODE OUTPUT (P59)
....
ANODE OUTPUT (P58)
R21
ANODE OUTPUT (P57)
(P9 to P16)
C9
R22
(P49 to P56)
C8
4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR
TPMHA0572EA
#3 H9500
CONNECTION FOR SIGNAL CONNECTORS
(BOTTOM VIEW)
(MATES WITH
QSE-040-01
-F-D-A)
DY12
OUTPUT
......
P241
C7
R20
R1
R2
R3
C8
R4
R5
R6
R7
R8
R16
R17
R18
C1
C2
C3
R19
R9
ACTIVE VOLTAGE
DIVIDER
R21
R22
-HV
SHV-P
(SHIELD CABLE, RED)
R1 to R9: 470 kΩ (±5 %, 0.125 W)
R16 to R18: 51 Ω (±5 %, 0.125 W)
R19: 10 kΩ (±5 %, 0.125 W)
R20: 1 MΩ (±5 %, 0.125 W)
R21, R22: 4.99 kΩ (±5 %, 0.125 W)
C1, C7: 0.01 µF (200 V)
C2: 0.022 µF (200 V)
C3: 0.033 µF (200 V)
C8: 0.0047 µF (2 kV)
DIVIDER CURRENT 180 µA at -1100 V
......
....
......
......
ANODE OUTPUT (P256)
(MATES WITH
QTE-040-03
-F-D-A)
50.8
CABLE ASSEMBLY (SUPPLIED)
P242
P1
ANODE OUTPUT (P255)
BOTTOM VIEW
P2
ANODE OUTPUT (P242)
SIDE VIEW
M3 DEPTH: 4
P129
P130
P145
P146
P161
P162
P177
P178
P193
P194
P209
P210
P225
P226
P241
P242
GND
GND
GND
GND
GR
ANODE OUTPUT (P241)
TOP VIEW
4-SIGNAL CONNECTOR
; QTE-040-03-F-D-A, SAMTEC
(0.8 mm PITCH. DOUBLE ROW
WITH INTEGRAL GND PLATE)
P131
P132
P147
P148
P163
P164
P179
P180
P195
P196
P211
P212
P227
P228
P243
P244
GND
GND
GND
GND
P133
P134
P149
P150
P165
P166
P181
P182
P197
P198
P213
P214
P229
P230
P245
P246
GND
GND
GND
GND
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12
(P225 to P240)
36.4 ± 0.9
P135
P136
P151
P152
P167
P168
P183
P184
P199
P200
P215
P216
P231
P232
P247
P248
GND
GND
GND
GND
P137
P138
P153
P154
P169
P170
P185
P186
P201
P202
P217
P218
P233
P234
P249
P250
GND
GND
GND
GND
K
(P17 to P32)
33.3 ± 0.9
8.6
P139
P140
P155
P156
P171
P172
P187
P188
P203
P204
P219
P220
P235
P236
P251
P252
GND
GND
GND
GND
P255
ANODE OUTPUT (P16)
+20
14.4 ± 0.5
49
23.65
P141
P142
P157
P158
P173
P174
P189
P190
P205
P206
P221
P222
P237
P238
P253
P254
GND
GND
GND
GND
P256
P15
ANODE OUTPUT (P15)
52.0 ± 0.3
3.04
3.04 × 14=42.56
PHOTOCATHODE (EFFECTIVE AREA)
49
8.6
1.5
P143
P144
P159
P160
P175
P176
P191
P192
P207
P208
P223
P224
P239
P240
P255
P256
GND
GND
GND
P16
ANODE OUTPUT (P2)
3.04 × 14=42.56
SIG2 SIG1
SIG1
GND GND
GND GND
GND GND
GND GND
P3
P1
P4
P2
P19 P17
P20 P18
P35 P33
P36 P34
P51 P49
P52 P50
P67 P65
P68 P66
P83 P81
P84 P82
P99 P97
P100 P98
P115 P113
P116 P114
ANODE OUTPUT (P1)
3.04
6
SIG3
50.8
46.24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
SIG4
SIG2
GND GND
GND GND
GND GND
GND GND
P7
P5
P8
P6
P23 P21
P24 P22
P39 P37
P40 P38
P55 P53
P56 P54
P71 P69
P72 P70
P87 P85
P88 P86
P103 P101
P104 P102
P119 P117
P120 P118
......
2.6 MAX.
450 - 0
BASE (POM)
INSULATING TAPE
START MARK
SIG3
GND GND
GND GND
GND GND
GND GND
P11
P9
P12 P10
P27 P25
P28 P26
P43 P41
P44 P42
P59 P57
P60 P58
P75 P73
P76 P74
P91 P89
P92 P90
P107 P105
P108 P106
P123 P121
P124 P122
GND
CAP HOUSING (POM)
SOCKET HOUSING (POM)
SEPARATION MARK
ON FOCUSING ELECTRODE
SIG4
GND GND
GND GND
GND GND
GND GND
P15 P13
P16 P14
P31 P29
P32 P30
P47 P45
P48 P46
P63 P61
P64 P62
P79 P77
P80 P78
P95 P93
P96 P94
P111 P109
P112 P110
P127 P125
P128 P126
DY12 OUTPUT
-HV: SHV-P
(SHIELD CABLE, RED)
4 × 0.8 mm PITCH HEADER
(P/N QTE-040-03-F-D-A, SAMTEC)
METAL PLATE (GND)
RIBBONIZED COAXIAL CABLE
(50 Ω IMPEDANCE)
14.98
6.88
15.72
170 ± 5
NOTE: 4 SETS OF SOCKET AND CABLE ASSEMBLY WILL BE ATTACHED.
(SOCKET: QSE-040-01-F-D-A, SAMTEC / CABLE ASSEMBLY: EQCD-040-06, 00-SEU-TEU-1, SAMTEC)
TPMHA0504EB
57
Quick Reference for PMT Socket Assemblies
PMT Characteristics
Assembly
Tube
Type
Diameter
No.
Tube Type No.
/
Voltage
Distribution
Ratio
R1635
10 mm
R2248
(3/8")
R2496
E1761-22
13 mm R647-01
E849-90
(1/2") R4124
E849-68
R1166
E974-17
19 mm R1450
E974-22
E2253-05 (3/4") R3478
R4125
E974-19
R1548-07
E2037-02
R5505-70
E6133-04
25 mm
R7899
E2924-11
(1")
R3998-02
E990-29
R3998-100-02
25 mm
R1924A
(1")
E2924-500
28 mm
R7111
(1-1/8")
E2624-14 28 mm
R6427
E2624-04 (1-1/8")
E1761-21
E2183-500
E2183-501
R580
38 mm
R11102
(1-1/2")
R3886A
r
y
!7
#0
@1
@7
!1
@2
#3
^5
#0
!4
#3
#4
@4
@6
w
E1198-26
E1198-27
E5859
E5859-01
R6231
R6231-100
R6232
R6233
R6233-100
R6234
R6235
R6236
R6237
R10233
R10233-100
R329-02
51 mm
R6091
(2")
R329-02
76 mm
R331-05
(3")
R6091
z
SHV
BNC
-1250
0.35
-1500
z
x
c
v
v
b
n
m
,
.
SHV
SHV
AWG22
SHV
SHV
SHV
AWG22
AWG24
SHV
AWG22
BNC
BNC
RG-174/U
BNC
BNC
BNC
RG-174/U
AWG24
BNC
RG-174/U
-1250
-1000
-1000
-1000
-1500
-1700
-1500
-1250
+2000
-1250
0.32
0.28
0.23
0.27
0.37
0.34
0.27
0.13
0.36
0.28
-1500
-1250
-1250
-1800
-1800
-1800
-1800
-1750
+2300
-1800
⁄0
AWG22
RG-174/U
-1000
0.23
-1500
⁄1
SHV
BNC
-1000
0.24
-1250
w
t
%6
%2
20
20
20
20
20
20
20
20
22
22
22
22
22
22
22
26
22
22
26
24
24
24
24
22
26
22
22
22
22
22
⁄2
⁄3
SHV
AWG22
BNC
RG-174/U
⁄4
SHV
BNC
⁄4
SHV
BNC
⁄5
⁄6
AWG22
SHV
RG-174/U
BNC
-1500
-1500
-1250
-1000
-1000
-1500
-1000
-1000
-1250
-2500
0.32
0.37
0.32
0.26
0.26
0.54
0.36
0.36
0.32
0.58
-2000
-2000
-1750
-1250
-1250
-1750
-1250
-1250
-1750
-3000
⁄7
AWG22
RG-174/U
-1000
0.31
-1500
⁄8
SHIELD
CABLE
RG-174/U
+1000
0.28
+1500
⁄9
SHIELD
CABLE
RG-174/U
-1000
0.25
-1500
⁄9
SHIELD
CABLE
RG-174/U
+1000
0.25
+1500
¤0
SHV
BNC
-2000
0.5
-2700
-2500
shield case is available.
+HV type (E5859-02) is available.
¤0
SHV
BNC
-1500
0.42
-2700
-2500
shield case is available.
+HV type (E5859-03) is available.
Note:
1: When overall voltage is negative (-HV), DC and pulse signals are obtained. When it's positive (+HV), pulse signal is obtained.
2: The maximum average anode current is defined as 5 % of divider current.
58
Notes
6 µA is for total of 2 anodes.
E6133-03 (-HV) is available.
For R7899 (Glass Base Type)
20
E1198-05
51 mm
(2")
60 mm
(2.4")
76 mm
(3")
90 mm
(3.5")
H.V
Input
Terminal
Assembly Characteristics
Standard
Maximum
Signal
Rating
Rating
Output
1
2
Overall
Divider
Overall
Terminal
Voltage Current
Voltage
(V)
(mA)
(V)
20
@4
$5
E1198-20
20
24
20
20
20
20
20
20
20
24
20
21
20
26
@9
E1198-07 51 mm R2154-02
R1828-01
E2979-500 (2")
R1306
R1307
Reference Outline
Page for No.
