Opening The Future with Photonics Human beings obtain more than 70 percent of the information visually by using their eyes. However, there are vast sums of information and unknown possibilities hidden within light not visible to the naked eye. This kind of light includes ultraviolet, infrared, X-ray and ultra-low level light impossible for human eyes to detect. Since its founding over 60 years ago, Hamamatsu Photonics has been investigating not only light seen by the human eye but also light that far exceeds this level. As a leading manufacturer specializing in the field of photonics, Hamamatsu Photonics has marketed dozens of photosensitive devices, light sources and related products. Through these state-of-the-art products, Hamamatsu Photonics has committed itself to pioneering industrial and academic research work in still unexplored areas in many fields. Hamamatsu Photonics will continue to deliver innovative breakthroughs in a diverse range of fields, always striving to make human life fuller and richer by "researching the many ways to use light". CONTENTS Index by Type Number ............................................................................... 2 About Photomultiplier Tube Construction and Operating Characteristics ............................................... 4 Connections to External Circuits ................................................................. 14 Selection Guide by Applications ................................................................. 16 Side-on Type Photomultiplier Tubes 13 mm Dia. Types ....................................................................................... 28 mm Dia. Types with UV to Visible Sensitivity......................................... 28 mm Dia. Types with UV to Near IR Sensitivity ....................................... 13 mm Dia. Types, 28 mm Dia. Types with Solar Blind Response ............. 22 24 26 30 Head-on Type Photomultiplier Tubes 10 mm Dia. Types, 13 mm Dia. Types........................................................ 19 mm Dia. Types ....................................................................................... 25 mm Dia. Types ....................................................................................... 28 mm Dia. Types ....................................................................................... 38 mm Dia. Types ....................................................................................... 51 mm Dia. Types with Plastic Base........................................................... 51 mm Dia. Types with Glass Base ............................................................ 76 mm Dia. Types ....................................................................................... 127 mm Dia. Types ..................................................................................... 32 34 36 38 42 44 46 50 52 Special Purpose Photomultiplier Tubes Hexagonal Types, Rectangular Types ........................................................ Metal Package Photomultiplier Tubes ........................................................ UBA (Ultra Bialkali), SBA (Super Bialkali), EGBA (Extended Green Bialkali) Types ..................................................... For High Magnetic Environments................................................................ Microchannel Plate-Photomultiplier Tubes (MCP-PMTs) ........................... Micro PMT Assembly / Micro PMT Module ................................................. 54 56 60 64 66 68 Gain Characteristics 70 Voltage Distribution Ratio 72 Lens for Side-on Type Photomultiplier Tubes 73 Photomultiplier Tube Sockets 74 Photomultiplier Tube Assemblies 76 Accessories for Photomultiplier Tubes Socket Assemblies...................................................................................... Amplifier Units ............................................................................................. High Voltage Power Supplies ..................................................................... Thermoelectric Coolers ............................................................................... Magnetic Shield Cases ............................................................................... Housings, Flange ........................................................................................ Power and Signal Cables, Connector Adapters.......................................... Related Products for Photon Counting ....................................................... 84 108 110 116 120 121 122 123 Cautions and Warranty 126 Typical Photocathode Spectral Response 127 Index by Type Number Product R329-02 ......................... R331-05 ......................... R374 .............................. R375 .............................. R464 .............................. R550 .............................. R580 .............................. R594 .............................. R636-10 ......................... R647............................... R649 .............................. R669 .............................. E717 Series ................... R759 .............................. R821 .............................. E849 Series ................... E850 Series ................... R877 .............................. R877-100 ....................... R878 .............................. R928 .............................. R943-02 ......................... R972 .............................. E974 Series ................... E989 Series ................... E990 Series ................... R1080 ............................ R1081 ............................ R1166 ............................ E1168 Series ................. E1198 Series ................. R1250 ............................ R1288A ......................... R1306 ............................ R1307 ............................ E1341 Series ................. E1435-02 ....................... R1450 ............................ R1463 ............................ R1513 ............................ R1527 ............................ R1548-07 ...................... R1584 ............................ R1617 ............................ R1635 ............................ E1761 Series ................. R1828-01 ....................... R1878 ............................ R1924A ......................... R1924A-100 .................. R1925A ......................... H1949-51 ....................... R2066 ............................ R2078 ............................ R2083 ............................ R2154-02 ...................... E2183 Series ................. R2228 ............................ R2248 ............................ E2253 Series ................. R2257 ............................ H2431-50 ....................... R2496 ............................ R2557 ............................ E2624 Series ................. R2658 ............................ E2924 Series ................. R2949 ............................ E2979-500 ..................... H3164-10 ....................... H3165-10 ....................... H3178-51 ....................... R3478 ............................ R3550A ......................... H3695-10 ....................... R3788 ............................ R3809U Series .............. R3886A.......................... Head-on PMT ............................................. 46 Head-on PMT ............................................. 46 Head-on PMT ............................................. 38 Head-on PMT ............................................. 48 Head-on PMT ............................................. 46 Head-on PMT ............................................. 44 Head-on PMT ............................................. 42 Head-on PMT ............................................. 50 Side-on PMT .............................................. 28 Head-on PMT ............................................. 32 Head-on PMT ............................................. 46 Head-on PMT ............................................. 48 Socket Assembly ........................................ 90 Head-on PMT ............................................. 32 Head-on PMT ............................................. 34 Socket Assembly ........................................ 90 Socket Assembly ........................................ 90 Head-on PMT ............................................. 52 SBA Head-on PMT ..................................... 60 Head-on PMT ............................................. 44 Side-on PMT .............................................. 26 Head-on PMT ............................................. 48 Head-on PMT ............................................. 34 Socket Assembly ........................................ 90 Magnetic Shield Case ................................. 120 Socket Assembly .................................... 90, 91 Head-on PMT ............................................. 32 Head-on PMT ............................................. 32 Head-on PMT ............................................. 34 Cable with Connector ................................. 122 Socket Assembly ........................................ 91 Head-on PMT ............................................. 52 Head-on PMT ............................................. 36 Head-on PMT ............................................. 44 Head-on PMT ............................................. 50 Housing ...................................................... 121 Socket Assembly ........................................ 91 Head-on PMT ............................................. 34 Head-on PMT ............................................. 32 Head-on PMT ............................................. 52 Side-on PMT .............................................. 24 Rectangular Dual PMT ............................... 54 Head-on PMT ............................................. 52 Head-on PMT ............................................. 34 Head-on PMT ............................................. 32 Socket Assembly ........................................ 90 Head-on PMT ............................................. 44 Head-on PMT ............................................. 34 Head-on PMT ............................................. 36 SBA Head-on PMT ..................................... 60 Head-on PMT ............................................. 36 PMT Assembly ............................................ 76 Head-on PMT ............................................. 42 Head-on PMT ............................................. 36 Head-on PMT ............................................. 46 Head-on PMT ............................................. 44 Socket Assembly ........................................ 91 Head-on PMT ............................................. 40 Rectangular PMT ........................................ 54 Socket Assembly ........................................ 90 Head-on PMT ............................................. 48 PMT Assembly ........................................... 76 Head-on PMT ............................................. 32 Head-on PMT ............................................. 32 Socket Assembly ........................................ 90 Side-on PMT ............................................... 28 Socket Assembly ........................................ 90 Side-on PMT ............................................... 26 Socket Assembly ........................................ 91 PMT Assembly ........................................... 76 PMT Assembly ........................................... 76 PMT Assembly ........................................... 76 Head-on PMT ............................................. 34 Head-on PMT ............................................. 36 PMT Assembly ........................................... 76 Side-on PMT ............................................... 24 MCP-PMT ................................................... 66 Head-on PMT ............................................. 42 2 Type No. Page Type No. Product R3896 ............................ R3991A ......................... R3998-02 ....................... R3998-100-02................ R4124 ............................ R4143 ............................ R4177-01 ....................... A4184 Series ................. R4220 ............................ R4607A-01..................... R4632 ............................ C4900 Series ................. R4998 ............................ A5026 Series ................. R5070A ......................... A5074 ............................ R5108 ............................ R5505-70 ....................... C5594 Series ................. R5610A ......................... R5611A-01 .................... E5859 Series ................. R5900U-L16 Series ....... R5900U-100-L16 ........... R5900U-200-L16 ........... R5916U Series .............. R5924-70 ....................... R5929 ............................ R5983 ............................ R5984 ............................ E5996 ............................ R6091 ............................ R6094 ............................ R6095 ............................ E6133-04 ....................... H6152-70 ....................... R6231 ............................ R6231-100 ..................... R6233 ............................ R6233-100 ..................... R6234 ............................ R6235 ............................ R6236 ............................ R6237 ............................ C6271 ............................ E6316 Series ................. R6350 ............................ R6352 ............................ R6353 ............................ R6354 ............................ R6355 ............................ R6356-06 ....................... R6357 ............................ R6358 ............................ H6410 ............................ R6427 ............................ C6438 Series ................. H6520 ............................ H6524 ............................ H6527 ............................ H6528 ............................ H6533 ............................ H6559 ............................ H6612 ............................ H6614-70 ....................... E6736 ............................ R6834 ............................ R6835 ............................ R6836 ............................ E7083 ............................ R7111 ............................ R7154 ............................ H7195 ............................ R7205-01 ....................... R7206-01 ....................... C7246 Series ................. C7247 Series ................. H7260-20 ....................... Side-on PMT ............................................... Head-on PMT ............................................. Head-on PMT ............................................. SBA Head-on PMT ..................................... Head-on PMT ............................................. Head-on PMT ............................................. Head-on PMT ............................................. Connector Adapter ...................................... Side-on PMT ............................................... Head-on PMT ............................................. Side-on PMT ............................................. High Voltage Power Supply Unit ................ Head-on PMT ............................................. Cable with Connector ................................. Head-on PMT ............................................. Relay Adapter ............................................. Side-on PMT ............................................... Head-on PMT for Highly Magnetic Field ....... Amplifier Unit .............................................. Head-on PMT ............................................. Head-on PMT ............................................. Socket Assembly ........................................ Metal Package PMT ................................... SBA Metal Package PMT ............................ UBA Metal Package PMT ............................ MCP-PMT ................................................... Head-on PMT for Highly Magnetic Field ....... Head-on PMT ............................................. Side-on PMT .............................................. Side-on PMT .............................................. Socket Assembly ........................................ Head-on PMT.............................................. Head-on PMT ............................................. Head-on PMT ............................................. Socket Assembly ........................................ PMT Assembly ............................................ Head-on PMT ............................................. SBA Head-on PMT ..................................... Head-on PMT ............................................. SBA Head-on PMT ..................................... Hexagonal PMT .......................................... Hexagonal PMT .......................................... Rectangular PMT ........................................ Rectangular PMT ........................................ Socket Assembly ........................................ Socket Assembly ........................................ Side-on PMT .............................................. Side-on PMT .............................................. Side-on PMT .............................................. Side-on PMT .............................................. Side-on PMT .............................................. Side-on PMT .............................................. Side-on PMT .............................................. Side-on PMT .............................................. PMT Assembly ........................................... Head-on PMT ............................................. Amplifier Unit ............................................. PMT Assembly ........................................... PMT Assembly ........................................... PMT Assembly ........................................... PMT Assembly ........................................... PMT Assembly ........................................... PMT Assembly ........................................... PMT Assembly ........................................... PMT Assembly ........................................... Socket Assembly ........................................ Head-on PMT ............................................. Head-on PMT ............................................. Head-on PMT ............................................. Socket Assembly ........................................ Head-on PMT ............................................. Side-on PMT .............................................. PMT Assembly ........................................... Head-on PMT ............................................. Head-on PMT ............................................. Socket Assembly ........................................ Socket Assembly ........................................ PMT Assembly ........................................... Page 26 34 40 60 32 50 32 122 24 46 26 113 36 122 36 122 28 64 108 34 34 91 58 62 62 66 64 40 24 26 91 50 38 38 91 76 44 60 50 60 54 54 54 54 106 91 22 22 22 30 22 22 22 22 76 38 108 76 76 76 76 76 76 76 76 91 38 38 38 91 40 30 76 40 40 102 102 76 Type No. Product H7260-100 ..................... H7260-200 ..................... M7279 ........................... C7319 ............................ H7415 ............................ E7514 ............................ R7518 ............................ H7546B.......................... H7546B-20..................... H7546B-100................... H7546B-200................... H7546B-300................... R7600U Series .............. R7600U-100 .................. R7600U-100-M4 ............ R7600U-200 .................. R7600U-200-M4 ............ E7693 ............................ A7709 ............................ E7718 Series ................. R7724 ............................ R7761-70 ....................... R7899 ............................ C7950 Series ................. A7992 ............................ H8409-70 ....................... R8486 ............................ R8487 ............................ H8500C.......................... H8711 ............................ H8711-20 ....................... H8711-100 ..................... H8711-200 ..................... H8711-300 ..................... C8855-01 ....................... M8879 ........................... R8900U-00-C12 ............ R8900U-100-C12 .......... C8991 Series ................. M9003-01....................... R9110 ............................ C9143 ............................ C9144 ............................ R9182-01 ....................... R9220 ............................ R9420 ............................ R9420-100 ..................... H9500 ............................ C9525 Series ................. H9530-20 ....................... C9619 Series ................. C9663 ............................ R9722A.......................... C9727 ............................ C9744 ............................ R9800 ............................ R9880U Series .............. C9999 Series ................. C10344-03 ..................... C10372 .......................... C10373 .......................... R10454 .......................... H10515B-20................... C10673 Series ............... E10679 Series ............... R10699 .......................... C10764 Series ............... R10824 .......................... R10825 .......................... H10828 .......................... C10940 Series ............... H10966A........................ R11102 .......................... C11152 Series ............... C11184 .......................... R11265U-100 ................ R11265U-200 ................ C11323 Series ............... SBA PMT Assembly ................................... UBA PMT Assembly ................................... Amplifier Unit .............................................. Amplifier Unit .............................................. PMT Assembly ........................................... Socket Assembly ........................................ Side-on PMT ............................................... PMT Assembly ........................................... PMT Assembly ........................................... SBA PMT Assembly ................................... UBA PMT Assembly ................................... EGBA PMT Assembly ................................ Metal Package PMT.................................... SBA Metal Package PMT ........................... SBA Metal Package PMT ........................... UBA Metal Package PMT ........................... UBA Metal Package PMT ........................... Socket Assembly ........................................ Flange ........................................................ Housing ...................................................... Head-on PMT ............................................. Head-on PMT for Highly Magnetic Field ..... Head-on PMT ............................................. Socket Assembly ........................................ Relay Adapter ............................................. PMT Assembly ........................................... Side-on PMT .............................................. Side-on PMT .............................................. Flatpanel PMT Assembly ........................... PMT Assembly ........................................... PMT Assembly ........................................... SBA PMT Assembly ................................... UBA PMT Assembly ................................... EGBA PMT Assembly ................................. Counting Unit .............................................. Amplifier Unit .............................................. Metal Package PMT.................................... SBA Metal Package PMT ........................... Socket Assembly ........................................ Counting Board .......................................... Side-on PMT ............................................... Thermoelectric Cooler ................................ Thermoelectric Cooler ................................ Side-on PMT ............................................... Side-on PMT ............................................... Head-on PMT ............................................. SBA Head-on PMT ..................................... Flatpanel PMT Assembly ............................ Bench-top Type Multi-output Power Supply .... PMT Assembly ........................................... High Voltage Power Supply Unit ................ Amplifier Unit ............................................. Head-on PMT ............................................. Bench-top Type Multi-output Power Supply .... Photon Counting Unit ................................. Head-on PMT ............................................. Metal Package PMT ................................... Amplifier Unit .............................................. Socket Assembly ........................................ Thermoelectric Cooler ................................ Thermoelectric Cooler ................................ Side-on PMT ............................................... PMT Assembly ............................................ High Voltage Power Supply Unit ................ Socket Assembly ........................................ Side-on PMT ............................................... High Voltage Power Supply Unit ................ Side-on PMT ............................................... Side-on PMT ............................................... PMT Assembly ........................................... High Voltage Power Supply Unit ................ PMT Assembly ........................................... Head-on PMT ............................................. High Voltage Power Supply Unit ................ Amplifier Unit .............................................. SBA Head-on PMT ..................................... UBA Head-on PMT ..................................... High Voltage Power Supply Unit ................ Page 62 62 108 108 76 91 24 76 76 62 62 62 58 62 62 62 62 91 121 121 46 64 36 106 122 76 30 30 76 76 76 62 62 62 124 108 58 62 104 125 26 118 118 26 26 42 60 76 115 76 111 108 42 115 123 36 56 108 104 116 116 30 76 111 91 26 111 30 30 76 112 76 42 114 108 62 62 111 Type No. Product R11540 .......................... R11558 .......................... R11568 .......................... R11715-01 ..................... C11784 Series ............... E11807 Series ............... H12400 Series ............... H12402 Series ............... H12403 Series ............... C12419 .......................... R12421 .......................... H12428-100 ................... H12428-200 ................... H12445-100 ................... H12445-200 ................... C12446 Series ............... C12597-01 ..................... H12690 .......................... H12700 .......................... R12829 .......................... C12842 Series .............. C12843 Series .............. R12844 .......................... R12845 .......................... R12857 .......................... C13003-01 ..................... C13004-01 ..................... R13089 .......................... R13194 .......................... Side-on PMT .............................................. Side-on PMT .............................................. Side-on PMT .............................................. Side-on PMT .............................................. High Voltage Power Supply Unit ................ Socket Assembly ........................................ Micro PMT Assembly .................................. Micro PMT Module ..................................... Micro PMT Module ..................................... Amplifier Unit .............................................. Head-on PMT ............................................. SBA PMT Assembly ................................... UBA PMT Assembly ................................... SBA PMT Assembly ................................... UBA PMT Assembly ................................... High Voltage Power Supply Unit ................ Socket Assembly ........................................ PMT Assembly ........................................... Flatpanel PMT Assembly ............................ Side-on PMT .............................................. Socket Assembly ........................................ Socket Assembly ........................................ Head-on PMT ............................................. Head-on PMT ............................................. Side-on PMT .............................................. Socket Assembly ........................................ Socket Assembly ........................................ Head-on PMT ............................................. Side-on PMT ............................................... Page 24 24 24 24 111 91 68 68 68 108 32 62 62 62 62 111 104 76 76 26 104 106 38 42 22 104 104 44 30 Type numbers shown in "Notes" Type No. Page R331 ..................................... R585 ..................................... R647P.................................... R750 ..................................... R758-10 ................................ R760 ..................................... R877-01 ................................ R955 ..................................... R960 ..................................... R976 ..................................... R1104 ................................... R1166P................................. R1288A-01 ........................... R1307-01 ............................. R1450-13 ............................. R1464 ................................... R1527P ................................ R1924P ................................ R1926A ................................ R2027 ................................... R2059 ................................... R2076 ................................... R2256-02 .............................. R2295 ................................... H2431-50 .............................. R2557P................................. R2658P................................. R3256 ................................... R3377 ................................... H3378-50 .............................. R3479 .................................. R3550P................................. R4141 ................................... R4220P ................................ R4332 .................................. E5038 .................................. R5113-02 ............................. R5320 .................................. R5610P ................................ R5611A ................................ R5900U-03-L16 .................... R5900U-04-L16 .................... R5900U-06-L16 .................... 47 47 33 35 29 33 53 27 33 35 39 35 37 51 35 35 25 37 37 35 45 35 47 35 47 33 29 45 47 47 35 37 33 25 25 90 47 37 35 35 59 59 59 Type No. Page R5900U-07-L16 .................... R5983P ................................ H6152-70 .............................. R6231-01 .............................. R6233-01 .............................. R6234-01 .............................. R6235-01 .............................. R6236-01 .............................. R6237-01 .............................. R6350P................................. R6351 ................................... R6353P ................................ R6358-10 .............................. H6533 ................................... H6610 ................................... H6614-70 .............................. R7056 ................................... R7207-01 .............................. R7446 ................................... R7447 ................................... R7518P................................. R7600P................................. R7600U-03 ........................... R7600U-03-M4 ..................... R7600U-04 ........................... R7600U-04-M4 ..................... H7844 ................................... R7899-01 .............................. H8409-70 .............................. R9110P................................. R10491 ................................. R10560 ................................. R11265U-103......................... R11265U-203......................... H11934-100 .......................... H11934-200 .......................... R12421P................................ H12428-103 .......................... H12428-203 .......................... H12445-103 .......................... H12445-203 .......................... R12896 ................................. 59 25 65 45 51 55 55 55 55 23 23 23 23 37 37 65 39 41 25 25 25 59 59 59 59 59 27 37 65 27 25 37 63 63 63 63 33 63 63 63 63 27 3 Construction and Operating Characteristics INTRODUCTION Figure 3: Types of Photocathode Among photosensitive devices in use today, the photomultiplier tube (or PMT) is a versatile device providing ultra-fast response and extremely high sensitivity. A typical photomultiplier tube consists of a photoemissive cathode (photocathode) followed by focusing electrodes, an electron multiplier (dynodes) and an electron collector (anode) in a vacuum tube, as shown in Figure 1. When light enters the photocathode, the photocathode emits photoelectrons into the vacuum. These photoelectrons are then directed by the focusing electrode voltages towards the electron multiplier where electrons are multiplied by a secondary emission process. The multiplied electrons then are collected by the anode as an output signal. Because of secondary-emission multiplication, photomultiplier tubes provide extremely high sensitivity and exceptionally low noise compared to other photosensitive devices currently used to detect radiant energy in the ultraviolet, visible, and near infrared regions. The photomultiplier tube also features fast time response and a choice of large photosensitive areas. This section describes the prime features of photomultiplier tube construction and basic operating characteristics. a) Reflection Mode Figure 1: Cross-Section of Head-on Type PMT FOCUSING ELECTRODE PHOTOELECTRON SECONDARY ELECTRON LAST DYNODE STEM PIN b) Transmission Mode SEMITRANSPARENT PHOTOCATHODE REFLECTION MODE PHOTOCATHODE DIRECTION OF LIGHT DIRECTION OF LIGHT PHOTOELECTRON PHOTOELECTRON TPMSC0029EA TPMHC0084EB ELECTRON MULTIPLIER The superior sensitivity (high current amplification and high S/N ratio) of photomultiplier tubes is due to the use of a low-noise electron multiplier which amplifies electrons by a cascade secondary emission process. The electron multiplier consists of 8 to 19 stages of electrodes called dynodes. There are several principal types in use today. 1) Circular-cage type The circular cage is generally used for the side-on type of photomultiplier tube. The prime features of the circular-cage are compactness, fast response and high gain obtained at a relatively low supply voltage. VACUUM (10 -4 Pa) DIRECTION OF LIGHT e- FACEPLATE ELECTORON MULTIPLIER (DYNODES) ANODE PHOTOCATHODE STEM TPMHC0006EA Side-On Type CONSTRUCTION The photomultiplier tube generally has a photocathode in either a side-on or a head-on configuration. The side-on type receives incident light through the side of the glass bulb, while the headon type receives light through the end of the glass bulb. In general, the side-on type photomultiplier tube is widely used for spectrophotometers and general photometric systems. Most side-on types employ an opaque photocathode (reflection-mode photocathode) and a circular-cage structure electron multiplier (see description of "ELECTRON MULTIPLIER") which has good sensitivity and high amplification at a relatively low supply voltage. The head-on type (or the end-on type) has a semitransparent photocathode (transmission-mode photocathode) deposited upon the inner surface of the entrance window. The head-on type provides better uniformity (see page 9) than the side-on type having a reflection-mode photocathode. Other features of head-on types include a choice of photosensitive areas ranging from tens to hundreds of square centimeters. Variants of the head-on type having a large-diameter hemispherical window have been developed for high energy physics experiments where good angular light reception is important. Head-On Type TPMOC0077EB 2) Box-and-grid type This type consists of a train of quarter cylindrical dynodes and is widely used in head-on type photomultiplier tubes because of good electron collection efficiency and excellent uniformity. TPMOC0078EA 3) Linear-focused type The linear-focused type features extremely fast response time and is widely used in applications where time resolution and pulse linearity are important. This type also has the advantage of providing a large output current. Figure 2: External Appearance a) Side-on Type PHOTOSENSITIVE AREA b) Head-on Type TPMOC0079EA PHOTOSENSITIVE AREA 4) Box-and-line type This structure consists of a combination of box-and-grid and linear-focus dynodes. Compared to box-and-grid type, this structure has advantages in time response, time resolution, pulse linearity, and electron collection efficiency. TPMOC0204EA 4 5) Circular and linear-focused type The circular and linear-focused type has a structure that combines a circular-cage type and a linear-focused type. It offers improved pulse linearity while maintaining the compactness of the circular-cage type. 9) Metal Channel type The metal channel dynode has a compact dynode construction manufactured by our unique fine machining techniques. It delivers high-speed response due to a space between each dynode stage that is much smaller than other types of conventional dynodes. The metal channel dynode is also ideal for position sensitive measurement. ELECTRON