PHOTOMULTIPLIER TUBES AND RELATED PRODUCTS

Opening The Future with Photonics
Human beings obtain more than 70 percent of the information visually by
using their eyes. However, there are vast sums of information and unknown
possibilities hidden within light not visible to the naked eye. This kind of light
includes ultraviolet, infrared, X-ray and ultra-low level light impossible for
human eyes to detect.
Since its founding over 60 years ago, Hamamatsu Photonics has been
investigating not only light seen by the human eye but also light that far
exceeds this level. As a leading manufacturer specializing in the field of
photonics, Hamamatsu Photonics has marketed dozens of photosensitive
devices, light sources and related products. Through these state-of-the-art
products, Hamamatsu Photonics has committed itself to pioneering industrial
and academic research work in still unexplored areas in many fields.
Hamamatsu Photonics will continue to deliver innovative breakthroughs in a
diverse range of fields, always striving to make human life fuller and richer by
"researching the many ways to use light".
CONTENTS
Index by Type Number ...............................................................................
2
About Photomultiplier Tube
Construction and Operating Characteristics ............................................... 4
Connections to External Circuits ................................................................. 14
Selection Guide by Applications ................................................................. 16
Side-on Type Photomultiplier Tubes
13 mm Dia. Types .......................................................................................
28 mm Dia. Types with UV to Visible Sensitivity.........................................
28 mm Dia. Types with UV to Near IR Sensitivity .......................................
13 mm Dia. Types, 28 mm Dia. Types with Solar Blind Response .............
22
24
26
30
Head-on Type Photomultiplier Tubes
10 mm Dia. Types, 13 mm Dia. Types........................................................
19 mm Dia. Types .......................................................................................
25 mm Dia. Types .......................................................................................
28 mm Dia. Types .......................................................................................
38 mm Dia. Types .......................................................................................
51 mm Dia. Types with Plastic Base...........................................................
51 mm Dia. Types with Glass Base ............................................................
76 mm Dia. Types .......................................................................................
127 mm Dia. Types .....................................................................................
32
34
36
38
42
44
46
50
52
Special Purpose Photomultiplier Tubes
Hexagonal Types, Rectangular Types ........................................................
Metal Package Photomultiplier Tubes ........................................................
UBA (Ultra Bialkali), SBA (Super Bialkali),
EGBA (Extended Green Bialkali) Types .....................................................
For High Magnetic Environments................................................................
Microchannel Plate-Photomultiplier Tubes (MCP-PMTs) ...........................
Micro PMT Assembly / Micro PMT Module .................................................
54
56
60
64
66
68
Gain Characteristics
70
Voltage Distribution Ratio
72
Lens for Side-on Type Photomultiplier Tubes
73
Photomultiplier Tube Sockets
74
Photomultiplier Tube Assemblies
76
Accessories for Photomultiplier Tubes
Socket Assemblies......................................................................................
Amplifier Units .............................................................................................
High Voltage Power Supplies .....................................................................
Thermoelectric Coolers ...............................................................................
Magnetic Shield Cases ...............................................................................
Housings, Flange ........................................................................................
Power and Signal Cables, Connector Adapters..........................................
Related Products for Photon Counting .......................................................
84
108
110
116
120
121
122
123
Cautions and Warranty
126
Typical Photocathode Spectral Response
127
Index by Type Number
Product
R329-02 .........................
R331-05 .........................
R374 ..............................
R375 ..............................
R464 ..............................
R550 ..............................
R580 ..............................
R594 ..............................
R636-10 .........................
R647...............................
R649 ..............................
R669 ..............................
E717 Series ...................
R759 ..............................
R821 ..............................
E849 Series ...................
E850 Series ...................
R877 ..............................
R877-100 .......................
R878 ..............................
R928 ..............................
R943-02 .........................
R972 ..............................
E974 Series ...................
E989 Series ...................
E990 Series ...................
R1080 ............................
R1081 ............................
R1166 ............................
E1168 Series .................
E1198 Series .................
R1250 ............................
R1288A .........................
R1306 ............................
R1307 ............................
E1341 Series .................
E1435-02 .......................
R1450 ............................
R1463 ............................
R1513 ............................
R1527 ............................
R1548-07 ......................
R1584 ............................
R1617 ............................
R1635 ............................
E1761 Series .................
R1828-01 .......................
R1878 ............................
R1924A .........................
R1924A-100 ..................
R1925A .........................
H1949-51 .......................
R2066 ............................
R2078 ............................
R2083 ............................
R2154-02 ......................
E2183 Series .................
R2228 ............................
R2248 ............................
E2253 Series .................
R2257 ............................
H2431-50 .......................
R2496 ............................
R2557 ............................
E2624 Series .................
R2658 ............................
E2924 Series .................
R2949 ............................
E2979-500 .....................
H3164-10 .......................
H3165-10 .......................
H3178-51 .......................
R3478 ............................
R3550A .........................
H3695-10 .......................
R3788 ............................
R3809U Series ..............
R3886A..........................
Head-on PMT ............................................. 46
Head-on PMT ............................................. 46
Head-on PMT ............................................. 38
Head-on PMT ............................................. 48
Head-on PMT ............................................. 46
Head-on PMT ............................................. 44
Head-on PMT ............................................. 42
Head-on PMT ............................................. 50
Side-on PMT .............................................. 28
Head-on PMT ............................................. 32
Head-on PMT ............................................. 46
Head-on PMT ............................................. 48
Socket Assembly ........................................ 90
Head-on PMT ............................................. 32
Head-on PMT ............................................. 34
Socket Assembly ........................................ 90
Socket Assembly ........................................ 90
Head-on PMT ............................................. 52
SBA Head-on PMT ..................................... 60
Head-on PMT ............................................. 44
Side-on PMT .............................................. 26
Head-on PMT ............................................. 48
Head-on PMT ............................................. 34
Socket Assembly ........................................ 90
Magnetic Shield Case ................................. 120
Socket Assembly .................................... 90, 91
Head-on PMT ............................................. 32
Head-on PMT ............................................. 32
Head-on PMT ............................................. 34
Cable with Connector ................................. 122
Socket Assembly ........................................ 91
Head-on PMT ............................................. 52
Head-on PMT ............................................. 36
Head-on PMT ............................................. 44
Head-on PMT ............................................. 50
Housing ...................................................... 121
Socket Assembly ........................................ 91
Head-on PMT ............................................. 34
Head-on PMT ............................................. 32
Head-on PMT ............................................. 52
Side-on PMT .............................................. 24
Rectangular Dual PMT ............................... 54
Head-on PMT ............................................. 52
Head-on PMT ............................................. 34
Head-on PMT ............................................. 32
Socket Assembly ........................................ 90
Head-on PMT ............................................. 44
Head-on PMT ............................................. 34
Head-on PMT ............................................. 36
SBA Head-on PMT ..................................... 60
Head-on PMT ............................................. 36
PMT Assembly ............................................ 76
Head-on PMT ............................................. 42
Head-on PMT ............................................. 36
Head-on PMT ............................................. 46
Head-on PMT ............................................. 44
Socket Assembly ........................................ 91
Head-on PMT ............................................. 40
Rectangular PMT ........................................ 54
Socket Assembly ........................................ 90
Head-on PMT ............................................. 48
PMT Assembly ........................................... 76
Head-on PMT ............................................. 32
Head-on PMT ............................................. 32
Socket Assembly ........................................ 90
Side-on PMT ............................................... 28
Socket Assembly ........................................ 90
Side-on PMT ............................................... 26
Socket Assembly ........................................ 91
PMT Assembly ........................................... 76
PMT Assembly ........................................... 76
PMT Assembly ........................................... 76
Head-on PMT ............................................. 34
Head-on PMT ............................................. 36
PMT Assembly ........................................... 76
Side-on PMT ............................................... 24
MCP-PMT ................................................... 66
Head-on PMT ............................................. 42
2
Type No.
Page
Type No.
Product
R3896 ............................
R3991A .........................
R3998-02 .......................
R3998-100-02................
R4124 ............................
R4143 ............................
R4177-01 .......................
A4184 Series .................
R4220 ............................
R4607A-01.....................
R4632 ............................
C4900 Series .................
R4998 ............................
A5026 Series .................
R5070A .........................
A5074 ............................
R5108 ............................
R5505-70 .......................
C5594 Series .................
R5610A .........................
R5611A-01 ....................
E5859 Series .................
R5900U-L16 Series .......
R5900U-100-L16 ...........
R5900U-200-L16 ...........
R5916U Series ..............
R5924-70 .......................
R5929 ............................
R5983 ............................
R5984 ............................
E5996 ............................
R6091 ............................
R6094 ............................
R6095 ............................
E6133-04 .......................
H6152-70 .......................
R6231 ............................
R6231-100 .....................
R6233 ............................
R6233-100 .....................
R6234 ............................
R6235 ............................
R6236 ............................
R6237 ............................
C6271 ............................
E6316 Series .................
R6350 ............................
R6352 ............................
R6353 ............................
R6354 ............................
R6355 ............................
R6356-06 .......................
R6357 ............................
R6358 ............................
H6410 ............................
R6427 ............................
C6438 Series .................
H6520 ............................
H6524 ............................
H6527 ............................
H6528 ............................
H6533 ............................
H6559 ............................
H6612 ............................
H6614-70 .......................
E6736 ............................
R6834 ............................
R6835 ............................
R6836 ............................
E7083 ............................
R7111 ............................
R7154 ............................
H7195 ............................
R7205-01 .......................
R7206-01 .......................
C7246 Series .................
C7247 Series .................
H7260-20 .......................
Side-on PMT ...............................................
Head-on PMT .............................................
Head-on PMT .............................................
SBA Head-on PMT .....................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Connector Adapter ......................................
Side-on PMT ...............................................
Head-on PMT .............................................
Side-on PMT .............................................
High Voltage Power Supply Unit ................
Head-on PMT .............................................
Cable with Connector .................................
Head-on PMT .............................................
Relay Adapter .............................................
Side-on PMT ...............................................
Head-on PMT for Highly Magnetic Field .......
Amplifier Unit ..............................................
Head-on PMT .............................................
Head-on PMT .............................................
Socket Assembly ........................................
Metal Package PMT ...................................
SBA Metal Package PMT ............................
UBA Metal Package PMT ............................
MCP-PMT ...................................................
Head-on PMT for Highly Magnetic Field .......
Head-on PMT .............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Socket Assembly ........................................
Head-on PMT..............................................
Head-on PMT .............................................
Head-on PMT .............................................
Socket Assembly ........................................
PMT Assembly ............................................
Head-on PMT .............................................
SBA Head-on PMT .....................................
Head-on PMT .............................................
SBA Head-on PMT .....................................
Hexagonal PMT ..........................................
Hexagonal PMT ..........................................
Rectangular PMT ........................................
Rectangular PMT ........................................
Socket Assembly ........................................
Socket Assembly ........................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
PMT Assembly ...........................................
Head-on PMT .............................................
Amplifier Unit .............................................
PMT Assembly ...........................................
PMT Assembly ...........................................
PMT Assembly ...........................................
PMT Assembly ...........................................
PMT Assembly ...........................................
PMT Assembly ...........................................
PMT Assembly ...........................................
PMT Assembly ...........................................
Socket Assembly ........................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Socket Assembly ........................................
Head-on PMT .............................................
Side-on PMT ..............................................
PMT Assembly ...........................................
Head-on PMT .............................................
Head-on PMT .............................................
Socket Assembly ........................................
Socket Assembly ........................................
PMT Assembly ...........................................
Page
26
34
40
60
32
50
32
122
24
46
26
113
36
122
36
122
28
64
108
34
34
91
58
62
62
66
64
40
24
26
91
50
38
38
91
76
44
60
50
60
54
54
54
54
106
91
22
22
22
30
22
22
22
22
76
38
108
76
76
76
76
76
76
76
76
91
38
38
38
91
40
30
76
40
40
102
102
76
Type No.
Product
H7260-100 .....................
H7260-200 .....................
M7279 ...........................
C7319 ............................
H7415 ............................
E7514 ............................
R7518 ............................
H7546B..........................
H7546B-20.....................
H7546B-100...................
H7546B-200...................
H7546B-300...................
R7600U Series ..............
R7600U-100 ..................
R7600U-100-M4 ............
R7600U-200 ..................
R7600U-200-M4 ............
E7693 ............................
A7709 ............................
E7718 Series .................
R7724 ............................
R7761-70 .......................
R7899 ............................
C7950 Series .................
A7992 ............................
H8409-70 .......................
R8486 ............................
R8487 ............................
H8500C..........................
H8711 ............................
H8711-20 .......................
H8711-100 .....................
H8711-200 .....................
H8711-300 .....................
C8855-01 .......................
M8879 ...........................
R8900U-00-C12 ............
R8900U-100-C12 ..........
C8991 Series .................
M9003-01.......................
R9110 ............................
C9143 ............................
C9144 ............................
R9182-01 .......................
R9220 ............................
R9420 ............................
R9420-100 .....................
H9500 ............................
C9525 Series .................
H9530-20 .......................
C9619 Series .................
C9663 ............................
R9722A..........................
C9727 ............................
C9744 ............................
R9800 ............................
R9880U Series ..............
C9999 Series .................
C10344-03 .....................
C10372 ..........................
C10373 ..........................
R10454 ..........................
H10515B-20...................
C10673 Series ...............
E10679 Series ...............
R10699 ..........................
C10764 Series ...............
R10824 ..........................
R10825 ..........................
H10828 ..........................
C10940 Series ...............
H10966A........................
R11102 ..........................
C11152 Series ...............
C11184 ..........................
R11265U-100 ................
R11265U-200 ................
C11323 Series ...............
SBA PMT Assembly ...................................
UBA PMT Assembly ...................................
Amplifier Unit ..............................................
Amplifier Unit ..............................................
PMT Assembly ...........................................
Socket Assembly ........................................
Side-on PMT ...............................................
PMT Assembly ...........................................
PMT Assembly ...........................................
SBA PMT Assembly ...................................
UBA PMT Assembly ...................................
EGBA PMT Assembly ................................
Metal Package PMT....................................
SBA Metal Package PMT ...........................
SBA Metal Package PMT ...........................
UBA Metal Package PMT ...........................
UBA Metal Package PMT ...........................
Socket Assembly ........................................
Flange ........................................................
Housing ......................................................
Head-on PMT .............................................
Head-on PMT for Highly Magnetic Field .....
Head-on PMT .............................................
Socket Assembly ........................................
Relay Adapter .............................................
PMT Assembly ...........................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Flatpanel PMT Assembly ...........................
PMT Assembly ...........................................
PMT Assembly ...........................................
SBA PMT Assembly ...................................
UBA PMT Assembly ...................................
EGBA PMT Assembly .................................
Counting Unit ..............................................
Amplifier Unit ..............................................
Metal Package PMT....................................
SBA Metal Package PMT ...........................
Socket Assembly ........................................
Counting Board ..........................................
Side-on PMT ...............................................
Thermoelectric Cooler ................................
Thermoelectric Cooler ................................
Side-on PMT ...............................................
Side-on PMT ...............................................
Head-on PMT .............................................
SBA Head-on PMT .....................................
Flatpanel PMT Assembly ............................
Bench-top Type Multi-output Power Supply ....
PMT Assembly ...........................................
High Voltage Power Supply Unit ................
Amplifier Unit .............................................
Head-on PMT .............................................
Bench-top Type Multi-output Power Supply ....
Photon Counting Unit .................................
Head-on PMT .............................................
Metal Package PMT ...................................
Amplifier Unit ..............................................
Socket Assembly ........................................
Thermoelectric Cooler ................................
Thermoelectric Cooler ................................
Side-on PMT ...............................................
PMT Assembly ............................................
High Voltage Power Supply Unit ................
Socket Assembly ........................................
Side-on PMT ...............................................
High Voltage Power Supply Unit ................
Side-on PMT ...............................................
Side-on PMT ...............................................
PMT Assembly ...........................................
High Voltage Power Supply Unit ................
PMT Assembly ...........................................
Head-on PMT .............................................
High Voltage Power Supply Unit ................
Amplifier Unit ..............................................
SBA Head-on PMT .....................................
UBA Head-on PMT .....................................
High Voltage Power Supply Unit ................
Page
62
62
108
108
76
91
24
76
76
62
62
62
58
62
62
62
62
91
121
121
46
64
36
106
122
76
30
30
76
76
76
62
62
62
124
108
58
62
104
125
26
118
118
26
26
42
60
76
115
76
111
108
42
115
123
36
56
108
104
116
116
30
76
111
91
26
111
30
30
76
112
76
42
114
108
62
62
111
Type No.
Product
R11540 ..........................
R11558 ..........................
R11568 ..........................
R11715-01 .....................
C11784 Series ...............
E11807 Series ...............
H12400 Series ...............
H12402 Series ...............
H12403 Series ...............
C12419 ..........................
R12421 ..........................
H12428-100 ...................
H12428-200 ...................
H12445-100 ...................
H12445-200 ...................
C12446 Series ...............
C12597-01 .....................
H12690 ..........................
H12700 ..........................
R12829 ..........................
C12842 Series ..............
C12843 Series ..............
R12844 ..........................
R12845 ..........................
R12857 ..........................
C13003-01 .....................
C13004-01 .....................
R13089 ..........................
R13194 ..........................
Side-on PMT ..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
High Voltage Power Supply Unit ................
Socket Assembly ........................................
Micro PMT Assembly ..................................
Micro PMT Module .....................................
Micro PMT Module .....................................
Amplifier Unit ..............................................
Head-on PMT .............................................
SBA PMT Assembly ...................................
UBA PMT Assembly ...................................
SBA PMT Assembly ...................................
UBA PMT Assembly ...................................
High Voltage Power Supply Unit ................
Socket Assembly ........................................
PMT Assembly ...........................................
Flatpanel PMT Assembly ............................
Side-on PMT ..............................................
Socket Assembly ........................................
Socket Assembly ........................................
Head-on PMT .............................................
Head-on PMT .............................................
Side-on PMT ..............................................
Socket Assembly ........................................
Socket Assembly ........................................
Head-on PMT .............................................
Side-on PMT ...............................................
Page
24
24
24
24
111
91
68
68
68
108
32
62
62
62
62
111
104
76
76
26
104
106
38
42
22
104
104
44
30
Type numbers shown in "Notes"
Type No.
Page
R331 .....................................
R585 .....................................
R647P....................................
R750 .....................................
R758-10 ................................
R760 .....................................
R877-01 ................................
R955 .....................................
R960 .....................................
R976 .....................................
R1104 ...................................
R1166P.................................
R1288A-01 ...........................
R1307-01 .............................
R1450-13 .............................
R1464 ...................................
R1527P ................................
R1924P ................................
R1926A ................................
R2027 ...................................
R2059 ...................................
R2076 ...................................
R2256-02 ..............................
R2295 ...................................
H2431-50 ..............................
R2557P.................................
R2658P.................................
R3256 ...................................
R3377 ...................................
H3378-50 ..............................
R3479 ..................................
R3550P.................................
R4141 ...................................
R4220P ................................
R4332 ..................................
E5038 ..................................
R5113-02 .............................
R5320 ..................................
R5610P ................................
R5611A ................................
R5900U-03-L16 ....................
R5900U-04-L16 ....................
R5900U-06-L16 ....................
47
47
33
35
29
33
53
27
33
35
39
35
37
51
35
35
25
37
37
35
45
35
47
35
47
33
29
45
47
47
35
37
33
25
25
90
47
37
35
35
59
59
59
Type No.
Page
R5900U-07-L16 ....................
R5983P ................................
H6152-70 ..............................
R6231-01 ..............................
R6233-01 ..............................
R6234-01 ..............................
R6235-01 ..............................
R6236-01 ..............................
R6237-01 ..............................
R6350P.................................
R6351 ...................................
R6353P ................................
R6358-10 ..............................
H6533 ...................................
H6610 ...................................
H6614-70 ..............................
R7056 ...................................
R7207-01 ..............................
R7446 ...................................
R7447 ...................................
R7518P.................................
R7600P.................................
R7600U-03 ...........................
R7600U-03-M4 .....................
R7600U-04 ...........................
R7600U-04-M4 .....................
H7844 ...................................
R7899-01 ..............................
H8409-70 ..............................
R9110P.................................
R10491 .................................
R10560 .................................
R11265U-103.........................
R11265U-203.........................
H11934-100 ..........................
H11934-200 ..........................
R12421P................................
H12428-103 ..........................
H12428-203 ..........................
H12445-103 ..........................
H12445-203 ..........................
R12896 .................................
59
25
65
45
51
55
55
55
55
23
23
23
23
37
37
65
39
41
25
25
25
59
59
59
59
59
27
37
65
27
25
37
63
63
63
63
33
63
63
63
63
27
3
Construction and Operating Characteristics
INTRODUCTION
Figure 3: Types of Photocathode
Among photosensitive devices in use today, the photomultiplier
tube (or PMT) is a versatile device providing ultra-fast response
and extremely high sensitivity. A typical photomultiplier tube consists of a photoemissive cathode (photocathode) followed by focusing electrodes, an electron multiplier (dynodes) and an electron collector (anode) in a vacuum tube, as shown in Figure 1.
When light enters the photocathode, the photocathode emits
photoelectrons into the vacuum. These photoelectrons are then
directed by the focusing electrode voltages towards the electron
multiplier where electrons are multiplied by a secondary emission process. The multiplied electrons then are collected by the
anode as an output signal.
Because of secondary-emission multiplication, photomultiplier
tubes provide extremely high sensitivity and exceptionally low
noise compared to other photosensitive devices currently used
to detect radiant energy in the ultraviolet, visible, and near infrared regions. The photomultiplier tube also features fast time response and a choice of large photosensitive areas.
This section describes the prime features of photomultiplier tube
construction and basic operating characteristics.
a) Reflection Mode
Figure 1: Cross-Section of Head-on Type PMT
FOCUSING ELECTRODE
PHOTOELECTRON
SECONDARY
ELECTRON
LAST DYNODE
STEM PIN
b) Transmission Mode
SEMITRANSPARENT
PHOTOCATHODE
REFLECTION MODE
PHOTOCATHODE
DIRECTION
OF LIGHT
DIRECTION
OF LIGHT
PHOTOELECTRON
PHOTOELECTRON
TPMSC0029EA
TPMHC0084EB
ELECTRON MULTIPLIER
The superior sensitivity (high current amplification and high S/N
ratio) of photomultiplier tubes is due to the use of a low-noise
electron multiplier which amplifies electrons by a cascade secondary emission process. The electron multiplier consists of 8 to
19 stages of electrodes called dynodes.
There are several principal types in use today.
1) Circular-cage type
The circular cage is generally used for the side-on type of
photomultiplier tube. The prime features of the circular-cage
are compactness, fast response and high gain obtained at a
relatively low supply voltage.
VACUUM
(10 -4 Pa)
DIRECTION
OF LIGHT
e-
FACEPLATE
ELECTORON MULTIPLIER
(DYNODES)
ANODE
PHOTOCATHODE
STEM
TPMHC0006EA
Side-On Type
CONSTRUCTION
The photomultiplier tube generally has a photocathode in either
a side-on or a head-on configuration. The side-on type receives
incident light through the side of the glass bulb, while the headon type receives light through the end of the glass bulb. In general, the side-on type photomultiplier tube is widely used for
spectrophotometers and general photometric systems. Most
side-on types employ an opaque photocathode (reflection-mode
photocathode) and a circular-cage structure electron multiplier
(see description of "ELECTRON MULTIPLIER") which has good
sensitivity and high amplification at a relatively low supply voltage.
The head-on type (or the end-on type) has a semitransparent
photocathode (transmission-mode photocathode) deposited
upon the inner surface of the entrance window. The head-on
type provides better uniformity (see page 9) than the side-on
type having a reflection-mode photocathode. Other features of
head-on types include a choice of photosensitive areas ranging
from tens to hundreds of square centimeters.
Variants of the head-on type having a large-diameter hemispherical window have been developed for high energy physics experiments where good angular light reception is important.
Head-On Type
TPMOC0077EB
2) Box-and-grid type
This type consists of a train of quarter cylindrical dynodes
and is widely used in head-on type photomultiplier tubes because of good electron collection efficiency and excellent uniformity.
TPMOC0078EA
3) Linear-focused type
The linear-focused type features extremely fast response
time and is widely used in applications where time resolution
and pulse linearity are important. This type also has the advantage of providing a large output current.
Figure 2: External Appearance
a) Side-on Type
PHOTOSENSITIVE
AREA
b) Head-on Type
TPMOC0079EA
PHOTOSENSITIVE
AREA
4) Box-and-line type
This structure consists of a combination of box-and-grid and
linear-focus dynodes. Compared to box-and-grid type, this
structure has advantages in time response, time resolution,
pulse linearity, and electron collection efficiency.
TPMOC0204EA
4
5) Circular and linear-focused type
The circular and linear-focused type has a structure that combines a circular-cage type and a linear-focused type. It offers
improved pulse linearity while maintaining the compactness
of the circular-cage type.
9) Metal Channel type
The metal channel dynode has a compact dynode construction manufactured by our unique fine machining techniques.
It delivers high-speed response due to a space between each
dynode stage that is much smaller than other types of conventional dynodes. The metal channel dynode is also ideal
for position sensitive measurement.
ELECTRON
TPMOC0225EA
6) Venetian blind type
The venetian blind type has a large dynode area and is primarily used for tubes with large photocathode areas. It offers
better uniformity and a larger output current. This structure is
usually used when time response is not a prime consideration.
TPMOC0084EA
SPECTRAL RESPONSE
TPMOC0080EA
7) Mesh type
The mesh type has a structure of fine mesh electrodes
stacked in close proximity. There are two mesh types of dynode: a coarse mesh type and a fine mesh type. Both types
provide improved pulse linearity and high resistance to magnetic fields. The mesh type also has position-sensitive capability when used with cross-wire anodes or multiple anodes.
The fine mesh type is particularly suited for use in applications where high magnetic fields are present.
The photocathode of a photomultiplier tube converts energy
from incident light into electrons. The conversion efficiency (photocathode sensitivity) varies with the wavelength of the incident
light. This relationship between photocathode sensitivity and wavelength is called the spectral response characteristic. Figure 4
shows the typical spectral response of a bialkali photomultiplier
tube. The spectral response on long wavelengths is determined
by the photocathode material and on short wavelengths by the
window material. Typical spectral response characteristics for
various types of photomultiplier tubes are shown on pages 128
and 129. In this catalog, the long-wavelength cutoff of the spectral response characteristic is defined as the wavelength at
which the cathode radiant sensitivity is 1 % of the maximum sensitivity in bialkali and Ag-O-Cs photocathodes, and 0.1 % of the
maximum sensitivity in multialkali photocathodes.
Spectral response characteristics shown at the end of this catalog are typical curves for representative tube types. Actual data
may be different from tube to tube.
Figure 4: Typical Spectral Response of Bialkali Photocathode
1 mm
COARSE MESH TYPE
ELECTRON
ELECTRON
(HEAD-ON TYPE, BIALKALI PHOTOCATHODE)
100
13 µm
FINE-MESH TYPE
TPMOC0081EB
8) Microchannel plate (MCP) (see page 66)
The MCP is a thin disk consisting of millions of microglass
tubes (channels) fused in parallel with each other. Each
channel acts as an independent electron multiplier. The MCP
offers much faster time response than other discrete dynodes. It also features good immunity from magnetic fields
and two-dimensional detection ability when multiple anodes
are used.
CATHODE RADIANT SENSITIVITY (mA/W)
QUANTUM EFFICIENCY (%)
ELECTRON
10
CATHODE
RADIANT
SENSITIVITY
1
QUANTUM
EFFICIENCY
0.1
0.01
200
400
600
800
WAVELENGTH (nm)
TPMOB0070EA
TPMOC0082EA
5
Construction and Operating Characteristics
The photocathode is a photoemissive surface usually consisting
of alkali metals with very low work functions. The photocathode
materials most commonly used in photomultiplier tubes are as
follows:
1) Ag-O-Cs
The transmission mode photocathode using this material is designated S-1 and sensitive in the visible to near infrared region.
Since Ag-O-Cs has relatively high thermionic dark emission (refer to "ANODE DARK CURRENT" on page 8), this photocathode is cooled for detecting light in the near infrared region.
2) GaAs
The spectral response of this photocathode material usually
covers a wider spectral response range than multialkali, from
ultraviolet to 930 nm, which is comparatively flat over the
range between 300 mm and 850 nm.
3) GaAsP
GaAsP (gallium arsenide phosphied) crystal activated in cesium is used as a transmission mode photocathode. This photocathode delivers very high quantum efficiency in the visible
light region.
4) InGaAs
This photocathode material has greater extended sensitivity
in the infrared range than GaAs. Moreover, in the range between 900 mm and 1000 nm, InGaAs has a much higher S/N
ratio than Ag-O-Cs.
5) InP/InGaAsP(Cs), InP/InGaAs(Cs)
These are field-assisted photocathodes utilizing a PN junction formed by growing InP/InGaAsP or InP/InGaAs on an
InP substrate. These photocathodes were developed by our
own in-house semiconductor microprocess technology. Applying a bias voltage to this photocathode lowers the conduction band barrier, and allows for higher sensitivity at long wavelengths extending to 1.4 µm or even 1.7 µm which have up
till now been impossible to detect with a photomultiplier tube.
Since these photocathodes produce large amounts of dark
current when used at room temperatures, they must be
cooled to between -60 °C to -80 °C during operation.
6) Sb-Cs
Sb-Cs has a spectral response in the ultraviolet to visible
range and is mainly used in reflection-mode photocathodes.
7) Bialkali (Sb-Rb-Cs, Sb-K-Cs)
These materials have a spectral response range similar to
the Sb-Cs photocathode, but have higher sensitivity and lower dark current than Sb-Cs. They also have a blue sensitivity
index matching the scintillation flashes of NaI scintillators,
and so are frequently used for radiation measurement using
scintillation counting.
8) High temperature bialkali or low noise bialkali (Na-K-Sb)
This is particularly useful at higher operating temperatures
since it can withstand up to 200 °C. One major application is
in the oil well logging industry. At room temperatures, this
photocathode operates with very low dark current, making it
ideal for use in photon counting applications.
9) Multialkali (Na-K-Sb-Cs)
The multialkali photocathode has a high, wide spectral response from the ultraviolet to near infrared region. It is widely
used for broad-band spectrophotometers and photon counting
applications. The long wavelength response can be extended
to 930 nm by special photocathode activation processing.
10) Cs-Te, Cs-I
These materials are sensitive to vacuum UV and UV rays but
not to visible light and are therefore referred to as solar blind.
Cs-Te is quite insensitive to wavelengths longer than 320 nm,
and Cs-I to those longer than 200 nm.
WINDOW MATERIALS
Window materials commonly used in photomultiplier tubes are
described below. The window material must carefully be selected according to the application because the window material
determines the spectral response short wavelength cutoff.
6
1) Borosilicate glass
This is the most frequently used window material. Borosilicate glass transmits radiation from the infrared to approximately 300 nm. It is not suitable for detection in the ultraviolet
region. For some applications, a combination of a bialkali
photocathode and a low-noise borosilicate glass (so called Kfree glass) is used. The K-free glass contains very low potassium (40K) which can cause unwanted background counts.
Tubes designed for scintillation counting often employ K-free
glass not only for the faceplate but also for the side bulb to
minimize noise pulses.
2) UV-transmitting glass (UV glass)
This glass as the name implies is ideal for transmitting ultraviolet radiation and is used as widely as a borosilicate glass.
The UV cutoff is approximately 185 nm.
3) Silica glass
The silica glass transmits ultraviolet radiation down to 160
nm. Since the silica glass has a different thermal expansion
coefficient than Kovar, which is used for the tube leads, it is
not suitable as the tube stem material (see Figure 1 on page
4). Borosilicate glass is used for the stem, and a graded seal
using glass with gradually different thermal expansion coefficients is connected to the synthetic silica window. The graded seal structure is vulnerable to shock so the tube should
be handled carefully.
4) MgF2 (magnesium fluoride)
Crystals of alkali halide are superior in transmitting ultraviolet
radiation, but have the disadvantage of deliquescence.
Among these crystals, MgF2 is known as a practical window
material because it offers low deliquescence and transmits
ultraviolet radiation down to 115 nm.
Figure 5: Typical Transmittance of Various Window Materials
100
TRANSMITTANCE (%)
PHOTOCATHODE MATERIALS
UVTRANSMITTING
GLASS
10
BOROSILICATE
GLASS
MgF2
SILICA GLASS
1
100
120
160
200
240
300
WAVELENGTH (nm)
400
500
TPMOB0076EB
RADIANT SENSITIVITY AND QUANTUM EFFICIENCY
As Figure 4 shows, spectral response is usually expressed in
terms of radiant sensitivity or quantum efficiency as a function of
wavelength. Radiant sensitivity is the photoelectric current from
the photocathode, divided by the incident radiant power at a given wavelength, expressed in A/W (amperes per watt). Quantum
efficiency (QE) is the number of photoelectrons emitted from the
photocathode divided by the number of incident photons. Quantum efficiency is usually expressed as a percent. Quantum efficiency and radiant sensitivity have the following relationship at a
given wavelength.
QE= S × 1240 × 100
λ
where S is the radiant sensitivity in A/W at the given wavelength
and λ is the wavelength in nm (nanometers).
Figure 7: Transmittance of Various Filters
Figure 6: Typical Human Eye Response
and Spectral Distribution of 2856 K Tungsten Lamp
100
TUNGSTEN
LAMP
AT 2856 K
RELATIVE VALUE (%)
80
60
100
TOSHIBA R-68
80
60
40
TOSHIBA
IR-D80A
20
0
200
400
600
800
=
20
1000
WAVELENGTH (nm)
1200
1400
TPMOB0054EC
BLUE SENSITIVITY INDEX AND RED/WHITE RATIO
The cathode blue sensitivity index and the red/white ratio are often used as a simple comparison of photomultiplier tube spectral
response.
The cathode blue sensitivity index is the photoelectric current
from the photocathode produced by a light flux of a tungsten
lamp at 2856 K passing through a blue filter (Corning CS 5-58
polished to half stock thickness of equivalent), measured under
the same conditions as the cathode luminous sensitivity measurement. The light flux, once transmitted through the blue filter
cannot be expressed in lumens. The blue sensitivity index is an
important parameter in scintillation counting using an NaI scintillator since the NaI scintillator produces emissions in the blue region of the spectrum, and may be the decisive factor in energy
resolution.
The red/white ratio is used for photomultiplier tubes with a spectral response extending to the near infrared region. This parameter is defined as the quotient of the cathode sensitivity measured
with a light flux of a tungsten lamp at 2856 K passing through a
red filter (Toshiba IR-D80A for the S-1 photocathode, R-68 for
others of equivalent) divided by the cathode luminous sensitivity
measured without filters under the same conditions as in cathode luminous sensitivity measurement.
(
V
n+1
α n
)
An
· Vαn = K · Vαn
(n+1)αn
(K: constant)
Since photomultiplier tubes generally have 9 to 12 dynode stages, the anode output has a 6th to 10th power gain proportional
to the input voltage. So just a slight fluctuation in the applied voltage will appear as magnified 6 to 10 times in the photomultiplier
tube output. This means the photomultiplier tube is extremely
susceptible to fluctuations in the power supply voltage, so the
power supply must be extremely stable and provide a minimum
ripple, drift and temperature coefficient. Various types of wellregulated high-voltage power supplies designed for these requirements are available from Hamamatsu (see page 110).
Figure 8: Typical Gain vs. Supply Voltage
104
109
103
ANODE LUMINOUS SENSITIVITY (A / lm)
800
TPMOB0055EB
Photoelectrons emitted from a photocathode are accelerated by an
electric field so as to strike the first dynode and produce secondary
electron emissions. These secondary electrons then impinge upon
the next dynode to produce additional secondary electron emissions. Repeating this process over successive dynode stages achieves a high current amplification. A very small photoelectric current from the photocathode can therefore be observed as a large
output current from the anode of the photomultiplier tube.
Gain is simply the ratio of the anode output current to the photoelectric current from the photocathode. Ideally, the gain of a photomultiplier tube having n dynode stages and an average secondary emission ratio δ per stage is δn. While the secondary
electron emission ratio δ is given by δ=A·Eα
where A is the constant, E is the interstage voltage, and α is a
coefficient determined by the dynode material and geometric
structure. This usually has a value of 0.7 to 0.8.
When a voltage V is applied between the cathode and the anode of
a photomultiplier tube having n dynode stages, the gain µ, becomes
VISUAL SENSITIVITY
600
1200
GAIN (CURRENT AMPLIFICATION)
µ = δn = (A · Eα)n = A ·
400
1000
WAVELENGTH (nm)
40
0
200
CORNING
CS 5-58
(1/2 STOCK
THICKNESS)
108
ANODE LUMINOUS
SENSITIVITY
102
107
101
106
100
105
10-1
104
GAIN
Since measuring the spectral response characteristic of photomultiplier tubes requires a sophisticated system and a great deal
of time, we instead provide figures for anode or cathode luminous sensitivity and only provide spectral response characteristics when specially required by the customer.
Cathode luminous sensitivity is the photoelectric current from the
photocathode per incident light flux (10-5 to 10-2 lumens) from a
tungsten filament lamp operated at a distribution temperature of
2856 K. Anode luminous sensitivity is the anode output current
(amplified by the secondary emission process) per incident light
flux (10-10 to 10-5 lumens) on the photocathode. Although the
same tungsten lamp is used, the light flux and the applied voltage are adjusted to an appropriate level. These parameters are
particularly useful when comparing tubes having the same or
similar spectral response range. Hamamatsu final test sheets
accompanying the tubes usually indicate these parameters except for tubes with Cs-I or Cs-Te photocathodes insensitive to
tungsten lamp light. (Radiant sensitivity at a specific wavelength
is listed for those tubes using Cs-I or Cs-Te.)
The cathode luminous sensitivity is expressed in µA/lm (microamperes per lumen) and anode luminous sensitivity is expressed in A/lm (amperes per lumen). Note that the lumen is a
unit used for luminous flux in the visible region and therefore
these values may be meaningless for tubes that are sensitive
beyond the visible light region.
TRANSMITTANCE (%)
LUMINOUS SENSITIVITY
GAIN
10-2
200
300
500
700
SUPPLY VOLTAGE (V)
1000
103
1500
TPMOB0058EB
7
Construction and Operating Characteristics
ANODE DARK CURRENT
A small amount of current flows in a photomultiplier tube even
when the tube is operated in a completely dark state. This output
current is called the anode dark current, and the resulting noise
is a critical factor in determining the lower limit of light detection.
As Figure 9 shows, dark current is greatly dependent on the supply voltage.
Figure 9: Typical Dark Current vs. Supply Voltage
(AFTER 30 MINUTE STORAGE)
ANODE DARK CURRENT (nA)
101
100
10-1
10-2
10-3
400
600
800
1000
1200
1400
SUPPLY VOLTAGE (V)
TPMOB0071EB
Major sources of dark current may be categorized as follows:
1) Thermionic emission of electrons
The materials of the photocathode emit tiny quantities of thermionic electrons even at room temperature. Most dark currents originate from the thermionic emissions, especially
those from the photocathode since they are successively
multiplied by the dynodes. Cooling the photocathode is most
effective in reducing thermionic emission and is particularly
useful in applications where low dark current is essential
such as in photon counting.
Figure 10 shows the relationship between dark current and
temperature for various photocathodes. Photocathodes which
have high sensitivity in the red to infrared region, especially
S-1, show higher dark current at room temperature. Photomultiplier tubes using these photocathodes are usually
cooled during operation.
Hamamatsu provides thermoelectric coolers (C9143, C9144,
C10372, C10373) designed for various sizes of photomultiplier tubes (see page 116, 118).
Figure 10: Anode Dark Current vs. Temperature
10-5
10-6
ANODE DARK CURRENT (A)
R5108
(SIDE-ON TYPE, Ag-O-Cs)
The anode dark current decreases with time after the tube is
placed in a dark state. In this catalog, anode dark currents are
measured after 30 minutes of storage in a dark state.
ENI (EQUIVALENT NOISE INPUT)
ENI indicates the photon-limited signal-to-noise ratio. ENI refers
to the amount of light in watts necessary to produce a signal-tonoise ratio of unity in the output of a photomultiplier tube. The
value of ENI is given by:
ENI =
where
2q · Idb · g · ∆f
S
(watts)
q = electronic charge (1.60 × 10-19 coul.)
Idb = anode dark current in amperes after 30 minute
storage in darkness
g = gain
∆f = bandwidth of the system in hertz (usually 1 hertz)
S = anode radiant sensitivity in amperes per watt
at the wavelength of interest
10-7
10-8
For tubes listed in this catalog, the value of ENI may be calculated by the above equation. Usually it has a value between 10-15
and 10-16 watts (at the peak sensitivity wavelength).
R374
(HEAD-ON TYPE,
MULTIALKALI)
10-9
MAGNETIC FIELD EFFECTS
10-10
10-11
R3550A
(HEAD-ON TYPE,
LOW-NOISE BIALKALI)
10-12
R6095
(HEAD-ON TYPE, BIALKALI)
10-13
-60
-40
-20
0
TEMPERATURE (°C)
8
2) Ionization of residual gases (ion feedback)
Residual gases inside a photomultiplier tube can be ionized
by collision with electrons. When these ions strike the photocathode or earlier stages of dynodes, secondary electrons
may be emitted. These secondary electrons result in relatively large output noise pulses. These noise pulses are usually
observed as afterpulses following the primary signal pulses
and may be a problem in detecting short light pulses. Present
photomultiplier tubes are designed to minimize afterpulses.
3) Glass scintillation
When electrons deviating from their normal trajectories strike
the glass envelope, scintillations may occur and a dark pulse
may result. To eliminate this type of dark pulse, photomultiplier tubes may be operated with the anode at a high voltage
and the cathode at ground potential. But this is not always
possible during tube operation. To obtain the same effect
without difficulty, Hamamatsu developed an "HA treatment" in
which the glass bulb is coated with a conductive paint making
the same electrical potential as the cathode (see "GROUND
POLARITY AND HA TREATMENT" on page 11).
4) Leakage current (ohmic leakage)
Leakage current resulting from imperfect insulation of the
glass stem base and socket may be another source of dark
current. This is predominant when the photomultiplier tube is
operated at a low voltage or low temperature. The flatter
slopes in Figure 9 and 10 are mainly due to leakage current.
Contamination from dirt and moisture on the surface of the
tube stem, base or socket may increase the leakage current,
and should therefore be avoided.
5) Field emissions
When a photomultiplier tube is operated at a voltage near the
maximum rated value, electrons might be emitted from electrodes by the strong electric field and cause dark pulses. So
operating the photomultiplier tube at a voltage 20 % to 30 %
lower than the maximum rating is recommended.
20
40
TPMOB0065ED
Most photomultiplier tubes are affected by the presence of magnetic fields. Magnetic fields may deflect electrons from their normal trajectories and cause a loss of gain. The extent of the gain
loss depends on the type of photomultiplier tube and its orientation in the magnetic field. Figure 11 shows typical effects of magnetic fields on some types of photomultiplier tubes. In general,
tubes having a long path from the photocathode to the first dynode (such as large diameter tubes) tend to be more adversely
affected by magnetic fields.
Figure 11: Typical Effects by Magnetic Fields Perpendicular
to Tube Axis
120
28 mm dia.
SIDE - ON TYPE
110
100
80
70
60
13 mm dia.
HEAD-ON TYPE
LINEAR-FOCUSED
TYPE DYNODE
50
(
40
)
30
38 mm dia.
HEAD-ON TYPE
CIRCULAR CAGE
TYPE DYNODE
20
(
10
Figure 13: Examples of Spatial Uniformity
)
1) Head-on Type
0.1
0.2 0.3
MAGNETIC FLUX DENSITY (mT)
TPMOB0086EC
When a photomultiplier tube has to be operated in magnetic
fields, it may be necessary to shield the tube with a magnetic
shield case. (Hamamatsu provides a variety of magnetic shield
cases. See page 120). The magnetic shielding factor is used to
express the effect of a magnetic shield case. This is the ratio of
the strength of the magnetic field outside the shield case or
Hout, to that inside the shield case or Hin. The magnetic shielding factor is determined by the permeability µ, the thickness t
(mm) and inner diameter r (mm) of the shield case as follows.
Hout
=
Hin
3 µt
4r
Note that the magnetic shielding effect decreases towards the
edge of the shield case as shown in Figure 12. Covering the
tube with a shield case longer than the tube length by at least
half the shield case inner diameter is recommended.
Figure 12: Edge Effect of Magnetic Shield Case
EDGE EFFECT
t
LONGER than r
2r
2) Side-on Type
(R6231-01 for gamma camera)
0.4 0.5
PHOTOMULTIPLIER TUBE
L
1000
PHOTOCATHODE
(TOP VIEW)
Reflection-mode photocathode
ANODE
SENSITIVITY (%)
0
ANODE SENSITIVITY (%)
0
-0.5 -0.4 -0.3 -0.2 -0.1
SHIELDING FACTOR (Ho/Hi)
Although the focusing electrodes of a photomultiplier tube are
designed so that electrons emitted from the photocathode or dynodes are collected efficiently by the first or following dynodes,
some electrons may deviate from their desired trajectories causing lower collection efficiency. The collection efficiency varies
with the position on the photocathode from which the photoelectrons are emitted and influences the spatial uniformity of a photomultiplier tube. The spatial uniformity is also determined by the
photocathode surface uniformity itself.
In general, head-on type photomultiplier tubes provide better
spatial uniformity than side-on types because of the photocathode to first dynode geometry. Tubes especially designed for
gamma camera applications have excellent spatial uniformity,
because uniformity is the decisive factor in the overall performance of a gamma camera.
100
ANODE
SENSITIVITY (%)
50
0
0
50
100
100
PHOTOCATHODE
50
GUIDE KEY
0
TPMHC0085EB
TPMSC0030EC
TEMPERATURE CHARACTERISTICS
Dark current originating from thermionic emissions can be reduced by decreasing the ambient temperature of a photomultiplier tube. The photomultiplier tube sensitivity also varies with the
temperature, but these changes are smaller than temperature-induced changes in dark current, so cooling a photomultiplier tube
will significantly improve the S/N ratio.
In the ultraviolet to visible region, the sensitivity temperature
coefficient has a negative value, while near the long wavelength
cutoff it has a positive value. Figure 14 shows typical temperature coefficients for various photocathodes versus wavelength.
Since the change in temperature coefficient change is large near
the long wavelength cutoff, temperature control may be needed
in some applications.
100
Figure 14: Temperature Coefficient for Anode Sensitivity (Typ.)
10
1
1.5
r
r
TPMOB0011EB
Hamamatsu provides photomultiplier tubes using fine-mesh type
dynodes (see page 64). These photomultiplier tubes exhibit
much higher resistance to external magnetic fields than the photomultiplier tubes with other dynodes. When the light level to be
measured is high, "triode" and "tetrode" type tubes can be used
even in highly magnetic fields.
TEMPERATURE COEFFICIENT
FOR ANODE SENSITIVITY (%/°C)
RELATIVE OUTPUT (%)
90
SPATIAL UNIFORMITY
1
BIALKALI
Sb-Cs
Cs-Te
MULTIALKALI
0.5
GaAs (Cs)
0
-0.5
-1
200
Ag-O-Cs
300
400
500
600
700
800
900
1000 1100 1200
WAVELENGTH (nm)
TPMOB0013EC
9
Construction and Operating Characteristics
HYSTERESIS
TIME RESPONSE
Photomultiplier tubes exhibit a slightly unstable output for several seconds to nearly 1 minute after a voltage is applied or light is
input, and the output may overshoot or undershoot before reaching a stable level (Figure 15). This unstable condition is called
hysteresis and may be a problem in spectrophotometry and
other applications.
Hysteresis is mainly caused by electrons deviating from their
planned trajectories and electrostatically charging the dynode
support section and glass bulb. When the applied voltage changes along with a change in the input light, noticeable hysteresis
can occur.
As a countermeasure, many Hamamatsu side-on photomultiplier
tubes employ an "anti-hysteresis design" which virtually eliminates hysteresis.
In the measurement of pulsed light, the anode output signal
should faithfully reproduce a waveform resembling the incident
pulse waveform. This reproducibility is greatly affected by the
electron transit time, anode pulse rise time, and electron transit
time spread (T.T.S.).
As illustrated in Figure 17, the electron transit time is the time interval between the arrival of a delta function light pulse (pulse
width less than 50 ps) at the photocathode and the instant when
the anode output pulse reaches its peak amplitude. The anode
pulse rise time is defined as the time needed to rise from 10 %
to 90 % of peak amplitude when the entire photocathode is illuminated by a delta function light pulse (pulse width less than 50
ps).
The electron transit time fluctuates between individual light pulses. This fluctuation is called transit time spread (T.T.S.) and defined as the FWHM of the frequency distribution of electron transit times (Figure 18). The T.T.S. is an important factor in time-resolved measurement.
The time response characteristics depend on the dynode structure and applied voltage. In general, photomultiplier tubes using
a linear-focused or circular-cage structure exhibit better time response than tubes using a box-and-grid or venetian blind structure. Photomultiplier tubes for high-speed photometry use a
spherical window or plano-concave window (flat on one side and
concave on the other) and electrodes specifically designed to
shorten the electron transit time. MCP-PMTs, which employ an
MCP in place of conventional dynodes, offer better time response than tubes using other dynodes. For example, these
have a significantly better T.T.S. compared to normal photomultiplier tubes because a nearly parallel electric field is applied between the photocathode, the MCP and the anode. Figure 19
shows typical time response characteristics vs. applied voltage
for Hamamatsu R2059 (51 mm diameter head-on, 12-stage, linear-focused type).
ANODE CURRENT
Figure 15: Hysteresis
I max.
Ii
0
5
I min.
6
7
TIME (MINUTE)
TPMOC0071EA
DRIFT AND LIFE CHARACTERISTIC
While operating a photomultiplier tube continuously over a long
period, the anode output current of the photomultiplier tube may
vary slightly over time, even though operating conditions have
not changed. Among the anode current fluctuations, changes
over a relatively short time are called "drift", while changes over
long periods such as 1000 to 10000 hours or more are called the
life characteristic. Figure 16 shows typical life curves.
Drift is primarily caused by damage to the last dynode by heavy
electron bombardment. Therefore the use of lower anode current
is desirable. When stability is of prime importance, keeping the
average anode current within 1 µA or less is recommended.
Figure 17: Anode Pulse Rise Time and Electron Transit Time
DELTA FUNCTION LIGHT
RISE TIME
FALL TIME
10 %
Figure 16: Typical Life Characteristics
TRANSIT TIME
ANODE
OUTPUT
SIGNAL
90 %
TPMOB0060EB
x+σ
125
x
Figure 18: Electron Transit Time Spread (T.T.S.)
100
x-σ
75
TYPE NO. : R2059
TEST CONDITIONS
PMT: R1307
SUPPLY VOLTAGE: 1000 V
INITIAL CURRENT: 100 µA
LIGHTSOURCE: TUNGSTEN LAMP
TEMPERRATURE: 25 °C
25
0
FWHM=550 ps
FWTM=1228 ps
104
50
1
10
100
1000
10000
TIME (h)
RELATIVE COUNT
RELATIVE ANODE SENSITIVITY (%)
150
103
102
101
TPMHB0834EA
100
-5
-4
-3
-2
-1
0
1
2
3
4
5
TIME (ns)
TPMHB0126EC
10
Figure 19: Time Response Characteristics vs. Supply Voltage
TYPE NO. : R2059
10 2
TRANSIT TIME
TIME (ns)
10 1
RISE TIME
Generally high output current is required in pulsed light applications. In order to maintain dynode potentials at a constant value
during pulse durations and obtain high peak currents, capacitors
are placed in parallel with the divider resistors as shown in Figure 20 (b). The capacitor values depend on the output charge.
When the output linearity versus input pulsed light needs to be
better than 1 %, the capacitor value should be at least 100 times
the photomultiplier output charge per pulse. If the peak output
current (amperes) is I, the pulse width (seconds) t, and the voltage across the capacitor (volts) V, then the capacitor value C
should be as follows:
10 0
C > 100
I·t
(farads)
V
T. T. S.
500
1000
1500
2000 2500 3000
SUPPLY VOLTAGE (V)
TPMOB0059EC
VOLTAGE-DIVIDER CIRCUITS
Interstage voltages for the dynodes of a photomultiplier tube are
usually supplied by voltage-divider circuits consisting of seriesconnected resistors. Schematic diagrams of typical voltage-divider circuits are illustrated in Figure 20. Circuit (a) is a basic arrangement (DC output) and (b) is for pulse operations. Figure 21
shows the relation between the incident light level and the output
current of a photomultiplier tube using the voltage-divider circuit
of figure 20. Deviation from ideal linearity occurs at a certain incident level (region B). This is caused by an increase in dynode
voltage due to the redistribution of the voltage loss between the
last few stages, resulting in an apparent increase in sensitivity.
As the input light level is increased, the anode output current begins to saturate near the value of the current flowing through the
voltage divider (region C). To prevent this problem, it is recommended that the voltage-divider current be maintained at least at
20 times the average anode output current required from the
photomultiplier tube.
In high energy physics applications where a high pulse output is
required, output saturation will occur at a certain level as the incident light is increased while the interstage voltage is kept fixed.
This is caused by an increase in electron density between the
electrodes, causing space charge effects which disturb the electron current flow. As a corrective measure to overcome these
space charge effects, the voltage applied to the last few stages,
where the electron density becomes high, should be set to a
higher value than the standard voltage distribution so that the
voltage gradient between those electrodes is enhanced. For this
purpose, a so-called tapered divider circuit (Figure 22) is often
employed. Use of this tapered divider circuit improves pulse linearity 5 to 10 times better than in normal divider circuits.
Hamamatsu provides a variety of socket assemblies incorporating voltage-divider circuits. They are compact, rugged, lightweight and carefully engineered to obtain the maximum performance of a photomultiplier tube with just a simple connection.
Figure 22: Typical Tapered Divider Circuit
PHOTOCATHODE
ANODE
SIGNAL
OUTPUT
RL
1R
Figure 20: Schematic Diagrams of Voltage-Divider Circuits
1R
1R
1R
2R
3R
2.5R
C1
C2
C3
a) Basic arrangement for DC operation
PHOTOCATHODE
-HV
ANODE
TACCC0035EB
RL
1R
1R
1R
1R
1R
1R
1R
1R
1R
1R
1R
-HV
GROUND POLARITY AND HA TREATMENT
b) For pulse operation
PHOTOCATHODE
ANODE
RL
1R
1R
1R
1R
1R
1R
1R
1R
-HV
1R
1R
1R
C1
C2
C3
TACCC0030EC
Figure 21: Output Characteristics of PMT Using VoltageDivider Circuit of figure 20
C
B
1.0
ACTUAL
CURVE
0.1
0.01
0.001
0.001
IDEAL
CURVE
A
RATIO OF AVERAGE OUTPUT CURRENT
TO DIVIDER CURRENT
10
0.01
0.1
LIGHT FLUX (A.U.)
1.0
10
TACCB0005EA
The general technique used for voltage-divider circuits is to
ground the anode with a high negative voltage applied to the
cathode, as shown in Figure 20. This scheme facilitates the connection of such circuits as ammeters or current-to-voltage conversion operational amplifiers to the photomultiplier tube. However, when a grounded anode configuration is used, bringing a
grounded metallic holder or magnetic shield case near the bulb
of the tube can cause electrons to strike the inner bulb wall, resulting in the generation of noise. Also, in head-on type photomultiplier tubes, if the faceplate or bulb near the photocathode is
grounded, the slight conductivity of the glass material causes a
current to flow between the photocathode (which has a high
negative potential) and ground. This may cause significant deterioration of the photocathode. For this reason, extreme care is
required when designing housings for photomultiplier tubes and
when using electrostatic or magnetic shield cases.
In addition, when using foam rubber or similar material to mount
the tube in its housing, it is essential that material having sufficiently good insulation properties be used. This problem can be
solved by applying a black conductive coat around the bulb, connecting it to the cathode potential and covering the bulb with a
protective film. This is called an "HA Treatment" (see Figure 23).
11
Construction and Operating Characteristics
As mentioned above, the HA treatment can be effectively used
to eliminate the effects of external potential on the side of the
bulb. However, if a grounded object is located on the photocathode faceplate, there are no effective countermeasures. Glass
scintillation, if occurring in the faceplate, has adverse noise effects and also causes deterioration of the photocathode sensitivity. To solve these problems, it is recommended that the photomultiplier tube be operated in the cathode grounding scheme, as
shown in Figure 24, with the anode at a high positive voltage.
For example in scintillation counting, since the grounded scintillator is directly coupled to the faceplate of a photomultiplier tube,
grounding the cathode and maintaining the anode at a high positive voltage is recommended. In this case, a coupling capacitor
Cc must be used to isolate the high positive voltage applied to
the anode from the signal, and DC signals cannot be output.
Figure 23: HA Treatment
Figure 26: Discrete Output Pulses (Single Photon Event)
TIME
TPMOC0074EB
Simply counting the photomultiplier tube output pulses will not
result in an accurate measurement, since the output contains
noise pulses such as dark pulses emitted from dynodes and cosmic ray pulses extraneous to the signal pulses representing photoelectrons as shown in Figure 27. The most effective method
for eliminating the noise is to discriminate the output pulses according to their amplitude. (Dark current pulese by thermal electrons emitted from the photocathode cannot be eliminated.)
Figure 27: Output Pulse and Discrimination Level
GLASS BULB
PULSE HEIGHT
CONDUCTIVE PAINT
(SAME POTENTIAL
AS CATHODE)
INSULATING
PROTECTIVE COVER
ULD: Upper Level Discri.
LLD: Lower Level Discri.
COSMIC RAY PULSE
ULD
SIGNAL PULSE
CONNECTED TO
CATHODE PIN
LLD
TPMOC0015EA
TIME
TPMOC0075EC
Figure 24: Cathode Ground Scheme
PHOTOCATHODE
ANODE
Cc
SIGNAL
OUTPUT
RP
R1
R2
R3
R4
R5
R6
R7
C
C
+HV
TACCC0036EC
PHOTON COUNTING
Photon counting is one effective way to use a photomultiplier
tube for measuring extremely low light levels and is widely used
in astronomical photometry and for making chemiluminescence
and bioluminescence measurements. In its usual application, a
number of photons enter the photomultiplier tube and create an
output pulse train like that in (a) of Figure 25. The actual output
obtained by the measurement circuit is a DC current with a fluctuation as shown at (b).
A typical pulse height distribution (PHD) for a photomultiplier
tube output is shown in Figure 28. In this PHD, the lower level
discrimination (LLD) is set at the valley trough and the upper level discrimination (ULD) at the foot where there are very few output pulses. Most pulses smaller than the LLD are noise and pulses larger than the ULD result from cosmic rays, etc. Therefore,
by counting the pulses remaining between the LLD and ULD, accurate light measurements can be made. In the PHD, Hm is the
mean height of the pulses. The LLD should be set at 1/3 of Hm
and the ULD at triple Hm. The ULD may be omitted in most cases.
Considering the above, a clearly defined peak and valley in the
PHD is a very significant characteristic required of photomultiplier tubes for photon counting. Figure 28 shows the typical PHD of
a photomultiplier tube selected for photon counting.
Figure 28: Typical Single Photon Pulse Height Distribution
Figure 25: Overlapping Output Pulses
a)
SIGNAL PULSE + NOISE PULSE
COUNTS
NOISE PULSE
TIME
b)
LLD
TIME
Hm
ULD
PULSE HEIGHT
TPMOC0073EB
When the light intensity becomes so low that the incident photons are separated as shown in Figure 26. This condition is
called a single photon event. The number of output pulses is in
direct proportion to the amount of incident light and this pulse
counting method has the advantages of better S/N ratio and stability than the current measurement method that averages all the
pulses. This pulse counting technique is known as the photon
counting method.
12
TPMOC0076EA
SCINTILLATION COUNTING
Scintillation counting is one of the most sensitive and effective
methods for detecting radiation. It uses a photomultiplier tube
coupled to a scintillator that produces light when struck by radiation.
Figure 29: Scintillation Detector Using PMT and Scintillator
10000
PHOTOCATHODE
(51 mm dia. × 51 mm t)
PHOTOELECTRONS
COUNTS
REFLECTIVE
COATING
b) 137Cs+NaI (Tl)
ANODE
GAMMA RAY
DYNODES
5000
RADIATION
SOURCE
0
500
PMT
1000
ENERGY
TPMHC0052EC
In radiation particle measurements, there are two parameters
that should be measured. One is the energy of individual radiation particles and the other is the amount of radiation. Radiation
measurement should determine these two parameters.
When radiation particles enter the scintillator, they produce light
flashes in response to each particle. The amount of flash is extremely low, but is proportional to the energy of the incident particle. Since individual light flashes are detected by the
photomultiplier tube, the output pulses obtained from the photomultiplier tube contain information on both the energy and
amount of pulses, as shown in Figure 30. By analyzing these
output pulses using a multichannel analyzer (MCA), a pulse
height distribution (PHD) or energy spectrum is obtained, and
the amount of incident particles at various energy levels can be
measured accurately. Figure 31 shows typical PHDs or energy
spectra when radiation (55Fe, 137Cs, 60Co) is detected by the
combination of an NaI(Tl) scintillator and a photomultiplier tube.