PMT
Feature
with shield case
PMT Characteristics
Assembly
Tube
Type
Diameter
No.
Tube Type No.
/
Voltage
Distribution
Ratio
Reference Outline
Page for No.
PMT
Feature
E1198-22
E1198-23
R877
127 mm R877-100
(5")
!8
22
26
E6316-01
E7693
E7694
E5996
E7083
E6736
E7514
E10411
E9349
E11807
E11807-01
R1250
R1584
204 mm
R5912
(8")
254 mm
R7081
(10")
R7600U
R7600U-03
R7600U-100
R7600U-200
R7600U-300
R7600U-00-M4
R7600U-100-M4
R7600U-200-M4
R7600U-300-M4
R5900U-00-L16
R5900U-100-L16
30 mm
R5900U-200-L16
Square
Type R8900U-00-C12
R8900U-100
R8900-00-M16
R8900-100-M16
R11265U
R11265U-100
R11265U-200
R11265U
R11265U-100
R11265U-200
^0
22
22
H.V
Input
Terminal
Assembly Characteristics
Standard
Maximum
Signal
Rating
Rating
Output
Notes
1
2
Overall
Divider
Overall
Terminal
Voltage Current
Voltage
(V)
(mA)
(V)
-1250
0.32
-1500
RG-174/U -1250
0.32
-1500
-1500
0.38
-2000
+1250
0.32
+1500
RG-174/U +1250
0.32
+1500 shield case is available.
+1500
0.38
+2000
-1250
0.32
-1500
BNC
-1250
0.32
-1500
-1500
0.38
-2000
¤1
SHIELD
CABLE
¤1
SHIELD
CABLE
¤2
SHV
¤3
SHV
BNC
-2000
0.68
-3000
¤4
SHV
BNC
-1500
0.32
-1800
¤5
SHIELD
CABLE
RG-174/U
-800
0.3
-900
¤6
SHIELD
CABLE
0.8D-QEV
-800
0.3
-900
¤7
SHIELD
CABLE
0.8D-QEV
-800
0.34
-900
SHIELD
CABLE
SHIELD
CABLE
0.8D-QEV
-800
0.27
-1000
RG-174/U
-800
0.3
-1000
22
^2
22
@3
@3
!7
24
24
26
26
26
24
26
26
26
24
26
26
#8
44
¤8
!6
26
¤9
24
26
24
26
26
24
26
26
‹0
PIN
PIN
-800
0.28
-1000
‹1
RG-174/U
RG-174/U
900
0.32
1000
‹1
RG-174/U
RG-174/U
900
0.32
1000
$1
$9
%1
$9
%1
+HV type (E7694-01) is
available.
Active base type
(E6572) is available.
Note:
1: When overall voltage is negative (-HV), DC and pulse signals are obtained. When it's positive (+HV), pulse signal is obtained.
2: The maximum average anode current is defined as 5 % of divider current.
59
Dimensional Outline and Circuit Diagrams
For PMT Socket Assemblies
z E1761-21, E1761-22
E1761-21
SOCKET
PMT PIN No.
6
3
10.6 ± 0.2
SIGNAL OUTPUT
: RG-174/U (BLACK)
BNC CONNECTOR
50.0 ± 0.5
SOCKET: E678-11N
PMT
SOCKET
PIN No.
P
R10 C3
R11 C3
SIGNAL OUTPUT
: RG-174/U (BLACK)
BNC CONNECTOR
-H.V
: SHIELD CABLE (RED)
SHV CONNECTOR
DY8
7
DY7
5
DY6
8
DY5
4
DY4
9
DY3
3
DY2
10
DY1
K
SIGNAL OUTPUT
: RG-174/U (BLACK)
BNC CONNECTOR
6
P
HOUSING
(INSULATOR)
450
E1761-22
R10 C2
R9 C1
R8
R7
R1 to R11 : 330 kΩ
C1 to C3 : 10 nF
R6
R5
R4
R3
DY8
7
DY7
5
DY6
8
DY5
4
DY4
9
DY3
3
DY2
10
DY1
2
R9 C2
R8 C1
R1 to R4 : 510 kΩ
R5 to R10 : 330 kΩ
C1 to C3 : 10 nF
R6
R5
R4
R3
R2
R1
2
11
R7
R2
R1
-H.V
: SHIELD CABLE (RED)
SHV CONNECTOR
K
-H.V
: SHIELD CABLE (RED)
SHV CONNECTOR
11
TACCA0075EB
x E849-90
TACCA0076EC
c E849-68
PMT
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
SOCKET
PIN No.
6
P
12.6
0.5 MAX.
PMT
SIGNAL OUTPUT
: RG-174/U (BLACK)
BNC CONNECTOR
DY10
12.4
7
R10 C2
HOUSING
(INSULATOR)
45.0 ± 0.5
R11 C3
DY9
5
DY8
8
R9 C1
R1 to R11: 330 kΩ
C1 to C3: 10 nF
14.0 ± 0.3
10 5
14.0 ± 0.3
12.6
12.4
4
DY6
9
450 ± 10
3
DY4
10
2
11
DY1
1
K
13
C3
R10
C2
R9
C1
POWER SUPPLY GND
AWG22 (BLACK)
9
DY7
5
DY6
10
DY5
4
R7
R5
11
DY3
3
R3
DY2
12
R2
DY1
K
2
R4
DY3
6
DY4
R5
DY2
DY9
R11
R6
POTTING
COMPOUND
R6
DY5
8
DY8
HOUSING
(INSULATOR)
R7
POTTING
COMPOUND
DY10
R8
R8
DY7
P
450 ± 10
0.5 MAX.
7
10 5
45.0 ± 0.5
SOCKET
PIN No.
R1: 1 MΩ
R3: 510 kΩ
R2, R4 to R11: 330 kΩ
C1 to C3: 10 nF
R4
R3
R2
R1
-HV
: SHIELD CABLE (RED)
SHV CONNECTOR
R1
-HV
AWG22 (VIOLET)
13
TACCA0077ED
TACCA0210EB
v E974-17, E974-22
E974-17
PMT
SOCKET
PIN No.
SIGNAL OUTPUT
: RG-174/U (BLACK)
BNC CONNECTOR
5
P
23.0 ± 0.5
DY10
DY9
4
DY8
7
DY7
3
DY6
8
DY5
2
C3
C2
DY10
6
R9
C1
DY9
4
DY8
7
P
450 ± 10
R8
9
8
DY5
2
DY4
9
DY3
1
DY2
10
DY1
K
10
12
R1
DY1
12
11
R1: 680 kΩ
R3: 510 kΩ
R2, R4 to R11: 330 kΩ
C1 to C3: 10 nF
R6
R5
R4
1
R2
-HV
: SHIELD CABLE (RED)
SHV CONNECTOR
TACCA0212EB
60
3
DY6
R3
DY2
E974-17, -18 attaches BNC
and SHV connector at the
end of cables.
DY7
R7
R1 : 510 kΩ
R2 to R11 : 330 kΩ
C1 to C3 : 10 nF
R4
DY3
R11 C3
R9 C1
R6
DY4
SIGNAL OUTPUT
: RG-174/U(BLACK)
BNC CONNECTOR
R10 C2
R5
POTTING
COMPOUND
5
R10
R7
HOUSING
(INSULATOR)
PMT
R11
6
R8
43.0 ± 0.5
47.5 ± 1.0
17.4 ± 0.2
E974-22
SOCKET
PIN No.
R3
R2
R1
K
11
-HV
: SHIELD CABLE(RED)
SHV CONNECTOR
TACCA0078EC
(Unit: mm)
b E2253-05
n E974-19
SOCKET
PIN No.
PMT
SIGNAL OUTPUT
: RG-174/U (BLACK)
5
SOCKET
PIN No.
P
SIGNAL OUTPUT
: RG-174/U (BLACK)
BNC CONNECTOR
5
+0
55.0 ± 0.5
6.2
18.6 - 0.4
HOUSING
(INSULATOR)
P
R11
DY8
7
DY7
3
DY6
8
DY5
2
DY4
9
C3
R10
C2
R9
C1
R8
R7
R6
450 ± 10
POTTING
COMPOUND
DY3
1
DY2
10
DY1
12
23.0 ± 0.5
R15
17.4 ± 0.2
R14
DY10
R1: 1 MΩ
R2: 750 kΩ
R3: 560 kΩ
R4, R6 to R11: 330 kΩ
R5: 510 kΩ
C1 to C3: 10 nF
C3
6
R13
SOCKET
: E678-12H
C2
R12
R11
HOUSING
(INSULATOR)
DY9
4
R10
C1
R9
R5
DY8
7
R8
R4
-HV
: AWG22 (VIOLET)
+20
-HV
: SHIELD CABLE (RED)
SHV CONNECTOR
DY7
3
DY6
8
DY5
2
R7
R1: 499 kΩ
R2 to R7: 330 kΩ
R8,R11 to R13: 390 kΩ
R9, R10: 300 kΩ
R14 to R16: 360 kΩ
C1 to C3: 10 nF
R6
GND
: AWG22 (BLACK)
450 -0
R3
R2
R1
11
K
GND
: AWG22 (BLACK)
R16
47.5 ± 1.0
43.0 ± 0.5
PMT
R5
DY4
SIGNAL OUTPUT
: RG-174/U (BLACK)
9
R4
DY3
1
DY2
10
DY1
12
R3
5 10
5
R2
K
R1
-HV
: AWG22
(VIOLET)
11
TACCA0079EB
m E2037-02
, E6133-04
10
SIGNAL OUTPUT2
: AWG24(RED)
SIGNAL OUTPUT1
: AWG24(YELLOW)
SIGNAL GND
: AWG24(BLACK)
7
24 ± 0.5
21.9
2
HOUSING
(INSULATOR)
2
C3
R10
C2
24.0 ± 0.5
POWER SUPPLY GND
: AWG24(BLACK)
9
DY9
6
DY8
10
DY7
11
R9
P
22.0 ± 0.5
C1
HOUSING
(INSULATOR)
DY15
9
DY14
11
DY13
8
DY12
12
DY11
7
R18
C5
R23
R17
C4
R22
R16
C3
R15
C2
R14
C1
DY10
13
R8
POTTING
COMPOUND
DY7
5
DY6
12
R12
POTTING
COMPOUND
DY9
6
DY8
14
SIGNAL OUTPUT
: RG-174/U (BLACK)
BNC CONNECTOR
DY7
5
DY6
15
+H.V
: SHIELD CABLE (RED)
SHV CONNECTOR
DY5
4
DY4
16
DY3
3
R3
DY2
17
R2
DY1
2
R1 : 2.7 MΩ
R2, R4 to R11 : 680 kΩ
R3 : 1 MΩ
C1 to C3 : 10 nF
450 ± 10
R7
R6
DY5
4
DY4
13
R5
R11
DY2
DY1
+H.V
: SHIELD CABLE (RED)
SHV CONNECTOR
R1: 10 kΩ
R2 to R18: 330 kΩ
R19: 100 kΩ
R20, R21: 1 MΩ
R22 to R24: 51 Ω
C1 to C5: 10 nF
C6, C7: 4.7 nF
R9
R8
R7
R6
3
R5
14
R4
2
R3
K
R1
K
SIGNAL OUTPUT
: RG-174/U (BLACK)
BNC CONNECTOR
R10
R4
DY3
C7
R1
R24
R13
450 ± 10
30.0 ± 0.5
DY10
R11
R19
2
8
P
SOCKET
R20
PIN No. C6
PMT
SOCKET
PIN No.