TPMOC0225EA 6) Venetian blind type The venetian blind type has a large dynode area and is primarily used for tubes with large photocathode areas. It offers better uniformity and a larger output current. This structure is usually used when time response is not a prime consideration. TPMOC0084EA SPECTRAL RESPONSE TPMOC0080EA 7) Mesh type The mesh type has a structure of fine mesh electrodes stacked in close proximity. There are two mesh types of dynode: a coarse mesh type and a fine mesh type. Both types provide improved pulse linearity and high resistance to magnetic fields. The mesh type also has position-sensitive capability when used with cross-wire anodes or multiple anodes. The fine mesh type is particularly suited for use in applications where high magnetic fields are present. The photocathode of a photomultiplier tube converts energy from incident light into electrons. The conversion efficiency (photocathode sensitivity) varies with the wavelength of the incident light. This relationship between photocathode sensitivity and wavelength is called the spectral response characteristic. Figure 4 shows the typical spectral response of a bialkali photomultiplier tube. The spectral response on long wavelengths is determined by the photocathode material and on short wavelengths by the window material. Typical spectral response characteristics for various types of photomultiplier tubes are shown on pages 128 and 129. In this catalog, the long-wavelength cutoff of the spectral response characteristic is defined as the wavelength at which the cathode radiant sensitivity is 1 % of the maximum sensitivity in bialkali and Ag-O-Cs photocathodes, and 0.1 % of the maximum sensitivity in multialkali photocathodes. Spectral response characteristics shown at the end of this catalog are typical curves for representative tube types. Actual data may be different from tube to tube. Figure 4: Typical Spectral Response of Bialkali Photocathode 1 mm COARSE MESH TYPE ELECTRON ELECTRON (HEAD-ON TYPE, BIALKALI PHOTOCATHODE) 100 13 µm FINE-MESH TYPE TPMOC0081EB 8) Microchannel plate (MCP) (see page 66) The MCP is a thin disk consisting of millions of microglass tubes (channels) fused in parallel with each other. Each channel acts as an independent electron multiplier. The MCP offers much faster time response than other discrete dynodes. It also features good immunity from magnetic fields and two-dimensional detection ability when multiple anodes are used. CATHODE RADIANT SENSITIVITY (mA/W) QUANTUM EFFICIENCY (%) ELECTRON 10 CATHODE RADIANT SENSITIVITY 1 QUANTUM EFFICIENCY 0.1 0.01 200 400 600 800 WAVELENGTH (nm) TPMOB0070EA TPMOC0082EA 5 Construction and Operating Characteristics The photocathode is a photoemissive surface usually consisting of alkali metals with very low work functions. The photocathode materials most commonly used in photomultiplier tubes are as follows: 1) Ag-O-Cs The transmission mode photocathode using this material is designated S-1 and sensitive in the visible to near infrared region. Since Ag-O-Cs has relatively high thermionic dark emission (refer to "ANODE DARK CURRENT" on page 8), this photocathode is cooled for detecting light in the near infrared region. 2) GaAs The spectral response of this photocathode material usually covers a wider spectral response range than multialkali, from ultraviolet to 930 nm, which is comparatively flat over the range between 300 mm and 850 nm. 3) GaAsP GaAsP (gallium arsenide phosphied) crystal activated in cesium is used as a transmission mode photocathode. This photocathode delivers very high quantum efficiency in the visible light region. 4) InGaAs This photocathode material has greater extended sensitivity in the infrared range than GaAs. Moreover, in the range between 900 mm and 1000 nm, InGaAs has a much higher S/N ratio than Ag-O-Cs. 5) InP/InGaAsP(Cs), InP/InGaAs(Cs) These are field-assisted photocathodes utilizing a PN junction formed by growing InP/InGaAsP or InP/InGaAs on an InP substrate. These photocathodes were developed by our own in-house semiconductor microprocess technology. Applying a bias voltage to this photocathode lowers the conduction band barrier, and allows for higher sensitivity at long wavelengths extending to 1.4 µm or even 1.7 µm which have up till now been impossible to detect with a photomultiplier tube. Since these photocathodes produce large amounts of dark current when used at room temperatures, they must be cooled to between -60 °C to -80 °C during operation. 6) Sb-Cs Sb-Cs has a spectral response in the ultraviolet to visible range and is mainly used in reflection-mode photocathodes. 7) Bialkali (Sb-Rb-Cs, Sb-K-Cs) These materials have a spectral response range similar to the Sb-Cs photocathode, but have higher sensitivity and lower dark current than Sb-Cs. They also have a blue sensitivity index matching the scintillation flashes of NaI scintillators, and so are frequently used for radiation measurement using scintillation counting. 8) High temperature bialkali or low noise bialkali (Na-K-Sb) This is particularly useful at higher operating temperatures since it can withstand up to 200 °C. One major application is in the oil well logging industry. At room temperatures, this photocathode operates with very low dark current, making it ideal for use in photon counting applications. 9) Multialkali (Na-K-Sb-Cs) The multialkali photocathode has a high, wide spectral response from the ultraviolet to near infrared region. It is widely used for broad-band spectrophotometers and photon counting applications. The long wavelength response can be extended to 930 nm by special photocathode activation processing. 10) Cs-Te, Cs-I These materials are sensitive to vacuum UV and UV rays but not to visible light and are therefore referred to as solar blind. Cs-Te is quite insensitive to wavelengths longer than 320 nm, and Cs-I to those longer than 200 nm. WINDOW MATERIALS Window materials commonly used in photomultiplier tubes are described below. The window material must carefully be selected according to the application because the window material determines the spectral response short wavelength cutoff. 6 1) Borosilicate glass This is the most frequently used window material. Borosilicate glass transmits radiation from the infrared to approximately 300 nm. It is not suitable for detection in the ultraviolet region. For some applications, a combination of a bialkali photocathode and a low-noise borosilicate glass (so called Kfree glass) is used. The K-free glass contains very low potassium (40K) which can cause unwanted background counts. Tubes designed for scintillation counting often employ K-free glass not only for the faceplate but also for the side bulb to minimize noise pulses. 2) UV-transmitting glass (UV glass) This glass as the name implies is ideal for transmitting ultraviolet radiation and is used as widely as a borosilicate glass. The UV cutoff is approximately 185 nm. 3) Silica glass The silica glass transmits ultraviolet radiation down to 160 nm. Since the silica glass has a different thermal expansion coefficient than Kovar, which is used for the tube leads, it is not suitable as the tube stem material (see Figure 1 on page 4). Borosilicate glass is used for the stem, and a graded seal using glass with gradually different thermal expansion coefficients is connected to the synthetic silica window. The graded seal structure is vulnerable to shock so the tube should be handled carefully. 4) MgF2 (magnesium fluoride) Crystals of alkali halide are superior in transmitting ultraviolet radiation, but have the disadvantage of deliquescence. Among these crystals, MgF2 is known as a practical window material because it offers low deliquescence and transmits ultraviolet radiation down to 115 nm. Figure 5: Typical Transmittance of Various Window Materials 100 TRANSMITTANCE (%) PHOTOCATHODE MATERIALS UVTRANSMITTING GLASS 10 BOROSILICATE GLASS MgF2 SILICA GLASS 1 100 120 160 200 240 300 WAVELENGTH (nm) 400 500 TPMOB0076EB RADIANT SENSITIVITY AND QUANTUM EFFICIENCY As Figure 4 shows, spectral response is usually expressed in terms of radiant sensitivity or quantum efficiency as a function of wavelength. Radiant sensitivity is the photoelectric current from the photocathode, divided by the incident radiant power at a given wavelength, expressed in A/W (amperes per watt). Quantum efficiency (QE) is the number of photoelectrons emitted from the photocathode divided by the number of incident photons. Quantum efficiency is usually expressed as a percent. Quantum efficiency and radiant sensitivity have the following relationship at a given wavelength. QE= S × 1240 × 100 λ where S is the radiant sensitivity in A/W at the given wavelength and λ is the wavelength in nm (nanometers). Figure 7: Transmittance of Various Filters Figure 6: Typical Human Eye Response and Spectral Distribution of 2856 K Tungsten Lamp 100 TUNGSTEN LAMP AT 2856 K RELATIVE VALUE (%) 80 60 100 TOSHIBA R-68 80 60 40 TOSHIBA IR-D80A 20 0 200 400 600 800 = 20 1000 WAVELENGTH (nm) 1200 1400 TPMOB0054EC BLUE SENSITIVITY INDEX AND RED/WHITE RATIO The cathode blue sensitivity index and the red/white ratio are often used as a simple comparison of photomultiplier tube spectral response. The cathode blue sensitivity index is the photoelectric current from the photocathode produced by a light flux of a tungsten lamp at 2856 K passing through a blue filter (Corning CS 5-58 polished to half stock thickness of equivalent), measured under the same conditions as the cathode luminous sensitivity measurement. The light flux, once transmitted through the blue filter cannot be expressed in lumens. The blue sensitivity index is an important parameter in scintillation counting using an NaI scintillator since the NaI scintillator produces emissions in the blue region of the spectrum, and may be the decisive factor in energy resolution. The red/white ratio is used for photomultiplier tubes with a spectral response extending to the near infrared region. This parameter is defined as the quotient of the cathode sensitivity measured with a light flux of a tungsten lamp at 2856 K passing through a red filter (Toshiba IR-D80A for the S-1 photocathode, R-68 for others of equivalent) divided by the cathode luminous sensitivity measured without filters under the same conditions as in cathode luminous sensitivity measurement. ( V n+1 α n ) An · Vαn = K · Vαn (n+1)αn (K: constant) Since photomultiplier tubes generally have 9 to 12 dynode stages, the anode output has a 6th to 10th power gain proportional to the input voltage. So just a slight fluctuation in the applied voltage will appear as magnified 6 to 10 times in the photomultiplier tube output. This means the photomultiplier tube is extremely susceptible to fluctuations in the power supply voltage, so the power supply must be extremely stable and provide a minimum ripple, drift and temperature coefficient. Various types of wellregulated high-voltage power supplies designed for these requirements are available from Hamamatsu (see page 110). Figure 8: Typical Gain vs. Supply Voltage 104 109 103 ANODE LUMINOUS SENSITIVITY (A / lm) 800 TPMOB0055EB Photoelectrons emitted from a photocathode are accelerated by an electric field so as to strike the first dynode and produce secondary electron emissions. These secondary electrons then impinge upon the next dynode to produce additional secondary electron emissions. Repeating this process over successive dynode stages achieves a high current amplification. A very small photoelectric current from the photocathode can therefore be observed as a large output current from the anode of the photomultiplier tube. Gain is simply the ratio of the anode output current to the photoelectric current from the photocathode. Ideally, the gain of a photomultiplier tube having n dynode stages and an average secondary emission ratio δ per stage is δn. While the secondary electron emission ratio δ is given by δ=A·Eα where A is the constant, E is the interstage voltage, and α is a coefficient determined by the dynode material and geometric structure. This usually has a value of 0.7 to 0.8. When a voltage V is applied between the cathode and the anode of a photomultiplier tube having n dynode stages, the gain µ, becomes VISUAL SENSITIVITY 600 1200 GAIN (CURRENT AMPLIFICATION) µ = δn = (A · Eα)n = A · 400 1000 WAVELENGTH (nm) 40 0 200 CORNING CS 5-58 (1/2 STOCK THICKNESS) 108 ANODE LUMINOUS SENSITIVITY 102 107 101 106 100 105 10-1 104 GAIN Since measuring the spectral response characteristic of photomultiplier tubes requires a sophisticated system and a great deal of time, we instead provide figures for anode or cathode luminous sensitivity and only provide spectral response characteristics when specially required by the customer. Cathode luminous sensitivity is the photoelectric current from the photocathode per incident light flux (10-5 to 10-2 lumens) from a tungsten filament lamp operated at a distribution temperature of 2856 K. Anode luminous sensitivity is the anode output current (amplified by the secondary emission process) per incident light flux (10-10 to 10-5 lumens) on the photocathode. Although the same tungsten lamp is used, the light flux and the applied voltage are adjusted to an appropriate level. These parameters are particularly useful when comparing tubes having the same or similar spectral response range. Hamamatsu final test sheets accompanying the tubes usually indicate these parameters except for tubes with Cs-I or Cs-Te photocathodes insensitive to tungsten lamp light. (Radiant sensitivity at a specific wavelength is listed for those tubes using Cs-I or Cs-Te.) The cathode luminous sensitivity is expressed in µA/lm (microamperes per lumen) and anode luminous sensitivity is expressed in A/lm (amperes per lumen). Note that the lumen is a unit used for luminous flux in the visible region and therefore these values may be meaningless for tubes that are sensitive beyond the visible light region. TRANSMITTANCE (%) LUMINOUS SENSITIVITY GAIN 10-2 200 300 500 700 SUPPLY VOLTAGE (V) 1000 103 1500 TPMOB0058EB 7 Construction and Operating Characteristics ANODE DARK CURRENT A small amount of current flows in a photomultiplier tube even when the tube is operated in a completely dark state. This output current is called the anode dark current, and the resulting noise is a critical factor in determining the lower limit of light detection. As Figure 9 shows, dark current is greatly dependent on the supply voltage. Figure 9: Typical Dark Current vs. Supply Voltage (AFTER 30 MINUTE STORAGE) ANODE DARK CURRENT (nA) 101 100 10-1 10-2 10-3 400 600 800 1000 1200 1400 SUPPLY VOLTAGE (V) TPMOB0071EB Major sources of dark current may be categorized as follows: 1) Thermionic emission of electrons The materials of the photocathode emit tiny quantities of thermionic electrons even at room temperature. Most dark currents originate from the thermionic emissions, especially those from the photocathode since they are successively multiplied by the dynodes. Cooling the photocathode is most effective in reducing thermionic emission and is particularly useful in applications where low dark current is essential such as in photon counting. Figure 10 shows the relationship between dark current and temperature for various photocathodes. Photocathodes which have high sensitivity in the red to infrared region, especially S-1, show higher dark current at room temperature. Photomultiplier tubes using these photocathodes are usually cooled during operation. Hamamatsu provides thermoelectric coolers (C9143, C9144, C10372, C10373) designed for various sizes of photomultiplier tubes (see page 116, 118). Figure 10: Anode Dark Current vs. Temperature 10-5 10-6 ANODE DARK CURRENT (A) R5108 (SIDE-ON TYPE, Ag-O-Cs) The anode dark current decreases with time after the tube is placed in a dark state. In this catalog, anode dark currents are measured after 30 minutes of storage in a dark state. ENI (EQUIVALENT NOISE INPUT) ENI indicates the photon-limited signal-to-noise ratio. ENI refers to the amount of light in watts necessary to produce a signal-tonoise ratio of unity in the output of a photomultiplier tube. The value of ENI is given by: ENI = where 2q · Idb · g · ∆f S (watts) q = electronic charge (1.60 × 10-19 coul.) Idb = anode dark current in amperes after 30 minute storage in darkness g = gain ∆f = bandwidth of the system in hertz (usually 1 hertz) S = anode radiant sensitivity in amperes per watt at the wavelength of interest 10-7 10-8 For tubes listed in this catalog, the value of ENI may be calculated by the above equation. Usually it has a value between 10-15 and 10-16 watts (at the peak sensitivity wavelength). R374 (HEAD-ON TYPE, MULTIALKALI) 10-9 MAGNETIC FIELD EFFECTS 10-10 10-11 R3550A (HEAD-ON TYPE, LOW-NOISE BIALKALI) 10-12 R6095 (HEAD-ON TYPE, BIALKALI) 10-13 -60 -40 -20 0 TEMPERATURE (°C) 8 2) Ionization of residual gases (ion feedback) Residual gases inside a photomultiplier tube can be ionized by collision with electrons. When these ions strike the photocathode or earlier stages of dynodes, secondary electrons may be emitted. These secondary electrons result in relatively large output noise pulses. These noise pulses are usually observed as afterpulses following the primary signal pulses and may be a problem in detecting short light pulses. Present photomultiplier tubes are designed to minimize afterpulses. 3) Glass scintillation When electrons deviating from their normal trajectories strike the glass envelope, scintillations may occur and a dark pulse may result. To eliminate this type of dark pulse, photomultiplier tubes may be operated with the anode at a high voltage and the cathode at ground potential. But this is not always possible during tube operation. To obtain the same effect without difficulty, Hamamatsu developed an "HA treatment" in which the glass bulb is coated with a conductive paint making the same electrical potential as the cathode (see "GROUND POLARITY AND HA TREATMENT" on page 11). 4) Leakage current (ohmic leakage) Leakage current resulting from imperfect insulation of the glass stem base and socket may be another source of dark current. This is predominant when the photomultiplier tube is operated at a low voltage or low temperature. The flatter slopes in Figure 9 and 10 are mainly due to leakage current. Contamination from dirt and moisture on the surface of the tube stem, base or socket may increase the leakage current, and should therefore be avoided. 5) Field emissions When a photomultiplier tube is operated at a voltage near the maximum rated value, electrons might be emitted from electrodes by the strong electric field and cause dark pulses. So operating the photomultiplier tube at a voltage 20 % to 30 % lower than the maximum rating is recommended. 