The PHD must show distinct peaks at each energy level. These
peaks are evaluated as pulse height resolution which is the most
significant characteristic in the radiation measurements. As Figure 32 shows, the pulse height resolution is defined as the
FWHM (a) divided by the peak value (b) when pulse height distribution is measured using a single radiation source such as
137Cs and 55Fe.
c) 60Co+NaI (Tl)
10000
COUNTS
OPTICAL COUPLING
(USING SILICONE OIL etc.)
(51 mm dia. × 51 mm t)
5000
0
500
1000
ENERGY
TPMOB0087EC
Figure 32: Definition of Pulse Height Resolution (FWHM)
b
NUMBER OF PULSES
SCINTILLATOR
a
H
H
2
PULSE HEIGHT
TPMOB0088EB
Figure 30: Incident Radiation Particles and PMT Output
Energy resolution =
a
× 100 %
b
TIME
Figure 33: PMT Spectral Response and Spectral Emission of
Scintillators
100
SCINTILLATOR
CURRENT
PMT
TIME
TPMOC0039EC
QUANTUM EFFICIENCY (%)
RELATIVE EMISSION DISTRIBUTION
OF VARIOUS SCINTILLATOR (%)
BGO
THE HEIGHT OF OUTPUT
PULSE IS PROPORTIONAL
TO THE ENERGY OF
INCIDENT PARTICLE.
NaI (Tl)
10
BIALKALI
1
0.1
Figure 31: Typical Pulse Height Distributions (Energy Spectra)
Cs-I (Tl)
BaF2
200
300
400
500
600
700
800
WAVELENGTH (nm)
a) 55Fe+NaI (TI)
TPMOB0073EA
COUNTS
1000
(51 mm dia. × 2.5 mm t)
500
0
500
ENERGY
1000
Pulse height resolution is mainly determined by the quantum efficiency of the photomultiplier tube that detects the scintillator
emission. In the case of thallium-activated sodium iodide or NaI(Tl), which is one of the most popular scintillators, a head-on
type photomultiplier tube with a bialkali photocathode is widely
used since its spectral response matches the NaI(Tl) scintillator
spectrum.
13
Connections to External Circuits
LOAD RESISTANCE
Since the output of a photomultiplier tube is a current signal and
the type of external circuit to which photomultiplier tubes are
usually connected has voltage inputs, a load resistor is used for
current-voltage conversion. This section describes factors to
consider when selecting this load resistor.
Since for low output current levels, the photomultiplier may be
assumed to act as virtually an ideal constant-current source, the
load resistance can be made arbitrarily large, when converting a
low-level current output to a high-level voltage output. In practice, however, using a very large load resistance causes poor
frequency response and output linearity as described below.
Figure 34: Photomultiplier Tube Output Circuit
PHOTOCATHODE
ANODE
SIGNAL
OUTPUT
Ip
RL
CS
-HV
This value of Ro, which is less than the value of RL, is then the
effective load resistance of the photomultiplier tube. If, for example, RL=Rin, then the effective load resistance is 1/2 that of RL
alone. From this we see that the upper limit of the load resistance is actually the input resistance of the amplifier and that
making the load resistance much greater than this value does
not have a significant effect.
While the above description assumed the load and input impedances to be purely resistive, stray capacitances, input capacitance and stray inductances affect the phase relationships during actual operation. Therefore, as the frequency is increased,
these circuit elements must be considered as compound impedances rather than pure resistances.
From the above, three guides can be derived for selecting the
load resistance:
1) When frequency response is important, the load resistance
should be made as small as possible.
2) When output linearity is important, the load resistance should
be chosen to keep the output voltage within a few volts.
3) The load resistance should be less than the input impedance of the external amplifier.
TACCC0037EB
HIGH-SPEED OUTPUT CIRCUITS
In the circuit of Figure 34, if we let the load resistance be RL and
the total capacitance of the photomultiplier tube anode to all
other electrodes including stray capacitance such as wiring
capacitance be Cs, then the cutoff frequency fc is expressed by
the following relationship.
fc =
1
2 π Cs · RL
This relationship indicates that even if the photomultiplier tube
and amplifier have very fast response, the response will be
limited to the cutoff frequency fc of the output circuit. If the load
resistance is made large, then the voltage drop across RL
becomes large at high current levels, affecting the voltage
differential between the last dynode stage and the anode. This
increases the effect of the space charge and lowers the
efficiency of the anode in collecting electrons. In effect, the
output becomes saturated above a certain current, causing poor
output linearity (output current linearity versus incident light
level) especially when the circuit is operated at low voltages.
Figure 35: Amplifier Internal Resistance
1)
PMT
P
DYn
RL
2)
PMT
Rin
SIGNAL
OUTPUT
Rin
SIGNAL
OUTPUT
CS
P
CC
DYn
RL
CS
TACCC0017EA
In Figure 35, let us consider the effect of the internal resistance
of the amplifier. If the load resistance is RL and the input
impedance of the amplifier is Rin, the combined parallel output
resistance of the photomultiplier tube, Ro, is given by the
following equation.
Ro = RL · Rin
RL + Rin
When detecting high-speed and pulsed light signals, a coaxial
cable is used to make the connection between the photomultiplier tube and the electronic circuit. Since commonly used cables
have characteristic impedances of 50 Ω, this cable must be terminated in a pure resistance equal to the characteristic impedance to match the impedance and ensure distortion-free transmission of the signal waveform. If a matched transmission line is
used, the impedance of the cable as seen by the photomultiplier
tube output will be the characteristic impedance of the cable, regardless of the actual cable length so no distortion will occur in
the signal waveform.
If the impedance is not properly matched when the signal is received, the impedance seen at the photomultiplier tube output
will differ depending on both frequency and cable length, causing significant waveform distortion. Impedance mismatches
might also be due to the connectors being used. So these connectors should be chosen according to the frequency range to
be used, to provide a good match with the coaxial cable.
When a mismatch at the signal receiving end occurs, not all of
the pulse energy from the photomultiplier tube is dissipated at
the receiving end and is instead partially reflected back to the
photomultiplier tube via the cable. However if an impedance
match has been achieved at the cable end on the photomultiplier
tube side, then this reflected energy will be fully dissipated there.
If this is a mismatch, however, the energy will be reflected and
returned to the signal-receiving end because the photomultiplier
tube itself acts as an open circuit. Since part of the pulse makes
a round trip in the coaxial cable and is again input to the receiving end, this reflected signal is delayed with respect to the main
pulse and results in waveform distortion (so called ringing phenomenon).
To prevent this phenomenon, in addition to matching the impedance at the receiving end, a resistor is needed for matching the
cable impedance at the photomultiplier tube end as well (Figure
36). If this is provided, it is possible to eliminate virtually all ringing caused by an impedance mismatch, although the output
pulse height of the photomultiplier tube is reduced to one-half of
the normal level by use of this impedance matching resistor.
Figure 36: Connection to Prevent Ringing
50 Ω OR 75 Ω COAXIAL CABLE
PMT
50 Ω OR 75 Ω CONNECTOR
HOUSING
RL
(50 Ω OR 75 Ω
MATCHING RESISTOR)
ANTI-REFLECTION
RESISTOR
TACCC0039EB
14
Next, let us consider waveform observation of high-speed pulses
using an oscilloscope. This type of operation requires a low load
resistance. However, the oscilloscope sensitivity is limited so an
amplifier may be required.
Cables with a matching resistor have the advantage that the
cable length will not affect the electrical characteristics of the
cable. However, since the matching resistance is very low compared to the usual load resistance, the output voltage becomes
too small. While this situation can be remedied with a high gain
amplifier, the inherent noise of such an amplifier can itself hurt
measurement performance. In such cases, the photomultiplier
tube should be brought as close as possible to the amplifier to
reduce stray capacitance and a larger load resistance should be
used (while still maintaining the frequency response), to achieve
the desired input voltage. (See Figure 37.)
Figure 37: Measurement with Ringing Suppression Measures
PMT
DYn
P
RL
OSCILLOSCOPE
WIRING SHOULD BE
AS SHORT AS POSSIBLE.
TACCC0026EA
It is relatively simple to implement a high-speed amplifier using a
wide-band video amplifier or operational amplifier. However, as
a trade-off for design convenience, these ICs tend to create performance problems (such as noise). This makes it necessary to
know their performance limits and take corrective action if necessary.
As the pulse repetition frequency increases, baseline shift becomes one reason for concern. This occurs because the DC signal component has been eliminated from the signal circuit by
coupling with a capacitor which blocks the DC components. If
this occurs, the reference zero level observed at the last stage is
not the actual zero level. Instead, the apparent zero level is a
time-average of the positive and negative fluctuations of the signal waveform. This is known as baseline shift. Since the height
of the pulses above this baseline level is affected by the repetition frequency, this phenomenon can be a problem when observing waveforms or discriminating pulse levels.
Figure 38: Current-Voltage Conversion Using Operational
Amplifier
Rf
p
lp
lp
–
Vo= -lp ⋅ Rf
+
PMT
OP-AMP
V
TACCC0041EA
If the operational amplifier has an offset current (Ios), the abovedescribed output voltage becomes Vo = -(Ip+Ios) ·Rf, with the offset current component being superimposed on the output. Furthermore, the magnitude of the temperature drift may create a
problem. In general, a metallic film resistor which has a low temperature coefficient is used for the resistance Rf. Carbon resistors with their highly temperature-dependent resistance characteristics are not suitable for this application.
In addition to the above factors, when measuring extremely low
level currents such as 100 pA and below, the materials used to
fabricate the circuit also require careful selection. For example,
materials such as bakelite are not suitable. More suitable materials include teflon, polystyrol or steatite. Low-noise cables should
also be used, since general-purpose coaxial cables exhibit noise
due to physical factors. An FET input operational amplifier is recommended for measuring low-level current.
Figure 39: Frequency Compensation by Operational Amplifier
Cf
Cs
SHIELD CIRCUIT
Rf
–
SIGNAL
OUTPUT
+
OP-AMP.
TACCC0042EA
OPERATIONAL AMPLIFIERS
When a high-sensitivity ammeter is not available, using an operational amplifier allows making measurements with an inexpensive voltmeter. This section explains the technique for converting the output current of a photomultiplier tube to a voltage
signal. The basic circuit is as shown in Figure 38, for which the
output voltage, Vo, is given by the following relationship.
Vo = -Ip · Rf
In Figure 39, if a capacitance Cf (including any stray capacitance)
is in parallel with the resistance Rf, the circuit exhibits a time
constant of (Rf × Cf), and the response speed is limited to this
time constant. This is a particular problem if the Rf is large. Stray
capacitance can be reduced by passing Rf through a hole in a
shield plate. When using coaxial signal input cables, oscillations
may occur and noise might be amplified since the cable capacitance Cc and Rf are in a feedback loop. While one method to
avoid this is to connect Cf in parallel with Rf, to reduce high frequency gain as described above, this method creates a time
constant of Rf × Cf which limits the response speed.
This relationship is derived for the following reason. If the input
impedance of the operational amplifier is extremely large, and
the output current of the photomultiplier tube is allowed to flow
into the inverted (–) input terminal of the amplifier, most of the
current will flow through Rf and subsequently to the operational
amplifier output circuit. The output voltage Vo is therefore given
by the expression -Ip·Rf. When using such an operational amplifier, it is not of course possible to make unlimited increases in
the output voltage because the actual maximum output is roughly equal to the operational amplifier supply voltage. At the other
end of the scale, for extremely small currents, there are limits
due to the operational amplifier offset current (Ios), the quality of
Rf, and other factors such as the insulation materials used.
15
Selection Guide by Applications
Applications
Required Major Characteristics
Applicable PMT
Spectroscopy
UV/Visible/IR Spectrophotometer
When light passes through a substance, the light energy causes changes in the electron energy of the
substance, resulting in partial energy loss. This is
called absorption and can be used to yield analytical
data. In order to determine the quantity of a sample
substance, it is irradiated while its light wavelength is
scanned continuously. The spectral intensities of the
light before and after passing through the sample are
then detected by a photomultiplier tube and the
amount of absorption in this way measured.
Atomic Absorption Spectrophotometer
This is widely used in analysis of minute quantities of
metallic elements. A special elementary hollow cathode lamp for each element to be analyzed is used to
irradiate a sample which is burned to atomize it. A
photomultiplier tube then detects the light passing
through the sample to measure the amount of absorption, which is compared with a pre-measured reference sample.
1) Wide spectral response
2) High stability
3) Low dark noise
4) High quantum efficiency
5) Low hysteresis
6) Good polarization characteristics
R6357
R928, R955, R3896, R12896
R374
R375
H7260-20
H10515B-20
R6354
R928
R955
R7154
R12896
Photoelectric Emission Spectrophotometer
When external energy is applied to a sample, that
sample then emits light. . By using a monochromator
to disperse this light emission into characteristic spectral lines of elements and measuring their presence
and intensity simultaneously with photomultiplier
tubes, the photoelectric emission spectrophotometer
can perform rapid qualitative and quantitative analysis
of the elements contained in the sample.
1) High gain
2) Low dark noise
3) High stability
R6350, R6351
R6354, R6355, R10824, R10825
R11568, R11558
R7446, R8486, R8487, R10454
1) High quantum efficiency
2) Low dark noise
3) High stability
R6353, R6357, R6356-06
R3788, R4220, R1527
R928, R3896, R10699, R12829
H7260-20, H10515B-20
1) High quantum efficiency
2) Low dark count
3) Single photon discrimination ability
R2949, R9110
R943-02, R649
Fluorescence Spectrophotometer
The fluorescence spectrophotometer is used in biological science, especially in molecular biology. When
an excitation light is applied, some substances emit
light with a wavelength longer than that of the excitation light. This light is known as fluorescence. The intensity and spectral characteristics of the fluorescence
are measured by a photomultiplier tube, and the substance then analyzed qualitatively and quantitatively.
Raman Spectroscopy
When monochromatic light strikes a substance and
scatters, a process called Raman scattering also occurs at a wavelength different from the excitation
light. Since this wavelength differential is a unique
characteristic of a molecule, spectral measurement of
Raman scattering can provide qualitative and quantitative data of molecules. Raman scattering is extremely weak and a sophisticated optical system is
required for measurement, with the photomultiplier
tube operated in the photon counting mode.
Other Spectrophotometric Equipment Using
Photomultiplier Tubes
• Liquid or gas chromatography
• X-ray diffractometers, X-ray fluorescence analyzers
• Electron microscopes
16
R3788, R4220
R647, R6095, R580
R9880U-01, R7600U-01
R9880U-110
R9880U-210
Applications
Required Major Characteristics
Applicable PMT
Solid Surface Analysis
Scanning Electron Microscope (SEM)
A scanning electron microscope (SEM) is used to examine the
structure near the surface of materials. It produces microscopic images by scanning the surface of a sample with a narrowfocused electron beam and measuring the secondary electrons emitted from near the surface of the sample. Unlike light,
no diffraction occurs and so SEM allows high-precision measurement with an analysis capability in the order of nanometers.
The emitted secondary electrons are guided to the scintillator
and converted into visible light, which is measured with a photomultiplier tube. SEM is widely used for structural analysis of
various structures including organisms, engineering materials,
and semiconductors.
1) Low dark count
2) Compact size
R6095, R6094
R12421
R9880U-110
R9880U-210
1) Low dark count
2) Low spike noise
3) High quantum efficiency
R12421, R1924A, R6095
R9880U-110
1) High sensitivity at near infrared to
infrared range
2) Low dark current
R3896, R5984, R374
R2228, R5929, R5070A
R9182-01, H7844
1) High sensitivity at UV range
2) Low dark current
R3788
R1527, R4220
R6095
1) High quantum efficiency
2) High stability
3) Low dark current
4) High gain
R6357, R928
R3896
R9880U-01, R9880U-20
R5900U-20-L16
H7260-20
H9530-20, H10515B-20
1) High quantum efficiency in the visible
range
R6357
R3896, R10699
R9880-110
R9880-210
H7260-20
1) Low dark count
2) High sensitivity at 560 nm
3) Compact size
R4220, R1527
R1924A, R3550A
Pollution Monitoring
Particle Counter
A particle counter measures the density of particles
floating in the atmosphere or inside rooms by measuring light scattering. Microparticles such as PM2.5 can
be measured by utilizing the absorption of beta rays.
NOx Monitors
NOx monitors are used to measure nitrogen oxides which
are air pollutants contained in the air and exhaust gases
emitted from various combustion engines. NOx monitors
detect the NO gas concentration by measuring the intensity
of chemiluminescence emitted when NO2 excited by the reaction of NO gas and ozone (O3) returns to its ground state.
SOx Monitors
SOx monitors or sulfur dioxide analyzers are used to
measure the environmental concentration of sulfur dioxide in the air. Recent models use the ultraviolet fluorescence method that detects sulfur dioxide concentration in the air by irradiating ultraviolet light onto sulfur dioxides to excite SO2 and then measure the fluorescence intensity emitted from the SO2.
Biotechnology
Flow Cytometer
A flow cytometer uses a laser to irradiate cells labeled with
fluorescent substance and measures the resulting fluorescence or scattered light from those cells with a photomultiplier tube, in order to identify each cell. A cell sorter is one kind
of flow cytometer having the function of sorting specific cells.
Laser Scanning Microscopes
Laser scanning microscopes are designed to acquire 2D
or 3D fluorescence images by scanning a laser beam over
the surface of a sample stained with a fluorescent dye.
High-resolution images can be obtained by using the confocal function while scanning with a small laser light spot.
Multiphoton microscopes that utilize two-photon absorption are also becoming widespread in recent years.
Hygiene Monitors
Hygiene monitors, also called ATP (adenosine triphosphate) monitors, are useful devices for monitoring sanitary conditions. These devices make use of the principle of bioluminescence that occurs by making a luminescent agent react with ATP extracted from bacteria
or cells. Hygiene monitors are used for testing the degree of cleanliness in kitchens and food factories.
17
Selection Guide by Applications
Applications
Required Major Characteristics
Applicable PMT
Medical Applications
Gamma Camera
The gamma camera obtains an image of a radioisotope injected into the body of a patient to locate abnormalities. Its detection section uses a large diameter NaI(Tl) scintillator and light-guide coupled to a
photomultiplier tube array.
1) High energy resolution
2) Good uniformity
3) High stability
4) Uniform gain (between each tube)
R6231-01, R6233-01
R6234-01, R6235-01
R6236-01, R6237-01
R1307-01
H8500C, H9500
R8900U-00-C12
1) High energy resolution
2) High stability
3) Fast response time
4) Compact size
R8900U-00-C12
R1450
H8500C, H9500
R9800, R9420, R13089
R8619, R11194
1) High quantum efficiency
2) High stability
R1924A
R11102
R6231, R6233
1) High quantum efficiency
2) High stability
3) Low dark current
R1166, R5610A, R5611A-01
R6350, R6352, R6353
R6356-06, R6357
R4220, R928, R3788, R3896
R1463, R12421
R1925A, R1924A, R3550A
R6095, R374
R9880U-01
R9880U-20
1) High sensitivity
2) Low dark current
3) High stability
R6350
R11558
PET (Positron emission tomography)
The PET provides tomographic images by detecting
the coincident gamma-ray emission that accompanies
the annihilation of positrons emitted from a tracer radioisotope (11C, 15O, 13N, 18F, etc.) injected into the
body. Photomultiplier tubes coupled to scintillators
are used to detect these gamma-rays.
Computed Radiography (CR)
Some X-ray image diagnostic systems use a special
phosphor plate made of photostimulable phosphor.
After temporarily accumulating an X-ray image onto
this phosphor plate, scanning (exciting) the surface of
the phosphor plate with a laser beam causes the
phosphor plate to emit visible light according to the
amount of accumulated X-rays. A photomultiplier tube
converts this weak visible light into electrical signals
which are then utilized to reconstruct an image
through digital signal processing.
In-Vitro Assay
In-vitro assay is used for physical checkups, diagnosis, and evaluation of drug potency by making use of
the specific antigen/antibody reaction characteristics
of tiny amounts of insulin, hormones, drugs and viruses that are contained in blood or urine. Photomultiplier tubes are used to optically measure the amount
of antigens labeled by radioisotopes or fluorescent,
chemiluminescent or bioluminescent substances.
• Radioimmunoassay (RIA)
Uses radioactive isotopes for labeling and scintillators for measurement.
• Chemiluminoassay
CLIA (Chemilulminoassay)
CLEIA (Enzyme-intensified chemiluminoassay)
Uses luminescent substances for labeling to measure chemiluminescence or bioluminescence.
• Fluoroimmunoassay
Uses fluorescent substances for labeling.
Others
• X-ray phototimer
This equipment automatically controls the X-ray film
exposure during X-ray examinations. The X-rays
transmitting through a subject are converted into
visible light by a phosphor screen. A photomultiplier
tube detects this light and converts it into electrical
signals. When the accumulated electrical signal
reaches a preset level, the X-ray irradiation is shut
off, to allow obtaining an optimum film density.
18
Applications
Required Major Characteristics
Applicable PMT
Radiation Measurement
Area Monitor
Area monitors are designed to continuously measure
changes in environmental radiation levels. Area monitors use a photomultiplier tube coupled to a scintillator
to monitor low level gamma rays and neutron rays.
Photomultiplier tubes are mainly used for gamma ray
measurement.
1) Long term stability
2) Low background noise
3) Good plateau characteristic
R1306, R6231
R329-02, R7724
R1307, R6233
R877, R877-01
1) Long term stability
2) Low background noise
3) Good plateau characteristic
R1635
R12421
R1924A
R6095
R9880U-110
1) Stable operation at high temperatures
up to 175 °C
2) Rugged structure resistant to shock
and vibration
3) Good plateau characteristic when
combined with a scintillator
R4177 Series
R3991A Series
R1288A Series
R9722A Series
R4607A Series
1) Good pulse linearity
2) High energy resolution
R12421
R6095
R580
R1306, R6231
R329-02, R7724
1) High reliability
2) High stability
3) Wide dynamic range
R1924A
R580
R2154-02
R6231
R6233
1) High quantum efficiency
2) Good uniformity
2) Low spike noise
R3896
R9880U-01
R9880U-04
R9880U-20
R9880U-113
Survey Meter
Survey meters are used to measure low level gamma-rays and beta-rays by using a photomultiplier tube
coupled to a scintillator.
Resource Inquiry
Oil and Natural Gas Well Logging
Gamma-ray probing is used to determine the geological location and size of oil deposits and natural gas
fields. A probe containing a radiation source, scintillator, and photomultiplier tube is lowered into a borehole drilled for an oil or natural gas well. The scattered radiation or natural radiation from the geological
formation is detected with the probe, and the type
and density of the geological formation is analyzed
along with information obtained from other sensors.
* We provide a catalog of high temperature, ruggedized photomultiplier tubes designed and selected for oil and natural
gas well logging applications.
Industrial Measurement
Thickness Meter
The thickness meter uses a radiation source and a
scintillator/photomultiplier tube detector to measure
product thickness such as for paper, plastic, copper
sheet on factory production lines. Beta-rays are used
as a radiation source to measure small density products such as rubber, plastic, and paper. Gamma-rays
are used for large density products such as copper
plates. X-ray fluorescence is utilized to measure film
thickness for plating, evaporation, etc.
Liquid level meter
Liquid level needs to be controlled in a liquid production or oil and gas processing plant. Absorption of
gamma rays are measured to determine the liquid
level non-invasively with a PMT and scintillator. Highly reliable PMTs are used to monitor the liquid level
continuously or at times.
Semiconductor Inspection System
These are widely used in semiconductor wafer inspection systems. In wafer inspection, the wafer is
scanned by a laser beam, and the scattered light
caused by dirt or defects is detected by a photomultiplier tube.
19
Selection Guide by Applications
Applications
Required Major Characteristics
Applicable PMT
High Energy Physics
●Accelerator Experiment
Hodoscope
Photomultiplier tubes are coupled to the ends of long,
thin plastic scintillator arrays arranged in two layers
intersecting with each other in order to measure the
time and position at which charged particles pass
through the scintillator arrays.
TOF Counter
1) Fast time response
2) Compact size
Two counters are arranged along a path of charged
particles, with each counter consisting of a scintillator
and a photomultiplier tube. The velocity of the particles is measured by the time difference between the
two counters.
Cherenkov Counter
A Cherenkov counter is used to identify secondary
particles generated by the collision reaction of particles. Cherenkov radiation is emitted from charged particles with energy higher than a certain level when
they pass through a gas or silicon aerogel. This weak
Cherenkov radiation is detected by a photomultiplier
tube. These particles are then identified by measuring
the Cherenkov radiation emission angle.
Calorimeter
The calorimeter measures the accurate energy of
secondary particles generated by the collision reaction of particles.
R7600U Series
R1635 (H3164-10)
R647-01 (H3165-10)
R12421 (H12690)
R1450 (H6524), R1166 (H6520)
R7600U Series, R1635 (H3164-10)
R1450 (H6524), R4998 (H6533)
R1828-01 (H1949-51)
R2083 (H2431-50), R9800
R12844, R9420, R12845, R13089
3) Resistance to magnetic fields
(when used in magnetic fields)
R5505-70 (H6152-70)
R7761-70 (H8409-70)
R5924-70 (H6614-70)
1) High quantum efficiency
2) Single photon discrimination ability
3) High gain
4) Fast time response
R329-02 (H6410), R5113-02
R1250 (H6527), R1584 (H6528)
R7600U Series, R7724
H12700
5) Resistance to magnetic fields
(when used in magnetic fields)
R5505-70 (H6152-70)
R7761-70 (H8409-70)
R5924-70 (H6614-70)
1) Good pulse linearity
2) High energy resolution
3) High stability
R7899, R580 (H3178-51)
R7600U Series, R329-02 (H6410)
R7724, R6091 (H6559)
4) Resistance to magnetic fields
(when used in magnetic fields)
R5924-70 (H6614-70)
R5505-70 (H6152-70)
R7761-70 (H8409-70)
●Neutrino and Proton Decay Experiment, Cosmic Ray Detection
Neutrino Experiment
Research on solar neutrinos or particle astophysics is
utilized in a neutrino experiment. This experimental
system consists of a large amount of a medium surrounded by a great number of large-diameter photomultiplier tubes. When cosmic rays such as neutrinos enter
and pass through the medium, their energy and traveling direction are measured by detecting Cherenkov radiation that occurs from interaction with the medium.
R5912*
R7081*
R8055*
R3600-02*
Neutrino and Proton Decay Experiment
In the neutrino and proton decay experiments being
conducted at Kamioka, Japan, 11,200 photomultiplier
tubes each 20" diameter are installed to surround
from all directions a huge tank storing 50,000 t of
pure water. The photomultiplier tubes are used to
watch the subtle flash of Cherenkov radiation that occurs when proton decays or solar neutrinos pass
through the pure water tank.
1) Large photocathode area
2) Fast time response
3) High stability
4) Low dark count
Air Shower Counter
When cosmic rays collide with the earth's atmosphere,
secondary particles are created by the interaction of the
cosmic rays and atmospheric atoms. These secondary
particles generate more secondary particles, which continue to increase in a geometrical progression. This is
called an air shower. The gamma-rays and Cherenkov radiation emitted in this air shower are detected by photomultiplier tubes arranged in a lattice array on the ground.
* These are listed in our catalog "Photomultiplier Tubes and Assemblies for
Scintillation Counting & High Energy Physics".
20
R329-02 (H6410)
R6091 (H6559)
R1250 (H6527)
The assembly type is given in parentheses.
Applications
Required Major Characteristics
Applicable PMT
Aerospace
Astronomical X-ray Measurement
X-rays from outer space include information on the
enigmas of space. As an example, the X-ray observation satellite "Asuka" developed by a group of the
ISAS (Institute of Space and Astronomical Science Japan), uses a gas-scintillation proportional counter
in conjunction with a position-sensitive photomultiplier
tube to measure X-rays from supernovas, etc.
1) High energy resolution
2) Resistance to shock and vibration
R3998-02
R3991A
R6231
Ruggedized PMT with high resistance to vibration and shock will be
required. Consult with our sales office.
Measurement of Scattered Light from Fixed
Stars and Interstellar Dust
Ultraviolet rays from space contain a great deal of information about the surface temperatures of stars and
interstellar substances. However, these ultraviolet
rays are absorbed by the earth's atmosphere making
is impossible to measure them from the earth's surface. So photomultiplier tubes are mounted in rockets
or artificial satellites, to measure ultraviolet rays with
wavelengths shorter than 300 nm.
1) Resistance to shock and vibration
2) Sensitivity only in VUV to UV range
(Solar blind response with no sensitivity
to visible light: See page 6 for Cs-Te
and CsI photocathodes)
R1080, R976
R6834, R6835, R6836
Ruggedized PMT with high resistance to vibration and shock will be
required. Consult with our sales office.
Lasers
Laser Radar
The laser radar is used in applications such as atmospheric measurement for highly accurate range
finding or aerosol scattering detection.
Fluorescence Lifetime Measurement
A laser is used as an excitation light for fluorescence
lifetime measurement. The molecular structure of a
substance can be studied by measuring the changes
in temporal intensity in the emitted fluorescence.
1) Fast time response
2) Low dark count
3) High gain
4) Low afterpulses
R3809U Series
R5916U Series
R9880U-20
H7260-20
H10515B-20
R9880U Series
R3809U Series
R5916U Series
21
Side-on Type Photomultiplier Tubes
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
Range
length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
13 mm (1/2") Dia. Types
4 × 13
R6350
4 × 13
R6352
4 × 13
R6353
4 × 13
R6355
185 to 650 350U
340
Sb-Cs
U
1
CC/9
E678-11U* qw
1250 0.01 1000 o
185 to 750 452U
420
BA
U
1
CC/9
E678-11U* qw
1250 0.01 1000 o
185 to 680 456U
400
LBA
U
1
CC/9
E678-11U* qw
1250 0.01 1000 o
185 to 850 550U
530
MA
U
1
CC/9
E678-11U* qw
1250 0.01 1000 o
R6356-06
4 × 13
185 to 900
—
400
MA
U
1
CC/9
E678-11U* qw
1250 0.01 1000 o
R6357
4 × 13
185 to 900
—
450
MA
U
1
CC/9
E678-11U* qw
1250 0.01 1000 o
∗R12857
4 × 13
185 to 900
—
450
MA
U
1
CC/9
E678-11U* qw
1250 0.01 1000 o
530
MA
U
1
CC/9
E678-11U* qw
1250 0.01 1000 o
4 × 13
R6358
185 to 830 561U
Lenses for side-on type photomultipliers are available. See page 73 for more details.
Dimensional Outlines (Unit: mm)
1 R6350, R6352, R6353 etc.
13.5 ± 0.8
4 MIN.
50 MAX.
40 ± 2
24.0 ± 1.5
13 MIN.
3±2
PHOTOCATHODE
11 PIN BASE
R6350
R6352
R6353
R6355
R6358
R6356-06
R6357
R12857
DY5
6
DY6
7
DY4 5
DY7
9 DY8
DY3 4
DY2
8
10 DY9
3
DY1
11 P
2
1
K
DIRECTION OF LIGHT
TPMSA0034EE
22
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
20
40
5.0
—
48
50
300
3.6 × 105 7.5 × 106
0.5
5
1.4
15
80
120
10.0
—
90
100
700
5.2 × 105 5.8 × 106
1
10
1.4
15
For photon counting: R6350P
Silica glass window: R6351
Type No.
R6350
R6352
For photon counting: R6353P
30
70
6.5
—
65
100
400
3.7 ×
0.1
2
1.4
15
80
150
6.0
0.15
45
100
600
1.8 × 105 4.0 × 106
1
10
1.4
15
R6355
1200
200
300
10.0
0.3
77
400
105
5.7 ×
Notes
106
3.1 ×
105
4.0 ×
106
1
10
1.4
15
R6356-06
105
4.0 ×
106
2
10
1.4
15
R6357
3
10
1.4
15
350
500
13.0
0.4
105
1000
2000
4.2 ×
620
650
15.0
0.43
109
400
2600
4.3 × 105 4.0 × 106
700
2.5 ×
140
200
7.5
0.15
70
300
R6353
105
3.5 ×
106
0.1
1
1.4
15
R12857∗
For photon counting: R6358-10
R6358
23
Side-on Type Photomultiplier Tubes
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
Range
length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
28 mm (1-1/8") Dia. Types with UV to Visible Sensitivity
8 × 24
R11558
8 × 24
R11568
300 to 650 453K
400
BA
K
1
CC/9
E678-11A ert 1250
0.1 1000 o
185 to 650 453U
400
BA
U
1
CC/9
E678-11A ert 1250
0.1 1000 o
R3788
8 × 24
185 to 750 452U
420
BA
U
1
CC/9
E678-11A ert 1250
0.1 1000 o
R11540
8 × 24
185 to 760 452U
420
BA
U
1
CC/9
E678-11A ert 1250
0.1 1000 o
R1527
8 × 24
185 to 680 456U
400
LBA
U
1
CC/9
E678-11A ert 1250
0.1 1000 o
R4220
8 × 24
185 to 710 456U
410
LBA
U
1
CC/9
E678-11A ert 1250
0.1 1000 o
R7518
8 × 24
185 to 730 456U
410
LBA
U
1
CC/9
E678-11A ert 1250
0.1 1000 o
R5983
10 × 24
185 to 710 456U
410
LBA
U
2
CC/9
E678-11A ert 1250
0.1 1000 o
8 × 24
185 to 710 456U
410
LBA
U
3
CC/9
E678-11A ert 1250
0.1 1000 o
∗R11715-01
Lenses for side-on type photomultipliers are available. See page 73 for more details.
Dimensional Outlines (Unit: mm)
1 R11558, R3788, R11540 etc.
2 R5983
28.5 ± 1.5
28.5 ± 1.5
10 MIN.
2.5 ± 0.5
8 MIN.
PHOTOCATHODE
R11558
R11568
R11540
R3788
R1527
R4220
R7518
5
DY6
6
7
DY7
8 DY8
DY3 3
DY2
9 DY9
2
DY1
10
1
80 MAX.
11 PIN BASE
JEDEC No. B11-88
11 PIN BASE
JEDEC No. B11-88
DY5
94 MAX.
49.0 ± 2.5
32.2 ± 0.5
32.2 ± 0.5
DY4 4
P
11
K
DIRECTION OF LIGHT
TPMSA0001EA
24
24 MIN.
80 MAX.
94 MAX.
49.0 ± 2.5
24 MIN.
PHOTOCATHODE
DY5
5
DY6
6
7
DY4 4
DY7
8 DY8
DY3 3
DY2
9 DY9
2
DY1
10 P
1
11
K
DIRECTION OF LIGHT
TPMSA0035EC
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
40
60
7.1
—
60
200
600
6.0 × 105 1.0 × 107
1
10
2.2
22
40
60
7.1
—
60
200
600
6.0 × 105 1.0 × 107
1
10
2.2
22
100
120
10.0
0.01
90
500
1200
9.0 ×
160
190
16.0
0.02
120
1300
1900
1.2 × 106 1.0 × 107
400
40
60
60
—
6.4
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
200
105
4.0 ×
105
105
1.0 ×
107
5
50
2.2
22
5
50
2.2
22
6.7 ×
106
0.1
2
2.2
22
1.2 ×
107
0.2
2
2.2
22
0.2
2
2.2
22
80
100
8.0
—
70
1000
1200
8.4 ×
120
130
10.0
—
85
1200
1560
1.0 × 106 1.2 × 107
60
100
8.0
—
70
500
1000
7.0 ×
50
100
8.0
—
70
1000
1200
8.4 × 105 1.2 × 107
105
1.0 ×
107
0.2
2
2.2
22
0.2
0.5
2.2
22
Notes
Type No.
R11558
R11568
Silica glass window: R4332
R3788
R11540
For photon counting: R1527P
Silica glass window: R7446
For photon counting: R4220P
Silica glass window: R7447
For photon counting: R7518P
R1527
For photon counting: R5983P
Borosilicate glass window: R10491
R5983
R4220
R7518
R11715-01∗
3 R11715-01
PELTIER
DEVICE
THERMISTOR
20
40.0 ± 0.5
14.5 ± 0.5
28.5 ± 1.5
10 MIN.
2.5 ± 0.5
DY5
5
DY6
6
DY7
7
8
4
DY8
9 DY9
DY3 3
10
2
DY2
96 MAX.
49.0 ± 2.5
PHOTOCATHODE
DY4
82 MAX.
24 MIN.
INSULATION
COVER
1
DY1
11
K
P
DIRECTION OF LIGHT
TPMSA0045EA
25
Side-on Type Photomultiplier Tubes
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
Range
length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
Socket
&
Socket
Assembly
28 mm (1-1/8") Dia. Types with UV to Near IR Sensitivity
∗R12829
8 × 24
185 to 900 557U
450
MA
U
1
CC/9
E678-11A ert 1250
0.1 1000 o
R10699
8 × 24
185 to 900 557U
450
MA
U
1
CC/9
E678-11A ert 1250
0.1 1000 o
R3896
8 × 24
185 to 900 555U
450
MA
U
1
CC/9
E678-11A ert 1250
0.1 1000 o
R9220
8 × 24
185 to 900 555U
450
MA
U
1
CC/9
E678-11A ert 1250
0.1 1000 o
R928
8 × 24
185 to 900 562U
400
MA
U
1
CC/9
E678-11A ert 1250
0.1 1000 o
R5984
10 × 24
185 to 900 562U
400
MA
U
2
CC/9
E678-11A ert 1250
0.1 1000 o
28 mm (1-1/8") Dia. Types with Low Dark Current
R9110
8×6
185 to 900 555U
450
MA
U
3
CC/9
E678-11A ert 1250
0.1 1000 o
R2949
8×6
185 to 900 562U
400
MA
U
3
CC/9
E678-11A ert 1250
0.1 1000 o
10 × 14
185 to 900 555U
450
MA
U
4
CC/9
E678-11A ert 1250
0.1 1000 o
8 × 24
185 to 850 556U
430
MA
U
1
CC/9
E678-11A ert 1250
0.1 1000 o
∗R9182-01
R4632
Lenses for side-on type photomultipliers are available. See page 73 for more details.
Dimensional Outlines (Unit: mm)
1 R10699, R3896, R928 etc.
2 R5984
3 R9110, R2949
28.5 ± 1.5
28.5 ± 1.5
29.0 ± 1.7
10 MIN.
PHOTOCATHODE
5
DY6
6
7
DY7
8 DY8
DY3 3
DY2
9 DY9
2
DY1
10
1
P
11
K
DY5
TPMSA0001EA
DY6
6
7
DY2
DY7
DY5
8 DY8
9 DY9
2
10 P
1
80 MAX.
INSULATION
COVER
11 PIN BASE
JEDEC No. B11-88
DY3 3
DY1
DIRECTION OF LIGHT
5
DY4 4
94 MAX.
49.0 ± 1.0
6 MIN.
80 MAX.
32.2 ± 0.5
11 PIN BASE
JEDEC No. B11-88
11 PIN BASE
JEDEC No. B11-88
DY5
94 MAX.
49.0 ± 2.5
32.2 ± 0.5
32.2 ± 0.5
DY4 4
26
24 MIN.
80 MAX.
94 MAX.
49.0 ± 2.5
R3896
R9220
R10699
R12829
8 MIN.
PHOTOCATHODE
24 MIN.
R928
R4632
PHOTOCATHODE
2.5 ± 0.5
8 MIN.
K
7
DY7
8 DY8
9 DY9
2
DY1
DIRECTION OF LIGHT
DY6
6
DY3 3
DY2
11
5
DY4 4
10 P
1
11
K
DIRECTION OF LIGHT
TPMSA0035EC
TPMSA0043EA
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
600
650
15.0
0.45
109
1600
8500
1.4 × 106 1.3 × 107
2g
10g
2.2
22
620
650
15.0
0.43
109
1600
8500
1.4 × 106 1.3 × 107
2g
10g
2.2
22
475
525
15.0
0.4
90
3000
5000
8.6 ×
375
450
12.5
0.4
85
1000
4500
8.5 × 105 1.0 × 107
2500
140
250
74
0.3
8.0
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
400
105
9.5 ×
106
10
50
2.2
22
10
50
2.2
22
7.4 ×
105
1.0 ×
107
105
1.0 ×
107
5
50
5
15
3
50
R9220
2.2
22
R5984
For photon counting: R9110P
R9110
76
400
3000
7.6 ×
400
525
15.0
0.4
90
4000
10000
1.7 × 106 1.9 × 107
2.2
22
140
250
8.0
0.3
74
1000
2500
7.4 × 105 1.0 × 107 300e 500e 2.2
22
400
525
13.0
0.3
90
3000
5000
8.6 ×
2.2
22
140
200
7.5
0.15
80
300
700
2.8 × 105 3.5 × 106 50e 100e 2.2
22
1h
R3896
R928
0.32
0.3h
R10699
Silica glass window: R12896
High sensitivity type: R13096
9.0
9.5 ×
R12829∗
22
2.2
300
106
High sensitivity for 800 nm of
R10699
Type No.
Silica glass window: R955
140
105
Notes
R2949
Cooling module: H7844
R9182-01∗
R4632
4 R9182-01
PELTIER
DEVICE
THERMISTOR
20
40.0 ± 0.5
14.5 ± 0.5
28.5 ± 1.5
10 MIN.
2.5 ± 0.5
93 MAX.
49.0 ± 2.5
PHOTOCATHODE
79 MAX.
14 MIN.
INSULATION
COVER
11 PIN BASE
JEDEC No. B11-88
32.2 ± 0.5
DY5
5
DY4
DY6
6
DY7
7
8
4
9 DY9
DY3 3
10
2
DY2
DY8
1
DY1
11
K
P
DIRECTION OF LIGHT
TPMSA0046EA
27
Side-on Type Photomultiplier Tubes
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
Range
length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
28 mm (1-1/8") Dia. Types with UV to Near IR Sensitivity
3 × 12
R636-10
3 × 12
R2658
18 × 16
R5108
185 to 930 650U 300-800 GaAs
U
1
CC/9
E678-11A er
1500 0.001 1250 o
185 to 1010 850U
400
InGaAs
U
2
CC/9
E678-11A er
1500 0.001 1250 o
400 to 1200 700K
800
Ag-O-Cs K
3
CC/9
E678-11A er
1500 0.01 1250 o
Lenses for side-on type photomultipliers are available. See page 73 for more details.
Dimensional Outlines (Unit: mm)
1 R636-10
2 R2658
3 R5108
29.0 ± 1.7
28.5 ± 1.5
8 MIN.
3 MIN.
3 MIN.
5
DY6
6
7
DY7
DY1
10 P
DY2
11
K
DY6
6
7
DY7
9 DY9
10 P
1
76 MAX.
90 MAX.
49.0 ± 2.5
DY5
8 DY8
2
DY1
11
K
5
DY6
6
7
DY4 4
DY7
8 DY8
DY3 3
DY2
9 DY9
2
DY1
DIRECTION OF LIGHT
TPMSA0027EF
16 MIN.
80 MAX.
94 MAX.
11 PIN BASE
JEDEC No. B11-88
DY3 3
DIRECTION OF LIGHT
28
5
DY4 4
9 DY9
1
49.0 ± 2.5
DY5
8 DY8
2
34 MAX.
32.2 ± 0.5
11 PIN BASE
JEDEC No. B11-88
DY3 3
DY2
12 MIN.
80 MAX.
94 MAX.
49.0 ± 2.5
12 MIN.
16 MIN.
DY5
HA TREATMENT
PHOTOCATHODE
HA TREATMENT
11 PIN BASE
JEDEC No. B11-88
DY4 4
18 MIN.
PHOTOCATHODE
PHOTOCATHODE
34 MAX.
29.0 ± 1.7
1.1 ± 0.8
1.1 ± 0.8
10 P
1
11
K
DIRECTION OF LIGHT
TPMSA0012ED
TPMSA0023EC
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
400
550
9.0
0.53
50
100
4.5
0.4
10
25
—
—
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
62
1
at 1000 nm
2.2
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
100
250
2.8 × 104 4.5 × 105 0.1d
2d
2.0
20
Silica glass window: R758-10
R636-10
5
16
1.6 × 102 1.6 × 105
10
2.0
20
For photon counting: R2658P
R2658
7.5
6.6 ×
350c 1000c 1.1
17
3.5
102
3.0 ×
105
1
R5108
29
Side-on Type Photomultiplier Tubes
Spectral Response
A
D E
F
WinOut- Dynode
Spectral Curve Peak PhotoResponse Code Wave- cathode dow line Structure
MateRange
length Material rial No. / Stages
Effective Area (mm)
Type No.
Wavelength (nm)
100 200 300 400 500 600 700 800 900 1000 1100 1200
Max. Ratings H
Remarks
B
(nm)
C
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
(nm)
13 mm (1/2") Dia. Types with Solar Blind Response
R6354
4 × 13
160 to 320 250S
230
Cs-Te
R10824
4 × 9.5
115 to 320 250M
200
1
CC/9
E678-11U* qw
1250 0.01 1000 o
Cs-Te
MF 2
CC/9
E678-11U*
1250 0.01 1000 o
Q
R10825
4 × 9.5
115 to 195 150M
130
Cs-I
MF 2
CC/9
E678-11U*
1250 0.01 1000 o
∗R13194
4 × 9.5
115 to 195 150M
130
Cs-I
MF 2
CC/9
E678-11U*
1250 0.01 1000 o
3
CC/9
28 mm (1-1/8") Dia. Types with Solar Blind Response
R7154
8 × 24
160 to 320 250S
230
Cs-Te
R8486
8 × 12
Q
E678-11A ert 1250
0.1 1000 o
115 to 320 250M
200
Cs-Te
MF 4
CC/9
E678-11A
1250
0.1 1000 o
R8487
8 × 12
115 to 195 150M
130
Cs-I
MF 4
CC/9
E678-11A
1250
0.1 1000 o
R10454
8 × 12
115 to 195 150M
130
Cs-I
MF 4
CC/9
E678-11A
1250
0.1 1000 o
Dimensional Outlines (Unit: mm)
1 R6354
2 R10824, R10825, R13194
3 R7154
28.5 ± 1.5
8 MIN.
80 MAX.
24 MIN.
45.5 MAX.
53 MAX.
PHOTOCATHODE
35.0 ± 2.0
9.5 MIN.
25.0 ± 1.5
52 MAX.
13.3 ± 0.3
4 MIN.
7±2
42 ± 2
24.0 ± 1.5
13 MIN.
14.3 ± 0.4
MgF2 WINDOW
49.0 ± 2.5
13.5 ± 0.8
4 MIN.
PHOTOCATHODE
94 MAX.
17.0 ± 0.6
PHOTOCATHODE
HA TREATMENT
11 PIN BASE
32.2 ± 0.5
11 PIN BASE
JEDEC No. B11-88
DY5
6
DY6
7
DY4 5
DY7
DY5
9 DY8
DY3 4
DY2
8
10 DY9
3
DY1
11
2
1
P
8
DY7
DY5
10 DY9
DY2
1 K
7
DY7
8 DY8
9 DY9
2
DY1
10
1
P
11
K
DIRECTION OF LIGHT
DIRECTION OF LIGHT
TPMSA0034EE
DY6
6
DY3 3
11 P
2
5
DY4 4
9 DY8
3
DY1
DIRECTION OF LIGHT
30
DY6
7
DY3 4
DY2
K
6
DY4 5
TPMSA0044EA
TPMSA0001EA
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
—
—
—
—
—
—
—
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
—
50b
—
40b
—
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
—
2.0 × 105b 4.0 × 106
0.5
5
1.4
15
R6354
—
0.1
2
1.4
15
R10824
1.6 ×
105b
4.0 ×
106
105a
3.9 ×
106
—
—
—
—
25.5a
—
—
1.0 ×
0.05
1
1.4
15
—
—
—
—
25.5a
—
—
1.0 × 105a 3.9 × 106 0.05
1
1.4
15
—
—
—
—
62b
—
—
6.2 × 105b 1.0 × 107
1
10
2.2
22
R7154
1
10
2.2
22
R8486
0.1
—
2.2
22
—
—
—
—
52b
—
—
5.2 ×
—
—
—
—
25.5a
—
—
1.0 × 105a 3.9 × 106
—
1.0 ×
—
—
—
25.5a
—
—
105b
105a
1.0 ×
3.9 ×
107
106
0.1
—
2.2
22
R10825
R10825 Better solar-blind characteristics
Anode sensitivity ratio (122/300): 8500
R13194∗
R8487
R8487 Better solar-blind characteristics
Anode sensitivity ratio (122/300): 8500
R10454
20 MAX.
4 R8486, R8487, R10454
20 MAX.
FACEPLATE
28.5 ± 1.5
8 MIN.
94 MAX.
PHOTOCATHODE
80 MAX.
49.0 ± 2.5
14 MIN.
MgF2
WINDOW
32.2 ± 0.5
11 PIN BASE
JEDEC No. B11-88
DY5
5
DY6
6
7
DY4 4
DY7
8 DY8
DY3 3
DY2
9 DY9
2
DY1
10
1
P
11
K
DIRECTION OF LIGHT
TPMSA0042EB
31
Head-on Type Photomultiplier Tubes
Spectral Response
A
D E
F
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
Range
length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
Type No.
100 200
Max. Ratings H
Remarks
B
C
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
10 mm (3/8") Dia. Types
8
R2496
8
R1635
160 to 650 400S
420
BA
Q
1
L/8
E678-11N* u
1500 0.03 1250 e
300 to 650 400K
420
BA
K
1
L/8
E678-11N* y
1500 0.03 1250 q
115 to 200 100M
140
Cs-I
MF 2
L/10
E678-12A*
2250 0.01 2000 !2
115 to 320 200M
240
Cs-Te
MF 2
L/10
E678-12A*
1250 0.01 1000 !2
13 mm (1/2") Dia. Types
6
R1081
R1080
6
R759
10
160 to 320 200S
240
Cs-Te
Q
3
L/10
E678-13F* io
1250 0.01 1000 !2
R647
10
300 to 650 400K
420
BA
K
3
L/10
E678-13F* io
1250
0.1 1000 !2
R4124
10
300 to 650 400K
420
BA
K
4
L/10
E678-13F* !0
1250 0.03 1000 !8
∗R12421
10
300 to 650 400K
420
BA
K
5
L/10
E678-13F* !1
1250
R2557
10
300 to 650 402K
375
LBA
K
3
L/10
E678-13F*
1500 0.03 1250 !5
R4177-01
10
300 to 650 401K
375
HBA
K
6
L/10
E678-13E*
1800 0.02 1500 !2
185 to 850 500U
420
MA
U
3
L/10
E678-13F* io
1250 0.01 1000 !2
10
R1463
0.1 1000 !5
Dimensional Outlines (Unit: mm)
1 R2496, R1635
2 R1081, R1080
3 R759, R647, R2557, R1463
13.5 ± 0.5
FACEPLATE
6 MIN.
71 ± 2
PHOTOCATHODE
8 MIN.
FACEPLATE
12 PIN BASE
JEDEC
No. B12-43
45.0 ± 1.5
PHOTOCATHODE
PHOTOCATHODE
LEAD LENGTH 33 MIN.
A
10 MIN.
B
71 ± 2
A
13 MAX.
SEMIFLEXIBLE
LEADS
13.5 ± 0.5
FACEPLATE
37.3 ± 0.5
R2496
4)°
R2496
DY5
P
6
8
4
2
1
IC
6
P
7
DY8
5
10
DY2
11
K
8
DY5 3
DY3
1
DY1
12
K
DY9
6
DY10
7
9
DY6
DY7 4
10 DY4
10 DY4
DY5 3
11 DY2
32
9
DY2
DY3
DY6
10 DY4
11 DY2
2
12
1
DY1
13
IC
K
SHORT PIN
DY3
2
1
DY1
13
K
TPMHA0014EA
SHORT PIN
TPMHA0100EB
DY8
8
DY5 3
DY8
8
5
9 DY6
11
2
7
5
DY7 4
DY7 4
9 DY4
DY3 3
DY1
DY6
DY9
6
DY9
(8)
B Bottom View
DY10
P
DY8
7
DY10
P
10.5 ± 0.5
R2496 has a plano-concave faceplate.
DY7
5
13 PIN BASE
(360/1
R1635
9.7 ± 0.4
A
13 MAX.
R1635
A Glass Base
10 MAX.
11 PIN BASE
TPMHA0207EA
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
60
100
10.0
—
80
30
100
8.0 × 104 1.0 × 106
2
50
0.7
9.0
R2496
60
100
10.0
—
80
30
100
8.0 × 104 1.0 × 106
1
50
0.8
9.0
R1635
—
—
—
—
12a
—
—
—
28b
—
—
—
—
28b
2 × 102
(A/W)a
4 × 103
(A/W)b
4 × 103
(A/W)b
40
110
10.0
—
80
30
—
—
1.2 × 103a 1.0 × 105 0.03 0.05
1.8
18
R1081
—
1
2.5
24
R1080
—
1.4 ×
104b
1.4 ×
104b
5.0 ×
105
0.3
5.0 ×
105
0.3
1
2.5
24
1
15
2.1
22
110
8.0 × 104 1.0 × 106
R759
For photon counting: R647P
UV glass window: R960
Silica glass window: R760
R647
40
100
10.0
—
80
30
100
8.0 ×
1
15
1.1
12
UV glass window: R4141
80
110
10.0
—
80
100
220
1.6 × 105 2.0 × 106
0.5
2
1.2
14
R12421∗
106
0.5
4
2.2
22
For photon counting
Low dark count type: R12421P
For photon counting: R2557P
0.5
10
2.0
20
High temp. operation
(Maximum Temp.: +175 °C)
R4177-01
4
20
2.5
24
1.0 ×
104
25
40
5.5
—
50
50
200
2.5 ×
20
40
6.0
—
51
10
20
2.6 × 104 5.0 × 105
120
5.1 ×
—
0.2
51
30
4 R4124
1.0 ×
104
106
5 R12421
R4124
R2557
R1463
6 R4177-01
14.5 ± 0.7
FACEPLATE
10 MIN.
13.5 ± 0.5
13.5 ± 0.5
10 MIN.
FACEPLATE
FACEPLATE
PHOTOCATHODE
P
DY9
DY7
6
7
3
2
DY8
10 DY6
DY7 4
11
DY5
DY4
12
1
DY1
IC
13
K
6
DY9
9
DY10
P
DY10
5
61 ± 2
13 PIN BASE
8
DY5 4
DY3
43 ± 2
50 ± 2
PHOTOCATHODE
13 MAX.
13 PIN BASE
PHOTOCATHODE
10 MIN.
13 PIN BASE
DY8
8
9
11
2
DY1
12
1
13
6
DY9
DY2
IC
K
7
DY8
8
9
5
3
DY5
DY6
10 DY4
DY7 4
DY3
11
2
DY1
SHORT PIN
SHORT PIN
DY10
P
DY6
10 DY4
3
DY3
DY2
7
5
13 MAX.
120
105
13 MAX.
80
5.0 ×
106
12
1
13
DY2
IC
K
SHORT PIN
TPMHA0603EA
TPMHA0006EA
TPMHA0102EA
33
Head-on Type Photomultiplier Tubes
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
Range
length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
E678-12A*
2250 0.01 2000 !4
19 mm (3/4") Dia. Types
13
R972
15
R821
115 to 200 100M
140
Cs-I
160 to 320 200S
240
Cs-Te
MF 1
L/10
Q
2
L/10
E678-12L* !2!3!4 1250 0.01 1000 !4
E678-12L* !2!3!4 1250
R1166
15
300 to 650 400K
420
BA
K
2
L/10
R1450
15
300 to 650 400K
420
BA
K
2
L/10
E678-12L* !5
1800
0.1 1500 !6
R3478
15
300 to 650 400K
420
BA
K
3
L/8
E678-12L* !6!7
1800
0.1 1700 r
R5610A
15
300 to 650 402K
375
LBA
K
4 C+L/10
E678-12T* !8
1250
0.1 1000 !7
R5611A-01
15
300 to 650 400K
420
BA
K
5 C+L/10
E678-12A*
1250
0.1 1000 !7
R3991A
15
E678-12R*
1800 0.02 1500 !7
300 to 650 401K
375
HBA
K
5 C+L/10
R1617
15
300 to 850 500K
420
MA
K
2
L/10
R1878
4
300 to 850 500K
420
MA
K
6
L/10
0.1 1000 !4
E678-12L* !2!3!4 1250
E678-12L* !9
0.1 1000 !4
0.1 1000 !5
1250
Dimensional Outlines (Unit: mm)
1 R972
2 R821, R1166, R1450, R1617
3 R3478
19 ± 1
13 MIN.
FACEPLATE
PHOTOCATHODE
A
88 ± 2
FACEPLATE
15 MIN.
18.6 ± 0.7
PHOTOCATHODE
FACEPLATE
15 MIN.
A
12 PIN BASE
JEDEC
No. B12-43
B
R821
R1450
R1166 (Plano-concave
faceplate)
R1617
12 PIN BASE
65 ± 2
13 MAX.
LEAD LENGTH 45 MIN.
SEMIFLEXIBLE
LEADS
13 MAX.
13 MAX.
88 ± 2
PHOTOCATHODE
12 PIN BASE
37.3 ± 0.5
R821
A Glass Base
Others
19 ± 1
A
18.6 ± 0.7
R1450 has a plano-concave faceplate.
3)°
(360/1
P
DY10
6
5
DY8
7
DY6
8
DY9 4
9 DY4
(12)
P
DY10
7
5
DY8
8
9 DY6
DY7 4
10 DY4
DY5 3
DY3
11
2
1
DY1
12
K
DY2
6
P
5
9
12
K
DY1
SHORT PIN
K
12
2
1
DY1
DY3
TPMHA0208EA
34
1
DY3
DY4
11
3
DY5
DY5
DY6
8
11
2
10 DY2
DY9 4
DY7
7
7
DY6
8
IC 4
9 DY4
DY7 3
10 DY2
DY5
11
2
1
DY3
12
K
DY1
SHORT PIN
DY8
DY10
6
DY9
6
5
10 DY2
DY7 3
B Bottom View
DY8
IC
P
TPMHA0012EB
TPMHA0119EB
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
—
—
—
—
12a
—
—
—
—
28b
2 × 102
(A/W)a
4 × 103
(A/W)b
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
—
1.2 × 103a 1.0 × 105 0.03 0.05
1.6
17
—
1.0 × 104b 3.6 × 105
0.5
2.5
27
70
110
10.5
—
85
10
110
8.5 ×
70
115
11.0
—
88
100
200
1.5 × 105 1.7 × 106
200
11.0
88
—
100
1.5 ×
105
105
106
1
5
2.5
27
3
50
1.8
19
1.7 ×
106
10
2.0 ×
106
30
50
6.5
—
50
20
100
1.0 ×
60
90
10.5
—
85
10
50
4.7 × 104 5.5 × 105
20
40
6.0
—
51
5
20
2.6 ×
80
120
—
0.2
51
30
120
5.1 × 104 1.0 × 106
150
6.1 ×
—
51
0.2
30
4 R5610A
1.2 ×
106
14
0.5
4
1.3
12
3
20
1.3
12
0.1
10
1.0
13
4
20
2.5
27
100e 250e 1.7
24
5 R5611A-01, R3991A
Type No.
R972
MgF2 window: R976
(Dimensional Outline: 1)
For photon counting: R1166P
UV glass window: R750
Semiflexible lead: R1450-13
R821
UV glass window: R3479
Silica glass window: R2076
For photon counting: R5610P
Maximum Temp.: +70 °C
Button stem: R5611A
R3478
High temp. operation
(Maximum Temp.: +175 °C)
UV glass window: R1464
Silica glass window: R2027
Bialkali photocathode: R2295
R3991A
R1166
R1450
R5610A
R5611A-01
R1617
R1878
6 R1878
19 ± 1
18.6 ± 0.7
FACEPLATE
SEMIFLEXIBLE
LEADS
18.6 ± 0.7
15 MIN.
A
12 PIN BASE
JEDEC
No. B12-43
30 ± 1.5
PHOTOCATHODE
4 MIN.
MASKED
PHOTOCATHODE
80 ± 2
PHOTOCATHODE
FACEPLATE
FACEPLATE
15 MIN.
13 MAX.
120
104
105
1.3
LEAD LENGTH 45 MIN.