55.0 ± 0.5
PMT
R21
-HV
: AWG24(VIOLET)
17
R2
1
TACCA0028EC
. E2924-11
R13
DY10
10
DY9
6
DY8
11
R12
R11
26.0 ± 0.3
7
12
R8
0.8
2- 3.5
DY5
4
DY4
13
R1 to R4, R6 to R13 : 330 kΩ
R5 : 510 kΩ
C1 to C3 : 10 nF
HOUSING
(INSULATOR)
43.0 ± 0.5
R7
28.0 ± 0.5
R6
DY3
3
R5
POTTING
COMPOUND
DY2
14
DY1
2
P
R11 C3
8
DY8
6
DY7
9
DY6
5
DY5
10
R2
SIGNAL OUTPUT
RG-174/U (BLACK)
POWER SUPPLY GND
AWG22 (BLACK)
R9 C1
26.0 ± 0.3
R8
R7
R6
DY4
3
DY3
12
DY2
2
R1 : 1 MΩ
R2 to R6,R8 to R11 : 330 kΩ
R7 : 510 kΩ
C1 to C3 : 10 nF
R5
28.0 ± 0.5
HOUSING
(INSULATOR)
R4
R3
DY1
R3
K
DY9
SIGNAL GND
R10 C2
R4
450 ± 10
43.0 ± 0.5
DY6
PMT SOCKET
PIN No.
7
C1
5
R9
35.0 ± 0.3
C2
R10
DY7
450 ± 10
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
POWER SUPPLY GND
C3 AWG22 (BLACK)
30.0 ± 0.3
30.0 ± 0.3
P
44.0 ± 0.3
SOCKET
PIN No.
7
7
PMT
0.8
44.0 ± 0.3
3.5
TACCA0231EB
⁄0 E990-29
35.0 ± 0.3
2-
TACCA0230EB
POTTING
COMPOUND
13
R2
G
1
R1
K
14
-HV
AWG22 (VIOLET)
R1
1
-HV
AWG22 (VIOLET)
TACCA0032EC
TACCA0215EC
61
⁄1 E2924-500
⁄2 E2624-14
44.0 ± 0.3
44.0 ± 0.3
35.0 ± 0.3
35.0 ± 0.3
6
Dy8
11
7
0.8
28.0 ± 0.5
HOUSING
(INSULATOR)
450 ± 10
POTTING
COMPOUND
Dy7
5
Dy6
12
Dy5
4
Dy4
13
Dy3
3
Dy2
14
Dy1
2
R13
C3
R12
C2
R11
C1
Dy9
5
Dy8
9
Dy7
4
Dy6
10
Dy5
3
Dy4
11
Dy3
2
Dy2
12
K Dy1
14
26.0 ± 0.3
R9
R8
R1 to R13: 330 kΩ
C1 to C3: 10 nF
C4: 4.7 nF
R7
R6
R5
28.0 ± 0.5
R4
HOUSING
(INSULATOR)
R3
R2
1
8
2- 3.5
R10
K
P
Dy10
7
10
Dy9
C4
-HV
SHIELD CABLE (RED)
SHV CONNECTOR
R1
SIGNAL OUTPUT
: RG-174/U (BLACK)
BNC CONNECTOR
7
0.8
Dy10
30.0 ± 0.3
P
43.0 ± 0.5
2- 3.5
POTTING
COMPOUND
450 ± 10
30.0 ± 0.3
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
7
26.0 ± 0.3
43.0 ± 0.5
PMT SOCKET
PIN No.
PMT SOCKET
PIN No.
R14 R11
C3
R13 R10
C2
R12 R9
C1
R1:
R3:
R2, R4 to R11:
R12 to R14:
C1 to C3:
C4:
R8
R7
R6
R5
R4
R3
R2
C4
-H.V
: SHIELD CABLE (RED)
SHV CONNECTOR
R1
13
TACCA0081EC
⁄3 E2624-04
1320 kΩ
510 kΩ
330 kΩ
51 Ω
10 nF
4.7 nF
TACCA0082EC
⁄4 E2183-500, E2183-501
E2183-500
SOCKET
PIN NO.
6
PMT
SIGNAL GND
PMT SOCKET
PIN No.
7
8
Dy9
5
HOUSING
(INSULATOR)
Dy8
9
Dy7
4
450 ± 10
POTTING
COMPOUND
Dy6
R13 R10
3
Dy4
11
Dy3
2
Dy2
12
K Dy1
14
C4
C3
R8
C2
R7
C1
R1: 800 kΩ
R2, R4 to R6: 200 kΩ
R3, R8: 300 kΩ
R7: 240 kΩ
R9: 400 kΩ
R10: 660 kΩ
R11: 600 kΩ
R12 to R14: 51 Ω
C1: 10 nF
C2, C3: 22 nF
C4 to C6: 33 nF
R6
R5
R4
R3
R2
DY10
C3
R11
C2
R10
C1
5
DY8
HOUSING
(INSULATOR)
R12
7
DY9
8
R9
DY7
R1 : 10 kΩ
R2 : 660 kΩ
R3 to R12 : 330 kΩ
C1 to C3 : 10 nF
C4 : 4.7 nF
4
R8
POTTING
COMPOUND
DY6
9
DY5
3
DY4
10
DY3
2
DY2
11
DY1
1
R7
R6
R5
-H.V
: AWG22/TFE
(VIOLET)
R1
R4
5 10
13
P
52.0 ± 0.5
34.0 ± 0.3
R12 R9
10
Dy5
C6
8.2
Dy10
C5
40.0 ± 0.5
R14 R11
4
49.0 ± 0.5
GND
: AWG22 (BLACK)
P
450 ± 10
32.0 ± 0.5
25.2 ± 0.5
SIGNAL OUTPUT
:RG-174/U (BLACK)
BNC CONNECTOR
SIGNAL OUTPUT
: RG-174/U (BLACK)
K
R3
C4
R2
R1
-HV
: SHIELD CABLE(RED)
SHV CONNECTOR
12
TACCA0084ED
TACCA0166EC
⁄5 E1198-07
E2183-501
PMT SOCKET
PIN No.
PMT
SOCKET
PIN No.
11
P
DY10
SIGNAL OUTPUT
RG-174/U (BLACK)
R11
C3
R10
C2
10
DY9
9
DY8
8
64.0 ± 0.3
DY7
7
56.0 ± 0.3
DY6
6
DY5
5
R9
3
DY2
2
DY1
1
450 ± 10
8
Dy7
4
Dy6
9
3
Dy3
2
Dy2
11
K Dy1
1
C4
12
C4
R12
R11
C3
R10
C2
R9
C1
R8
R7
R6
R5
R4
R3
C5
R2
R1
R1: 10 kΩ
R2, R11, R13: 300 kΩ
R3 to R7, R14: 150 kΩ
R8: 180 kΩ
R9: 220 kΩ
R10: 330 kΩ
R12: 240 kΩ
R15: 51 Ω
C1:10 nF
C2: 22 nF
C3: 47 nF
C4: 100 nF
C5: 4.7 nF
-H.V
: SHIELD CABLE (RED)
SHV CONNECTOR
R3
R2
R1
K
14
TACCA0086EC
-HV
AWG22 (VIOLET)
The housing is internally
connected to the GND.
TACCA0220EB
62
5
Dy8
10
4
DY3
Dy9
Dy4
R1 : 680 kΩ
R2 to R11 : 330 kΩ
C1 to C3 : 10 nF
C4 : 4.7 nF
R14
R15 R13
7
Dy5
R4
HOUSING
(METAL)
Dy10
R7
R5
38.0 ± 0.5
C1
P
R8
R6
DY4
POWER SUPPLY GND
AWG22 (BLACK)
SIGNAL OUTPUT
: RG-174/U (BLACK)
BNC CONNECTOR
6
SIGNAL GND
(Unit: mm)
⁄6 E2979-500
⁄7 E1198-05
62.0 ± 0.5
SOCKET
PIN No.