20 40 TPMOB0065ED Most photomultiplier tubes are affected by the presence of magnetic fields. Magnetic fields may deflect electrons from their normal trajectories and cause a loss of gain. The extent of the gain loss depends on the type of photomultiplier tube and its orientation in the magnetic field. Figure 11 shows typical effects of magnetic fields on some types of photomultiplier tubes. In general, tubes having a long path from the photocathode to the first dynode (such as large diameter tubes) tend to be more adversely affected by magnetic fields. Figure 11: Typical Effects by Magnetic Fields Perpendicular to Tube Axis 120 28 mm dia. SIDE - ON TYPE 110 100 80 70 60 13 mm dia. HEAD-ON TYPE LINEAR-FOCUSED TYPE DYNODE 50 ( 40 ) 30 38 mm dia. HEAD-ON TYPE CIRCULAR CAGE TYPE DYNODE 20 ( 10 Figure 13: Examples of Spatial Uniformity ) 1) Head-on Type 0.1 0.2 0.3 MAGNETIC FLUX DENSITY (mT) TPMOB0086EC When a photomultiplier tube has to be operated in magnetic fields, it may be necessary to shield the tube with a magnetic shield case. (Hamamatsu provides a variety of magnetic shield cases. See page 120). The magnetic shielding factor is used to express the effect of a magnetic shield case. This is the ratio of the strength of the magnetic field outside the shield case or Hout, to that inside the shield case or Hin. The magnetic shielding factor is determined by the permeability µ, the thickness t (mm) and inner diameter r (mm) of the shield case as follows. Hout = Hin 3 µt 4r Note that the magnetic shielding effect decreases towards the edge of the shield case as shown in Figure 12. Covering the tube with a shield case longer than the tube length by at least half the shield case inner diameter is recommended. Figure 12: Edge Effect of Magnetic Shield Case EDGE EFFECT t LONGER than r 2r 2) Side-on Type (R6231-01 for gamma camera) 0.4 0.5 PHOTOMULTIPLIER TUBE L 1000 PHOTOCATHODE (TOP VIEW) Reflection-mode photocathode ANODE SENSITIVITY (%) 0 ANODE SENSITIVITY (%) 0 -0.5 -0.4 -0.3 -0.2 -0.1 SHIELDING FACTOR (Ho/Hi) Although the focusing electrodes of a photomultiplier tube are designed so that electrons emitted from the photocathode or dynodes are collected efficiently by the first or following dynodes, some electrons may deviate from their desired trajectories causing lower collection efficiency. The collection efficiency varies with the position on the photocathode from which the photoelectrons are emitted and influences the spatial uniformity of a photomultiplier tube. The spatial uniformity is also determined by the photocathode surface uniformity itself. In general, head-on type photomultiplier tubes provide better spatial uniformity than side-on types because of the photocathode to first dynode geometry. Tubes especially designed for gamma camera applications have excellent spatial uniformity, because uniformity is the decisive factor in the overall performance of a gamma camera. 100 ANODE SENSITIVITY (%) 50 0 0 50 100 100 PHOTOCATHODE 50 GUIDE KEY 0 TPMHC0085EB TPMSC0030EC TEMPERATURE CHARACTERISTICS Dark current originating from thermionic emissions can be reduced by decreasing the ambient temperature of a photomultiplier tube. The photomultiplier tube sensitivity also varies with the temperature, but these changes are smaller than temperature-induced changes in dark current, so cooling a photomultiplier tube will significantly improve the S/N ratio. In the ultraviolet to visible region, the sensitivity temperature coefficient has a negative value, while near the long wavelength cutoff it has a positive value. Figure 14 shows typical temperature coefficients for various photocathodes versus wavelength. Since the change in temperature coefficient change is large near the long wavelength cutoff, temperature control may be needed in some applications. 100 Figure 14: Temperature Coefficient for Anode Sensitivity (Typ.) 10 1 1.5 r r TPMOB0011EB Hamamatsu provides photomultiplier tubes using fine-mesh type dynodes (see page 64). These photomultiplier tubes exhibit much higher resistance to external magnetic fields than the photomultiplier tubes with other dynodes. When the light level to be measured is high, "triode" and "tetrode" type tubes can be used even in highly magnetic fields. TEMPERATURE COEFFICIENT FOR ANODE SENSITIVITY (%/°C) RELATIVE OUTPUT (%) 90 SPATIAL UNIFORMITY 1 BIALKALI Sb-Cs Cs-Te MULTIALKALI 0.5 GaAs (Cs) 0 -0.5 -1 200 Ag-O-Cs 300 400 500 600 700 800 900 1000 1100 1200 WAVELENGTH (nm) TPMOB0013EC 9 Construction and Operating Characteristics HYSTERESIS TIME RESPONSE Photomultiplier tubes exhibit a slightly unstable output for several seconds to nearly 1 minute after a voltage is applied or light is input, and the output may overshoot or undershoot before reaching a stable level (Figure 15). This unstable condition is called hysteresis and may be a problem in spectrophotometry and other applications. Hysteresis is mainly caused by electrons deviating from their planned trajectories and electrostatically charging the dynode support section and glass bulb. When the applied voltage changes along with a change in the input light, noticeable hysteresis can occur. As a countermeasure, many Hamamatsu side-on photomultiplier tubes employ an "anti-hysteresis design" which virtually eliminates hysteresis. In the measurement of pulsed light, the anode output signal should faithfully reproduce a waveform resembling the incident pulse waveform. This reproducibility is greatly affected by the electron transit time, anode pulse rise time, and electron transit time spread (T.T.S.). As illustrated in Figure 17, the electron transit time is the time interval between the arrival of a delta function light pulse (pulse width less than 50 ps) at the photocathode and the instant when the anode output pulse reaches its peak amplitude. The anode pulse rise time is defined as the time needed to rise from 10 % to 90 % of peak amplitude when the entire photocathode is illuminated by a delta function light pulse (pulse width less than 50 ps). The electron transit time fluctuates between individual light pulses. This fluctuation is called transit time spread (T.T.S.) and defined as the FWHM of the frequency distribution of electron transit times (Figure 18). The T.T.S. is an important factor in time-resolved measurement. The time response characteristics depend on the dynode structure and applied voltage. In general, photomultiplier tubes using a linear-focused or circular-cage structure exhibit better time response than tubes using a box-and-grid or venetian blind structure. Photomultiplier tubes for high-speed photometry use a spherical window or plano-concave window (flat on one side and concave on the other) and electrodes specifically designed to shorten the electron transit time. MCP-PMTs, which employ an MCP in place of conventional dynodes, offer better time response than tubes using other dynodes. For example, these have a significantly better T.T.S. compared to normal photomultiplier tubes because a nearly parallel electric field is applied between the photocathode, the MCP and the anode. Figure 19 shows typical time response characteristics vs. applied voltage for Hamamatsu R2059 (51 mm diameter head-on, 12-stage, linear-focused type). ANODE CURRENT Figure 15: Hysteresis I max. Ii 0 5 I min. 6 7 TIME (MINUTE) TPMOC0071EA DRIFT AND LIFE CHARACTERISTIC While operating a photomultiplier tube continuously over a long period, the anode output current of the photomultiplier tube may vary slightly over time, even though operating conditions have not changed. Among the anode current fluctuations, changes over a relatively short time are called "drift", while changes over long periods such as 1000 to 10000 hours or more are called the life characteristic. Figure 16 shows typical life curves. Drift is primarily caused by damage to the last dynode by heavy electron bombardment. Therefore the use of lower anode current is desirable. When stability is of prime importance, keeping the average anode current within 1 µA or less is recommended. Figure 17: Anode Pulse Rise Time and Electron Transit Time DELTA FUNCTION LIGHT RISE TIME FALL TIME 10 % Figure 16: Typical Life Characteristics TRANSIT TIME ANODE OUTPUT SIGNAL 90 % TPMOB0060EB x+σ 125 x Figure 18: Electron Transit Time Spread (T.T.S.) 100 x-σ 75 TYPE NO. : R2059 TEST CONDITIONS PMT: R1307 SUPPLY VOLTAGE: 1000 V INITIAL CURRENT: 100 µA LIGHTSOURCE: TUNGSTEN LAMP TEMPERRATURE: 25 °C 25 0 FWHM=550 ps FWTM=1228 ps 104 50 1 10 100 1000 10000 TIME (h) RELATIVE COUNT RELATIVE ANODE SENSITIVITY (%) 150 103 102 101 TPMHB0834EA 100 -5 -4 -3 -2 -1 0 1 2 3 4 5 TIME (ns) TPMHB0126EC 10 Figure 19: Time Response Characteristics vs. Supply Voltage TYPE NO. : R2059 10 2 TRANSIT TIME TIME (ns) 10 1 RISE TIME Generally high output current is required in pulsed light applications. In order to maintain dynode potentials at a constant value during pulse durations and obtain high peak currents, capacitors are placed in parallel with the divider resistors as shown in Figure 20 (b). The capacitor values depend on the output charge. When the output linearity versus input pulsed light needs to be better than 1 %, the capacitor value should be at least 100 times the photomultiplier output charge per pulse. If the peak output current (amperes) is I, the pulse width (seconds) t, and the voltage across the capacitor (volts) V, then the capacitor value C should be as follows: 10 0 C > 100 I·t (farads) V T. T. S. 500 1000 1500 2000 2500 3000 SUPPLY VOLTAGE (V) TPMOB0059EC VOLTAGE-DIVIDER CIRCUITS Interstage voltages for the dynodes of a photomultiplier tube are usually supplied by voltage-divider circuits consisting of seriesconnected resistors. Schematic diagrams of typical voltage-divider circuits are illustrated in Figure 20. Circuit (a) is a basic arrangement (DC output) and (b) is for pulse operations. Figure 21 shows the relation between the incident light level and the output current of a photomultiplier tube using the voltage-divider circuit of figure 20. Deviation from ideal linearity occurs at a certain incident level (region B). This is caused by an increase in dynode voltage due to the redistribution of the voltage loss between the last few stages, resulting in an apparent increase in sensitivity. As the input light level is increased, the anode output current begins to saturate near the value of the current flowing through the voltage divider (region C). To prevent this problem, it is recommended that the voltage-divider current be maintained at least at 20 times the average anode output current required from the photomultiplier tube. In high energy physics applications where a high pulse output is required, output saturation will occur at a certain level as the incident light is increased while the interstage voltage is kept fixed. This is caused by an increase in electron density between the electrodes, causing space charge effects which disturb the electron current flow. As a corrective measure to overcome these space charge effects, the voltage applied to the last few stages, where the electron density becomes high, should be set to a higher value than the standard voltage distribution so that the voltage gradient between those electrodes is enhanced. For this purpose, a so-called tapered divider circuit (Figure 22) is often employed. Use of this tapered divider circuit improves pulse linearity 5 to 10 times better than in normal divider circuits. Hamamatsu provides a variety of socket assemblies incorporating voltage-divider circuits. They are compact, rugged, lightweight and carefully engineered to obtain the maximum performance of a photomultiplier tube with just a simple connection. Figure 22: Typical Tapered Divider Circuit PHOTOCATHODE ANODE SIGNAL OUTPUT RL 1R Figure 20: Schematic Diagrams of Voltage-Divider Circuits 1R 1R 1R 2R 3R 2.5R C1 C2 C3 a) Basic arrangement for DC operation PHOTOCATHODE -HV ANODE TACCC0035EB RL 1R 1R 1R 1R 1R 1R 1R 1R 1R 1R 1R -HV GROUND POLARITY AND HA TREATMENT b) For pulse operation PHOTOCATHODE ANODE RL 1R 1R 1R 1R 1R 1R 1R 1R -HV 1R 1R 1R C1 C2 C3 TACCC0030EC Figure 21: Output Characteristics of PMT Using VoltageDivider Circuit of figure 20 C B 1.0 ACTUAL CURVE 0.1 0.01 0.001 0.001 IDEAL CURVE A RATIO OF AVERAGE OUTPUT CURRENT TO DIVIDER CURRENT 10 0.01 0.1 LIGHT FLUX (A.U.) 1.0 10 TACCB0005EA The general technique used for voltage-divider circuits is to ground the anode with a high negative voltage applied to the cathode, as shown in Figure 20. This scheme facilitates the connection of such circuits as ammeters or current-to-voltage conversion operational amplifiers to the photomultiplier tube. However, when a grounded anode configuration is used, bringing a grounded metallic holder or magnetic shield case near the bulb of the tube can cause electrons to strike the inner bulb wall, resulting in the generation of noise. Also, in head-on type photomultiplier tubes, if the faceplate or bulb near the photocathode is grounded, the slight conductivity of the glass material causes a current to flow between the photocathode (which has a high negative potential) and ground. This may cause significant deterioration of the photocathode. For this reason, extreme care is required when designing housings for photomultiplier tubes and when using electrostatic or magnetic shield cases. In addition, when using foam rubber or similar material to mount the tube in its housing, it is essential that material having sufficiently good insulation properties be used. This problem can be solved by applying a black conductive coat around the bulb, connecting it to the cathode potential and covering the bulb with a protective film. This is called an "HA Treatment" (see Figure 23). 11 Construction and Operating Characteristics As mentioned above, the HA treatment can be effectively used to eliminate the effects of external potential on the side of the bulb. However, if a grounded object is located on the photocathode faceplate, there are no effective countermeasures. Glass scintillation, if occurring in the faceplate, has adverse noise effects and also causes deterioration of the photocathode sensitivity. To solve these problems, it is recommended that the photomultiplier tube be operated in the cathode grounding scheme, as shown in Figure 24, with the anode at a high positive voltage. For example in scintillation counting, since the grounded scintillator is directly coupled to the faceplate of a photomultiplier tube, grounding the cathode and maintaining the anode at a high positive voltage is recommended. In this case, a coupling capacitor Cc must be used to isolate the high positive voltage applied to the anode from the signal, and DC signals cannot be output. Figure 23: HA Treatment Figure 26: Discrete Output Pulses (Single Photon Event) TIME TPMOC0074EB Simply counting the photomultiplier tube output pulses will not result in an accurate measurement, since the output contains noise pulses such as dark pulses emitted from dynodes and cosmic ray pulses extraneous to the signal pulses representing photoelectrons as shown in Figure 27. The most effective method for eliminating the noise is to discriminate the output pulses according to their amplitude. (Dark current pulese by thermal electrons emitted from the photocathode cannot be eliminated.) Figure 27: Output Pulse and Discrimination Level GLASS BULB PULSE HEIGHT CONDUCTIVE PAINT (SAME POTENTIAL AS CATHODE) INSULATING PROTECTIVE COVER ULD: Upper Level Discri. LLD: Lower Level Discri. COSMIC RAY PULSE ULD SIGNAL PULSE CONNECTED TO CATHODE PIN LLD TPMOC0015EA TIME TPMOC0075EC Figure 24: Cathode Ground Scheme PHOTOCATHODE ANODE Cc SIGNAL OUTPUT RP R1 R2 R3 R4 R5 R6 R7 C C +HV TACCC0036EC PHOTON COUNTING Photon counting is one effective way to use a photomultiplier tube for measuring extremely low light levels and is widely used in astronomical photometry and for making chemiluminescence and bioluminescence measurements. In its usual application, a number of photons enter the photomultiplier tube and create an output pulse train like that in (a) of Figure 25. The actual output obtained by the measurement circuit is a DC current with a fluctuation as shown at (b). A typical pulse height distribution (PHD) for a photomultiplier tube output is shown in Figure 28. In this PHD, the lower level discrimination (LLD) is set at the valley trough and the upper level discrimination (ULD) at the foot where there are very few output pulses. Most pulses smaller than the LLD are noise and pulses larger than the ULD result from cosmic rays, etc. Therefore, by counting the pulses remaining between the LLD and ULD, accurate light measurements can be made. In the PHD, Hm is the mean height of the pulses. The LLD should be set at 1/3 of Hm and the ULD at triple Hm. The ULD may be omitted in most cases. Considering the above, a clearly defined peak and valley in the PHD is a very significant characteristic required of photomultiplier tubes for photon counting. Figure 28 shows the typical PHD of a photomultiplier tube selected for photon counting. Figure 28: Typical Single Photon Pulse Height Distribution Figure 25: Overlapping Output Pulses a) SIGNAL PULSE + NOISE PULSE COUNTS NOISE PULSE TIME b) LLD TIME Hm ULD PULSE HEIGHT TPMOC0073EB When the light intensity becomes so low that the incident photons are separated as shown in Figure 26. This condition is called a single photon event. The number of output pulses is in direct proportion to the amount of incident light and this pulse counting method has the advantages of better S/N ratio and stability than the current measurement method that averages all the pulses. This pulse counting technique is known as the photon counting method. 