80
5.0 ×
104
300
Notes
HA TREATMENT
B
37.3 ± 0.5
13 MAX.
12 PIN BASE
13 MAX.
115
1.0 ×
104
0.3
A
70
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
12 PIN BASE
R5611A-01 R3991A
K
DY2
7
5
8
9 DY5
DY6 3
10 DY7
11
2
1
12
DY10
28 ± 1.5
P
DY3
DY4 4
DY8
30 ± 1.5
A
DY1
6
A Glass Base
4)°
(360/1
7
DY6
8
9 DY4
DY7 3
10 DY2
11
2
1
DY3
P
DY8
DY9 4
DY5
DY9
DY10
6
5
12
K
DY1
SHORT PIN
SHORT PIN
(12)
B Bottom View
TPMHA0269EA
P
DY9
6
5
DY10
7
DY8
8
TPMHA0027EA
P
DY9
6
DY10
9
5
DY7 4
9 DY6
DY7 4
10 DY8
DY5 3
10 DY4
DY5 3
11 DY6
DY3
11
2
1
DY1
12
K
DY2
DY3
2
1
DY1
14
K
12
DY4
13
DY2
TPMHA0036EC
35
Head-on Type Photomultiplier Tubes
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
Range
length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
25 mm (1") Dia. Types
160 to 320 201S
240
Cs-Te
Q
1 CC/10
E678-12A*
2000 0.015 1500 !5
22
300 to 650 400K
420
BA
K
2
L/8
E678-12A*
1500
0.1 1300 y
R7899
22
300 to 650 400K
420
BA
K
3
L/10
E678-14C* @0
1800
0.1 1250 !8
R4998
20
300 to 650 400K
420
BA
K
4
L/10
E678-12A*
2500
0.1 2250 @2
R1924A
22
300 to 650 400K
420
BA
K
5 C+L/10 E678-14C* @1@2@3 1250
0.1 1000 !7
R3550A
22
300 to 650 402K
375
LBA
K
5 C+L/10 E678-14C* @1@2@3 1250
0.1 1000 !7
R1288A
22
300 to 650 401K
375
HBA
K
1 C+L/10
300 to 850 500K
420
MA
K
5 C+L/10 E678-14C* @1@2@3 1250
0.1 1000 !7
300 to 900 502K
420
MA
K
6 C+L/10 E678-14C* @1@2@3 1250
0.1 1000 !7
21
R2078
R9800
22
R1925A
21
R5070A
E678-12R*
1800 0.02 1500 !7
Dimensional Outlines (Unit: mm)
1 R2078, R1288A
2 R9800
3 R7899
25.4 ± A
FACEPLATE
25.4 ± 0.5
B
FACE PLATE
22 MIN.
25.4 ± 0.5
22 MIN.
55 ± 2
A
12 PIN BASE
JEDEC
No. B12-43
B
R2078
R1288A
B
68.0 ± 1.5
14 PIN BASE
37.3 ± 0.5
37.3 ± 0.5
R2078
0.8
21 MIN.
A
B
13 MAX.
12 PIN BASE
JEDEC
No. B12-43
13 MAX.
A
PHOTOCATHODE
SEMI-FLEXIBLE
LEADS
LEAD LENGTH 50 MIN.
SEMIFLEXIBLE
LEADS
PHOTOCATHODE
LEAD LENGTH 55 MIN.
13 MAX.
PHOTOCATHODE
43.0 ± 1.5
FACEPLATE
R1288A
0.5
22 MIN.
DY9
DY7
6
P
7
IC
8
IC
9
5
10
DY5 4
A Glass Base
A Glass Base
20°
DY3 3
20°
DY10
11 DY8
2
DY1
1
K
12 DY6
13
14
DY4
DY2
SHORT PIN
B Bottom View
P
6
DY9
5
DY10
7
DY8
8
DY7 4
9 DY6
10 DY4
DY5 3
DY3
11
2
1
DY1
12
K
P
8
DY9
DY7
6
5
DY5 4
B Bottom View
DY10
10
DY8
11
DY3 3
12 DY6
DY1 2
13 DY4
14
DY2
DY2
17
K
TPMHA0039EB
36
TPMHA0492EA
(17.3)
(17.3)
P
6
IC
IC
DY8
5
8
DY7 4
DY5 3
1
DY1
12
K
DY5
8
DY8
12
7
13
DY6
9 DY6
DY3 6
14 DY4
10 DY4
DY1 5
15 DY2
11
2
DY3
P
10
DY7
7
DY2
1
K
TPMHA0521EC
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
—
—
—
—
29b
2 × 103
(A/W)b
—
70
95
11.0
—
88
20
100
9.3 × 104 1.1 × 106
1.5 × 104b 5.0 × 105 0.015 0.1
70
95
11.0
—
88
—
190
1.8 ×
60
80
9.5
—
76
100
400
3.8 × 105 5.0 × 106
180
60
90
85
—
10.5
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
40
105
2.0 ×
50
R2078
1.0
11
UV glass type: R10560
R9800
Semiflexible leads: R7899-01
R7899
15
1.6
17
200
0.7
10
R1924A
1.5
17
R3550A
1.3
13
20
1.5
17
For photon counting: R3550P
Maximum Temp.: +70 °C
Button stem: R1288A-01
High temp. operation (Maximum Temp.: +175 °C)
Silica glass window: R1926A
20
2.2
19
Prism window
R5070A
2.0 ×
105
2.0 ×
106
0.5
4
0.1
10
105
3
3
50
7.0
—
55
45
100
1.1 ×
40
6.0
—
51
8
20
2.6 × 104 5.0 × 105
80
150
—
0.2
64
20
75
3.2 ×
130
230
—
0.25
65
20
100
2.8 × 104 4.3 × 105
R4998
17
1.7 ×
20
Assembly type: H6533
Silica glass window: R5320
Silica glass window assembly type: H6610
For photon counting: R1924P
106
5.0 ×
Better solar-blind characteristics
2
105
104
14
10
3
Type No.
1.5
106
30
4 R4998
5
Notes
20
5 R1924A, R3550A, R1925A
1.5
R1288A
R1925A
6 R5070A
26 ± 1
FACEPLATE
20 MIN.
71 ± 1
PHOTOCATHODE
25.4 ± 0.5
25.4 ± 0.5
FACEPLATE
(Prism)
22 MIN.
FACEPLATE
21 MIN.
A
12 PIN BASE
JEDEC
No. B12-43
14 PIN BASE
46.0 ± 1.5
PHOTOCATHODE
43.0 ± 1.5
LEAD LENGTH 52 MIN.
SEMIFLEXIBLE
LEADS
PHOTOCATHODE
13 MAX.
SMA
CONNECTOR
13 MAX.
13 MAX.
HA TREATMENT
14 PIN BASE
B
37.3 ± 0.5
P
DY9
6
7
IC
8
P
IC
DY7 5
A Glass Base
40°
20°
DY9
9
6
10 DY10
7
IC
8
IC
9
DY7 5
10 DY10
DY5 4
11 DY8
DY5 4
11 DY8
DY3 3
12 DY6
13
DY4
14
DY2
DY3 3
12 DY6
13
DY4
14
DY2
DY1
2
1
K
SHORT PIN
DY1
2
1
K
SHORT PIN
7
(17.3)
B Bottom View
P
DY9 5
DY7 4
(Acc)
DY5 3
DY3
DY10
6
DY8
7
8 DY6
9 DY4
2
1
DY1
10 DY2
11
12
G
K
P
12
DY9 5
DY10
DY8
13
DY6
14
16
3
DY3
TPMHA0491EB
15 DY4
DY7 4
(Acc)
DY5
TPMHA0040EC
2
1 18
DY1
K
DY2
17
G
TPMHA0093ED
37
Head-on Type Photomultiplier Tubes
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
Range
length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
28 mm (1-1/8") Dia. Types
R6835
R6836
23
23
115 to 200 100M
140
Cs-I
MF 1 B+L/11
E678-14C*
2500 0.01 2000 @6
115 to 320 200M
240
Cs-Te
MF 1 B+L/11
E678-14C*
1500 0.01 1000 @6
160 to 320 200S
240
Cs-Te
Q
2 B+L/11 E678-14C* @4@5@6 1500 0.01 1000 @6
R6095
25
300 to 650 400K
420
BA
K
3 B+L/11 E678-14C* @4@5@6 1500
0.1 1000 @6
R6094
25
300 to 650 400K
420
BA
K
4 B+L/11 E678-14C* @4@5@6 1500
0.1 1000 @6
R6427
25
300 to 650 400K
420
BA
K
5
L/10
E678-14C* @7@8@9 2000
0.1 1500 @0
∗R12844
25
300 to 650 400K
420
BA
K
6
L/8
185 to 850 500U
420
MA
U
3
R6834
25
25
R374
1750
0.1 1500 u
B/11 E678-14C* @4@5@6 1500
0.1 1000 @6
E678-20B*
Dimensional Outlines (Unit: mm)
1 R6835, R6836
2 R6834
3 R6095, R374
28.5 ± 0.5
FACEPLATE
28.2 ± 0.8
FACEPLATE
25 MIN.
PHOTOCATHODE
14 PIN BASE
6
7
8
P
DY8
DY11
6
9
10 DY6
5
7
DY9 5
DY10
DY8
8
9
10 DY6
R6095
R374
14 PIN BASE
DY10
P
DY11
DY9
6
7
8
DY8
9
10 DY6
5
DY7 4
11 DY4
DY7 4
11 DY4
DY7 4
11 DY4
DY5 3
12 DY2
13
K
14
DY1
DY5 3
12 DY2
13
K
14
DY1
DY5 3
12 DY2
13
K
14
DY1
2
1
DY3
IC
DY3
2
1
IC
TPMHA0115EC
2
1
DY3
IC
SHORT PIN
SHORT PIN
SHORT PIN
38
92 ± 2
DY10
P
DY11
DY9
14 PIN BASE
13 MAX.
13 MAX.
92 ± 2
PHOTOCATHODE
112 ± 2
PHOTOCATHODE
13 MAX.
23 MIN.
FACEPLATE
25 MIN.
28.2 ± 0.8
TPMHA0226EC
TPMHA0482EA
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
—
—
12a
—
—
—
—
—
28b
4 × 103
(A/W)b
4 × 103
(A/W)b
60
95
11.0
—
88
50
60
—
95
—
28b
—
11.0
88
—
50
Gain
Typ.
(A/W)
Typ.
1.2 × 103a 1.0 × 105 0.03 0.05
2.8
22
R6835
—
1.4 × 104b 5.0 × 105
0.3
1
4.0
30
R6836
—
1.4 ×
0.3
1
4.0
30
2
10
4.0
30
For photon counting: R6095P-01
R6095
30
For photon counting: R6094P-01
R6094
UV glass window: R7056
R6427
104b
5.0 ×
105
200
1.8 × 105 2.1 × 106
200
1.8 ×
105
2.1 ×
106
105
5.0 ×
106
10
200
1.7
16
3
30
0.9
10
100
11.0
—
88
100
500
4.4 ×
70
95
10.0
—
80
—
48
4.0 × 104 5.0 × 105
80
3.4 ×
—
64
0.2
20
4 R6094
104
5.3 ×
2
105
10
3
15
5 R6427
4.0
15
R6834
R12844∗
High gain: R1104
60
R374
6 R12844
28.7 ± 0.5
FACEPLATE
28.5 ± 0.5
FACEPLATE
25 MIN.
28.5 ± 0.5
25 MIN.
FACEPLATE
25 MIN.
PHOTOCATHODE
PHOTOCATHODE
92 ± 2
78 ± 2
PHOTOCATHODE
85 ± 2
150
Type No.
—
70
80
Notes
13 MAX.
—
Radiant
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
SEMIFLEXIBLE
LEADS
14 PIN BASE
13 MAX.
A
14 PIN BASE
LEAD LENGTH 70 MIN.
—
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
20 PIN BASE
JEDEC
No. B20-102
13 MAX.
—
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
B
P
DY11
6
7
DY9 5
DY10
DY8
8
9
10 DY6
DY7 4
11 DY4
DY5 3
12 DY2
13
K
14
DY1
DY3
2
1
IC
SHORT PIN
P
IC
6
7
DY9 5
DY10
DY8
8
9
10 DY6
DY7 4
11 DY4
DY5 3
12 DY2
13
K
14
DY1
DY3
2
1
IC
51.2 ± 0.5
A Glass Base
24°
SHORT PIN
TPMHA0493EA
TPMHA0387EA
(19.05)
B Bottom View
IC ACC
P
DY8
IC 9 10 11 12 DY6
13
8
DY4
DY7
7
14
DY5 6
15 DY4
IC 5
DY3 4
DY1
3
2
IC
1
IC
16 DY2
17
IC
18
19 G
20 IC
K
DY7
P
6
ACC
7
DY8
9
10
5
DY6
11 DY4
DY5 4
12 DY4
DY3
13
2
1
DY1
15
K
14
G
DY2
TPMHA0604EA
39
Head-on Type Photomultiplier Tubes
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
Range
length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
28 mm (1-1/8") Dia. Types
R5929
25
300 to 900 502K
420
MA
K
1
B/11 E678-14C* @4@5@6 1500
0.1 1000 @6
R2228
25
300 to 900 501K
600
ERMA
K
2
B/11 E678-14C* @4@5@6 1500
0.1 1000 @6
300 to 650 400K
420
BA
K
3 B+L/11
E678-14C* #0
1500 0.01 1000 @8
300 to 850 500K
420
MA
K
3 B+L/11
E678-14C* #0
1500 0.01 1000 @8
E678-14C* #1
10
R7205-01
10
R7206-01
R3998-02
25
300 to 650 400K
420
BA
K
4
1500
0.1 1000 !0
R7111
25
300 to 650 400K
420
BA
K
5 C+L/10 E678-14C* @1@2@3 1250
0.1 1000 !7
B+L/9
Dimensional Outlines (Unit: mm)
1 R5929
2 R2228
28.5 ± 0.5
FACEPLATE
(Prism)
3 R7205-01, R7206-01
28.5 ± 0.5
FACEPLATE
(Prano-concave)
25 MIN.
29.0 ± 0.7
25 MIN.
10 MIN.
FACEPLATE
PHOTOCATHODE
112 ± 2
112 ± 2
PHOTOCATHODE
92 ± 2
PHOTOCATHODE
DY10
P
DY11
DY9
6
7
8
DY8
5
DY9
6
7
8
P
DY8
DY11
6
9
10 DY6
5
13 MAX.
14 PIN BASE
DY10
P
DY11
9
10 DY6
7
DY9 5
DY10
DY8
8
9
10 DY6
DY7 4
11 DY4
DY7 4
11 DY4
DY7 4
11 DY4
DY5 3
12 DY2
13
K
14
DY1
DY5 3
12 DY2
13
K
14
DY1
DY5 3
12 DY2
13
K
14
DY1
2
1
DY3
IC
SHORT PIN
2
1
DY3
IC
DY3
2
1
IC
SHORT PIN
SHORT PIN
TPMHA0532EA
40
14 PIN BASE
13 MAX.
14 PIN BASE
13 MAX.
HA
TREATMENT
TPMHA0533EA
TPMHA0412EC
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
130
230
—
0.25
65
30
180
5.1 × 104 7.8 × 105
5
25
15
60
100
200
—
0.3
40
20
150
3.0 × 104 7.5 × 105
8
30
15
60
Prism window
Type No.
R5929
R2228
Silica glass window: R7207-01
40
70
9.0
—
70
200
700
7.0 ×
1.7
26
80
150
—
0.2
64
200
1500
6.4 × 105 1.0 × 107 300e 1000e 1.7
26
R7206-01
120
180
90
—
10.5
85
—
10.5
50
85
40
4 R3998-02
1.1 ×
1.7 ×
105
10e 30e
R7205-01
1.3 ×
106
2
10
4.4
32
R3998-02
2.0 ×
106
3
20
1.6
18
R7111
5 R7111
28.5 ± 0.5
FACEPLATE
25 MIN.
60 ± 2
P
DY8
DY6 5
6
7
13 MAX.
14 PIN BASE
DY9
DY7
8
9
10 DY5
11 IC
IC 4
DY4
28.5 ± 0.5
FACEPLATE
PHOTOCATHODE
12
3
2
1
DY2
G
DY3
13
14
DY1
K
25 MIN.
PHOTOCATHODE
43.0 ± 1.5
60
90
105
107
13 MAX.
60
105
1.0 ×
Notes
14 PIN BASE
P
DY9
6
7
IC
8
IC
9
DY7 5
10 DY10
DY5 4
11 DY8
DY3 3
12 DY6
13
DY4
14
DY2
DY1
2
1
K
SHORT PIN
SHORT PIN
TPMHA0114EA
TPMHA0395EB
41
Head-on Type Photomultiplier Tubes
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
Range
length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
38 mm (1-1/2") Dia. Types
R11102
34
300 to 650 400K
420
BA
K
1 C+L/10
E678-12A #2#3
1250
0.1 1000 !5
R3886A
34
300 to 650 400K
420
BA
K
2 C+L/10
E678-12A*
1250
0.1 1000 !5
R9420
34
300 to 650 400K
420
BA
K
3
L/8
E678-12A*
1500
0.1 1300 y
∗R12845
34
300 to 650 400K
420
BA
K
4
L/8
E678-20B*
1750
0.1 1500 u
R580
34
300 to 650 400K
420
BA
K
5
L/10
E678-12A* #2#3
1750
0.1 1250 !5
R9722A
34
300 to 650 401K
375
HBA
K
6 C+L/10
E678-12R*
300 to 900 501K
600
ERMA
K
1 CC/10
E678-12A* #2#3
34
R2066
1800 0.02 1500 !5
0.2 1000 !5
1500
Dimensional Outlines (Unit: mm)
1 R11102, R2066
2 R3886A
3 R9420
38 ± 1
FACEPLATE
34 MIN.
38.0 ± 0.7
FACEPLATE
34 MIN.
38 ± 0.7
PHOTOCATHODE
PHOTOCATHODE
63.5 ± 1.5
34 MIN.
87 ± 2
FACEPLATE
PHOTOCATHODE
12 PIN BASE
JEDEC
No. B12-43
A
12 PIN BASE
JEDEC
No. B12-43
B
B
R11102
37.3 ± 0.5
37.3 ± 0.5
R2066
(Plano-concave
faceplate)
13 MAX.
A
12 PIN BASE
JEDEC
No. B12-43
37.3 ± 0.5
A Glass Base
A Glass Base
22.5°
6
7
5
DY8
8
DY7 4
9 DY6
DY5 3
10 DY4
DY3
11
2
1
DY1
22.5°
DY10
P
DY9
12
DY2
(23)
(23)
K
B Bottom View
6
DY9
B Bottom View
DY10
P
TPMHA0228EA
7
5
9 DY6
DY5 3
10 DY4
11
2
1
DY1
12
K
P
DY8
8
DY7 4
DY3
DY2
6
DY9 5
DY10
9
DY8
10
11 DY6
12 DY4
DY7 4
13 DY2
DY5 3
DY3
2
1
DY1
15
K
TPMHA0104EA
42
LEAD LENGTH 70 MIN.
13 MAX.
SEMIFLEXIBLE
LEADS
LEAD LENGTH 70 MIN.
99 ± 2
116 MAX.
SEMIFLEXIBLE
LEADS
IC
P
6
IC
7
DY8
5
8
9 DY6
DY7 4
DY5
DY3
10 DY4
3
11
2
1
DY1
12
K
P
7
11
DY8
12 DY6
DY7 6
DY5 5
13 DY4
14 DY2
DY3 4
DY2
2
DY1
1
K
TPMHA0519EC
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
80
120
11.5
—
89
10
120
8.9 × 104 1.0 × 106
2
20
3.2
34
R11102
60
90
10.5
—
85
40
180
1.7 × 105 2.0 × 106
3
20
2.6
30
R3886A
105
70
95
11.0
—
88
5
47
4.4 ×
10
100
1.6
17
R9420
70
95
10.0
—
80
—
48
4.0 × 104 5.0 × 105
3
30
1.2
13
R12845∗
100
3
20
2.7
37
70
95
11.0
—
10
88
104
5.0 ×
9.7 ×
104
1.1 ×
106
104
5.0 ×
105
20
40
6.0
—
51
5
20
2.6 ×
120
200
—
0.3
40
20
50
1.0 × 104 2.5 × 105
4 R12845
0.5
10
2.2
26
8
30
2.8
40
5 R580
R580
High temp. operation
(Maximum Temp.: +175 °C)
R9722A
R2066
6 R9722A
38 ± 1
FACEPLATE
34 MIN.
38.0 ± 0.7
FACEPLATE
34 MIN.
PHOTOCATHODE
38 ± 1
34 MIN.
PHOTOCATHODE
69.0 ± 1.5
PHOTOCATHODE
20 PIN BASE
JEDEC
No. B20-102
A
LEAD LENGTH 70 MIN.
109 ± 2
LEAD LENGTH 73 MIN.
A
127 MAX.
SEMIFLEXIBLE
LEADS
13 MAX.
13 MAX.
90 ± 2
FACEPLATE
SEMIFLEXIBLE
LEADS
12 PIN BASE
JEDEC
No. B12-43
12 PIN BASE
JEDEC
No. B12-43
B
B
51.2 ± 0.5
37.3 ± 0.5
37.3 ± 0.5
A Glass Base
A Glass Base
22.5°
22.5°
P
DY10
6
DY9
7
5
DY8
8
9 DY6
DY7 4
10 DY4
DY5 3
DY3
(23)
B Bottom View
IC ACC
P
DY8
IC 9 10 11 12 DY6
13
8
DY4
DY7
7
14
DY5 6
15 DY4
16 DY2
IC 5
17
IC
DY3 4
3
18
DY1
2
IC
1
IC
19 G
20 IC
K
P
6
DY7 5
DY5 4
DY3
12 DY4
2
1
DY1
16
K
1
DY1
Acc DY8
8 9
DY6
10
11 DY4
13 DY2
14
G
11
2
12
DY2
K
(23)
B Bottom View
P
TPMHA0121EA
DY9
6
5
DY7 4
9 DY6
10 DY4
DY5 3
DY3
11
2
1
DY1
TPMHA0605EA
DY10
7
DY8
8
12
K
DY2
P
6
DY9 5
DY10
DY8
9
10
DY6
11
12 DY4
DY7 4
13 DY2
DY5 3
DY3
2
1
DY1
15
K
TPMHA0042EB
43
Head-on Type Photomultiplier Tubes
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
Range
length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
51 mm (2") Dia. Types with Plastic Base
R6231
46
300 to 650 400K
420
BA
K
1
B+L/8
E678-14W #4#5
1500
0.1 1000 t
R1306
46
300 to 650 400K
420
BA
K
2
B/8
E678-14W #6#7
1500
0.1 1000 w
R878
46
300 to 650 400K
420
BA
K
3
B/10 E678-14W $0$1$2$3 1500
0.1 1250 !3
46
300 to 650 400K
420
BA
K
4
L/8
E678-20B*
1750
0.1 1500 u
R2154-02
46
300 to 650 400K
420
BA
K
5
L/10
E678-14W #8
1750
0.1 1250 !5
R1828-01
46
300 to 650 400K
420
BA
K
6
L/12
E678-20B* #9
3000
0.2 2500 @9
300 to 850 500K
420
MA
K
3
B/10 E678-14W $0$1$2$3 1500
0.3 1000 !3
∗R13089
46
R550
Dimensional Outlines (Unit: mm)
1 R6231
2 R1306
3 R878, R550
51.0 ± 0.5
FACEPLATE
51.0 ± 0.5
FACEPLATE
46 MIN.
46 MIN.
51.0 ± 0.5
FACEPLATE
46 MIN.
PHOTOCATHODE
PHOTOCATHODE
124 ± 2
147 MAX.
114 ± 2
137 MAX.
113 MAX.
90 ± 3
PHOTOCATHODE
14 PIN BASE
JEDEC
No. B14-38
56.5 ± 0.5
56.5 ± 0.5
DY5
DY6
7
6
DY4 5
IC
DY6
9
11 DY8
DY2 3
2
1
DY1
12 P
13
G
14
K
TPMHA0388EB
44
DY7
7
6
10 DY7
DY3 4
IC
IC
8
56.5 ± 0.5
14 PIN BASE
JEDEC No. B14-38
14 PIN BASE
JEDEC No. B14-38
DY5 5
DY8
IC
8
9
10 IC
DY6
DY7
7
6
DY5 5
DY8
DY9
8
9
10 DY10
DY4 4
11 P
DY4 4
11 P
DY3 3
12 IC
13
G
14
K
DY3 3
12 IC
13
G
14
K
DY2
2
1
DY1
TPMHA0089EC
DY2
2
1
DY1
TPMHA0210EB
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
Semiflexible lead: R6231-01
80
110
11.5
—
95
3
30
2.6 × 104 2.7 × 105
2
20
8.5
48
80
110
11.5
—
95
3
30
2.6 × 104 2.7 × 105
2
20
7.0
60
R1306
106
5
20
7.0
70
R878
10
50
2.0
20
70
100
11.5
—
90
20
100
9.0 ×
70
95
10.0
—
80
10
30
2.5 × 104 3.2 × 105
90
60
90
10.5
—
20
85
104
1.0 ×
8.5 ×
104
1.0 ×
106
106
2.0 ×
107
50
400
10
30
60
90
10.5
—
85
200
1800
1.7 ×
100
150
—
0.2
64
20
100
4.3 × 104 6.7 × 105
4 R13089
5
20
5 R2154-02
R6231
R13089∗
31
Multialkali photocathode: R3256
R2154-02
1.3
28
Silica glass window: R2059
R1828-01
9.0
70
3.4
R550
6 R1828-01
53.0 ± 1.5
52 ± 1
FACEPLATE
FACEPLATE
51.0 ± 0.5
FACEPLATE
PHOTOCATHODE
46 MIN.
PHOTOCATHODE
124 ± 2
13 MAX.
B
20 PIN BASE
JEDEC
No. B20-102
56.5 ± 0.5
A Glass Base
20°
DY6
DY7
7
6
DY5 5
(34)
B Bottom View
IC Acc DY8
9 10 11 12 DY6
13 DY4
8
DY7
14
7
DY5 6
15 DY4
16 DY2
IC 5
17
4
DY3
3
18 IC
2 1 20 19 G
DY1
IC
IC K IC
Acc
9
P
7
DY7 5
DY5 4
11 P
DY3 3
12 IC
13
IC
14
K
2
1
DY1
TPMHA0296EA
P DY12
DY10
IC
DY8
DY11 9 10 11 12
13 DY6
DY9 8
14
7
DY7 6
15 DY4
16 DY4
DY5 5
17 DY2
IC 4
18
3
DY3
19 IC
2
20 G
DY1 1
K
IC
TPMHA0064ED
DY8
11
DY6
12
13 DY4
14 DY4
15
DY3
DY8
DY9
8
9
10 DY10
DY4 4
DY2
P
51.2 ± 0.5
14 PIN BASE
JEDEC No. B14-38
51.2 ± 0.5
IC
147 MAX.
HA
TREATMENT
LEAD LENGTH 70 MIN.
A
170 ± 3
112 ± 2
PHOTOCATHODE
SEMIFLEXIBLE
LEADS
20 PIN BASE
JEDEC
No. B20-102
46 MIN.
192 MAX.
46 MIN.
2
1 18 17
G
DY1 K
DY2
TPMHA0606EA
45
Head-on Type Photomultiplier Tubes
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
Range
length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
51 mm (2") Dia. Types with Glass Base
R464
5×8
300 to 650 400K
420
BA
K
1
B/12
E678-21C* $4
1500 0.01 1000 #1
R7724
46
300 to 650 400K
420
BA
K
2
L/10
E678-21C* $5
2000
0.2 1750 @1
R329-02
46
300 to 650 400K
420
BA
K
3
L/12
E678-21C* $6$7$8 2700
0.2 1500 #0
R331-05
46
300 to 650 400K
420
BA
K
4
L/12
E678-21C* $6$7$8 2500
0.2 1500 #0
R2083
46
300 to 650 400K
420
BA
K
5
L/8
R4607A-01
46
300 to 650 401K
375
HBA
K
6 C+L/10
300 to 850 500K
420
MA
K
1
5×8
R649
B/12
0.2 3000 i
E678-19J*
3500
E678-15C*
1800 0.02 1500 !5
E678-21C* $4
1500 0.01 1000 #1
Dimensional Outlines (Unit: mm)
2 R7724
3 R329-02
52.0 ± 1.5
52 ± 1
5 × 8 MIN.
FACEPLATE
FACEPLATE
46 MIN.
PHOTOCATHODE
PHOTOCATHODE
HA
TREATMENT
112 ± 2
126 ± 2
PHOTOCATHODE
53.0 ± 1.5
FACEPLATE
46 MIN.
HA
TREATMENT
127 ± 2
1 R464, R649
IC IC DY10
IC
DY8
10 11 12
DY12
DY6
13
9
14
8
P
DY4
15
7
DY11 6
16 DY2
DY9 5
DY7 4
3
2
DY5
1
DY3
DY1
17 G
18 IC
19
IC
21 20
K
IC
21 PIN BASE
IC IC DY8
IC
DY6
DY10 9 10 11 12 13 IC
14 DY4
8
P
15
7
DY9 6
16 DY2
17 IC
5
DY7
18
4
IC 3
19 IC
20 IC
2
DY5
1 21
DY3
IC
DY1
K
14 MAX.
21 PIN BASE
13 MAX.
13 MAX.
LIGHT SHIELD
21 PIN BASE
SH IC DY10
DY8
IC
DY12 9 10 11 12 13
DY6
14
DY4
P 8
7
DY11 6
DY9 5
DY7 4
3
2
DY5
1
DY3
DY1
15
16 DY2
17 G
18 IC
19
IC
21 20
K
IC
*CONNECT SH TO DY5
TPMHA0216EC
46
TPMHA0509EC
TPMHA0123EE
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
30
50
—
—
50
100
300
3.0 × 105 6.0 × 106
5e
15e
13
70
60
90
10.5
—
85
30
300
2.8 × 105 3.3 × 106
6
40
2.1
29
60
90
10.5
—
85
30
100
9.4 ×
2.6
48
60
90
10.5
—
85
30
120
1.1 × 105 1.3 × 106 1000e 2000e 2.6
48
200
80
10.0
—
50
80
104
1.1 ×
106
2.0 ×
105
2.5 ×
106
104
5.0 ×
105
6
40
100
800
20
40
6.0
—
51
5
20
2.6 ×
80
120
—
0.2
51
100
800
3.4 × 105 6.7 × 106 200e 350e
4 R331-05
3
50
5 R2083
Notes
Type No.
Silica glass window: R585
For photon counting
R464
R7724
UV glass window: R5113-02
Silica glass window: R2256-02
Silica glass window: R331
R329-02
R331-05
16
Assembly type: H2431-50 Recommended
Silica glass window: R3377
Silica glass window assembly type: H3378-50
R2083
2.6
28
High temp. operation
(Maximum Temp.: +175 °C)
R4607A-01
13
70
0.7
R649
6 R4607A-01
53.0 ± 1.5
FACEPLATE
53.0 ± 1.5
46 MIN.
FACEPLATE
R50
46 MIN.
PHOTOCATHODE
46 MIN.
121 ± 2
HA
TREATMENT
PHOTOCATHODE
80 ± 2
126 ± 2
HA
TREATMENT
52 ± 1
FACEPLATE
PHOTOCATHODE
SH IC DY10
DY8
IC
10 11 12
DY12
13
9
DY6
14
8
P 7
15 DY4
DY11 6
16 DY2
17 G
DY9 5
18
4
IC
DY7
19
3
IC
2
DY5
21 20
1
IC
DY3
K
DY1
13 MAX.
21 PIN BASE
13 MAX.
19 PIN BASE
SMA
CONNECTOR
IC IC IC
9 10 11
P
12
7
DY7 5
DY5 4
3
DY3
2
1
G2 & DY1
ACC
14
15 DY4
16 DY2
17
19
IC
18
K
15 PIN BASE
IC
IC
DY8
DY6
13
DY4
G1
13 MAX.
60
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
P
DY9
7
6
5
8
DY10
9
DY8
10
DY6
11
DY7 4
DY5
DY3
12 DY4
3
2
1
DY1
13 DY2
14
IC
15
K
SHORT PIN
*CONNECT SH TO DY5
SHORT PIN
TPMHA0072EC
TPMHA0185EC
TPMHA0003EC
47
Head-on Type Photomultiplier Tubes
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
Range
length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
51 mm (2") Dia. Types with Glass Base
46
R375
46
R669
10
R943-02
46
R2257
160 to 850 500S
420
MA
Q
1
B/10
E678-15C* $9
1500
0.1 1000 !3
300 to 900 501K
600
ERMA
K
1
B/10
E678-15C* $9
1500
0.1 1000 !3
160 to 930 650S 300-800 GaAs
Q
2
L/10
K
3
L/12
300 to 900 501K
600
ERMA
E678-21C*
2200 0.001 1500 !9
E678-21C* $6$7$8 2500
0.2 1500 #0
Dimensional Outlines (Unit: mm)
1 R375, R669
2 R943-02
3 R2257
3.4
10
PHOTOCATHODE
10 × 10
51.0 ± 1.5
FACEPLATE
6.6
52 ± 1
FACEPLATE
46 MIN.
46 MIN.
FACEPLATE
PHOTOCATHODE
51 ± 1
126 ± 2
PHOTOCATHODE
10 × 10
88 ± 2
112 ± 2
19
PHOTOCATHODE
15 PIN BASE
IC DY9 DY7
7 8 9
DY5
10
6
IC 5
11 DY3
P
DY10 4
DY8 3
DY6
12 DY1
2
1
DY4
13
K
14
15
G
DY2
21 PIN BASE
IC IC DY9
IC
DY7
IC 9 10 11 12 13
DY5
14
P 8
DY3
15
7
DY10 6
16 DY1
DY8 5
DY6 4
3
2
DY4
1
DY2
K
17 IC
18 IC
19
IC
21 20
IC
IC
21 PIN BASE
13 MAX.
R669
(Plano-concave
faceplate)
LIGHT
SHIELD
14 MAX.
R375
13 MAX.
HA
TREATMENT
SH IC DY10
IC
DY8
DY12 9 10 11 1213 DY6
14 DY4
8
P
15
7
DY11 6
16 DY2
DY9 5
DY7 4
3
2 1
DY5
DY3
DY1
17 G
18 IC
19
2120 IC
IC
K
SHORT PIN
∗ CONNECT SH TO DY5
TPMHA0211EA
48
TPMHA0021EF
TPMHA0359EB
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
80
150
—
0.2
64
20
80
3.4 × 104 5.3 × 105
5
20
9.0
70
140
230
—
0.35
50
20
75
1.7 × 104 3.3 × 105
7
15
9.0
70
300
600
—
0.58
71
150
300
3.6 ×
140
230
—
0.35
50
15
100
2.2 × 104 4.3 × 105
104
5.0 ×
105
20f 50f
30
100
3.0
23
2.6
48
Notes
Type No.
R375
R669
For photon counting
R943-02
R2257
49
Head-on Type Photomultiplier Tubes
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
Range
length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
76 mm (3") Dia. Types
R1307
70
300 to 650 400K
420
BA
K
1
B/8
E678-14W #6#7
1500
0.1 1000 w
R6233
70
300 to 650 400K
420
BA
K
2
B+L/8
E678-14W #4#5
1500
0.1 1000 t
R594
70
300 to 650 400K
420
BA
K
3
B/10 E678-14W $0$$
1 $
2 3 2000
0.1 1500 !3
R4143
65
300 to 650 400K
420
BA
K
4
L/12
3000
0.2 2500 #2
R6091
65
300 to 650 400K
420
BA
K
5
L/12
E678-21C* $6$7$8 2500
0.2 1500 #0
E678-20B*
Dimensional Outlines (Unit: mm)
1 R1307
2 R6233
3 R594
76.0 ± 0.8
FACEPLATE
76.0 ± 0.8
FACEPLATE
70 MIN.
70 MIN.
76.0 ± 0.8
FACEPLATE
70 MIN
PHOTOCATHODE
14 PIN BASE
JEDEC
No. B14-38
56.5 ± 0.5
DY6
DY7
7
6
DY5 5
DY8
IC
8
9
10 IC
DY6
7
6
DY3 4
DY3 3
12 IC
13
G
14
K
DY2 3
TPMHA0078EA
50
DY5
IC
IC
8
IC
DY6
9
11 DY8
2
1
DY1
137 ± 3
56.5 ± 0.5
10 DY7
DY4 5
11 P
2
1
DY1
14 PIN BASE
JEDEC
No. B14-38
56.5 ± 0.5
DY4 4
DY2
100 ± 3
51.5 ± 1.5
160 MAX.
51.5 ± 1.5
PHOTOCATHODE
123 MAX.
127 ± 3
51.5 ± 1.5
14 PIN BASE
JEDEC
No. B14-38
150 MAX.
PHOTOCATHODE
12 P
13
G
14
K
TPMHA0389EB
DY7
7
6
DY5 5
DY8
DY9
8
9
10 DY10
DY4 4
11 P
DY3 3
12 IC
13
G
14
K
DY2
2
1
DY1
TPMHA0557EA
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
80
110
11.5
—
95
3
30
2.6 × 104 2.7 × 105
2
20
8.0
64
Semiflexible lead: R1307-01
R1307
80
110
11.5
—
95
3
30
2.6 × 104 2.7 × 105
2
20
9.5
52
Semiflexible lead: R6233-01
R6233
70
95
11.5
—
90
10
70
6.7 ×
5
20
7.0
65
R594
60
80
9.5
—
76
100
400
3.8 × 105 5.0 × 106
50
500
1.8
32
R4143
450
4.3 ×
10
60
2.6
48
R6091
10.5
—
50
85
4 R4143
5.0 ×
106
5 R6091
77.0 ± 1.5
65 MIN.
FACEPLATE
76 ± 1
FACEPLATE
192 ± 5
HA
TREATMENT
215 MAX.
PHOTOCATHODE
65 MIN.
PHOTOCATHODE
137 ± 2
90
105
7.4 ×
105
51.5 ± 1.5
20 PIN BASE
JEDEC
No. B20-102
13 MAX.
60
104
51.8 ± 1.0
21 PIN BASE
DY12
IC P
DY10
DY11
DY8
9 10 11 12
13
8
DY9
DY6
7
DY7 6
DY5 5
IC 4
3
DY3
2
1
G2 & DY1
IC
20
14
15 IC
16 DY4
17 DY2
18
IC
19
K
G1
SH IC DY10
IC
DY8
DY12 9 10 11 1213 DY6
14 DY4
P 8
15
7
DY11 6
16 DY2
DY9 5
17 G
18 IC
DY7 4
19
3
2 1 2120 IC
DY5
DY3
IC
DY1
K
* CONNECT SH TO DY5
TPMHA0112EB
TPMHA0285ED
51
Head-on Type Photomultiplier Tubes
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
Range
length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
127 mm (5") Dia. Types
111
R877
111
R1513
120
R1250
120
R1584
300 to 650 400K
420
BA
K
1
B/10 E678-14W $0$$
1 $
2 3 1500
0.1 1250 !3
300 to 850 500K
420
MA
K
1
VB/10 E678-14W $0$$
1 $
2 3 2000
0.1 1500 !3
300 to 650 400K
420
BA
K
2
L/14
E678-20B* %0
3000
0.2 2000 #7
185 to 650 400U
420
BA
U
3
L/14
E678-20B* %0
3000
0.2 2000 #7
Dimensional Outlines (Unit: mm)
1 R877, R1513
2 R1250
133 ± 2
FACEPLATE
120 MIN.
PHOTOCATHODE
133.0 ± 1.5
259 ± 5
171 ± 3
PHOTOCATHODE
55 MAX.
78.0 ± 1.5
194 MAX.
FACEPLATE
54.0 ± 1.5
56.5 ± 0.5
R1513
DY6
DY7
7
6
DY5 5
51.2 ± 0.5
DY8
DY9
8
9
10 DY10
DY4 4
11 P
DY3 3
12 IC
13
G
14
K
DY2
2
1
DY1
DY14
IC P
DY12
DY13
DY10
9 10 11 12
13
DY11 8
DY8
7
DY9 6
DY7 5
DY5 4
3
DY3
2
1
G2 & DY1
IC
TPMHA0074EC
52
HA TREATMENT
20 PIN BASE
JEDEC
No. B20-102
14 PIN BASE
JEDEC
No. B14-38
R877
276 ± 5
111 MIN.
20
14
15 DY6
16 DY4
17 DY2
18
IC
19
K
G1
TPMHA0018EC
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
K-free borosilicate glass: R877-01
Type No.
60
90
10.5
—
85
20
40
3.8 × 104 4.4 × 105
10
50
20
115
100
150
—
0.2
64
10
50
2.1 × 104 3.3 × 105
30
150
15
82
R1513
107
50
300
2.5
54
R1250
50
300
2.5
54
R1584
55
70
9.0
—
72
300
1000
1.0 ×
55
70
9.0
—
72
300
1000
1.0 × 106 1.4 × 107
106
1.4 ×
R877
3 R1584
133 ± 2
FACEPLATE
120 MIN.
32
R1
259 ± 5
276 ± 5
PHOTOCATHODE
78.0 ± 1.5
HA TREATMENT
54.0 ± 1.5
20 PIN BASE
JEDEC
No. B20-102
51.2 ± 0.5
DY14
IC P
DY12
DY13
DY10
9 10 11 12
13 DY8
DY11 8
14
7
DY9 6
15 DY6
16 DY4
DY7 5
17 DY2
DY5 4
18
3
DY3
19 IC
2
1
20
G2 & DY1
G1
IC
K
TPMHA0187EC
53
Hexagonal Type, Rectangular Type Photomultiplier Tubes
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
Range
length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
Hexagonal Types
R6234
55 (6)
300 to 650 400K
420
BA
K
1
B+L/8
E678-14W #4#5
1500
0.1 1000 t
R6235
70 (6)
300 to 650 400K
420
BA
K
2
B+L/8
E678-14W #4#5
1500
0.1 1000 t
Rectangular Types
R6236
54
300 to 650 400K
420
BA
K
3
B+L/8
E678-14W #4#5
1500
0.1 1000 t
R6237
70
300 to 650 400K
420
BA
K
4
B+L/8
E678-14W #4#5
1500
0.1 1000 t
R2248
8
300 to 650 400K
420
BA
K
5
L/8
E678-11N* y
300 to 650 400K
420
BA
K
6
L/10
E678-17A*
R1548-07
8 × 18 × (2)
1500 0.03 1250 q
1750
0.1 1250 @0
Dimensional Outlines (Unit: mm)
59.5 ± 0.5
14 PIN BASE
JEDEC
No. B14-38
56.5 ± 0.5
DY6
7
6
DY4 5
56.5 ± 0.5
IC
DY5
9
11 DY8
DY2 3
2
1
DY1
DY6
7
6
10 DY7
DY3 4
IC
IC
8
51.5 ± 1.5
14 PIN BASE
JEDEC
No. B14-38
12 P
13
G
14
K
TPMHA0390EB
DY4 5
56.5 ± 0.5
IC
2
1
DY1
DY6
7
6
11 DY8
DY2 3
DY5
9
10 DY7
DY3 4
IC
IC
8
123 MAX
100 ± 3
51.5 ± 1.5
123 MAX.
100 ± 3
14 PIN BASE
JEDEC
No. B14-38
54 MIN.
PHOTOCATHODE
123 MAX.
51.5 ± 1.5
DY5
54 MIN.
FACEPLATE
70 MIN.
PHOTOCATHODE
PHOTOCATHODE
59.5 ± 1.0
59.5 ± 1.0
76.0 ± 1.5
FACEPLATE
55 MIN.
100 ± 3
FACEPLATE
85 ± 1
3 R6236
79 MIN.
60 MIN.
2 R6235
67.5 ± 0.6
1 R6234
12 P
13
G
14
K
DY4 5
IC
9
10 DY7
11 DY8
DY3 4
DY2 3
IC
IC
8
2
1
DY1
12 P
13
G
14
K
TPMHA0391EB
TPMHA0392EC
54
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
80
110
11.5
—
95
3
30
2.6 × 104 2.7 × 105
2
20
9.5
52
Semiflexible lead: R6234-01
R6234
80
110
11.5
—
95
3
30
2.6 × 104 2.7 × 105
2
20
9.5
52
Semiflexible lead: R6235-01
R6235
80
110
11.5
—
95
3
30
2.6 × 104 2.7 × 105
2
20
9.5
52
Semiflexible lead: R6236-01
R6236
30
52
Semiflexible lead: R6237-01
R6237
—
3
95
2.6 ×
2.7 ×
104
1.1 ×
106
60
95
9.5
—
76
30
100
8.0 ×
60
80
9.5
—
76
50
200
1.9 × 105 2.5 × 106
20
9.5
1
50
0.9
9
20
250
1.8
20
6 R1548-07
8 MIN. 8 MIN.
76.0 ± 1.5
8 MIN.
9.8 ± 0.4
PHOTOCATHODE
70 ± 2
8 MIN.
PHOTOCATHODE
56.5 ± 0.5
11 PIN BASE
DY5
DY6
7
6
DY7
5
IC
9
10 DY7
DY4 5
11 DY8
DY3 4
12 P
DY2 3
IC
IC
8
2
1
DY1
13
G
14
K
DY5
P
6
17 PIN BASE
P2 DY10 DY8
DY7
8 9 10
11 DY6
7
DY9
12
6
DY7 5
13 DY4
14 DY2
DY5 4
3
15
DY3
2
16 IC
1
17 IC
DY1
IC
K
DY8
7
8
4
P1
DY6
9 DY4
DY3 3
2
DY1
PHOTOCATHODE
45.0 ± 1.5
100 ± 3
51.5 ± 1.5
123 MAX.
FACEPLATE
14 PIN BASE
JEDEC
No. B14-38
24.0 ± 0.5
FACEPLATE
70 MIN.
10 MAX.
FACEPLATE
R1548-07
18 MIN.
70 MIN.
5 R2248
R2248
2 anode type
76.0 ± 1.5
4 R6237
2
1
IC
11
K
10
DY2
SHORT PIN
SHORT PIN
TPMHA0393EC
24.0 ± 0.5
11.5
13 MAX.
110
105
9.8 ± 0.4
80
104
TPMHA0098EB
TPMHA0223EA
55
Metal Package Photomultiplier Tubes
Spectral Response
A
Max. Ratings H
Remarks
C
Type No.
100 200
D
E
F
Effective Area (mm)
Spectral Peak Photo- Win- Out- Dynode
Response Wave- cathode dow line Structure
MateWavelength (nm)
Range length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V)
(mA)
R9880U-01
8
230 to 870
400
MA
K
1
MC/10 E678-12-01 %1%2
1100
0.1
1000 !1
∗R9880U-04
8
185 to 870
400
MA
U
1
MC/10 E678-12-01 %1%2
1100
0.1
1000 !1
230 to 920
630
MA
K
1
MC/10 E678-12-01 %1%2
1100
0.1
1000 !1
230 to 700
400
SBA
K
1
MC/10 E678-12-01 %1%2
1100
0.1
1000 !1
185 to 700
400
SBA
U
1
MC/10 E678-12-01 %1%2
1100
0.1
1000 !1
230 to 700
400
UBA
K
1
MC/10 E678-12-01 %1%2
1100
0.1
1000 !1
8
R9880U-20
8
R9880U-110
∗R9880U-113
8
8
R9880U-210
Dimensional Outlines (Unit: mm)
1 R9880U, -01, -20, etc.
16.0 ± 0.3
WINDOW
9.4 ± 0.3
0.5 ± 0.2
4.6 ± 0.8
12.4 ± 0.4
PHOTOCATHODE
EFFECTIVE
AREA
8.0
INSULATION
COVER
SIDE VIEW
2.54 PITCH
10.16
2.54 PITCH
GUIDE MARK
10.16
12- 0.45
DY3
DY5
DY7
BOTTOM VIEW
1
2
3
GUIDE MARK
DY9
11
5
P
DY2
10
6
DY10
9
8
7
DY8
4
DY1
DY6
12
DY4
K
TPMHA0539ED
56
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
100
200
—
0.2
77
100
400
1.5 × 105 2.0 × 106
1
10
0.57
2.7
R9880U-01
100
200
—
0.2
77
100
400
1.5 × 105 2.0 × 106
1
10
0.57
2.7
R9880U-04∗
106
350
500
—
0.45
78
350
1000
1.5 ×
10
100
0.57
2.7
R9880U-20
80
105
13.5
—
110
80
210
2.2 × 105 2.0 × 106
1
10
0.57
2.7
R9880U-110
210
1
10
0.57
2.7
R9880U-113∗
270
1
10
0.57
2.7
R9880U-210
80
105
100
135
13.5
15.5
—
110
—
130
80
100
105
2.0 ×
2.2 ×
105
2.0 ×
106
2.6 ×
105
2.0 ×
106
■Spectral Response
TPMHB0814EC
1000
R9880U-110
100
R9880U-210
10
R9880U-113
1
CATHODE RADIANT
SENSITIVITY
QUANTUM EFFICIENCY
CATHODE RADIANT SENSITIVITY (mA/W)
QUANTUM EFFICIENCY (%)
CATHODE RADIANT SENSITIVITY (mA/W)
QUANTUM EFFICIENCY (%)
1000
TPMHB0815EC
R9880U-01
R9880U-20
100
R9880U-04
10
1
CATHODE RADIANT SENSITIVITY
QUANTUM EFFICIENCY
0.1
100 200 300 400 500 600 700 800 900 1000
WAVELENGTH (nm)
0.1
100 200 300 400 500 600 700 800 900 1000
WAVELENGTH (nm)
■Gain
107
TPMHB0804EA
GAIN
106
105
104
103
500
600
700
800
900
SUPPLY VOLTAGE (V)
1000 1100
57
Metal Package Photomultiplier Tubes
Spectral Response
A
Max. Ratings H
Remarks
C
Type No.
100 200
D
E
F
Effective Area (mm)
Spectral Peak Photo- Win- Out- Dynode
Response Wave- cathode dow line Structure
MateWavelength (nm)
Range length Material rial No. / Stages
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
18
R7600U
18
R7600U-01
18
R7600U-20
18 (M4 ch)
R7600U-00-M4
18 (M4 ch)
R7600U-01-M4
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V)
(mA)
300 to 650
420
BA
K
1
MC/10
E678-32B %3
900
0.1
800 @4
300 to 850
400
MA
K
1
MC/10
E678-32B %3
900
0.1
800 @4
300 to 920
530
MA
K
1
MC/10
E678-32B %3
900
0.1
800 @4
300 to 650
420
BA
K
2
MC/10
E678-32B %4
900
0.1
800 @4
300 to 850
400
MA
K
2
MC/10
E678-32B %4
900
0.1
800 @4
300 to 920
530
MA
K
2
MC/10
E678-32B %4
900
0.1
800 @4
R5900U-00-L16
0.8 × 16 × (L16 ch)
300 to 650
420
BA
K
3
MC/10
E678-32B %5
900
0.1
800 !2
R5900U-01-L16
0.8 × 16 × (L16 ch)
300 to 880
420
MA
K
3
MC/10
E678-32B %5
900
0.1
800 !2
R5900U-20-L16
0.8 × 16 × (L16 ch)
300 to 920
630
MA
K
3
MC/10
E678-32B %5
900
0.1
800 !2
300 to 650
420
BA
K
4
MC/11
E678-32B %6
1000
0.1
800 @7
18 (M4 ch)
R7600U-20-M4
23.5
R8900U-00-C12
R7600-00-M16, R7600-00-M64 and R5900-20-L16 are listed in the group of photomultiplier tube assemblies on page 76.
Dimensional Outlines (Unit: mm)
1 R7600U, R7600U-01, R7600U-20
2 R7600U-00-M4, R7600U-01-M4, R7600U-20-M4
30.0 ± 0.5
30.0 ± 0.5
PHOTOCATHODE
P1
IC
IC
IC
IC
P
IC
IC
TOP VIEW
K
IC (Dy10)
IC
Dy1
Dy2
Dy3
Dy4
IC (Dy10)
CUT (K)
22.0 ± 0.5
INSULATION
COVER
4 MAX.
12.0 ± 0.5
SIDE VIEW
15- 0.45
BASING DIAGRAM
20.32
2.54 PITCH
1
2
3
4
5
6
7
8
9
IC
IC
IC
IC
IC
IC
IC
25 26 27 28 29 30 31 32
24
23
22
21
GUIDE
CORNER
20
19
18
17 16 15 14 13 12 11 10
CUT (IC)
P4
CUT (IC)
CUT (IC)
CUT (IC)
P1
CUT (IC)
P2
P4
CUT (K)
Dy10
Dy9
Dy8
Dy7
Dy6
Dy5
CUT (IC)
CUT (K)
25 26 27 28 29 30 31 32
24
23
22
21
GUIDE
CORNER
20
19
18
17 16 15 14 13 12 11 10
K
1
2
3
4
5
6
7
8
9
CUT (IC)
CUT (IC)
Dy1
Dy2
Dy3
Dy4
CUT (IC)
CUT (K)
CUT (IC)
P3
CUT (IC)
CUT (IC)
CUT (IC)
P2
CUT (IC)
18 MIN.
BASING DIAGRAM
K
: Photocathode
Dy : Dynode
P
: Anode
CUT : Short Pin
IC : Internal Connection
(Do not Use)
20.32
20.32
CUT (K)
Dy10
Dy9
Dy8
Dy7
Dy6
Dy5
IC (Dy10)
CUT (K)
20.32
29- 0.45
2.54 PITCH
SIDE VIEW
4.4 ± 0.7
4 MAX.
12.0 ± 0.5
P3
PHOTOCATHODE
22.0 ± 0.5
INSULATION
COVER
0.6 ± 0.4
TOP VIEW
PHOTOCATHODE
18 MIN.
18 MIN.
PHOTOCATHODE
0.6 ± 0.4
18 MIN.
25.7 ± 0.5
4.4 ± 0.7
25.7 ± 0.5
K
: Photocathode
Dy : Dynode
P
: Anode
CUT : Short Pin
IC : Internal Connection
(Do not Use)
BOTTOM VIEW
BOTTOM VIEW
TPMHA0297EI
TPMHA0278EI
3 R5900U-00-L16, R5900U-01-L16, R5900U-20-L16
4 R8900U-00-C12
30.0 ± 0.5
PHOTOCATHODE
BOTTOM VIEW
58
CUT (Dy11)
Dy10
Dy8
Dy6
Dy4
Dy2
K
PX6
PX5
PX4
PX3
PX2
PX1
Dy10
P14
P16
P15
IC
Dy4
Dy2
12.0 ± 0.5
SIDE VIEW
25- 0.45
20.32
K
: Photocathode
Dy : Dynode
P
: Anode
CUT : Short Pin
IC : Internal Connection
(Do not Use)
TPMHA0298EG
BOTTOM VIEW
CUT (G)
PY6
PY5
PY4
CUT (IC)
PY3
PY2
CUT (Dy11)
CUT (G)
25 26 27 28 29 30 31 32
24
23
22
21
GUIDE
CORNER
20
19
18
16
15
14
13 12 11 10
17
1
2
3
4
5
6
7
8
9
G
CUT (Dy11)
Dy1
Dy3
Dy5
Dy7
Dy9
Dy11
CUT (G)
BASING DIAGRAM
20.32
BASING DIAGRAM
29.0 ± 0.5
INSULATION
COVER
4.4 ± 0.7
K
Dy6
P13
P11
P9
P7
P5
Dy7
CUT (K)
0.6 ± 0.4
1
2
3
4
5
6
7
8
9
4 MAX.
25 26 27 28 29 30 31 32
24
23
22
21
GUIDE
20
CORNER
19
18
17 16 15 14 13 12 11 10
TOP VIEW
2.54 PITCH
20.32
20.32
30- 0.45
CUT (K)
Dy8
P12
P10
P8
P6
P4
Dy5
K
PY1
PY2
PY3
PY4
PY5
PY6
PHOTOCATHODE
Dy1
Dy3
IC
P2
P1
P3
Dy9
SIDE VIEW
2.54 PITCH
12.0 ± 0.5
4.4 ± 0.7
4 MAX.
22.0 ± 0.5
INSULATION
COVER
0.6 ± 0.4
TOP VIEW
PHOTOCATHODE
23.5
23.5
15.8
0.8
16
P16
26.2 ± 0.5
PX6
PX5
PX4
PY1
PX3
PX2
PX1
16
P1
23.5
1.0 PITCH
30.0 ± 0.5
25.7 ± 0.5
PHOTOCATHODE
G
K
Dy
P
: Grid
: Photocathode
: Dynode
: Anode (PX1-PX6)
(PY1-PY6)
CUT : Short Pin
IC : Internal Connection
(Do not Use)
TPMHA0524EC
Blue
Luminous
Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Red /
Luminous
White Radiant
Ratio
(R-68)
Typ.
Typ.
Min.
Typ.
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
UV glass window: R7600U-03
For photon counting: R7600P
UV glass window: R7600U-04
60
80
9.5
—
80
40
160
1.6 × 105 2.0 × 106
2
20
1.6
9.6
150
200
—
0.2
65
50
200
6.5 × 104 1.0 × 106
10
50
1.6
9.6
20
50
1.6
9.6
1.2
9.5
UV glass window: R7600U-03-M4
R7600U-00-M4
UV glass window: R7600U-04-M4
R7600U-01-M4
350
500
—
0.4
78
100
500
7.8 ×
60
80
9.5
—
80
25
140
1.4 × 105 1.8 × 106 0.5/ch 5/ch
200
200
150
—
0.2
50
65
104
6.5 ×
104
104
1.0 ×
106
1.0 ×
106
2.5/ch 12.5/ch 1.2
9.5
1.0 ×
106
2.5/ch 12.5/ch 1.2
9.5
350
500
—
0.4
78
100
500
7.8 ×
50
70
8.5
—
72
50
280
2.9 × 105 4.0 × 106 0.2/ch 2/ch
0.6
7.4
R7600U-01
R7600U-20
R7600U-20-M4
UV glass window: R5900U-03-L16
Silica glass window: R5900U-06-L16
UV glass window: R5900U-04-L16
Silica glass window: R5900U-07-L16
R5900U-00-L16
150
250
—
0.3
65
75
250
6.5 ×
0.6
7.4
350
500
—
0.45
78
175
500
7.8 × 104 1.0 × 106 1/ch 10/ch 0.6
7.4
R5900U-20-L16
60
7.4 ×
11.9
R8900U-00-C12
50
85
10.0
—
15
82
104
104
1.0 ×
R7600U
0.7 ×
106
0.5/ch 5/ch
106
2
10
2.2
R5900U-01-L16
■Spectral Response
100
10
1
R7600U
R7600U-00-M4
0.1
TPMHB0709EB
10
R5900U-20-L16
1
R5900U-01-L16
R5900U-00-L16
0.1
CATHODE RADIANT SENSITIVITY
QUANTUM EFFICIENCY
CATHODE RADIANT SENSITIVITY
QUANTUM EFFICIENCY
0.01
200
300
400
500
600
100
CATHODE RADIANT SENSITIVITY (mA/W)
QUANTUM EFFICIENCY (%)
TPMHB0266EC
CATHODE RADIANT SENSITIVITY (mA/W)
QUANTUM EFFICIENCY (%)
CATHODE RADIANT SENSITIVITY (mA/W)
QUANTUM EFFICIENCY (%)
100
700
800
900
WAVELENGTH (nm)
10
R7600U-20
R7600U-20-M4
R7600U-01
R7600U-01-M4
1
0.1
CATHODE RADIANT SENSITIVITY
QUANTUM EFFICIENCY
0.01
100 200 300 400 500 600 700 800 900 1000
0.01
100 200 300 400 500 600 700 800 900 1000
1000
TPMHB0710EB
WAVELENGTH (nm)
WAVELENGTH (nm)
■Gain
108
TPMHB0681EA
108
TPMHB0774EB
R5900U-00-L16
107
10
R5900U-01-L16
R5900U-20-L16
106
GAIN
106
107
R7600U
R7600U-00-M4
GAIN
CATHODE RADIANT SENSITIVITY (mA/W)
QUANTUM EFFICIENCY (%)
100
TPMHB0773EA
1
R8900U-00-C12
105
R8900U-00-C12
0.1
104
105
R7600U-01
R7600U-01-M4
R7600U-20
R7600U-20-M4
104
CATHODE RADIANT SENSITIVITY
QUANTUM EFFICIENCY
0.01
200
300
400
500
600
WAVELENGTH (nm)
700
800
103
500
600
700
800
SUPPLY VOLTAGE (V)
900
103
500
600
700
800
900
1000
SUPPLY VOLTAGE (V)
59
UBA (Ultra Bialkali), SBA (Super Bialkali) Photomultiplier Tubes,
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
QE
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
length Material rial No. / Stages
Range
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
Head-on Types
R1924A-100
22
300 to 650 440K
350
SBA
K
1 C+L/10 E678-14C* @1@2@3 1250
R3998-100-02
25
300 to 650 440K
350
SBA
K
2
R9420-100
34
300 to 650 440K
350
SBA
K
3
R6231-100
46
300 to 650 440K
350
SBA
K
4
R6233-100
70
300 to 650 440K
350
SBA
K
5
B+L/8
R877-100
111
300 to 650 440K
350
SBA
K
6
0.1 1000 !7
E678-14C* #1
1500
0.1 1000 !0
L/8
E678-12A*
1500
0.1 1300 y
B+L/8
E678-14W #4#5
1500
0.1 1000 t
E678-14W #4#5
1500
0.1 1000 t
B/10 E678-14W $0$1$2$3 1500
0.1 1250 !3
B+L/9
Dimensional Outlines (Unit: mm)
1 R1924A-100
2 R3998-100-02
3 R9420-100
38 ± 1
FACEPLATE
34 MIN.
87 ± 2
PHOTOCATHODE
28.5 ± 0.5
FACEPLATE
SEMIFLEXIBLE
LEADS
25 MIN.
22 MIN.
FACEPLATE
13 MAX.
PHOTOCATHODE
A
60 ± 2
43.0 ± 1.5
PHOTOCATHODE
12 PIN BASE
JEDEC
No. B12-43
LEAD LENGTH 70 MIN.