3-M2
HOUSING
(METAL)
11
DY11
8
DY10
12
DY9
7
DY8
13
DY7
6
DY6
14
DY5
5
DY4
15
DY3
3
DY2
17
DY1
G2
ACC
G1
K
2
R18
R21 R17
C7
C10
R16
R20 R15
C6
C9
R19 R14
R13
C5
C8
R12
R11
C3
C4
R1: 10 kΩ
R2, R5: 240 kΩ
R3, R7 to R12, R18: 200 kΩ
R4, R6: 360 kΩ
R13 to R17: 300 kΩ
R19 to R21: 51 Ω
C1: 470 pF
C2 to C8, C11: 10 nF
C9: 22 nF
C10: 33 nF
C2
R9
R8
R7
R6
7
C1
C3
R9
C2
R8
C1
GND
AWG22 (BLACK)
6
64.0 ± 0.3
DY5
5
56.0 ± 0.3
DY4
4
DY3
3
R6
R5
R4
-HV
SHV CONNECTOR
DY2
2
DY1
1
C4
R1 to R10 : 330 kΩ
C1 to C3 : 10 nF
C4 : 4.7 nF
R3
HOUSING
(METAL)
R2
13
G
K
R1
14
SIG
-H.V
The housing is internally
connected to the GND.
The housing is internally
connected to the GND.
-H.V
: SHV-R
DY7
R10
R7
R4
20
8
DY6
R5
R3
R2
DY8
C11
R10
19
SIGNAL OUTPUT
RG-174/U (BLACK)
P
R1
SIGNAL
OUTPUT
: BNC-R
11
38.0 ± 0.5
MAGNETIC
SHILD CASE
11
82.0 ± 0.5
164.0 ± 0.5
P
DY12
SOCKET
PIN No.
PMT
SIGNAL OUTPUT
BNC CONNECTOR
10
450 ± 10
PMT
-HV
AWG22
(VIOLET)
TACCA0093EB
TACCA0221EB
⁄8 E1198-20
PMT
SOCKET
PIN No.
11
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
C5
C4
R11
P
DY8
8
DY7
7
DY6
6
64.0 ± 0.3
R10
C3
R9
C2
R8
C1
+HV
SHIELD CABLE (RED)
POWER SUPPLY GND
R1 to R11: 330 kΩ
C1 to C3: 10 nF
C4, C5: 4.7 nF
R7
DY5
56.0 ± 0.3
5
R6
DY4
4
DY3
3
DY2
2
DY1
1
38.0 ± 0.5
R5
R4
HOUSING
(METAL)
R3
R2
450 ± 10
G
13
R1
K
14
The housing is internally
connected to the GND.
TACCA0223EC
⁄9 E1198-26, E1198-27
E1198-26
PMT
SOCKET
PIN No.
E1198-27
SIGNAL GND
PMT
SIGNAL OUTPUT
RG-174/U (BLACK)
12
SOCKET
PIN No.
12
R13
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
C5
R11
C4
R12
P
R11
DY8
11
DY7
10
DY6
7
R10
R9
64.0 ± 0.3
DY5
6
DY4
5
R1: 10 kΩ
R2, R3: 680 kΩ
R4 to R11: 330 kΩ
C1 to C3: 10 nF
C4: 4.7 nF
38.0 ± 0.5
450 ± 10
R6
4
DY2
3
11
DY7
10
DY6
7
C1
R7
DY3
DY8
C2
R8
56.0 ± 0.3
P
C3
DY5
6
DY4
5
DY1
DY3
4
DY2
3
R2
14
The housing is internally
connected to the GND.
R8
C1
DY1
1
R4
R3
R3
K
C2
R5
1
13
R9
+HV
SHIELD CABLE (RED)
POWER SUPPLY GND
R6
R4
G
C3
R7
R5
HOUSING
(METAL)
R10
R1 to R2 : 680 kΩ
R3 to R11 : 330 kΩ
R12 : 10 kΩ
R13 : 1 MΩ
C1 to C3 : 10 nF
C4, C5 : 4.7 nF
R2
C4
G
R1
K
-HV
SHIELD CABLE (RED)
POWER SUPPLY GND
TACCA0224EB
13
R1
14
The housing is internally
connected to the GND.
TACCA0225EB
63
¤0 E5859, E5859-01
E5859
PMT
SOCKET
PIN No.
SIGNAL OUTPUT
: BNC-R
7
P
R24
C6
R27 R23
Dy12
8
Dy11
6
Dy10
12.5 9
55.0 ± 0.5
51.0 ± 0.4
3-M2
(THREADED HOLES
FOR INSTALLATION
OF MAGNETIC
SHIELD CASE)
HOUSING
(METAL)
SIG
-H.V
-H.V
:SHV-R
5
Dy8
Dy7
13
Dy6
Dy5
14
R1 : 10 kΩ
R2, R12, R16, R17, R20, R21 : 180 kΩ
R3, R13, R18, R19, R22 to R24 : 226 kΩ
R4, R5, R7, R8 : 121 kΩ
R6, R9 to R11, R14, R15 : 150 kΩ
R25 : 51 kΩ
R26, R27 : 100 Ω
C1 : 470 pF
C2 : 22 nF
C3 : 47 nF
C4 : 100 nF
C5 to C7 : 220 nF
C2
R14
R13
R12
4
R11
3
Dy4
Dy3
15
Dy2
Dy1
G
R9
R8
R7
16
2
R6
R5
R4
R3
R2
1
17
21
C4
R27 R23
Dy12
8
Dy11
6
Dy10
12
Dy9
5
Dy8
Dy7
13
Dy6
Dy5
14
R22
R21
C3
R15
R10
K
C7
C4
R17
R16
10
60.0 ± 0.5
SIGNAL
OUTPUT
:BNC-R
12
Dy9
SH
R24
C5
R26 R20
R19
R25 R18
SIGNAL OUTPUT
BNC-R
7
P
R22
R21
58.0 ± 0.5
E5859-01
SOCKET
PIN No.
PMT
4
3
R14
R13
R12
R11
R10
Dy4
Dy3
15
Dy2
Dy1
G
R9
R8
R7
16
2
R6
R5
R4
R3
R2
1
17
R1
K
R1 : 10 kΩ
R2 to R6,R9 to R13 : 220 kΩ
R7,R8 : 154 kΩ
R14 to R21,R23,R24 : 110 kΩ
R22 : 0 Ω
R25 : 51 Ω
R26,R27 : 100 Ω
C1 : 470 pF
C2,C3 : 10 nF
C4 : 22 nF
R15
C1
-HV
SHV-R
C2
R17
R16
10
SH
C3
R26 R20
R19
R25 R18
21
C1
R1
The housing is internally
connected to the GND.
-HV
SHV-R
The housing is internally
connected to the GND.
TACCA0176EC
TACCA0178EC
¤1 E1198-22, E1198-23
E1198-22
PMT
P
DY10
E1198-23
SOCKET
PIN No.
11
PMT
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
R13
C3
R12
9
C2
P
DY10
C1
DY9
9
DY8
8
DY8
8
R11
R10
DY7
7
DY6
6
38.0 ± 0.5
DY5
5
DY4
4
7
DY6
6
DY5
5
R6
DY4
4
R5
DY3
3
R4
DY2
2
DY1
1
R7
HOUSING
(METAL)
DY3
3
DY2
2
DY1
1
450 ± 10
G
R6
C4
R2
R1
R2
-HV
SHIELD CABLE (RED)
9
Dy8
8
Dy7
7
Dy6
6
51.5 ± 0.5
THREADED HOLES
FOR INSTALLATION
OF MAGNETIC
SHIELD CASE
(e. g; E989-60 FOR R877
E989-61 FOR R878)
HOUSING
(METAL)
G
K
Dy5
5
Dy4
4
Dy3
3
Dy2
2
Dy1
1
13
14
R13
C3
R12
R11
C2
TACCA0168EB
C1
R10
R1: 10 kΩ
R2 to R13: 330 kΩ
C1 to C3: 10 nF
C4: 4.7 nF
R9
R8
R7
R6
R5
R4
R3
R2
C4
R1
SIG
-H.V
SIGNAL
OUTPUT
: BNC-R
-H.V
: SHV-R
The housing is internally
connected to the GND.
-H.V
: SHV-R
Note: Magnetic shield case is available
to order separately.
TACCA0089EB
64
13
R1
14
* The housing is internally connected to the GND.
** High voltage shielded cable can be connected to
a connector for RG-174/U.
SIGNAL OUTPUT
: BNC-R
11
G
K
POWER SUPPLY GND
TO AL HOUSING
P
10
R1 to R12 : 330 kΩ
R13 : 1 MΩ
R14 : 10 kΩ
C1 to C4 : 10 nF
C5, C6 : 4.7 nF
R3
R3
SOCKET
PIN No.
Dy9
C1
POWER SUPPLY GND
R7
¤2 E6316-01
Dy10
R10
C4 R14
R4
* The housing is internally connected to
the GND.
** High voltage shielded cable can be
connected to a connector for RG-174/U.
64.0 ± 0.5
C2
R5
14
PMT
C3
R11
R8
13
K
R12
10
DY7
R1: 10 kΩ
R2 to R13: 330 kΩ
C1 to C3: 10 nF
C4: 4.7 nF
R8
56.0 ± 0.3
C5
R9
R9
64.0 ± 0.3
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
+HV
SHIELD CABLE (RED)
C6
R13
10
DY9
SOCKET
PIN No.
11
TACCA0169EC
(Unit: mm)
¤3 E7693
¤4 E7694
SOCKET
PIN No.