12 TPMOC0076EA SCINTILLATION COUNTING Scintillation counting is one of the most sensitive and effective methods for detecting radiation. It uses a photomultiplier tube coupled to a scintillator that produces light when struck by radiation. Figure 29: Scintillation Detector Using PMT and Scintillator 10000 PHOTOCATHODE (51 mm dia. × 51 mm t) PHOTOELECTRONS COUNTS REFLECTIVE COATING b) 137Cs+NaI (Tl) ANODE GAMMA RAY DYNODES 5000 RADIATION SOURCE 0 500 PMT 1000 ENERGY TPMHC0052EC In radiation particle measurements, there are two parameters that should be measured. One is the energy of individual radiation particles and the other is the amount of radiation. Radiation measurement should determine these two parameters. When radiation particles enter the scintillator, they produce light flashes in response to each particle. The amount of flash is extremely low, but is proportional to the energy of the incident particle. Since individual light flashes are detected by the photomultiplier tube, the output pulses obtained from the photomultiplier tube contain information on both the energy and amount of pulses, as shown in Figure 30. By analyzing these output pulses using a multichannel analyzer (MCA), a pulse height distribution (PHD) or energy spectrum is obtained, and the amount of incident particles at various energy levels can be measured accurately. Figure 31 shows typical PHDs or energy spectra when radiation (55Fe, 137Cs, 60Co) is detected by the combination of an NaI(Tl) scintillator and a photomultiplier tube. The PHD must show distinct peaks at each energy level. These peaks are evaluated as pulse height resolution which is the most significant characteristic in the radiation measurements. As Figure 32 shows, the pulse height resolution is defined as the FWHM (a) divided by the peak value (b) when pulse height distribution is measured using a single radiation source such as 137Cs and 55Fe. c) 60Co+NaI (Tl) 10000 COUNTS OPTICAL COUPLING (USING SILICONE OIL etc.) (51 mm dia. × 51 mm t) 5000 0 500 1000 ENERGY TPMOB0087EC Figure 32: Definition of Pulse Height Resolution (FWHM) b NUMBER OF PULSES SCINTILLATOR a H H 2 PULSE HEIGHT TPMOB0088EB Figure 30: Incident Radiation Particles and PMT Output Energy resolution = a × 100 % b TIME Figure 33: PMT Spectral Response and Spectral Emission of Scintillators 100 SCINTILLATOR CURRENT PMT TIME TPMOC0039EC QUANTUM EFFICIENCY (%) RELATIVE EMISSION DISTRIBUTION OF VARIOUS SCINTILLATOR (%) BGO THE HEIGHT OF OUTPUT PULSE IS PROPORTIONAL TO THE ENERGY OF INCIDENT PARTICLE. NaI (Tl) 10 BIALKALI 1 0.1 Figure 31: Typical Pulse Height Distributions (Energy Spectra) Cs-I (Tl) BaF2 200 300 400 500 600 700 800 WAVELENGTH (nm) a) 55Fe+NaI (TI) TPMOB0073EA COUNTS 1000 (51 mm dia. × 2.5 mm t) 500 0 500 ENERGY 1000 Pulse height resolution is mainly determined by the quantum efficiency of the photomultiplier tube that detects the scintillator emission. In the case of thallium-activated sodium iodide or NaI(Tl), which is one of the most popular scintillators, a head-on type photomultiplier tube with a bialkali photocathode is widely used since its spectral response matches the NaI(Tl) scintillator spectrum. 13 Connections to External Circuits LOAD RESISTANCE Since the output of a photomultiplier tube is a current signal and the type of external circuit to which photomultiplier tubes are usually connected has voltage inputs, a load resistor is used for current-voltage conversion. This section describes factors to consider when selecting this load resistor. Since for low output current levels, the photomultiplier may be assumed to act as virtually an ideal constant-current source, the load resistance can be made arbitrarily large, when converting a low-level current output to a high-level voltage output. In practice, however, using a very large load resistance causes poor frequency response and output linearity as described below. Figure 34: Photomultiplier Tube Output Circuit PHOTOCATHODE ANODE SIGNAL OUTPUT Ip RL CS -HV This value of Ro, which is less than the value of RL, is then the effective load resistance of the photomultiplier tube. If, for example, RL=Rin, then the effective load resistance is 1/2 that of RL alone. From this we see that the upper limit of the load resistance is actually the input resistance of the amplifier and that making the load resistance much greater than this value does not have a significant effect. While the above description assumed the load and input impedances to be purely resistive, stray capacitances, input capacitance and stray inductances affect the phase relationships during actual operation. Therefore, as the frequency is increased, these circuit elements must be considered as compound impedances rather than pure resistances. From the above, three guides can be derived for selecting the load resistance: 1) When frequency response is important, the load resistance should be made as small as possible. 2) When output linearity is important, the load resistance should be chosen to keep the output voltage within a few volts. 3) The load resistance should be less than the input impedance of the external amplifier. TACCC0037EB HIGH-SPEED OUTPUT CIRCUITS In the circuit of Figure 34, if we let the load resistance be RL and the total capacitance of the photomultiplier tube anode to all other electrodes including stray capacitance such as wiring capacitance be Cs, then the cutoff frequency fc is expressed by the following relationship. fc = 1 2 π Cs · RL This relationship indicates that even if the photomultiplier tube and amplifier have very fast response, the response will be limited to the cutoff frequency fc of the output circuit. If the load resistance is made large, then the voltage drop across RL becomes large at high current levels, affecting the voltage differential between the last dynode stage and the anode. This increases the effect of the space charge and lowers the efficiency of the anode in collecting electrons. In effect, the output becomes saturated above a certain current, causing poor output linearity (output current linearity versus incident light level) especially when the circuit is operated at low voltages. Figure 35: Amplifier Internal Resistance 1) PMT P DYn RL 2) PMT Rin SIGNAL OUTPUT Rin SIGNAL OUTPUT CS P CC DYn RL CS TACCC0017EA In Figure 35, let us consider the effect of the internal resistance of the amplifier. If the load resistance is RL and the input impedance of the amplifier is Rin, the combined parallel output resistance of the photomultiplier tube, Ro, is given by the following equation. Ro = RL · Rin RL + Rin When detecting high-speed and pulsed light signals, a coaxial cable is used to make the connection between the photomultiplier tube and the electronic circuit. Since commonly used cables have characteristic impedances of 50 Ω, this cable must be terminated in a pure resistance equal to the characteristic impedance to match the impedance and ensure distortion-free transmission of the signal waveform. If a matched transmission line is used, the impedance of the cable as seen by the photomultiplier tube output will be the characteristic impedance of the cable, regardless of the actual cable length so no distortion will occur in the signal waveform. If the impedance is not properly matched when the signal is received, the impedance seen at the photomultiplier tube output will differ depending on both frequency and cable length, causing significant waveform distortion. Impedance mismatches might also be due to the connectors being used. So these connectors should be chosen according to the frequency range to be used, to provide a good match with the coaxial cable. When a mismatch at the signal receiving end occurs, not all of the pulse energy from the photomultiplier tube is dissipated at the receiving end and is instead partially reflected back to the photomultiplier tube via the cable. However if an impedance match has been achieved at the cable end on the photomultiplier tube side, then this reflected energy will be fully dissipated there. If this is a mismatch, however, the energy will be reflected and returned to the signal-receiving end because the photomultiplier tube itself acts as an open circuit. Since part of the pulse makes a round trip in the coaxial cable and is again input to the receiving end, this reflected signal is delayed with respect to the main pulse and results in waveform distortion (so called ringing phenomenon). To prevent this phenomenon, in addition to matching the impedance at the receiving end, a resistor is needed for matching the cable impedance at the photomultiplier tube end as well (Figure 36). If this is provided, it is possible to eliminate virtually all ringing caused by an impedance mismatch, although the output pulse height of the photomultiplier tube is reduced to one-half of the normal level by use of this impedance matching resistor. Figure 36: Connection to Prevent Ringing 50 Ω OR 75 Ω COAXIAL CABLE PMT 50 Ω OR 75 Ω CONNECTOR HOUSING RL (50 Ω OR 75 Ω MATCHING RESISTOR) ANTI-REFLECTION RESISTOR TACCC0039EB 14 Next, let us consider waveform observation of high-speed pulses using an oscilloscope. This type of operation requires a low load resistance. However, the oscilloscope sensitivity is limited so an amplifier may be required. Cables with a matching resistor have the advantage that the cable length will not affect the electrical characteristics of the cable. However, since the matching resistance is very low compared to the usual load resistance, the output voltage becomes too small. While this situation can be remedied with a high gain amplifier, the inherent noise of such an amplifier can itself hurt measurement performance. In such cases, the photomultiplier tube should be brought as close as possible to the amplifier to reduce stray capacitance and a larger load resistance should be used (while still maintaining the frequency response), to achieve the desired input voltage. (See Figure 37.) Figure 37: Measurement with Ringing Suppression Measures PMT DYn P RL OSCILLOSCOPE WIRING SHOULD BE AS SHORT AS POSSIBLE. TACCC0026EA It is relatively simple to implement a high-speed amplifier using a wide-band video amplifier or operational amplifier. However, as a trade-off for design convenience, these ICs tend to create performance problems (such as noise). This makes it necessary to know their performance limits and take corrective action if necessary. As the pulse repetition frequency increases, baseline shift becomes one reason for concern. This occurs because the DC signal component has been eliminated from the signal circuit by coupling with a capacitor which blocks the DC components. If this occurs, the reference zero level observed at the last stage is not the actual zero level. Instead, the apparent zero level is a time-average of the positive and negative fluctuations of the signal waveform. This is known as baseline shift. Since the height of the pulses above this baseline level is affected by the repetition frequency, this phenomenon can be a problem when observing waveforms or discriminating pulse levels. Figure 38: Current-Voltage Conversion Using Operational Amplifier Rf p lp lp – Vo= -lp ⋅ Rf + PMT OP-AMP V TACCC0041EA If the operational amplifier has an offset current (Ios), the abovedescribed output voltage becomes Vo = -(Ip+Ios) ·Rf, with the offset current component being superimposed on the output. Furthermore, the magnitude of the temperature drift may create a problem. In general, a metallic film resistor which has a low temperature coefficient is used for the resistance Rf. Carbon resistors with their highly temperature-dependent resistance characteristics are not suitable for this application. In addition to the above factors, when measuring extremely low level currents such as 100 pA and below, the materials used to fabricate the circuit also require careful selection. For example, materials such as bakelite are not suitable. More suitable materials include teflon, polystyrol or steatite. Low-noise cables should also be used, since general-purpose coaxial cables exhibit noise due to physical factors. An FET input operational amplifier is recommended for measuring low-level current. Figure 39: Frequency Compensation by Operational Amplifier Cf Cs SHIELD CIRCUIT Rf – SIGNAL OUTPUT + OP-AMP. TACCC0042EA OPERATIONAL AMPLIFIERS When a high-sensitivity ammeter is not available, using an operational amplifier allows making measurements with an inexpensive voltmeter. This section explains the technique for converting the output current of a photomultiplier tube to a voltage signal. The basic circuit is as shown in Figure 38, for which the output voltage, Vo, is given by the following relationship. Vo = -Ip · Rf In Figure 39, if a capacitance Cf (including any stray capacitance) is in parallel with the resistance Rf, the circuit exhibits a time constant of (Rf × Cf), and the response speed is limited to this time constant. This is a particular problem if the Rf is large. Stray capacitance can be reduced by passing Rf through a hole in a shield plate. When using coaxial signal input cables, oscillations may occur and noise might be amplified since the cable capacitance Cc and Rf are in a feedback loop. While one method to avoid this is to connect Cf in parallel with Rf, to reduce high frequency gain as described above, this method creates a time constant of Rf × Cf which limits the response speed. This relationship is derived for the following reason. If the input impedance of the operational amplifier is extremely large, and the output current of the photomultiplier tube is allowed to flow into the inverted (–) input terminal of the amplifier, most of the current will flow through Rf and subsequently to the operational amplifier output circuit. The output voltage Vo is therefore given by the expression -Ip·Rf. When using such an operational amplifier, it is not of course possible to make unlimited increases in the output voltage because the actual maximum output is roughly equal to the operational amplifier supply voltage. At the other end of the scale, for extremely small currents, there are limits due to the operational amplifier offset current (Ios), the quality of Rf, and other factors such as the insulation materials used. 15 Selection Guide by Applications Applications Required Major Characteristics Applicable PMT Spectroscopy UV/Visible/IR Spectrophotometer When light passes through a substance, the light energy causes changes in the electron energy of the substance, resulting in partial energy loss. This is called absorption and can be used to yield analytical data. In order to determine the quantity of a sample substance, it is irradiated while its light wavelength is scanned continuously. The spectral intensities of the light before and after passing through the sample are then detected by a photomultiplier tube and the amount of absorption in this way measured. Atomic Absorption Spectrophotometer This is widely used in analysis of minute quantities of metallic elements. A special elementary hollow cathode lamp for each element to be analyzed is used to irradiate a sample which is burned to atomize it. A photomultiplier tube then detects the light passing through the sample to measure the amount of absorption, which is compared with a pre-measured reference sample. 1) Wide spectral response 2) High stability 3) Low dark noise 4) High quantum efficiency 5) Low hysteresis 6) Good polarization characteristics R6357 R928, R955, R3896, R12896 R374 R375 H7260-20 H10515B-20 R6354 R928 R955 R7154 R12896 Photoelectric Emission Spectrophotometer When external energy is applied to a sample, that sample then emits light. . By using a monochromator to disperse this light emission into characteristic spectral lines of elements and measuring their presence and intensity simultaneously with photomultiplier tubes, the photoelectric emission spectrophotometer can perform rapid qualitative and quantitative analysis of the elements contained in the sample. 1) High gain 2) Low dark noise 3) High stability R6350, R6351 R6354, R6355, R10824, R10825 R11568, R11558 R7446, R8486, R8487, R10454 1) High quantum efficiency 2) Low dark noise 3) High stability R6353, R6357, R6356-06 R3788, R4220, R1527 R928, R3896, R10699, R12829 H7260-20, H10515B-20 1) High quantum efficiency 2) Low dark count 3) Single photon discrimination ability R2949, R9110 R943-02, R649 Fluorescence Spectrophotometer The fluorescence spectrophotometer is used in biological science, especially in molecular biology. When an excitation light is applied, some substances emit light with a wavelength longer than that of the excitation light. This light is known as fluorescence. The intensity and spectral characteristics of the fluorescence are measured by a photomultiplier tube, and the substance then analyzed qualitatively and quantitatively. Raman Spectroscopy When monochromatic light strikes a substance and scatters, a process called Raman scattering also occurs at a wavelength different from the excitation light. Since this wavelength differential is a unique characteristic of a molecule, spectral measurement of Raman scattering can provide qualitative and quantitative data of molecules. Raman scattering is extremely weak and a sophisticated optical system is required for measurement, with the photomultiplier tube operated in the photon counting mode. Other Spectrophotometric Equipment Using Photomultiplier Tubes • Liquid or gas chromatography • X-ray diffractometers, X-ray fluorescence analyzers • Electron microscopes 16 R3788, R4220 R647, R6095, R580 R9880U-01, R7600U-01 R9880U-110 R9880U-210 Applications Required Major Characteristics Applicable PMT Solid Surface Analysis Scanning Electron Microscope (SEM) A scanning electron microscope (SEM) is used to examine the structure near the surface of materials. It produces microscopic images by scanning the surface of a sample with a narrowfocused electron beam and measuring the secondary electrons emitted from near the surface of the sample. Unlike light, no diffraction occurs and so SEM allows high-precision measurement with an analysis capability in the order of nanometers. The emitted secondary electrons are guided to the scintillator and converted into visible light, which is measured with a photomultiplier tube. SEM is widely used for structural analysis of various structures including organisms, engineering materials, and semiconductors. 1) Low dark count 2) Compact size R6095, R6094 R12421 R9880U-110 R9880U-210 1) Low dark count 2) Low spike noise 3) High quantum efficiency R12421, R1924A, R6095 R9880U-110 1) High sensitivity at near infrared to infrared range 2) Low dark current R3896, R5984, R374 R2228, R5929, R5070A R9182-01, H7844 1) High sensitivity at UV range 2) Low dark current R3788 R1527, R4220 R6095 1) High quantum efficiency 2) High stability 3) Low dark current 4) High gain R6357, R928 R3896 R9880U-01, R9880U-20 R5900U-20-L16 H7260-20 H9530-20, H10515B-20 1) High quantum efficiency in the visible range R6357 R3896, R10699 R9880-110 R9880-210 H7260-20 1) Low dark count 2) High sensitivity at 560 nm 3) Compact size R4220, R1527 R1924A, R3550A Pollution Monitoring Particle Counter A particle counter measures the density of particles floating in the atmosphere or inside rooms by measuring light scattering. Microparticles such as PM2.5 can be measured by utilizing the absorption of beta rays. NOx Monitors NOx monitors are used to measure nitrogen oxides which are air pollutants contained in the air and exhaust gases emitted from various combustion engines. NOx monitors detect the NO gas concentration by measuring the intensity of chemiluminescence emitted when NO2 excited by the reaction of NO gas and ozone (O3) returns to its ground state. SOx Monitors SOx monitors or sulfur dioxide analyzers are used to measure the environmental concentration of sulfur dioxide in the air. Recent models use the ultraviolet fluorescence method that detects sulfur dioxide concentration in the air by irradiating ultraviolet light onto sulfur dioxides to excite SO2 and then measure the fluorescence intensity emitted from the SO2. Biotechnology Flow Cytometer A flow cytometer uses a laser to irradiate cells labeled with fluorescent substance and measures the resulting fluorescence or scattered light from those cells with a photomultiplier tube, in order to identify each cell. A cell sorter is one kind of flow cytometer having the function of sorting specific cells. Laser Scanning Microscopes Laser scanning microscopes are designed to acquire 2D or 3D fluorescence images by scanning a laser beam over the surface of a sample stained with a fluorescent dye. High-resolution images can be obtained by using the confocal function while scanning with a small laser light spot. Multiphoton microscopes that utilize two-photon absorption are also becoming widespread in recent years. Hygiene Monitors Hygiene monitors, also called ATP (adenosine triphosphate) monitors, are useful devices for monitoring sanitary conditions. These devices make use of the principle of bioluminescence that occurs by making a luminescent agent react with ATP extracted from bacteria or cells. Hygiene monitors are used for testing the degree of cleanliness in kitchens and food factories. 