25.4 ± 0.5
14 PIN BASE
14 PIN BASE
37.3 ± 0.5
13 MAX.
13 MAX.
B
A Glass Base
P
DY9
6
7
IC
8
P
DY8
IC
9
DY7 5
10 DY10
DY5 4
11 DY8
DY3 3
12 DY6
13
DY4
14
DY2
DY1
2
1
K
DY6
6
5
22.5°
11 IC
IC 4
DY4
12
3
2
1
DY2
G
SHORT PIN
7
DY9
DY7
8
9
10 DY5
DY3
13
14
DY1
K
IC
TPMHA0040EC
(23)
B Bottom View
SHORT PIN
TPMHA0114EA
P
6
IC
7
DY8
5
8
DY7 4
DY5
DY3
9 DY6
10 DY4
3
11
2
1
DY1
12
K
P
7
11
DY8
12 DY6
DY7 6
DY5 5
13 DY4
14 DY2
DY3 4
DY2
2
DY1
1
K
TPMHA0519EC
60
EGBA (Extended Green Bialkali) Photomultiplier Tubes
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Blue
Luminous
Luminous
Sensitivity Quantum Radiant
Index Efficiency
(CS 5-58)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(%) (mA/W) (A/lm) (A/lm)
(µA/lm) (µA/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
100
130
13.5
35
110
50
260
2.2 × 105 2.0 × 106
5
25
1.5
17
R1924A-100
100
130
13.5
35
110
50
130
1.1 × 105 1.0 × 106
5
25
4.4
32
R3998-100-02
100
130
13.5
35
110
5
65
5.5 × 104 5.0 × 105
10
100
1.6
17
R9420-100
110
130
13.5
35
110
3
30
2.5 × 104 2.3 × 105
10
30
8.5
48
R6231-100
30
10
30
9.5
52
R6233-100
46
20
100
20
115
R877-100
110
90
13.5
130
35
13.5
105
110
35
110
3
20
2.5 ×
104
2.3 ×
105
4.8 ×
104
4.4 ×
105
Quantum efficiency is measured at the peak wavelength (350 nm).
Cathode radiant sensitivity is measured at the 400 nm.
5 R6233-100
4 R6231-100
6 R877-100
133.0 ± 1.5
111 MIN.
76.0 ± 0.8
51.0 ± 0.5
FACEPLATE
FACEPLATE
70 MIN
PHOTOCATHODE
100 ± 3
51.5 ± 1.5
14 PIN BASE
JEDEC
No. B14-38
55 MAX.
123 MAX.
90 ± 3
PHOTOCATHODE
113 MAX.
171 ± 3
FACEPLATE
PHOTOCATHODE
194 MAX.
46 MIN.
14 PIN BASE
JEDEC
No. B14-38
56.5 ± 0.5
56.5 ± 0.5
56.5 ± 0.5
14 PIN BASE
JEDEC No. B14-38
DY5
DY6
7
6
DY4 5
DY5
IC
9
11 DY8
DY2 3
2
1
DY1
DY6
7
6
10 DY7
DY3 4
IC
IC
8
12 P
13
G
14
K
TPMHA0388EB
DY4 5
IC
2
1
DY1
DY7
7
6
11 DY8
DY2 3
DY6
9
10 DY7
DY3 4
IC
IC
8
12 P
13
G
14
K
TPMHA0389EB
DY5 5
DY8
DY9
8
9
10 DY10
DY4 4
11 P
DY3 3
12 IC
13
G
14
K
DY2
2
1
DY1
TPMHA0074EC
61
UBA (Ultra Bialkali), SBA (Super Bialkali) Photomultiplier Tubes,
Spectral Response
A
Type No.
100 200
Max. Ratings H
Remarks
B
C
D E
F
QE
Effective Area (mm)
Spectral Curve Peak Photo- Win- Out- Dynode
Response Code Wave- cathode dow line Structure
MateWavelength (nm)
length Material rial No. / Stages
Range
300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
G
Socket
&
Socket
Assembly
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
Metal Package Types
R7600U-100
18
300 to 650 440K
350
SBA
K
1 MC/10
E678-32B %3
900
0.1
800 @4
R7600U-200
18
300 to 650 441K
350
UBA
K
1 MC/10
E678-32B %3
900
0.1
800 @4
R7600U-100-M4
18 (M4 ch)
300 to 650 440K
350
SBA
K
2 MC/10
E678-32B %4
900
0.1
800 @4
R7600U-200-M4
18 (M4 ch)
300 to 650 441K
350
UBA
K
2 MC/10
E678-32B %4
900
0.1
800 @4
R5900U-100-L16
0.8×16×(L16 ch)
300 to 650 440K
350
SBA
K
3 MC/10
E678-32B %5
900
0.1
800 !2
R5900U-200-L16
0.8×16×(L16 ch)
300 to 650 441K
350
UBA
K
3 MC/10
E678-32B %5
900
0.1
800 !2
23
300 to 650 440K
400
SBA
K
4 MC/12
E678-19K %7
1000
0.1
900 #5
∗R11265U-200
23
300 to 650 441K
400
UBA
K
4 MC/12
E678-19K %7
1000
0.1
900 #5
R8900U-100-C12
23.5
300 to 650 440K
350
SBA
K
5 MC/11
E678-32B %6
1000
0.1
800 @7
H8711-100
18.1 (M16 ch)
300 to 650 440K
350
SBA
K P81@2 MC/12
—
-1000 0.017 -800 #3
H8711-200
18.1 (M16 ch)
300 to 650 441K
350
UBA
K P81@2 MC/12
—
-1000 0.017 -800 #3
∗H8711-300
18.1 (M16 ch)
300 to 700 444K
420
EGBA
K P81@2 MC/12
—
-1000 0.017 -800 #3
∗H12445-100
23 (M16 ch)
300 to 650 440K
400
SBA
K P83#0 MC/12
—
-1100
0.1 1000 #6
∗H12445-200
23 (M16 ch)
300 to 650 441K
400
UBA
K P83#0 MC/12
—
-1100
0.1 1000 #6
H7546B-100
18.1 (M64 ch)
300 to 650 440K
350
SBA
K P81@3 MC/12
—
-1000 0.023 -800 #4
H7546B-200
∗R11265U-100
18.1 (M64 ch)
300 to 650 441K
350
UBA
K P81@3 MC/12
—
-1000 0.023 -800 #4
∗H7546B-300
18.1 (M64 ch)
300 to 700 444K
420
EGBA
K P81@3 MC/12
—
-1000 0.023 -800 #4
∗H12428-100
23 (M64 ch)
300 to 650 440K
400
SBA
K P83#1 MC/12
—
-1100
0.1 1000 #6
∗H12428-200
23 (M64 ch)
300 to 650 441K
400
UBA
K P83#1 MC/12
—
-1100
0.1 1000 #6
H7260-100
0.8 × 7 × (L32 ch)
300 to 650 440K
350
SBA
K P81@4 MC/10
—
-900
0.1
-800 !2
H7260-200
0.8 × 7 × (L32 ch)
300 to 650 441K
350
UBA
K P81@4 MC/10
—
-900
0.1
-800 !2
Dimensional Outlines (Unit: mm)
2 R7600U-100-M4, R7600U-200-M4
30.0 ± 0.5
30.0 ± 0.5
1
2
3
4
5
6
7
8
9
K
: Photocathode
Dy : Dynode
P
: Anode
CUT : Short Pin
IC : Internal Connection
(Do not Use)
BASING DIAGRAM
TPMHA0278EI
15.8
20.32
K
CUT (IC)
CUT (IC)
Dy1
Dy2
Dy3
Dy4
CUT (IC)
CUT (K)
BOTTOM VIEW
K
: Photocathode
Dy : Dynode
P
: Anode
CUT : Short Pin
IC : Internal Connection
(Do not Use)
0.6 ± 0.4
SIDE VIEW
CUT (K)
Dy8
P12
P10
P8
P6
P4
Dy5
K
25 26 27 28 29 30 31 32
24
23
22
21
GUIDE
20
CORNER
19
18
17 16 15 14 13 12 11 10
30- 0.45
1
2
3
4
5
6
7
8
9
K
Dy6
P13
P11
P9
P7
P5
Dy7
CUT (K)
20.32
4.4 ± 0.7
4 MAX.
12.0 ± 0.5
BASING DIAGRAM
TPMHA0297EI
22.0 ± 0.5
INSULATION
COVER
Dy10
P14
P16
P15
IC
Dy4
Dy2
15- 0.45
2.54 PITCH
SIDE VIEW
TOP VIEW
PHOTOCATHODE
20.32
25 26 27 28 29 30 31 32
24
23
22
21
GUIDE
CORNER
20
19
18
16
15
14
13 12 11 10
17
0.8
0.6 ± 0.4
4 MAX.
CUT (K)
Dy10
Dy9
Dy8
Dy7
Dy6
Dy5
CUT (IC)
CUT (K)
16
P16
Dy1
Dy3
IC
P2
P1
P3
Dy9
BOTTOM VIEW
12.0 ± 0.5
CUT (IC)
P4
CUT (IC)
CUT (IC)
CUT (IC)
P1
CUT (IC)
20.32
16
P1
22.0 ± 0.5
INSULATION
COVER
CUT (IC)
P3
CUT (IC)
CUT (IC)
CUT (IC)
P2
CUT (IC)
IC
IC
IC
IC
IC
IC
IC
TOP VIEW
20.32
29- 0.45
2.54 PITCH
IC
IC
IC
IC
P
IC
IC
SIDE VIEW
62
P1
PHOTOCATHODE
4.4 ± 0.7
4 MAX.
12.0 ± 0.5
BASING DIAGRAM
P4
22.0 ± 0.5
INSULATION
COVER
K
IC (Dy10)
IC
Dy1
Dy2
Dy3
Dy4
IC (Dy10)
CUT (K)
P2
4.4 ± 0.7
18 MIN.
PHOTOCATHODE
1
2
3
4
5
6
7
8
9
P3
0.6 ± 0.4
TOP VIEW
25 26 27 28 29 30 31 32
24
23
22
21
GUIDE
CORNER
20
19
18
17 16 15 14 13 12 11 10
18 MIN.
18 MIN.
25.7 ± 0.5
PHOTOCATHODE
20.32
18 MIN.
PHOTOCATHODE
30.0 ± 0.5
25.7 ± 0.5
PHOTOCATHODE
1.0 PITCH
25.7 ± 0.5
CUT (K)
Dy10
Dy9
Dy8
Dy7
Dy6
Dy5
IC (Dy10)
CUT (K)
3 R5900U-100-L16, R5900U-200-L16
2.54 PITCH
1 R7600U-100, R7600U-200
BOTTOM VIEW
K
: Photocathode
Dy : Dynode
P
: Anode
CUT : Short Pin
IC : Internal Connection
(Do not Use)
TPMHA0298EG
EGBA (Extended Green Bialkali) Photomultiplier Tubes
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Blue
Luminous
Luminous
Sensitivity Quantum Radiant
Index Efficiency
(CS 5-58)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(%) (mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
90
105
13.5
35
110
40
105
1.1 × 105 1.0 × 106
2
20
1.6
9.6
R7600U-100
110
135
15.5
43
130
50
135
1.3 × 105 1.0 × 106
2
20
1.6
9.6
R7600U-200
90
105
13.5
35
110
25
140
1.4 ×
0.5 /ch 5 /ch
1.2
9.5
R7600U-100-M4
110
135
15.5
43
130
25
175
1.7 × 105 1.3 × 106 0.5 /ch 5 /ch
1.2
9.5
R7600U-200-M4
315
R5900U-100-L16
90
105
13.5
35
45
110
105
3.3 ×
105
105
1.3 ×
106
1.0 ×
106
0.2 /ch 2 /ch
0.6
7.4
1.0 ×
106
0.2 /ch 2 /ch
110
135
15.5
43
130
55
405
3.9 ×
90
105
13.5
35
110
25
90
135
15.5
43
130
25
130
(50)
162
(65)
9.2 × 104
(4.1 × 104)
1.7 × 105
(6.5 × 104)
90
105
13.5
35
110
20
70
7.3 × 104 6.7 × 105
1.2 × 106
(4.8 × 105)
1.2 × 106
(4.8 × 105)
7.4
20
1.3
5.8
2
20
1.3
5.8
2
20
2.2
11.9
R5900U-200-L16
UV glass window: R11265U-103
Asembly type: H11934-100
UV glass window: R11265U-203
Asembly type: H11934-200
R11265U-100∗
R11265U-200∗
R8900U-100-C12
90
105
13.5
35
110
50
210
2.2 ×
0.8 /ch 4 /ch 0.83
12
H8711-100
110
135
15.5
43
130
50
270
2.6 × 105 2.0 × 106 0.8 /ch 4 /ch 0.83
12
H8711-200
105
2.0 ×
0.6
2
120
160
14
14
125
50
400
3.1 ×
0.8 /ch 4 /ch 0.83
12
90
105
13.5
35
110
25
105
1.1 × 105 1.0 × 106 0.8 /ch 4 /ch 0.52
5
UV glass window: H12445-103
H12445-100∗
5
UV glass window: H12445-203
H12445-200∗
105
2.5 ×
106
H8711-300∗
110
135
15.5
43
130
25
135
1.3 ×
90
105
13.5
35
110
15
53
5.5 × 104 5.0 × 105 0.2 /ch 2 /ch
1.0
12
H7546B-100
H7546B-200
105
1.0 ×
106
0.8 /ch 4 /ch 0.52
110
135
15.5
43
130
15
68
6.5 ×
0.2 /ch 2 /ch
1.0
12
120
160
14
14
125
—
80
6.3 × 104 5.0 × 105 0.2 /ch 2 /ch
1.0
12
90
105
13.5
35
25
110
104
5.0 ×
106
105
105
1.1 × 105 1.0 × 106 0.4 /ch 4 /ch
5.1
H12428-100∗
UV glass window: H12428-203
H12428-200∗
110
135
15.5
43
130
25
135
1.3 ×
0.4 /ch 4 /ch
0.6
5.1
90
105
13.5
35
110
45
210
2.2 × 105 1.0 × 106 0.2 /ch 2 /ch
0.6
6.8
H7260-100
270
2.6 ×
0.6
6.8
H7260-200
110
135
15.5
43
55
130
105
105
1.0 ×
0.6
H7546B-300∗
UV glass window: H12428-103
1.0 ×
106
106
0.2 /ch 2 /ch
Quantum efficiency is measured at the peak sensitivity wavelength (UBA/SBA: 350 nm, EGBA: 550 nm).
Cathode radiant sensitivity is measured at the peak sensitivity wavelength (400 nm).
4 R11265U-100, R11265U-200
5 R8900U-100-C12
30.0 ± 0.5
30.0 ± 0.5
PHOTOCATHODE
+0
26.2 - 0.5
23.5
23.5
PY1
PY2
PY3
PY4
PY5
PY6
PX6
PX5
PX4
PX3
PX2
PX1
23.5
23 MIN.
2.22 PITCH
22.56
22.95
20 21 22 23 24 25 26 27 28 1
BASING DIAGRAM
BOTTOM VIEW
CUT (G)
PY6
PY5
PY4
CUT (IC)
PY3
PY2
CUT (Dy11)
CUT (G)
25 26 27 28 29 30 31 32
24
23
22
21
GUIDE
CORNER
20
19
18
17 16 15 14 13 12 11 10
1
2
3
4
5
6
7
8
9
BASING DIAGRAM
K : Photocathode
Dy : Dynode
P : Anode
IC : Internal Connection
(Do not Use)
TPMHA0585EA
G
CUT (Dy11)
Dy1
Dy3
Dy5
Dy7
Dy9
Dy11
CUT (G)
20.32
29.0 ± 0.5
0.6 ± 0.4
SIDE VIEW
25- 0.45
4.4 ± 0.7
12.0 ± 0.5
PX6
PX5
PX4
PY1
PX3
PX2
PX1
IC (P)
Dy7
Dy8
Dy9
IC (P)
Dy10
Dy11
Dy12
P
15 14 13 12 11 10 9 8 7
4 MAX.
SIDE VIEW
2.54 PITCH
12.0 ± 0.5
CUT (Dy11)
Dy10
Dy8
Dy6
Dy4
Dy2
K
3.5 ± 0.7
19- 0.45
IC (P)
Dy6
Dy5
Dy4
IC (P)
Dy3
Dy2
Dy1
IC (P)
K
INSULATION
COVER
18.7 ± 0.5
4.2 MAX.
INSULATION
COVER
TOP VIEW
PHOTOCATHODE
0.6 ± 0.4
TOP VIEW
PHOTOCATHODE
20.32
PHOTOCATHODE
26.2 ± 0.5
BOTTOM VIEW
G
K
Dy
P
: Grid
: Photocathode
: Dynode
: Anode (PX1-PX6)
(PY1-PY6)
CUT : Short Pin
IC : Internal Connection
(Do not Use)
TPMHA0524EC
63
Photomultiplier Tubes for High Magnetic Environments
Spectral Response
A
Type No.
Effective Area (mm)
Tube
Diameter
Wavelength (nm)
mm (inch) 100
Max. Ratings H
Remarks
C D E
F
Spectral Peak Photo- Win- Out- Dynode
Response Wave- cathode dow line Structure
MateRange length Material rial No. / Stages
(nm)
200 300 400 500 600 700 800 900 1000 1100 1200
G
Socket
&
Socket
Assembly
(nm)
J
L
Anode Average Anode to
to
Anode Cathode
Cathode Current Supply
Voltage
Voltage
(V)
(V) (mA)
R5505-70
25 (1)
17.5
300 to 650 420
BA
K
1 FM / 15 E678-17A* %8 +2300 0.01 +2000 #8
R7761-70
38 (1-1/2)
27
300 to 650 420
BA
K
2 FM / 19
—
+2300 0.01 +2000 #9
R5924-70
51 (2)
39
300 to 650 420
BA
K
3 FM / 19
—
+2300
0.1 +2000 #9
Dimensional Outlines (Unit: mm)
2 R7761-70
3 R5924-70
25.8 ± 0.7
52 ± 1
39 ± 1
FACEPLATE
27 MIN.
FACEPLATE
PHOTOCATHODE
17 PIN BASE
50 ± 2
50 ± 2
HA
TREATMENT
HA
TREATMENT
13 MAX.
HA
TREATMENT
PHOTOCATHODE
SEMIFLEXIBLE
LEADS 0.7
DY15 P
DY13
9 10 DY14
DY11 7 8
11
12 DY12
DY9 6
13 DY10
DY7 5
14 DY8
DY5 4
15
3
DY6
DY3
16
2
DY4
1
17
DY1
DY2
K
LEAD LENGTH 45 MIN.
40.0 ± 1.5
PHOTOCATHODE
39 MIN.
13 MAX.
17.5 MIN.
13 MAX.
FACEPLATE
SEMIFLEXIBLE
LEADS 0.7
27
Glass Base
°
(360/22)
LEAD LENGTH 80 MIN.
1 R5505-70
31
SHORT PIN
Glass Base
°
(360/26)
(27)
TPMHA0236EA
DY17 DY19 P
DY18
DY15
10 11 12
13 DY16
9
DY13
8
14
DY11
15 DY14
7
DY9 6
DY7 5
4
DY5
3
DY3
2
1
DY1
K
16 DY12
17 DY10
18
DY8
19
20 DY6
21
DY4
DY2
(31)
P
DY19 11
DY17 10
9
TPMHA0469EC
DY18 DY16
DY14
14 15
16 DY12
17 DY10
18
DY8
DY15 8
DY13 7
6
DY11 5
DY9 4 3
2 1 26
DY7
DY5 DY3 DY1 K
19
20 DY6
21 DY4
22
DY2
TPMHA0490EB
64
K
Blue
Lumi- Sensitivity
LumiRadiant
nous
nous
Index
(CS 5-58)
Typ.
Typ.
Typ.
Typ.
(µA/lm)
(mA/W) (A/lm)
Dark Current
(After 30 min.)
Gain
at 0 T
Typ.
at 0.5 T
Typ.
at 1.0 T
Typ.
Typ.
(nA)
Max.
(nA)
Time
Response
Rise Transit
Time
Time
Typ.
Typ.
(ns)
(ns)
80
9.5
76
40
5.0 × 105
2.3 × 105
1.8 × 104
5
30
1.5
5.6
80
9.5
76
800
1.0 × 107
3.0 × 106
1.5 × 105
15
100
2.1
7.5
700
1.0 ×
4.1 ×
2.0 ×
30
200
2.5
9.5
70
72
9.0
107
■Spectral Response
106
105
Notes
(For +HV operation)
Assembly type: H6152-70 Recommended
(For +HV operation)
Assembly type: H8409-70 Recommended
(For +HV operation)
Assembly type: H6614-70 Recommended
Type No.
R5505-70
R7761-70
R5924-70
■Gain
TPMHB0684EA
108
100
at 0 T
TPMHB0258EC
107
1.5" R7761-70
2" R5924-70
10
106
GAIN
PHOTOCATHODE RADIANT SENSITIVITY (mA/W)
QUANTUM EFFICIENCY (%)
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
1
PHOTOCATHODE
RADIANT
SENSITIVITY
0.1
300
400
500
600
1" R5505-70
104
QUANTUM
EFFICIENCY
0.01
200
105
103
700
800
102
500
WAVELENGTH (nm)
1000
1500
2000
2500
SUPPLY VOLTAGE (V)
■R5924-70 Relative Gain in Magnetic Fields
101
TPMHB0247EC
SUPPLY VOLTAGE: 2000 V
RELATIVE GAIN
100
30 °
10-1
10-2
0°
MAGNETIC
FIELD
10-3
0
0.25
0.50
0.75
1.0
1.25
1.5
MAGNETIC FLUX DENSITY (T)
65
Microchannel Plate-Photomultiplier Tubes (MCP-PMTs)
Remarks
Max. Ratings H
C D E
Anode Current
-HV
Signal Anode
Spectral
Peak Photo- Win- Out- No. of
Curve
to
Input
Output Cathode Contin- Pulsed
Response
Wave- cathode dow line MCP
MateCode
Range
length Material rial No. Stage Terminals Terminals Voltage uous Peak
Spectral Response
A
B
Effective Area (mm)
Type No.
Wavelength (nm)
100 200 300 400 500 600 700 800 900 1000 1100 1200
(nm)
(nm)
(V)
(nA)
(mA)
Standard Types
11
R3809U-50
11
R3809U-51
11
R3809U-52
R3809U-53
11
10
R3809U-61
R3809U-64
430
MA
Q 1
2
SHV-R SMA-R
-3400
100
350
160 to 910 501S
600
ERMA
Q 1
2
SHV-R SMA-R
-3400
100
350
160 to 650 403K
400
BA
Q 1
2
SHV-R SMA-R
-3400
100
350
160 to 320 200S 230-250 Cs-Te
Q 1
2
SHV-R SMA-R
-3400
100
350
370 to 920 602K 750-850
K 1
2
SHV-R SMA-R
-3400
100
350
GaAs
Red
280 to 820 601K 550-650 Extended
K
GaAsP
10
R3809U-63
160 to 850 500S
1
2
SHV-R SMA-R
-3400
100
350
K 1
2
SHV-R SMA-R
-3400
100
350
MA
Q 2
2
SHV-R SMA-R
-3400
100
350
600
ERMA
Q 2
2
SHV-R SMA-R
-3400
100
350
400
BA
Q 2
2
SHV-R SMA-R
-3400
100
350
Q 2
2
SHV-R SMA-R
-3400
100
350
10
280 to 720 600K 550-650 GaAsP
10
160 to 850 500S
430
160 to 910 501S
160 to 650 403K
Gated Types
R5916U-50
10
R5916U-51
10
R5916U-52
R5916U-53
10
160 to 320 200S 230-250 Cs-Te
The R5916 series can be gated by input of a +10 V to +20 V gate signal. Standard types are normally OFF, but normally ON types are also available.
Gate operation is 5 ns, though this depends on the gate signal input pulse.
Consult us regarding the R5916U series with a GaAs or GaAsP photocathode.
Dimensional Outlines (Unit: mm)
1 R3809U Series
MCP
70.2 ± 0.5
-HV INPUT
SHV-R CONNECTOR
7.0 ± 0.2
-50, -51, -52, -53: 3.2 ± 0.1
-61, -63, -64: 4.2 ± 0.1
PHOTOCATHODE
SIGNAL
OUTPUT
SMA-R
13.7 ± 0.2
-50, -51, -52, -53: 3.0 ± 0.2
-61, -63, -64: 2.8 ± 0.2
ANODE
CATHODE
52.5 ± 0.5
45.0 ± 0.3
EFFECTIVE
WINDOW
PHOTOCATHODE
FACEPLATE
DIAMETER:
11 MIN. (-50, -51, -52, -53)
10 MIN. (-61, -63, -64)
12 MΩ
24 MΩ
6 MΩ
1000 pF
1000 pF
300 pF
ANODE OUTPUT
SMA-R CONNECTOR
-HV
SHV-R
* Actual resistor values may slightly differ from the above.
TPMHC0089EC
TPMHA0352EB
2 R5916U Series
GATE
71.5 ± 0.5
WINDOW
FACE PLATE
53.8 ± 0.5
3.0 ± 0.2
MCP
CATHODE
-HV INPUT
SHV-R CONNECTOR
ANODE
19.0 ± 0.2
EFFECTIVE
PHOTOCATHODE
DIAMETER
10 MIN.
ANODE
OUTPUT
SMA-R
4.6 ± 0.1
7.0 ± 0.2
7.9 ± 0.2
PHOTOCATHODE
33 kΩ
1000 pF
ANODE OUTPUT
SMA-R CONNECTOR
17.5 ± 0.2
10 MIN.
55.0 ± 0.3
100 kΩ
330 pF
GATE PULSE INPUT
SMA-R CONNECTOR
12 MΩ
330 pF
24 MΩ
330 pF
6 MΩ
300 pF
50 Ω
GND
GND
10 kΩ
-HV
SHV-R
GATE SIGNAL INPUT
SMA-R
* Actual resistor values may slightly differ from the above.
TPMHA0348EC
66
TPMHC0090ED
K
Radiant Luminous
Luminous
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
Dark
Current
(After 30 min.)
Time
Response
Transit I.R.F.A
Time (FWHM)
Typ.
Typ.
(ns)
(ns)
Anode to
Cathode
Supply
Voltage
(V)
Min.
(µA/lm)
Typ.
(µA/lm)
Typ.
(mA/W)
Typ.
(A/lm)
Typ.
Max.
(nA)
Rise
Time
Typ.
(ns)
-3000
100
180
70
36
3.0 × 105
10
0.16
0.55
0.045
Transit time spread: 0.025 ns
R3809U-50
-3000
240
290
45
58
3.0 × 105
10
0.16
0.55
0.045
Transit time spread: 0.025 ns
R3809U-51
R3809U-52
R3809U-53
Gain
Notes
Type No.
-3000
20
50
50
10
3.0 ×
0.5
0.16
0.55
0.045
Transit time spread: 0.025 ns
-3000
—
—
20
—
3.0 × 105
0.1
0.16
0.55
0.045
Transit time spread: 0.025 ns
140
3.0 ×
105
25
0.2
0.55
0.15
R3809U-61
105
-3000
700
400
85
105
-3000
450
750
160
150
3.0 ×
15
0.18
0.55
0.08
R3809U-63
-3000
400
700
180
140
3.0 × 105
15
0.18
0.55
0.08
R3809U-64
-3000
100
150
52
30
3.0 × 105
10
0.18
1.0
0.095
R5916U-50
105
-3000
200
250
36
50
3.0 ×
10
0.18
1.0
0.095
R5916U-51
-3000
20
45
45
9
3.0 × 105
0.5
0.18
1.0
0.095
R5916U-52
—
3.0 ×
0.1
0.18
1.0
0.095
R5916U-53
-3000
20
—
—
105
NOTE: AI.R.F. stands for Instrument Response Function which is a convolution of the δ-function (H(t)) of the measuring apparatus and the exciation function (E(t)) of a
laser. The I.R.F. is given by the following formula: I.R.F. = H(t)∗ E(t)
■Spectral Response
103
●R5916U Series
TPMHB0177EE
QE = 40 %
-53
QE = 25 %
QE = 10 %
102
-51
101
QE = 1 %
-50
-52
100
-61
QE =
0.1 %
-64
-63
10-1
10-2
100 200 300 400 500 600 700 800 900 1000 1100
WAVELENGTH (nm)
PHOTOCATHODE RADIANT SENSITIVITY (mA/W)
PHOTOCATHODE RADIANT SENSITIVITY (mA/W)
●R3809U Series
103
TPMHB0940EA
QE = 25 %
102
-53
-52
QE = 10 %
-50
-51
QE = 1 %
101
QE =
0.1 %
100
10-1
10-2
100 200 300 400 500 600 700 800 900 1000 1100
WAVELENGTH (nm)
■Gain
TPMHB0179EB
107
106
GAIN
105
104
103
102
-2.0
-2.2
-2.4
-2.6
-2.8
-3.0
SUPPLY VOLTAGE (kV)
-3.2
-3.4
67
Micro PMT Assemblies / Micro PMT Modules
Spectral Response
A
Effective Area (mm)
Type No.
Remarks
Max. Ratings
C D
F
Spectral Peak Photo- Win- Out- Dynode
Response Wave- cathode dow line Structure
MateRange length Material rial No. / Stages
Wavelength (nm)
(nm)
100 200 300 400 500 600 700 800 900 1000 1100 1200
J
L
Anode
to
Cathode
Voltage
Average
Anode
Current
Anode to
Cathode
Supply
Voltage
(V)
(mA)
(V)
(nm)
Micro PMT Assemblies
3×1
∗H12400-00-01
3×1
∗H12400-01-01
300 to 650 420
BA
K
1
SC/12
-1150
0.005
-900
300 to 850 420
MA
K
1
SC/12
-1150
0.005
-900
Spectral Response
A
Type No.
100 200
Remarks
Max. Ratings
C D
F
Recommended
Effective Area (mm)
Control
Spectral Peak Photo- Win- Out- Dynode Maximum Maximum Maximum Maximum
Input
Voltage
Input Output Control
Response Wave- cathode dow line Structure Input
Voltage Adjustment
MateWavelength (nm)
Range length Material
No. / Stages Voltage Current Signal Voltage
Range
rial
Current
300 400 500 600 700 800 900 1000 1100 1200
(mA) (mA)
(V)
(nm)
(V)
(V)
(nm)
(V)
Micro PMT Modules
3×1
∗H12402
3×1
∗H12402-01
3×1
∗H12403
3×1
∗H12403-01
300 to 650 420
BA
K
2
SC/12
+5.5
20
0.005 +1.15 +4.5 to +5.5 +0.5 to +1.0
300 to 850 420
MA
K
2
SC/12
+5.5
20
0.005 +1.15 +4.5 to +5.5 +0.5 to +1.1
300 to 650 420
BA
K
3
SC/12
+5.5
20
0.005 +1.15 +4.5 to +5.5 +0.5 to +1.0
300 to 850 420
MA
K
3
SC/12
+5.5
20
0.005 +1.15 +4.5 to +5.5 +0.5 to +1.1
Dimensional Outlines (Unit: mm)
1 H12400-00-01, H12400-01-01
4 × M1.4 DEPTH 1.5
MOUNTING
THREADED HOLE
19 ± 0.25
7.2 ± 0.25
17 ± 0.25
2.2 ± 0.2
4 ± 0.25
A
Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12
4.3 ± 0.2
13 ± 0.1
SMA
CONNECTOR
C1
GND
C1: 1 nF
FLEXIBLE
C2, C3, C4: 22 nF
PRINTED CIRCUIT
R1, R12: 1 MΩ
R2, R11: 680 kΩ
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13
R3 to R10: 470 kΩ
R13: 2 MΩ
-HV
GND
FLEXIBLE
PRINTED
CIRCUIT
ABS CASE
VOLTAGE
DIVIDER
CIRCUIT
■Common to Micro PMT assemblies and Micro PMT modules
■DETAILS OF INPUT WINDOW
15 ± 0.5
GND
C2 C3 C4
GND
INPUT
WINDOW
36 ± 2
P
SIGNAL OUTPUT
: SMA CONNECTOR
6 ± 0.5
■A CROSS SECTION
1.4
22 ± 0.5
COAXIAL CABLE
180 ± 10
8 ± 0.5
18.6 ± 0.1
21 ± 0.25
5.5 ± 0.2
K
4
PHOTOCATHODE
INPUT
WINDOW
RESIN
PACKAGE
EFFECTIVE AREA
3×1
-HV AWG26 PURPLE 500 ± 10
MICRO PMT
C0.3
0.5
0.5
GND 0.2SQ BLACK 500 ± 10
TPMHA0590EB
2 H12402, H12402-01
3 H12403, H12403-01
15 ± 0.25
CABLE
4 × M2
DEPTH 4
450 ± 20
PHOTOCATHODE
3 × 1 MIN.
CABLE
INPUT
WINDOW
12 ± 0.25
4 × M2
DEPTH 4
●CABLE
LOW VOLTAGE INPUT (+5 V) : AWG26 (RED)
: AWG26 (BLACK)
GND
: AWG26 (BLUE)
Vref OUTPUT (+1.2 V)
: AWG26 (WHITE)
Vcont INPUT
: RG-174/U
SIGNAL OUTPUT
●CABLE
LOW VOLTAGE INPUT (+5 V) : AWG26 (RED)
: AWG26 (BLACK)
GND
: AWG26 (BLUE)
Vref OUTPUT (+1.2 V)
: AWG26 (WHITE)
Vcont INPUT
: RG-174/U
SIGNAL OUTPUT
68
34 ± 0.1
38 ± 0.35
A
A
13 ± 0.1
26 ± 0.1
30 ± 0.25
INPUT
WINDOW
PHOTOCATHODE 3 × 1 MIN.
34 ± 0.35
11 ± 0.1
2 × M1.4
DEPTH 1.5
2
12.5 ± 0.25
450 ± 20
34 ± 0.1
13 ± 0.1
38 ± 0.35
2
TPMOA0083EB
TPMOA0084EB
Blue
Luminous Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Red /
White Radiant Luminous
Ratio
Radiant
(R-68)
Typ.
Typ. Min. Typ.
Typ.
(mA/W) (A/lm) (A/lm) (A/W)
Gain
Typ.
Dark Current
(After 30 min.)
Typ. Max.
(nA) (nA)
Time
Response
Rise Transit
Time
Time
Typ.
Typ.
(ns)
(ns)
Notes
Type No.
50
80
8.0
—
80
30
160
1.6 × 105 2.0 × 106
0.3
3
1.2
8.0
H12400-00-01∗
100
200
—
0.2
62
15
70
2.1 × 104 3.5 × 105
0.3
3
1.2
8.0
H12400-01-01∗
Blue
Luminous Sensitivity
Index
(CS 5-58)
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
50
K
Red /
White Radiant Luminous
Ratio
Radiant
(R-68)
Typ.
Typ. Min. Typ.
Typ.
(mA/W) (A/lm) (A/lm) (A/W)
—
8.0
80
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
30
80
Gain
Typ.
Dark Current
(After 30 min.)
Typ. Max.
(nA) (nA)
Time
Response
Rise Transit
Time
Time
Typ.
Typ.
(ns)
(ns)
Notes
Type No.
160
1.6 × 105 2.0 × 106
0.3
3
1.2
8.0
H12402∗
105
100
200
—
0.2
62
15
70
2.1 ×
0.3
3
1.2
8.0
H12402-01∗
50
80
8.0
—
80
30
160
1.6 × 105 2.0 × 106
0.3
3
1.2
8.0
H12403∗
70
2.1 ×
0.3
3
1.2
8.0
H12403-01∗
100
0.2
—
200
15
62
■Spectral Response
104
3.5 ×
3.5 ×
105
■Gain
TPMHB0884EA
107
MULTIALKALI
PHOTOCATHODE
TPMHB0885EA
BIALKALI
PHOTOCATHODE
106
10
105
1
GAIN
CATHODE RADIANT SENSITIVITY (mA/W)
QUANTUM EFFICIENCY (%)
100
104
BIALKALI
PHOTOCATHODE
MULTIALKALI
PHOTOCATHODE
104
0.1
103
CATHODE RADIANT
SENSITIVITY
QUANTUM EFFICIENCY
0
200
300
400
500
600
700
800
900
1000
WAVELENGTH (nm)
102
0.5
-500
0.6
-600
0.7
-700
0.8
-800
0.9
1.0 1.1
-900 -1000 -1100
CONTROL VOLTAGE (V)*
SUPPLY VOLTAGE (V)
* Control voltage of a Micro PMT module.
■Sensitivity Adjustment Method (Micro PMT Module)
VOLTAGE PROGRAMMING
SIGNAL OUTPUT
LOW VOLTAGE INPUT (RED)
GND (BLACK)
Vref OUTPUT (BLUE)
Vcont INPUT (WHITE)
• Adjust the control voltage to adjust
the sensitivity.
• Electrically insulate the reference
voltage output.
POWER SUPPLY
+5 V
GND
+0.5 V to
+1.0 V *1
(No suffix)
GND
*1 Suffix -01: +1.1 V
POWER SUPPLY
MICRO PMT MODULE
SIGNAL OUTPUT
LOW VOLTAGE INPUT (RED)
GND (BLACK)
Vref OUTPUT (BLUE)
Vcont INPUT (WHITE)
+5 V
GND
CW
MICRO PMT MODULE
RESISTANCE PROGRAMMING
MONITOR
POTENTIOMETER (10 KΩ)
• When using a potentiometer, adjust sensitivity while monitoring
the control voltage so it does not exceed +1.15 V.
TPMOC0256EA
69
Gain Characteristics
For tubes not listed here, please consult our sales office.
Side-on Types
108
Head-on Types (10 mm and 19 mm Dia.)
TPMSB0079EC
108
TPMHB0198EH
R9
28
R1878
107
R1617
107
R6357
5
R5610A,
R5611A-01
R3
103
103
1000
1500
2000
72
104
700
102
500
3000
700
1000
1500
2000
3000
SUPPLY VOLTAGE (V)
SUPPLY VOLTAGE (V)
Head-on Types (13 mm and 25 mm Dia.)
108
8
105
104
102
500
47
R9
GAIN
105
R1
106
R6
36
-1
0
GAIN
63
R6350
106
Head-on Types (28 mm Dia.)
TPMHB0682EB
108
TPMHB0199EE
R6
42
R2228, R5929
R1924A
R3550A
107
06
-0
1
107
7
R3998-02
72
R6834,
R6836, R374
106
,R
R7899
9
24
104
R1
28
44
R6
105
R6
R12421
8,
105
24
GAIN
GAIN
R7
20
5-
01
106
104
R5070A
103
102
500
103
700
1000
1500
2000
SUPPLY VOLTAGE (V)
70
3000
102
500
700
1000
1500
2000
SUPPLY VOLTAGE (V)
3000
Head-on Types (38 mm Dia.)
108
Head-on Types (51 mm Dia.)
TPMHB0200EF
108
TPMHB0201EE
R1828-01
R3886A
107
107
R943-02
R12845
R9722A
104
105
R4
64
GAIN
R9420
105
R3
29
-0
2
106
106
GAIN
R6
23
1
R580
R11102
R13089
104
103
103
102
500
700
1000
1500
2000
102
500
3000
700
1000
SUPPLY VOLTAGE (V)
1500
2000
3000
SUPPLY VOLTAGE (V)
Head-on Types (76 mm Dia.)
Head-on Types (127 mm Dia.) and Special Types
TPMHB0202ED
109
TPMHB0203EE
R6
108
R1307
6
R6234
R6235
R6236
R6237
107
GAIN
R
3
23
106
07
8-
105
104
103
102
500
700
1000
1500
2000
SUPPLY VOLTAGE (V)
3000
103
500
R8
77
R1
R4
104
54
14
3
R1
105
3
106
51
107
GAIN
R1
09
1
25
0
108
3
08
R2
700
1000
1500
2000
3000
SUPPLY VOLTAGE (V)
71
Voltage Distribution Ratio
The characteristic values tabulated in the catalog for the individual tube types are measured with the voltage-divider networks having
the voltage distribution ratio shown below.
Distribution
Ratio Codes
Number of
Voltage Distribution Ratio
Stage
K: Photocathode Dy: Dynode P: Anode G: Grid F: Focus ACC: Accelerating Electrode GR: Guard Ring
8
2
w
1
1
e
3
—
r
7
—
t
2
y
4
8
—
1.3
8
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1.5
1.5
1
1
1
1
1
1
1
1.5
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
—
1.5
1.5
1
1
1
1
1
1
1.2
1
1
1
1
1
3
1
—
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1.5
1
1
1
Dy7
Dy6
Dy5
Dy4
Dy3
Dy2
Dy1
G
2.5
P
Dy9
Dy8
!0
K
P
Dy8
Dy7
0.5
Dy7
Dy6
Dy5
1
Acc
Dy6
Dy5
1
Dy4
Dy3
1
P (Note 1)
Dy7 Dy8(Acc)
Dy6
Dy5
1
Dy4
Dy3
1.8
Dy2
Dy1
1
o
10
1
1
P
Dy9 Dy10
Dy8
!1
1
—
1
1
1
1
1
1
1
1
1
0.5
!2
1
—
1
1
1
1
1
1
1
1
1
1
!3
1
1
1
1
1
1
1
1
1
1
1
1
!4
1.5
—
1
1
1
1
1
1
1
1
1
1
!5
2
—
1
1
1
1
1
1
1
1
1
1
!6
2
—
1
1.5
1
1
1
1
1
1
1
0.75
!7
3
—
1
1
1
1
1
1
1
1
1
1
!8
3
—
1
1.5
1
1
1
1
1
1
1
1
!9
3
—
1.5
1
1
1
1
1
1
1
1
1
@0
4
—
1
1.5
1
1
1
1
1
1
1
1
@1
4
—
1
2
1
1
1
1
1
1
2
1
@2
1.3
4.8
1.2
1.8
1
1
1
1
1
1.5
3
2.5
@3
1.3
4.8
1.5
1.5
1
1
1
1
1
1
1
1
@4
1.5
—
1.5
1.5
1
1
1
1
1
1
1
1
@5
0.5
1.5
2
1
1
1
1
1
1
1
1
0.5
11
Dy7
Dy6
Dy5
Dy4
Dy3
Dy2
Dy1
G
K
Dy9 Dy10 Dy11
Dy8
P
@6
1
—
1
1
1
1
1
1
1
1
1
1
1
@7
0.5
1.5
2
1
1
1
1
1
1
1
1
1
0.5
@8
2
—
1
1
1
1
1
1
1
1
1
1
1
12
Dy7
Dy6
Dy5
Dy4
Dy3
Dy2
Dy1
G
K
Dy9 Dy10 Dy11 Dy12 GR
Dy8
P
@9
1.2
2.8
1.2
1.8
1
1
1
1
1
1
1.5
1.5
3
—
#0
4
0
1
1.4
1
1
1
1
1
1
1
1
1
—
#1
4
0
2.5
1.5
1
1
1
1
1
1
1
1
1
—
1
#2
1
3
1.2
1.8
1
1
1
1
1
1
1.5
1.5
3
—
2.5
#3
2
—
2
2
1
1
1
1
1
1
1
1
1
—
1
#4
3
—
2
2
1
1
1
1
1
1
1
1
2
—
5
#5
2.5
—
1.3
0.8
0.8
1
1
1
1
1
1
1
1
—
0.5
1.2
1
1
1
1
1
1
0.5
#6
2.3
14
2.5
15
2
19
#9
7.5
2
1
Note 1: The Acc should be connected to Dy8.
1
1.8
1
1
1
1
1
Dy6
Dy5
1
1
1
1
1
2.5
1 (Note 2)
Dy9 Dy10 Dy11 Dy12 Dy13 Dy14
Dy8
Dy7
1
1
1
1.5
1.5
3
Dy9 Dy10 Dy11 Dy12 Dy13 Dy14 Dy15
Dy8
Dy7
Dy6
Dy5
Dy4
1
Dy3
Dy2
1
1.2
Dy3
Dy2
1
Dy1
K
0
1
Dy4
Dy3
Dy2
Dy1
G2
Dy1
K
#8
—
G1
K
#7
72
1.5
Dy2
Dy1
4.8
G
K
1.5
Dy4
Dy3
Dy2
Dy1
4.8
1.3
P
1
G
K
i
Dy8
Dy7
Dy6
Dy5
1
G
K
u
2
Dy4
Dy3
Dy2
Dy1
G
K
q
1
1
1
1
1
1
1
1
1
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
2: The shield pin should be connected to Dy5.
1
1
P
1
Dy17 Dy18 Dy19
1
1
P
2.5
1
1
P
Lens for Side-on Type Photomultiplier Tubes
The optimized cylindrical lens which can be attached at the entrance window of 1-1/8 inch side-on photomultiplier tube. This lens
helps the incident light reaches the photocathode efficiently.
With these lenses, the effective area widens by the factor of three in case of 1-1/8" PMT (13 mm width) or the factor of two in case
of 1/2" PMT (7.5 mm width). The lens transmits above 300 nm light only.
Transmittance of Lens
100
LENS
TPMSB0214EA
90
TRANSMITTANCE (%)
LUMINOUS
FLUX
LENS
LENS
80
1/2 inch
1-1/8 inch
70
60
50
40
30
20
10
1/2 inch PMT
1-1/8 inch PMT
TPMSC0042EA
0
200
TPMSC0038EA
300
400
500
600
700
800
900
WAVELENGTH (nm)
Lens Effect
Lens Effect (at anode sensitivity)
WITH LENS
WITHOUT LENS
300
TPMSB0215EA
100
100
50
3.75
0
50
100
0
6.5
LENS
50
100
200
PARALLEL LIGHT
WITH LENS
150
DIFFUSED LIGHT
WITH LENS
100
WITHOUT LENS
50
R6357 (1/2 inch dia.)
R928 (1-1/8 inch dia.)
1-1/8 inch PMT
0
300
12
6.5
1/2 inch PMT
6.5
0
0
Y-AXIS (mm)
0
Y-AXIS (mm)
LENS
0
X-AXIS (mm)
12
0
X-AXIS (mm)
6.5
0
3.75
RELATIVE OUTPUT (%)
250
50
MEASUREMENT CONDITIONS
WAVELENGTH: 400 nm
SUPPLY VOLTAGE: 1000 V
A 1 mm diameter spot light (parallel light) is scanned
at the center of the photocathode in X and Y directions.
400
500
600
700
800
900
WAVELENGTH (nm)
TPMSC0041EA
TPMSC0037EB
Parallel light:
Uniform and sufficiently large area,
than the sensitive area size, of the
parallel incident light (40 mm dia.) shall
be given to the photomultiplier tube.
Diffused light:
Parallel light (40 mm dia.) is given
to the photomultiplier tube through
the diffuser, which locates 100 mm
from the tube.
Dimensional Outlines (Unit: mm)
50 MAX.
40 ± 2
10 DY9
DY2 3
11
2
P
19.6 ± 1.0
80 MAX.
DY8
94 MAX.
3±2
9
DY3 4
DY1
DY7
8
28.5 ± 1.5
49.0 ± 2.5
7
DY4 5
28.5 ± 1.5
24 MIN.
6
24.0 ± 1.5
17 ± 1
13 MIN.
18 ± 1
DY6
DY5
EFFECTIVE AREA
7.5 × 13
30.0 ± 0.8
7.5 ± 1
31.0 ± 0.8
10.5 ± 1
EFFECTIVE
AREA
13 × 24 mm
13
DY6
DY5
1
6
7
DY4 5
K
DIRECTION OF LIGHT
9
DY3 4
13.5 ± 0.8
32.2 ± 0.5
11 PIN BASE
JEDEC No. B11-88
TPMSA0041EA
DY8
10 DY9
DY2 3
11
2
DY1
DY7
8
P
1
K
DIRECTION OF LIGHT
TPMSA0036EB
73
Photomultiplier Tube Socket
Dimensional Outline (Unit: mm)
E678-11U
E678-11A
E678-11N
24
49
18
38
5.5
3.5
33
45
°
4.3
5
2- 2.2
10.5
9.5
13
11
3
18
9.5
4
0.5
10.5
4
3
3
29
11
TACCA0181EC
E678-12A, E678-12R*
TACCA0064EA
E678-13F
TACCA0043EB
E678-13E
47
40
12.4
17
11
24
5.5
18
2- 2.2
13
7
3.4
15
5
10
3
34
10.5
3
2- 3.2
8
11
* Gold Plating type
TACCA0009EB
E678-12L
E678-14C
44
35
28.6
2- 3.2
1.9
30
2-R4
6.7
360 °
13
24
360
13
18.5
2.9
13
35
19.1
2- 3.5
11.6
35
28.5
13
TACCA0013EB
9
(23.6)
E678-12T
TACCA0005EA
2- 3.5
18
(8)
7
9
2.5
6.6
9.5
3.3 3.7
10.5
7.5
6.5
3
26
25
18
TACCA0275EA
74
TACCA0047EB
TACCA0004EA
E678-14W
E678-20B
E678-21C
19.8
57.8
51
52.5
19
56.8
20
28
R5
62
13
13
6.5
4
34
30
2
17 11
5
56
* Pins are housed in the socket.
TACCA0200EA
TACCA0066EC
E678-17A
E678-15C
60
50
50
45
40
45
40
4
4
18.0
60
24.0
E678-19J
TACCA0309EB
21.9
16.3
0.1
2
12
12.0
5
2
12
11.5
40
14.0
5
5
22.8
6.5
40
TACCA0203EB
TACCA0046EC
E678-32B
22.86
1.
2.54
R
2.54
5
E678-12-01
TACCA0201EA
4.45
12.7
22.86
20.32
45°
10.16
2.92
2.54
20.32
0.51
16
0.5
17.5
1.57
1.5
4 3
12.7
MATERIAL: Glass Epoxy
15.5
16.5
TACCA0304EA
TACCA0094ED
75
Photomultiplier Tube Assemblies
Photomultiplier Tube Assemblies
Photomultiplier tube assemblies are made up of a photomultiplier tube, a voltagedivider circuit and other components, all integrated into a single case.
Max. Rating
A
Type No.
H3164-10
H3695-10
H3165-10
∗H12690
H6520
H6524
H6612
H6152-70
H6533
H7415
∗H10828
H3178-51
H8409-70
H1949-51
H6410
H7195
H2431-50
H6614-70
H6559
H6527
H6528
B
Assembly PMT
Dia.
Dia.
mm
(mm) (inch)
10
(3/8)
10
11.3 (3/8)
13
14.3 (1/2)
13
14.3 (1/2)
19
23.5 (3/4)
19
23.5 (3/4)
19
23.5 (3/4)
25
31.0
(1)
25
31.0
(1)
28
33.0 (1-1/8)
38
47.0 (1-1/2)
38
47.0 (1-1/2)
38
45.0 (1-1/2)
51
60.0
(2)
51
60.0
(2)
51
60.0
(2)
51
60.0
(2)
51
60.0
(2)
76
83.0
(3)
127
142.0
(5)
127
142.0
(5)
10.5
Built-in
PMT
(
Type No.
for
referring
)
Curve
Code
Wavelength
(nm)
F Anode to
Cathode
Out- Dynode
line Structure Voltage
No. / Stages
Max.
(V)
Divider
Current
Max.
(mA)
Cathode Sensitivity
Anode to
Cathode
Supply
Voltage
(V)
Typ.
(µA/lm)
Blue
Sensitivity
Index
(CS 5-58)
Typ.
R1635
400K
300 to 650
q
L/8
-1500
0.41
-1250
100
10.0
R2496
400S
160 to 650
w
L/8
-1500
0.37
-1250
100
10.0
R647-01
400K
300 to 650
e
L/10
-1250
0.34
-1000
110
10.0
R12421
400K
300 to 650
r
L/10
-1250
0.31
-1000
110
10.0
R1166
400K
300 to 650
t
L/10
-1250
0.33
-1000
110
10.5
R1450
400K
300 to 650
y
L/10
-1800
0.43
-1500
115
11.0
R3478
400K
300 to 650
u
L/8
-1800
0.35
-1700
115
11.0
R5505-70
400K
300 to 650
i
FM/15
+2300
0.41
+2000
80
9.5
R4998
400K
300 to 650
o
L/10
-2500
0.36
-2250
70
9.0
R6427
400K
300 to 650
!0
L/10
-2000
0.41
-1500
95
11.0
R9420
400K
300 to 650
!1
L/8
-1500
0.39
-1300
95
11.0
R580
400K
300 to 650
!2
L/10
-1750
0.63
-1500
95
11.0
R7761-70
400K
300 to 650
!3
FM/19
+2300
0.33
+2000
80
9.5
R1828-01
400K
300 to 650
!4
L/12
-3000
0.70
-2500
90
10.5
R329
400K
300 to 650
!5
L/12
-2700
0.67
-2000
90
10.5
R329
400K
300 to 650
!6
L/12
-2700
1.23
-2000
90
10.5
R2083
400K
300 to 650
!7
L/8
-3500
0.61
-3000
80
10.0
R5924-70
400K
300 to 650
!8
FM/19
+2300
0.33
+2000
70
9.0
R6091
400K
300 to 650
!9
L/12
-2500
0.62
-2000
90
10.5
R1250
400K
300 to 650
@0
L/14
-3000
1.02
-2000
70
9.0
R1584
400U
185 to 650
@0
L/14
-3000
1.02
-2000
70
9.0
—
—
300 to 920
@1
MC/12
-1200
0.42
-1000
500
—
H8711
30
—
R7600-00-M16
—
300 to 650
@2
MC/12
-1000
0.35
-800
80
9.5
H8711-20
30
—
R7600-20-M16
—
300 to 920
@2
MC/12
-1000
0.35
-800
500
—
H7546B
30
—
R7600-00-M64
—
300 to 650
@3
MC/12
-1000
0.45
-800
80
9.5
H7546B-20
30
—
R7600-20-M64
—
300 to 920
@3
MC/12
-1000
0.45
-800
500
—
—
R7259-20
—
300 to 920
@4
MC/10
-900
0.37
-800
500
—
52
—
R10551-00-M64
—
300 to 650
@5
MC/12
-1100
0.173
-1000
60
9.5
52
—
R8400-00-M256
—
300 to 650
@6
MC/12
-1100
0.18
-1000
60
9.5
52
—
R10552-00-M64
—
300 to 650
@7
MC/8
-1100
0.245
-1000
60
9.5
52
—
R12699-00-M64
—
300 to 650
@8
MC/10
-1100
0.225
-1000
75
12.0
30
—
R5900-20-L16
—
300 to 920
@9
MC/10
-900
0.37
-800
500
—
H9530-20
H7260-20
H8500C
H9500
H10966A
∗H12700A
H10515B-20
35 × 16
52 × 24
—
CAUTION: Photomultiplier tube assemblies listed in this catalog are not designed for use in a vacuum, please consult our sales office.
When using them in a vacuum or under low pressure conditions, please consult us.
76
Luminous
Anode Characteristics
Dark Current
Gain
Typ.
(A/lm)
Typ.
Typ.
(nA)
Max.
(nA)
100
1.0 × 106
1
50
0.8
9.0
100
1.0 ×
106
2
50
0.7
150
1.4 ×
106
1
2
220
2.0 ×
106
0.5
110
1.0 ×
106
200
1.7 × 106
200
A
Pulse
Linearity
Time Response
Luminous
Rise Time Transit Time Transit Time Spread
Typ.
Typ.
Typ.
(ns)
(ns)
(ns)
Type No.
2%
Typ.
(mA)
5%
Typ.
(mA)
0.5
3
7
9.0
0.5
3
7
2.1
22
2.0
3
7
2
1.2
14
1.4
3
12
1
5
2.5
27
2.8
4
7
3
50
1.8
19
0.76
4
8
H6524-01 (with 50 Ω)
H6524
1.7 × 106
10
300
1.3
14
0.36
4
8
H6612-01 (with 50 Ω)
H6612
40
5.0 × 105
400
Notes
H3164-12: SHV, BNC connector type
H3164-14: SHV, LEMO connector type
H3695-12: SHV, BNC connector type
H3695-14: SHV, LEMO connector type
H3165-12: SHV, BNC connector type
H3165-14: SHV, LEMO connector type
H12690-00-01: SHV, BNC connector type
H12690-00-02: SHV, LEMO connector type
H3164-10
H3695-10
H3165-10
H12690∗
H6520
5
30
1.5
5.6
0.35
180
250
5.7 ×
106
100
800
0.7
10
0.16
40
70
475
5.0 ×
106
10
200
1.7
16
0.5
10
30
47
5.0 ×
105
10
100
1.6
17
0.55
30
50
H10828∗
75
7.9 ×
105
2
15
2.7
40
4.5
150
200
H3178-51
800
1.0 ×
107
15
100
2.1
7.5
0.35
350
500
H8409-70
1800
1.0 ×
107
50
400
1.3
28
0.55
100
200
H3177-51 (R2059)
270
3.0 × 106
10
100
2.7
40
1.1
100
200
H6521 (R2256) H6522 (R5113) H6410
270
3.0 × 106
10
100
2.7
40
1.1
80
110
H7195
200
2.5 × 106
100
800
0.7
16
0.37
100
150
700
1.0 ×
107
30
200
2.5
9.5
0.44
500
700
H6614-70
900
1.0 ×
107
30
120
2.7
40
1.5
80
110
H6559
1000
1.4 ×
107
50
300
2.5
54
1.2
100
150
H6527
1000
1.4 ×
107
50
300
2.5
54
1.2
100
150
H6528
1500
3.0 ×
106
1/ch
10/ch
0.7
6.0
0.25
0.9/ch
1/ch
280
3.5 × 106
0.8/ch
4/ch
0.83
12
0.33
0.5/ch
1/ch
8 ch Linearanode
H9530-20
16 ch Multianode
H8711-10 (Taper Divider Type) H8711
250
5.0 × 105
0.8/ch
4/ch
0.83
12
0.33
0.5/ch
1/ch
H8711-20
50
6.0 × 105
0.2/ch
2/ch
1.0
12
0.38
0.3/ch
0.6/ch
64 ch Multianode
250
5.0 ×
105
0.2/ch
2/ch
1.0
12
0.38
0.3/ch
0.6/ch
500
1.0 ×
106
1/ch
10/ch
0.6
6.8
0.23
0.6/ch
0.8/ch
90
1.5 ×
106
0.1/ch
50/in total
0.8
6.0
0.4
1/ch
2/ch
H7546B-20
32 ch Linearanode
H7260A-20 (-HV Cable Input Type) H7260-20
H8500C-03 (UV Glass Type)
H8500C
H8500D (HV Pin Input Type)
90
1.5 ×
106
0.02/ch
30/in total
0.8
6.0
0.4
0.2/ch
0.5/ch
20
3.3 ×
105
0.1/ch
30/in total
0.4
4.0
—
1.2/ch
3/ch
110
1.5 ×
106
0.1/ch
50/in total
0.65
5.3
0.28
0.8/ch
500
1.0 × 106
1/ch
10/ch
0.6
7.4
0.23
0.8/ch
H6152-70
H6610 (R5320)
H7415-01 (with 50 Ω)
H7416 (R7056)
H3378-50 (R3377)
H6533
H7415
H1949-51
H2431-50
H7546B
H9500-03 (UV Glass Type)
H9500
H10966A
2/ch
H10966B (HV Pin Input Type)
H12700A-03 (UV Glass Type)
H12700B (HV Pin Input Type)
1/ch
16 ch Linearanode
H10515B-20
H12700A∗
77
Photomultiplier Tube Assemblies Dimensional Outlines and Diagrams (Unit: mm)
q H3164-10
w H3695-10
10.5 ± 0.6
11.3 ± 0.7
8 MIN.
8 MIN.
SIGNAL OUTPUT
: RG-174/U (BLACK)
SIGNAL OUTPUT
: RG-174/U (BLACK)
P
R11
C3
DY8
R10
C2
P
DY7
R9
MAGNETIC
SHIELD (t=0.2 mm)
WITH HEAT
SHRINKABLE TUBE
C1
95.0 ± 2.5
95.0 ± 2.5
PMT: R1635
WITH HA TREATMENT
PHOTOCATHODE
45.0 ± 1.5
45.0 ± 1.5
PHOTOCATHODE
DY6
R8
DY5
R7
DY4
PMT: R2496
WITH HA TREATMENT
DY8
MAGNETIC
SHIELD (t=0.2 mm)
WITH HEAT
SHRINKABLE TUBE
DY6
R6
R5
DY5
R6
DY4
R4
R3
DY1
R3
R2
DY1
R2
R1
R1 to R11 : 330 kΩ
C1 to C3 : 0.01 µF
*TO MAGNETIC
SHIELD CASE
-HV
: SHIELD CABLE (GRAY)
10.6 ± 0.2
-HV
: SHIELD CABLE (GRAY)
1500
1500
R1
K
-HV
: SHIELD CABLE (GRAY)
* MAGNETIC SHIELD IS CONNECTED TO -HV INSIDE
OF THIS PRODUCT.
** HIGH VOLTAGE SHIELDED CABLE CAN BE
CONNECTED TO A CONNECTOR FOR RG-174/U.
SIGNAL OUTPUT
: RG-174/U (BLACK)
C1
R7
DY2
R4
-HV
: SHIELD CABLE (GRAY)
C2
R8
DY3
DY2
K
C3
R9
R5
DY3
10.6 ± 0.2
R10
DY7
SIGNAL OUTPUT
: RG-174/U (BLACK)
R1 to R4 : 510 kΩ
R5 to R10 : 330 kΩ
C1 to C3 : 0.01 µF
*TO MAGNETIC
SHIELD CASE
* MAGNETIC SHIELD IS CONNECTED TO -HV INSIDE
OF THIS PRODUCT.
** HIGH VOLTAGE SHIELDED CABLE CAN BE
CONNECTED TO A CONNECTOR FOR RG-174/U.