10
P
Dy14
Dy13
8
Dy12
12
Dy11
7
Dy10
13
100.0 ± 0.5
74.0 ± 0.5
11
6
Dy8
14
Dy7
5
Dy6
15
Dy5
4
Dy4
16
Dy3
3
Dy2
17
Dy1
2
G1 G2
HOUSING
(METAL)
Dy9
PMT
R21
R18
C5
R20
R17
C4
R19
R16
C3
R15
R1 : 10 kΩ
R2, R18 : 240 kΩ
R3 : 360 kΩ
R4 : 390 kΩ
R5 : 120 kΩ
R6 : 180 kΩ
R7 to R14 : 100 kΩ
R15, R16 : 150 kΩ
R17 : 300 kΩ
R19 : 51 Ω
R20, R21 : 100 Ω
C1 : 22 nF
C2 : 47 nF
C3 : 100 nF
C4 : 220 nF
C5 : 470 nF
C6 : 0.47 nF
C1
R13
R12
R11
R10
R9
R8
R7
R6
R5
20
12
Dy9
7
Dy8
13
R4
R3
C6
R2
R1
Dy7
R17
C3
R19
R16
C2
R18
R15
C1
R14
5
Dy6
14
Dy5
4
R13
R1 : 10 kΩ
R2, R3, R7 : 750 kΩ
R4, R9 : 200 kΩ
R5 : 91 kΩ
R6 : 510 kΩ
R8 : 300 kΩ
R10 : 100 kΩ
R11 to R17 : 150 kΩ
R18 to R20 : 51 Ω
C1 to C3 : 10 nF
C4 : 4.7 nF
R12
Dy4
16
Dy3
3
Dy2
17
Dy1
F3
F2
F1
1
2
19
18
K
20
R10
R9
SIG
SIGNAL
OUTPUT
: BNC-R
R8
R7
R6
-H.V
SIG
-H.V
-HV
: SHV-R
-H.V
: SHV-R
R20
R11
HOUSING
(METAL)
The housing is internally
connected to the GND.
SIGNAL
OUTPUT
: BNC-R
Dy10
74.0 ± 0.5
C2
R14
SIGNAL OUTPUT
: BNC-R
8
P
19
K
SOCKET
PIN No.
SIGNAL OUTPUT
: BNC-R
100.0 ± 0.5
PMT
R5
R4
C4
R3
R1
R2
-HV
: SHV-R
The housing is internally
connected to the GND.
-H.V
: SHV-R
TACCA0227EC
TACCA0229EB
¤6 E7083
¤5 E5996
SOCKET
PIN No.
SIGNAL GND
PIN No.1
SIGNAL OUTPUT
RG-174/U (BLACK)
30
PIN No.1
DY10
24
DY9
23
DY8
22
R14
R11
C3
R13
R10
C2
R9
HOUSING
(INSULATOR)
C1
R1 to R3 : 330 kΩ
R4 to R11 : 220 kΩ
R12 to R14 : 51 Ω
R15 : 1 MΩ
C1 to C3 : 10 nF
DY10
24
DY9
23
DY6
20
DY5
19
R6
DY8
450 ± 10
15.0 ± 0.5
P3
21
R7
POTTING
COMPOUND
P4
15
SIGNAL OUTPUT
P2 : 0.8D-QEV (GRAY)
P1
P4 P3 P2 P1
R8
DY7
R14
R11
C3
R13
R10
C2
R12
R9
C1
22
R8
DY7
21
DY6
20
R7
450 ± 10
R5
DY4
R6
7
DY5
19
DY4
7
6
POTTING
COMPUND
R3
DY2
5
DY3
6
DY1
4
R1
R15
GUIDE
MARK
-HV
1
SHIELD CABLE (RED)
POWER SUPPLY GND
TACCA0234ED
P2
P3
DY2
5
DY1
4
R4
-HV
: SHIELD CABLE
(RED)
R2
K
R1 to R3 : 330 kΩ
R4 to R11 : 220 kΩ
R12 to R14 : 51 Ω
R15 : 1 MΩ
C1 to C3 : 10 nF
R5
R4
DY3
SIGNAL GND
27
31
R12
HOUSING
(INSULATOR)
SOCKET
PIN No.
11
15.0 ± 0.5
30.0 ± 0.5
P
PMT
30.0 ± 0.5
30.0 ± 0.5
PMT
30.0 ± 0.5
P1
P4
P1 to P4: SIGNAL OUTPUT
0.8D-QEV (GRAY)
R3
R2
K
R15
1
R1
-HV
: SHIELD CABLE (RED)
POWER SUPPLY GND
TACCA0162ED
¤7 E6736
30.0 ± 0.5
SOCKET
PIN No.
30.0 ± 0.5
PMT
450 ± 10 15.0 ± 0.5
Pin No.1
P1
P2
-HV
: SHIELD CABLE (RED)
Dy10
26
Dy9
10
Dy8
24
Dy7
8
Dy6
2
Dy5
P13
P9
P16
•
•
•
•
•
•
•
P8
•
•
•
•
•
•
SIGANL OUTPUT
: 0.8D-QEV (GRAY)
P1
P16
P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
HOUSING
(INSULATOR)
P3
P11
SIGNAL GND
28
29
27
3
23
4
22
5
21
6
20
7
19
11
13
12
P4
P7 P5
P6
P8
P10
P12
K
GUIDE MARKE
P15
P16
P14
P1 to P16 : SIGNAL OUTPUT
0.8D-QEV (GRAY)
R14 R11
C3
R13 R10
C2
R12 R9
C1
R8
R1 to R11 : 220 kΩ
R12 to R14 : 51 Ω
R15 : 1 MΩ
C1 to C3 : 10 nF
R7
R6
18
R5
Dy4
31
Dy3
15
Dy2
32
Dy1
16
R4
R3
R2
R15 R1
17
-HV
: SHIELD CABLE (RED)
POWER SUPPLY GND
TACCA0158EE
65
¤8 E7514
PMT
25.4 ± 0.5
PIN No. 1
PX6
25.4 ± 0.5
PY6
PX5
PY5
PX4
15.0 ± 0.5
HOUSING
(INSULATOR)
PY4
PX3
PY3
PX2
450
PY2
PX1
SOCKET
PIN No.
SIGNAL GND
16
PX6
24
PY6
15
PX5
23
PY5
14
PX4
22
PY4
12
PX3
20
PY3
11
PX2
19
PY2
10
PX1
PY1
13
PY1
DY11
8
DY10
27
DY9
SIGNAL OUTPUT
: 0.8D-QEV (GRAY)
R18 R14
C3
R17 R13
C2
R16 R12
C1
7
R11
PX2
PX1
-HV
: SHIELD CABLE (RED)
DY7
6
R1, R14: 110 kΩ
R2: 330 kΩ
R3 to R13: 220 kΩ
R15: 1 MΩ
R16 to R18: 51 Ω
C1 to C3: 10 nF
DY6
29
DY5
5
DY4
30
DY3
4
DY2
31
R8
R7
PY4
PY5
PY6
GUIDE MARK
28
R9
PY2
PY3
POTTING
COMPOUND
DY8
R10
PY1 PX4
PX5
PX3
PX6
R6
R5
R4
PX1 to PX6
PY1 to PY6: SIGNAL OUTPUT
0.8D-QEV (GRAY)
R3
DY1
G
K
3
R2
1
R15
R1
-HV
SHIELD CABLE (RED)
32
POWER
SUPPLY GND
TACCA0236EC
¤9 E10411
25.4 ± 0.5
PMT
15.0 ± 0.5
25.4 ± 0.5
PIN No.1
SIGNAL GND
SOCKET
PIN No.
31
SIGNAL OUTPUT
RG-174/U (BLACK)
P
HOUSING
(INSULATOR)
DY10
24
DY9
23
DY8
22
DY7
21
DY6
20
DY5
19
DY4
7
DY3
6
DY2
5
DY1
4
R15
R12
C3
R14
R11
C2
R13
R10
C1
R9
R8
R7
450
R6
R1, R12 : 110 kΩ
R2 : 330 kΩ
R3 : 430 kΩ
R4 to R11 : 220 kΩ
R13 to R15 : 51 Ω
R16 : 1 MΩ
C1 to C3 : 10 nF
R5
R4
R3
R2
1
K
R16
3
R1
-HV
SHIELD CABLE (RED)
POWER SUPPLY GND
TACCA0298EA
66
(Unit: mm)
‹0 E9349
PIN No.1
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
P16
SOCKET
PIN No.
28
29
30
31
39
40
41
32
38
43
42
33
37
36
35
34
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
P16
DY12
OUTPUT
ANODE OUTPUT
25.4 ± 0.5
21.0 ± 0.5
HOUSING
(INSULATOR)
GND
GND
R20
DY12
C4
24
DY11
23
DY10
22
DY9
21
DY8
20
DY7
19
R19 R15
C3
R18 R14
C2
R17 R13
C1
R12
5.5
R11
5.08
5.08
R10
2.54 × 3=7.62
14
DY5
12
DY4
7
DY3
6
DY2
5
R8
R7
R5
R4
19.5
-HV
R1, R4 : 110 kΩ
R2, R3 : 330 kΩ
R5 to R15 : 180 kΩ
R16 : 1 MΩ
R17 to R19 : 51 Ω
R20 : 10 kΩ
C1 to C4 : 10 nF
R6
19.5
GND
P14 P15
DY6
DY
OUT
P1
P5
P9
P13
5.08
-HV
P2 P3
7.62
GND
GND
ANODE OUTPUT
PIN ( 0.64)
GND
P4
P8
P12
P16
4-M2
R9
R3
DY12 OUTPUT
DY1
4
R2
G
K
1
R16 R1
-HV
3
SOCKET
PIN No.
PMT
TACCA0297EB
‹1 E11807, E11807-01
E11807
PMT
26.0 ± 0.5
26.0 ± 0.5
E11807-01
SOCKET
PIN No.
7
PMT
SIGNAL OUTPUT
RG-174/U (BLACK)
R17
P
R20
DY12
C3
R16
R20
8
SIGNAL OUTPUT
RG-174/U (BLACK)
R17
P
C3
PIN No.1
SOCKET
PIN No.