17 Selection Guide by Applications Applications Required Major Characteristics Applicable PMT Medical Applications Gamma Camera The gamma camera obtains an image of a radioisotope injected into the body of a patient to locate abnormalities. Its detection section uses a large diameter NaI(Tl) scintillator and light-guide coupled to a photomultiplier tube array. 1) High energy resolution 2) Good uniformity 3) High stability 4) Uniform gain (between each tube) R6231-01, R6233-01 R6234-01, R6235-01 R6236-01, R6237-01 R1307-01 H8500C, H9500 R8900U-00-C12 1) High energy resolution 2) High stability 3) Fast response time 4) Compact size R8900U-00-C12 R1450 H8500C, H9500 R9800, R9420, R13089 R8619, R11194 1) High quantum efficiency 2) High stability R1924A R11102 R6231, R6233 1) High quantum efficiency 2) High stability 3) Low dark current R1166, R5610A, R5611A-01 R6350, R6352, R6353 R6356-06, R6357 R4220, R928, R3788, R3896 R1463, R12421 R1925A, R1924A, R3550A R6095, R374 R9880U-01 R9880U-20 1) High sensitivity 2) Low dark current 3) High stability R6350 R11558 PET (Positron emission tomography) The PET provides tomographic images by detecting the coincident gamma-ray emission that accompanies the annihilation of positrons emitted from a tracer radioisotope (11C, 15O, 13N, 18F, etc.) injected into the body. Photomultiplier tubes coupled to scintillators are used to detect these gamma-rays. Computed Radiography (CR) Some X-ray image diagnostic systems use a special phosphor plate made of photostimulable phosphor. After temporarily accumulating an X-ray image onto this phosphor plate, scanning (exciting) the surface of the phosphor plate with a laser beam causes the phosphor plate to emit visible light according to the amount of accumulated X-rays. A photomultiplier tube converts this weak visible light into electrical signals which are then utilized to reconstruct an image through digital signal processing. In-Vitro Assay In-vitro assay is used for physical checkups, diagnosis, and evaluation of drug potency by making use of the specific antigen/antibody reaction characteristics of tiny amounts of insulin, hormones, drugs and viruses that are contained in blood or urine. Photomultiplier tubes are used to optically measure the amount of antigens labeled by radioisotopes or fluorescent, chemiluminescent or bioluminescent substances. • Radioimmunoassay (RIA) Uses radioactive isotopes for labeling and scintillators for measurement. • Chemiluminoassay CLIA (Chemilulminoassay) CLEIA (Enzyme-intensified chemiluminoassay) Uses luminescent substances for labeling to measure chemiluminescence or bioluminescence. • Fluoroimmunoassay Uses fluorescent substances for labeling. Others • X-ray phototimer This equipment automatically controls the X-ray film exposure during X-ray examinations. The X-rays transmitting through a subject are converted into visible light by a phosphor screen. A photomultiplier tube detects this light and converts it into electrical signals. When the accumulated electrical signal reaches a preset level, the X-ray irradiation is shut off, to allow obtaining an optimum film density. 18 Applications Required Major Characteristics Applicable PMT Radiation Measurement Area Monitor Area monitors are designed to continuously measure changes in environmental radiation levels. Area monitors use a photomultiplier tube coupled to a scintillator to monitor low level gamma rays and neutron rays. Photomultiplier tubes are mainly used for gamma ray measurement. 1) Long term stability 2) Low background noise 3) Good plateau characteristic R1306, R6231 R329-02, R7724 R1307, R6233 R877, R877-01 1) Long term stability 2) Low background noise 3) Good plateau characteristic R1635 R12421 R1924A R6095 R9880U-110 1) Stable operation at high temperatures up to 175 °C 2) Rugged structure resistant to shock and vibration 3) Good plateau characteristic when combined with a scintillator R4177 Series R3991A Series R1288A Series R9722A Series R4607A Series 1) Good pulse linearity 2) High energy resolution R12421 R6095 R580 R1306, R6231 R329-02, R7724 1) High reliability 2) High stability 3) Wide dynamic range R1924A R580 R2154-02 R6231 R6233 1) High quantum efficiency 2) Good uniformity 2) Low spike noise R3896 R9880U-01 R9880U-04 R9880U-20 R9880U-113 Survey Meter Survey meters are used to measure low level gamma-rays and beta-rays by using a photomultiplier tube coupled to a scintillator. Resource Inquiry Oil and Natural Gas Well Logging Gamma-ray probing is used to determine the geological location and size of oil deposits and natural gas fields. A probe containing a radiation source, scintillator, and photomultiplier tube is lowered into a borehole drilled for an oil or natural gas well. The scattered radiation or natural radiation from the geological formation is detected with the probe, and the type and density of the geological formation is analyzed along with information obtained from other sensors. * We provide a catalog of high temperature, ruggedized photomultiplier tubes designed and selected for oil and natural gas well logging applications. Industrial Measurement Thickness Meter The thickness meter uses a radiation source and a scintillator/photomultiplier tube detector to measure product thickness such as for paper, plastic, copper sheet on factory production lines. Beta-rays are used as a radiation source to measure small density products such as rubber, plastic, and paper. Gamma-rays are used for large density products such as copper plates. X-ray fluorescence is utilized to measure film thickness for plating, evaporation, etc. Liquid level meter Liquid level needs to be controlled in a liquid production or oil and gas processing plant. Absorption of gamma rays are measured to determine the liquid level non-invasively with a PMT and scintillator. Highly reliable PMTs are used to monitor the liquid level continuously or at times. Semiconductor Inspection System These are widely used in semiconductor wafer inspection systems. In wafer inspection, the wafer is scanned by a laser beam, and the scattered light caused by dirt or defects is detected by a photomultiplier tube. 19 Selection Guide by Applications Applications Required Major Characteristics Applicable PMT High Energy Physics ●Accelerator Experiment Hodoscope Photomultiplier tubes are coupled to the ends of long, thin plastic scintillator arrays arranged in two layers intersecting with each other in order to measure the time and position at which charged particles pass through the scintillator arrays. TOF Counter 1) Fast time response 2) Compact size Two counters are arranged along a path of charged particles, with each counter consisting of a scintillator and a photomultiplier tube. The velocity of the particles is measured by the time difference between the two counters. Cherenkov Counter A Cherenkov counter is used to identify secondary particles generated by the collision reaction of particles. Cherenkov radiation is emitted from charged particles with energy higher than a certain level when they pass through a gas or silicon aerogel. This weak Cherenkov radiation is detected by a photomultiplier tube. These particles are then identified by measuring the Cherenkov radiation emission angle. Calorimeter The calorimeter measures the accurate energy of secondary particles generated by the collision reaction of particles. R7600U Series R1635 (H3164-10) R647-01 (H3165-10) R12421 (H12690) R1450 (H6524), R1166 (H6520) R7600U Series, R1635 (H3164-10) R1450 (H6524), R4998 (H6533) R1828-01 (H1949-51) R2083 (H2431-50), R9800 R12844, R9420, R12845, R13089 3) Resistance to magnetic fields (when used in magnetic fields) R5505-70 (H6152-70) R7761-70 (H8409-70) R5924-70 (H6614-70) 1) High quantum efficiency 2) Single photon discrimination ability 3) High gain 4) Fast time response R329-02 (H6410), R5113-02 R1250 (H6527), R1584 (H6528) R7600U Series, R7724 H12700 5) Resistance to magnetic fields (when used in magnetic fields) R5505-70 (H6152-70) R7761-70 (H8409-70) R5924-70 (H6614-70) 1) Good pulse linearity 2) High energy resolution 3) High stability R7899, R580 (H3178-51) R7600U Series, R329-02 (H6410) R7724, R6091 (H6559) 4) Resistance to magnetic fields (when used in magnetic fields) R5924-70 (H6614-70) R5505-70 (H6152-70) R7761-70 (H8409-70) ●Neutrino and Proton Decay Experiment, Cosmic Ray Detection Neutrino Experiment Research on solar neutrinos or particle astophysics is utilized in a neutrino experiment. This experimental system consists of a large amount of a medium surrounded by a great number of large-diameter photomultiplier tubes. When cosmic rays such as neutrinos enter and pass through the medium, their energy and traveling direction are measured by detecting Cherenkov radiation that occurs from interaction with the medium. R5912* R7081* R8055* R3600-02* Neutrino and Proton Decay Experiment In the neutrino and proton decay experiments being conducted at Kamioka, Japan, 11,200 photomultiplier tubes each 20" diameter are installed to surround from all directions a huge tank storing 50,000 t of pure water. The photomultiplier tubes are used to watch the subtle flash of Cherenkov radiation that occurs when proton decays or solar neutrinos pass through the pure water tank. 1) Large photocathode area 2) Fast time response 3) High stability 4) Low dark count Air Shower Counter When cosmic rays collide with the earth's atmosphere, secondary particles are created by the interaction of the cosmic rays and atmospheric atoms. These secondary particles generate more secondary particles, which continue to increase in a geometrical progression. This is called an air shower. The gamma-rays and Cherenkov radiation emitted in this air shower are detected by photomultiplier tubes arranged in a lattice array on the ground. * These are listed in our catalog "Photomultiplier Tubes and Assemblies for Scintillation Counting & High Energy Physics". 20 R329-02 (H6410) R6091 (H6559) R1250 (H6527) The assembly type is given in parentheses. Applications Required Major Characteristics Applicable PMT Aerospace Astronomical X-ray Measurement X-rays from outer space include information on the enigmas of space. As an example, the X-ray observation satellite "Asuka" developed by a group of the ISAS (Institute of Space and Astronomical Science Japan), uses a gas-scintillation proportional counter in conjunction with a position-sensitive photomultiplier tube to measure X-rays from supernovas, etc. 1) High energy resolution 2) Resistance to shock and vibration R3998-02 R3991A R6231 Ruggedized PMT with high resistance to vibration and shock will be required. Consult with our sales office. Measurement of Scattered Light from Fixed Stars and Interstellar Dust Ultraviolet rays from space contain a great deal of information about the surface temperatures of stars and interstellar substances. However, these ultraviolet rays are absorbed by the earth's atmosphere making is impossible to measure them from the earth's surface. So photomultiplier tubes are mounted in rockets or artificial satellites, to measure ultraviolet rays with wavelengths shorter than 300 nm. 1) Resistance to shock and vibration 2) Sensitivity only in VUV to UV range (Solar blind response with no sensitivity to visible light: See page 6 for Cs-Te and CsI photocathodes) R1080, R976 R6834, R6835, R6836 Ruggedized PMT with high resistance to vibration and shock will be required. Consult with our sales office. Lasers Laser Radar The laser radar is used in applications such as atmospheric measurement for highly accurate range finding or aerosol scattering detection. Fluorescence Lifetime Measurement A laser is used as an excitation light for fluorescence lifetime measurement. The molecular structure of a substance can be studied by measuring the changes in temporal intensity in the emitted fluorescence. 1) Fast time response 2) Low dark count 3) High gain 4) Low afterpulses R3809U Series R5916U Series R9880U-20 H7260-20 H10515B-20 R9880U Series R3809U Series R5916U Series 21 Side-on Type Photomultiplier Tubes Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) 13 mm (1/2") Dia. Types 4 × 13 R6350 4 × 13 R6352 4 × 13 R6353 4 × 13 R6355 185 to 650 350U 340 Sb-Cs U 1 CC/9 E678-11U* qw 1250 0.01 1000 o 185 to 750 452U 420 BA U 1 CC/9 E678-11U* qw 1250 0.01 1000 o 185 to 680 456U 400 LBA U 1 CC/9 E678-11U* qw 1250 0.01 1000 o 185 to 850 550U 530 MA U 1 CC/9 E678-11U* qw 1250 0.01 1000 o R6356-06 4 × 13 185 to 900 — 400 MA U 1 CC/9 E678-11U* qw 1250 0.01 1000 o R6357 4 × 13 185 to 900 — 450 MA U 1 CC/9 E678-11U* qw 1250 0.01 1000 o ∗R12857 4 × 13 185 to 900 — 450 MA U 1 CC/9 E678-11U* qw 1250 0.01 1000 o 530 MA U 1 CC/9 E678-11U* qw 1250 0.01 1000 o 4 × 13 R6358 185 to 830 561U Lenses for side-on type photomultipliers are available. See page 73 for more details. Dimensional Outlines (Unit: mm) 1 R6350, R6352, R6353 etc. 13.5 ± 0.8 4 MIN. 50 MAX. 40 ± 2 24.0 ± 1.5 13 MIN. 3±2 PHOTOCATHODE 11 PIN BASE R6350 R6352 R6353 R6355 R6358 R6356-06 R6357 R12857 DY5 6 DY6 7 DY4 5 DY7 9 DY8 DY3 4 DY2 8 10 DY9 3 DY1 11 P 2 1 K DIRECTION OF LIGHT TPMSA0034EE 22 Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) (at 25 °C) A Anode Characteristics M Cathode Characteristics K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) 20 40 5.0 — 48 50 300 3.6 × 105 7.5 × 106 0.5 5 1.4 15 80 120 10.0 — 90 100 700 5.2 × 105 5.8 × 106 1 10 1.4 15 For photon counting: R6350P Silica glass window: R6351 Type No. R6350 R6352 For photon counting: R6353P 30 70 6.5 — 65 100 400 3.7 × 0.1 2 1.4 15 80 150 6.0 0.15 45 100 600 1.8 × 105 4.0 × 106 1 10 1.4 15 R6355 1200 200 300 10.0 0.3 77 400 105 5.7 × Notes 106 3.1 × 105 4.0 × 106 1 10 1.4 15 R6356-06 105 4.0 × 106 2 10 1.4 15 R6357 3 10 1.4 15 350 500 13.0 0.4 105 1000 2000 4.2 × 620 650 15.0 0.43 109 400 2600 4.3 × 105 4.0 × 106 700 2.5 × 140 200 7.5 0.15 70 300 R6353 105 3.5 × 106 0.1 1 1.4 15 R12857∗ For photon counting: R6358-10 R6358 23 Side-on Type Photomultiplier Tubes Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) 28 mm (1-1/8") Dia. Types with UV to Visible Sensitivity 8 × 24 R11558 8 × 24 R11568 300 to 650 453K 400 BA K 1 CC/9 E678-11A ert 1250 0.1 1000 o 185 to 650 453U 400 BA U 1 CC/9 E678-11A ert 1250 0.1 1000 o R3788 8 × 24 185 to 750 452U 420 BA U 1 CC/9 E678-11A ert 1250 0.1 1000 o R11540 8 × 24 185 to 760 452U 420 BA U 1 CC/9 E678-11A ert 1250 0.1 1000 o R1527 8 × 24 185 to 680 456U 400 LBA U 1 CC/9 E678-11A ert 1250 0.1 1000 o R4220 8 × 24 185 to 710 456U 410 LBA U 1 CC/9 E678-11A ert 1250 0.1 1000 o R7518 8 × 24 185 to 730 456U 410 LBA U 1 CC/9 E678-11A ert 1250 0.1 1000 o R5983 10 × 24 185 to 710 456U 410 LBA U 2 CC/9 E678-11A ert 1250 0.1 1000 o 8 × 24 185 to 710 456U 410 LBA U 3 CC/9 E678-11A ert 1250 0.1 1000 o ∗R11715-01 Lenses for side-on type photomultipliers are available. See page 73 for more details. Dimensional Outlines (Unit: mm) 1 R11558, R3788, R11540 etc. 2 R5983 28.5 ± 1.5 28.5 ± 1.5 10 MIN. 2.5 ± 0.5 8 MIN. PHOTOCATHODE R11558 R11568 R11540 R3788 R1527 R4220 R7518 5 DY6 6 7 DY7 8 DY8 DY3 3 DY2 9 DY9 2 DY1 10 1 80 MAX. 11 PIN BASE JEDEC No. B11-88 11 PIN BASE JEDEC No. B11-88 DY5 94 MAX. 49.0 ± 2.5 32.2 ± 0.5 32.2 ± 0.5 DY4 4 P 11 K DIRECTION OF LIGHT TPMSA0001EA 24 24 MIN. 80 MAX. 94 MAX. 49.0 ± 2.5 24 MIN. PHOTOCATHODE DY5 5 DY6 6 7 DY4 4 DY7 8 DY8 DY3 3 DY2 9 DY9 2 DY1 10 P 1 11 K DIRECTION OF LIGHT TPMSA0035EC K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) 40 60 7.1 — 60 200 600 6.0 × 105 1.0 × 107 1 10 2.2 22 40 60 7.1 — 60 200 600 6.0 × 105 1.0 × 107 1 10 2.2 22 100 120 10.0 0.01 90 500 1200 9.0 × 160 190 16.0 0.02 120 1300 1900 1.2 × 106 1.0 × 107 400 40 60 60 — 6.4 (at 25 °C) A Anode Characteristics M Cathode Characteristics 200 105 4.0 × 105 105 1.0 × 107 5 50 2.2 22 5 50 2.2 22 6.7 × 106 0.1 2 2.2 22 1.2 × 107 0.2 2 2.2 22 0.2 2 2.2 22 80 100 8.0 — 70 1000 1200 8.4 × 120 130 10.0 — 85 1200 1560 1.0 × 106 1.2 × 107 60 100 8.0 — 70 500 1000 7.0 × 50 100 8.0 — 70 1000 1200 8.4 × 105 1.2 × 107 105 1.0 × 107 0.2 2 2.2 22 0.2 0.5 2.2 22 Notes Type No. R11558 R11568 Silica glass window: R4332 R3788 R11540 For photon counting: R1527P Silica glass window: R7446 For photon counting: R4220P Silica glass window: R7447 For photon counting: R7518P R1527 For photon counting: R5983P Borosilicate glass window: R10491 R5983 R4220 R7518 R11715-01∗ 3 R11715-01 PELTIER DEVICE THERMISTOR 20 40.0 ± 0.5 14.5 ± 0.5 28.5 ± 1.5 10 MIN. 2.5 ± 0.5 DY5 5 DY6 6 DY7 7 8 4 DY8 9 DY9 DY3 3 10 2 DY2 96 MAX. 49.0 ± 2.5 PHOTOCATHODE DY4 82 MAX. 24 MIN. INSULATION COVER 1 DY1 11 K P DIRECTION OF LIGHT TPMSA0045EA 25 Side-on Type Photomultiplier Tubes Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) Socket & Socket Assembly 28 mm (1-1/8") Dia. Types with UV to Near IR Sensitivity ∗R12829 8 × 24 185 to 900 557U 450 MA U 1 CC/9 E678-11A ert 1250 0.1 1000 o R10699 8 × 24 185 to 900 557U 450 MA U 1 CC/9 E678-11A ert 1250 0.1 1000 o R3896 8 × 24 185 to 900 555U 450 MA U 1 CC/9 E678-11A ert 1250 0.1 1000 o R9220 8 × 24 185 to 900 555U 450 MA U 1 CC/9 E678-11A ert 1250 0.1 1000 o R928 8 × 24 185 to 900 562U 400 MA U 1 CC/9 E678-11A ert 1250 0.1 1000 o R5984 10 × 24 185 to 900 562U 400 MA U 2 CC/9 E678-11A ert 1250 0.1 1000 o 28 mm (1-1/8") Dia. Types with Low Dark Current R9110 8×6 185 to 900 555U 450 MA U 3 CC/9 E678-11A ert 1250 0.1 1000 o R2949 8×6 185 to 900 562U 400 MA U 3 CC/9 E678-11A ert 1250 0.1 1000 o 10 × 14 185 to 900 555U 450 MA U 4 CC/9 E678-11A ert 1250 0.1 1000 o 8 × 24 185 to 850 556U 430 MA U 1 CC/9 E678-11A ert 1250 0.1 1000 o ∗R9182-01 R4632 Lenses for side-on type photomultipliers are available. See page 73 for more details. Dimensional Outlines (Unit: mm) 1 R10699, R3896, R928 etc. 2 R5984 3 R9110, R2949 28.5 ± 1.5 28.5 ± 1.5 29.0 ± 1.7 10 MIN. PHOTOCATHODE 5 DY6 6 7 DY7 8 DY8 DY3 3 DY2 9 DY9 2 DY1 