TPMHA0309ED
e H3165-10
TPMHA0310ED
r H12690
14.3 ± 0.6
14.3 ± 0.7
10 MIN.
10 MIN.
PHOTOCATHODE
PHOTOCATHODE
SIGNAL OUTPUT
: RG-174/U (BLACK)
71 ± 2
PMT: R647-01
WITH HA TREATMENT
P
P
R11
C3
R10
C2
DY9
R9
MAGNETIC SHIELD
CASE (t=0.2)
WITH HEAT
SHRINKABLE TUBE
88 ± 3
DY10
MAGNETIC SHIELD
CASE (t=0.2 mm)
WITH HEAT
SHRINKABLE TUBE
116.0 ± 3.0
SIGNAL OUTPUT
RG-174/U (BLACK)
PMT: R12421
WITH HA TREATMENT
C1
DY8
R7
R8
DY6
R6
R7
DY5
DY5
R5
R6
DY4
DY4
12.4 ± 0.5
R4
R5
DY3
DY3
R3
R4
DY2
DY2
SIGNAL OUTPUT
RG-174/U (BLACK)
R2
R1
R1 to R11 : 330 kΩ
C1 to C3 : 0.01 µF
R3
DY1
R2
1500
-HV
: SHIELD CABLE (RED)
12.4 ± 0.5
-HV:
SHIELD CABLE (RED)
* MAGNETIC SHIELD IS CONNECTED TO -HV INSIDE
OF THIS PRODUCT.
** HIGH VOLTAGE SHIELDED CABLE CAN BE
CONNECTED TO A CONNECTOR FOR RG-174/U.
R1
K
* TO MAGNETIC
SHIELD CASE
R1 to R12: 330 kΩ
C1 to C3: 0.01 µF
-HV
SHIELD CABLE (RED)
* TO MAGNETIC
SHIELD CASE
* MAGNETIC SHIELD IS CONNECTED TO -HV INSIDE
OF THIS PRODUCT.
** HIGH VOLTAGE SHIELDED CABLE CAN BE
CONNECTED TO A CONNECTOR FOR RG-174/U.
5 10
1500
C1
R9
DY7
DY6
SIGNAL OUTPUT
: RG-174/U (BLACK)
C2
R10
DY8
R8
-HV
: SHIELD CABLE (RED)
C3
R11
DY9
DY7
DY1
K
R12
DY10
TPMHA0311ED
y H6524
23.5 ± 0.5
19.3 ± 0.7
19.3 ± 0.7
15 MIN.
15 MIN.
P
C3
R10
C2
R9
C1
DY10
MAGNETIC SHIELD
CASE (t=0.5 mm)
DY9
DY8
R8
DY7
R7
DY6
MAGNETIC SHIELD
CASE (t=0.5 mm)
R7
R6
R5
DY4
R4
R4
DY3
R3
R3
DY2
DY2
R2
R2
-HV
: SHIELD CABLE (GRAY)
* TO MAGNETIC
SHIELD CASE
1500
1500
DY1
K
* MAGNETIC SHIELD IS CONNECTED TO GND
INSIDE OF THIS PRODUCT.
** HIGH VOLTAGE SHIELDED CABLE CAN BE
CONNECTED TO A CONNECTOR FOR RG-174/U.
-HV
: SHIELD CABLE (GRAY)
SIGNAL OUTPUT
: RG-174/U (BLACK)
TPMHA0312EC
78
C1
DY5
DY3
SIGNAL OUTPUT
: RG-174/U (BLACK)
C2
R9
DY8
DY6
R5
R1 : 510 kΩ
R2 to R11 : 330 kΩ
C1 to C3 : 0.01 µF
C3
R10
R8
DY4
-HV
: SHIELD CABLE (GRAY)
R11
DY9
DY7
R6
R1
P
DY10
DY5
DY1
K
SIGNAL OUTPUT
: RG-174/U (BLACK)
PHOTOCATHODE
PMT: R1450
WITH HA TREATMENT
R11
88 ± 2
88 ± 2
130.0 ± 0.8
SIGNAL OUTPUT
: RG-174/U (BLACK)
PHOTOCATHODE
PMT: R1166
WITH HA TREATMENT
1 MAX.
23.5 ± 0.5
130.0 ± 0.8
1 MAX.
t H6520
TPMHA0596EA
R1
R1
R3
R2, R4 to R11
C1 to C3
-HV
: SHIELD CABLE (GRAY)
: 680 kΩ
: 510 kΩ
: 330 kΩ
: 0.01 µF
* TO MAGNETIC
SHIELD CASE
* MAGNETIC SHIELD IS CONNECTED TO GND
INSIDE OF THIS PRODUCT.
** HIGH VOLTAGE SHIELDED CABLE CAN BE
CONNECTED TO A CONNECTOR FOR RG-174/U.
TPMHA0313EB
u H6612
i H6152-70
23.5 ± 0.5
31.0 ± 0.5
19.3 ± 0.7
25.8 ± 0.7
15 MIN.
SIGNAL OUTPUT
: RG-174/U (BLACK)
17.5 MIN.
R23
PHOTOCATHODE
65 ± 2
P
PMT: R3478
WITH HA TREATMENT
R11
C3
R10
C2
R9
C1
C6
1 MAX.
1 MAX.
SIGNAL OUTPUT
: RG-174/U (BLACK)
P
100.0 ± 0.8
130.0 ± 0.8
R8
DY5
R7
DY4
C2
R13
C1
R1 to R17 : 330 kΩ
R18, R23 : 1 MΩ
R19 to R21 : 51 Ω
R22 : 100 kΩ
R24 : 10 kΩ
C1 to C5 : 0.01 µF
C6, C7 : 0.0047 µF
R12
DY10
R6
R11
DY9
R5
R10
POM CASE
DY8
R4
R9
DY1
R3
DY7
R2
DY6
R1
DY5
R8
R7
-HV
: SHIELD CABLE (GRAY)
R6
DY4
R5
1500
* TO MAGNETIC
SHIELD CASE
R1 C1 to C3
R2 : 1 MΩ
R3 : 750 kΩ
R4, R6 to R11 : 560 kΩ
R5 : 330 kΩ
DY3
+HV
: SHIELD CABLE (GRAY)
R4
DY2
R3
DY1
R2
* MAGNETIC SHIELD IS CONNECTED TO GND
INSIDE OF THIS PRODUCT.
** HIGH VOLTAGE SHIELDED CABLE CAN BE
CONNECTED TO A CONNECTOR FOR RG-174/U.
SIGNAL OUTPUT
: RG-174/U (BLACK)
5 10
1500
C3
R14
DY11
DY2
SIGNAL OUTPUT
: RG-174/U (BLACK)
C4
R19 R15
+HV
: SHIELD CABLE (GRAY)
DY12
DY3
-HV
: SHIELD CABLE (GRAY)
R20 R16
R24
DY13
DY6
K
C5
DY14
DY7
MAGNETIC SHIELD
CASE (t=0.5 mm)
R21 R17
DY15
PMT: R5505-70
WITH HA TREATMENT
DY8
C7
R22
PHOTOCATHODE
K
R18
R1
* HIGH VOLTAGE SHIELDED CABLE CAN BE
CONNECTED TO A CONNECTOR FOR RG-174/U.
TPMHA0470EB
TPMHA0315EB
!0 H7415
o H6533
31.0 ± 0.5
26 ± 1
33.0 ± 0.5
SIGNAL OUTPUT
: RG-174/U (BLACK)
P
20 MIN.
SIGNAL OUTPUT
: RG-174/U (BLACK)
29.0 ± 0.7
R19
25 MIN.
C4
P
R22 R18
1 MAX.
DY10
R16
C3
R21 R15
PMT: R4998 (H6533)
R5320 (H6610)
WITH HA TREATMENT
120.0 ± 0.8
PMT: R6427 (H7415)
R7056 (H7416)
WITH HA TREATMENT
R14
C2
R20 R13
C1
MAGNETIC SHIELD
CASE (t=0.8 mm)
R11
DY6
R10
DY5
R1, R3, R19 : 430 kΩ
R2, R7 to R12, R15 to R17 : 330 kΩ
R4 : 820 kΩ
R5, R18 : 390 kΩ
R6, R14 : 270 kΩ
R13 : 220 kΩ
R20 to R22 : 51 Ω
C1 to C3 : 0.022 µF
C4 : 0.033 µF
R9
DY4
R8
DY3
R7
R6
DY2
R5
DY1
R4
R10
R8
DY5
MAGNETIC SHIELD
CASE (t=0.8 mm)
R7
DY4
R6
DY3
R5
DY2
R4
DY1
R3
R2
K
1500
R2
R1
-HV
: SHIELD CABLE (GRAY)
R1
-HV
: SHIELD CABLE (GRAY)
-HV
: SHIELD CABLE (GRAY)
* TO MAGNETIC
SHIELD CASE
SIGNAL OUTPUT
: RG-174/U (BLACK)
R1,R2 : 430 kΩ
R3 : 470 kΩ
R5 : 510 kΩ
R4,R6 to R13 : 300 kΩ
R14 to R16 : 51 Ω
C1 to C3 : 0.01 µF
DY7
R9
1500
ACC
G
K
C1
DY8
R3
-HV
: SHIELD CABLE (GRAY)
C2
R14 R11
DY6
130.0 ± 0.8
R12
DY7
C3
R15 R12
DY9
DY9
DY8
R16 R13
DY10
PHOTOCATHODE
85 ± 2
71 ± 1
PHOTOCATHODE
1 MAX.
R17
SIGNAL OUTPUT
: RG-174/U (BLACK)
* MAGNETIC SHIELD IS CONNECTED TO GND
INSIDE OF THIS PRODUCT.
** HIGH VOLTAGE SHIELDED CABLE CAN BE
CONNECTED TO A CONNECTOR FOR RG-174/U.
* TO MAGNETIC
SHIELD CASE
* MAGNETIC SHIELD IS CONNECTED TO GND
INSIDE OF THIS PRODUCT.
** HIGH VOLTAGE SHIELDED CABLE CAN BE
CONNECTED TO A CONNECTOR FOR RG-174/U.
TPMHA0317EC
!2 H3178-51
!1 H10828
47.0 ± 0.5
SIGNAL OUTPUT
: BNC-R
39 ±1
DY8
DY7
DY6
MAGNETIC SHIELD
CASE (t=0.8 mm)
R12
C3
R11
C2
R10
C1
C4
R14 R12
R11
C3
R9
R8
DY3
R7
R8
C1
R7
DY6
R6
DY5
DY4
R4
DY3
R3
DY2
R5
R4
: 300 kΩ
: 150 kΩ
: 180 kΩ
: 220 kΩ
: 330 kΩ
: 240 kΩ
: 51 Ω
: 10 kΩ
: 0.01 µF
: 0.022 µF
: 0.047 µF
: 0.1 µF
: 4700 pF
R3
DY1
R2
C4
K
R13
* TO MAGNETIC
SHIELD CASE
SIGNAL
OUTPUT
: BNC-R
R1
R15
-HV
: SHV-R
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
-HV
R1 : 470 kΩ
R2 : 430 kΩ
R3, R5, R7 to R9 : 300 kΩ
R4, R6 : 150 kΩ
R10, R11 : 51 Ω
R12 : 100 Ω
R13 : 10 kΩ
C1 to C3 : 0.022 µF
C4 : 0.001 µF
C5
DY1
-HV
: SHV-R
SIG
-HV
SIG
-HV
: SHV-R
C2
DY7
R5
R1
R9
DY8
MAGNETIC SHIELD
CASE (t=0.8 mm)
R6
R2
R1, R10, R12
R2 to R6, R13
R7
R8
R9
R11
R14
R15
C1
C2
C3
C4
C5
R10
DY9
PMT: R580
WITH HA TREATMENT
DY2
SIGNAL
OUTPUT
: BNC-R
R13
DY10
PHOTOCATHODE
DY4
162.0 ± 0.8
P
DY5
K
SIGNAL OUTPUT
: BNC-R
34 MIN.
162.0 ± 0.8
PHOTOCATHODE
ACTIVE VOLTAGE
DIVIDER
P
34 MIN.
* TO MAGNETIC
SHIELD CASE
39 ± 1
1 MAX.
47.0 ± 0.5
1 MAX.
TPMHA0318EC
-HV
: SHV-R
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
TPMHA0600EA
TPMHA0320EC
79
Photomultiplier Tube Assemblies Dimensional Outlines and Diagrams (Unit: mm)
!3 H8409-70
!4 H1949-51
60.0 ± 0.5
45.0 ± 0.5
C7
1 MAX.
39 ± 1
C6
R27
P
27 MIN.
R25 R21
R26
R24 R20
C4
R23 R19
C3
SIGNAL OUTPUT
: BNC-R
46 MIN.
P
+HV
: SHIELD CABLE (GRAY)
C5
DY19
PHOTOCATHODE
* TO MAGNETIC
SHIELD CASE
53.0 ± 1.5
1 MAX.
SIGNAL OUTPUT
: RG-174/U (BLACK)
R28
DY18
R18
C2
R17
C1
DY15
R1 to R21 : 330 kΩ
R22, R28 : 1 MΩ
R23 to R25 : 51 Ω
R26 : 10 kΩ
R27 : 100 kΩ
C1 to C5 : 0.01 µF
C6, C7 : 0.0047 µF
R16
DY14
R15
DY13
R14
DY12
R13
DY11
+HV
: SHIELD CABLE (GRAY)
PMT: R1828-01 (H1949-51)
R2059 (H3177-51)
R4004 (H4022-51)
WITH HA TREATMENT
C8
C4
C7
R12
C3
R11
C2
R10
C1
R1, R4
R2, R5
R3, R6 to R11, R17
R12 to R16
R18 to R20
R21
C1 to C7
C8
C9
C10
C11
DY9
DY8
DY7
R9
DY6
MAGNETIC SHIELD
CASE (t=0.8 mm)
R8
DY5
R7
R12
DY4
R11
DY3
R10
DY2
R9
DY1
: 240 kΩ
: 360 kΩ
: 200 kΩ
: 300 kΩ
: 51 Ω
: 10 kΩ
: 0.01 µF
: 0.022 µF
: 0.033 µF
: 0.01 µF
: 470 pF
R6
R5
DY9
R4
DY8
R3
DY7
R8
Acc
G1
K
DY6
5 10
C10
DY10
DY10
SIGNAL OUTPUT
: RG-174/U (BLACK)
C5
R18 R13
R19 R14
DY16
POM CASE
C9
DY11
235 ± 1
50 ± 2
80.0 ± 0.8
PMT: R7761-70
WITH HA TREATMENT
C6
R15
PHOTOCATHODE
DY17
1500
R17
R20 R16
DY12
R7
DY5
C11
R2
R21
R1
-HV
: SHV-R
R6
DY4
R5
DY3
R4
DY2
R3
DY1
R1
TPMHA0476EB
-HV
: SHV-R
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
TPMHA0326ED
!6 H7195
!5 H6410
60.0 ± 0.5
DY12
DY11
DY10
DY9
DY8
DY7
DY6
DY5
PMT: R329 (H6410)
R5113 (H6522)
R2256 (H6521)
WITH HA TREATMENT
R18
R21 R17
R16
R20 R15
R14
R19 R13
R12
R11
R10
R9
R8
200 ± 1
SH
MAGNETIC SHIELD
CASE (t=0.8 mm)
C4
R25
DY4
DY3
DY2
DY1
PHOTOCATHODE
C2
C1
PMT: R329
WITH HA TREATMENT
C7
DY12
DY11
MAGNETIC SHIELD
CASE (t=0.8 mm)
R6
R5
R4
R3
R2
R1
DY10
DY9
DY8
DY7
DY6
DY5
DY4
DY3
DY2
DY1
G
C6
R22
-HV
: SHV-R
: 240 kΩ
: 220 kΩ
: 180 kΩ
: 150 kΩ
: 300 kΩ
: 360 kΩ
: 51 Ω
: 100 Ω
: 10 kΩ
: 0.022 µF
: 0.047 µF
: 0.1 µF
: 0.22 µF
: 0.47 µF
: 470 pF
K
R21
R24 R20
R19
R18
R23 R17
R16
R22 R15
R14
R13
R12
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
C6
C5
R1, R25
R2 to R4, R17 to R19
R5, R6, R8 to R13, R15
R16, R20, R21
R7, R14
R22
R23, R24
C1
C2
C3
C4
C5
C6
C7
C4
C3
C2
R1
C1
: 10 kΩ
: 110 kΩ
: 100 kΩ
: 160 kΩ
: 51 Ω
: 100 Ω
: 470 pF
: 0.022 µF
: 0.047 µF
: 0.1 µF
: 0.22 µF
: 0.47 µF
: 0.01 µF
-HV
: SHV-R
DYNODE 12 OUTPUT
: BNC-R
ANODE
OUTPUT 1
: BNC-R
DY
A1
-HV
SIG
-HV
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
TPMHA0324EC
ANODE
OUTPUT 2
: BNC-R
A2
R1, R5
R2, R10, R16
R3, R9
R4, R6 to R8, R14, R18
R11, R13, R17
R12, R15
R19
R20, R21
R22
C1
C2
C3
C4
C5
C6
!7 H2431-50
- HV
: SHV-R
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
TPMHA0323EB
!8 H6614-70
60.0 ± 0.5
* TO MAGNETIC
SHIELD CASE
53.0 ± 1.5
C8
C9
C6
C7
C10
C11
R17 R15
DY8
PHOTOCATHODE
60.0 ± 0.5
R14
R13
R11
C12
DY6
R10
C3
R9
C2
R8
C1
DY5
DY4
MAGNETIC SHIELD
CASE (t=0.8 mm)
DY3
R7
DY2
R6
DY1
R5
R4
ACC
R1 : 33 kΩ
R2, R15 : 390 kΩ
R3, R4, R13 : 470 kΩ
R5 : 499 kΩ
R6, R16 : 360 kΩ
R7 : 536 kΩ
R8 to R11 : 300 kΩ
R12 : 150 kΩ
R14 : 430 kΩ
R17 : 51 Ω
C1, C2 : 4700 pF
C3 to C11 : 0.01 µF
C12, C13 : 1000 pF
C14 : 2200 pF
+0
C5
80-1
C4
R25 R20
C4
R24 R19
C3
R23 R18
C2
R17
C1
R27
+HV
: SHIELD CABLE (GRAY)
DY18
PHOTOCATHODE
DY17
PMT: R5924-70
WITH HA TREATMENT
DY16
DY15
R16
R15
LIGHT SHIELD STEM
POM CASE
DY13
R14
DY12
R13
DY11
+HV
: SHIELD CABLE (GRAY) DY10
R12
R11
DY9
R10
R1 to R21
R22, R29
R23 to R26
R27
R28
C1 to C5
C6, C7
: 330 kΩ
: 1 MΩ
: 51 Ω
: 10 kΩ
: 100 kΩ
: 0.01 µF
: 0.0047 µF
DY8
R9
C14
SIGNAL OUTPUT
: RG-174/U (BLACK)
R1
-HV
: SHV-R
5 10
R2
C5
DY14
R3
G
K
R26 R21
DY19
1500
R12
C6
R28
P
39 MIN.
C13
DY7
PMT: R2083 (H2431-50)
R3377 (H3378-50)
WITH HA TREATMENT
C7
52 ± 1
R16
1 MAX.
P
SIGNAL OUTPUT
: RG-174/U (BLACK)
R29
SIGNAL OUTPUT
: BNC-R
46 MIN.
200 ± 1
P
C3
R7
G
K
-HV
: SHV-R
C5
ANODE OUTPUT 2
: BNC-R
ANODE OUTPUT 1
: BNC-R
DYNODE OUTPUT
: BNC-R
46 MIN.
215 ± 1
PHOTOCATHODE
1 MAX.
1 MAX.
P
* TO MAGNETIC
SHIELD CASE
53.0 ± 1.5
SIGNAL OUTPUT
: BNC-R
46 MIN.
SIGNAL
OUTPUT
: BNC-R
60.0 ± 0.5
* TO MAGNETIC
SHIELD CASE
53.0 ± 1.5
1 MAX.
SIGNAL
OUTPUT
: BNC-R
A1
R22
K
-HV
R2
* HIGH VOLTAGE SHIELDED CABLE CAN BE
CONNECTED TO A CONNECTOR FOR RG-174/U.
DY7
R8
DY6
R8
DY5
R6
DY4
R5
DY3
R4
DY2
R3
SIGNAL
OUTPUT
: BNC-R
DY1
SIG
-HV
-HV
: SHV-R
R2
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
* HIGH VOLTAGE SHIELDED CABLE CAN BE
CONNECTED TO A CONNECTOR FOR RG-174/U.
TPMHA0327EC
80
K
R22
R1
TPMHA0472EB
!9 H6559
@0 H6527, H6528
83 ± 1
65 MIN.
SIGNAL OUTPUT
: BNC-R
PMT: R6091
WITH HA TREATMENT
218 ± 1
SH
C3
C2
C1
R7
DY4
DY3
DY2
DY1
MAGNETIC SHIELD
CASE (t=0.8 mm)
R6
R5
R4
R3
R2
R1
G
K
PMT: R1250 (H6527)
R1584 (H6528)
WITH HA TREATMENT
C1
R1, R17 : 240 kΩ
R2 : 360 kΩ
R3 : 390 kΩ
R4 : 120 kΩ
R5 : 180 kΩ
R6 to R13 : 100 kΩ
R14, R15 : 150 kΩ
R16 : 300 kΩ
R18 : 51 Ω
R19, R20 : 100 Ω
R21 : 10 kΩ
C1 : 0.022 µF
C2 : 0.047 µF
C3 : 0.1 µF
C4 : 0.22 µF
C5 : 0.47 µF
C6 : 470 pF
R12
DY9
R11
DY8
R10
-HV
: SHV-R
DY7
R9
DY6
R8
BLACK TAPE
DY5
SOCKET ASSY
HOUSING
DY4
R7
R6
DY3
R5
DY2
R4
74 ± 0.5
DY1
R3
G2
R21
-HV
: SHV-R
SIG
-HV
: SHV-R
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
H6527=Flat window, Borosilicate
H6528=Curved window, UV glass
TPMHA0331EC
R1
-HV
SIG
-HV
SIGNAL OUTPUT
: BNC-R
-HV
: SHV-R
C6
R2
G1
K
TPMHA0332ED
@2 H8711, H8711-20, H8711-100, H8711-200, H8711-300
2.5
GUIDE MARKS
0.65
2
2
1
1
15
7
8
33.0 ± 0.5
3.08
TOP VIEW
8
K G
P8
P16
GND
4-SCREWS
(M2)
2.54
45.0 ± 0.8
ANODE SIZE
(X) × (Y)
4.4 mm × 4.4 mm
4.2 mm × 4.4 mm
4.4 mm × 4.2 mm
4.2 mm × 4.2 mm
ANODE OUTPUT
TERMINAL PIN
( 0.46,
2.54 PITCH 8 × 4)
-HV
P9
0.8 MAX.
25.7
2.54
0.5 TYP.
13
18.1
ANODE #1 to #8
OUTPUT PIN ( 0.46)
16.0 ± 0.5
14
GND
2.54
-HV
1
3
16
DY
P1
26
2 GND
4
5
6
6
5
7
4
8
2.54 × 5=12.7
2
3
GND INPUT
TERMINAL PIN ( 0.46)
-HV INPUT
TERMINAL PIN ( 0.46)
12.7
POM CASE
5.08
3
X
30.0 ± 0.5
4
-HV INPUT
TERMINAL PIN ( 0.46)
0.3
Dy12 OUTPUT
TERMINAL PIN ( 0.46)
PMT:
R7600-M16 SERIES
Y
2.54
4- 0.3
GUIDE MARKS
MOUNTING THREADED HOLE
(M2 DEPTH 5)
7.62
2
2.8
3
35.0 ± 0.5
21.6
C2
R13
DY10
MAGNETIC SHIELD
CASE (t=0.8 mm)
@1 H9530-20
2.54 × 7=17.78
2.8
SIDE VIEW
BOTTOM VIEW
TERMINAL PINS
ANODE
P1, P4, P13, P16
P2, P3, P14, P15
P5, P8, P9, P12
P6, P7, P10, P11
P1
ANODE1 OUTPUT
GND
P2
ANODE2 OUTPUT
GND
ANODE8 OUTPUT
GND
P8
TERMINAL PINS
DY1 DY2 DY3 DY4 DY5 DY6
DY7
DY8 DY9 DY10 DY11 DY12
C1
R1
-HV
C3
R14
DY11
C6
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
SIGNAL
OUTPUT
: BNC-R
C4
R18 R15
DY12
R1, R5 : 240 kΩ
R2, R10, R16 : 220 kΩ
R3, R9 : 180 kΩ
R4, R6 to R8, R14, R18 : 150 kΩ
R11, R13, R17 : 300 kΩ
R12, R15 : 360 kΩ
R19 : 51 Ω
R20, R21 : 100 Ω
R22 : 10 kΩ
C1 : 0.022 µF
C2 : 0.047 µF
C3 : 0.1 µF
C4 : 0.22 µF
C5 : 0.47 µF
C6 : 470 pF
70 ± 1
C5
R19 R16
DY13
77
R22
R20 R17
DY14
140 ± 1
DY10
DY9
DY8
DY7
DY6
DY5
P
PHOTOCATHODE
C4
259 ± 2
DY11
SIGNAL OUTPUT
: BNC-R
C5
356 ± 6
PHOTOCATHODE
40 ± 1
R18
R21 R17
R16
R20 R15
R14
R19 R13
R12
R11
R10
R9
R8
DY12
120 MIN.
56
P
* TO MAGNETIC
SHIELD CASE
133 ± 2
1 MAX.
1 MAX.
142.0 ± 0.8
* TO MAGNETIC
SHIELD CASE
77.0 ± 1.5
R2
R3
R4
R1 to R6, R9:
R7:
R8:
R10 to R12:
C1 to C4:
R5
R6
220 kΩ
1 kΩ
200 kΩ
51 Ω
0.01 µF
R7
GAIN ADJUSTMENT
CIRCUIT *
R8
R10
C2
R11
C3
SB
P-1
P-2
P-3
P-4
P-5
P-6
P-7
P-8
R12
C4
ACTIVE VOLTAGE
DIVIDER
R9
ANODE1
ANODE2
ANODE3
ANODE4
ANODE5
ANODE6
ANODE7
ANODE8
P9
GND
ANODE15 OUTPUT GND
P16
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12
ANODE16 OUTPUT GND
C4
R15 R16
R17
R14
R1
R18
R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12
R13
C1 C2
C3
* Gain on each channel is preset at the factory.
It is prohibited to adjust gain with this circuit at user side
R1 to R3 : 360 kΩ
R4 to R13 : 180 kΩ
R14 : 1 MΩ
TPMHA0508ED
@3 H7546B, H7546B-20, H7546B-100, H7546B-200, H7546B-300
ANODE9 OUTPUT
P15
K F
4 × 2 LINE
2.54 PITCH
TERMINAL PINS
DY12 OUTPUT
GND
TERMINAL PINS
-HV INPUT
R15 to R17 : 51 Ω
R18 : 10 kΩ
C1 to C4 : 0.01 µF
GND
TPMHA0487EE
@4 H7260-20, H7260-100, H7260-200
7.62
0.8
1
2.54 × 9=22.86
1.27
0.8 Typ.
7
ANODE1 OUTPUT
ANODE2 OUTPUT
P63
P64
ANODE63 OUTPUT
ANODE64 OUTPUT
..
.
K F
R21
C1
R18
C2
R19
R2
R3
-HV
TERMINAL PIN
( 0.64)
R4
R5
R6
R7
R8
R1, R5 to R14 : 100 kΩ
R2 to R4, R15 : 200 kΩ
R16 : 300 kΩ
R17 to R19 : 51 Ω
7.5
ANODE #32
A32-ANODE - A2 -HV
TPMHA0455EG
P1
ANODE1 OUTPUT
P2
ANODE2 OUTPUT
P31
P32
ANODE31 OUTPUT
KG
R20
Dy12 OUTPUT
TERMINAL PIN ( 0.64)
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9
C3
R9 R10 R11 R12 R13 R14 R15 R16
ANODE #31
3.3
TERMINAL PINS
(2.54 mm PITCH,
0.64, 8 × 8)
GND TERMINAL PIN ( 0.64)
R1
35.0 ± 0.5
ANODE #2
ANODE #1 to #32
OUTPUT ( 0.46)
(16PIN × 2 LINE
2.54 PITCH)
24.0 ± 0.5
DY12 C4
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11
R17
..
.
DY10 OUTPUT
PIN ( 0.5)
ANODE #32
BOTTOM VIEW
P1
P2
ANODE #1
DY OUT A31-ANODE - A1 GND
P64
GND
P1
P8
DY
4-SCREWS (M2)
2.54 × 15 = 38.1
P57
ANODE #1
Dy12 OUTPUT
TERMINAL PIN
( 0.64)
2.54
5.2
SIDE VIEW
TOP VIEW
-HV INPUT
TERMINAL PIN
( 0.5)
GND
HV
2.54×7=17.78
4.2
45.0 ± 0.8
25.7
2.54
POM CASE
GND TERMINAL
PIN ( 0.64)
2.54
30.0 ± 0.5
1 2 3 4 5 6 7 8
57 58 59 60 61 6263 64
0.8 MAX.
18.1
5.08
2.54
POM CASE
GND TERMINAL
PIN ( 0.5)
31.8
0.3
ANODE OUTPUT
TERMINAL PIN
( 0.64, 2.54 PITCH 8 × 8)
52.0 ± 0.5
4- 0.3
GUIDE MARKS
-HV INPUT
TERMINAL PIN
( 0.64)
PMT:
R7600-M64 SERIES
2
GND TERMINAL PIN ( 0.64)
R20 : 10 kΩ
R21 : 1 MΩ
C1 to C3 : 0.022 µF
C4 : 0.01 µF
TPMHA0488ED
C1
DY10
C4
R8
C2
R9
C3
16 × 2 LINE
2.54 PITCH
ANODE32 OUTPUT
DY10 OUTPUT
R11
R10
R1 R2 R3 R4 R5 R6 R7
R1 to R7 : 220 kΩ
R8, R9 : 51 Ω
R10 : 1 MΩ
ACTIVE VOLTAGE
DIVIDER
SHIELD SHIELD
R11 : 10 kΩ
C1 to C4 : 0.01 µF
DIVIDER CURRENT : 0.37 mA (at -900 V)
GND TERMINAL PIN
-HV INPUT TERMINAL PIN
TPMHA0192EB
81
Photomultiplier Tube Assemblies Dimensional Outlines and Diagrams (Unit: mm)
@5 H8500C
@6 H9500
32.7 ± 1.0
27.4 ± 0.9
1
10, 9, 2,
3
12, 11, 4,
5
GND
SIDE VIEW
-HV: SHV-P
(SHIELD CABLE, GRAY)
3.04
P8
P64
P7
P63
P6
P62
P5
P61
P16
P256
P4
P60
P15
P255
P3
P59
P2
P58
P1
P57
K
R20
R5
R6
R7
R8
R16
R17
R18
C1
C2
C3
R19
R9
ACTIVE VOLTAGE
DIVIDER
ANODE OUTPUT (P64)
ANODE OUTPUT (P63)
R22
R1 to R9: 470 kΩ
R16 to R18: 51 Ω
R19: 10 kΩ
R20: 1 MΩ
R21, R22: 4.99 kΩ
C1, C7: 0.01 µF
C2: 0.022 µF
C3: 0.033 µF
C8: 0.0047 µF
-HV
SHV-P
(SHIELD CABLE, GRAY)
4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR
......
....
......
......
DIVIDER CURRENT 0.18 mA at -1100 V
DIVIDER CURRENT
0.173 mA at -1100 V
4 × 0.8 mm PITCH HEADER
(P/N QTE-040-03-F-D-A, SAMTEC)
TPMHA0544EB
@8 H12700A
6 × 6=36
6.25
6.25
PLASTIC BASE
PC BOARD
P64
P8
P64
P7
P63
P7
P63
P6
P62
P6
P62
P5
P61
P5
P61
P4
P60
P4
P60
P3
P59
P3
P59
P2
P58
P2
P58
P1
P57
GR
P1
P57
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10
R16
R3
R4
R5
R6
R7
58.57.50.49.42.41.34.33.26.25.18.17.10.9.2.1
SIG1
R8
R23
ANODE OUTPUT (P64)
ANODE OUTPUT (P63)
ANODE OUTPUT (P62)
ANODE OUTPUT (P61)
ANODE OUTPUT (P60)
ANODE OUTPUT (P59)
ANODE OUTPUT (P58)
ANODE OUTPUT (P8)
ANODE OUTPUT (P7)
ANODE OUTPUT (P6)
ANODE OUTPUT (P5)
ANODE OUTPUT (P4)
ANODE OUTPUT (P3)
225 µA at -1100 V
ANODE OUTPUT (P2)
DIVIDER CURRENT
SIGNAL GND
-HV
SHV-P
(SHIELD CABLE, GRAY)
C1, C2: 0.01 µF
C3: 0.022 µF
C4: 0.033 µF
C10: 0.01 µF
C11, C12: 0.0015 µF
DY10 OUTPUT
......
R1 to R8: 390 kΩ
R16, R20: 10 kΩ
R17 to R19: 51 Ω
R21: 1 MΩ
R22, R23: 4.99 kΩ
ANODE OUTPUT (P1)
ANODE OUTPUT (P64)
ANODE OUTPUT (P63)
ANODE OUTPUT (P62)
ANODE OUTPUT (P61)
R22
ANODE OUTPUT (P60)
ANODE OUTPUT (P8)
ANODE OUTPUT (P7)
ANODE OUTPUT (P6)
ANODE OUTPUT (P5)
ANODE OUTPUT (P4)
ANODE OUTPUT (P3)
ANODE OUTPUT (P2)
ANODE OUTPUT (P1)
SIGNAL GND
DY8 OUTPUT
C11
ANODE OUTPUT (P59)
....
......
4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR
4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR
82
R2
C4
C12
R21
DIVIDER CURRENT
0.245 mA at -1100 V
R19
C3
ACTIVE VOLTAGE
DIVIDER
ACTIVE VOLTAGE
DIVIDER
R22
-HV
SHV-P
(SHIELD CABLE, GRAY)
R18
C2
R20
R1
R5
R1 to R9: 470 kΩ
R16 to R18: 51 Ω
R19: 10 kΩ
R20: 1 MΩ
R21, R22: 4.99 kΩ
C1: 0.01 µF
C2: 0.022 µF
C3: 0.033 µF
C7: 0.0047 µF
C8, C9: 0.0015 µF
R17
C1
R21
R19
ANODE OUTPUT (P58)
R4
C3
ANODE OUTPUT (P57)
R3
R18
C2
(P49 to P56)
R2
C8
C9
R17
C1
(P9 to P16)
R1
R16
GND
ANODE
C10
C7
R20
GND
ANODE
BOTTOM VIEW
P8
K
GR
60.59.52.51.44.43.36.35.28.27.20.19.12.11.4.3
-HV: SHV-P
(SHIELD CABLE, GRAY)
BOTTOM VIEW
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8
30.29.22.21.14.13.6.5
SIDE VIEW
-HV: SHV-P
(SHIELD CABLE, GRAY)
K
38.37
M3 DEPTH 2.5
4-SIGNAL OUTPUT CONNECTOR
HSA-200-D36P-X
mfg. JC ELECTRONICS CORPORATION
PC BOARD
TOP VIEW
SIDE VIEW
62.61.54.53.46.45
GND
ANODE
2
INSULATING TAPE
4-SIGNAL OUTPUT CONNECTOR
TMM-118-03-G-D, mfg. SAMTEC
SIG2
P57 P58 P59 P60 P61 P62 P63 P64
M3 DEPTH 2.5
SIG3
6.25
SIG1
58,
P49 P50 P51 P52 P53 P54 P55 P56
DY.64.63.56.55.48.47.39.32.31.24.23.16.15.8.7
P41 P42 P43 P44 P45 P46 P47 P48
SIG4
57, 50, 49
P33 P34 P35 P36 P37 P38 P39 P40
36
6 × 6=36
GND
52, 51
60, 59
61, 54, 53
SIG2
62
P9 P10 P11 P12 P13 P14 P15 P16
P25 P26 P27 P28 P29 P30 P31 P32
0.5
2 × 17=34
52.0 ± 0.3
6.25
1
12, 11, 4,
10, 9, 2,
3
5
16, 15,
56, 55
36
PLASTIC BASE
TOP VIEW
14, 13, 6,
8, 7
-HV
2
INSULATION TAPE
P1 P2 P3 P4 P5 P6 P7 P8
P17 P18 P19 P20 P21 P22 P23 P24
12 × 3=36
4.5 ± 0.3
4
2
4
ANODE OUTPUT (P57)
6.26
16.4 ± 0.5
1.5
START MARK
450 ± 20
6.08 × 6=36.48
SIG3
P57 P58 P59 P60 P61 P62 P63 P64
DY, 64, 63
P49 P50 P51 P52 P53 P54 P55 P56
SIG4
P41 P42 P43 P44 P45 P46 P47 P48
450 ± 20
P33 P34 P35 P36 P37 P38 P39 P40
0.5
2 × 17=34
52.0 ± 0.3
P25 P26 P27 P28 P29 P30 P31 P32
52.0 ± 0.3
6.08 × 6=36.48
P9 P10 P11 P12 P13 P14 P15 P16
PHOTOCATHODE (EFFECTIVE AREA)
49
6.26
P1 P2 P3 P4 P5 P6 P7 P8
P17 P18 P19 P20 P21 P22 P23 P24
32.7 ± 1.0
27.4 ± 0.9
12 × 3=36
4.5 ± 0.3
4
2
4
52.0 ± 0.3
14.8 ± 0.5
1.5
START MARK
PHOTOCATHODE (EFFECTIVE AREA)
48.5
31.1 ± 1.0
25.8 ± 0.9
6.26
TPMHA0504EB
GND
ANODE
@7 H10966A
6.26
ANODE OUTPUT (P256)
R4
ANODE OUTPUT (P255)
R3
C8
ANODE OUTPUT (P62)
ANODE OUTPUT (P8)
ANODE OUTPUT (P7)
ANODE OUTPUT (P6)
ANODE OUTPUT (P5)
ANODE OUTPUT (P4)
ANODE OUTPUT (P3)
ANODE OUTPUT (P2)
ANODE OUTPUT (P1)
SIGNAL GND
R1 to R9 : 470 kΩ
R16 to R18 : 51 Ω
R19 : 10 kΩ
R20 : 1 MΩ
R21, R22 : 4.99 kΩ
C1 : 0.01 µF
C2 : 0.022 µF
C3 : 0.033 µF
C7 : 0.0047 µF
C8, C9 : 0.0015 µF
DY12 OUTPUT
......
R2
R21
ANODE OUTPUT (P61)
....
ANODE OUTPUT (P60)
R21
ANODE OUTPUT (P59)
R22
ANODE OUTPUT (P58)
(P9 to P16)
R1
ANODE OUTPUT (P242)
R9
ACTIVE VOLTAGE
DIVIDER
-HV
SHV-P
(SHIELD CABLE, GRAY)
P241
C7
R19
ANODE OUTPUT (P241)
R8
P242
P1
(P17 to P32)
R7
C8
C9
P2
(P225 to P240)
R6
C3
GR
ANODE OUTPUT (P16)
R5
C2
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12
ANODE OUTPUT (P15)
R4
C1
BOTTOM VIEW
ANODE OUTPUT (P2)
R3
R18
(P49 to P56)
R2
R17
ANODE OUTPUT (P57)
R1
R16
SIDE VIEW
......
TOP VIEW
C7
R20
4-SIGNAL CONNECTOR
QTE-040-03-F-D-A, SAMTEC
36.4 ± 0.9
......
GR
8.6
M3 DEPTH 4
33.3 ± 0.9
ANODE OUTPUT (P1)
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12
23.65
14.4 ± 0.5
49
GND
K
8.6
1.5
3.04 × 14=42.56
BOTTOM VIEW
DY12 OUTPUT
NOTE *A: Polarized position of omitted pin
*B: Suitable sockets for the signal connectors will be attached.
The equivalent socket is SQT-118-01-L-D (SAMTEC).
As it doesn't have a polarized position marker,
it can be used at any positions.
52.0 ± 0.3
M3 DEPTH 2.5
4-SIGNAL OUTPUT CONNECTOR *B
TMM-118-03-G-D, mfg. SAMTEC
PC BOARD
PHOTOCATHODE (EFFECTIVE AREA)
49
58,
450 - 0
+20
57, 50, 49
52, 51
62
60, 59
56, 55
61, 54, 53
36
PLASTIC BASE
TOP VIEW
14, 13, 6,
8, 7
H8500
16, 15,
-HV
2
INSULATING TAPE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
3.04
6.26
6
INSULATING TAPE
START MARK
3.04 × 14=42.56
6.08 × 6=36.48
6.26
-HV: SHV-P
(SHIELD CABLE, GRAY)
SIG1
P57 P58 P59 P60 P61 P62 P63 P64
SIG2
6.26
P49 P50 P51 P52 P53 P54 P55 P56
DY, 64, 63
P41 P42 P43 P44 P45 P46 P47 P48
SIG4
P33 P34 P35 P36 P37 P38 P39 P40
450 ± 20
52.0 ± 0.3
6.08 × 6=36.48
P25 P26 P27 P28 P29 P30 P31 P32
0.5
2 × 17=34
52.0 ± 0.3
P9 P10 P11 P12 P13 P14 P15 P16
PHOTOCATHODE (EFFECTIVE AREA)
49
6.26
P1 P2 P3 P4 P5 P6 P7 P8
P17 P18 P19 P20 P21 P22 P23 P24
12 × 3=36
4.5 ± 0.3
4
2
4
SIG3
16.4 ± 0.5
1.5
START MARK
TPMHA0559EB
TPMHA0601EA
1.0 PITCH
@9 H10515B-20
ANODE OUTPUT TERMINAL PIN
30.0 ± 0.5
PHOTOCATHODE
(BDL-108-G-F, Mfg. SAMTEC)
16
16
TOP VIEW
0.8 MAX.
P16
DY10
R10
DY9
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
P16
-HV
GND
P2 P4 P6 P8 P10 P12 P14 P16
P1 ANODE OUTPUT P15
-HV GND
P2 ANODE OUTPUT P16
2.54 × 7=17.78
ANODE OUTPUT
6.35
DY7
R7
P1 P3 P5 P7 P9 P11 P13 P15
5.7
R9
DY8
GND INPUT
TERMINAL PIN
( 0.46)
0.64
SIDE VIEW
24
P4
P5
GND
TERMINAL PIN
R11
POM CASE
4-SCREW (M2)
P2
P3
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
P16
45.0 ± 0.5
PMT:
R5900-20-L16
P1
DY6
R6
DY5
R5
DY4
R4
DY3
R3
DY2
ANODE #1 to #16
OUTPUT ( 0.46)
2.54
24
R2
DY1
G
K
-HV INPUT
TERMINAL PIN
( 0.46)
BOTTOM VIEW
ACTIVE VOLTAGE
DIVIDER
0.8
15.8
P1
R1
R8
-HV INPUT
TERMINAL PIN
R1 to R7 : 220 kΩ
R8 : 1 MΩ
R9 to R11 : 51 Ω
DIVIDER CURRENT: 0.37 mA (at -900 V)
TPMHA0534EB
#1 H12428-100, H12428-200
GUIDE
MARK
1 REF.
30.0 ± 0.5
26.2
30.0 ± 0.5
TOP VIEW
TOP VIEW
SIDE VIEW
4.2
39.0 ± 0.8
26.2
ANODE2 OUTPUT
GR
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12
P15
ANODE15 OUTPUT
R5
R6
R7
R8
R16 R17 R18
R9 R10 R11 R12 R13 R14
C1
P16
ANODE16 OUTPUT
TERMINAL PIN
(2.54 mm PITCH,
0.64, 4 × 4)
K
C2
P1
ANODE1 OUTPUT
P2
ANODE2 OUTPUT
P63
ANODE63 OUTPUT
P64
ANODE64 OUTPUT
GR
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12
R19
DY12 OUTPUT
TERMINAL PIN ( 0.64)
R15
R20
R1 R2
R3
R4
R5
R6
R7
R8
R16 R17 R18
R9 R10 R11 R12 R13 R14
C3
C1
GND TERMINAL PIN ( 0.64)
R16 to R18 : 51 Ω
R19 : 10 kΩ
R20 : 1 MΩ
C1 to C4 : 0.01 µF
C2
R19
DY12 OUTPUT
TERMINAL PIN ( 0.64)
R15
C3
GND TERMINAL PIN ( 0.64)
GND TERMINAL PIN ( 0.64)
-HV TERMINAL PIN ( 0.64)
R1, R3 : 240 kΩ
R2 : 220 kΩ
R4 to R14 : 200 kΩ
R15 : 100 kΩ
TPMHA0591EA
TERMINAL PIN
(2.54 mm PITCH,
0.64, 8 × 8)
C4
GND TERMINAL PIN ( 0.64)
-HV TERMINAL PIN ( 0.64)
R1, R3 : 240 kΩ
R2 : 220 kΩ
R4 to R14 : 200 kΩ
R15 : 100 kΩ
GND
BOTTOM VIEW
C4
R20
R4
DY
4-SCREW (M2)
SIDE VIEW
ANODE1 OUTPUT
P2
K
R3
P64
GND
2.54
2.54 × 9=22.86
BOTTOM VIEW
P1
R1 R2
DY12 OUTPUT TERMINAL PIN ( 0.64)
TS-101-T-A-1, SAMTEC
P57
-HV
2.88 × 8=23.04
5.08
2.54 × 3=7.62
P1
P8
2.88 × 8=23.04
PHOTO CATHODE
23 MIN.
P13
P5
P9
P1
GND
DY12
-HV
GND
P8
P4
P16
P12
2.54 × 3=7.62
PHOTO CATHODE
23 MIN.
5.08
8
4.2
GND TERMINAL PIN ( 0.64)
TS-101-T-A-1, SAMTEC
POM CASE
1
1 REF.
39.0 ± 0.8
23.55
4-SCREW
(M2)
ANODE OUTPUT TERMINAL PIN
( 0.64, 2.54 PITCH, 8 × 8)
TD-108-T-A-1, SAMTEC × 4 PCS
-HV TERMINAL PIN ( 0.64)
ASP-23882-A-1, SAMTEC
INSULATING TAPE
0.25
64
4
16
5.75 × 4=23
DY12 OUTPUT
TERMINAL PIN ( 0.64)
ASP-23882-A-1, SAMTEC
57
1
13
5.75 × 4=23
POM CASE
PMT:
R11265-M64 SERIES
5
3
0.275
ANODE OUTPUT TERMINAL PIN
( 0.64, 2.54 PITCH, 4 × 4)
TD-104-T-A-1, SAMTEC × 2 PCS
-HV TERMINAL PIN ( 0.64)
ASP-23882-A-1, SAMTEC
4
2
PMT:
R11265-M16 SERIES
12 13
GUIDE
MARK
*P.62
2.54
*P.62
2.54 × 7=17.78
#0 H12445-100, H12445-200
R16 to R18 : 51 Ω
R19 : 10 kΩ
R20 : 1 MΩ
C1 to C4 : 0.01 µF
TPMHA0592EA
83
Photomultiplier Tube Socket Assemblies
Photomultiplier Tube Socket Assemblies
Hamamatsu provides a wide variety of socket assemblies specifically designed
for simple and reliable operation of photomultiplier tubes (often abbreviated as
PMTs). These socket assemblies consist primarily of a high quality socket and
voltage divider circuit integrated into a compact case. Variant types are available
with internal current-to-voltage conversion amplifiers, gate circuits and high voltage power supply circuits.
Types of Socket Assemblies
The circuit elements used in Hamamatsu socket assemblies
are represented by the three letters below. The socket assembly types are grouped according to the combination of
these letters.
D : Voltage Divider
A : Amplifier
P : High Voltage Power Supply
DP-Type Socket Assemblies (C12597-01, C8991, etc.)
DP-type socket assemblies comprise a built-in high-voltage
power supply circuit added to a D-type socket assembly.
Figure 42: DP-Type Socket Assembly
SOCKET
HIGH VOLTAGE POWER SUPPLY
SIGNAL OUTPUT
SIGNAL GND
LOW VOLTAGE INPUT
PMT
HIGH VOLTAGE CONTROL
D-Type Socket Assemblies (E717, E990 Series, etc.)
The D-type socket assemblies contain a voltage divider circuit along with a socket in a compact metallic or plastic case.
VOLTAGE DIVIDER
POWER SUPPLY GND
TACCC0003EB
Refer to page 90 for the selection guide to D-type socket assemblies.
Figure 40: D-Type Socket Assembly
SOCKET
SIGNAL OUTPUT
DAP-Type Socket Assemblies (C6271, C7950, etc.)
This type of socket assembly has a current-to-voltage conversion amplifier and a high voltage power supply, efficiently
added to the circuit components of the D-type socket assembly.
Figure 43: DAP-Type Socket Assembly
SIGNAL GND
SOCKET
AMPLIFIER
SIGNAL OUTPUT
PMT
POWER SUPPLY GND
SIGNAL GND
HIGH VOLTAGE INPUT
LOW VOLTAGE INPUT
PMT
HIGH VOLTAGE CONTROL
VOLTAGE DIVIDER CIRCUIT
POWER SUPPLY GND
TACCC0001EB
VOLTAGE DIVIDER
HIGH VOLTAGE POWER SUPPLY
TACCC0054EA
DA-Type Socket Assemblies (C7246, C7247 Series)
In addition to the circuit elements of the D-type socket assemblies, the DA-type socket assemblies include an amplifier that converts the low-level, high-impedance current output
of a photomultiplier tube into a low-impedance voltage output. Possible problems from noise induction are eliminated
since the high-impedance output of the photomultiplier tube
is connected to the amplifier at the minimum distance.
Figure 41: DA-Type Socket Assembly
SOCKET
AMP
LOW VOLTAGE INPUT
PMT
SIGNAL OUTPUT
SIGNAL GND
HIGH VOLTAGE INPUT
VOLTAGE-DIVIDER CIRCUIT
TACCC0002ED
84
Basics of Voltage Dividers
The following information describes voltage divider circuits
which are basic to all types of socket assemblies. Refer to
this section for information on proper use of the socket assemblies.
Voltage Divider Circuits
To operate a photomultiplier tube, a high voltage of 500 volts
to 2000 volts is usually supplied between the photocathode
(K) and the anode (P), with a proper voltage gradient set up
along the photoelectron focusing electrode (F) or grid (G),
secondary electron multiplier electrodes or dynodes (Dy)
and, depending on photomultiplier tube type, an accelerating
electrode (Acc). Figure 44 shows a schematic representation
of photomultiplier tube operation using independent multiple
power supplies, but this is not a practical method. Instead, a
voltage divider circuit is commonly used to divide, by means
of resistors, a high voltage supplied from a single power supply.
Figure 44: Schematic Representation of Photomultiplier
Tube Operation
LIGHT
K
F
Dy1
ePHOTOELECTRONS
Dy2
Dy3
P
SECONDARY ELECTRONS
eeeANODE CURRENT
Ip
A
V2
V1
V3
V4
V5
Figure 47: Equally Divided Voltage Divider Circuit
POWER SUPPLIES
TACCC0055EA
Figure 45 shows a typical voltage divider circuit using resistors, with the anode side grounded. The capacitor C1 connected in parallel to the resistor R5 in the circuit is called a
storage capacitor and improves the output linearity when the
photomultiplier tube is used in pulse operation, and not necessarily used in providing DC output. In some applications,
transistors or Zener diodes may be used in place of these resistors.
Figure 45: Anode Grounded Voltage Divider Circuit
K
F
Dy1
Dy2
Dy3
P
Ip
OUTPUT
RL
R2
R1
R3
R4
R5
C1
-HV
TACCC0056EB
Anode Grounding and Photocathode Grounding
In order to eliminate the potential difference between the
photomultiplier tube anode and external circuits such as an
ammeter, and to facilitate the connection, the generally used
technique for voltage divider circuits is to ground the anode
and supply a high negative voltage (-HV) to the photocathode, as shown in Figure 45. This scheme provides the signal output in both DC and pulse operations, and is therefore
used in a wide range of applications.
In photon counting and scintillation counting applications,
however, the photomultiplier tube is often operated with the
photocathode grounded and a high positive voltage (+HV)
supplied to the anode mainly for purposes of noise reduction.
This photocathode grounding scheme is shown in Figure 46,
along with the coupling capacitor Cc for isolating the high
voltage from the output circuit. Accordingly, this setup cannot
provide a DC signal output and is only used in pulse output
applications. The resistor RP is used to give a proper potential to the anode. The resistor RL is placed as a load resistor,
but the actual load resistance will be the combination of RP
and RL.
Figure 46: Photocathode Grounded Voltage Divider Circuit
K
F
Dy1
Dy2
Dy3
P
CC
OUTPUT
Ip
RP
R1
R2
R3
R4
R5
RL
C2
C1
+HV
Standard Voltage Divider Circuits
Basically, the voltage divider circuits of socket assemblies
listed in this catalog are designed for standard voltage distribution ratios which are suited for constant light measurement. Socket assemblies for side-on photomultiplier tubes in
particular mostly use a voltage divider circuit with equal interstage voltages allowing high gain.
TACCC0057EB
K
Dy1
Dy2
Dy3
Dy4
Dy5
P
OUTPUT
1R
1R
1R
1R
1R
1R
C1
C2
RL
-HV
TACCC0058EB
Tapered Voltage Divider Circuits
In most pulsed light measurement applications, it is often
necessary to enhance the voltage gradient at the first and/or
last few stages of the voltage divider circuit, by using larger
resistances as shown in Figure 48. This is called a tapered
voltage divider circuit and is effective in improving various
characteristics. However it should be noted that the overall
gain decreases as the voltage gradient becomes greater. In
addition, care is required regarding the interstage voltage tolerance of the photomultiplier tube as higher voltage is supplied. The tapered voltage circuit types and their suitable applications are listed below.
Tapered circuit at the first few stages (resistance: large / small)
Photon counting (improvement in pulse height distribution)
Low-light-level detection (S/N ratio enhancement)
High-speed pulsed light detection (improvement in timing properties)
Other applications requiring better magnetic characteristics and uniformity
Tapered circuit at the last few stages (resistance: small / large)
High pulsed light detection (improvement in output linearity)
High-speed pulsed light detection (improvement in timing properties)
Other applications requiring high output across the load resistor
Figure 48: Tapered Voltage Divider Circuit
K
Dy1
Dy2
Dy3
Dy4
Dy5
P
OUTPUT
2R
1.5R
1R
1R
-HV
2R
3R
C1
C2
RL
TACCC0059EB
Voltage Divider Circuit and Photomultiplier Tube Output Linearity
In both DC and pulse operations, when the light incident on
the photocathode increases to a certain level, the relationship between the incident light level and the output current
begins to deviate from the ideal linearity. As can be seen
from Figure 49, region A maintains good linearity, and region
B is the so-called overlinearity range in which the output increase is larger than the ideal level. In region C, the output
goes into saturation and becomes smaller than the ideal level. When accurate measurement with good linearity is essential, the maximum output current must be within region A. In
contrast, the lower limit of the output current is determined by
the dark current and noise of the photomultiplier tube as well
as the leakage current and noise of the external circuit.
85
Photomultiplier Tube Socket Assemblies
Figure 49: Output Linearity of Photomultiplier Tube
10
K
C
I1 (=IK)
IK
I2
Dy1
IDy1
I4 (=IP)
I3
Dy2
Dy3
IDy2
IR1
P
IP
IDy3
IR2
IR3
IR4
B
1.0
ACTUAL
CURVE
0.1
R1
R2
R3
R4
V1
V2
V3
V4
IDEAL
CURVE
-HV
ID
TACCC0061EA
0.01
A
RATIO OUTPUT CURRENT
TO DIVIDER CURRENT
Figure 51: Operation without Light Input
TACCB0005EA
0.001
0.001
0.01
0.1
1.0
10
LIGHT FLUX (A.U.)
Output Linearity in DC Mode
Figure 50 is a simplified representation showing photomultiplier tube operation in the DC output mode, with three stages
of dynodes and four dividing resistors R1 through R4 having
the same resistance value.
Figure 50: Basic Operation of Photomultiplier Tube
and Voltage Divider Circuit
K
Dy1
Dy2
Dy3
I2
I1
I4
I1' < I2' < I3' < I4'
Ip
IK
IDy1
IDy2
Thus, the interstage voltage Vn' (=IRn' • Rn) becomes smaller
at the latter stages, as follows:
A
IDy3
R1
R2
R3
R4
IR1
IR2
IR3
IR4
IRn' = ID' - In'
Where In' is the interelectrode current which has the following relation:
P
I3
[When light is incident on the tube]
When light is allowed to strike the photomultiplier tube under
the conditions in Figure 51, the resulting currents can be
considered to flow through the photomultiplier tube and the
voltage divider circuit as schematically illustrated in Figure
52. Here, all symbols used to represent the current and voltage are expressed with a prime ( ' ), to distinguish them
from those in dark state operation.
The voltage divider circuit current ID' is the sum of the voltage
divider circuit current ID in dark state operation and the current flowing through the photomultiplier tube ∆ID (equal to
average interelectrode current). The current flowing through
each dividing resistor Rn becomes as follows:
V1' > V2' > V3' > V4'
ID
-HV
TACCC0060EA
Figure 52: Operation with Light Input
K
[When light is not incident on the tube]
In dark state operation where a high voltage is supplied to a
photomultiplier tube without incident light, the current
components flowing through the voltage divider circuit will be
similar to those shown in Figure 51 (if we ignore the
photomultiplier tube dark current). The relation of current and
voltage through each component is given below
Interelectrode current of photomultiplier tube
I1' (=IK')
Ik'
Dy2
IDy1'
IR1'
I4' (=IP')
I3'
I2'
Dy1
Dy3
IDy2'
IR2'
P
IDy3'
IR3'
R1
R2
R3
V1'
V2'
V3'
IP'
IR4'
R4
V 4'
-HV
ID' =ID + ∆ID
TACCC0062EA
I1=I2=I3=I4 (= 0 A)
Electrode current of photomultiplier tube
IK=IDy1=IDy2=IDy3=IP (= 0 A)
Voltage divider circuit current
4
IR1=IR2=IR3=IR4=ID= (HV/ Σ Rn)
n=1
Voltage divider circuit voltage
V1=V2=V3=V4=ID • Rn (= HV/4)
86
Figure 53 shows changes in the interstage voltages as the
incident light level varies. The interstage voltage V4' with light
input drops significantly compared to V4 in dark state operation. This voltage loss is redistributed to the other stages, resulting an increases in V1', V2' and V3' which are higher than
those in dark state operation. The interstage voltage V4' is
only required to collect the secondary electrons emitted from
the last dynode to the anode, so it has little effect on the
anode current even if dropped to 20 or 30 volts. In contrast,
the increases in V1', V2' and V3' directly raise the secondary
emission ratios (δ1, δ2 and δ3) at the dynodes Dy1, Dy2 and
Dy3, and thus boost the overall gain m (= δ1 • δ2 • δ3 ). This is
the cause of overlinearity in region B in Figure 49. As the incident light level further increases so that V4' approaches 0
volts, output saturation occurs in region C.
Figure 53: Changes in Interstage Voltages at Different
Incident Light Levels
120
TACCB0017EA
INTERSTAGE VOLTAGE (%)
MODERATE
LIGHT INPUT
HIGH LIGHT INPUT
110
2Using the active voltage divider circuit
Use of a voltage divider circuit having transistors in place of
the dividing resistors in last few stages (for example, Hamamatsu C12597 series using FETs) is effective in improving
the output linearity. This type of voltage divider circuit ensures good linearity up to an output current equal to 60 % to
70 % of the voltage divider current, since the interstage voltage is not affected by the interelectrode current inside the
photomultiplier tube. A typical active voltage divider circuit is
shown in Figure 55.
100
NO OR FAINT
LIGHT INPUT
90
80
V1
V2
V3
As stated above, good output linearity can be obtained simply by increasing the voltage divider current. However, this is
accompanied by heat emanating from the voltage divider. If
this heat is conducted to the photomultiplier tube, it may
cause problems such as an increase in the dark current, and
variation in the output.
V4
POSITION OF INTERSTAGE VOLTAGE
Figure 55: Active Voltage Divider Circuit
Linearity Improvement in DC Output Mode
To improve the linearity in DC output mode, it is important to
minimize the changes in the interstage voltage when photocurrent flows through the photomultiplier tube. There are several specific methods for improving the linearity, as discussed below.
1Increasing the voltage divider current
Figure 54 shows the relationship between the output linearity
of a 28 mm (1-1/8") diameter side-on photomultiplier tube
and the ratio of anode current to voltage divider current. For
example, to obtain an output linearity of 1 %, it can be seen
from the figure that the anode current should be set approximately 1.4 % of the divider circuit current. However, this is a
calculated plot, so actual data may differ from tube to tube
even for the same type of photomultiplier tube, depending on
the supply voltage and individual dynode gains. To ensure
high photometric accuracy, it is recommended that the voltage divider current be maintained at least twice the value obtained from this figure.
The maximum linear output in DC mode listed for the D-type
socket assemblies in this catalog indicates the anode current
equal to 1/20 of the voltage divider current. The output linearity at this point can be maintained within ±3 % to ±5 %.