7
DY12
R16
8
R15
R15
POM
HOUSING
DY11
9
DY10
10
R18
DY9
12
DY8
13
DY7
14
R13
R11
R10
R9
DY6
21
R8
5
10
DY5
22
R7
ORIENTATION
BY MARKING
DY4
23
DY3
25
C2
R14
R12
450 ± 10
15.0 ± 0.5
C2
R19
DY11
9
DY10
10
C1
R19
R14
R18
R13
R12
R1 : 300 kΩ
R2, R7 to R13 : 200 kΩ
R3, R4 : 130 kΩ
R5, R6 : 160 kΩ
R14 to R16 : 100 kΩ
R17 : 0 Ω
R18 to R20 : 51 Ω
R21 : 1 MΩ
C1 to C3 : 0.01 µF
DY9
12
DY8
13
DY7
14
DY6
21
DY5
22
DY4
23
DY3
25
DY2
26
R11
R10
R9
R8
R6
R5
DY2
R5
26
R4
R4
R3
DY1
NOTE: Don't touch socket holes while
high voltage is supplied in circuit.
R1 : 300 kΩ
R2, R14, R15 : 200 kΩ
R3, R4 : 120 kΩ
R5 to R13 : 150 kΩ
R16, R17 : 100 kΩ
R18 to R20 : 51 Ω
R21 : 1 MΩ
C1 to C3 : 0.01 µF
R7
R6
POTTING
COMPOUND
C1
R3
27
DY1
27
R2
R2
K
K
R21
1
R1
-HV
RG-174/U (RED)
R21
1
R1
-HV
RG-174/U (RED)
TACCA0314EA
67
Dimensional Outline
For E678 Series Sockets
E678-12A, E678-12R*
E678-12L
47
35
40
28.6
17
13
2- 3.2
2-R4
6.7
4.3
360
13
9
(23.6)
E678-11N
10.5
9.5
18
3
2
2
(8)
9.5
15
5
3
34
7
10.5
9.5
3.3 3.7
11
2- 3.2
8
13
18
TACCA0043EA
E678-12V
* Gold plating type
TACCA0009EB
E678-13E
TACCA0047EA
E678-13F
12.4
12.7
2.54
11
24
5.5
18
6.0
2- 2.2
1.83
10.16
3
10
3.4
3.2
3
10.5
4.2
2.8
13
7
0.5
11
TACCA0164EC
E678-14C
TACCA0013EB
E678-14-03
TACCA0005EA
E678-14W
19.8
44
27.5
19.1
30
11.6
19.1
35
2- 3.5
62
25.2
56
25
14
TACCA0004EA
2
24.5
68
30
6.5
9
17 11
2
14
9.5
7
2.5
3.9
26
TACCA0184EA
TACCA0200EA
(Unit: mm)
E678-15C
E678-17A
E678-19J
60
60
50
24.0
45
40
45
40
4
4
18.0
50
21.9
5
16.3
0.1
5
2
12
12.0
12
2
40
11.5
14.0
5
22.8
6.5
40
TACCA0201EA
TACCA0046EB
E678-19K
TACCA0203EA
E678-20B
57.8
52.5
8.88
+0
26.2 - 0.3 (WITH GATE)
20
22.95
12.7
22.56
GATE
POSITION
2.22 × 8=17.76
5-R1.5
8.88
11.1
28
C5.0
34
(5.1)
13
6.0
3.0 ± 0.1
2.22 × 9=19.98
TACCA0313EA
E678-21C
TACCA0309EA
E678-32B
51
19
22.86
12.7
20.32
R5
22.86
56.8
2.54
20.32
4
0.51
2.92
13
5
1.57
4.45
12.7
6.5
MATERIAL: Glass Epoxy
TACCA0066EC
TACCA0094ED
69
Index by Type No.
Type Number
Product
R329-02 ...................
R331-05 ...................
R580 ........................
R647-01 ...................
E678 SERIES ..........
R750 ........................
R760 ........................
R762 ........................
E849-68 ...................
E849-90 ...................
R877 ........................
R877-01 ...................
R877-100 .................
R960 ........................
E974-17 ...................
E974-19 ...................
E974-22 ...................
E990-29 ...................
R1166 ......................
E1198 SERIES.........
R1250 ......................
R1288A-06 ...............
R1306 ......................
R1306-15 .................
R1307 ......................
R1307-07 .................
R1450 ......................
R1548-07 .................
R1584 ......................
R1635 ......................
E1761-21 .................
E1761-22 .................
R1828-01 .................
R1840 ......................
R1924A ....................
R1924A-01 ...............
H1949-50 .................
H1949-51 .................
E2037-02 .................
R2059 ......................
R2076 ......................
R2083 ......................
R2154-02 .................
E2183-500 ...............
E2183-501 ...............
R2248 ......................
E2253-05 .................
R2256-02 .................
H2431-50 .................
R2496 ......................
E2624-04 .................
E2624-14 .................
E2924-11 .................
E2924-500 ...............
E2979-500 ...............
R3149 ......................
H3164-10 .................
H3165-10 .................
H3177-50 .................
51mm (2") dia. PMT ......................... 22
51mm (2") dia. PMT ......................... 22
38mm (1-1/2") dia. PMT ................... 20
13mm (1/2") dia. PMT ...................... 20
Socket ........................................ 68, 69
19mm (3/4") dia. PMT ...................... 21
13mm (1/2") dia. PMT ...................... 21
19mm (3/4") dia. PMT ...................... 21
Socket Assembly .............................. 58
Socket Assembly .............................. 58
127mm (5") dia. PMT ....................... 22
127mm (5") dia. PMT ....................... 23
127mm (5") dia. PMT SBA Type ...... 26
13mm (1/2") dia. PMT ...................... 21
Socket Assembly .............................. 58
Socket Assembly .............................. 58
Socket Assembly .............................. 58
Socket Assembly .............................. 58
19mm (3/4") dia. PMT ...................... 20
Socket Assembly ........................ 58, 59
127mm (5") dia. PMT ....................... 22
25mm (1") dia. PMT ......................... 20
51mm (2") dia. PMT ......................... 22
51mm (2") dia. PMT ......................... 23
76mm (3") dia. PMT ......................... 22
76mm (3") dia. PMT ......................... 23
19mm (3/4") dia. PMT ...................... 20
25mm (1" Dual) Square PMT ........... 24
127mm (5") dia. PMT ....................... 22
10mm (3/8") dia. PMT ...................... 20
Socket Assembly .............................. 58
Socket Assembly .............................. 58
51mm (2") dia. PMT ......................... 22
51mm (2") dia. PMT ......................... 22
25mm (1") dia. PMT ......................... 20
25mm (1") dia. PMT ......................... 21
Hybrid Assembly .............................. 49
Hybrid Assembly .............................. 49
Socket Assembly ............................. 58
51mm (2") dia. PMT ......................... 23
19mm (3/4") dia. PMT ...................... 21
51mm (2") dia. PMT ......................... 22
51mm (2") dia. PMT ......................... 22
Socket Assembly .............................. 58
Socket Assembly .............................. 58
10mm (3/8") Square PMT ................. 24
Socket Assembly .............................. 58
51mm (2") dia. PMT ......................... 23
Hybrid Assembly .............................. 49
10mm (3/8") dia. PMT ...................... 20
Socket Assembly .............................. 58
Socket Assembly .............................. 58
Socket Assembly .............................. 58
Socket Assembly .............................. 58
Socket Assembly .............................. 58
51mm (2") dia. PMT ......................... 23
Hybrid Assembly .............................. 48
Hybrid Assembly .............................. 48
Hybrid Assembly .............................. 49
70
Page
Type Number
Product
Page
H3177-51 ................. Hybrid Assembly .............................. 49
H3178-51 ................. Hybrid Assembly .............................. 48
R3292-02 ................. Position Sensitive PMT .................... 44
R3377 ...................... 51mm (2") dia. PMT ......................... 23
H3378-50 ................. Hybrid Assembly .............................. 49
R3478 ...................... 19mm (3/4") dia. PMT ...................... 20
R3479 ...................... 19mm (3/4") dia. PMT ...................... 21
R3600-02 ................. 508mm (20") dia. PMT ..................... 22
R3600-06 ................. Hybrid Assembly .............................. 49
H3695-10 ................. Hybrid Assembly .............................. 48
R3878 ...................... 10mm (3/8") dia. PMT ...................... 21
R3886A .................... 38mm (1-1/2") dia. PMT ................... 20
R3991A-04 .............. 19mm (3/4") dia. PMT ...................... 20
R3998-02 ................. 28mm (1-1/8") dia. PMT ................... 20
R3998-100-02 .......... 28mm (1-1/8") dia. PMT SBA Type ... 26
R4004 ...................... 51mm (2") dia. PMT ......................... 23
H4022-50 ................. Hybrid Assembly .............................. 49
H4022-51 ................. Hybrid Assembly .............................. 49
R4124 ...................... 13mm (1/2") dia. PMT ...................... 20
R4125 ...................... 19mm (3/4") dia. PMT ...................... 20
R4141 ...................... 13mm (1/2") dia. PMT ...................... 21
R4143 ...................... 76mm (3") dia. PMT ......................... 22
R4177-04 ................. 13mm (1/2") dia. PMT ...................... 21
R4177-06 ................. 13mm (1/2") dia. PMT ...................... 20
R4607A-06 ............... 51mm (2") dia. PMT ......................... 22
R4885 ...................... 76mm (3") dia. PMT ......................... 23
R4998 ...................... 25mm (1") dia. PMT ......................... 20
R5113-02 ................. 51mm (2") dia. PMT ......................... 23
R5320 ...................... 25mm (1") dia. PMT ......................... 21
R5505-70 ................. 25mm (1") dia. PMT ......................... 20
R5505-70 ................. Fine Mesh PMT ................................ 24
R5611A .................... 19mm (3/4") dia. PMT ...................... 21
R5611A-01 ............... 19mm (3/4") dia. PMT ...................... 20
E5859 SERIES......... Socket Assembly .............................. 58
R5900U-00-L16 ....... Metal Package PMT ......................... 24
R5900U-100-L16....... Metal Package PMT SBA Type ........ 26
R5900U-200-L16....... Metal Package PMT UBA Type ........ 26
R5912 ...................... 204mm (8") dia. PMT ....................... 22
R5912-02 ................. 204mm (8") dia. PMT ....................... 22
R5912-100 ............... 204mm (8") dia. PMT SBA Type ...... 26
R5924-70 ................. 51mm (2") dia. PMT ......................... 22
R5924-70 ................. Fine Mesh PMT ................................ 24
E5996 ...................... Socket Assembly .............................. 59
R6041 ...................... 51mm (2") dia. PMT ......................... 22
R6041-406 ............... 51mm (2") dia. PMT ......................... 22
R6041-506 ............... 51mm (2") dia. PMT ......................... 22
R6091 ...................... 76mm (3") dia. PMT ......................... 22
E6133-03 ................. Socket Assembly .............................. 58
E6133-04 ................. Socket Assembly .............................. 58
H6152-70 ................. Hybrid Assembly .............................. 48
R6231 ...................... 51mm (2") dia. PMT ......................... 22
R6231-01 ................. 51mm (2") dia. PMT ......................... 23
R6231-100 ............... 51mm (2") dia. PMT SBA Type ........ 26
R6232 ...................... 60mm (2.5") dia. PMT ...................... 22
R6232-01 ................. 60mm (2.5") dia. PMT ...................... 23
R6233 ...................... 76mm (3") dia. PMT ......................... 22
R6233-01 ................. 76mm (3") dia. PMT ......................... 23
R6233-100 ............... 76mm (3") dia. PMT SBA Type ........ 26
R6234 ...................... 60mm (2.5") Hexagon PMT .............. 24
Type Number
Product
Page
R6234-01 .................