Figure 54: Output Linearity vs. Anode Current to
Voltage Divider Current Ratio
10
K
Dy2
Dy3
Dy4
P
Dy5
RL
TWO
TRANSISTORS
-HV
TACCC0063EA
3Using Zener Diodes
The output linearity can be improved by using Zener diodes
in place of the dividing resistors in the last few stages, because the Zener diodes serve to maintain the interstage voltages at a constant level. However, if the supply voltage is
greatly varied, the voltage distribution may be imbalanced
compared to other interstage voltages, thus limiting the adjustable range of the voltage with this technique. In addition,
if the supply voltage is reduced or if the current flowing
through the Zener diodes becomes insufficient due to an increase in the anode current, noise may be generated from
the Zener diodes. Precautions should be taken when using
this type of voltage divider circuit. Figure 56 shows a typical
voltage divider circuit using Zener diodes.
Figure 56: Voltage Divider Circuit Using Zener Diodes
TACCB0031EA
K
OUTPUT LINEARITY (%)
Dy1
Dy1
Dy2
Dy3
Dy4
Dy5
P
1
TWO
ZENER DIODES
RL
-HV
0.1
TACCC0064EA
0.01
0.1
1
10
RATIO OF ANODE CURRENT TO VOLTAGE DIVIDER CURRENT (%)
87
Photomultiplier Tube Socket Assemblies
4Using Cockcroft-Walton Circuit
When a Cockcroft-Walton circuit as shown in Figure 57 is
used to operate a 28 mm (1-1/8") diameter side-on photomultiplier tube with a supply voltage of 1000 volts, good DC
linearity can be obtained up to 200 µA and even higher.
Since a high voltage is generated by supplying a low voltage
to the oscillator circuit, there is no need for using a high voltage power supply.
This Cockcroft-Walton circuit achieves superior DC output
linearity as well as low current consumption.
RL
Since this method directly supplies the pulse current with
electrical charges from the capacitors, if the count rate is increased and the resulting duty factor becomes larger, the
electrical charge will be insufficient. Therefore, in order to
maintain good linearity, the capacitance value obtained from
the above equation must be increased according to the duty
factor, so that the voltage divider current is kept at least 50
times larger than the average anode current just as with the
DC output mode.
The active voltage divider circuit and the booster method using multiple power supplies discussed previously, provide superior pulse output linearity even at a higher duty factor.
OSCILLATION
CIRCUIT
Figure 59: Equally Divided Voltage Divider Circuit and
Storage Capacitors
Figure 57: Cockcroft-Walton Circuit
K
Dy1
Dy2
Dy3
Dy4
Dy5
C > 100 • Q/V
where Q is the charge of one output pulse (coulombs) and V
is the voltage (volts) across the last dynode and the anode.
P
-HV
GENERATED
TACCC0065EA
5Using multiple high voltage power supplies
As shown in Figure 58, this technique uses multiple power
supplies to directly supply voltages to the last few stages
near the anode. This is sometimes called the booster method, and is used for high pulse and high count rate applications in high energy physics experiments.
K
Dy1
Dy2
Dy3
Dy1
Dy2
Dy3
Dy4
Dy5
Dy5
P
RL
1R
1R
1R
1R
Figure 58: Voltage Divider Circuit Using Multiple Power
Supplies (Booster Method)
K
Dy4
1R
1R
C1
C2
TWO STORAGE CAPACITORS
-HV
P
TACCC0067EB
RL
AUXILIARY
POWER SUPPLY 2
AUXILIARY POWER SUPPLY 1
MAIN POWER SUPPLY
TACCC0066EA
Output Linearity in Pulsed Mode
In applications such as scintillation counting where the incident light is in the form of pulses, individual pulses may
range from a few to over 100 milliamperes even though the
average anode current is small at low count rates. In this
pulsed output mode, the peak current in extreme cases may
reach a level hundreds of times higher than the voltage divider current. If this happens, it is not possible to supply interelectrode currents from the voltage divider circuit to the last
few stages of the photomultiplier tube, thus leading to degradation in the output linearity.
Improving Linearity in Pulsed Output Mode
1Using storage capacitors
Using multiple power supplies mentioned above is not popular in view of the cost. The most commonly used technique is
to supply the interelectrode current by using storage capacitors as shown in Figure 59. There are two methods for connecting these storage capacitors: the serial method and the
parallel method. As Figures 59 and 60 show, the serial method is more widely used since it requires lower tolerance voltages of the capacitors. The capacitance value C (farads) of
the storage capacitor between the last dynode and the
anode should be at least 100 times the output charge as follows:
88
2Using tapered voltage divider circuit with storage
capacitors
Use of the above voltage divider circuit having storage capacitors is effective in improving pulse linearity. However,
when the pulse current increases further, the electron density
also increases, particularly in last stages. This may cause a
space charge effect which prevents interelectrode current
from flowing adequately and leading to output saturation. A
commonly used technique for extracting a higher pulse current is the tapered voltage divider circuit in which the voltage
distribution ratios in the latter stages are enhanced as shown
in Figure 60. Care should be taken in this case regarding
loss of the gain and the breakdown voltages between electrodes.
Since use of a tapered voltage divider circuit allows an increase in the voltage between the last dynode and the
anode, it is possible to raise the voltage across the load resistor when it is connected to the anode. It should be noted
however, that if the output voltage becomes excessively
high, the voltage between the last dynode and the anode
may drop, causing a degradation in output linearity.
Figure 60: Tapered Voltage Divider Circuit Using
Storage Capacitors
K
Dy1
Dy2
Dy3
Dy4
Dy5
P
RL
1R
1R
1R
1.5R
2.5R
3R
C1
C2
TWO STORAGE CAPACITORS
-HV
TACCC0068EB
D-Type Socket Assemblies
The D-type socket assemblies are grouped as follows:
(a) For DC output (-HV supply)
Available only upon request
(b) For DC or pulsed output (-HV supply)
ex. E717-63
(c) For pulsed output (+HV supply)
ex. E990-08
(d) For DC or pulsed output (-HV supply), or pulsed output
(+HV supply)
ex. E717-74
Connection of D-Type Socket Assemblies to External
Circuits
Figure 61 shows typical examples of connecting various Dtype socket assemblies to external circuits.
Figure 61: Connection of D-Type Socket Assemblies to Extrernal Circuits
(a) For DC output (-HV supply)
K
F
SIG
P
Dy1
Dy2
Eo=Ip • RL
Dy3
Ip
TO VOLTMETER,
AMPLIFIER UNIT OR OSCILLOSCOPE
RL
SIGNAL GND
R1
R2
R3
R4
R5
AMMETER
A
Ip
Rf
-HV
POWER SUPPLY
GND
-
Cf
Ip
-HV
Eout=-Ip • Rf
TO VOLTMETER OR
SIGNAL PROCESSING CIRCUIT
+
FET INPUT OP AMP
(b) For DC or pulsed output (-HV supply)
K
TACCC0069EA
F
SIG
P
Dy1
Dy2
Eo = Ip • RL
Dy3
Ip
TO VOLTMETER
AMPLIFIER UNIT OR OSCILLOSCOPE
RL
SIGNAL GND
R1
R2
R3
R4
R5
C1
C2
AMMETER
A
Ip
Rf
-HV
POWER SUPPLY
GND
-
Cf
Ip
-HV
Eout=-Ip • Rf
TO VOLTMETER OR
SIGNAL PROCESSING CIRCUIT
+
FET INPUT OP AMP
K
(c) For pulsed output (+HV supply)
TACCC0070EA
AMPLIFIER UNIT
F
SIG
P
Dy1
Dy2
Dy3
Cp
Ip
TO SIGNAL PROCESSING
CIRCUIT
CL
RL
Rp
SIGNAL GND
R1
R2
R3
R4
R5
C1
C2
CHARGE AMP
Cf
C3
Rf
—
TO SIGNAL PROCESSING
CIRCUIT
Qs
+HV
POWER SUPPLY
GND
+
Vout =-Qs/Cf
+HV
(d) For DC or pulsed output (-HV supply),
or pulsed output (+HV supply)
K
TACCC0071EB
F
SIG
P
Dy1
Dy2
Eo=Ip • RL
Dy3
d-1. For DC or pulsed output (-HV supply)
SIGNAL GND
R1
* GND should be connected externaly.
R2
R3
R4
R5
C1
C2
Ip
Ip
∗
RL
A
TO VOLTMETER,
AMPLIFIER UNIT OR OSCILLOSCOPE
AMMETER
Rf
+
-
-
Cf
Ip
-HV
POWER SUPPLY
GND
-HV
Eout =- Ip • Rf
TO VOLTMETER OR
SIGNAL PROCESSING CIRCUIT
+
FET INPUT OP AMP
* GND and CB should be connected externally.
K
0.001 µ F to 0.005 µ F
AMPLIFIER UNIT
CERAMIC DISK
(2 kV to 3 kV)
F
P
Dy1
R1
R2
Dy2
R3
Dy3
R4
C1
CP SIG
10 kΩ to 1 MΩ
d-2. For pulsed output (+HV supply)
For general scintillation counting and
photon counting applications, recommended values for CP and RP are 0.001
µF to 0.005 µF and 10 kΩ to 1 MΩ.
Since a high voltage is supplied to
these parts, care must be taken when
handling this circuit.
R5
Ip
CL
RL
Rp
CHARGE AMP
Cf
-
+
+HV
TO SIGNAL PROCESSING
CIRCUIT
SIGNAL
GND
∗
C2
-
POWER SUPPLY
GND
TACCC0072EA
∗
Rf
TO SIGNAL
PROCESSING CIRCUIT
Qs
+
Vout=- Qs/Cf
CB
TACCC0073EC
89
D-Type Socket Assemblies
Socket
Assembly
Type No.
Applicable
PMT
Diameter
B
C
Maximum Ratings
Out- Grounded
Leakage
Total
Maximum
A
Insulation
line Electrode / Voltage
Linear
Voltage Current in Voltage
and Supply between Supply Divider Signal
Divider Output in
Voltage
Dia- Voltage Case and
Max. Resistance DC Mode
Current
Pins
gram Polarity
(V)
(V)
(mA)
(A)
(MΩ)
(µA)
Signal
Output
Note
For Side-on Types
q
Anode / -
1500
1250
0.38
1 × 10-10
3.30
E850-22
w
Anode / -
1500
1250
0.38
1 × 10-10
3.30
E717-63
e
Anode / -
1500
1500
0.45
1 × 10-10
3.30
28 mm (1-1/8") r
Anode•
Cathode
/ +•-
1500
1500
0.46
1 × 10-10
3.30
t
Anode / -
1250
1250
0.38
1 × 10-10
3.30
y
Anode / -
1500
1500
0.41
1 × 10-10
3.63
E1761-05
u
Anode / -
1500
1500
0.37
1 × 10-10
4.02
E849-35
i
Anode / -
1250
1250
0.34
1 × 10-10
3.63
o
Anode / -
1250
1250
0.34
1 × 10-10
3.63
E849-68
!0
Anode / -
1250
1250
0.27
1 × 10-10
4.48
E849-99
!1
Anode / -
1250
1250
0.32
1 × 10-10
3.96
E974-13
!2
Anode / -
1800
1800
0.47
1 × 10-10
3.81
E974-14
!3 Cathode / +
1800
1800
0.47
—
3.81
E974-17
!4
Anode / -
1800
1800
0.47
1 × 10-10
3.81
!5
Anode / -
1800
1800
0.43
1 × 10-10
4.16
E2253-05
!6
Anode / -
1800
1800
0.35
1 × 10-10
5.13
E2253-08
!7 Cathode / +
1800
1800
0.35
—
5.13
E974-29
!8
Anode / -
1250
1250
0.29
1 × 10-10
4.30
E974-18
!9
Anode / -
1500
1500
0.37
1 × 10-10
3.98
E2924-11
@0
Anode / -
1800
1800
0.41
1 × 10-10
4.47
@1
Anode / -
1500
1250
0.30
1 × 10-10
4.29
E2924-500
@2
Anode / -
1500
1250
0.30
1 × 10-10
4.29
E2924-05
@3 Cathode / +
1500
1250
0.30
—
4.30
E990-07
@4
Anode / -
1500
1500
0.38
1 × 10-10
3.96
E990-08
@5 Cathode / +
1500
1500
0.38
—
3.96
E990-501
@6
Anode / -
1500
1500
E2624
@7
Anode / -
2500
E2624-05
@8 Cathode /+
E2624-14
@9
E850-13
13 mm (1/2")
E717-74
E717-500
18
(at 1250 V)
18
(at 1250 V)
22
(at 1500 V)
22
(at 1500 V)
18
(at 1250 V)
Mounting flange E5038
(P.92) supplied.
E850-13 with connector
DC / Pulse
E5038 not supplied
DC / Pulse
DC / Pulse
DC / Pulse Pin output
DC / Pulse E717-63 with connector
For Head-on Types
E1761-04
10 mm (3/8")
E849-90
13 mm (1/2")
E974-22
19 mm (3/4")
E2924
25 mm (1")
28 mm (1-1/8")
Anode / -
0.38
1×
10-10
3.96
2500
0.52
1 × 10-10
4.80
2500
2500
0.52
—
4.80
2500
2500
0.52
1 × 10-10
4.80
NOTE: AMeasured with the maximum supply voltage
BMeasured with a supply voltage of 1000 V except for E5996, E7083 and E6736 (900 V)
CThe current at which the output linearity is kept within ±5 %
90
20
(at 1500 V)
19
(at 1500 V)
17
(at 1250 V)
17
(at 1250 V)
13
(at 1250 V)
16
(at 1250 V)
23
(at 1800 V)
—
DC / Pulse
DC / Pulse For R2496
DC / Pulse E5038 (P.92) supplied
E849-35 with connector
E5038 not supplied
For R4124
DC / Pulse
E5038 (P.92) supplied
For R12421,
DC / Pulse
E5038 (P.92) supplied
DC / Pulse
DC / Pulse
Pulse
For Scintillation Counting
23
DC / Pulse E974-13 with connector
(at 1800 V)
For R1450,
21
DC / Pulse
with connector
(at 1800 V)
For R3478,
17
DC / Pulse
with connector
(at 1800 V)
For R3478,
Pulse
—
for Scintillation Counting
For R5610A, R5611A,
14
DC / Pulse
with connector
(at 1250 V)
For R1878,
18
DC / Pulse
with connector
(at 1500 V)
20
DC / Pulse For R7899
(at 1800 V)
14
DC / Pulse
(at 1250 V)
14
DC / Pulse E2924 with connector
(at 1250 V)
—
Pulse
For Scintillation Counting
18
DC / Pulse
(at 1500 V)
—
Pulse
For Scintillation Counting
18
DC / Pulse E990-07 with connector
(at 1500 V)
26
DC / Pulse For R6427,
(at 2500 V)
For R6427,
Pulse
—
for Scintillation Counting
26
DC / Pulse E2624 with connector
(at 2500 V)
B
Maximum Ratings
Socket
Assembly
Type No.
Applicable
PMT
Diameter
Out- Grounded
line Electrode /
and Supply
Dia- Voltage
gram Polarity
C
Total
Maximum
A Leakage
Insulation
Linear
Voltage Supply Voltage Current in Voltage
between
Divider Output in
Divider Signal
Voltage
Case and
Max. Resistance DC Mode
Current
Pins
(V)
(V)
(mA)
(A)
(MΩ)
(µA)
Signal
Output
Note
For Head-on Types
#0
Anode / -
1500
1500
0.35
1 × 10-10
4.29
#1
Anode / -
1500
1500
0.34
1 × 10-10
4.48
#2
Anode / -
2000
1750
0.45
1 × 10-10
3.97
E2183-502
#3 Cathode / +
2000
1750
0.45
—
3.96
E1198-26
#4
Anode / -
1500
1500
0.38
1 × 10-10
4.01
#5 Cathode / +
1500
1500
0.38
—
4.01
#6
Anode / -
1500
1500
0.46
1 × 10-10
3.3
#7 Cathode / +
1500
1500
0.46
—
3.3
E990-500
28 mm (1-1/8")
E990-29
E2183-500
38 mm (1-1/2")
E1198-27
E1198-05
51 mm (2")
76 mm (3")
E1198-20
#8
E1198-07
51 mm (2")
Anode / -
1750
1750
0.44
1 × 10-10
3.98
E2979-500
#9
Anode / -
3000
3000
0.70
1 × 10-10
4.31
E1198-23
$0 Cathode / +
2200
2000
0.51
—
3.97
$1
Anode / -
2200
2000
0.51
1 × 10-10
3.97
$2 Cathode / +
2200
2000
0.51
—
3.97
E6316-01
$3
Anode / -
2200
2000
0.51
1 × 10-10
3.97
E5859-05
$4
Anode / -
1500
1500
0.38
1 × 10-10
3.98
E5859-19
$5
Anode / -
-2000
2000
0.57
1 × 10-10
3.53
$6
Anode / -
2700
2700
0.67
1 × 10-10
4.06
E5859-01
$7
Anode / -
2700
2700
0.75
1 × 10-10
3.62
E5859-03
$8 Cathode / +
2700
2700
0.75
—
3.62
E1198-22
E6316
E5859
51 mm (2")
76 mm (3")
127 mm (5")
51 mm (2")
76 mm (3")
E1435-02
51 mm (2")
$9
Anode / -
1500
1500
0.38
1 × 10-10
3.96
E7693
127 mm (5")
%0
Anode / -
3000
3000
1.03
1 × 10-10
2.94
%1
Anode / -
1100
1100
0.32
1 × 10-10
3.46
%2
Anode / -
1100
1100
0.32
1 × 10-10
3.46
%3
Anode / -
900
900
0.33
1 × 10-10
2.75
%4
Anode / -
900
900
0.33
1 × 10-10
2.75
%5
Anode / -
900
900
0.38
1 × 10-10
2.42
%6
Anode / -
1000
1000
0.34
1 × 10-10
2.97
%7
Anode / -
1000
1000
0.36
1 × 10-10
2.78
%7
Anode / -
1000
1000
0.36
1 × 10-10
2.69
%8 Cathode / +
2500
2500
0.45
—
5.62
Metal Package PMT
R9880U Series
Metal Package PMT
E10679-51
R9880U Series
Metal Package PMT
E5996
R7600U Series
Metal Package PMT
E7083
R7600U-M4 Series
Metal Package PMT
E6736
R5900U-L16
Metal Package PMT
E7514
R8900U-C12
Metal Package PMT
E11807
R11265U Series
Metal Package PMT
E11807-01
R11265U Series
E10679-02
E6133-04
For High Magnetic
Environments
25 mm (1")
17
DC / Pulse With connector
(at 1500 V)
16
DC / Pulse For R3998-02
(at 1500 V)
22
DC / Pulse With connector
(at 1750 V)
With connector,
—
Pulse
for scintillation counting
18
DC / Pulse
(at 1500 V)
—
Pulse
For scintillation counting
22
DC / Pulse
(at 1500 V)
—
Pulse
22
DC / Pulse
(at 1750 V)
34
DC / Pulse
(at 3000 V)
—
Pulse
For scintillation counting
For R2154-02
For R1828-01,
with rear panel connector,
with magnetic shield
For scintillation counting
25
DC / Pulse
(at 2000 V)
—
25
(at 2000 V)
18
(at 1500 V)
28
(at 2000 V)
33
(at 2700 V)
37
(at 2700 V)
—
18
(at 1500 V)
51
(at 3000 V)
16
(at 1100 V)
16
(at 1100 V)
16
(at 900 V)
4 D
(at 900 V)
1.16 D
(at 900 V)
1.4 D
(at 1000 V)
17
(at 1000 V)
18
(at 1000 V)
—
Pulse
E1198-23,
with rear panel connector,
for scintillation counting
DC / Pulse
E1198-22,
with rear panel connector
DC / Pulse With rear panel connector
DC / Pulse
For R7724
with rear panel connector
DC / Pulse With rear panel connector
DC / Pulse With rear panel connector
Pulse
With rear panel connector,
for scintillation counting
DC / Pulse
For R1250, for R1584,
with rear panel connector
With connector:
DC / Pulse
E10679-03
DC / Pulse
DC / Pulse Pin output
DC / Pulse
DC / Pulse
DC / Pulse
DC / Pulse
DC / Pulse
DC / Pulse
Pulse
E11807, with tapered
voltage divider circuit
For R5505,
with connector
NOTE: DCurrent of one anode
CAUTION: Socket assemblies are not designed to operate in a vacuum.
Temperature ranges of D-type socket assemblies are as follows (except for some products):
Operating: 0 °C to +50 °C
Storage: -15 °C to +60 °C
Do not use the socket assemblies if condensation occurs, since a high voltage is output from the socket.
Insert the photomultiplier tube all the way into the socket.
Insert the photomultiplier tube straight into the socket, or pull the photomultiplier tube straight out of the socket when removing it.
91
D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm)
Mounting flange: E5038 (For E850 series, E849 series)
q E850-13
SOCKET
PIN No.
PMT
P
POTTING
COMPOUND
R8
C1
2.5
2 × M3
A'
DY7
8
DY6
7
R7
R6
DY5
6
DY4
5
DY3
4
DY2
3
R5
R1 to R10 : 330 kΩ
C1 to C3 : 10 nF
R4
10.7 10.7
10 5
HOUSING
(INSULATOR)
C2
9
DY8
12.4 ± 0.5
C3
R9
20°
10
DY9
12.6 ± 0.5
R10
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
POWER SUPPLY GND
AWG22 (BLACK)
30.0 ± 0.3
14.0 ± 0.3
450 ± 10
35.0 ± 0.5
0.5 MAX.
11
7.0 ± 0.3
2 × 3.2
A
2.5
R3
15
A–A' CROSS SECTION
R2
2
DY1
K
R1
-HV
AWG22 (VIOLET)
1
TACCA0336EA
TACCA0096EC
e E717-63
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
P
DY9
10
12.6 ± 0.5
DY8
9
12.4 ± 0.5
DY7
8
DY6
7
DY5
6
450 ± 10
POTTING
COMPOUND
C3
R9
C2
R8
C1
P
38.0 ± 0.3
49.0 ± 0.3
4
DY2
3
DY1
K
2
9
DY8
8
30.0 +0
-1
R4
R3
-HV
SHIELD CABLE (RED)
SHV CONNECTOR
R9
C2
R8
C1
7
DY6
6
DY5
5
DY4
4
DY3
3
DY2
2
DY1
K
1
R1 to R10 : 330 kΩ
C1 to C3 : 10 nF
R5
31.0 ± 0.5
R4
HOUSING
(INSULATOR)
450 ± 10
R1
C3
R6
R2
1
R10
POTTING
COMPOUND
R3
R2
R1
-HV
AWG22 (VIOLET)
11
TACCA0002EH
TACCA0240EB
r E717-74
t E717-500
HOUSING
(INSULATOR)
SIGNAL
OUTPUT (A)
GND (G)
DY8
26.0±0.2
DY7
32.0±0.5
PMT
R10
C3
38.0 ± 0.3
R9
C2
49.0 ± 0.3
R8
C1
DY9
8
DY8
29.0 ± 0.3
7
DY7
R13
°
30°
K
3 × 0.7
4 × 2.8
R6
R5
DY4
4
DY3
3
R1 to R10 : 330 kΩ
C1 to C3 : 10 nF
2
R2
DY1
K
C2
R8
C1
8
7
HOUSING
(INSULATOR)
DY6
6
DY5
5
R1 to R10 : 330 kΩ
C1 to C3 : 10 nF
R5
DY4
4
DY3
3
DY2
2
DY1
K
1
R4
R3
DY2
C3
R9
R6
31.0 ± 0.5
R4
1
R1
11
-HV (K)
POTTING
COMPOUND
R3
R2
R1
11
* "Wiring diagram at above applies when -HV is supplied."
To supply +HV,connect the pin "G" to+HV, and the pin
"K" to the GND. Refer to "(d) d-2" on page 89 for the
connection method.
TACCA0277EA
92
0.7
5
41.0 ± 0.5
2.7
10
22.4±0.2
6
R10
9
R7
450 ± 10
7
14.0±0.5
2
R7
DY5
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
10
9
DY6
SOCKET
PIN No.
P
4
26.0±0.2
32.0±0.5
10
3.5
SOCKET
PIN No.
P
DY9
33.0 ± 0.3
5
PMT
A
G
SIGNAL GND
SIGNAL OUTPUT
RG-174/U(BLACK)
POWER
SUPPLY GND
AWG22 (BLACK)
R7
29.0 ± 0.3
R1 to R10 : 330 kΩ
C1 to C3 : 10 nF
R5
DY3
DY9
DY7
R6
5
SOCKET
PIN No.
10
R7
DY4
PMT
4
HOUSING
(INSULATOR)
R10
5
0.7
14.0 ± 0.3
10 5
35.0 ± 0.5
0.5 MAX.
11
3.5
SOCKET
PIN No.
PMT
33.0 ± 0.3
w E850-22
-HV
SHIELD CABLE (RED)
SHV CONNECTOR
TACCA0241EC
y E1761-04
u E1761-05
SOCKET
PIN No.
P
DY8
C3
R10
C2
R9
C1
3
5
DY6
8
R8
DY5
4
DY4
9
R1 to R11 : 330 kΩ
C1 to C3 : 10 nF
R7
HOUSING
(INSULATOR)
DY2
10
R4
POTTING
COMPOUND
5
C3
R9
C2
R8
C1
8
DY5
4
DY4
9
DY3
3
DY2
10
DY1
2
R1 to R4 : 510 kΩ
R5 to R10 : 330 kΩ
C1 to C3 : 10 nF
R6
R4
R3
R3
DY1
DY7
R10
R5
3
450 ± 10
POTTING
COMPOUND
7
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
POWER SUPPLY GND
AWG24 (BLACK)
R7
R6
DY3
P
DY8
DY6
HOUSING
(INSULATOR)
R5
450 ± 10
10.6 ± 0.2
POWER SUPPLY GND
AWG24 (BLACK)
7
DY7
50.0 ± 0.5
R11
6
50.0 ± 0.5
10.6 ± 0.2
SOCKET
PIN No.
PMT
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
6
3
PMT
R2
2
R2
R1
K
R1
-HV
AWG24
(VIOLET)
11
K
-HV
AWG24 (VIOLET)
11
TACCA0019ED
SOCKET PIN No.
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
14.0 ± 0.3
10 5
P
12.6 ± 0.5
DY10
7
DY9
5
R11
C3
R10
C2
C1
R9
12.4 ± 0.5
POWER SUPPLY GND
AWG22 (BLACK)
8
DY8
14.0 ± 0.3
12.6 ± 0.5
R11 C3
9
DY5
3
R6
POTTING
COMPOUND
7
DY9
5
R10 C2
10
DY4
R4
DY3
2
DY2
11
DY8
8
DY7
4
DY6
9
DY5
3
DY4
10
DY3
2
R8
R7
POTTING
COMPOUND
R1 to R11 : 330 kΩ
C1 to C3 : 10 nF
R6
R5
R4
R3
R3
DY2
11
DY1
1
K
13
R2
R2
1
DY1
K
R1 to R11: 330 kΩ
C1 to C3: 10 nF
R9 C1
HOUSING
(INSULATOR)
R5
450 ± 10
DY10
R7
DY6
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
P
12.4 ± 0.5
4
DY7
SOCKET
PIN No.
6
R8
HOUSING
(INSULATOR)
PMT
450 ± 10
45.0 ± 0.5
0.5MAX.
6
45.0 ± 0.5
PMT
0.5 MAX.
o E849-90
10 5
i E849-35
TACCA0208EB
-HV
SHIELD CABLE (RED)
SHV CONNECTOR
R1
R1
-HV
13
AWG22 (VIOLET)
TACCA0077EC
TACCA0022EB
!0 E849-68
!1 E849-99
SOCKET
PIN No.
SIGNAL GND
12.6 ± 0.5
DY9
6
R11
C3
R10
C2
R9
12.4 ± 0.5
DY8
9
DY7
5
C1
R8
HOUSING
(INSULATOR)
R7
DY6
DY5
4
DY4
11
R5
R1: 1 MΩ
R3: 510 kΩ
R2, R4 to R11: 330 kΩ
C1 to C3: 10 nF
R4
DY3
3
DY2
12
DY1
K
2
R3
R1
SOCKET
PIN No.
6
P
DY10
7
12.6 ± 0.5
DY9
5
12.4 ± 0.5
DY8
8
DY7
4
DY6
9
DY5
3
POTTING
COMPOUND
SIGNAL OUTPUT
RG-174/U (BLACK)
R12
C3
R11
C2
R10
C1
GND
AWG22
R9
R8
R7
R1 to R12: 330 kΩ
C1 to C3: 0.01 µF
R6
DY4
10
DY3
2
DY2
11
DY1
1
R5
R4
R3
R2
13
14.0 ± 0.3
HOUSING
(INSULATOR)
10
R6
POTTING
COMPOUND
450 ± 10
POWER SUPPLY GND
AWG22 (BLACK)
0.5 MAX.
8
10
P
DY10
450 ± 10
0.5 MAX.
10 5
45.0 ± 0.5
14.0 ± 0.3
PMT
5
SIGNAL OUTPUT
RG-174/U (BLACK)
7
45.0 ± 0.5
PMT
-HV
AWG22 (VIOLET)
TACCA0210EB
R2
R1
K
13
-HV
AWG22 (VIOLET)
TACCA0324EA
93
D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm)
!2 E974-13
!3 E974-14
PMT
SOCKET
PIN No.
5
P
DY10
23.0 ± 0.5
17.4 ± 0.2
R11
C3
R10
C2
R9
C1
P
23.0 ± 0.5
6
DY9
7
DY7
3
R12
DY10
17.4 ± 0.2
4
DY8
SOCKET
PIN No. C5
5
PMT
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
POWER SUPPLY GND
AWG22 (BLACK)
C4
DY9
8
DY5
2
DY4
9
R6
DY8
7
R1
: 510 kΩ
R2 to R11 : 330 kΩ
C1 to C3 : 10 nF
DY7
3
DY6
8
DY5
2
DY4
9
HOUSING
(INSULATOR)
DY2
10
450 ± 10
450 ± 10
1
DY3
1
DY2
10
R3
DY1
12
R6
R4
POTTING
COMPOUND
R3
R2
R2
DY1
12
R1
K
11
R1
: 510 kΩ
R2 to R11 : 330 kΩ
R12
: 100 kΩ
C1 to C3 : 10 nF
C4 to C5 : 4.7 nF
R5
R4
DY3
C1
R7
R5
POTTING
COMPOUND
C2
R9
4
R8
47.5 ± 1.0
43.0 ± 0.5
47.5 ± 1.0
43.0 ± 0.5
HOUSING
(INSULATOR)
DY6
C3
R10
6
R8
R7
R11
R1
K
-HV
AWG22 (VIOLET)
POWER
SUPPLY GND
AWG22 (BLACK)
11
TACCA0099EB
TACCA0100EB
!5 E974-22
!4 E974-17
SOCKET
PIN No.
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
5
P
23.0 ± 0.5
DY10
6
17.4 ± 0.2
DY9
4
R11
C3
R10
C2
R9
DY8
7
DY7
3
DY6
8
PMT
P
C1
R5
450 ± 10
HOUSING
(INSULATOR)
DY3
1
POTTING
COMPOUND
450 ± 10
47.5 ± 1.0
43.0 ± 0.5
2
9
10
DY8
7
R9 C1
R1:680 kΩ
R3:510 kΩ
R2, R4 to R11:330 kΩ
C1 to C3:10 nF
R8
DY7
3
DY6
8
DY5
2
DY4
9
DY3
1
DY2
10
DY1
12
R6
R3
R2
-HV
SHIELD CABLE (GRAY)
SHV CONNECTOR
R1
R2
K
12
DY1
K
4
R4
R3
DY2
DY9
R5
R4
POTTING
COMPOUND
6
R7
R1 : 510 kΩ
R2 to R11 : 330 kΩ
C1 to C3 : 10 nF
R6
DY4
R11 C3
DY10
R10 C2
R7
DY5
SIGNAL OUTPUT
RG-174/U(BLACK)
BNC CONNECTOR
5
R8
HOUSING
(INSULATOR)
SOCKET
PIN No.
21.0 ± 0.2
40.0 ± 0.5
PMT
R1
11
-HV
SHIELD CABLE (GRAY)
SHV CONNECTOR
11
TACCA0212EB
!6 E2253-05
SOCKET
PIN No.
P
C3
R10
C2
DY6
8
DY5
2
DY4
9
DY3
1
R8
R7
C1
R1:1 MΩ
R2:750 kΩ
R3:560 kΩ
R4, R6 to R11:330 kΩ
R5:510 kΩ
C1 to C3:10 nF
R6
POTTING
COMPOUND
0
0.2
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
C4
R12
P
HOUSING
(INSULATOR)
DY2
10
DY1
12
11
7
DY7
3
DY6
C3
R10
C2
R9
C1
POTTING
COMPOUND
-HV
SHIELD CABLE (GRAY)
SHV CONNECTOR
+HV
AWG22 (RED)
8
R8
DY5
2
DY4
9
DY3
1
DY2
10
DY1
12
R6
R4
R3
R2
R1
DY8
R11
R7
R5
K
R14
R13
3
R9
HOUSING
(INSULATOR)
18.0 ±
6.2
DY7
R11
SOCKET
PIN No. C5
5
7
65.0 ± 0.5
DY8
450 ± 10
18.6 ±
0
0.4
PMT
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
5
55.0 ± 0.5
6.2
TACCA0078EC
!7 E2253-08
PMT
450 ± 10
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
+HV
AWG22 (RED)
R5
R1, R14: 1 MΩ
R2: 750 kΩ
R3: 560 kΩ
R5: 510 kΩ
R4, R6 to R12: 330 kΩ
R13: 10 kΩ
C1 to C3: 10 nF
C4, C5: 4.7 nF
R4
R3
R2
R1
K
11
TACCA0079EB
94
POWER SUPPLY GND
AWG22 (BLACK)
TACCA0214EB
!8 E974-29
!9 E974-18
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
12
P
C3
23.0 ± 0.5
R10
C2
17.4 ± 0.2
R9
C1
HOUSING
(INSULATOR)
DY10
1
DY9
11
DY8
2
DY7
10
R1: 1 MΩ
R2 to R11: 330 kΩ
C1 to C3: 0.01 µF
R8
R7
450 - 0
+20
POTTING
COMPOUND
DY6
3
DY5
9
DY4
4
DY3
8
P
R6
R5
DY9
4
DY8
7
DY7
3
DY6
8
R2
7
-HV
SHIELD CABLE (GRAY)
SHV CONNECTOR
R1
6
450 ± 10
5
K
C2
R9
C1
DY5
2
DY4
9
DY3
1
DY2
10
DY1
K
12
R1 : 680 kΩ
R2 to R11 : 330 kΩ
C1 to C3 : 10 nF
R6
R5
R3
DY1
C3
R10
R7
HOUSING
(INSULATOR)
R4
DY2
R11
6
DY10
R8
47.5 ± 1.0
40.0 ± 0.5
R11
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
5
43.0 ± 0.5
21.0 ± 0.3
SOCKET
PIN No.
PMT
SOCKET
PIN No.
PMT
R4
POTTING
COMPOUND
R3
R2
-HV
SHIELD CABLE (GRAY)
SHV CONNECTOR
R1
11
TACCA0213EB
TACCA0332EA
@1 E2924
@0 E2924-11
R13
R12
C2
R11
C1
35.0 ± 0.3
30.0 ± 0.3
DY10
DY9
DY8
11
DY7
5
DY6
12
DY5
4
7
R1 to R4,R6 to R13 : 330 kΩ
R5 : 510 kΩ
C1 to C3 : 10 nF
R6
28.0 ± 0.5
HOUSING
(INSULATOR)
DY3
3
R5
DY2
10
DY9
6
DY8
5
DY6
12
DY5
4
DY4
13
DY3
3
DY2
14
DY1
2
14
R1 to R13 : 330 kΩ
C1 to C3 : 10 nF
R9
26.0 ± 0.3
R7
R6
28.0 ± 0.5
HOUSING
(INSULATOR)
R5
R4
2
R3
R2
POTTING
COMPOUND
R3
R2
R1
K
C1
R10
450 ± 10
450 ± 10
DY1
C2
R11
11
R4
POTTING
COMPOUND
R12
R8
43.0 ± 0.5
0.8
13
DY10
DY7
2 × 3.5
R7
DY4
R13
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
POWER SUPPLY GND
C3 AWG22 (BLACK)
35.0 ± 0.3
6
R9
26.0 ± 0.3
P
10
R8
43.0 ± 0.5
44.0 ± 0.3
R10
2 × 3.5
SOCKET
PIN No.
7
PMT
30.0 ± 0.3
P
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
POWER SUPPLY GND
C3 AWG22 (BLACK)
7
44.0 ± 0.3
SOCKET
PIN No.
7
0.8
PMT
-HV
AWG22 (VIOLET)
1
R1
K
-HV
AWG22 (VIOLET)
1
TACCA0032EC
TACCA0032EC
@2 E2924-500
@3 E2924-05
44.0 ± 0.3
35.0 ± 0.3
HOUSING
(INSULATOR)
POTTING
COMPOUND
11
DY7
5
DY6
12
DY5
4
DY4
13
DY3
3
DY2
14
DY1
2
K
R11
C1
DY10
10
DY9
6
DY8
11
DY7
5
DY6
12
DY5
4
DY4
13
DY3
3
DY2
14
DY1
2
R10
2 × 3.5
R9
R8
R1 to R13: 330 kΩ
C1 to C3: 10 nF
C4: 4.7 nF
R7
R6
R5
R4
R3
R2
1
30.0 ± 0.3
6
DY8
C2
R12
7
0.8
28.0 ± 0.5
DY9
R12
P
0.8
450 ± 10
43.0 ± 0.5
7
26.0 ± 0.3
10
C3
R1
C4
-HV
SHIELD CABLE (GRAY)
SHV CONNECTOR
C5
R11
C3
R10
C2
R9
C1
R6
R5
28.0 ± 0.5
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
+HV
SHIELD CABLE (GRAY)
POWER SUPPLY GND
R8
26.0 ± 0.3
R7
43.0 ± 0.5
DY10
R13
HOUSING
(INSULATOR)
R1, R12 : 1 MΩ
R2 to R11 : 330 kΩ
C1 to C3 : 10 nF
C4, C5 : 4.7 nF
R4
R3
450 ± 10
30.0 ± 0.3
7
SOCKET
PIN No. C4
7
35.0 ± 0.3
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
P
2 × 3.5
PMT
44.0 ± 0.3
PMT SOCKET
PIN No.
POTTING
COMPOUND
R2
R1
K
1
* High voltage shielded cable can be connected to
a connector for RG-174/U.
TACCA0081EC
TACCA0102EA
95
D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm)
@4 E990-07
@5 E990-08
44.0 ± 0.3
35.0 ± 0.3
7
P
30.0 ± 0.3
R12
DY11
6
DY10
8
DY9
2 × 3.5
C3
R11
C2
R10
C1
35.0 ± 0.3
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
POWER SUPPLY GND
AWG22 (BLACK)
26.0 ± 0.3
9
4
DY5
3
28.0 ± 0.5
R5
DY4
28.0 ± 0.5
HOUSING
(INSULATOR)
450 ± 10
450 ± 10
12
R2
DY1
C1
5
DY8
9
DY7
4
DY6
10
DY5
3
DY4
11
DY3
2
DY2
12
DY1
14
R1 to R12
R13
C1 to C3
C4, C5
R6
14
R3
POTTING
COMPOUND
R2
R1
R1
K
-HV
AWG22 (VIOLET)
13
POWER SUPPLY GND
AWG22 (BLACK)
13
TACCA0101EB
TACCA0103EB
@7 E2624
@6 E990-501
44.0 ± 0.3
PMT
SOCKET
PIN No.
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
30.0 ± 0.3
P
DY11
26.0 ± 0.3
C3
R11
C2
R10
C1
5
DY8
9
DY7
4
7
0.8
43.0 ± 0.5
43.0 ± 0.5
DY6
10
R6
DY5
3
DY4
11
R5
R14
C3
R16
R13
C2
R15
R12
C1
DY7
4
DY6
10
DY5
3
DY4
11
DY3
2
DY2
12
DY1
14
26.0 ± 0.3
C4
R7
28.0 ± 0.5
HOUSING
(INSULATOR)
R6
R5
2
R3
DY2
12
POTTING
COMPOUND
R4
R3
R2
DY1
14
R1
K
R1 to R5, R7 to R14 : 330 kΩ
R6 : 510 kΩ
R15 to R17 : 51 Ω
C1 to C3 : 10 nF
C4 : 4.7 nF
R10
R8
450 ± 10
DY3
POWER SUPPLY GND
AWG22 (BLACK)
9
R4
POTTING
COMPOUND
450 ± 10
5
R17
R9
R1 to R12 : 330 kΩ
C1 to C3 : 10 nF
R7
DY9
DY8
2 × 3.5
R8
DY10
8
R11
R9
HOUSING
(INSULATOR)
P
8
DY9
SIGNAL OUTPUT
RG-174/U (BLACK)
35.0 ± 0.3
6
DY10
2 × 3.5
R12
SIGNAL GND
7
30.0 ± 0.3
7
SOCKET
PIN No.
44.0 ± 0.3
7
PMT
0.8
35.0 ± 0.3
28.0 ± 0.5
R2
-HV
SHIELD CABLE (GRAY)
SHV CONNECTOR
13
R1
K
-HV
AWG22 (VIOLET)
13
TACCA0216EB
TACCA0243EA
@8 E2624-05
@9 E2624-14
30.0 ± 0.3
P
DY10
8
DY9
5
DY8
9
DY7
4
DY6
10
R15
C5
R18
R14
C3
R17
R13
C2
R16
R12
C1
SIGNAL GND
44.0 ± 0.3
SIGNAL OUTPUT
RG-174/U (BLACK)
35.0 ± 0.3
DY5
3
DY4
11
0.8
R8
R7
28.0 ± 0.5
HOUSING
(INSULATOR)
DY3
2
DY2
12
DY1
14
R5
POTTING
COMPOUND
28.0 ± 0.5
HOUSING
(INSULATOR)
R6
450 ± 10
450 ± 10
43.0 ± 0.5
7
R9
43.0 ± 0.5
R10
P
26.0 ± 0.3
R1 to R5, R7 to R15 : 330 kΩ
R6 : 510 kΩ
R16 to R18 : 51 Ω
C1 to C3 : 10 nF
C4, C5 : 4.7 nF
R4
R3
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
7
2 × 3.5
R11
26.0 ± 0.3
PMT SOCKET
PIN No.
+HV
AWG22 (RED)
30.0 ± 0.3
35.0 ± 0.3
C4
7
SOCKET
PIN No.
7
0.8
PMT
44.0 ± 0.3
2 × 3.5
: 330 kΩ
: 1 MΩ
: 10 nF
: 4.7 nF
R4
R3
K
C2
R10
R5
2
DY2
R11
+HV
AWG22 (RED)
R7
11
DY3
8
C3
R8
R4
POTTING
COMPOUND
DY10
7
R6
HOUSING
(INSULATOR)
6
DY9
0.8
10
R1 to R12 : 330 kΩ
C1 to C3 : 10 nF
R7
53.0 ± 0.5
7
0.8
43.0 ± 0.5
DY6
DY11
C5
R12
R9
R8
DY7
C4
R13
2 × 3.5
5
DY8
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
7
P
R9
26.0 ± 0.3
SOCKET
PIN No.
PMT
30.0 ± 0.3
SOCKET
PIN No.
PMT
44.0 ± 0.3
POTTING
COMPOUND
DY10
8
DY9
5
DY8
9
DY7
4
DY6
10
DY5
3
DY4
11
DY3
2
DY2
12
DY1
K
14
R14 R11
C3
R13 R10
C2
R12 R9
C1
R8
R1:
R3:
R2, R4 to R11:
R12 to R14:
C1 to C3:
C4:
1320 kΩ
510 kΩ
330 kΩ
51 Ω
10 nF
4.7 nF
R7
R6
R5
R4
R3
R2
C4
R1
13
-HV
SHIELD CABLE (GRAY)
SHV CONNECTOR
R2
R1
K
13
POWER SUPPLY GND
AWG22 (BLACK)
TACCA0217EC
96
TACCA0082EC
#1 E990-29
#0 E990-500
44.0 ± 0.3
PMT
35.0 ± 0.3
SOCKET
PIN No.
6
DY10
8
DY9
5
DY8
9
DY7
4
DY6
10
R13
C3
R12
C2
R11
C1
PMT SOCKET
PIN No.
2 × 3.5
7
0.8
DY5
3
DY4
11
43.0 ± 0.5
R7
R6
R5
DY3
2
R4
DY2
12
DY1
14
DY9
8
DY8
6
DY7
9
DY6
5
DY5
10
R10 C2
R9 C1
26.0 ± 0.3
R8
R6
DY4
3
DY3
12
DY2
2
R5
28.0 ± 0.5
HOUSING
(INSULATOR)
R4
R3
DY1
R3
R2
C4
R1
K
R1 : 1 MΩ
R2 to R6,R8 to R11 : 330 kΩ
R7 : 510 kΩ
C1 to C3 : 10 nF
R7
450 ± 10
450 ± 10
POTTING
COMPOUND
POWER SUPPLY GND
AWG22 (BLACK)
R11 C3
7
R1 to R13 : 330 kΩ
C1 to C3 : 10 nF
C4 : 4.7 nF
R8
HOUSING
(INSULATOR)
SIGNAL OUTPUT
RG-174/U (BLACK)
P
0.8
R9
28.0 ± 0.5
SIGNAL GND
7
R10
26.0 ± 0.3
43.0 ± 0.5
35.0 ± 0.3
30.0 ± 0.3
30.0 ± 0.3
2 × 3.5
DY11
44.0 ± 0.3
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
7
P
13
R2
POTTING
COMPOUND
G
1
R1
-HV
AWG22 (VIOLET)
14
K
-HV
SHIELD CABLE (GRAY)
SHV CONNECTOR
13
TACCA0244EA
TACCA0215EB
#3 E2183-502
#2 E2183-500
PMT
SOCKET
PIN No.
6
PMT
SIGNAL OUTOPUT
RG-174/U (BLACK)
BNC CONNECTOR
SOCKET
PIN No.
6
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
C6
R13
7
DY9
5
C3
R12
C2
8.2
R11
DY8
52.0 ± 0.5
34.0 ± 0.3
8
40.0 ± 0.5
R10
DY7
: 10 kΩ
R1
R2 to R13 : 330 kΩ
C1 to C3 : 10 nF
: 4.7 nF
C4
4
R9
HOUSING
(INSULATOR)
DY6
9
DY5
3
P
DY10
7
DY9
5
C1
8.2
34.0 ± 0.3
R13
R8
DY8
DY7
HOUSING
(INSULATOR)
POTTING
COMPOUND
2
R5
DY2
11
R1 to R12 : 330 kΩ
: 1 MΩ
R13
C1, C5, C6 : 4.7 nF
C2 to C4 : 10 nF
DY6
9
DY5
3
DY4
10
DY3
2
DY2
11
DY1
1
R7
R5
R4
R3
1
K
C1
4
R4
DY1
C2
R10
R6
10
R6
DY3
R11
+HV
SHIELD CABLE (GRAY)
SHV CONNECTOR
C4
R8
450 ± 10
450 ± 10
DY4
C3
8
R7
POTTING
COMPOUND
C5
R12
R9
40.0 ± 0.5
52.0 ± 0.5
P
DY10
R3
C4
R2
R1
12
R2
-HV
SHIELD CABLE (GRAY)
SHV CONNECTOR
R1
K
12
TACCA0166EC
#4 E1198-26
TACCA0167EB
#5 E1198-27
PMT
SOCKET
PIN No.
SIGNAL GND
PMT
SIGNAL OUTPUT
RG-174/U (BLACK)
12
SOCKET
PIN No.
12
R13
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
C5
R11
C4
R12
11
DY7
10
DY6
7
R11
R10
R9
C3
DY5
6
DY4
5
R1: 10 kΩ
R2, R3: 680 kΩ
R4 to R11: 330 kΩ
C1 to C3: 10 nF
C4: 4.7 nF
450 ± 10
4
DY2
3
R5
R4
HOUSING
(METAL)
DY1
1
R3
G
R2
10
DY6
7
R1
14
* The housing is internally connected to
the GND.
** High voltage shielded cable can be
connected to a connector for RG-174/U.
-HV
SHIELD CABLE (GRAY)
POWER SUPPLY
GND
TACCA0224EC
C3
R9
C2
R8
C1
+HV
SHIELD CABLE (GRAY)
POWER SUPPLY
GND
DY5
6
DY4
5
DY3
4
DY2
3
DY1
1
R6
56.0 ± 0.3
R5
C4
13
K
DY7
R10
R7
64.0 ± 0.3
38.0 ± 0.5
38.0 ± 0.5
R6
DY3
11
C1
R7
56.0 ± 0.3
DY8
C2
R8
64.0 ± 0.3
P
450 ± 10
P
DY8
R4
R3
HOUSING
(METAL)
R1, R2 : 680 kΩ
R3 to R11 : 330 kΩ
R12 : 10 kΩ
R13 : 1 MΩ
C1 to C3 : 10 nF
C4, C5 : 4.7 nF
R2
G
13
R1
K
14
* The housing is internally connected to the GND.
** High voltage shielded cable can be connected to
a connector for RG-174/U.
TACCA0225EB
97
D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm)
#7 E1198-20
#6 E1198-05
SOCKET
PIN No.
PMT
SIGNAL GND
11
P
6
DY5
5
R9
C2
R8
C1
DY7
7
DY6
6
DY4
4
R7
64.0 ± 0.3
R6
R5
C4
3
DY2
2
DY1
1
R3
R2
13
G
K
R1
-HV
AWG22 (VIOLET)
14
450 ± 10
R10
C3
+HV
SHIELD CABLE (GRAY)
R9
C2
POWER SUPPLY
GND
R8
C1
* The housing is internally
connected to the GND.
DY5
5
DY4
4
DY3
3
DY2
2
DY1
1
R6
56.0 ± 0.3
R1 to R11: 330 kΩ
C1 to C3: 10 nF
C4, C5: 4.7 nF
R5
R4
38.0 ± 0.5
38.0 ± 0.5
R4
R1 to R10 : 330 kΩ
C1 to C3 : 10 nF
C4 : 4.7 nF
R3
HOUSING
(METAL)
R2
13
G
R1
K
450 ± 10
DY3
HOUSING
(METAL)
8
R7
64.0 ± 0.3
56.0 ± 0.3
C4
R11
P
DY8
7
DY6
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
C5
8
DY7
SOCKET
PIN No.
11
POWER SUPPLY GND
AWG22 (BLACK)
C3
R10
DY8
PMT
SIGNAL OUTPUT
RG-174/U (BLACK)
14
* The housing is internally connected to the GND.
** High voltage shielded cable can be connected to
a connector for RG-174/U.
TACCA0221EB
#8 E1198-07
TACCA0223EB
#9 E2979-500
62.0 ± 0.5
SOCKET
PIN No.
11
P
SIGNAL GND
DY9
C2
R9
C1
9
DY8
8
DY7
7
DY6
6
DY12
MAGNETIC
SHIELD CASE
R8
R7
R6
DY5
5
DY4
4
C4
R5
R1 : 680 kΩ
R2 to R11 : 330 kΩ
C1 to C3 : 10 nF
C4 : 4.7 nF
38.0 ± 0.5
R4
DY3
3 × M2
11
56.0 ± 0.3
82.0 ± 0.5
64.0 ± 0.3
2
DY1
1
R1
K
8
DY10
12
DY9
7
DY8
13
DY7
6
DY6
14
5
15
DY3
3
DY2
17
DY1
G2
ACC
G1
K
2
R18
R21 R17
C7
C10
R16
R20 R15
C6
C9
R19 R14
R13
C5
C8
R12
R11
C3
14
C11
C4
R1: 10 kΩ
R2, R5: 240 kΩ
R3, R7 to R12, R18: 200 kΩ
R4, R6: 360 kΩ
R13 to R17: 300 kΩ
R19 to R21: 51 Ω
C1: 470 pF
C2 to C8, C11: 10 nF
C9: 22 nF
C10: 33 nF
C2
R10
R9
R8
R7
R6
R5
R4
R3
R2
19
20
C1
R1
-HV
AWG22 (VIOLET)
SIGNAL
OUTPUT
: BNC-R
SIG
* The housing is internally
connected to the GND.
-H.V
450 ± 10
R2
DY11
DY4
3
DY2
11
DY5
HOUSING
(METAL)
R3
HOUSING
(METAL)
SIGNAL OUTPUT
BNC CONNECTOR
10
10
R10
SOCKET
PIN No.
P
POWER SUPPLY GND
AWG22 (BLACK)
C3
R11
DY10
PMT
SIGNAL OUTPUT
RG-174/U (BLACK)
164.0 ± 0.5
PMT
-HV
SHV CONNECTOR
* The housing is internally
connected to the GND.
-HV
: SHV-R
TACCA0093EB
TACCA0220EC
$1 E1198-22
$0 E1198-23
PMT
SOCKET
PIN No.
11
R13
P
DY10
DY9
C5
R12
C3
R11
C2
R10
C1
PMT
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
+HV
SHIELD CABLE (GRAY)
C6
C4 R14
P
DY10
POWER SUPPLY GND
10
DY9
9
DY8
8
DY7
7
DY8
R8
DY6
6
56.0 ± 0.3
R7
DY5
5
DY4
4
DY3
3
2
R3
R2
G
K
C2
R11
C1
9
8
DY7
7
DY6
6
DY5
5
DY4
4
DY3
3
DY2
2
DY1
1
R1
R2 to R13
C1 to C3
C4
R8
56.0 ± 0.3
1
13
R1
14
R7
: 10 kΩ
: 330 kΩ
: 10 nF
: 4.7 nF
R5
HOUSING
(METAL)
R4
G
K
R3
C4
R2
R1
13
14
* The housing is internally connected to
the GND.
** High voltage shielded cable can be
connected to a connector for RG-174/U.
* The housing is internally connected to the GND.
** High voltage shielded cable can be connected to
a connector for RG-174/U.
TACCA0169EC
98
64.0 ± 0.3
38.0 ± 0.5
DY2
C3
R12
R6
R4
DY1
450 ± 10
: 330 kΩ
: 1 MΩ
: 10 kΩ
: 10 nF
: 4.7 nF
R5
HOUSING
(METAL)
R13
10
R9
R1 to R12
R13
R14
C1 to C4
C5, C6
450 ± 10
38.0 ± 0.5
R6
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
R10
R9
64.0 ± 0.3
SOCKET
PIN No.
11
-HV
SHIELD CABLE (GRAY)
POWER SUPPLY GND
TACCA0168EB
$3 E6316-01
$2 E6316
SOCKET
PIN No.
11
PMT
PMT SOCKET
PIN No.
P
SIGNAL OUTPUT
BNC CONNECTOR
DY10
10
DY9
9
DY8
8
3 × M3
THREADED HOLES
FOR INSTALLATION
OF MAGNETIC
SHIELD CASE
51.5 ± 0.5
R13
HOUSING
(METAL)
DY7
7
DY6
6
DY5
5
DY4
4
DY3
3
DY2
2
DY1
G
C3
R11
R10
C2
R14
P
DY10
+HV
SHV CONNECTOR
C4
C1
R7
R6
R1 to R12: 330 kΩ
R13: 1 MΩ
R14: 10 kΩ
C1 to C4: 10 nF
C5, C6: 4.7 nF
R5
R4
R3
14
C3
R12
C2
R11
C1
9
DY8
8
R10
R8
1
R13
10
DY9
64.0 ± 0.5
R9
13
K
C5
R12
51.5 ± 0.5
64.0 ± 0.5
SIGNAL OUTPUT
BNC CONNECTOR
C6
11
R2
R1
3 × M3
THREADED HOLES
FOR INSTALLATION
OF MAGNETIC
SHIELD CASE
DY7
HOUSING
(METAL)
R1 : 10 kΩ
R2 to R13 : 330 kΩ
C1 to C3 : 10 nF
C4 : 4.7 nF
7
R9
DY6
6
DY5
5
DY4
4
DY3
3
DY2
2
DY1
1
R8
R7
R6
R5
R4
SIGNAL
OUTPUT
: BNC-R
+HV
: SHV-R
-H.V
SIG
+H.V
SIG
SIGNAL
OUTPUT
: BNC-R
* The housing is internally connected to the GND.
** Magnetic shield case is sold separately.
G
-HV
: SHV-R
R3
C4
R2
R1
13
K
14
-HV
SHV CONNECTOR
* The housing is internally connected to the GND.
** Magnetic shield case is sold separately.
TACCA0226EC
$5 E5859-19
$4 E5859-05
SOCKET
PIN No.
R24
C4
R21
51.0 ± 0.4
DY10
12
12.5 9
8
DY9
6
DY8
12
DY9
3 × M2
THREADED HOLES
FOR INSTALLATION
OF MAGNETIC
SHIELD CASE
DY7
5
DY8
DY7
13
DY6
DY5
14
R1 : 10 kΩ
R2 to R5,R8 to R13 : 220 kΩ
R6 : 560 kΩ
R7,R14 to R21,R23,R24 : 110 kΩ
R22,R25 to R27 : 0 Ω
C1 : 470 pF
C2,C3 : 10 nF
C4 : 22 nF
R15
R14
R13
R12
4
DY6
13
R11
3
HOUSING (METAL)
DY5
3
DY4
15
DY3
2
DY2
16
DY1
1
R21
58.0 ± 0.5
C2
R17
R16
5
R22
C3
R26 R20
R19
R25 R18
51.0 ± 0.5
12.5 9
6
R26 R20
R19
R25 R18
DY2
DY1
G
16
R6
R5
R4
R3
R2
1
17
K
21
C2
R1 : 10 kΩ
R2 to R11, R20 : 220 kΩ
R12, R13 : 0 Ω
R14 to R19, R21 to R24 : 110 kΩ
R25 : 51 Ω
R26, R27 : 100 Ω
C1 : 470 pF
C2, C3 : 10 nF
C4 : 22 nF
R15
R14
R13
R12
R11
R10
60.0 ± 0.5
R9
R8
R7
2
C1
R1
SIGNAL
OUTPUT
:BNC-R
-HV
SHV CONNECTOR
SIG
-HV
:SHV-R
15
-H.V
SIG
-H.V
SIGNAL
OUTPUT
:BNC-R
DY4
DY3
C3
R17
R16
R10
60.0 ± 0.5
C4
R27 R23
DY10
R22
DY11
HOUSING (METAL)
R24
8
58.0 ± 0.5
SIGNAL OUTPUT
BNC CONNECTOR
7
P
R27 R23
DY12
3 × M2
THREADED HOLES
FOR INSTALLATION
OF MAGNETIC
SHIELD CASE
SOCKET
PIN No.
PMT
SIGNAL OUTPUT
BNC CONNECTOR
7
P
55.0 ± 0.5
PMT
55.0 ± 0.5
TACCA0245EB
-HV
:SHV-R
K
R9
R8
R7
R6
R5
R4
R3
R2
21
C1
R1
* The housing is internally connected to the GND.
** Magnetic shield case is sold separately.
-HV
SHV CONNECTOR
* The housing is internally connected to the GND.
** Magnetic shield case is sold separately.
TACCA0305EA
TACCA0219EC
$6 E5859
$7 E5859-01
SOCKET
PIN No.
R24
R27 R23
6
51.0 ± 0.4
DY10
12
12.5 9
55.0 ± 0.5
DY11
3 × M2
THREADED HOLES
FOR INSTALLATION
OF MAGNETIC
SHIELD CASE
HOUSING (METAL)
DY9
5
DY8
DY7
13
DY6
DY5
14
60.0 ± 0.5
R15
R14
15
DY2
DY1
G
R9
R8
R7
16
K
1
21
C2
R11
DY4
DY3
17
R1 : 10 kΩ
R2, R12, R16
R17, R20, R21 : 180 kΩ
R3, R13, R18, R19
R22 to R24 : 226 kΩ
R4, R5, R7, R8 : 121 kΩ
R6, R9 to R11
R14, R15 : 150 kΩ
R25 : 51 Ω
R26, R27 : 100 Ω
C1 : 470 pF
C2 : 22 nF
C3 : 47 nF
C4 : 0.1 µF
C5 to C7 : 0.22 µF
C3
R13
R12
R10
2
C4
R6
R5
R4
R3
R2
R1
-HV
SHV CONNECTOR
* The housing is internally connected to the GND.
** Magnetic shield case is sold separately.
TACCA0176ED
DY11
51.0 ± 0.4
DY10
R24
R27 R23
8
R22
R21
R26 R20
6
R19
R25 R18
12
R17
R16
5
R15
R14
13
R13
4
R12
14
R11
3 × M2
THREADED HOLES
FOR INSTALLATION
OF MAGNETIC
SHIELD CASE
DY9
HOUSING (METAL)
SH
DY4
DY3
10
R10
15
DY2
DY1
G
16
R9
R8
R7
R6
R5
R4
R3
R2
60.0 ± 0.5
SIGNAL
OUTPUT
:BNC-R
C1
58.0 ± 0.5
SIG
-HV
:SHV-R
3
R17
R16
C5
-H.V
SIG
-H.V
SIGNAL
OUTPUT
:BNC-R
4
R26 R20
R19
R25 R18
10
SH
DY12
R22
58.0 ± 0.5
SIGNAL OUTPUT
BNC CONNECTOR
7
C7
8
R21
SOCKET
PIN No.
P
C6
12.5 9
DY12
PMT
SIGNAL OUTPUT
BNC CONNECTOR
7
P
55.0 ± 0.5
PMT
DY8
DY7
DY6
DY5
K
-HV
:SHV-R
C4
C3
C2
R1 : 10 kΩ
R2 to R6,R9 to R13 : 220 kΩ
R7,R8 : 154 kΩ
R14 to R21,R23,R24 : 110 kΩ
R22 : 0 Ω
R25 : 51 Ω
R26,R27 : 100 Ω
C1 : 470 pF
C2,C3 : 10 nF
C4 : 22 nF
3
2
1
17
21
C1
R1
-HV
SHV CONNECTOR
* The housing is internally connected to
the GND.
** Magnetic shield case is sold separately.
TACCA0178EC
99
D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm)
$9 E1435-02
$8 E5859-03
PMT
SOCKET
PIN No.
C5
R29
C4
R28
R24
R23
60.0 ± 0.5
DY10
12
DY9
5
SIG
+H.V
+HV
:SHV-R
C7
R1 to R5,R8 to R12 : 220 kΩ
R6, R7 : 154 kΩ
R13 to R20, R22, R23 : 110 kΩ
R21 : 0 Ω
R24 : 10 kΩ
R25 : 51 Ω
R26, R27 : 100 Ω
R28 : 100 kΩ
R29 : 1 MΩ
C1, C2 : 10 nF
C3 : 22 nF
C4, C5 : 2.2 nF
C6 : 470 pF
C7 to C9 : 4.7 nF
R13
DY6
DY5
14
SH
DY4
DY3
10
R9
15
R8
R7
R6
R12
R11
4
R10
3
2
16
R5
R4
R3
R2
R1
1
17
21
C1
R9
R1 to R12 : 330 kΩ
C1 to C3 : 10 nF
C4 : 4.7 nF
9
DY7
R8
R14
13
K
C1
C2
R10
3
DY8
40.0 ± 0.5
C8
R16
R15
DY8
DY7
DY2
DY1
G
52.0 ± 0.5
C2
R26 R19
R18
R25 R17
2
6
C3
R11
8
DY9
36.0 ± 0.5
DY11
R12
4
C9
DY6
2
DY5
10
R7
C4
R6
HOUSING
(METAL)
DY4
1
DY3
11
DY2
15
DY1
12
R5
R4
450 ± 10
12.5 9
55.0 ± 0.5
HOUSING (METAL)
P
DY10
+HV
SHV CONNECTOR
R21
R20
3 × M2
THREADED HOLES
FOR INSTALLATION
OF MAGNETIC
SHIELD CASE
SIGNAL
OUTPUT
:BNC-R
C3
8
58.0 ± 0.5
51.0 ± 0.4
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
C6
R27 R22
DY12
SOCKET
PIN No.
6
PMT
SIGNAL OUTPUT
BNC CONNECTOR
7
P
POTTING
COMPOUND
R3
R2
14
G
K
R1
13
* The housing is internally connected to the GND.
** Magnetic shield case is sold separately.
* The housing is internally connected to
the GND.
** High voltage shielded cable can be
connected to a connector for RG-174/U.
TACCA0218EE
%0 E7693
-HV
SHIELD CABLE (RED)
POWER SUPPLY GND
TACCA0246EB
%1 E10679-02
PMT
SOCKET
PIN No.
10
100 ± 0.5
HOUSING
(METAL)
8
DY12
12
DY11
7
DY10
13
DY9
6
DY8
14
DY7
5
DY6
15
DY5
4
DY4
16
DY3
3
DY2
17
DY1
R20
R17
C4
R19
R16
C3
R15
C2
R14
C1
R13
R12
R11
R10
R9
R8
R7
R6
R5
G1 G2
2
R4
R3
4
DY8
R1
R13 R11
C3
R12 R10
C2
R9
C1
POWER SUPPLY
GND
AWG22 (BLACK)
7
R8
DY7
3
DY6
8
DY5
2
DY4
9
DY3
1
DY2
10
DY1
11
R7
HOUSING
(INSULATOR)
R6
R1 to R10 : 330 kΩ
R11 : 160 kΩ
R12, R13 : 51 Ω
C1 to C3 : 10 nF
R5
R4
C6
R2
20
6
DY9
17.5 - 0
R3
R2
19
K
DY10
+0.5
R1 : 10 kΩ
R2, R18 : 240 kΩ
R3 : 360 kΩ
R4 : 390 kΩ
R5 : 120 kΩ
R6 : 180 kΩ
R7 to R14 : 100 kΩ
R15, R16 : 150 kΩ
R17 : 300 kΩ
R19 : 51 Ω
R20, R21 : 100 Ω
C1 : 22 nF
C2 : 47 nF
C3 : 100 nF
C4 : 220 nF
C5 : 470 nF
C6 : 470 pF
0.5
DY13
GUIDE
MARK
2
11
C5
+0.5
DY14
SIGNAL OUTPUT
BNC CONNECTOR
R18
24 - 0
R21
P
450 ± 10
P
74.0 ± 0.5
SIGNAL OUTPUT
RG-174/U (BLACK)
5
PMT
R1
K
SIG
-H.V
-HV
SHV CONNECTOR
-HV
AWG22 (VIOLET)
12
* The housing is internally
connected to the GND.
SIGNAL
OUTPUT
(BNC-R)
-HV
: SHV-R
TACCA0227EC
%2 E10679-51
TACCA0299EB
%3 E5996
PMT
SIGNAL OUTPUT (A)
GND (G)
4
DY8
7
DY7
3
R12 R10
C2
PIN No.1
HOUSING
(INSULATOR)
C1
R8
8
DY5
2
9
DY3
1
DY2
10
DY1
11
R4
R1 to R10 : 330 kΩ
R11 : 160 kΩ
R12 : 51 Ω
R13 : 100 Ω
C1 to C3 : 0.01 µF
A
12
R10
C2
R12
R9
C1
DY7
21
DY6
20
DY5
19
DY4
7
DY3
6
DY2
5
DY1
4
R1 to R3 : 330 kΩ
R4 to R11 : 220 kΩ
R12 to R14 : 51 Ω
R15 : 1 MΩ
C1 to C3 : 10 nF
R4
R3
R2
R15
R1
1
-HV (K)
* High voltage shielded cable can be
connected to a connector for RG-174/U.
5.08
TACCA0326EA
100
R13
22
K
R1
K
C3
R5
R2
5.08
G
23
R11
R6
R3
K
DY9
R14
R8
450 ± 10
R5
DY4
24
DY8
POTTING
COMPOUND
R6
HOUSING
(INSULATOR)
DY10
R7
R7
DY6
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
P
15.0 ± 0.5
0.5
17.5 - 0
15.00 ± 0.25
2
6
DY9
C3
R9
+0.5
19.5 ± 0.3
DY10
R13 R11
SOCKET
PIN No.
30
30.0 ± 0.5
P
GUIDE MARK
PMT
30.0 ± 0.5
5
-HV
SHIELD CABLE (RED)
POWER SUPPLY GND
TACCA0234EC
%4 E7083
%5 E6736
SOCKET
PIN No.
P4
15
P3
SIGNAL OUTPUT
P2 0.8D-QEV (GRAY)
11
P1
31
P4 P3 P2 P1
DY10
POTTING
COMPOUND
R14
R11
C3
R13
R10
C2
R9
C1
24
DY9
23
DY8
22
450 ± 10
R12
R8
DY7
21
DY6
20
R6
DY5
19
POTTING
COMPOUND
P3
R5
P2
P3
DY4
7
DY3
6
P1
-HV
SHIELD CABLE
(RED)
P2
R3
K
P4
P1 to P4 : SIGNAL OUTPUT
COAXIAL CABLE (GRAY)
5
DY1
4
P13
P11
P9
P4
P7 P5
P6
P8
P10
P12
R2
GUIDE MARK
P1
DY2
K
GUIDE MARK
P15
R1
R15
DY10
26
DY9
10
DY8
24
DY7
8
DY6
2
-HV
SHIELD CABLE (RED)
1
•
•
•
•
•
•
•
P8
•
•
•
•
•
•
SIGNAL OUTPUT
0.8D-QEV (GRAY)
P1
R14 R11
C3
R13 R10
C2
R12 R9
C1
R8
18
R5
DY4
31
DY3
15
DY2
32
DY1
16
R4
R3
R2
R15 R1
-HV
SHIELD CABLE (RED)
17
P1 to P16 : SIGNAL OUTPUT
COAXIAL CABLE (GRAY)
R1 to R11 : 220 kΩ
R12 to R14 : 51 Ω
R15 : 1 MΩ
C1 to C3 : 10 nF
R6
P14
P16
POWER SUPPLY GND
* High voltage shielded cable can be
connected to a connector for RG-174/U.
POWER SUPPLY GND
* High voltage shielded cable can be connected to
a connector for RG-174/U.
P16
R7
DY5
R4
-HV
SHIELD CABLE
(RED)
SIGNAL GND
28
29
27
3
23
4
22
5
21
6
20
7
19
11
13
12
HOUSING
(INSULATOR)
R1 to R3 : 330 kΩ
R4 to R11 : 220 kΩ
R12 to R14 : 51 Ω
R15 : 1 MΩ
C1 to C3 : 10 nF
R7
SOCKET
PIN No.
PMT
450 ± 10 15.0 ± 0.5
15.0 ± 0.5
HOUSING
(INSULATOR)
30.0 ± 0.5
Pin No.1
P16
P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
30.0 ± 0.5
SIGNAL GND
27
30.0 ± 0.5
PMT
30.0 ± 0.5
PIN No.1
TACCA0158ED
TACCA0162ED
%6 E7514
%7 E11807/E11807-01
E11807
25.4 ± 0.5
PX5
PY5
15.0 ± 0.5
PY4
PX3
PY3
PX2
15
PX5
23
PY5
PY4
12
PX3
20
PY3
11
PX2
POM
HOUSING
PX1
10
PX1
13
PY1
PMT
SIGNAL
OUTPUT
RG-174/U
(BLACK)
R17
P
C3
R20
DY12
SOCKET
PIN No.
7
P
C3
R16
R20
DY12
8
SIGNAL
OUTPUT
: COAXIAL
CABLE
(GRAY)
DY11
R19
R14
R18
R13
C2
10
DY9
12
DY11
R19
R14
R18
R13
9
C1
DY10
10
DY9
12
DY8
13
DY7
14
DY6
21
DY5
22
DY4
23
DY3
25
DY2
26
DY1
27
R12
DY8
13
DY7
14
DY6
21
DY5
22
DY4
23
DY3
25
DY2
26
R11
R10
R10
R9
R9
R8
R8
R7
R7
R6
R6
R5
R5
R4
R18 R14
DY11
8
DY10
27
DY9
7
DY1
R4
R2
PX2
PX1
-HV
SHIELD
CABLE (RED)
GUIDE MARK
28
R17 R13
C2
R16 R12
C1
DY7
6
R10
PY1 PX4
PX5
PX3
PX6
R9
PY2
PY3
DY6
29
DY5
5
R2
K
R21
R1
1
NOTE: DIVIDER RATIO
=2.5: 1.3: 0.8: 0.8: 1: 1: ..... 1: 0.5
R1 : 300 kΩ
R2, R7 to R13 : 200 kΩ
R3, R4 : 130 kΩ
R5, R6 : 160 kΩ
R14 to R16 : 100 kΩ
R11
DY8
R3
27
K
C3
R8
R1, R14: 110 kΩ
R2: 330 kΩ
R3 to R13: 220 kΩ
R15: 1 MΩ
R16 to R18: 51 Ω
C1 to C3: 10 nF
C1
R12
R11
R3
PY1
R16
8
R15
9
DY10
POTTING
COMPOUND
SIGNAL
OUTPUT
RG-174/U
(BLACK)
R17
R15
PY2
19
E11807-01
SOCKET
PIN No.
7
C2
PX4
22
PIN No.1
GUIDE MARK
PY2
450 ± 10
PY6
14
PX4
POTTING
COMPOUND
PX6
24
PY6
HOUSING
(INSULATOR)
16
PMT
26.0 ± 0.5
26.0 ± 0.5
PX6
SIGNAL GND
15.0 ± 0.5
25.4 ± 0.5
SOCKET
PIN No.
450 ± 10
PIN No. 1
PMT
-HV
RG-174/U
(RED)
R17 : 0 Ω
R18 to R20 : 51 Ω
R21 : 1 MΩ
C1 to C3 : 0.01 µF
R21
R1
-HV
RG-174/U
(RED)
1
NOTE: DIVIDER RATIO
=3.3: 1.6: 1: 1: ..... 1: 2.7: 1.3
R1 : 300 kΩ
R2, R14, R15 : 200 kΩ
R3, R4 : 120 kΩ
R5 to R13 : 150 kΩ
R16, R17 : 100 kΩ
R18 to R20 : 51 Ω
R21 : 1 MΩ
C1 to C3 : 0.01 µF
TACCA0314EA
%8 E6133-04
R7
PY4
PY5
PY6
DY4
30
DY3
4
DY2
31
PMT
R6
SOCKET
R20
PIN No. C6
10
R5
P
R19
R4
PX1 to PX6
PY1 to PY6: SIGNAL OUTPUT
COAXIAL CABLE (GRAY)
R3
R2
1
R15
R1
32
* High voltage shielded cable can be
connected to a connector for RG-174/U.
24.0 ± 0.5
9
22.0 ± 0.5
DY14
11
8
DY13
8
DY12
12
-H.V
SHIELD
CABLE (RED)
POWER
SUPPLY GND
55.0 ± 0.5
K
3
HOUSING
(INSULATOR)
TACCA0236ED
POTTING
COMPOUND
450 ± 10
DY1
G
DY15
DY11
7
DY10
13
DY9
6
DY8
14
DY7
5
DY6
15
DY5
4
DY4
16
DY3
3
DY2
17
DY1
2
C7
R1
R24
R18
C5
R23
R17
C4
R22
R16
C3
R15
C2
R14
C1
R13
R12
R11
R10
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
+HV
SHIELD CABLE (GRAY)
SHV CONNECTOR
R1 : 10 kΩ
R2 to R18 : 330 MΩ
R19 : 100 kΩ
R20, R21 : 1 MΩ
R22 to R24 : 51 Ω
C1 to C5 : 10 nF
C6, C7 : 4.7 nF
R9
R8
R7
R6
R5
R4
R21
K
R3
R2
1
TACCA0248EA
101
DA-Type Socket Assemblies
Socket Assemblies with Transimpedance Amplifier (DA Type)
DA type socket assemblies contain an active voltage-divider circuit and an amplifier that converts high impedance current signals
from the photomultiplier tube into low impedance voltage signals. These socket assemblies ensure stable photomultiplier operation
with excellent output linearity.
Features
● Active Voltage Divider
● Superior DC Output Linearity
● Photomultiplier Tube Gain Adjustment Function (C7246 series)
● Wide Frequency Bandwidth (C7247 series)
● Input/output Connectors
(C7246-22, C7246-23, C7247-22, C7247-23)
Specifications
Amplifier
Maximum
Frequency
Maximum
Input Voltage Input Voltage Supply Voltage Bandwidth
(V)
(V)
(mA)
(-3 dB)
Applicable PMTs
Type No.
Current to Voltage Maximum Output
Conversion Factor Signal Voltage
(V)
(V/µA)
+20/-0.53
0.3
+10
DC to 20 kHz (load resistance (load resistance
10 kΩ)
10 kΩ)
+140/-50
0.15
+3
DC to 5 MHz (load resistance (load resistance
50 Ω)
50 Ω)
+20/-0.53
0.3
+10
DC to 20 kHz (load resistance (load resistance
10 kΩ)
10 kΩ)
+140/-50
0.15
+3
DC to 5 MHz (load resistance (load resistance
50 Ω)
50 Ω)
C7246-01
C7246-23
28 mm Side-on type
C7247-01
C7247-23
±12 to ±15
±18
C7246
C7246-22
C7247
28 mm Head-on type
R374, R2228, R5929,
R6094, R6095, etc.
C7247-22
NOTE: AIf the output signal voltage is 3 V or higher (with 10 kΩ load), the divider circuit input voltage should be -600 V to -1000 V.
Frequency Response of Built-in Amplifier
C7246/-01/-22/-23
C7247/-01/-22/-23
TACCB0065EA
10
5
5
0
-3dB
-5
-10
-15
-20
0.1
RELATIVE GAIN (dB)
RELATIVE GAIN (dB)
TACCB0046EB
10
0
-3dB
-5
-10
-15
1
10
1000
100
-20
0.01
0.1
1
FREQUENCY (kHz)
100
10
FREQUENCY (MHz)
Circuit Diagrams
C7246 (-01B/-22/-23B)
C7247 (-01B/-22/-23B)
K
P
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8
DY9
DY10
DY11
50 Ω
C1
C2
C3
C4
ACTIVE VOLTAGE DIVIDER
SIGNAL
OUTPUT
K
P
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8
DY9
DY10
DY11
50 Ω
AMP
C1
C2
C3
C4
AMP
ACTIVE VOLTAGE DIVIDER
C1, C2 : 10 nF
C3 : 22 nF
C4 : 47 nF
SIGNAL
OUTPUT
C1, C2 : 10 nF
C3 : 22 nF
C4 : 47 nF
VR = 5 MΩ
* PMT GAIN ADJ. CIRCUIT
-HV
* PATENT
NOTE: BC7247-01/-23 are for 28 mm side-on PMT so that the last dynode number is "DY9"
-HV
NOTE: BC7246-01/-23 are for 28 mm side-on PMT so that the last dynode number is "DY9"
102
TACCC0103EC
TACCC0115EB
Voltage-divider Circuit
Amplifier
Maximum
Offset
Output Noise Recommended
Divider
Voltage
Voltage
Supply Voltage Supply Voltage
Current
Max. (mV) Typ. (mV rms)
(V)
(V)
(µA)
Operating
Storage
Ambient
PMT Gain
Temperature
Temprature
Adjustable Range
(°C)
(°C)
(dB)
±1
0.09
(load resistance -300 to -1000 A
10 kΩ)
211
(HV = -1000 V)
30
±3
4.5
(load resistance
50 Ω)
166
(HV = -600 V)
—
-300 to -600
(g)
50
170
(With connectors)
50
0 to +40
-1500
±1
0.09
(load resistance -400 to -1000 A
10 kΩ)
174
(HV = -1000 V)
10
±3
4.5
(load resistance
50 Ω)
219
(HV = -900 V)
—
-400 to -900
Weight
170
(With connectors)
-15 to +60
55
170
(With connectors)
55
170
(With connectors)
Dimensional Outlines (Unit : mm)
C7246-01/-23, C7247-01/-23
[BOTTOM VIEW]
C7246/-22
49.0 ± 0.3
10.5
1)
POT (VR)
8.5
29.0 ± 0.3
10.5
4
8.5
GAIN ADJ.
38.0 ± 0.3
1)
POT (VR)
25.2
[BOTTOM VIEW]
C7246-01/-23
GAIN ADJ.
31.7 ± 0.3
C7247/-22
37.7 ± 0.5
0.7
40.0 ± 0.5
5
33.0 ± 0.3
3.5
C7246/-22, C7247/-22
HOUSING
(METAL)
C7247-01/-23
31.7 ± 0.3
HOUSING
(METAL)
10.5
10.5
TACCA0197ED
TACCA0175EF
Type No.
Input/output
-HV
Signal Output
±15 V
-HV
C7246-22/-23
Signal Output
C7247-22/-23
±15 V
C7246/-01
C7247/-01
Cable Type
Cable Length Connector
SHIELD CABLE 2) (GRAY)
—
COAXIAL CABLE: RG-174/U (BLACK) 450 ± 10
—
—
TWISTED PAIR CABLE WITH SHIELD 3) (GRAY)
SHV-P
SHIELD CABLE (GRAY)
BNC-P
COAXIAL CABLE: RG-174/U (BLACK) 1500 ± 25
TWISTED PAIR CABLE WITH SHIELD (GRAY)
DIN (6 PIN)-P
NOTES: 1) Turning this pot clockwise decreases the PMT gain. (25 turns max.)
2) At the end of HV cable, it's possible to attach SHV connector fitting RG-174/U.
3) Connect as follow.
WHITE........ -15 V
ORANGE.... +15 V
SHIELD....... GND
* See page 121 for details on flanges and housing contains a magnetic shield case.
103
DP-Type Socket Assemblies
High Voltage Power Supply Socket Assemblies (DP Type)
DP type socket assemblies include a high voltage power supply and so allow easily operating a photomultiplier tube just by
supplying a low voltage (+15 V or +5 V). These socket assemblies ensure highly stable photomultiplier tube operation with
excellent output linearity.
Features
● Superior DC Output Linearity
● Active Voltage Divider
(C12597-01, C13003-01, C13004-01)
● Fast High Voltage Programming Response (C12597-01, C13003-01, C13004-01)
● Cockcroft-Walton Circuit (C8991, C8991-01, C10344-03, C12842-01, C12842-02)
● Low Power Consumption (C8991, C8991-01, C10344-03, C12842-01, C12842-02)
Specifications
Type No.
B
PMT
Maximum Maximum
Anode E
Linear DC
Input
Input
Input Voltage
Voltage Current Output Current Ripple Noise
Min. (µA) Typ. (mVp-p)
(V)
(mA)
(V)
Applicable PMTs
+15 ± 1
60
+11.5 to +15.5
8
C12597-01
C8991
28 mm side-on type
100 C
0.5
1
100 D
C8991-01
+13.5 to +15.5
25 mm head-on type
R1924A, R1925A, R3550A, R5070A, etc.
C13003-01
C13004-01
C12842-02 A
+11.5 to +15.5
+5 ± 0.5
NOTE: A C12842-01S/-02S which is with shutter(10ms to DC) function are also available.
Please refer the individual datasheet for details.
B When photomultiplier tube is not attached.
DC Linearity Characteristics
+6
8
100 D
1
3
100 D
0.6
(Max.)
High Voltage Controlling Characteristics
TACCB0103EC
TACCB0041EE
-1750
140
20
0.5
C PMT Supply Voltage: -1000 V, Within: ±2 % linearity
D PMT Supply Voltage: -1000 V, Within: ±0.5 % linearity
E Load resistance=1 MΩ, Load capacitance=20 pF to 25 pF
Practical PMT DC Output Limits
TACCB0102EB
100 C
65
8 stage dynode, head-on type
R6231, R6232, R6233, R6234, R6235, R6236, R6237, etc.
10 stage dynode, head-on type
R878, R550, R594, R877, R1512, R1513, etc.
C12842-01 A
60
+15 ± 1
28 mm head-on type
R374, R2228, R5929, R6094, R6095, etc.
C10344-03
C13004-01
C12597-01,
C13003-01,
C13004-01
0
C8991/-01,
C10344-03
120
C8991/-01, C10344-03
C12842-01/-02
-1500
C12597-01, C13003-01
OUTPUT VOLTAGE (V)
(Reference)
330 kΩ / STAGE
RESISTIVE DIVIDER
PMT OUTPUT CURRENT (µA)
DEVIATION (%)
PMT SUPPLY VOLTAGE: -1000 V
10
1.5
10
+18
100
C13003-01
80
C13004-01
60
C12597-01
40
(Reference)
330 kΩ / STAGE
RESISTIVE DIVIDER
20
-1250
-1000
-750
-500
C8991*
C8991-01
C10344-03
C12842-01/-02
-250
C12842-01/-02
-10
1
10
100
1000
0
-400
-600
-800
-1000
-1200
-1400
-1600
0
0
0
PMT SUPPLY VOLTAGE* (V)
PMT OUTPUT CURRENT (µA)
* Photomultiplier tube must be used with a supply voltage within the rated range.
+1
+0.2
+2
+0.4
+3
+0.6
+4
+0.8
+5
+1.0
+6
+1.2
+7
+1.4
CONTROL VOLTAGE (V)
(C12597-01, C13003-01,
+8 C13004-01)
+1.6 (C8991/-01, C10344-03,
C12842-01/-02)
* C8991 can be controlled up to +1.2 V (output voltage -1200 V).
Schematic Diagrams
C8991
C8991-01
C10344-03
C12597-01
C13003-01
C13004-01
ACTIVE
VOLTAGE
DIVIDER
1.8 kΩ
HIGH
VOLTAGE
POWER
SUPPLY
SIGNAL OUT (COAX)
104
COCKCROFTWALTON CIRCUIT
(HIGH VOLTAGE
DIVIDER)
COCKCROFTWALTON CIRCUIT
(HIGH VOLTAGE
DIVIDER)
+15 V IN (RED)
PMT
SOCKET
C12842-01
C12842-02
1.8 kΩ
GND (BLACK)
Vref (+5 V) OUT (BLUE)
: C12597-01, C13003-01
Vref (+6 V) OUT (BLUE)
: C13004-01
HV CONTROL (WHITE)
GND (BLACK)
TACCC0122EB
PMT
SOCKET
PMT
SOCKET
6.2 kΩ
HIGH VOLTAGE
ADJUSTMENT
CIRCUIT
SIGNAL OUT (COAX)
+15 V IN (RED)
Vref (+2.5 V) OUT (C8991-01, C10344-03) (BLUE)
Vref (+1.2 V) OUT (C8991) (BLUE)
HV CONTROL (WHITE)
GND (BLACK)
HIGH VOLTAGE
ADJUSTMENT
CIRCUIT
6.2 kΩ
+5 V IN (RED)
Vref (+2.5 V) OUT (BLUE)
HV CONTROL (WHITE)
GND (BLACK)
SIGNAL OUT (COAX)
TACCC0141EA
TACCC0167EA
High Voltage Power Supply
Output Voltage
Range
(V)
Linear G
Regulation
Typ. (%)
-100 to -1250 F
-200 to -1200 F
-200 to -1500 F
-200 to -1250 F
-200 to -1500 F
±0.01
-200 to -1500 F
Output Voltage
Control
Typ. (ms)
Settling
Time
(s)
80
—
±0.01
0 to +50
—
10
±0.005
0 to +50
0 V to +5 V or
external 50 kΩ potentiometer
0 V to +1.2 V or
external 10 kΩ potentiometer
0 V to +1.5 V or
external 10 kΩ potentiometer
0 V to +5 V or
external 50 kΩ potentiometer
0 V to +6 V or
external 50 kΩ potentiometer
0 V to +1.5 V or
external 10 kΩ potentiometer
F Output voltage that guarantees the characteristics.
G Against ±1 V input change
H for 0 %/99 % HV change
Dimensional Outlines
C12597-01
C13003-01
(g)
45
57
80
—
±0.01
0 to +40
—
10
±0.005
0 to +50
57
—
10
±0.01
0 to +50
176
-15 to +60
40
I The time required for the output to reach a stable level following a change in the control voltage
from +1.0 V to +0.5 V.
(Unit: mm)
C13004-01
C8991
C8991-01
5
C10344-03
C12842-01/-02
33.0 ± 0.3
38.0 ± 0.3
49.0 ± 0.3
31.7 ± 0.3
25.2
25.2
38.0 ± 0.3
49.0 ± 0.3
31.7 ± 0.3
31.8 ± 0.5
31.8 ± 0.5
TACCA0328EA
SIGNAL OUTPUT
+15 V INPUT
Vref OUTPUT
HV CONTROL INPUT
GND
GND
COAXIAL CABLE RG-174/U
AWG 24, RED
AWG 24, BLUE
AWG 24, WHITE
AWG 24, BLACK
AWG 24, BLACK
TACCA0329EA
SIGNAL OUTPUT
+15 V INPUT
Vref OUTPUT
HV CONTROL INPUT
GND
GND
COAXIAL CABLE RG-174/U
AWG 24, RED
AWG 24, BLUE
AWG 24, WHITE
AWG 24, BLACK
AWG 24, BLACK
TACCA0330JA
* See page 121 for details on flanges and housing contains a magnetic shield case.
450 ± 20
HOUSING
(METAL)
450 - 0
5
10
10
5
5
COAXIAL CABLE RG-174/U
AWG 24, RED
AWG 24, BLUE
AWG 24, WHITE
AWG 24, BLACK
AWG 24, BLACK
HOUSING
(METAL)
+20
450 ± 10
5
450 MIN.
SIGNAL OUTPUT
+15 V INPUT
Vref OUTPUT
HV CONTROL INPUT
GND
10.5
10.5
SIGNAL OUTPUT
+15 V INPUT
Vref OUTPUT
HV CONTROL INPUT
GND
GND
50.0 ± 0.5
40.0 ± 0.5
0.7
HOUSING
(METAL)
31.8 ± 0.5
31.7 ± 0.3
450 MIN.
450 MIN.
HOUSING
(METAL)
37.7 ± 0.5
HOUSING
(METAL)
37.8 ± 0.5
HOUSING
(METAL)
37.8 ± 0.5
0.7
35.5 ± 0.5
4
4
65
25.2
29.0 ± 0.3
7
7
29.0 ± 0.3
31.7 ± 0.3
3.5
5
3.5
33.0 ± 0.3
Weight
59
0 V to +1.5 V or
external 10 kΩ potentiometer
0 to -1500
I
Operating
Storage
Temperature Ambient
Coefficient Temperature Temperature
(°C)
Typ. (%/°C)
(°C)
Output H
Voltage Programing
Response
COAXIAL CABLE RG-174/U
AWG 24, RED
AWG 24, BLUE
AWG 24, WHITE
AWG 24, BLACK
TACCA0053EE
SIGNAL OUTPUT
+15 V INPUT
Vref OUTPUT
HV CONTROL INPUT
GND
COAXIAL CABLE RG-174/U
AWG 24, RED
AWG 24, BLUE
AWG 24, WHITE
AWG 24, BLACK
TACCA0294EA
SIGNAL OUTPUT
+5 V INPUT
Vref OUTPUT
HV CONTROL INPUT
GND
COAXIAL CABLE RG-174/U
AWG 26, RED
AWG 26, BLUE
AWG 26, WHITE
AWG 26, BLACK
TACCA0323EA
105
DAP-Type Socket Assemblies
High Voltage Power Supply Socket Assemblies
with Transimpedance Amplifier (DAP Type)
DAP type socket assemblies contain an high voltage power supply and an amplifier that converts high impedance current signals
from the photomultiplier tube into low impedance voltage signals. These socket assemblies ensure stable photomultiplier operation
with excellent output linearity.
Features
● Superior DC Output Linearity
● Active Voltage Divider (C6271, C7950, C7950-01)
● Fast High Voltage Programming Response
(C6271, C7950, C7950-01)
● Cockcroft-Walton Circuit (C12843-01, C12843-02)
● Low Power Consumption (C12843-01, C12843-02)
● Wide Frequency Bandwidth (C7950, C7950-01)
● Single Power Supply Operation (C6271)
Specifications
Type No.
B
PMT
Amplifier
Maximum Maximum
Input
Frequency Current to Voltage Maximum Output
Linear DC
Input
Input
Voltage Voltage Current Output Current Bandwidth Conversion Factor Signal Voltage
(V)
(V)
(mA)
Min. (µA)
(-3 dB)
(V/µA)
(V)
0.3
43
DC to
+13
+15 ± 1
+18
+60/—
(load resistance 10 kΩ) C
10 kHz (load resistance 10 kΩ) (load resistance 10 kΩ)
Applicable PMTs
C6271
28 mm side-on type
C7950
±15 ± 1
28 mm head-on type
R374, R2228, R5929, R6094, R6095, etc.
8 stage dynode, head-on type
R6231, R6232, R6233, R6234, R6235, R6236, etc.
±5 ± 0.5
10 stage dynode, head-on type
R878, R550, R594, R877, R1512, R1513, etc.
C7950-01
C12843-01 A
C12843-02
A
±18
+65/-20
8
DC to
(load resistance 50 Ω) D
5 MHz
±6
+6.5/-3.5
40
0.1
+4
DC to
(load resistance 10 kΩ) E 200 kHz (load resistance 10 kΩ) (load resistance 10 kΩ)
C PMT Supply Voltage: -1000 V, Within: ±2 % linearity
D PMT Supply Voltage: -900 V, Within: ±2 % linearity
E PMT Supply Voltage: -1000 V, Within: ±0.5 % linearity
NOTE: A C12843-01S/-02S which is with shutter(10ms to DC) function are also available.
Please refer the individual datasheet for details.
B When photomultiplier tube is not attached.
DC Linearity Characteristics
Practical PMT DC Output Limits
TACCB0104EB
140
DEVIATION (%)
(Reference)
330 kΩ / STAGE
RESISTIVE DIVIDER
10
C12843-01/-02
0
C7950/-01
C6271
PMT OUTPUT CURRENT (µA)
20
PMT SUPPLY VOLTAGE: -1000 V (C6271, C12843-01/-02)
-900 V (C7950, C7950-01)
TACCB0105EB
120
100
80
C6271
60
40
C7950/-01
20
-10
1
10
100
0
-400
1000
-1000
-1200
-1400
-1600
Frequency Bandwidth
TACCB0106EB
TACCB0108EB
10
C12843-01/-02
-1250
5
RELATIVE GAIN (dB)
OUTPUT VOLTAGE (V)
-800
C12843-01/-02
PMT SUPPLY VOLTAGE (V)
High Voltage Controlling Characteristics
-1500
C6271
-1000
-900
-750
C7950*,
C7950-01*
-500
C12843-01/02
C7950/-01
0
-3 dB
-5
C6271
-10
-15
-250
0
0
+1
+0.25
+2
+0.5
+3
+3.6 +4
+0.75
+1.0
+5
+1.25
+6 (C6271, C7950, C7950-01)
+1.5 (C12843)
CONTROL VOLTAGE (V)
106
(Reference)
330 kΩ / STAGE
RESISTIVE DIVIDER
-600
PMT OUTPUT CURRENT (µA)
0
0.15
+1.2
(load resistance 50 Ω) (load resistance 50 Ω)
* The output is -900 V even if the control voltage is set higher than +3.6 V.
-20
0.1
1
10
100
1000
FREQUENCY (kHz)
10000
100000
Amplifier
High Voltage Power Supply
Operating
Storage
I Settling J Temperature Ambient
Output
Signal Output Induced Ripple
Line H Output Voltage VoltageOutput
Programing
Temperature Weight
Voltage Range Regulation
Time
Offset Voltage
on
Coefficient
Temperature
Response
Control
(s)
Typ. (mV) Signal Output
(V)
Typ. (%)
Typ. (%/°C)
(°C)
(g)
Typ. (ms)
(°C)
2 mVp-p F
0 V to +5 V or
80
±0.01
0 to -1250
±0.3
±0.01
—
0 to +40
55
(Typ.)
external 50 kΩ potentiometer
±10
10 mVrms G
(Typ.)
0 to -900
1 mVp-p F
(Max.)
0 to -1500
±1
±0.03
80
0 V to +3.6 V
—
±0.03
60
0 to +40
-15 to +60
±0.01
0 V to +1.5 V
or
external 10 kΩ potentiometer
—
10
±0.01
0 to +50
60
180
I for 0 %/99 % HV change
J The time required for the output to reach a stable level following a change
in the control voltage from +1.0 V to +0.5 V.
F Load resistance=1 MΩ, Load capacitance=20 pF to 25 pF
G Load resistance=50 Ω, Load capacitance=25 pF
H Against ±1 V input change
Schematic Diagrams
C7950, C7950-01
C6271
10 Ω
AMP
C12843-01, C12843-02
50 Ω
SIGNAL OUT (COAX)
AMP
PMT
SOCKET
PMT
SOCKET
ACTIVE
VOLTAGE
DIVIDER
1.8 kΩ
HIGH VOLTAGE
POWER SUPPLY
+15 V IN (RED)
Vref (+5 V) OUT (BLUE)
HV CONTROL (WHITE)
GND (BLACK)
GND (BLACK)
-15 V IN (BLUE)
ACTIVE
VOLTAGE
DIVIDER
HIGH VOLTAGE
POWER SUPPLY
PMT
SOCKET
-5 V IN (GREEN)
COCKCROFTWALTON CIRCUIT
(HIGH VOLTAGE
DIVIDER)
HIGH VOLTAGE 6.2 kΩ
ADJUSTMENT
CIRCUIT
TACCC0125EA
Dimensional Outlines
SIGNAL OUT (COAX)
AMP
+15 V IN (RED)
HV CONTROL (WHITE)
GND (SHIELD)
TACCC0096EE
C6271
50 Ω
SIGNAL OUT (COAX)
+5 V IN (RED)
Vref (+2.5 V) OUT (BLUE)
HV CONTROL (WHITE)
GND (BLACK)
TACCC0169EA
(Unit: mm)
C7950
C7950-01
C12843-01/-02
5
32
3.5
33.0 ± 0.3
2 × 3.2
38
38.0 ± 0.3
45
49.0 ± 0.3
31.7 ± 0.3
29.0 ± 0.3
65
25.6
HOUSING
(METAL)
50.0 ± 0.5
HOUSING
(METAL)
32
SIGNAL OUTPUT
+15 V INPUT
Vref OUTPUT
HV CONTROL INPUT
GND
GND
HOUSING
(METAL)
450 ± 20
CONDUCTIVE
PLASTIC
450 ± 10
450 ± 10
450 MIN.
10.5
31.7 ± 0.3
60.0 ± 0.5
48.5
R1
57.7 ± 0.5
2.5
0.7
4
4
31.5
COAXIAL CABLE RG-174/U
AWG 24, RED
AWG 24, BLUE
AWG 24, WHITE
AWG 24, BLACK
AWG 24, BLACK
C7950, C7950-01
TACCA0156EE
10.5
COAXIAL CABLE RG-174/U BLACK SIGNAL OUTPUT
HV CONTROL INPUT
SHIELDED CABLE
GRAY
—
(TWISTED PAIR CABLE)
GND
+15 V INPUT
SHIELDED CABLE LIGHT
-15 V INPUT
(TWISTED PAIR CABLE) BLUE
GND
—
WHITE
ORANGE
SHIELD
RED
BLUE
SHIELD
* See page 121 for details on flanges and housing contains a magnetic shield case.
SIGNAL OUTPUT
+5 V INPUT
Vref OUTPUT
HV CONTROL INPUT
GND
-5 V INPUT
COAXIAL CABLE RG-174/U
AWG 26, RED
AWG 26, BLUE
AWG 26, WHITE
AWG 26, BLACK
AWG 26, GREEN
TACCA0337EA
10.5
TACCA0261EA
107
Amplifier Units / Amplifier Modules
Amplifier Series
Specifications
Hamamatsu provides six series of amplifier units
for photomultiplier tubes. Select the one that best
matches your application.
Type No.
Frequency Bandwidth
(-3 dB)
C7319
DC to 20 kHz
DC to 200 kHz (Switchable) A
C12419
DC to 1 MHz
Current-to-Voltage
Rise Time
Conversion Factor
Typ.
(At Recommended Load Resistance)
1.75 µs
0.1 V/µA or 1 V/µA
or 10 V/µA (Switchable) A to 17.5 µs A
1 V/µA
C9999
350 ns
50 mV/µA
DC to 10 MHz
35 ns
C9999-01
10 mV/µA
C6438
0.5 mV/µA
C6438-01
25 mV/µA
DC to 50 MHz
C6438-02
▲From left: C7319, C11184, C9663, C5594, C6438
7 ns
5 mV/µA
C9663
DC to 150 MHz
4 mV/µA
2.3 ns
C11184
DC to 300 MHz
1.25 mV/µA
1.2 ns
50 kHz to 1.5 GHz
3.15 mV/µA
0.23 ns
M7279
DC to 10 MHz
10 mV/µA
35 ns
M8879
DC to 150 MHz
4 mV/µA
2.3 ns
C5594-12
C5594-22
C5594-44
▲From left: M7279, M8879
Dimensional Outlines
(Unit: mm)
C7319
C6438
DIN TYPE
(6 PINS)
L
H
DIN TYPE
(6 PINS)
ALUMINUM HOUSING
OUTPUT
GAIN
105 106 107 V/A
SIG IN
±5 V
SIG OUT
43.2 ± 0.5
±15 V
INPUT
BW
BNC-R
BNC-R
43.2 ± 0.5
ALUMINUM HOUSING
BNC-R
OFFSET
VR OFFSET
47.5 ± 0.2
∗ Exclusiver cable with a plug
connector attached at one end
will be provided for ±15 V supply
connection together with the
unit.
∗ Exclusiver cable with a plug
connector attached at one end
will be provided for ±5 V supply
connection together with the
unit.
65.0 ± 0.5
60.0 ± 0.5
ATTACHMENT SCREW HOLES
(2 × M3 DEPTH 5)
SCREW HOLES FOR FIXTURE (2 × M3 DEPTH 5)
47.5 ± 0.2
SWITCH OF
CONVERSION RATIO
60.0 ± 0.5
SWITCH OF
FREQUENCY
BANDWIDTH
65.0 ± 0.5
TACCA0174EA
C12419/C9999/C6438-01/C9663
TACCA0134EA
C9999-01/C6438-02
ALUMINUM HOUSING
BNC-R
DIN TYPE (6 PINS)
ALUMINUM HOUSING
BNC-R
DIN TYPE (6 PINS)
BNC-R
±5V
OFFSET
43.2 ± 0.5
OUTPUT
43.2 ± 0.5
INPUT
±5 V
INPUT
NON
INV.
OUTPUT
INV.
BNC-R
VR OFFSET
ATTACHMENT SCREW HOLES (2 × M3 DEPTH 5)
MOUNTING THREADED HOLES (2 × M3 DEPTH 5)
47.5 ± 0.2
47.5 ± 0.2
** Exclusiver cable with a plug
connector attached at one end
will be provided for ±5 V supply
connection together with the
unit.
60.0 ± 0.5
** Exclusiver cable with a plug
connector attached at one end
will be provided for ±5 V / ±15 V
supply connection together with
the unit.
60.0 ± 0.5
* The C6438-01 has no VR offset.
65.0 ± 0.5
TACCA0262EB
108
65.0 ± 0.5
TACCA0321EA
Input/Output Recommended
Impedance Load Resistance
(Ω)
(Ω)
Input Polarity
(Output)
Positive/Negative
(inverted)
Positive/Negative
(inverted)
Positive/Negative
(non-inverted)
Positive/Negative
(inverted / non-inverted switchable)
Low/50
10000
Low/50
1000
360/50
50
50
50
Positive/Negative
(non-inverted)
Positive/Negative
(inverted / non-inverted switchable)
Positive/Negative
(non-inverted)
Positive/Negative
(non-inverted)
50
50
50
50
Output Noise
Signal Connector
Voltage
Input
Output
Typ. (mVrms)
Supply
Voltage
(V)
Supply
Weight
Current Max.
(g)
(mA)
0.15 to 2 A
BNC-R
±5 to ±15
±50
170 D
1
BNC-R
±15
±100
165 D
±5
±70
180 D
BNC-R
±140
165 D
±2 (RL: 1 MΩ)
±1 (RL: 50 Ω)
50
50
Max. Output
Signal Voltage
Min. (V)
±13 (RL: 10 kΩ)
±2 (RL: 50 Ω)
±11 (RL: 1 kΩ)
±3 (RL: 50 Ω)
±3.2 (RL: 1 MΩ)
±1.3 (RL: 50 Ω)
±3 (RL: 1 MΩ)
±1.3 (RL: 50 Ω)
±3 (RL: 1 MΩ)
±1.3 (RL: 50 Ω)
±3 (RL: 1 MΩ)
±1.4 (RL: 50 Ω)
±2 (RL: 1 MΩ)
±1 (RL: 50 Ω)
2.2
1.2
±55
0.5 (Max.)
8 (Max.)
160 D
±80
±5
BNC-R
2 (Max.)
±140
165 D
2.8
BNC-R
±5
±80
180 D
1
MCX-R
(with BNC adapter)
±5
±70
40
70
SMA-P SMA-R
Positive/Negative
(non-inverted)
+0.8 / -2.5
(RL: 50 Ω)
50
50
5 dB C
100 / 50
50
50
50
±3.5 (RL: 1 MΩ)
±1.5 (RL: 50 Ω)
±3 (RL: 1 MΩ)
±1.4 (RL: 50 Ω)
ASpecifications of C7319
Current-to-Voltge Conversion Factor
0.1 V/µA 1 V/µA
DC to 20 kHz
17.5
Rise Time (µs)
1.75
DC to 200 kHz B
0.15
Output Noise Voltage
DC to 20 kHz
0.2
(mVrms)
0.3
DC to 200 kHz B
0.6
2.8
±5 to ±6.5
±45
1.1
±5 to ±6
±61
2.5
BLimited to DC to 100 kHz at 10 V/µA
CNoise figure
DNot including the supplied cable
10 V/µA
3.5 B
0.6
2B
C11184
90
On-board
mounting
On-board
mounting
1
70
BNC-R
BNC-R
Positive/Negative
(non-inverted)
Positive/Negative
(non-inverted)
+95
SMA-R SMA-R +12 to +16
C5594-44
C11184
(MCX)
GAIN : X25
30.5
54
RED : +5 V
BLACK : GND
BULE : -5 V
RED: +5V
BLACK:GND
BLUE: -5V
HIGH SPEED AMPLIFIER
C5594
IN
OUTPUT
7.2 ± 0.4
OUT
50 k-1.5 GHz 36 dB
(MCX)
GND
INPUT
MCX
CONNECTOR*
17
30.5
33
28.0 ± 0.5
300MHz AMPLIFIER
UNIT
INPUT
14.5 ± 0.5
450 ± 20
ATTACHMENT SCREW HOLES
(2 × M3 DEPTH 2.5)
OUTPUT
MCX
CONNECTOR*
16.5
52.0 ± 0.5
+15 V
18
18
9.5
TACCA0303EA
M7279
M8879
TACCA0295EB
20.0 ± 0.2
3.5 ± 0.8
21.0 ± 0.8
1.1
26.5 ± 0.2
1.1
13.0 ± 0.2
11.4
* MCX-BNC
adapter supplied
12.6 ± 0.2
1.15
FUNCTION
INPUT
-Vs
INTERNAL CONNECTION
(DO NOT USE)
OPTION
GND
OUTPUT
+Vs
TACCA0183ED
.5
METAL CASE
0.5
2.54
8
PIN#
1
2
3
4
5
6
7
8
R1
3
1 2 3 4 5 6 7 8
0.3
2.1
0.5
7.5 ± 0.2
2.54
WHITE
DOT
(PIN#1)
3
10.4 ± 0.8
15.0 ± 0.8
R3
HAMAMATSU
M7279
10.16
2.54
SILICONE PADS
2.54
2.54
2.54
+Vs 5
GND 4
-Vs 3
INPUT 2
6 OPTION PIN A
7 OPTION PIN B
8 OPTION PIN C
9 OUTPUT
1
GND
!0
GND
TACCA0249EA
109
High Voltage Power Supplies
Voltage Dependence of Photomultiplier Tube Gain
Hamamatsu regulated high voltage power supplies are
products developed based on our years of experience as a
photomultiplier tube manufacturer and our leading edge
technology. All models are designed to conform to stability
requirements demanded of photomultiplier tube operations.
Various models are provided, ranging from on-board module
types to general-purpose bench-top types, allowing you to
choose the desired power supply that suits your application.
Gain vs. Supply Voltage
108
TPMOB0082EB
107
106
GAIN
The photoelectrons emitted from the photocathode of a photomultiplier tube are channeled by the electron lens to impinge on the first dynode where several times the number of
secondary electrons are then emitted. This multiplicative increase of secondary electrons is repeated at the latter dynodes and as a result, the number of electrons reaching the
anode is approximately 105 to 107 times the original number
of photoelectrons emitted from the photocathode.
The relationship of the secondary electron emission δ for
each dynode to the supplied voltage is expressed as follows:
δ = A • Eα
where A is a constant, E is the interstage voltage, and α is
another constant determined by the dynode material and
geometric structure. The value of α is usually in the range
0.7 to 0.8. When a voltage V is supplied between the anode
and the photocathode of a photomultiplier tube having n dynode stages, the overall gain µ is given by
µ = (A • Eα)n = {A • [V/n+1]α}n = {An/ (n+1)αn}Vαn
Here, if {An/ (n+1)αn} is substituted for K, µ becomes
µ = K • Vαn
Typical photomultiplier tubes have 9 to 12 dynode stages
and as shown in the graph on the right, the gain is proportional to the 6th to 10th power of the voltage supplied between the photocathode and the anode. This essentially
means that the output of a photomultiplier tube is extremely
sensitive to variations in the supplied voltage. Thus the power supply stability such as drift, ripple, temperature regulation, input regulation and load regulation must be at least 10
times as stable as the output stability required of the photomultiplier tube.
105
104
103
102
200
300
500
700
1000
1500
SUPPLY VOLTAGE (V)
How to select a high voltage power supply
The high voltage power supply you will need differs depending on the photomultiplier tube to be used. Select an optimal
high voltage power supply according to the following basic
criteria for selecting the output voltage and current.
Output voltage: Power supply output voltage should be
higher than the maximum supply voltage for the photomultiplier tube.
Check the maximum supply voltage across the anode and
cathode of the photomultiplier tube to be used, and choose
an appropriate high voltage power supply that covers the
whole voltage range basically. Please operate the PMT not
to exceed the maximum supply voltage.
Output current: Power supply output current should be
1.5 times higher than the divider current.
Find the divider current that will flow in the voltage?divider
circuit and choose a high voltage power supply whose output
current is at least 1.5 times higher than the divider current.
The divider current can be calculated from the supply voltage
actually used for the photomultiplier tube. For example, if the
maximum supply voltage for the photomultiplier tube is 1250
V and the actual operating voltage is 1000 V, find the divider
current that will flow in the voltage-divider circuit operating at
110
1000 V and select a high voltage power supply that provides
an output current at least 1.5 times higher than the divider
current. Giving an extra safety margin to the output current
also allows increasing the operating voltage. There will be no
problems with measurement if the output current capacity is
greater than the divider current when operated at the maximum supply voltage.
If operating two or more photomultiplier tubes from a single
high voltage power supply, select a power supply that provides an output current higher than the total divider current
calculated by multiplying the divider current by the number of
voltage-divider circuits used.
All models of Hamamatsu high voltage power supplies are
designed for high stability optimized for photomultiplier tube
operation.
Besides output voltage and current, other factors to consider
include the input voltage, size, and availability of external
control. Hamamatsu provides a full line of high voltage power
supplies as listed on the following pages. Choose a high voltage power supply that best meets your applications and usage.
High Voltage Power Supply Modules
Regulation
Input
Output Output Ripple/Noise
Voltage Current (p-p)AB LineAB LoadA Voltage
(Max.)(V) (Max.)(mA) (Typ.)(mV) (Typ.)(%) (Typ.)(%)
(V)
Type No.
C10940
C4900
-03
-03-R2
-53
-53-R2
—
-01
-50
-51
-1200
-1250
+1250
—
-1250
-50
+1250
0.6
0.5
0.6
0.5
15 × 18 × 15
+15
+12
+15
+12
46 × 24 × 12
38
±0.01
±0.01
125
±0.01
±0.01
+15
46 × 24 × 12
+12
±0.01
±0.01
+15
+2000
-12
-1000
-52
+1000
-12
-1500
C12446 *
C12766 *
46 × 24 × 12
1
±0.01
±0.01
2
60
±0.01
±0.01
5
50
±0.01
±0.01
+24
62 × 15 × 45
High current output
10
50
±0.01
±0.01
+24
62 × 15 × 45
High current output
30
75
±0.01
±0.01
+24
+15
+12
+15
+12
+15
+12
+15
+12
+2000
-52
UL recognized
(UL 60950-1)
5
(>5 kHz)
8
(<
=5 kHz)
-2000
-2000
Digital Control
RS-485, Daisy-chain
(-R2 type only)
125
+1500
-12
Note
1
-1500
C11784 *
-52
+5
0.5
C10764 *
C9619 *
±0.01
0.6
-01
C11152
±0.02
+1200
-1250
—
-01
-50
-51
—
-01
-50
-51
50
0.6
—
C10673 *
Size
W×H×DC
(mm)
+1500
AAt maximum output voltage
BAt maximum output current
* Please check individual catalogue for more detailed information.
41 × 10 × 41
Low ripple / noise
62 × 15 × 45
High current output
107 × 25.5 × 72 -12 type: UL recognized
(UL 60601-1)
CExcluding projecting parts
Bench-top Type High Voltage Power Supplies
Type No.
C9525
C9727
-02
-03
-52
-53
—
-01
-50
-51
Regulation
Input C
Output Output Ripple/Noise
Voltage Current (p-p)AB LineAB LoadA Voltage
(Max.)(V) (Max.)(mA) (Typ.)(mV) (Typ.)(%) (Typ.)(%)
(V)
Note
1.8
60
±0.005
±0.03
AC 100
USB control Multiple
246 × 85 × 312 outputs of ±5 V, ±15 V
to
AC 240
and high voltage
2
105
±0.005
±0.03
AC 100
USB control Multiple
246 × 85 × 312 outputs of ±5 V, ±15 V
to
AC 240
and high voltage
-2000
+2000
-3500
+3500
Size
W×H×DD
(mm)
AAt maximum output voltage
BAt maximum output current
CC9525-02/C9525-52/C9727/C9727-50: AC cable with a rating 125 V is supplied with the product
C9525-03/C9525-53/C9727-01/C9727-51: AC cable with a rating 250 V is supplied with the product
DExcluding projecting parts
111
High Voltage Power Supplies
High Voltage Power Supply Modules C10940 Series
The C10940 series is an on-board type high voltage power supply module
with a compact size of 15 mm × 18 mm × 15 mm.
The C10940 series requires minimal mounting space or footprint on a
circuit board and so helps reduce equipment size. Type "-R2" for RS-485
control is also provided.
Features
● Compact and lightweight
● High stability
● High conversion
efficiency
● Digital control RS-485
Daisy-chain (Max. 32 ch, -R2
type only)
● Ample protective functions
Specifications
Parameter
C10940-53
C10940-03-R2
C10940-53-R2
+5 ± 0.5
60
230
+10 to +1200
-10 to -1200
+200 to +1200
-200 to -1200
0.6
±0.02
±0.01
50
By external controlling voltage (0 V to +1.2 V) or external potentiometer (50 kΩ)
Controlled by command via RS-485
200
—
—
200
+1.2
—
—
+1.2
Controlling voltage × 1000
Controlling voltage × 1000
—
—
120
120
300
300
±0.01
0 to +50
Below 80
-20 to +60
Below 80
7.7
Units protected against reversed power input, reversed/excessive controlling
voltage input, continuous overloading/short circuit output
C10940-03
Input Voltage
with no load Typ.
with full load Typ.
Variable Output Voltage Range
Specification Guaranteed Output Voltage Range
Max.
Output Current
Line Regulation Against ±0.5 V Input Change AB Typ.
Load Regulation Against 0 % to 100 % Load Change A Typ.
Typ.
Ripple / Noise (p-p) AB
C10940-03/-53
Output Voltage Control
C10940-03-R2/-53-R2
Controlling Voltage Input Impedance
Typ.
Reference Voltage Output
Output Voltage Setting (Absolute Value) Typ.
Output Voltage Rise Time (0 % ➝ 99 %) AB Typ.
Typ.
Temperature Coefficient AB
Operating Ambient Temperature AB
Operating Ambient Humidity C
Storage Temperature
Storage Humidity C
Typ.
Weight
Input Current A
Protective Functions
Unit
V
mA
mA
V
V
mA
%
%
mV
—
kΩ
V
V
ms
%/°C
°C
%
°C
%
g
—
NOTE: AAt maximum output voltage BAt maximum output current CNo condensation
* -R2 type: RS-485 control
Output Voltage Controlling
Characteristics
2.5 ± 0.5
BOTTOM VIEW
PIN ASSIGNMENT (-03/-53 Type)
1Vcc +5 V
2Vcont GND
3Vcont
4Vref +1.2 V Typ.
5Vcc GND
6HV GND
7HV OUT
18.0 ± 0.5
BOTTOM VIEW
PIN ASSIGNMENT (-03-R2/-53-R2 Type)
1Vcc +5 V
2RS-485A
3RS-485B
4UNUSED NORMALLY
5Vcc GND
6HV GND
7HV OUT
TACCA0316EA
112
(C10940-03-R2)
-1200
(C10940-53)
+1400
-1200
+1200
-1000
+1000
-800
+800
-600
+600
-400
+400
-200
+200
0
0
0
0.2
0.4
0.6
0.8
1.0
1.2
CONTROLLING VOLTAGE (V)
1.38 1.4
OUTPUT VOLTAGE (V)
3.0 1.778 × 4=7.112
7.62
15.0 ± 0.5
●Digital Control (C10940-03-R2/-53-R2)
(C10940-03)
-1400
OUTPUT VOLTAGE (V)
2.5
5 4 3 2 1
●External Control (C10940-03/-53)
OUTPUT VOLTAGE (V)
7
15.0 ± 0.5
7.9
6
7 × 0.45
PLASTIC HOUSING
(C10940-53-R2)
+1200
-1000
+1000
-800
+800
-600
+600
-400
+400
-200
+200
0
0
200
400
600
800
CONTROLLING SIGNAL (Digital: 10 bits)
0
1000
OUTPUT VOLTAGE (V)
Dimensional Outlines (Unit: mm)
Compact High Voltage Power Supply Modules C4900 Series
The C4900 series is an on-board type high voltage power supply module
with high performance and low power consumption.
The C4900 and -01 are designed for negative output, while the C4900-50
and -51 have positive output.
Features
● Compact and lightweight
● Low power consumption
● High stability
● Quick response
● Ample protective functions
Specifications
Parameter
C4900
+15 ± 1
14
90
C4900-01
+12 ± 0.5
15
95
0 to -1250
-200 to -1250
0.6
0.5
Input Voltage
C4900-50
C4900-51
+12 ± 0.5
+15 ± 1
15
14
95
90
0 to +1250
+200 to +1250
0.5
0.6
Unit
V
with no load
Typ.
with full load Typ.
Variable Output Voltage Range
Specification Guaranteed Output Voltage Range
Output Current
Max.
Line Regulation Against ±1 V or ±0.5 V
±0.01
Typ.
Input Change AB
Load Regulation Against 0 % to 100 %
±0.01
Typ.
Load Change A
Ripple / Noise (p-p) AB
Typ.
0.003 % (38 mV)
Output Voltage Control
By external controlling voltage (0 V to +5 V) or external potentiometer (50 kΩ)
Controlling Voltage Input Impedance Typ.
80
Reference Voltage Output
Typ.
+5.1
Output Voltage Setting (Absolute Value) Typ.
Controlling voltage × 250
Output Voltage Rise Time (0 % ➝ 99 %) AB Typ.
50
Temperature Coefficient AB
Typ.
±0.01
Operating Ambient Temperature AB
0 to +50
Operating Ambient Humidity C
Below 80
Below 80 D
Storage Temperature
-20 to +70
Storage Humidity C
Below 80
Weight
Typ.
31
Units protected against reversed power input, reversed / excessive controlling
Protective Functions
voltage input, continuous overloading / short circuit in output
Input Current A
NOTE: AAt maximum output voltage
BAt maximum output current
CNo condensation
12
3.81
15.88
4× 2
15.88
V
V
mA
%
%
—
—
kΩ
V
V
ms
% / °C
°C
%
°C
%
g
—
DAt 0 °C to +40 °C
Output Voltage Controlling
Characteristics
Dimensional Outlines (Unit: mm)
46
mA
(C4900, -01)
(C4900-50, -51)
TACCB0043EB
+1500
-1250
+1250
-1000
+1000
-750
+750
-500
+500
-250
+250
0.5
5 MIN.
0.3
1.5
2.5
15.88
3.81
15.88
6 × 0.5 × 0.25
6 × 0.8
10.16
MOUNTING TABS
(
• The
•
mounting tabs can be
bent to the right angle only once
The mounting tabs are solderable.
)
17.78
PIN ASSIGNMENT
q Vcc +15 V or +12 V
w GND
e Vcont GND
r Vcont
t Vref +5.1 V Typ.
y HV OUT
• The housing is internally connected to pin w.
• Pins w and e are internally connected.
0
2.54
10.16
0
+1
+2
+3
+4
+5
5.3
OUTPUT VOLTAGE (V)
2.54
y
q w ert
OUTPUT VOLTAGE (V)
24
29
11.7
-1500
0
+6
17.78
CONTROLLING VOLTAGE (V)
(BOTTOM VIEW)
TACCA0157EC
TACCA0159EB
113
High Voltage Power Supplies
High Voltage Power Supply Modules C11152 Series
The C11152 series is an on-board type low-profile high voltage power
supply module developed to minimize ripple noise. The C11152 series
includes a high voltage output monitor and can also be turned on and off
from an external device.
Features
● Low Ripple / Noise
● Compact and lightweight
● High stability
● High voltage output monitor
● Ample protective functions
Specifications
Parameter
C11152
+15 ± 1
45
180
C11152-50
C11152-51
+15 ± 1
+12 ± 0.5
45
50
180
220
0 to +1500
+240 to +1500
C11152-01
+12 ± 0.5
50
220
0 to -1500
-240 to -1500
Input Voltage
Unit
V
with no load Typ.
with full load Typ.
Variable Output Voltage Range
Specification Guaranteed Output Voltage Range
Max.
Output Current
1
Line Regulation Against ±1 V or ±0.5 V Input Change AB Typ.