R6235 ......................
R6235-01 .................
R6236 ......................
R6236-01 .................
R6237 ......................
R6237-01 .................
E6316-01 .................
H6410 ......................
R6427 ......................
H6520 ......................
H6521 ......................
H6522 ......................
H6524 ......................
H6525 ......................
H6526 ......................
H6527 ......................
H6528 ......................
H6533 ......................
H6559 ......................
E6572 ......................
R6594 ......................
H6610 ......................
H6612 ......................
H6613 ......................
H6614-70 .................
E6736 ......................
R7056 ......................
R7081 ......................
R7081-20 .................
R7081-100 ...............
E7083 ......................
R7111 ......................
H7195 ......................
R7250 ......................
H7260.......................
H7260-100 ...............
H7260-200 ...............
R7373A-01 ...............
H7415 ......................
H7416 ......................
E7514 ......................
R7525 ......................
H7546B ....................
H7546B-100 .............
H7546B-200 .............
H7546B-300 .............
R7600U ...................
R7600U-100 .............
R7600U-200 .............
R7600U-300 .............
R7600U-300-M4.......
R7600U-00-M4 ........
R7600U-100-M4 ......
R7600U-200-M4 ......
R7600U-03 ..............
E7693 ......................
E7694 ......................
E7694-01..................
60mm (2.5") Hexagon PMT .............. 25
76mm (3") Hexagon PMT ................. 24
76mm (3") Hexagon PMT ................. 25
60mm Square PMT .......................... 24
60mm Square PMT .......................... 25
76mm (3") Square PMT .................... 24
76mm (3") Square PMT .................... 25
Socket Assembly .............................. 59
Hybrid Assembly .............................. 49
28mm (1-1/8") dia. PMT ................... 20
Hybrid Assembly .............................. 48
Hybrid Assembly .............................. 49
Hybrid Assembly .............................. 49
Hybrid Assembly .............................. 48
Hybrid Assembly .............................. 49
Hybrid Assembly .............................. 49
Hybrid Assembly .............................. 49
Hybrid Assembly .............................. 49
Hybrid Assembly .............................. 48
Hybrid Assembly .............................. 49
Socket Assembly .............................. 59
127mm (5") dia. PMT ....................... 22
Hybrid Assembly .............................. 48
Hybrid Assembly .............................. 48
Hybrid Assembly .............................. 48
Hybrid Assembly .............................. 49
Socket Assembly .............................. 59
28mm (1-1/8") dia. PMT ................... 21
254mm (10") dia. PMT ..................... 22
254mm (10") dia. PMT ..................... 22
254mm (10") dia. PMT SBA Type .... 26
Socket Assembly .............................. 59
28mm (1-1/8") dia. PMT ................... 20
Hybrid Assembly .............................. 49
508mm (20") dia. PMT ..................... 22
Hybrid Assembly ........................ 24, 49
Hybrid Assembly SBA Type ............. 26
Hybrid Assembly UBA Type ............. 26
2π Shape PMT ................................. 24
Hybrid Assembly .............................. 48
Hybrid Assembly .............................. 48
Socket Assembly .............................. 59
28mm (1-1/8") dia. PMT ................... 20
Hybrid Assembly ........................ 24, 49
Hybrid Assembly SBA Type ............. 26
Hybrid Assembly UBA Type ............. 26
Hybrid Assembly Extended Green Bialkali Type... 26
Metal Package PMT ......................... 24
Metal Package PMT SBA Type ........ 26
Metal Package PMT UBA Type ........ 26
Metal Package PMT Extended Green Bialkali Type ... 26
Metal Package PMT Extended Green Bialkali Type ... 26
Metal Package PMT ......................... 24
Metal Package PMT SBA Type ........ 26
Metal Package PMT UBA Type ........ 26
Metal Package PMT ......................... 25
Socket Assembly .............................. 59
Socket Assembly ............................. 59
Socket Assembly ............................. 59
Type Number
Product
Page
R7723 ......................
R7724 ......................
R7724-100 ...............
R7725 ......................
R7761-70 .................
R7761-70 .................
R7899 ......................
R7899-01 .................
R8055 ......................
H8135 ......................
R8143 ......................
H8409-70 .................
H8500C ....................
R8520-406 ...............
R8520-506 ...............
R8619 ......................
H8643 ......................
H8711 ......................
H8711-100 ...............
H8711-200 ...............
H8711-300 ...............
H8804 ......................
H8804-100 ...............
H8804-200 ...............
H8804-300 ...............
R8900U-00-M4 ........
R8900U-100-M4 ......
R8900-00-M16 .........
R8900-100-M16 .......
R8900U-00-C12 .......
R8900U-100-C12 .....
R8997 ......................
E9349 ......................
R9420 ......................
R9420-100 ...............
H9500 ......................
R9779 ......................
R9800 ......................
R9800-100 ...............
R10233 ....................
R10233-100 .............
E10411 ....................
R10533 ....................
R10550 ....................
H10570.....................
H10580.....................
H10966A ..................
H10966A-100 ...........
H10966B ..................
H10966B-100 ...........
R11065 ....................
R11102 ....................
R11265U ..................
R11265U-100 ...........
R11265U-200 ...........
R11410 ....................
E11807 ....................
E11807-01 ...............
51mm (2") dia. PMT ......................... 22
51mm (2") dia. PMT ......................... 22
51mm (2") dia. PMT SBA Type ........ 26
51mm (2") dia. PMT ......................... 22
38mm (1-1/2") dia. PMT ................... 20
Fine Mesh PMT ................................ 24
25mm (1") dia. PMT ......................... 21
25mm (1") dia. PMT ......................... 20
332mm (13") dia. PMT ..................... 22
Hybrid Assembly .............................. 48
2π Shape PMT ................................. 24
Hybrid Assembly .............................. 48
Hybrid Assembly ........................ 24, 49
Metal Package PMT ......................... 24
Metal Package PMT ......................... 24
25mm (1") dia. PMT ......................... 20
Hybrid Assembly .............................. 48
Hybrid Assembly ........................ 24, 49
Hybrid Assembly SBA Type ............. 26
Hybrid Assembly UBA Type ............. 26
Hybrid Assembly Extended Green Bialkali Type... 26
Hybrid Assembly ........................ 24, 49
Hybrid Assembly SBA Type ............. 26
Hybrid Assembly UBA Type ............. 26
Hybrid Assembly Extended Green Bialkali Type... 26
Metal Package PMT ......................... 24
Metal Package PMT SBA Type ........ 26
Metal Package PMT ......................... 24
Metal Package PMT SBA Type ........ 26
Position Sensitive PMT .................... 44
Metal Package PMT SBA Type ........ 26
38mm (1-1/2") dia. PMT ................... 24
Socket Assembly .............................. 59
38mm (1-1/2") dia. PMT ................... 20
38mm (1-1/2") dia. PMT SBA Type ... 26
Hybrid Assembly ........................ 24, 49
51mm (2") dia. PMT ......................... 22
25mm (1") dia. PMT ......................... 20
25mm (1") dia. PMT SBA Type......... 26
90mm (3.5") dia. PMT ....................... 22
90mm (3.5") dia. PMT SBA Type...... 26
Socket Assembly .............................. 59
51mm (2") dia. PMT ......................... 22
38mm (1-1/2" Quadrant) Square PMT ... 24
Hybrid Assembly .............................. 49
Hybrid Assembly .............................. 48
Hybrid Assembly .............................. 49
Hybrid Assembly SBA Type.............. 26
Hybrid Assembly .............................. 49
Hybrid Assembly SBA Type.............. 26
76mm (3") dia. PMT ......................... 22
38mm (1-1/2") dia. PMT ................... 20
Metal Package PMT ......................... 24
Metal Package PMT SBA Type ........ 26
Metal Package PMT UBA Type ........ 26
76mm (3") dia. PMT ......................... 22
Socket Assembly .............................. 59
Socket Assembly .............................. 59
71
CAUTIONS AND WARRANTY
WARNING
HIGH
VOLTAGE
Take sufficient care to avoid an electric shock hazard
ate interlocks to protect the operator and service personnel.
A high voltage used in photomultiplier tube operaThe metal housing of the Metal Package PMT R7400 series,
tion may present a shock hazard. Photomultiplier
R5900 series and R7600 series are connected to the phototubes should be installed and handled only by
cathode (potential) so that it becomes a high voltage potential
qualified personnel that have been instructed in
when the product is operated at a negative high voltage
handling of high voltages. Designs of equipment
(anode grounded).
utilizing these devices should incorporate appropri-
PRECAUTIONS FOR USE
● Handle tubes with extreme care
Photomultiplier tubes have evacuated glass envelopes. Allowing the glass to be scratched or to be subjected to shock
can cause cracks. Extreme care should be taken in handling,
especially for tubes with graded sealing of synthetic silica.
● Keep faceplate and base clean
Do not touch the faceplate and base with bare hands. Dirt
and fingerprints on the faceplate cause loss of transmittance
and dirt the base may cause ohmic leakage. Should they become soiled, wipe it clean using alcohol.
● Do not expose to strong light
Direct sunlight and other strong illumination may cause damage the Photocathode. They must not be allowed to strike the
photocathode, even when the tube is not operated.
● Handling of tubes with a glass base
A glass base (also called button stem) is less rugged than a
plastic base, so care should be taken in handling this type of
tube. For example, when fabricating the voltage-divider circuit, solder the divider resistors to socket lugs while the tube
is inserted in the socket.
● Cooling of tubes
When cooling a photomultiplier tube, the photocathode section is usually cooled. However, if you suppose that the base
is also cooled down to -30 °C or below, please consult our
sales office in advance.
● Helium permeation through silica bulb
Helium will permeate through the silica bulb, leading to an increase in noise. Avoid operating or storing tubes in an environment where helium is present.
Data and specifications listed in this catalog are subject
to change due to product improvement and other factors.
before specifying any of the types in your production
equipment, please consult our sales office.
WARRANTY
All Hamamatsu photomultiplier tubes and related products
are warranted to the original purchaser for a period of 12
months following the date of shipment. The warranty is limited to repair or replacement of any defective material due to
defects in workmanship or materials used in manufacture.
A: Any claim for damage of shipment must be made directly
to the delivering carrier within five days.
B: Customers must inspect and test all detectors within 30
days after shipment. Failure to accomplish said incoming
inspection shall limit all claims to 75 % of invoice value.
C: No credit will be issued for broken detectors unless in the
opinion of Hamamatsu the damage is due to a bulb crack
or a crack in a graded seal traceable to a manufacturing
defect.
72
D: No credit will be issued for any detector which in the judgment of Hamamatsu has been damaged, abused, modified
or whose serial number or type number have been obliterated or defaced.
E: No detectors will be accepted for return unless permission
has been obtained from Hamamatsu in writing, the shipment has been returned prepaid and insured, the detectors are packed in their original box and accompanied by
the original data sheet furnished to the customer with the
tube, and a full written explanation of the reason for rejection of each detector.
F: When products are used at a condition which exceeds the
specified maximum ratings or which could hardly be anticipated, Hamamatsu will not be the guarantor of the products.
Typical Photocathode Spectral Response
and Emission Spectrum of Scintillators
100
TPMHB0342ED
G
F
I
D
H
A
10
E
B
J
LSO
Nal (Tl)
CsI (Tl)
BGO
LaBr3
1
100
80
60
BaF2
40
20
0.1
0
100
200
300
400
500
600
10
700
RELATIVE INTENSITY (%)
QUANTUM EFFICIENCY (%)
C
WAVELENGTH (nm)
A: Bialkali Photocathode (Borosilicate Glass)
B: Bialkali Photocathode (UV Glass)
C: Bialkali Photocathode (Synthetic Silica)
D: Bialkali Photocathode
E: High Temp. Bialkali Photocathode
F: Super Bialkali
G: Ultra Bialkali
H: Extended Green Bialkali
I: Low Temp. (down to -110 °C) Bialkali Photocathode
J: Low Temp. (down to -186 °C) Bialkali Photocathode
73
HAMAMATSU PHOTONICS K.K., Electron Tube Division
314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, Japan
Telephone: (81)539/62-5248, Fax: (81)539/62-2205
www.hamamatsu.com
Main Products
Sales Offices
Electron Tubes
Photomultiplier Tubes
Photomultiplier Tube Modules
Microchannel Plates
Image Intensifiers
Xenon Lamps / Mercury Xenon Lamps
Deuterium Lamps
Light Source Applied Products
Laser Applied Products
Microfocus X-ray Sources
X-ray Imaging Devices
Japan:
HAMAMATSU PHOTONICS K.K.
325-6, Sunayama-cho, Naka-ku,
Hamamatsu City, Shizuoka Pref. 430-8587, Japan
Telephone: (81)53-452-2141, Fax: (81)53-456-7889
E-mail: [email protected]
Belgian Office
Axisparc Technology, rue Andre Dumont 7 1435
Mont-Saint-Guibert, Belgium
Telephone: (32)10 45 63 34
Fax: (32)10 45 63 67
E-mail: [email protected]
China:
HAMAMATSU PHOTONICS (CHINA) Co., Ltd.
Main Office
1201 Tower B, Jiaming Center, 27 Dongsanhuan Beilu,
Chaoyang District, 100020 Beijing, China
Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866
E-mail: [email protected]
Spanish Office
C. Argenters, 4 edif 2 Parque Tecnológico del Vallés
08290 Cerdanyola (Barcelona), Spain
Telephone: (34)93 582 44 30
Fax: (34)93 582 44 31
E-mail: [email protected]
Opto-semiconductors
Si photodiodes
APD
Photo IC
Image sensors
PSD
Infrared detectors
LED
Optical communication devices
Automotive devices
X-ray flat panel sensors
Mini-spectrometers
Opto-semiconductor modules
Imaging and Processing Systems
Cameras / Image Processing Measuring Systems
X-ray Products
Life Science Systems
Medical Systems
Semiconductor Failure Analysis Systems
FPD / LED Characteristic Evaluation Systems
Spectroscopic and Optical Measurement Systems
Laser Products
Semiconductor lasers
Applied products of semiconductor lasers
Solid state lasers
Shanghai Branch
4905 Wheelock Square, 1717 Nanjing Road West,
Jingan District, 200040 Shanghai, China
Telephone: (86)21-6089-7018, Fax: (86)21-6089-7017
U.S.A.:
HAMAMATSU CORPORATION
Main Office
360 Foothill Road, Bridgewater, NJ 08807, U.S.A.
Telephone: (1)908-231-0960, Fax: (1)908-231-1218
E-mail: [email protected]
Information in this catalog is
believed to be reliable. However,
no responsibility is assumed for
possible inaccuracies or omission.
Specifications are subject to
change without notice. No patent
rights are granted to any of the
circuits described herein.
© 2016 Hamamatsu Photonics K.K.
Danish Office
Lautruphøj 1-3, DK-2750 Ballerup, Denmark
Telephone: (45)70-20-93-69, Fax: (45)44-20-99-10
Email: [email protected]
California Office
2875 Moorpark Ave. San Jose, CA 95128, U.S.A.
Telephone: (1)408-261-2022, Fax: (1)408-261-2522
E-mail: [email protected]
Netherlands Office
Televisieweg 2, NL-1322 AC Almere, The Netherlands
Telephone: (31)36-5405384, Fax: (31)36-5244948
E-mail: [email protected]
Chicago Office
4711 Golf Road, Suite 805, Skokie, IL 60076, U.S.A.
Telephone: (1)847-725-6046, Fax: (1)847-825-2189
E-mail: [email protected]
Poland Office
02-525 Warsaw, 8 St. A. Boboli Str., Poland
Telephone: (48)22-646-0016, Fax: (48)22-646-0018
E-mail: [email protected]
Boston Office
20 Park Plaza, Suite 312, Boston, MA 02116, U.S.A.
Telephone: (1)617-536-9900, Fax: (1)408-261-2522
E-mail: [email protected]
North Europe and CIS:
HAMAMATSU PHOTONICS NORDEN AB
Main Office
Torshamnsgatan 35 16440 Kista, Sweden
Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01
E-mail: [email protected]
United Kingdom:
HAMAMATSU PHOTONICS UK Limited
Main Office
2 Howard Court, 10 Tewin Road, Welwyn Garden City,
Hertfordshire AL7 1BW, UK
Telephone: (44)1707-294888, Fax: (44)1707-325777
E-mail: [email protected]
South Africa Office:
PO Box 1112, Buccleuch 2066, Johannesburg,
South Africa
Telephone/Fax: (27)11-802-5505
REVISED JAN. 2016
Germany, Denmark, The Netherlands, Poland:
HAMAMATSU PHOTONICS DEUTSCHLAND GmbH
Main Office
Arzbergerstr. 10, D-82211 Herrsching am Ammersee,
Germany
Telephone: (49)8152-375-0, Fax: (49)8152-265-8
E-mail: [email protected]
France, Portugal, Belgium, Switzerland, Spain:
HAMAMATSU PHOTONICS FRANCE S.A.R.L.
Main Office
19, Rue du Saule Trapu Parc du Moulin de Massy,
91882 Massy Cedex, France
Telephone: (33)1 69 53 71 00
Fax: (33)1 69 53 71 10
E-mail: [email protected]
Russian Office
11, Christoprudny Boulevard, Building 1, Office 114,
101000, Moscow, Russia
Telephone: (7)495 258 85 18, Fax: (7)495 258 85 19
E-mail: [email protected]
Italy:
HAMAMATSU PHOTONICS ITALIA S.r.l.
Main Office
Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy
Telephone: (39)02-935-81-733, Fax: (39)02-935-81-741
E-mail: [email protected]
Rome Office
Viale Cesare Pavese, 435, 00144 Roma, Italy
Telephone: (39)06-50513454, Fax: (39)06-50513460
E-mail: [email protected]
Swiss Office
Dornacherplatz 7 4500 Solothurn, Switzerland
Telephone: (41)32-625-60-60,
Fax: (41)32-625-60-61
E-mail: [email protected]
Quality, technology and service are part of every product.
TPMO0007E04
JAN. 2016 IP