±0.01
Load Regulation Against 0 % to 100 % Load Change A Typ.
±0.01
Typ.
Ripple / Noise (p-p) AB
5 (>5 kHz), 8 (<
=5 kHz)
Output Voltage Control
By external controlling voltage (0 V to +5 V) or external potentiometer (50 kΩ)
Controlling Voltage Input Impedance Typ.
150
130
Typ.
Reference Voltage Output
+5.2
Output Voltage Setting (Absolute Value) Typ.
Controlling voltage × 300
Output Voltage Rise Time (0 % ➝ 99 %) AB Typ.
120
Typ.
Temperature Coefficient AB
±0.005
High Voltage Monitor Output
0 to +5 (Output impedance 10 kΩ)
ON / OFF Input
TTL positive logic
ON / OFF Input Impedance
30
Operating Ambient Temperature AB
0 to +50
Operating Ambient Humidity C
Below 80
Storage Temperature
-20 to +60
Storage Humidity C
Below 80
Typ.
Weight
38
Units protected against reversed power input, reversed / excessive controlling
Protective Functions
voltage input, continuous overloading / short circuit in output
Input Current A
NOTE: AAt maximum output voltage
BAt maximum output current
2.54 × 6
(C11152, C11152-01)
7.62 10.16
41.0 ± 0.5
* The metal housing is internally connected to Pin 5.
** Never connect the Pin 3 and 5 directly and externally.
-1800
+1800
-1500
+1500
-1200
+1200
-900
+900
-600
+600
-300
+300
0
TACCA0306EB
114
0
1
2
3
4
5 5.3
CONTROLLING VOLTAGE (V)
6
0
OUTPUT VOLTAGE (V)
PIN ASSIGNMENT
1 Vref +5.2 V Typ.
2 Vcont
3 Vcont GND**
4 ON / OFF IN
5 GND**
6 Vcc +15 V or +12 V
7 HV MONITOR OUT
8 HV OUT
9 HV GND
OUTPUT VOLTAGE (V)
16.51
8
13.97
41.0 ± 0.5
0.64
9×
5±1
(C11152-50, C11152-51)
TACCB0113EA
1 2 3 4 5 6 7
10
—
CNo condensation
2.54
9
V
V
mA
%
%
mV
—
kΩ
V
V
ms
% / °C
V
—
kΩ
°C
%
°C
%
g
Output Voltage Controlling
Characteristics
Dimensional Outline (Unit: mm)
METAL HOUSING*
mA
Bench-Top Type High Voltage Power Supplies C9525 Series, C9727 Series
The C9525 series and C9727 series are multi-output high voltage power
supplies that include a high-voltage power supply unit and a low-voltage
power supply unit and can be remotely controlled.
Features
● Compact bench-top type
● High output voltage
C9525 series (2 kV/1.8 mA),
C9727 series (3.5 kV/2 mA)
● Low output voltage ±5 V, ±15 V
● High stability
● USB control
● Output voltage monitor
● Output current monitor
(only C9727)
Specifications
Parameter
C9525-52
C9727
C9727-50
C9525-53
C9727-01
C9727-51
0 to +2000
0 to -3500
0 to +3500
+320 to +2000
-320 to -3500
+320 to +3500
1.8
2
±0.005
±0.03
0.003
±0.05
±0.01
±(0.1 % +2 V)
SHV-R
+5 ± 0.25, -5 ± 0.25, +15 ± 0.75, -15 ± 0.75
500 (Total value of two connector outputs)
200 (Total value of two connector outputs)
DIN-R (6 pin) × 2
AC100 to AC240
60
0 to +40
Below 85
-20 to +50
Below 90
Approx. 3.0
Low Voltage
Output
High Voltage Output
Output Voltage
Specification Guaranteed Output Voltage
Output Current
Max.
Line Regulation (For 10 % change in line voltage) AB Max.
Load regulation (For 0 % to 100 % change in load) A Max.
Ripple / Noise (p-p) AB
Typ.
Drift (After 30 minute warm-up) AB
Typ.
Temperature Coefficient AB
Typ.
High Voltage Output Monitoring Accuracy A Typ.
Output Connector
Output Voltage
Max.
+5 V, -5 V
Output Current
Max.
+15 V, -15 V
Output Connector
AC Input Voltage
Power Consumption AB
Max.
Operating Ambient Temperature AB
Operating Ambient Humidity C
Storage Temperature
Storage Humidity C
Weight
C9525-02
C9525-03
0 to -2000
-320 to -2000
AAt maximum outut voltage
BAt maximum output current
Unit
V
V
mA
%
%
%
%/h
%/°C
—
—
V
mA
mA
—
V
V·A
°C
%
°C
%
kg
CNo condensation
Accessories
1High voltage output cable (1.5 m long) terminated with SHV-P E1168-17 (C9525 series) .... 1
High voltage output cable (1.5 m long) terminated with SHV-P E1168-19 (C9727 series) .... 1
2AC line cable (2 m long)
C9525-02/C9525-52/C9727/C9727-50: AC cable with a rating of 125 V ..................... 1
C9525-03/C9525-53/C9727-01/C9727-51: AC cable with a rating of 250 V ................ 1
33P/2P connector AC plug (C9525-02/C9525-52/C9727/C9727-50 only) ..................... 1
4USB cable (1.5 m long) with filter ................................................................................. 1
5Low voltage power supply section DIN connector plugs .............................................. 2
6CD-ROM (Containing instruction manual, sample software) ....................................... 1
7Clamp filter (C9525-02/-03/-52/-53 only) ...................................................................... 2
Sold Separately
Connecting cable for low
voltage power supply
section E1168-26
(for C9744, C7319,
C12419, C9999/-01,
C6438/-01/-02, C9663)
Dimensional Outline (Unit: mm)
246 ± 1
312 ± 1
USB
ON
OFF
HV OUTPUT
50*
A
15
HV OUT
70 ± 1
MODEL C9525 HIGH VOLTAGE POWER SUPPLY
POWER
LV OUTPUT
B
* The height of the C9525/C9727 series are 120 mm with front legs extended
TACCA0290EA
115
Thermoelectric Coolers
High Performance Thermoelectric Coolers C10372, C10373
For 28 mm, 38 mm, 51 mm Diameter Head-on PMT and MCP-PMT
The C10372 series and C10373 series are water-cooled thermoelectric
coolers designed to reduce thermal electrons emitted from the photocathode of photomultiplier tubes (PMTs) in order to improve signal-to-noise
ratio (S/N ratio). The C10372 series further contains an electrostatic and
magnetic shield that minimizes the influence of the ambient environment.
The C10372 series are for 28 mm, 38 mm and 51 mm diameter head-on
PMTs, while the C10373 series are for MCP-PMTs.
Features
● Thermoelectric cooling using Peltier module
● About -30 °C cooling temperature (with +20 °C cooling water)
● Evacuated, double-pane window with heater for frost prevention
● Built-in electrostatic and magnetic shielding (C10372 series)
● Internal protective circuits safeguards Peltier module in case
of low water
● Internal protective circuits prevent output short-circuit, output
overvoltage, and excessive temperature rise in power supply
● Stable operation due to a regulated power supply
Left: Power Supply
Right: Cooled PMT Housing
Specifications
[Cooled PMT Housing]
Parameter
Cooling Method
Heat Exchange Medium
Cooling Temperature (with cooling water at +20 °C)
Time to Stable Cooling Temperature
Optical Window Material
Applicable PMTs (sold separately)
Applicable Socket Assembly / Holder
(sold separately)
Operating Ambient Temperature / Humidity C
Storage Temperature / Humidity C
Weight
C10373/-01/-02 A
C10372/-01/-02 A
Thermoelectric cooling using Peltier module
Water (1 L/min to 3 L/min, water pressure: below 0.3 MPa)
Approx. -30
Approx. 120
Evacuated double-pane silica glass window with heater (185 nm to 2200 nm)
28 mm (1-1/8") Dia., 38 mm (1-1/2") Dia.
MCP-PMT
and 51 mm (2") Dia. Head-on
(R3809U-50 Series, R3809U-61/-63/-64)
E3059-500
E2762 Series B
(R3809U-50 Series, R3809U-61/-63/-64)
+5 °C to +40 °C / Below 75 %
-15 °C to +50 °C / Below 80 %
Approx. 5.8
Approx. 5.5
Unit
—
—
°C
min
—
—
—
—
—
kg
NOTE: AC10372 / C10373: For AC 100 V operation. C10372-01 / C10373-01: For AC 120 V operation. C10372-02 / C10373-02: For AC 230 V operation.
BSee P.117
CNo condensation
[Power Supply]
Parameter
AC Input Voltage
Maximum Power Consumption
Temperature Controllable Range
(with cooling water at +20 °C)
Output Voltage
Output Current
Protection Circuit
Humiditiy C
Operating Ambient Temperature /
Storage Temperature / Humiditiy C
Weight
Value / Description
AC100 to AC240 (50 Hz/60 Hz)
200
Unit
V
V·A
-30 to 0 (continuously adjustable)
°C
24 to 27
4.2
Protective circuits to safeguard Peltier module in case of low water and to prevent output
short-circuit, output overvoltage, and excessive temperature rise in power supply.
+5 °C to +40 °C / Below 75 %
-15 °C to +50 °C / Below 80 %
Approx. 2.1
V
A
—
—
—
kg
NOTE: CNo condensation
[Components and Accessories]
●Cooled PMT housing ●Power supply ●Light shield cap ●Water hose clamps (2 pcs)
●AC line cable ●Socket assembly / PMT holder mounting screws (4 pcs)
●Connection cable (1.5 m)
* To use these coolers, water hoses with an inner diameter of 15 mm and a water supply line with the matching round faucet are required. Prepare
those hoses of the desired length. Hoses can also be connected by using PT 1/8 pipe taper screws.
**
C10372 series and C10373 series conform to the EMC directive and the LVD of the European Union.
116
Spectral Transmission Characteristics of Optical Window
Cooling Characteristics
COOLING WATER
: +20 °C
AMBIENT TEMPERATURE : +20 °C
+20
+10
0
-10
-20
-30
-40
0
20
40
60
80
100
120
-10
TACCB0100EA
100
TACCB0101EA
90
80
-20
TRANSMITTANCE (%)
TACCB0034EA
MAXIMUM COOLING TEMPERATURE (°C)
COOLING TEMPERATURE (°C)
+30
-30
-40
70
60
50
40
30
20
10
-50
0
TIME (min)
+10
+20
0
200
+30
300
400
500
600
700
800
WAVELENGTH (nm)
COOLING WATER TEMPERATURE (°C)
Dimensional Outlines (Unit: mm)
E2762 SERIES (Sold Separately)
POWER SUPPLY
53
16
4 × M4
160
64
104.0 ± 1.5
180
HOUSING
200
30
215
8
275
* The 1 mm thickness of the folded
aluminum plate is not included in.
RC 1/8
TAPER THREAD
35 MAX.
190
30
190
250
15
250
12.5
50 +2
-0
61.5
8
6 × M3
8
6 × M3
S-100 O-RING
S-100 O-RING
PMT
52
86
95
12
100
86
130
52
95
100
130
12
0
0
PMT
EVACUATED WINDOW
WINDOW FLANGE
WINDOW FLANGE
EVACUATED WINDOW
WINDOW FLANGE
HOUSING
FRONT PANEL
HOUSING
FRONT PANEL
WINDOW FLANGE
(C10373 series)
(C10372 series)
TACCA0292EB
TACCA0293EB
Sold Separately (Unit: mm)
Socket Assemblies for C10372 Series
E2762 Series
MCP-PMT Holder for C10373 Series
E3059-500 (For R3809U Series)
SIGNAL OUTPUT: BNC RECEPTACLE
-HV: SHV RECEPTACLE
222 ± 2
HOUSING (INSULATOR)
-HV
: SHV RECEPTACLE
73
67.2 ± 0.2
69
119
SIGNAL OUTPUT
: SMA RECEPTACLE
106
73
60
R3809U
85 ±
5
119
HIGH VOLTAGE
CONTACT RING
L
35 MAX.
HOUSING (METAL)
TACCA0130ED
L: E2762-502...133.5
E2762-506...144.5
E2762-509...106.5
NOTE: A
35 MAX.
192
69
SOCKET
E2762-510...106.5
E2762-511...120.5
E2762-513...120.5
E2762 Series
E2762-502
E2762-506
E2762-509
E2762-510
E2762-511
E2762-513
* The high voltage contact ring is used
for internal electrical connection to the
magnetic shield case in the cooler.
PMT
R11102, R2066, etc.
R943-02
R464, R649, etc.
R329-02, R331-05, R2257, etc.
R374, R2228, R5929, etc.
R375, R669
HOUSING (INSULATOR)
HOUSING (METAL)
N2 GAS INLET
TACCA0133EC
117
Thermoelectric Coolers
High Performance Thermoelectric Coolers for 28 mm Dia. Side-on PMTs C9143, C9144 Series
The C9143 and the C9144 are thermoelectric coolers designed for 28mm diameter
side-on photomultiplier tubes (PMTs). The C9143 and the C9144 improve S/N (signal to noise ratio) of PMT measurement because of reduction of thermal electrons,
which are emitted from PMT photocathode, and minimization of external noise by a
built-in electrostatic and magnetic shield. The C9143 and the C9144 can communicate with a PC via an RS-232C serial interface. It enables the PC to control the
cooling temperature, high voltage output of C9145 (optionally available socket assembly with a built in Cockcloft-Wolton high voltage power supply) and ±5 V power
supply for external equipment. The C9143 and the C9144 use water and forced air
respectively to exchange heat of the thermoelectric cooler (Peltier module).
Features
▲Left: Controller for C9144 and C9143
Center: C9144 and socket assembly C9145
Right: C9143 and socket assembly E9146
Specifications
● Thermoelectric cooling using Peltier module
● Built-in electrostatic and magnetic shield
● Internal protective circuits safeguards Peltier module in case
of low water flow or suspension of fan operation
● Low voltage output for driving C9145 (sold separately)
● Control and monitor function of high voltage output of C9145
● ±5 V output for external equipment
● Built-in interface for controlling external equipment (D-Sub)
● PMT temperature control by PC
● Water cooling makes it robust against temperature changes (C9143)
● Air cooling means easier handling (C9144)
[Cooled PMT Housing]
C9144/-01/-02 A
Parameter
C9143/-01/-02 A
Cooling Method
Thermoelectric cooling using Peltier module
Water
Forced air
Heat Exchange Medium
Approx. -30 B (with cooling water of +20 °C) Approx. -25 C (with ambient temperature of +25 °C)
Cooling Temperature
-30
Maximum Cooling Temperature
Approx. 70
Approx. 90
Time to Stable Cooling Temperature
Evacuated double-pane silica glass (185 nm to 2200 nm)
Optical Window Material
8 × 24
Light Input Aperture Dimension
28 mm Dia. Side-on Type
Applicable PMTs (sold separately)
Applicable Socket Assembly (sold separately)
C9145 (DP-type), E9146 (D-type)
+5 °C to +40 °C / Below 75 %
+5 °C to +35 °C / Below75 %
Operating Ambient Temperature / Humidity D
Storage Temperature / Humidity D
-20 °C to +50 °C / Below 85 %
Approx. 1
Approx. 1.7
Weight
Unit
—
—
°C
°C
min
—
mm
—
—
—
—
kg
NOTE: AC9143/C9144: For AC 100 V operation. C9143-01/C9144-01: For AC 120 V operation. C9143-02/C9144-02: For AC 230 V operation.
BC9143
achieves cooling temperature of approx. -30 °C with water temperature of +20 °C. If the water temperature is higher, the possible lowest cooling temperature becomes higher (Note: Maximum cooling temperature is -30 °C).
CC9144 achieves cooling temperature of approx. -25 °C with ambient
temperature of +25 °C. If the ambient temperature is higher, the possible lowest cooling temperature becomes higher. If the ambient temperature is
lower, the possible lowest cooling temperature becomes lower (Note: Maximum cooling temperature is -30 °C).
DNo condensation
[Controller]
Parameter
AC Input Voltage
Maximum Power Consumption
Temperature Controllable Range
Value/Description
AC100 to AC240 (50 Hz / 60Hz)
150
-30 to -5 (0.5 °C step) E
Protective circuits to safeguard Peltier module in case of low water or suspension of fan operation
Protection Circuit
and to prevent output short-circuit, output overvoltage, and excessive temperature rise in controller.
±5 (±0.25)
Output Voltage
Power Supply Unit for
0.5
Output Current
External Equipment
DIN (6 PIN)
Connector
4 bits (TTL input)
DI (Input)
Control Interface
4 bits (TTL open collector output)
DO (Output)
RS-232C, 9600 bps
Serial Interface
+5 °C to +40°C / Below 75 %
Operating Temperature / Humidity D
Storage Temperature / Humidity D
-20 °C to +50°C / Below 85 %
Weight
Approx. 4
Unit
V
V·A
°C
—
V
A
—
—
—
—
—
kg
NOTE: DNo condensation
EPMT temperature may not achieve set up cooling temperature controlled by the operator if ambient temperature
and/or water temperature is high. The cooling temperature is controlled on personal computer.
[Components and Accessories]
●Cooled PMT housing ●Controller ●Light shield cap ●AC line cable ●Connection cable (1.5 m) between cooled PMT
housing and controller ●Serial communication cable (RS-232C crossing cable 1.8 m) ●D-Sub 15 pin connecter plug ●Cable
terminated with a ±5 V plug (1.5 m, one end unterminated) ●CD-ROM (Instruction manual, sample software for control of cooling
temperature and C9145 voltage) ●Spare fuses (2 pcs)
118
* To use C9143 series, water hoses with an outer diameter of 6 mm and an inner diameter of 4 mm and a water supply line with the matching
round faucet are required. Prepare those hoses of the desired length. In addition, prepare a filter for removing impurities such as chlorine ions.
**
C9143 series and C9144 series conform to the EMC directive and the LVD of the European Union.
Spectral Transmission Characteristics
of Optical Window
Cooling Characteristics
TACCB0069EB
30
90
AMBIENT TEMPERATURE: +25 °C
COOLING WATER: +20 °C (C9143)
80
TRANSMITTANCE (%)
20
COOLING TEMPERATURE (°C)
TACCB0107EA
100
10
0
-10
C9144
-20
70
60
50
40
30
20
-30
-40
C9143
0
10
20
10
30
40
50
60
70
80
90
0
100 110 120
200
300
400
500
TIME (min)
600
700
800
900 1000 1100 1200
WAVELENGTH (nm)
Dimensional Outlines (Unit: mm)
●C9144 HOUSING
(60)
80
60
4 × M3 L=5 (SCREW HOLES)
2 × M3 L=5
(SCREW HOLES)
50
7.5
(2 × M3 L=5)
(SCREW HOLES)
72
50
60
●C9143 HOUSING
7.5
40
LIGHT SHIELD CAP
6
TOP VIEW
93
50
C9145 (sold separately)
50
BOTTOM VIEW
C9145 (sold separately)
32
21
32
PHOTOMULTIPLIER COOLER
C9143
73.9
TOP VIEW
LIGHT SHIELD CAP
CONNECTOR FOR
POWER INPUT
26
4.5
40
BOTTOM VIEW
PHOTOMULTIPLIER COOLER
C9144
26
INPUT
56
WATER
105
30
100
M56 P=0.75
(FOR INPUT OPTICAL SYSTEM)
FRONT VIEW
SIDE VIEW
3.6
5
19
24
3.6
8
CONNECTOR FOR
POWER INPUT
132
24
132
20
56
24
INPUT
8
102
COOLING WATER IN/OUT
Plastic hose attachment port with OD6 and ID4
FRONT VIEW
REAR VIEW
5
155
21
M56 P=0.75
(FOR INPUT OPTICAL SYSTEM)
SIDE VIEW
REAR VIEW
TACCA0253EB
TACCA0254EB
●CONTROLLER
ALARM
READY
EXT
EXT POWER OUT
POWER
ON
RS232C
I/O
HV ADJ
TO C9145
OFF
L
±5 V
121
130
H
MONITOR
OUTPUT
+
–
POWER
FUSE
T4AL 250V
LINE IN
100 V–240 V ~
50 Hz–60 Hz 150V·A
PHOTOMULTIPLIER COOLER
295
195
FRONT VIEW
SIDE VIEW
REAR VIEW
TACCA0255EB
Sold Separately (Unit: mm)
HOUSING (METAL)
-HV CONTROL
HR10A-7R-6S, HRS
SOCKET
E678-11M
50.0 ± 0.5
43.8
35.0 ± 0.5
HOUSING
(INSULATOR)
27
34
3
59.0 ± 0.5
4 × M3 L=14
(SCREW)
SIGNAL OUTPUT
BNC-R
●E9146 (D Type) *MAXIMUM SUPPLY VOLTAGE: -1250 V
1: HV MONITOR
2: Vref OUTPUT
3: HV CONTROL
4: LOW VOLTAGE INPUT (+)
5: GND
6: LOW VOLTAGE INPUT (-)
-HV
CONT
SIG
34
2
5
16
4.3
SHIELD CABLE
HR10A-7P-6P, HRS
TO C9143
or C9144
TO C9145
1500
CONNECTOR BODY
SIG
27
34
3
59.0 ± 0.5
SOCKET 11
PIN No.
1
HV MONITOR
Vref OUTPUT
HV CONTROL
LOW VOLTAGE INPUT (+)
GND
LOW VOLTAGE INPUT (-)
CONNECTOR BODY
R14
-HV: SHV-R
TACCA0280EA
3
4
SIGNAL
OUTPUT
BNC-R
43.8
50.0 ± 0.5
5
6
7
8
9
C1 C2
P
10
R11 R12 R13
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
C4
1:
2:
3:
4:
5:
6:
2
4 × M3 L=14
(SCREW)
-HV
K DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9
POWER SUPPLY CABLE ASSEMBLY (SUPPLIED)
HR10A-7P-6P, HRS
-HV
SHV-R
HOUSING
(INSULATOR)
SOCKET
E678-11M
43.8
50.0 ± 0.5
HOUSING (METAL)
SPACER (INSULATOR)
50.0 ± 0.5
43.8
SPACER (INSULATOR)
35.0 ± 0.5
●C9145 (DP Type) *MAXIMUM SUPPLY VOLTAGE: -1200 V
C3
R1 to R8, R10: 330 kΩ
R9: 680 kΩ
R11 to R13: 220 Ω
R14: 10 kΩ
C1 to C3: 0.01 µF
C4: 4700 pF
DIVIDER CURRENT: 0.34 mA
(at -1250 V)
HOUSING
SIGNAL OUTPUT: BNC-R
* The E9146-01 is also available, which is rated at maximum supply voltage of -1500 V.
TACCA0281EA
119
Magnetic Shield Cases
Magnetic Shield Cases E989 Series
Photomultiplier tubes are extremely sensitive to magnetic fields and exhibit
output variations even from sources such as terrestrial magnetism.
Hamamatsu E989 series magnetic shield cases are designed specifically
to protect photomultiplier tubes from the influence of such magnetic fields.
The E989 series uses permalloy, a material that has an extremely high permeability (approximately 105). The magnetic field intensity within the shield
case can be attenuated from 1/1000 to 1/10000 of that outside the shield
case (this ratio is called the shielding factor). The E989 series ensures a
stable output for photomultiplier tubes operating in proximity to magnetic
fields.
Features
TACCF0093
● Made of high-permeability permalloy (Ni: 78 %, Fe and others: 22 %)
● Various sizes available with inner diameters from 12 mm to 138 mm
● Lusterless black paint finish
Specifications
Photomultiplier Tube Diameter
13 mm (1/2")
Side-on
28 mm (1-1/8") *
10 mm (3/8")
13 mm (1/2")
19 mm (3/4")
25 mm (1")
28 mm (1-1/8")
Head-on
38 mm (1-1/2")
51 mm (2")
76 mm (3")
127 mm (5")
Internal Dia. D ( mm) Thickness t (mm) Length L (mm)
47 ± 0.5
14.5 ± 0.5
0.5 +0.2
-0.1
80 ± 1
33.6 ± 0.8
0.8 +0.2
-0.1
48
± 0.5
12 ± 0.5
0.5 +0.2
-0.1
75
± 0.5
16 ± 0.5
0.8 +0.2
-0.1
+0.2
95 ± 1
23 ± 0.5
0.8 -0.1
48 ± 0.5
29 ± 0.5
0.8 +0.2
-0.1
120 ± 1
32 ± 0.5
0.8 +0.2
-0.1
+1
100 ± 1
44 -0
0.8 +0.2
-0.1
+0.2
130 ± 1
60 +1
0.8
-0.1
-0
+0.2
+1.5
120 ± 1
80 -0
0.8 -0.1
170 ± 1
138 ± 1.5
0.8 +0.2
-0.1
Type No.
E989-10
E989
E989-28
E989-09
E989-02
E989-39
E989-03
E989-04
E989-05
E989-15
E989-26
Weight (g)
10
66
9
28
50
32
90
102
180
170
400
* Photomultiplier tubes with HA treatment (see page 12) extending to the base portion cannot be used. Please consult our sales offices for details.
Dimensional Outlines (Unit: mm)
E989
E989-02 to -05, -09*, -39*
120°
E989-10
E989-15
E989-26
12
22.0 ± 0.3
°
90
°
90
120°
E989-28
3 × No.5
40UNC
0°
40
6
10
18.0 ± 0.1
2 × 2.3
5
°
90
0.5
90
14.5
°
12
0°
12
0°
12
0°
12
0°
± 0.
R35.0
D
33.6 ± 0.8
12
5
t
0.8
80.0+1.5
-0
12.0 ± 0.5
0°
138.0 ± 1.5
0.8
0.5
0.8
48.0 ± 0.5
10
0.5
1
°
170 ± 1
50
23
26
4× 4
5
*3 × 3.5
60.0 ± 1.5
10
68.0 ± 1.5
10
10
37
3 × M2.6
45
120 ± 1
80 ± 1
L
24
47.0 ± 0.5
8
* No
mounting hole is provided for
E989-09 and E989-39.
TACCA0117EB
120
TACCA0118EA
TACCA0119EC
TACCA0120EC
TACCA0121EC
TACCA0122EC
Housings, Flange
Housings E1341-01/-02
The E1341-01/-02 are metal housings designed for the D-type socket assembly E5859 series (for 51 mm diameter head-on photomultiplier tubes; see
page 99 to 100) operated at room temperature. To install the E5859 series
socket assembly into the E1341-01/-02 and to ensure complete light-shielding, a magnetic shield case E989-62/-68 (sold separately) is required.
The E1341-01/-02 housings can be easily attached to a monochromator by
preparing a simple adapter.
Type No.
E1341-01
E1341-02
Suitable Photomultiplier Tube
R464, R649, R329-02, etc.
R943-02
Magnetic Shield Case
E989-62
E989-68
TACCF0177
Dimensional Outlines (Unit: mm)
2
CAP (SUPPLIED)
3
MOUNT RING
MOUNT FLANGE* (SUPPLIED)
3
7
11
L
CUSHION
M61 P=0.75
GND TERMINAL
52
83
M61 P=0.75
4 × M2, L=8
(HEX SCREW)
10
P.C.D. 77
70
70
69
60.5
* The O-ring (S56) is supplied.
M61 P=0.75
4 × 3.2
L: E1341-01 .... 183.0 ± 0.5
E1341-02 .... 144.0 ± 0.5
O-RING
(S60)
TACCA0228EB
Housing E7718-02
Dimensional Outline (Unit: mm)
2
3
1
5
4
7
8
1 HOUSING (ALUMINUN)
2 MAGNETIC SHIELD CASE (PC, t=0.8) **
3 PMT
4 SLEEVE (ALUMINUN)
5 O-RINGS
6 CLAMP RING (ALUMINUN)
7 4 × M2 SCREWS L = 6
8 SOCKET ASSEMBLY
8 RESIN CAP
!0 GROUNDING LUG
26
9
42
2
7
M42, P=1.5
6
!0
10
37.5
Housing E7718-02 is
Including part 1, 2, 4, 5, 6, 7, 9 and !0.
131.5
* O-RING
10.2
Suitable Socket Assembly
DA type C7246/-22, C7247/-22
R374, R2228, R5929
DP type C13004-01, C10344-03
R6094, R6095, etc.
DAP type C7950-01
43
60
1
54 ± 0.
4 × M3
FLANGE *
3
Suitable PMT
[SUGGESTED FIXTURE LAYOUT FOR THE FLANGE]
54
46
[HOW TO USE THE HOUSING WITH FLANGE]
The E7718-02 housing contains a magnetic shield case and is
designed for use with 28 mm diameter head-on photomultiplier
tubes. It can be easily attached to another device by connecting the A7719 flange (sold separately).
* Flange and O-ring are sold separately. (Type No.: A7719)
** Magnetic shield case is electrically floating.
TACCA0327EA
Flange A7709
Dimensional Outline (Unit: mm)
6
54
7
8
80 ± 2
5
60
[Including part 1, 4, 5, 6, 8 and !0]
2
3
4
5
35.2 ± 1.0
1
1
2
3
4
5
6
7
8
9
!0
INSULATOR (CUSHION)
PMT
E989 MAGNETIC SHIELD CASE
CLAMPING METAL PARTS
2 × M3 SCREWS L = 5
FLANGE (METAL)
SOCKET ASSEMBLY
O-RING
FIXTURE
2 × M3 SCREWS L = 5
9 !0
[SUGGESTED FIXTURE LAYOUT FOR THE FLANGE]
3 × M3
48
28 mm
Side-on type
Suitable Socket Assembly
E717-63/-500
D type
DA type C7246-01/-23, C7247-01/-23
DP type C8991, C8991-01, C12597-01
DAP type C7950
0°
DIRECTION OF LIGHT
12
0°
Suitable PMT
* A7708 dedicated flange is provided for C6271.
1
54 ± 0.
12
The A7709 is a flange for 28 mm diameter side-on photomultiplier tubes and is designed for use in combination with the
E989 magnetic shield case (sold separately). It allows a photomultiplier tube to be integrated with a socket assembly.
TACCA0199EB
121
Power and Signal Cables, Connector Adapters
Power and Signal Cables E1168 Series, Connector Adapters A4184 Series
Hamamatsu offers the E1168 series cables for connection of photomultiplier
tube assemblies and their accessories. A variety of cables are available, for
handling high voltage, low voltage and signals.
In addition, Hamamatsu also provides the A4184 series connector adapters
designed for SHV/MHV connector conversion.
TACCF0153
Selection Guide
● For High Voltage
Type No.
E1168
E1168-10
E1168-17
E1168-18
E1168-19
E1168-20
Cable Diameter
Cable Type
Connector Types
MHV Plug—MHV Plug
MHV Plug—SHV Plug
SHV Plug—SHV Plug
MHV Plug—MHV Plug
SHV Plug—SHV Plug
MHV Plug—SHV Plug
Maximum Voltage
RG-59B/U
6.15 mm
2.3 kV Max.
Custom High Voltage Cable
6.15 mm
5 kV Max.
● For Low Voltage
Cable Type
Multiconductor Cable with Shield
Type No.
E1168-26
Connector Types
DIN6P Plug—DIN6P Plug
● For Signal
Type No.
E1168-01
E1168-02
E1168-03
E1168-05
A5026
A5026-01
Cable Type
Impedance
3D-2V
50 Ω
3C-2V
3D-2V
75 Ω
50 Ω
Custom Coaxial Cable
50 Ω
● Connector Adapters
Connector Types
N Plug—N Plug
N Plug—BNC Plug
BNC Plug—BNC Plug
BNC Plug—BNC Plug
SMA Plug—SMA Plug
SMA Plug—SMA Jack
● Relay Adapters
Connector Types
MHV Plug—SHV Jack
SHV Plug—MHV Jack
Type No.
A4184-02
A4184-03
Type No.
A5074
A7992
Connector Types
SHV Jack—SHV Jack
BNC Jack—BNC Jack
Dimensional Outlines (Unit: mm)
E1168/-18
MHV-PLUG
E1168-01
MHV-PLUG
TACCA0141EB
A5026
SMA-PLUG
N-PLUG
A5026-01
SMA-PLUG
TACCA0052EB
SHV-PLUG
SMA-PLUG
TACCA0142EB
1500
BNC-PLUG
TACCA0147EB
300
1500
SHV-PLUG
E1168-03/-05
1500
N-PLUG
122
E1168-17/-19
1500
BNC-PLUG
TACCA0148EB
300
SMA-JACK
TACCA0052EB
Related Products for Photon Counting
Photon Counting Unit C9744
This photon counting unit contains an amplifier and a discriminator to convert
the single photoelectric pulses from a photomultiplier tube into a 5 V digital
signal.
The C9744 has an output linearity up to 1 × 107 S-1, and a high-speed counter
is not required when set to division by 10.
TACCF0195
Specifications
Parameter
Input Impedance
Discrimination Level (input conversion)
PMT Gain
Prescaler
÷1
Count Linearity
÷10
÷1
Pulse-pair Resolution
÷10
Output Pulse
÷1
Output Pulse Width
÷10
Supply Voltage
Input
Output
Connector
Power
Dimensions (W × H × D)
Weight
Operating Ambient Temperature / Humidity A
Storage Temperature / Humidity A
NOTE: ANo condensation
Description / Value
50 Ω
-0.4 mV to -16 mV
3 × 106
÷1 / ÷10
4 × 106 s-1
1 × 107 s-1
25 ns
10 ns
CMOS 5 V, POSITIVE LOGIC
10 ns
Depends on count rate
+5.0 V ± 0.2 V, 130 mA / -5.0 V ± 0.2 V, 50 mA
BNC-R
BNC-R
DIN (6 PIN) B
90 mm × 32 mm × 140 mm (excluding rubber feet and projecting parts)
Approx. 250 g
0 °C to +50 °C / Below 80 %
-15 °C to +60 °C / Below 85 %
BSupplied with a cable (1.5 m) attached to the mating plug.
Dimensional Outline
(Unit: mm)
+1.0
INPUT
PRESCALER OUTOPUT
÷1
÷10
140 - 0
DISCRI
POWER
MONITOR
(–)
(+)
PHOTON COUNTING UNIT C9744
+1.0
DIN TYPE (6 PIN)
32
90 - 0
TPHOA0031EA
123
Related Products for Photon Counting
Counting Unit C8855-01
The C8855-01 is a counting unit with a USB interface and can be used as a
photon counter when combined with a photon counting head, etc.
The counter of the C8855-01 includes two counter circuits (double counter
method) capable of counting input signals with no dead time. The USB interface easily connects to a laptop allowing measurement in an even wider application field. When used with a photon counting head, the C8855-01 supplies
power (+5 V / 200 mA) necessary to operate the photon counting head.
Since the C8855-01 is hot-swap compatible (plug and play compatible), it
helps you set up measurement environment quickly. You can start
measurement on the day the C8855-01 is delivered by using the sample
software that supplied with the C8855-01.
• Time-resolved measurement (minimum resolution: 50 µs) for
monitoring chemiluminescence and biological clocks
• Quick measurement setups (hot-swap compatible)
When software such as a device driver is installed into your PC
beforehand, you can start measurement by just connecting the USB cable,
without restarting the PC.
• Applicable to various measurement methods
The C8855-01 is fully controlled by DLL (dynamic link library) functions that
come with the C8855-01.
All information on these DLL functions is available to support software
programming that handles various types of user measurement
applications.
• Since the C8855-01 has an ID switch, a maximum of 16 units
can be connected to one PC and controlled individually.
Specifications
Parameter
Number of Input Signals
Signal Input Level
Input
Signal Pulse Width
Input Impedance
Counter Method
Maximum Count Rate
Counter
Maximum Counter Capacity
Counter Gate Mode
Counter Gate
Internal Counter Gate Time A
Trigger Method
Trigger
External Trigger Signal
ID Switch B
General Output Section
Voltage Output
Compatible OS
Interface
Supply Voltage
Dimensions (W × H × D)
Weight
Operating Ambient Temperature / Humidity C
Storage Temperature / Humidity C
CE Marking
AC Input
AC Adapter
Output
Description / Value
1 ch
CMOS positive logic (high level: 2 V min.)
8 ns or longer
50 Ω
Double counter method
50 MHz
232 counts/counter gate
Internal counter gate only
50 µs to 10 s (1, 2, 5 step)
External trigger / Software trigger
TTL negative logic
0 to F(hexadecimal number) Select
Open collector / 2 bits
+5 V / 200 mA Max.
Windows® Vista Business / 7 Pro
USB
+7 V / 500 mA Max. (supplied from AC adapter)
120 mm × 30 mm × 96 mm (excluding rubber feet and projecting parts)
250 g
+5 °C to +45 °C / Below 80 %
0 °C to +50 °C / Below 85 %
Conforms to the IEC 61326-1 GROUP 1, CLASS B
AC100 V to AC240 V
+7 V / 1.6 A
NOTE: AThe C8855-01 is not suitable for applications requiring time resolution higher than 50 µs. In such applications, use a counting board M9003-01.
BThe ID switch is used to set ID numbers when two or more C8855-01 units are connected to single PC.
CNo condensation
Supplied: CD-ROM (containing instruction manual, device driver, DLL, sample software*, etc.), USB cable, AC adapter, AC cable, power output connector
* Sample software is configured from Lab VIEW™ of National Instruments, Inc.
124
Counting Board M9003-01
The M9003-01 counting board is a PCI bus add-in board counter that functions as a photon counter when used along with a Hamamatsu photon counting head.
The counter section of the M9003-01 has two counter circuits (double counter method) capable of counting the input signal pulses without any dead
time. The counter operates in either gate counter mode or in reciprocal counter mode. Gate counter mode counts the input signal pulses only during each
gate time produced by the internal oscillator. (Minimum gate time during gate
counter mode is 50 ns.) Reciprocal counter mode counts the number of internal clock pulses generated between input signal pulses.
The M9003-01 does not have its own memory so it sends measurement data
directly to the PC's main memory by DMA (direct memory access) transfer.
This enables measurement of up to 64 Mbytes. External trigger signals can
also be inserted into the count data as timing information.
Counting can also be performed for a predetermined number of gates starting from the input of an external trigger signal (only during gate counter
mode). This allows counting periodic light emission phenomena by integrating their signals after DMA transfer.
Anyone can easily make the initial settings since the M9003-01 is PnP (plug
and play) compatible. You can start making measurements right away after
the M9003-01 is unpacked, by just using the sample software that comes
supplied with the unit.
Specifications
Parameter
Number of Input Signals
Signal Input Level
Input
Signal Pulse Width
Input Impedance (Switchable)
Counter Method
Maximum Count Rate
Counter
Maximum Count Capacity
Gate Time Resolution
Gate
Trigger Method
External Trigger Signal
Trigger
Trigger Signal Pulse Width
Trigger Signal Output Timing
Input Signal
Input Strobe Signal
General I/O
Output Signal
Output Strobe Signal
Compatible OS
Bus Type
Data Transfer Method
Data Transfer Quantity
Data Transfer Rate
Size
Weight
Operating Ambient Temperature / Humidity A
Storage Temperature / Humidity A
CE Marking
Description / Value
2 ch
TTL positive logic
8 ns or longer
50 Ω (at SW ON), 100 kΩ (at SW OFF)
Gate mode B / Reciprocal mode C
50 MHz (gate mode) / 20 MHz (reciprocal mode)
28 / 216 counts (gate mode) / 231 counts (reciprocal mode)
50 ns to 12.75 µs
External trigger / Software trigger
TTL negative logic
1 µs or more
At start of counting by software trigger
TTL level signal (3 bits)
TTL level signal
Open collector (4 bits)
Open collector
Windows® Vista Business / 7 Pro
PCI bus interface (conforms to Rev 2.1)
DMA transfer (scatter-gather method)
Maximum 64 MB (data quantity transferable by one DMA.)
40 MB/s (depends on CPU and peripherals)
PCI standard (low profile)
Approx. 80 g
+5 °C to +40 °C / Below 80 %
0 °C to +50 °C / Below 85 %
Conforms to the IEC 61326-1 GROUP 1, CLASS B
NOTE: ANo condensation
BGate counter mode counts the input signal pulses only during each specified gate time.
CReciprocal counter mode counts the number of internal clock pulses generated between input signal pulses.
Supplied: CD-ROM (containing instruction manual, device drivers, sample software*, etc.),
Signal cables E1168-22 × 2 (LEMO-BNC: coaxial 1.5 m), Flat cable plug TXA20A-26PH1-D2P1-D1 (manufactured by JAE)
* Sample software is configured from Lab VIEW™ of National Instruments, Inc.
125
Cautions and Warranty
SAFETY PRECAUTIONS
WARNING
HIGH
VOLTAGE
A high voltage is applied to a photomultiplier tube during operation. Always provide adequate safety measures to prevent the operator or service personnel from electrical shock and the equipment from being damaged.
HANDLING PRECAUTIONS
●Handle tubes with extreme care.
Photomultiplier tubes have evacuated glass envelopes.
Allowing the glass to be scratched or subjected to
shock can cause cracks. Take extreme care during
handling, particularly for tubes with graded sealing on
synthetic silica bulbs.
●Keep faceplate and base clean.
Do not touch the faceplate and base with bare hands.
Dirt and grime on the faceplate causes loss of transmittance and dirt or grime on the base may cause ohmic
leakage. If the faceplate becomes soiled wipe it clean
using alcohol.
●Carefully handle tubes with a glass base.
Photomultiplier tubes with a glass base (also called button stem) are less rugged than tubes with a plastic
base, so sufficient care must be taken when handling
this type of tube. When fabricating a voltage-divider circuit by soldering resistors and capacitors to socket
lugs, solder them while the tube is fully inserted into the
socket.
●Helium permeation through silica bulb
Helium will permeate through silica bulbs and increase
noise, leading to damage that makes photomultiplier
tubes unusable. Avoid operating or storing them in an
atmosphere where helium is present.
●Do not expose to strong light.
The photocathode of photomultiplier tubes may be
damaged if exposed to direct sunlight or intense illumination. Never allow strong light to strike the photocathode.
WARRANTY
Hamamatsu photomultiplier tubes and related products are
warranted to the original purchaser for a period of 12
months after delivery. The warranty is limited to repair or
replacement of a defective product due to defects in workmanship or materials used in its manufacture.
However, even if within the warranty period the warranty
shall not apply to failures or damages caused by misoperation, mishandling, modification or accidents such as natural or man-made disasters.
The customer should inspect and test all products as soon
as they are delivered.
ORDERING INFORMATION
This catalog lists photomultiplier tubes and related products currently available from Hamamatsu Photonics.
Please select those products that best match your design
specifications. If you do not find the products you want in
this catalog, feel free to contact our sales office nearest
you. We will modify our current products or design new
types to meet your specific needs.
WHEN DISPOSE THE PRODUCT
When disposing of the product, take appropriate measures in compliance with applicable regulations regarding waste disposal and correctly dispose of it yourself, or entrust disposal to a licensed industrial waste disposal company.
In any case, be sure to comply with the regulations in your country, state, region or province to ensure the product is disposed of legally and correctly.
* Characteristics and specifications in this catalog are subject to change without prior notice due to product improvement or other
factors.
Before you design equipment according to the characteristics and specifications of our products listed in this catalog, please contact us to check the product specifications.
126
Typical Photocathode Spectral Response
Spectral Response
Curve Codes
Photocathode
Materials
Window
Materials
Peak Wavelength
Luminous
(Typ.)
Range
(µA/lm)
(nm)
(mA/W)
(nm)
(%)
(nm)
PMT Examples
QE
Radiant Sensitivity
Semitransparent Photocathode
K
100M
Cs-I
MgF2
—
115 to 200
14
140
13
130
R972, R1081, R6835
K
200S
Cs-Te
Synthetic silica
—
160 to 320
29
240
16
210
R759, R821, R6834
K
200M
Cs-Te
MgF2
—
115 to 320
29
240
17
200
R1080, R6836
201S
Cs-Te
Synthetic silica
—
160 to 320
31
240
17
210
R2078
K
400K
Bialkali
Borosilicate
95
300 to 650
88
420
27
390
K
400U
Bialkali
UV
95
185 to 650
88
420
27
390
R1584
K
400S
Bialkali
Synthetic silica
95
160 to 650
88
420
27
390
R2496
K
401K
High temp. Bialkali
Borosilicate
40
300 to 650
51
375
17
375
R1288A, R3991A,R4177-01, R4607A-01
K
402K
Low noise Bialkali
Borosilicate
40
300 to 650
54
375
18
375
R2557, R3550A, R5610A
K
500K(S-20)
Multialkali
Borosilicate
150
300 to 850
64
420
20
375
K
500U
Multialkali
UV
150
185 to 850
64
420
25
280
R374, R1463
K
500S
Multialkali
Synthetic silica
150
160 to 850
64
420
25
280
R375
K
501K(S-25)
Extended red Multialkali
Borosilicate
200
300 to 900
40
600
8
580
R669, R2066, R2228, R2257
K
502K
Multialkali
Borosilicate (prism)
230
300 to 900
69
420
20
390
R5070A, R5929
K
600K
GaAsP
Borosilicate
700
280 to 720
180
550 to 650
40
480 to 530 R3809U-64
K
601K
Extended red GaAsP
Borosilicate
750
280 to 820
160
550 to 650
36
480 to 530 R3809U-63
K
602K
GaAs
Borosilicate
700
370 to 920
85
750 to 850
12
600 to 750 R3809U-61
K
700K(S-1)
Ag-O-Cs
Borosilicate
20
400 to 1200
2.2
800
0.36
K
900S
InP/InGaAsP(CS)
Synthetic silica
—
950 to 1200
18
1100
2
1000 to 1100 H10330-25*
K
901S
InP/InGaAs(CS)
Synthetic silica
—
950 to 1700
24
1500
2
1000 to 1550 H10330-75*
740
R329-02, R1307, R1548-07, R1635
R1924A, R5611A-01, R11102, etc.
R550, R649, R1513, R1617, R1878
R1925A
R5108
Semitransparent Photocathode (UBA [Ultra Bialkali], SBA [Super Bialkali], EGBA [Extended Green Bialkali])
K
440K
Super Bialkali
Borosilicate
105
300 to 650
110
400
35
350
R7600U-100, R7600U-100-M4,R5900U-100-L16, etc.
K
441K
Ultra Bialkali
Borosilicate
135
300 to 650
130
400
43
350
R7600U-200, R7600U-200-M4,R5900U-200-L16, etc.
442K
Super Bialkali
Borosilicate
105
230 to 700
110
400
35
350
R9880U-110
443K
Ultra Bialkali
Borosilicate
135
230 to 700
130
400
43
350
R9880U-210
444K
Extended Green Bialkali Borosilicate
160
300 to 700
127
420
40
380
H7546B-300, H8711B-300
K
Reflection Mode Photocathode
K
150M
Cs-I
MgF2
—
115 to 195
25.5
130
26
125
R8487, R10825
K
250S
Cs-Te
Synthetic silica
—
160 to 320
62
230
37
210
R6354, R7154
K
250M
Cs-Te
MgF2
—
115 to 320
63
200
35
220
R8486, R10824
K
350U(S-5)
Sb-Cs
UV
40
185 to 650
48
340
20
280
R6350
K
452U
Bialkali
UV
120
185 to 750
90
420
30
260
R3788, R6352
453K
Bialkali
Borosilicate
60
300 to 650
60
400
20
370
R11558
453U
Bialkali
UV
60
185 to 650
60
400
23
330
R11568
456U
Low noise Bialkali
UV
60
185 to 680
60
400
19
300
R1527, R4220, R5983, R6353, R7518
550U
Multialkali
UV
150
185 to 850
45
530
15
250
R6355
552U
Multialkali
UV
200
185 to 900
68
400
26
260
R2949
555U
Multialkali
UV
525
185 to 900
90
450
30
260
R3896, R9110, R9220
556U
Multialkali
UV
200
185 to 850
80
430
27
280
R4632
557U
Multialkali
UV
650
185 to 900
109
450
35
260
R10699
561U
Multialkali
UV
200
185 to 830
70
530
24
250
R6358
K
562U
Multialkali
UV
300
185 to 900
76
400
26
260
R928, R5984
K
650U
GaAs
UV
550
185 to 930
62
300 to 800
23
300
R636-10
K
650S
GaAs
Synthetic silica
550
160 to 930
62
300 to 800
23
300
R943-02
K
850U
InGaAs
UV
100
185 to 1010
40
400
14
330
R2658
851K
InGaAs
Borosilicate
150
300 to 1040
50
400
16
370
R3310-02*
K
950K
InP/InGaAsP(Cs)
Borosilicate
—
300 to 1400
21
1300
2
1000 to 1300 R5509-43*
K
951K
InP/InGaAs(Cs)
Borosilicate
—
300 to 1700
24
1500
2
1000 to 1500 R5509-73*
K
K
∗ : Spectral response characteristics vary from tube to tube, so the above values may differ from actual data.
K: Spectral response curves are shown on page 128, 129
* : Products marked are not listed in this catalog.
127
PHOTOCATHODE RADIANT SENSITIVITY (mA/W)
SEMITRANSPARENT PHOTOCATHODE SPECTRAL RESPONSE CHARACTERISTICS
1000
800
600
400
TRANSMISSION MODE PHOTOCATHODE
%
Y 50
C
N
441K
E
I
FFIC
25 %
TUM E
N
A
U
Q
440K
200
100
80
60
40
10 %
5%
444K
2.5 %
200M
400K
20
10
8
6
4
401K, 402K
1%
400U
100M
0.5 %
.25 %
400S
0
200S
2
0.1 %
1.0
0.8
0.6
0.4
0.2
0.1
100
200
300
400
500 600 700 800 1000 1200 1500 1800
PHOTOCATHODE RADIANT SENSITIVITY (mA/W)
WAVELENGTH (nm)
128
1000
800
600
400
TPMOB0077EH
TRANSMISSION MODE PHOTOCATHODE
600K
200
TU
QUAN
602K
100
80
60
40
500K
601K
901S
500S
502K
20
10 %
5%
2.5 %
1%
0.5 %
500U
10
8
6
4
0.25 %
2
1.0
0.8
0.6
0.4
0%
25 %
NCY 5
ICIE
M EFF
0.1 %
501K
900S
700K
0.2
100
200
300
400
500 600 700 800 1000 1200 1500 1800
WAVELENGTH (nm)
TPMOB0078EI
PHOTOCATHODE RADIANT SENSITIVITY (mA/W)
OPAQUE PHOTOCATHODE SPECTRAL RESPONSE CHARACTERISTICS
1000
800
600
400
REFLECTION MODE PHOTOCATHODE
NCY
FFICIE
TUM E
QUAN
200
100
80
60
40
50 %
25 %
10 %
5%
456U
150M
2.5 %
350U
20
1%
250S
10
8
6
4
250M
0.5 %
.25 %
452U
0
2
0.1 %
1.0
0.8
0.6
0.4
0.2
100
200
300
400
500 600 700 800 1000 1200 1500 1800
PHOTOCATHODE RADIANT SENSITIVITY (mA/W)
WAVELENGTH (nm)
1000
800
600
400
TPMOB0079EH
REFLECTION MODE PHOTOCATHODE
TU
QUAN
200
10
8
6
4
10 %
5%
555U
100
80
60
40
20
2.5 %
650S
850U
1%
0.5 %
%
0.25
650U
2
0.1 %
1.0
0.8
0.6
0.4
562U
0.2
100
0%
25 %
NCY 5
ICIE
M EFF
950K
951K
200
300
400
500 600 700 800 1000 1200 1500 1800
WAVELENGTH (nm)
TPMOB0080EK
129
Notes
A Types marked ∗ are newly listed in this catalog.
B See pages 128 and 129 for typical spectral response charts.
C Photocathode materials
BA :
Bialkali
LBA :
Low noise bialkali
HBA :
High temperature bialkali
SBA :
Super bialkali
UBA :
Ultra bialkali
EGBA :
Extended green Bialkali
MA :
Multialkali
ERMA :
Extended red multialkali
DIA :
Diamond
Other photocathodes are indicated by the element symbols.
D Window materials
MF :
Q:
K:
U:
MgF2
Quartz (silica)
Borosilicate glass
UV glass
E Base diagram
BASING DIAGRAM SYMBOLS
All base diagrams show terminals viewed from the base end of the tube.
Each symbol used in basing diagrams signifies the following.
Short (Index)
Pin
DY : Dynode
Pin
key
G : Grid
ACC : Accelerating electrode
K : Photocathode
P : Anode
SH : Shield
IC : Internal connection (Do not use.)
Semiflexible
NC : No connection (Do not use.)
Lead
F Dynode structure
B:
VB :
CC :
L:
B+L:
C+L:
FM :
CM :
MC :
SC :
Box-and-grid
Venetian blind
Circular-cage
Linear-focused
Box and linear-focused
Circular and Linear-focused
Fine mesh
Coarse mesh
Metal channel
Silicon channel
G See page 90, 91 for suitable socket assemblies.
See page 74, 75 for suitable sockets E678 series.
*: A socket will be supplied with the tube.
No mark: Sockets may be obtained from electronics supply houses
or our sales office.
H Operating ambient temperature range for the photomultiplier itself
is -30 °C to +50 °C except for some types of tubes.
However, when photomultiplier tubes are operated below -30 °C at
their base section, please consult us in advance.
J Averaged over any interval of 30 seconds maximum.
K Measured at the peak sensitivity wavelength.
L See page 72 for voltage distribution ratio.
M Anode characteristics are measured with the supply voltage and
voltage distribution ratio specified by Note L.
Cathode and anode characteristics are measured under the following
conditions if noted.
a at 122 nm
b at 254 nm
c at 4 A/lm
d at 10 A/lm
e Dark count per second (s-1)
f Dark count per second (s-1) after one hour storage at -20 °C
g at 1 × 106 gain
h Under peltier device operation
How to Use This Folding Page
To read this catalog, open this page
as shown below.
●"NOTES" are listed on the inside of this
page so that you can refer to them while
looking at the specification tables.
Related Product Catalogs
Photomultiplier Tube Modules
The photomultiplier tube module is basically comprised of a photomultiplier
tube, a high-voltage power supply circuit to operate the photomultiplier tube,
and a voltage divider circuit to distribute
the optimum voltage to each dynode,
all integrated into a compact case. In
addition to these basic configurations,
Hamamatsu also provides modules
having various added functions such as
signal conversion, photon counting,
cooling and interfacing to a PC.
Photomultiplier Tubes and Assemblies
for Scintillation Counting & High Energy Physics
PHOTOMULTIPLIER TUBES AND ASSEMBLIES
PHOTOMULTIPLIER TUBES
AND ASSEMBLIES
This catalog is a selection guide for Hamamatsu photomultiplier tubes and assemblies specially fabricated and selected for scintillation counting and high
energy physics applications. These
photomultiplier tubes offer high quantum efficiency, high energy resolution,
wide dynamic range and fast time response, as well as remarkable resistance to harsh environments ranging
from strong magnetic fields to high temperatures. A wide variety of products
are listed here ranging in diameter from
3/8 inches up to 20 inches.
HAMAMATSU PHOTONICS K.K., Electron Tube Division
314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, Japan
Telephone: (81)539/62-5248, Fax: (81)539/62-2205
www.hamamatsu.com
Main Products
Sales Offices
Electron Tubes
Photomultiplier Tubes
Photomultiplier Tube Modules
Microchannel Plates
Image Intensifiers
Xenon Lamps / Mercury Xenon Lamps
Deuterium Lamps
Light Source Applied Products
Laser Applied Products
Microfocus X-ray Sources
X-ray Imaging Devices
Japan:
HAMAMATSU PHOTONICS K.K.
325-6, Sunayama-cho, Naka-ku,
Hamamatsu City, Shizuoka Pref. 430-8587, Japan
Telephone: (81)53-452-2141, Fax: (81)53-456-7889
E-mail: [email protected]
Opto-semiconductors
Si photodiodes
APD
Photo IC
Image sensors
PSD
Infrared detectors
LED
Optical communication devices
Automotive devices
X-ray flat panel sensors
Mini-spectrometers
Opto-semiconductor modules
Imaging and Processing Systems
Cameras / Image Processing Measuring Systems
X-ray Products
Life Science Systems
Medical Systems
Semiconductor Failure Analysis Systems
FPD / LED Characteristic Evaluation Systems
Spectroscopic and Optical Measurement Systems
Laser Products
Semiconductor lasers
Applied products of semiconductor lasers
Solid state lasers
China:
HAMAMATSU PHOTONICS (CHINA) Co., Ltd.
Main Office
1201 Tower B, Jiaming Center, 27 Dongsanhuan Beilu,
Chaoyang District, 100020 Beijing, China
Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866
E-mail: [email protected]
Shanghai Branch
4905 Wheelock Square, 1717 Nanjing Road West,
Jingan District, 200040 Shanghai, China
Telephone: (86)21-6089-7018, Fax: (86)21-6089-7017
Taiwan:
HAMAMATSU PHOTONICS TAIWAN Co., Ltd.
Main Office
8F-3, No.158, Section2, Gongdao 5th Road,
East District, Hsinchu, 300, Taiwan R.O.C.
Telephone: (886)03-659-0080, Fax: (886)07-811-7238
E-mail: [email protected]
Kaohsiung Office
No.6, Central 6th Road, K.E.P.Z. Kaohsiung 806,
Taiwan R.O.C.
Telephone: (886)07-262-0736, Fax: (886)07-811-7238
U.S.A.:
HAMAMATSU CORPORATION
Main Office
360 Foothill Road, Bridgewater, NJ 08807, U.S.A.
Telephone: (1)908-231-0960, Fax: (1)908-231-1218
E-mail: [email protected]
California Office
2875 Moorpark Ave. San Jose, CA 95128, U.S.A.
Telephone: (1)408-261-2022, Fax: (1)408-261-2522
E-mail: [email protected]
Chicago Office
4711 Golf Road, Suite 805, Skokie, IL 60076, U.S.A.
Telephone: (1)847-825-6046, Fax: (1)847-825-2189
E-mail: [email protected]
Boston Office
20 Park Plaza, Suite 312, Boston, MA 02116, U.S.A.
Telephone: (1)617-536-9900, Fax: (1)617-536-9901
E-mail: [email protected]
REVISED FEB. 2016
Information in this catalog is
believed to be reliable. However,
no responsibility is assumed for
possible inaccuracies or omission.
Specifications are subject to
change without notice. No patent
rights are granted to any of the
circuits described herein.
© 2016 Hamamatsu Photonics K.K.
United Kingdom:
HAMAMATSU PHOTONICS UK Limited
Main Office
2 Howard Court, 10 Tewin Road, Welwyn Garden City,
Hertfordshire AL7 1BW, UK
Telephone: (44)1707-294888, Fax: (44)1707-325777
E-mail: [email protected]
South Africa Office:
PO Box 1112, Buccleuch 2066, Johannesburg, South Africa
Telephone/Fax: (27)11-802-5505
Swiss Office
Dornacherplatz 7 4500 Solothurn, Switzerland
Telephone: (41)32-625-60-60, Fax: (41)32-625-60-61
E-mail: [email protected]
Belgian Office
Axisparc Technology, rue Andre Dumont 7 1435
Mont-Saint-Guibert, Belgium
Telephone: (32)10 45 63 34, Fax: (32)10 45 63 67
E-mail: [email protected]
Spanish Office
C. Argenters, 4 edif 2 Parque Tecnológico del Vallés
08290 Cerdanyola (Barcelona), Spain
Telephone: (34)93 582 44 30, Fax: (34)93 582 44 31
E-mail: [email protected]
Germany, Denmark, The Netherlands, Poland:
HAMAMATSU PHOTONICS DEUTSCHLAND GmbH
Main Office
Arzbergerstr. 10, D-82211 Herrsching am Ammersee,
Germany
Telephone: (49)8152-375-0, Fax: (49)8152-265-8
E-mail: [email protected]
Danish Office
Lautruphøj 1-3, DK-2750 Ballerup, Denmark
Telephone: (45)70-20-93-69, Fax: (45)44-20-99-10
Email: [email protected]
Netherlands Office
Televisieweg 2, NL-1322 AC Almere, The Netherlands
Telephone: (31)36-5405384, Fax: (31)36-5244948
E-mail: [email protected]
Poland Office
02-525 Warsaw, 8 St. A. Boboli Str., Poland
Telephone: (48)22-646-0016, Fax: (48)22-646-0018
E-mail: [email protected]
North Europe and CIS:
HAMAMATSU PHOTONICS NORDEN AB
Main Office
Torshamnsgatan 35 16440 Kista, Sweden
Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01
E-mail: [email protected]
Russian Office
11, Christoprudny Boulevard, Building 1, Office 114,
101000, Moscow, Russia
Telephone: (7)495 258 85 18, Fax: (7)495 258 85 19
E-mail: [email protected]
Italy:
HAMAMATSU PHOTONICS ITALIA S.r.l.
Main Office
Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy
Telephone: (39)02-935-81-733, Fax: (39)02-935-81-741
E-mail: [email protected]
Rome Office
Viale Cesare Pavese, 435, 00144 Roma, Italy
Telephone: (39)06-50513454, Fax: (39)02-935-81-741
E-mail: [email protected]
France, Portugal, Belgium, Switzerland, Spain:
HAMAMATSU PHOTONICS FRANCE S.A.R.L.
Main Office
19, Rue du Saule Trapu Parc du Moulin de Massy,
91882 Massy Cedex, France
Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10
E-mail: [email protected]
Quality, technology and service are part of every product.
TPMZ0002E01
FEB. 2016 IP
Printed in Japan (4000)