10 1 P 11 K DY5 TPMSA0001EA DY6 6 7 DY2 DY7 DY5 8 DY8 9 DY9 2 10 P 1 80 MAX. INSULATION COVER 11 PIN BASE JEDEC No. B11-88 DY3 3 DY1 DIRECTION OF LIGHT 5 DY4 4 94 MAX. 49.0 ± 1.0 6 MIN. 80 MAX. 32.2 ± 0.5 11 PIN BASE JEDEC No. B11-88 11 PIN BASE JEDEC No. B11-88 DY5 94 MAX. 49.0 ± 2.5 32.2 ± 0.5 32.2 ± 0.5 DY4 4 26 24 MIN. 80 MAX. 94 MAX. 49.0 ± 2.5 R3896 R9220 R10699 R12829 8 MIN. PHOTOCATHODE 24 MIN. R928 R4632 PHOTOCATHODE 2.5 ± 0.5 8 MIN. K 7 DY7 8 DY8 9 DY9 2 DY1 DIRECTION OF LIGHT DY6 6 DY3 3 DY2 11 5 DY4 4 10 P 1 11 K DIRECTION OF LIGHT TPMSA0035EC TPMSA0043EA K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) 600 650 15.0 0.45 109 1600 8500 1.4 × 106 1.3 × 107 2g 10g 2.2 22 620 650 15.0 0.43 109 1600 8500 1.4 × 106 1.3 × 107 2g 10g 2.2 22 475 525 15.0 0.4 90 3000 5000 8.6 × 375 450 12.5 0.4 85 1000 4500 8.5 × 105 1.0 × 107 2500 140 250 74 0.3 8.0 (at 25 °C) A Anode Characteristics M Cathode Characteristics 400 105 9.5 × 106 10 50 2.2 22 10 50 2.2 22 7.4 × 105 1.0 × 107 105 1.0 × 107 5 50 5 15 3 50 R9220 2.2 22 R5984 For photon counting: R9110P R9110 76 400 3000 7.6 × 400 525 15.0 0.4 90 4000 10000 1.7 × 106 1.9 × 107 2.2 22 140 250 8.0 0.3 74 1000 2500 7.4 × 105 1.0 × 107 300e 500e 2.2 22 400 525 13.0 0.3 90 3000 5000 8.6 × 2.2 22 140 200 7.5 0.15 80 300 700 2.8 × 105 3.5 × 106 50e 100e 2.2 22 1h R3896 R928 0.32 0.3h R10699 Silica glass window: R12896 High sensitivity type: R13096 9.0 9.5 × R12829∗ 22 2.2 300 106 High sensitivity for 800 nm of R10699 Type No. Silica glass window: R955 140 105 Notes R2949 Cooling module: H7844 R9182-01∗ R4632 4 R9182-01 PELTIER DEVICE THERMISTOR 20 40.0 ± 0.5 14.5 ± 0.5 28.5 ± 1.5 10 MIN. 2.5 ± 0.5 93 MAX. 49.0 ± 2.5 PHOTOCATHODE 79 MAX. 14 MIN. INSULATION COVER 11 PIN BASE JEDEC No. B11-88 32.2 ± 0.5 DY5 5 DY4 DY6 6 DY7 7 8 4 9 DY9 DY3 3 10 2 DY2 DY8 1 DY1 11 K P DIRECTION OF LIGHT TPMSA0046EA 27 Side-on Type Photomultiplier Tubes Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) 28 mm (1-1/8") Dia. Types with UV to Near IR Sensitivity 3 × 12 R636-10 3 × 12 R2658 18 × 16 R5108 185 to 930 650U 300-800 GaAs U 1 CC/9 E678-11A er 1500 0.001 1250 o 185 to 1010 850U 400 InGaAs U 2 CC/9 E678-11A er 1500 0.001 1250 o 400 to 1200 700K 800 Ag-O-Cs K 3 CC/9 E678-11A er 1500 0.01 1250 o Lenses for side-on type photomultipliers are available. See page 73 for more details. Dimensional Outlines (Unit: mm) 1 R636-10 2 R2658 3 R5108 29.0 ± 1.7 28.5 ± 1.5 8 MIN. 3 MIN. 3 MIN. 5 DY6 6 7 DY7 DY1 10 P DY2 11 K DY6 6 7 DY7 9 DY9 10 P 1 76 MAX. 90 MAX. 49.0 ± 2.5 DY5 8 DY8 2 DY1 11 K 5 DY6 6 7 DY4 4 DY7 8 DY8 DY3 3 DY2 9 DY9 2 DY1 DIRECTION OF LIGHT TPMSA0027EF 16 MIN. 80 MAX. 94 MAX. 11 PIN BASE JEDEC No. B11-88 DY3 3 DIRECTION OF LIGHT 28 5 DY4 4 9 DY9 1 49.0 ± 2.5 DY5 8 DY8 2 34 MAX. 32.2 ± 0.5 11 PIN BASE JEDEC No. B11-88 DY3 3 DY2 12 MIN. 80 MAX. 94 MAX. 49.0 ± 2.5 12 MIN. 16 MIN. DY5 HA TREATMENT PHOTOCATHODE HA TREATMENT 11 PIN BASE JEDEC No. B11-88 DY4 4 18 MIN. PHOTOCATHODE PHOTOCATHODE 34 MAX. 29.0 ± 1.7 1.1 ± 0.8 1.1 ± 0.8 10 P 1 11 K DIRECTION OF LIGHT TPMSA0012ED TPMSA0023EC Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) 400 550 9.0 0.53 50 100 4.5 0.4 10 25 — — (at 25 °C) A Anode Characteristics M Cathode Characteristics 62 1 at 1000 nm 2.2 Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) Notes Type No. 100 250 2.8 × 104 4.5 × 105 0.1d 2d 2.0 20 Silica glass window: R758-10 R636-10 5 16 1.6 × 102 1.6 × 105 10 2.0 20 For photon counting: R2658P R2658 7.5 6.6 × 350c 1000c 1.1 17 3.5 102 3.0 × 105 1 R5108 29 Side-on Type Photomultiplier Tubes Spectral Response A D E F WinOut- Dynode Spectral Curve Peak PhotoResponse Code Wave- cathode dow line Structure MateRange length Material rial No. / Stages Effective Area (mm) Type No. Wavelength (nm) 100 200 300 400 500 600 700 800 900 1000 1100 1200 Max. Ratings H Remarks B (nm) C G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) (nm) 13 mm (1/2") Dia. Types with Solar Blind Response R6354 4 × 13 160 to 320 250S 230 Cs-Te R10824 4 × 9.5 115 to 320 250M 200 1 CC/9 E678-11U* qw 1250 0.01 1000 o Cs-Te MF 2 CC/9 E678-11U* 1250 0.01 1000 o Q R10825 4 × 9.5 115 to 195 150M 130 Cs-I MF 2 CC/9 E678-11U* 1250 0.01 1000 o ∗R13194 4 × 9.5 115 to 195 150M 130 Cs-I MF 2 CC/9 E678-11U* 1250 0.01 1000 o 3 CC/9 28 mm (1-1/8") Dia. Types with Solar Blind Response R7154 8 × 24 160 to 320 250S 230 Cs-Te R8486 8 × 12 Q E678-11A ert 1250 0.1 1000 o 115 to 320 250M 200 Cs-Te MF 4 CC/9 E678-11A 1250 0.1 1000 o R8487 8 × 12 115 to 195 150M 130 Cs-I MF 4 CC/9 E678-11A 1250 0.1 1000 o R10454 8 × 12 115 to 195 150M 130 Cs-I MF 4 CC/9 E678-11A 1250 0.1 1000 o Dimensional Outlines (Unit: mm) 1 R6354 2 R10824, R10825, R13194 3 R7154 28.5 ± 1.5 8 MIN. 80 MAX. 24 MIN. 45.5 MAX. 53 MAX. PHOTOCATHODE 35.0 ± 2.0 9.5 MIN. 25.0 ± 1.5 52 MAX. 13.3 ± 0.3 4 MIN. 7±2 42 ± 2 24.0 ± 1.5 13 MIN. 14.3 ± 0.4 MgF2 WINDOW 49.0 ± 2.5 13.5 ± 0.8 4 MIN. PHOTOCATHODE 94 MAX. 17.0 ± 0.6 PHOTOCATHODE HA TREATMENT 11 PIN BASE 32.2 ± 0.5 11 PIN BASE JEDEC No. B11-88 DY5 6 DY6 7 DY4 5 DY7 DY5 9 DY8 DY3 4 DY2 8 10 DY9 3 DY1 11 2 1 P 8 DY7 DY5 10 DY9 DY2 1 K 7 DY7 8 DY8 9 DY9 2 DY1 10 1 P 11 K DIRECTION OF LIGHT DIRECTION OF LIGHT TPMSA0034EE DY6 6 DY3 3 11 P 2 5 DY4 4 9 DY8 3 DY1 DIRECTION OF LIGHT 30 DY6 7 DY3 4 DY2 K 6 DY4 5 TPMSA0044EA TPMSA0001EA K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) — — — — — — — (at 25 °C) A Anode Characteristics M Cathode Characteristics — 50b — 40b — Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) Notes Type No. — 2.0 × 105b 4.0 × 106 0.5 5 1.4 15 R6354 — 0.1 2 1.4 15 R10824 1.6 × 105b 4.0 × 106 105a 3.9 × 106 — — — — 25.5a — — 1.0 × 0.05 1 1.4 15 — — — — 25.5a — — 1.0 × 105a 3.9 × 106 0.05 1 1.4 15 — — — — 62b — — 6.2 × 105b 1.0 × 107 1 10 2.2 22 R7154 1 10 2.2 22 R8486 0.1 — 2.2 22 — — — — 52b — — 5.2 × — — — — 25.5a — — 1.0 × 105a 3.9 × 106 — 1.0 × — — — 25.5a — — 105b 105a 1.0 × 3.9 × 107 106 0.1 — 2.2 22 R10825 R10825 Better solar-blind characteristics Anode sensitivity ratio (122/300): 8500 R13194∗ R8487 R8487 Better solar-blind characteristics Anode sensitivity ratio (122/300): 8500 R10454 20 MAX. 4 R8486, R8487, R10454 20 MAX. FACEPLATE 28.5 ± 1.5 8 MIN. 94 MAX. PHOTOCATHODE 80 MAX. 49.0 ± 2.5 14 MIN. MgF2 WINDOW 32.2 ± 0.5 11 PIN BASE JEDEC No. B11-88 DY5 5 DY6 6 7 DY4 4 DY7 8 DY8 DY3 3 DY2 9 DY9 2 DY1 10 1 P 11 K DIRECTION OF LIGHT TPMSA0042EB 31 Head-on Type Photomultiplier Tubes Spectral Response A D E F Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) Type No. 100 200 Max. Ratings H Remarks B C G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) 10 mm (3/8") Dia. Types 8 R2496 8 R1635 160 to 650 400S 420 BA Q 1 L/8 E678-11N* u 1500 0.03 1250 e 300 to 650 400K 420 BA K 1 L/8 E678-11N* y 1500 0.03 1250 q 115 to 200 100M 140 Cs-I MF 2 L/10 E678-12A* 2250 0.01 2000 !2 115 to 320 200M 240 Cs-Te MF 2 L/10 E678-12A* 1250 0.01 1000 !2 13 mm (1/2") Dia. Types 6 R1081 R1080 6 R759 10 160 to 320 200S 240 Cs-Te Q 3 L/10 E678-13F* io 1250 0.01 1000 !2 R647 10 300 to 650 400K 420 BA K 3 L/10 E678-13F* io 1250 0.1 1000 !2 R4124 10 300 to 650 400K 420 BA K 4 L/10 E678-13F* !0 1250 0.03 1000 !8 ∗R12421 10 300 to 650 400K 420 BA K 5 L/10 E678-13F* !1 1250 R2557 10 300 to 650 402K 375 LBA K 3 L/10 E678-13F* 1500 0.03 1250 !5 R4177-01 10 300 to 650 401K 375 HBA K 6 L/10 E678-13E* 1800 0.02 1500 !2 185 to 850 500U 420 MA U 3 L/10 E678-13F* io 1250 0.01 1000 !2 10 R1463 0.1 1000 !5 Dimensional Outlines (Unit: mm) 1 R2496, R1635 2 R1081, R1080 3 R759, R647, R2557, R1463 13.5 ± 0.5 FACEPLATE 6 MIN. 71 ± 2 PHOTOCATHODE 8 MIN. FACEPLATE 12 PIN BASE JEDEC No. B12-43 45.0 ± 1.5 PHOTOCATHODE PHOTOCATHODE LEAD LENGTH 33 MIN. A 10 MIN. B 71 ± 2 A 13 MAX. SEMIFLEXIBLE LEADS 13.5 ± 0.5 FACEPLATE 37.3 ± 0.5 R2496 4)° R2496 DY5 P 6 8 4 2 1 IC 6 P 7 DY8 5 10 DY2 11 K 8 DY5 3 DY3 1 DY1 12 K DY9 6 DY10 7 9 DY6 DY7 4 10 DY4 10 DY4 DY5 3 11 DY2 32 9 DY2 DY3 DY6 10 DY4 11 DY2 2 12 1 DY1 13 IC K SHORT PIN DY3 2 1 DY1 13 K TPMHA0014EA SHORT PIN TPMHA0100EB DY8 8 DY5 3 DY8 8 5 9 DY6 11 2 7 5 DY7 4 DY7 4 9 DY4 DY3 3 DY1 DY6 DY9 6 DY9 (8) B Bottom View DY10 P DY8 7 DY10 P 10.5 ± 0.5 R2496 has a plano-concave faceplate. DY7 5 13 PIN BASE (360/1 R1635 9.7 ± 0.4 A 13 MAX. R1635 A Glass Base 10 MAX. 11 PIN BASE TPMHA0207EA K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) (at 25 °C) A Anode Characteristics M Cathode Characteristics Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) Notes Type No. 60 100 10.0 — 80 30 100 8.0 × 104 1.0 × 106 2 50 0.7 9.0 R2496 60 100 10.0 — 80 30 100 8.0 × 104 1.0 × 106 1 50 0.8 9.0 R1635 — — — — 12a — — — 28b — — — — 28b 2 × 102 (A/W)a 4 × 103 (A/W)b 4 × 103 (A/W)b 40 110 10.0 — 80 30 — — 1.2 × 103a 1.0 × 105 0.03 0.05 1.8 18 R1081 — 1 2.5 24 R1080 — 1.4 × 104b 1.4 × 104b 5.0 × 105 0.3 5.0 × 105 0.3 1 2.5 24 1 15 2.1 22 110 8.0 × 104 1.0 × 106 R759 For photon counting: R647P UV glass window: R960 Silica glass window: R760 R647 40 100 10.0 — 80 30 100 8.0 × 1 15 1.1 12 UV glass window: R4141 80 110 10.0 — 80 100 220 1.6 × 105 2.0 × 106 0.5 2 1.2 14 R12421∗ 106 0.5 4 2.2 22 For photon counting Low dark count type: R12421P For photon counting: R2557P 0.5 10 2.0 20 High temp. operation (Maximum Temp.: +175 °C) R4177-01 4 20 2.5 24 1.0 × 104 25 40 5.5 — 50 50 200 2.5 × 20 40 6.0 — 51 10 20 2.6 × 104 5.0 × 105 120 5.1 × — 0.2 51 30 4 R4124 1.0 × 104 106 5 R12421 R4124 R2557 R1463 6 R4177-01 14.5 ± 0.7 FACEPLATE 10 MIN. 13.5 ± 0.5 13.5 ± 0.5 10 MIN. FACEPLATE FACEPLATE PHOTOCATHODE P DY9 DY7 6 7 3 2 DY8 10 DY6 DY7 4 11 DY5 DY4 12 1 DY1 IC 13 K 6 DY9 9 DY10 P DY10 5 61 ± 2 13 PIN BASE 8 DY5 4 DY3 43 ± 2 50 ± 2 PHOTOCATHODE 13 MAX. 13 PIN BASE PHOTOCATHODE 10 MIN. 13 PIN BASE DY8 8 9 11 2 DY1 12 1 13 6 DY9 DY2 IC K 7 DY8 8 9 5 3 DY5 DY6 10 DY4 DY7 4 DY3 11 2 DY1 SHORT PIN SHORT PIN DY10 P DY6 10 DY4 3 DY3 DY2 7 5 13 MAX. 120 105 13 MAX. 80 5.0 × 106 12 1 13 DY2 IC K SHORT PIN TPMHA0603EA TPMHA0006EA TPMHA0102EA 33 Head-on Type Photomultiplier Tubes Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) E678-12A* 2250 0.01 2000 !4 19 mm (3/4") Dia. Types 13 R972 15 R821 115 to 200 100M 140 Cs-I 160 to 320 200S 240 Cs-Te MF 1 L/10 Q 2 L/10 E678-12L* !2!3!4 1250 0.01 1000 !4 E678-12L* !2!3!4 1250 R1166 15 300 to 650 400K 420 BA K 2 L/10 R1450 15 300 to 650 400K 420 BA K 2 L/10 E678-12L* !5 1800 0.1 1500 !6 R3478 15 300 to 650 400K 420 BA K 3 L/8 E678-12L* !6!7 1800 0.1 1700 r R5610A 15 300 to 650 402K 375 LBA K 4 C+L/10 E678-12T* !8 1250 0.1 1000 !7 R5611A-01 15 300 to 650 400K 420 BA K 5 C+L/10 E678-12A* 1250 0.1 1000 !7 R3991A 15 E678-12R* 1800 0.02 1500 !7 300 to 650 401K 375 HBA K 5 C+L/10 R1617 15 300 to 850 500K 420 MA K 2 L/10 R1878 4 300 to 850 500K 420 MA K 6 L/10 0.1 1000 !4 E678-12L* !2!3!4 1250 E678-12L* !9 0.1 1000 !4 0.1 1000 !5 1250 Dimensional Outlines (Unit: mm) 1 R972 2 R821, R1166, R1450, R1617 3 R3478 19 ± 1 13 MIN. FACEPLATE PHOTOCATHODE A 88 ± 2 FACEPLATE 15 MIN. 18.6 ± 0.7 PHOTOCATHODE FACEPLATE 15 MIN. A 12 PIN BASE JEDEC No. B12-43 B R821 R1450 R1166 (Plano-concave faceplate) R1617 12 PIN BASE 65 ± 2 13 MAX. LEAD LENGTH 45 MIN. SEMIFLEXIBLE LEADS 13 MAX. 13 MAX. 88 ± 2 PHOTOCATHODE 12 PIN BASE 37.3 ± 0.5 R821 A Glass Base Others 19 ± 1 A 18.6 ± 0.7 R1450 has a plano-concave faceplate. 3)° (360/1 P DY10 6 5 DY8 7 DY6 8 DY9 4 9 DY4 (12) P DY10 7 5 DY8 8 9 DY6 DY7 4 10 DY4 DY5 3 DY3 11 2 1 DY1 12 K DY2 6 P 5 9 12 K DY1 SHORT PIN K 12 2 1 DY1 DY3 TPMHA0208EA 34 1 DY3 DY4 11 3 DY5 DY5 DY6 8 11 2 10 DY2 DY9 4 DY7 7 7 DY6 8 IC 4 9 DY4 DY7 3 10 DY2 DY5 11 2 1 DY3 12 K DY1 SHORT PIN DY8 DY10 6 DY9 6 5 10 DY2 DY7 3 B Bottom View DY8 IC P TPMHA0012EB TPMHA0119EB K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) — — — — 12a — — — — 28b 2 × 102 (A/W)a 4 × 103 (A/W)b Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) — 1.2 × 103a 1.0 × 105 0.03 0.05 1.6 17 — 1.0 × 104b 3.6 × 105 0.5 2.5 27 70 110 10.5 — 85 10 110 8.5 × 70 115 11.0 — 88 100 200 1.5 × 105 1.7 × 106 200 11.0 88 — 100 1.5 × 105 105 106 1 5 2.5 27 3 50 1.8 19 1.7 × 106 10 2.0 × 106 30 50 6.5 — 50 20 100 1.0 × 60 90 10.5 — 85 10 50 4.7 × 104 5.5 × 105 20 40 6.0 — 51 5 20 2.6 × 80 120 — 0.2 51 30 120 5.1 × 104 1.0 × 106 150 6.1 × — 51 0.2 30 4 R5610A 1.2 × 106 14 0.5 4 1.3 12 3 20 1.3 12 0.1 10 1.0 13 4 20 2.5 27 100e 250e 1.7 24 5 R5611A-01, R3991A Type No. R972 MgF2 window: R976 (Dimensional Outline: 1) For photon counting: R1166P UV glass window: R750 Semiflexible lead: R1450-13 R821 UV glass window: R3479 Silica glass window: R2076 For photon counting: R5610P Maximum Temp.: +70 °C Button stem: R5611A R3478 High temp. operation (Maximum Temp.: +175 °C) UV glass window: R1464 Silica glass window: R2027 Bialkali photocathode: R2295 R3991A R1166 R1450 R5610A R5611A-01 R1617 R1878 6 R1878 19 ± 1 18.6 ± 0.7 FACEPLATE SEMIFLEXIBLE LEADS 18.6 ± 0.7 15 MIN. A 12 PIN BASE JEDEC No. B12-43 30 ± 1.5 PHOTOCATHODE 4 MIN. MASKED PHOTOCATHODE 80 ± 2 PHOTOCATHODE FACEPLATE FACEPLATE 15 MIN. 13 MAX. 120 104 105 1.3 LEAD LENGTH 45 MIN. 80 5.0 × 104 300 Notes HA TREATMENT B 37.3 ± 0.5 13 MAX. 12 PIN BASE 13 MAX. 115 1.0 × 104 0.3 A 70 (at 25 °C) A Anode Characteristics M Cathode Characteristics 12 PIN BASE R5611A-01 R3991A K DY2 7 5 8 9 DY5 DY6 3 10 DY7 11 2 1 12 DY10 28 ± 1.5 P DY3 DY4 4 DY8 30 ± 1.5 A DY1 6 A Glass Base 4)° (360/1 7 DY6 8 9 DY4 DY7 3 10 DY2 11 2 1 DY3 P DY8 DY9 4 DY5 DY9 DY10 6 5 12 K DY1 SHORT PIN SHORT PIN (12) B Bottom View TPMHA0269EA P DY9 6 5 DY10 7 DY8 8 TPMHA0027EA P DY9 6 DY10 9 5 DY7 4 9 DY6 DY7 4 10 DY8 DY5 3 10 DY4 DY5 3 11 DY6 DY3 11 2 1 DY1 12 K DY2 DY3 2 1 DY1 14 K 12 DY4 13 DY2 TPMHA0036EC 35 Head-on Type Photomultiplier Tubes Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) 25 mm (1") Dia. Types 160 to 320 201S 240 Cs-Te Q 1 CC/10 E678-12A* 2000 0.015 1500 !5 22 300 to 650 400K 420 BA K 2 L/8 E678-12A* 1500 0.1 1300 y R7899 22 300 to 650 400K 420 BA K 3 L/10 E678-14C* @0 1800 0.1 1250 !8 R4998 20 300 to 650 400K 420 BA K 4 L/10 E678-12A* 2500 0.1 2250 @2 R1924A 22 300 to 650 400K 420 BA K 5 C+L/10 E678-14C* @1@2@3 1250 0.1 1000 !7 R3550A 22 300 to 650 402K 375 LBA K 5 C+L/10 E678-14C* @1@2@3 1250 0.1 1000 !7 R1288A 22 300 to 650 401K 375 HBA K 1 C+L/10 300 to 850 500K 420 MA K 5 C+L/10 E678-14C* @1@2@3 1250 0.1 1000 !7 300 to 900 502K 420 MA K 6 C+L/10 E678-14C* @1@2@3 1250 0.1 1000 !7 21 R2078 R9800 22 R1925A 21 R5070A E678-12R* 1800 0.02 1500 !7 Dimensional Outlines (Unit: mm) 1 R2078, R1288A 2 R9800 3 R7899 25.4 ± A FACEPLATE 25.4 ± 0.5 B FACE PLATE 22 MIN. 25.4 ± 0.5 22 MIN. 55 ± 2 A 12 PIN BASE JEDEC No. B12-43 B R2078 R1288A B 68.0 ± 1.5 14 PIN BASE 37.3 ± 0.5 37.3 ± 0.5 R2078 0.8 21 MIN. A B 13 MAX. 12 PIN BASE JEDEC No. B12-43 13 MAX. A PHOTOCATHODE SEMI-FLEXIBLE LEADS LEAD LENGTH 50 MIN. SEMIFLEXIBLE LEADS PHOTOCATHODE LEAD LENGTH 55 MIN. 13 MAX. PHOTOCATHODE 43.0 ± 1.5 FACEPLATE R1288A 0.5 22 MIN. DY9 DY7 6 P 7 IC 8 IC 9 5 10 DY5 4 A Glass Base A Glass Base 20° DY3 3 20° DY10 11 DY8 2 DY1 1 K 12 DY6 13 14 DY4 DY2 SHORT PIN B Bottom View P 6 DY9 5 DY10 7 DY8 8 DY7 4 9 DY6 10 DY4 DY5 3 DY3 11 2 1 DY1 12 K P 8 DY9 DY7 6 5 DY5 4 B Bottom View DY10 10 DY8 11 DY3 3 12 DY6 DY1 2 13 DY4 14 DY2 DY2 17 K TPMHA0039EB 36 TPMHA0492EA (17.3) (17.3) P 6 IC IC DY8 5 8 DY7 4 DY5 3 1 DY1 12 K DY5 8 DY8 12 7 13 DY6 9 DY6 DY3 6 14 DY4 10 DY4 DY1 5 15 DY2 11 2 DY3 P 10 DY7 7 DY2 1 K TPMHA0521EC K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) — — — — 29b 2 × 103 (A/W)b — 70 95 11.0 — 88 20 100 9.3 × 104 1.1 × 106 1.5 × 104b 5.0 × 105 0.015 0.1 70 95 11.0 — 88 — 190 1.8 × 60 80 9.5 — 76 100 400 3.8 × 105 5.0 × 106 180 60 90 85 — 10.5 (at 25 °C) A Anode Characteristics M Cathode Characteristics 40 105 2.0 × 50 R2078 1.0 11 UV glass type: R10560 R9800 Semiflexible leads: R7899-01 R7899 15 1.6 17 200 0.7 10 R1924A 1.5 17 R3550A 1.3 13 20 1.5 17 For photon counting: R3550P Maximum Temp.: +70 °C Button stem: R1288A-01 High temp. operation (Maximum Temp.: +175 °C) Silica glass window: R1926A 20 2.2 19 Prism window R5070A 2.0 × 105 2.0 × 106 0.5 4 0.1 10 105 3 3 50 7.0 — 55 45 100 1.1 × 40 6.0 — 51 8 20 2.6 × 104 5.0 × 105 80 150 — 0.2 64 20 75 3.2 × 130 230 — 0.25 65 20 100 2.8 × 104 4.3 × 105 R4998 17 1.7 × 20 Assembly type: H6533 Silica glass window: R5320 Silica glass window assembly type: H6610 For photon counting: R1924P 106 5.0 × Better solar-blind characteristics 2 105 104 14 10 3 Type No. 1.5 106 30 4 R4998 5 Notes 20 5 R1924A, R3550A, R1925A 1.5 R1288A R1925A 6 R5070A 26 ± 1 FACEPLATE 20 MIN. 71 ± 1 PHOTOCATHODE 25.4 ± 0.5 25.4 ± 0.5 FACEPLATE (Prism) 22 MIN. FACEPLATE 21 MIN. A 12 PIN BASE JEDEC No. B12-43 14 PIN BASE 46.0 ± 1.5 PHOTOCATHODE 43.0 ± 1.5 LEAD LENGTH 52 MIN. SEMIFLEXIBLE LEADS PHOTOCATHODE 13 MAX. SMA CONNECTOR 13 MAX. 13 MAX. HA TREATMENT 14 PIN BASE B 37.3 ± 0.5 P DY9 6 7 IC 8 P IC DY7 5 A Glass Base 40° 20° DY9 9 6 10 DY10 7 IC 8 IC 9 DY7 5 10 DY10 DY5 4 11 DY8 DY5 4 11 DY8 DY3 3 12 DY6 13 DY4 14 DY2 DY3 3 12 DY6 13 DY4 14 DY2 DY1 2 1 K SHORT PIN DY1 2 1 K SHORT PIN 7 (17.3) B Bottom View P DY9 5 DY7 4 (Acc) DY5 3 DY3 DY10 6 DY8 7 8 DY6 9 DY4 2 1 DY1 10 DY2 11 12 G K P 12 DY9 5 DY10 DY8 13 DY6 14 16 3 DY3 TPMHA0491EB 15 DY4 DY7 4 (Acc) DY5 TPMHA0040EC 2 1 18 DY1 K DY2 17 G TPMHA0093ED 37 Head-on Type Photomultiplier Tubes Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) 28 mm (1-1/8") Dia. Types R6835 R6836 23 23 115 to 200 100M 140 Cs-I MF 1 B+L/11 E678-14C* 2500 0.01 2000 @6 115 to 320 200M 240 Cs-Te MF 1 B+L/11 E678-14C* 1500 0.01 1000 @6 160 to 320 200S 240 Cs-Te Q 2 B+L/11 E678-14C* @4@5@6 1500 0.01 1000 @6 R6095 25 300 to 650 400K 420 BA K 3 B+L/11 E678-14C* @4@5@6 1500 0.1 1000 @6 R6094 25 300 to 650 400K 420 BA K 4 B+L/11 E678-14C* @4@5@6 1500 0.1 1000 @6 R6427 25 300 to 650 400K 420 BA K 5 L/10 E678-14C* @7@8@9 2000 0.1 1500 @0 ∗R12844 25 300 to 650 400K 420 BA K 6 L/8 185 to 850 500U 420 MA U 3 R6834 25 25 R374 1750 0.1 1500 u B/11 E678-14C* @4@5@6 1500 0.1 1000 @6 E678-20B* Dimensional Outlines (Unit: mm) 1 R6835, R6836 2 R6834 3 R6095, R374 28.5 ± 0.5 FACEPLATE 28.2 ± 0.8 FACEPLATE 25 MIN. PHOTOCATHODE 14 PIN BASE 6 7 8 P DY8 DY11 6 9 10 DY6 5 7 DY9 5 DY10 DY8 8 9 10 DY6 R6095 R374 14 PIN BASE DY10 P DY11 DY9 6 7 8 DY8 9 10 DY6 5 DY7 4 11 DY4 DY7 4 11 DY4 DY7 4 11 DY4 DY5 3 12 DY2 13 K 14 DY1 DY5 3 12 DY2 13 K 14 DY1 DY5 3 12 DY2 13 K 14 DY1 2 1 DY3 IC DY3 2 1 IC TPMHA0115EC 2 1 DY3 IC SHORT PIN SHORT PIN SHORT PIN 38 92 ± 2 DY10 P DY11 DY9 14 PIN BASE 13 MAX. 13 MAX. 92 ± 2 PHOTOCATHODE 112 ± 2 PHOTOCATHODE 13 MAX. 23 MIN. FACEPLATE 25 MIN. 28.2 ± 0.8 TPMHA0226EC TPMHA0482EA Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) — — 12a — — — — — 28b 4 × 103 (A/W)b 4 × 103 (A/W)b 60 95 11.0 — 88 50 60 — 95 — 28b — 11.0 88 — 50 Gain Typ. (A/W) Typ. 1.2 × 103a 1.0 × 105 0.03 0.05 2.8 22 R6835 — 1.4 × 104b 5.0 × 105 0.3 1 4.0 30 R6836 — 1.4 × 0.3 1 4.0 30 2 10 4.0 30 For photon counting: R6095P-01 R6095 30 For photon counting: R6094P-01 R6094 UV glass window: R7056 R6427 104b 5.0 × 105 200 1.8 × 105 2.1 × 106 200 1.8 × 105 2.1 × 106 105 5.0 × 106 10 200 1.7 16 3 30 0.9 10 100 11.0 — 88 100 500 4.4 × 70 95 10.0 — 80 — 48 4.0 × 104 5.0 × 105 80 3.4 × — 64 0.2 20 4 R6094 104 5.3 × 2 105 10 3 15 5 R6427 4.0 15 R6834 R12844∗ High gain: R1104 60 R374 6 R12844 28.7 ± 0.5 FACEPLATE 28.5 ± 0.5 FACEPLATE 25 MIN. 28.5 ± 0.5 25 MIN. FACEPLATE 25 MIN. PHOTOCATHODE PHOTOCATHODE 92 ± 2 78 ± 2 PHOTOCATHODE 85 ± 2 150 Type No. — 70 80 Notes 13 MAX. — Radiant Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) SEMIFLEXIBLE LEADS 14 PIN BASE 13 MAX. A 14 PIN BASE LEAD LENGTH 70 MIN. — K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) 20 PIN BASE JEDEC No. B20-102 13 MAX. — (at 25 °C) A Anode Characteristics M Cathode Characteristics B P DY11 6 7 DY9 5 DY10 DY8 8 9 10 DY6 DY7 4 11 DY4 DY5 3 12 DY2 13 K 14 DY1 DY3 2 1 IC SHORT PIN P IC 6 7 DY9 5 DY10 DY8 8 9 10 DY6 DY7 4 11 DY4 DY5 3 12 DY2 13 K 14 DY1 DY3 2 1 IC 51.2 ± 0.5 A Glass Base 24° SHORT PIN TPMHA0493EA TPMHA0387EA (19.05) B Bottom View IC ACC P DY8 IC 9 10 11 12 DY6 13 8 DY4 DY7 7 14 DY5 6 15 DY4 IC 5 DY3 4 DY1 3 2 IC 1 IC 16 DY2 17 IC 18 19 G 20 IC K DY7 P 6 ACC 7 DY8 9 10 5 DY6 11 DY4 DY5 4 12 DY4 DY3 13 2 1 DY1 15 K 14 G DY2 TPMHA0604EA 39 Head-on Type Photomultiplier Tubes Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) 28 mm (1-1/8") Dia. Types R5929 25 300 to 900 502K 420 MA K 1 B/11 E678-14C* @4@5@6 1500 0.1 1000 @6 R2228 25 300 to 900 501K 600 ERMA K 2 B/11 E678-14C* @4@5@6 1500 0.1 1000 @6 300 to 650 400K 420 BA K 3 B+L/11 E678-14C* #0 1500 0.01 1000 @8 300 to 850 500K 420 MA K 3 B+L/11 E678-14C* #0 1500 0.01 1000 @8 E678-14C* #1 10 R7205-01 10 R7206-01 R3998-02 25 300 to 650 400K 420 BA K 4 1500 0.1 1000 !0 R7111 25 300 to 650 400K 420 BA K 5 C+L/10 E678-14C* @1@2@3 1250 0.1 1000 !7 B+L/9 Dimensional Outlines (Unit: mm) 1 R5929 2 R2228 28.5 ± 0.5 FACEPLATE (Prism) 3 R7205-01, R7206-01 28.5 ± 0.5 FACEPLATE (Prano-concave) 25 MIN. 29.0 ± 0.7 25 MIN. 10 MIN. FACEPLATE PHOTOCATHODE 112 ± 2 112 ± 2 PHOTOCATHODE 92 ± 2 PHOTOCATHODE DY10 P DY11 DY9 6 7 8 DY8 5 DY9 6 7 8 P DY8 DY11 6 9 10 DY6 5 13 MAX. 14 PIN BASE DY10 P DY11 9 10 DY6 7 DY9 5 DY10 DY8 8 9 10 DY6 DY7 4 11 DY4 DY7 4 11 DY4 DY7 4 11 DY4 DY5 3 12 DY2 13 K 14 DY1 DY5 3 12 DY2 13 K 14 DY1 DY5 3 12 DY2 13 K 14 DY1 2 1 DY3 IC SHORT PIN 2 1 DY3 IC DY3 2 1 IC SHORT PIN SHORT PIN TPMHA0532EA 40 14 PIN BASE 13 MAX. 14 PIN BASE 13 MAX. HA TREATMENT TPMHA0533EA TPMHA0412EC K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) (at 25 °C) A Anode Characteristics M Cathode Characteristics Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) 130 230 — 0.25 65 30 180 5.1 × 104 7.8 × 105 5 25 15 60 100 200 — 0.3 40 20 150 3.0 × 104 7.5 × 105 8 30 15 60 Prism window Type No. R5929 R2228 Silica glass window: R7207-01 40 70 9.0 — 70 200 700 7.0 × 1.7 26 80 150 — 0.2 64 200 1500 6.4 × 105 1.0 × 107 300e 1000e 1.7 26 R7206-01 120 180 90 — 10.5 85 — 10.5 50 85 40 4 R3998-02 1.1 × 1.7 × 105 10e 30e R7205-01 1.3 × 106 2 10 4.4 32 R3998-02 2.0 × 106 3 20 1.6 18 R7111 5 R7111 28.5 ± 0.5 FACEPLATE 25 MIN. 60 ± 2 P DY8 DY6 5 6 7 13 MAX. 14 PIN BASE DY9 DY7 8 9 10 DY5 11 IC IC 4 DY4 28.5 ± 0.5 FACEPLATE PHOTOCATHODE 12 3 2 1 DY2 G DY3 13 14 DY1 K 25 MIN. PHOTOCATHODE 43.0 ± 1.5 60 90 105 107 13 MAX. 60 105 1.0 × Notes 14 PIN BASE P DY9 6 7 IC 8 IC 9 DY7 5 10 DY10 DY5 4 11 DY8 DY3 3 12 DY6 13 DY4 14 DY2 DY1 2 1 K SHORT PIN SHORT PIN TPMHA0114EA TPMHA0395EB 41 Head-on Type Photomultiplier Tubes Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) 38 mm (1-1/2") Dia. Types R11102 34 300 to 650 400K 420 BA K 1 C+L/10 E678-12A #2#3 1250 0.1 1000 !5 R3886A 34 300 to 650 400K 420 BA K 2 C+L/10 E678-12A* 1250 0.1 1000 !5 R9420 34 300 to 650 400K 420 BA K 3 L/8 E678-12A* 1500 0.1 1300 y ∗R12845 34 300 to 650 400K 420 BA K 4 L/8 E678-20B* 1750 0.1 1500 u R580 34 300 to 650 400K 420 BA K 5 L/10 E678-12A* #2#3 1750 0.1 1250 !5 R9722A 34 300 to 650 401K 375 HBA K 6 C+L/10 E678-12R* 300 to 900 501K 600 ERMA K 1 CC/10 E678-12A* #2#3 34 R2066 1800 0.02 1500 !5 0.2 1000 !5 1500 Dimensional Outlines (Unit: mm) 1 R11102, R2066 2 R3886A 3 R9420 38 ± 1 FACEPLATE 34 MIN. 38.0 ± 0.7 FACEPLATE 34 MIN. 38 ± 0.7 PHOTOCATHODE PHOTOCATHODE 63.5 ± 1.5 34 MIN. 87 ± 2 FACEPLATE PHOTOCATHODE 12 PIN BASE JEDEC No. B12-43 A 12 PIN BASE JEDEC No. B12-43 B B R11102 37.3 ± 0.5 37.3 ± 0.5 R2066 (Plano-concave faceplate) 13 MAX. A 12 PIN BASE JEDEC No. B12-43 37.3 ± 0.5 A Glass Base A Glass Base 22.5° 6 7 5 DY8 8 DY7 4 9 DY6 DY5 3 10 DY4 DY3 11 2 1 DY1 22.5° DY10 P DY9 12 DY2 (23) (23) K B Bottom View 6 DY9 B Bottom View DY10 P TPMHA0228EA 7 5 9 DY6 DY5 3 10 DY4 11 2 1 DY1 12 K P DY8 8 DY7 4 DY3 DY2 6 DY9 5 DY10 9 DY8 10 11 DY6 12 DY4 DY7 4 13 DY2 DY5 3 DY3 2 1 DY1 15 K TPMHA0104EA 42 LEAD LENGTH 70 MIN. 13 MAX. SEMIFLEXIBLE LEADS LEAD LENGTH 70 MIN. 99 ± 2 116 MAX. SEMIFLEXIBLE LEADS IC P 6 IC 7 DY8 5 8 9 DY6 DY7 4 DY5 DY3 10 DY4 3 11 2 1 DY1 12 K P 7 11 DY8 12 DY6 DY7 6 DY5 5 13 DY4 14 DY2 DY3 4 DY2 2 DY1 1 K TPMHA0519EC Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) (at 25 °C) A Anode Characteristics M Cathode Characteristics K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) Notes Type No. 80 120 11.5 — 89 10 120 8.9 × 104 1.0 × 106 2 20 3.2 34 R11102 60 90 10.5 — 85 40 180 1.7 × 105 2.0 × 106 3 20 2.6 30 R3886A 105 70 95 11.0 — 88 5 47 4.4 × 10 100 1.6 17 R9420 70 95 10.0 — 80 — 48 4.0 × 104 5.0 × 105 3 30 1.2 13 R12845∗ 100 3 20 2.7 37 70 95 11.0 — 10 88 104 5.0 × 9.7 × 104 1.1 × 106 104 5.0 × 105 20 40 6.0 — 51 5 20 2.6 × 120 200 — 0.3 40 20 50 1.0 × 104 2.5 × 105 4 R12845 0.5 10 2.2 26 8 30 2.8 40 5 R580 R580 High temp. operation (Maximum Temp.: +175 °C) R9722A R2066 6 R9722A 38 ± 1 FACEPLATE 34 MIN. 38.0 ± 0.7 FACEPLATE 34 MIN. PHOTOCATHODE 38 ± 1 34 MIN. PHOTOCATHODE 69.0 ± 1.5 PHOTOCATHODE 20 PIN BASE JEDEC No. B20-102 A LEAD LENGTH 70 MIN. 109 ± 2 LEAD LENGTH 73 MIN. A 127 MAX. SEMIFLEXIBLE LEADS 13 MAX. 13 MAX. 90 ± 2 FACEPLATE SEMIFLEXIBLE LEADS 12 PIN BASE JEDEC No. B12-43 12 PIN BASE JEDEC No. B12-43 B B 51.2 ± 0.5 37.3 ± 0.5 37.3 ± 0.5 A Glass Base A Glass Base 22.5° 22.5° P DY10 6 DY9 7 5 DY8 8 9 DY6 DY7 4 10 DY4 DY5 3 DY3 (23) B Bottom View IC ACC P DY8 IC 9 10 11 12 DY6 13 8 DY4 DY7 7 14 DY5 6 15 DY4 16 DY2 IC 5 17 IC DY3 4 3 18 DY1 2 IC 1 IC 19 G 20 IC K P 6 DY7 5 DY5 4 DY3 12 DY4 2 1 DY1 16 K 1 DY1 Acc DY8 8 9 DY6 10 11 DY4 13 DY2 14 G 11 2 12 DY2 K (23) B Bottom View P TPMHA0121EA DY9 6 5 DY7 4 9 DY6 10 DY4 DY5 3 DY3 11 2 1 DY1 TPMHA0605EA DY10 7 DY8 8 12 K DY2 P 6 DY9 5 DY10 DY8 9 10 DY6 11 12 DY4 DY7 4 13 DY2 DY5 3 DY3 2 1 DY1 15 K TPMHA0042EB 43 Head-on Type Photomultiplier Tubes Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) 51 mm (2") Dia. Types with Plastic Base R6231 46 300 to 650 400K 420 BA K 1 B+L/8 E678-14W #4#5 1500 0.1 1000 t R1306 46 300 to 650 400K 420 BA K 2 B/8 E678-14W #6#7 1500 0.1 1000 w R878 46 300 to 650 400K 420 BA K 3 B/10 E678-14W $0$1$2$3 1500 0.1 1250 !3 46 300 to 650 400K 420 BA K 4 L/8 E678-20B* 1750 0.1 1500 u R2154-02 46 300 to 650 400K 420 BA K 5 L/10 E678-14W #8 1750 0.1 1250 !5 R1828-01 46 300 to 650 400K 420 BA K 6 L/12 E678-20B* #9 3000 0.2 2500 @9 300 to 850 500K 420 MA K 3 B/10 E678-14W $0$1$2$3 1500 0.3 1000 !3 ∗R13089 46 R550 Dimensional Outlines (Unit: mm) 1 R6231 2 R1306 3 R878, R550 51.0 ± 0.5 FACEPLATE 51.0 ± 0.5 FACEPLATE 46 MIN. 46 MIN. 51.0 ± 0.5 FACEPLATE 46 MIN. PHOTOCATHODE PHOTOCATHODE 124 ± 2 147 MAX. 114 ± 2 137 MAX. 113 MAX. 90 ± 3 PHOTOCATHODE 14 PIN BASE JEDEC No. B14-38 56.5 ± 0.5 56.5 ± 0.5 DY5 DY6 7 6 DY4 5 IC DY6 9 11 DY8 DY2 3 2 1 DY1 12 P 13 G 14 K TPMHA0388EB 44 DY7 7 6 10 DY7 DY3 4 IC IC 8 56.5 ± 0.5 14 PIN BASE JEDEC No. B14-38 14 PIN BASE JEDEC No. B14-38 DY5 5 DY8 IC 8 9 10 IC DY6 DY7 7 6 DY5 5 DY8 DY9 8 9 10 DY10 DY4 4 11 P DY4 4 11 P DY3 3 12 IC 13 G 14 K DY3 3 12 IC 13 G 14 K DY2 2 1 DY1 TPMHA0089EC DY2 2 1 DY1 TPMHA0210EB Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) (at 25 °C) A Anode Characteristics M Cathode Characteristics K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) Notes Type No. Semiflexible lead: R6231-01 80 110 11.5 — 95 3 30 2.6 × 104 2.7 × 105 2 20 8.5 48 80 110 11.5 — 95 3 30 2.6 × 104 2.7 × 105 2 20 7.0 60 R1306 106 5 20 7.0 70 R878 10 50 2.0 20 70 100 11.5 — 90 20 100 9.0 × 70 95 10.0 — 80 10 30 2.5 × 104 3.2 × 105 90 60 90 10.5 — 20 85 104 1.0 × 8.5 × 104 1.0 × 106 106 2.0 × 107 50 400 10 30 60 90 10.5 — 85 200 1800 1.7 × 100 150 — 0.2 64 20 100 4.3 × 104 6.7 × 105 4 R13089 5 20 5 R2154-02 R6231 R13089∗ 31 Multialkali photocathode: R3256 R2154-02 1.3 28 Silica glass window: R2059 R1828-01 9.0 70 3.4 R550 6 R1828-01 53.0 ± 1.5 52 ± 1 FACEPLATE FACEPLATE 51.0 ± 0.5 FACEPLATE PHOTOCATHODE 46 MIN. PHOTOCATHODE 124 ± 2 13 MAX. B 20 PIN BASE JEDEC No. B20-102 56.5 ± 0.5 A Glass Base 20° DY6 DY7 7 6 DY5 5 (34) B Bottom View IC Acc DY8 9 10 11 12 DY6 13 DY4 8 DY7 14 7 DY5 6 15 DY4 16 DY2 IC 5 17 4 DY3 3 18 IC 2 1 20 19 G DY1 IC IC K IC Acc 9 P 7 DY7 5 DY5 4 11 P DY3 3 12 IC 13 IC 14 K 2 1 DY1 TPMHA0296EA P DY12 DY10 IC DY8 DY11 9 10 11 12 13 DY6 DY9 8 14 7 DY7 6 15 DY4 16 DY4 DY5 5 17 DY2 IC 4 18 3 DY3 19 IC 2 20 G DY1 1 K IC TPMHA0064ED DY8 11 DY6 12 13 DY4 14 DY4 15 DY3 DY8 DY9 8 9 10 DY10 DY4 4 DY2 P 51.2 ± 0.5 14 PIN BASE JEDEC No. B14-38 51.2 ± 0.5 IC 147 MAX. HA TREATMENT LEAD LENGTH 70 MIN. A 170 ± 3 112 ± 2 PHOTOCATHODE SEMIFLEXIBLE LEADS 20 PIN BASE JEDEC No. B20-102 46 MIN. 192 MAX. 46 MIN. 2 1 18 17 G DY1 K DY2 TPMHA0606EA 45 Head-on Type Photomultiplier Tubes Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) 51 mm (2") Dia. Types with Glass Base R464 5×8 300 to 650 400K 420 BA K 1 B/12 E678-21C* $4 1500 0.01 1000 #1 R7724 46 300 to 650 400K 420 BA K 2 L/10 E678-21C* $5 2000 0.2 1750 @1 R329-02 46 300 to 650 400K 420 BA K 3 L/12 E678-21C* $6$7$8 2700 0.2 1500 #0 R331-05 46 300 to 650 400K 420 BA K 4 L/12 E678-21C* $6$7$8 2500 0.2 1500 #0 R2083 46 300 to 650 400K 420 BA K 5 L/8 R4607A-01 46 300 to 650 401K 375 HBA K 6 C+L/10 300 to 850 500K 420 MA K 1 5×8 R649 B/12 0.2 3000 i E678-19J* 3500 E678-15C* 1800 0.02 1500 !5 E678-21C* $4 1500 0.01 1000 #1 Dimensional Outlines (Unit: mm) 2 R7724 3 R329-02 52.0 ± 1.5 52 ± 1 5 × 8 MIN. FACEPLATE FACEPLATE 46 MIN. PHOTOCATHODE PHOTOCATHODE HA TREATMENT 112 ± 2 126 ± 2 PHOTOCATHODE 53.0 ± 1.5 FACEPLATE 46 MIN. HA TREATMENT 127 ± 2 1 R464, R649 IC IC DY10 IC DY8 10 11 12 DY12 DY6 13 9 14 8 P DY4 15 7 DY11 6 16 DY2 DY9 5 DY7 4 3 2 DY5 1 DY3 DY1 17 G 18 IC 19 IC 21 20 K IC 21 PIN BASE IC IC DY8 IC DY6 DY10 9 10 11 12 13 IC 14 DY4 8 P 15 7 DY9 6 16 DY2 17 IC 5 DY7 18 4 IC 3 19 IC 20 IC 2 DY5 1 21 DY3 IC DY1 K 14 MAX. 21 PIN BASE 13 MAX. 13 MAX. LIGHT SHIELD 21 PIN BASE SH IC DY10 DY8 IC DY12 9 10 11 12 13 DY6 14 DY4 P 8 7 DY11 6 DY9 5 DY7 4 3 2 DY5 1 DY3 DY1 15 16 DY2 17 G 18 IC 19 IC 21 20 K IC *CONNECT SH TO DY5 TPMHA0216EC 46 TPMHA0509EC TPMHA0123EE Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) 30 50 — — 50 100 300 3.0 × 105 6.0 × 106 5e 15e 13 70 60 90 10.5 — 85 30 300 2.8 × 105 3.3 × 106 6 40 2.1 29 60 90 10.5 — 85 30 100 9.4 × 2.6 48 60 90 10.5 — 85 30 120 1.1 × 105 1.3 × 106 1000e 2000e 2.6 48 200 80 10.0 — 50 80 104 1.1 × 106 2.0 × 105 2.5 × 106 104 5.0 × 105 6 40 100 800 20 40 6.0 — 51 5 20 2.6 × 80 120 — 0.2 51 100 800 3.4 × 105 6.7 × 106 200e 350e 4 R331-05 3 50 5 R2083 Notes Type No. Silica glass window: R585 For photon counting R464 R7724 UV glass window: R5113-02 Silica glass window: R2256-02 Silica glass window: R331 R329-02 R331-05 16 Assembly type: H2431-50 Recommended Silica glass window: R3377 Silica glass window assembly type: H3378-50 R2083 2.6 28 High temp. operation (Maximum Temp.: +175 °C) R4607A-01 13 70 0.7 R649 6 R4607A-01 53.0 ± 1.5 FACEPLATE 53.0 ± 1.5 46 MIN. FACEPLATE R50 46 MIN. PHOTOCATHODE 46 MIN. 121 ± 2 HA TREATMENT PHOTOCATHODE 80 ± 2 126 ± 2 HA TREATMENT 52 ± 1 FACEPLATE PHOTOCATHODE SH IC DY10 DY8 IC 10 11 12 DY12 13 9 DY6 14 8 P 7 15 DY4 DY11 6 16 DY2 17 G DY9 5 18 4 IC DY7 19 3 IC 2 DY5 21 20 1 IC DY3 K DY1 13 MAX. 21 PIN BASE 13 MAX. 19 PIN BASE SMA CONNECTOR IC IC IC 9 10 11 P 12 7 DY7 5 DY5 4 3 DY3 2 1 G2 & DY1 ACC 14 15 DY4 16 DY2 17 19 IC 18 K 15 PIN BASE IC IC DY8 DY6 13 DY4 G1 13 MAX. 60 (at 25 °C) A Anode Characteristics M Cathode Characteristics P DY9 7 6 5 8 DY10 9 DY8 10 DY6 11 DY7 4 DY5 DY3 12 DY4 3 2 1 DY1 13 DY2 14 IC 15 K SHORT PIN *CONNECT SH TO DY5 SHORT PIN TPMHA0072EC TPMHA0185EC TPMHA0003EC 47 Head-on Type Photomultiplier Tubes Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) 51 mm (2") Dia. Types with Glass Base 46 R375 46 R669 10 R943-02 46 R2257 160 to 850 500S 420 MA Q 1 B/10 E678-15C* $9 1500 0.1 1000 !3 300 to 900 501K 600 ERMA K 1 B/10 E678-15C* $9 1500 0.1 1000 !3 160 to 930 650S 300-800 GaAs Q 2 L/10 K 3 L/12 300 to 900 501K 600 ERMA E678-21C* 2200 0.001 1500 !9 E678-21C* $6$7$8 2500 0.2 1500 #0 Dimensional Outlines (Unit: mm) 1 R375, R669 2 R943-02 3 R2257 3.4 10 PHOTOCATHODE 10 × 10 51.0 ± 1.5 FACEPLATE 6.6 52 ± 1 FACEPLATE 46 MIN. 46 MIN. FACEPLATE PHOTOCATHODE 51 ± 1 126 ± 2 PHOTOCATHODE 10 × 10 88 ± 2 112 ± 2 19 PHOTOCATHODE 15 PIN BASE IC DY9 DY7 7 8 9 DY5 10 6 IC 5 11 DY3 P DY10 4 DY8 3 DY6 12 DY1 2 1 DY4 13 K 14 15 G DY2 21 PIN BASE IC IC DY9 IC DY7 IC 9 10 11 12 13 DY5 14 P 8 DY3 15 7 DY10 6 16 DY1 DY8 5 DY6 4 3 2 DY4 1 DY2 K 17 IC 18 IC 19 IC 21 20 IC IC 21 PIN BASE 13 MAX. R669 (Plano-concave faceplate) LIGHT SHIELD 14 MAX. R375 13 MAX. HA TREATMENT SH IC DY10 IC DY8 DY12 9 10 11 1213 DY6 14 DY4 8 P 15 7 DY11 6 16 DY2 DY9 5 DY7 4 3 2 1 DY5 DY3 DY1 17 G 18 IC 19 2120 IC IC K SHORT PIN ∗ CONNECT SH TO DY5 TPMHA0211EA 48 TPMHA0021EF TPMHA0359EB Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) (at 25 °C) A Anode Characteristics M Cathode Characteristics K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) 80 150 — 0.2 64 20 80 3.4 × 104 5.3 × 105 5 20 9.0 70 140 230 — 0.35 50 20 75 1.7 × 104 3.3 × 105 7 15 9.0 70 300 600 — 0.58 71 150 300 3.6 × 140 230 — 0.35 50 15 100 2.2 × 104 4.3 × 105 104 5.0 × 105 20f 50f 30 100 3.0 23 2.6 48 Notes Type No. R375 R669 For photon counting R943-02 R2257 49 Head-on Type Photomultiplier Tubes Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) 76 mm (3") Dia. Types R1307 70 300 to 650 400K 420 BA K 1 B/8 E678-14W #6#7 1500 0.1 1000 w R6233 70 300 to 650 400K 420 BA K 2 B+L/8 E678-14W #4#5 1500 0.1 1000 t R594 70 300 to 650 400K 420 BA K 3 B/10 E678-14W $0$$ 1 $ 2 3 2000 0.1 1500 !3 R4143 65 300 to 650 400K 420 BA K 4 L/12 3000 0.2 2500 #2 R6091 65 300 to 650 400K 420 BA K 5 L/12 E678-21C* $6$7$8 2500 0.2 1500 #0 E678-20B* Dimensional Outlines (Unit: mm) 1 R1307 2 R6233 3 R594 76.0 ± 0.8 FACEPLATE 76.0 ± 0.8 FACEPLATE 70 MIN. 70 MIN. 76.0 ± 0.8 FACEPLATE 70 MIN PHOTOCATHODE 14 PIN BASE JEDEC No. B14-38 56.5 ± 0.5 DY6 DY7 7 6 DY5 5 DY8 IC 8 9 10 IC DY6 7 6 DY3 4 DY3 3 12 IC 13 G 14 K DY2 3 TPMHA0078EA 50 DY5 IC IC 8 IC DY6 9 11 DY8 2 1 DY1 137 ± 3 56.5 ± 0.5 10 DY7 DY4 5 11 P 2 1 DY1 14 PIN BASE JEDEC No. B14-38 56.5 ± 0.5 DY4 4 DY2 100 ± 3 51.5 ± 1.5 160 MAX. 51.5 ± 1.5 PHOTOCATHODE 123 MAX. 127 ± 3 51.5 ± 1.5 14 PIN BASE JEDEC No. B14-38 150 MAX. PHOTOCATHODE 12 P 13 G 14 K TPMHA0389EB DY7 7 6 DY5 5 DY8 DY9 8 9 10 DY10 DY4 4 11 P DY3 3 12 IC 13 G 14 K DY2 2 1 DY1 TPMHA0557EA Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) (at 25 °C) A Anode Characteristics M Cathode Characteristics K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) Notes Type No. 80 110 11.5 — 95 3 30 2.6 × 104 2.7 × 105 2 20 8.0 64 Semiflexible lead: R1307-01 R1307 80 110 11.5 — 95 3 30 2.6 × 104 2.7 × 105 2 20 9.5 52 Semiflexible lead: R6233-01 R6233 70 95 11.5 — 90 10 70 6.7 × 5 20 7.0 65 R594 60 80 9.5 — 76 100 400 3.8 × 105 5.0 × 106 50 500 1.8 32 R4143 450 4.3 × 10 60 2.6 48 R6091 10.5 — 50 85 4 R4143 5.0 × 106 5 R6091 77.0 ± 1.5 65 MIN. FACEPLATE 76 ± 1 FACEPLATE 192 ± 5 HA TREATMENT 215 MAX. PHOTOCATHODE 65 MIN. PHOTOCATHODE 137 ± 2 90 105 7.4 × 105 51.5 ± 1.5 20 PIN BASE JEDEC No. B20-102 13 MAX. 60 104 51.8 ± 1.0 21 PIN BASE DY12 IC P DY10 DY11 DY8 9 10 11 12 13 8 DY9 DY6 7 DY7 6 DY5 5 IC 4 3 DY3 2 1 G2 & DY1 IC 20 14 15 IC 16 DY4 17 DY2 18 IC 19 K G1 SH IC DY10 IC DY8 DY12 9 10 11 1213 DY6 14 DY4 P 8 15 7 DY11 6 16 DY2 DY9 5 17 G 18 IC DY7 4 19 3 2 1 2120 IC DY5 DY3 IC DY1 K * CONNECT SH TO DY5 TPMHA0112EB TPMHA0285ED 51 Head-on Type Photomultiplier Tubes Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) 127 mm (5") Dia. Types 111 R877 111 R1513 120 R1250 120 R1584 300 to 650 400K 420 BA K 1 B/10 E678-14W $0$$ 1 $ 2 3 1500 0.1 1250 !3 300 to 850 500K 420 MA K 1 VB/10 E678-14W $0$$ 1 $ 2 3 2000 0.1 1500 !3 300 to 650 400K 420 BA K 2 L/14 E678-20B* %0 3000 0.2 2000 #7 185 to 650 400U 420 BA U 3 L/14 E678-20B* %0 3000 0.2 2000 #7 Dimensional Outlines (Unit: mm) 1 R877, R1513 2 R1250 133 ± 2 FACEPLATE 120 MIN. PHOTOCATHODE 133.0 ± 1.5 259 ± 5 171 ± 3 PHOTOCATHODE 55 MAX. 78.0 ± 1.5 194 MAX. FACEPLATE 54.0 ± 1.5 56.5 ± 0.5 R1513 DY6 DY7 7 6 DY5 5 51.2 ± 0.5 DY8 DY9 8 9 10 DY10 DY4 4 11 P DY3 3 12 IC 13 G 14 K DY2 2 1 DY1 DY14 IC P DY12 DY13 DY10 9 10 11 12 13 DY11 8 DY8 7 DY9 6 DY7 5 DY5 4 3 DY3 2 1 G2 & DY1 IC TPMHA0074EC 52 HA TREATMENT 20 PIN BASE JEDEC No. B20-102 14 PIN BASE JEDEC No. B14-38 R877 276 ± 5 111 MIN. 20 14 15 DY6 16 DY4 17 DY2 18 IC 19 K G1 TPMHA0018EC Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) (at 25 °C) A Anode Characteristics M Cathode Characteristics K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) Notes K-free borosilicate glass: R877-01 Type No. 60 90 10.5 — 85 20 40 3.8 × 104 4.4 × 105 10 50 20 115 100 150 — 0.2 64 10 50 2.1 × 104 3.3 × 105 30 150 15 82 R1513 107 50 300 2.5 54 R1250 50 300 2.5 54 R1584 55 70 9.0 — 72 300 1000 1.0 × 55 70 9.0 — 72 300 1000 1.0 × 106 1.4 × 107 106 1.4 × R877 3 R1584 133 ± 2 FACEPLATE 120 MIN. 32 R1 259 ± 5 276 ± 5 PHOTOCATHODE 78.0 ± 1.5 HA TREATMENT 54.0 ± 1.5 20 PIN BASE JEDEC No. B20-102 51.2 ± 0.5 DY14 IC P DY12 DY13 DY10 9 10 11 12 13 DY8 DY11 8 14 7 DY9 6 15 DY6 16 DY4 DY7 5 17 DY2 DY5 4 18 3 DY3 19 IC 2 1 20 G2 & DY1 G1 IC K TPMHA0187EC 53 Hexagonal Type, Rectangular Type Photomultiplier Tubes Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) Hexagonal Types R6234 55 (6) 300 to 650 400K 420 BA K 1 B+L/8 E678-14W #4#5 1500 0.1 1000 t R6235 70 (6) 300 to 650 400K 420 BA K 2 B+L/8 E678-14W #4#5 1500 0.1 1000 t Rectangular Types R6236 54 300 to 650 400K 420 BA K 3 B+L/8 E678-14W #4#5 1500 0.1 1000 t R6237 70 300 to 650 400K 420 BA K 4 B+L/8 E678-14W #4#5 1500 0.1 1000 t R2248 8 300 to 650 400K 420 BA K 5 L/8 E678-11N* y 300 to 650 400K 420 BA K 6 L/10 E678-17A* R1548-07 8 × 18 × (2) 1500 0.03 1250 q 1750 0.1 1250 @0 Dimensional Outlines (Unit: mm) 59.5 ± 0.5 14 PIN BASE JEDEC No. B14-38 56.5 ± 0.5 DY6 7 6 DY4 5 56.5 ± 0.5 IC DY5 9 11 DY8 DY2 3 2 1 DY1 DY6 7 6 10 DY7 DY3 4 IC IC 8 51.5 ± 1.5 14 PIN BASE JEDEC No. B14-38 12 P 13 G 14 K TPMHA0390EB DY4 5 56.5 ± 0.5 IC 2 1 DY1 DY6 7 6 11 DY8 DY2 3 DY5 9 10 DY7 DY3 4 IC IC 8 123 MAX 100 ± 3 51.5 ± 1.5 123 MAX. 100 ± 3 14 PIN BASE JEDEC No. B14-38 54 MIN. PHOTOCATHODE 123 MAX. 51.5 ± 1.5 DY5 54 MIN. FACEPLATE 70 MIN. PHOTOCATHODE PHOTOCATHODE 59.5 ± 1.0 59.5 ± 1.0 76.0 ± 1.5 FACEPLATE 55 MIN. 100 ± 3 FACEPLATE 85 ± 1 3 R6236 79 MIN. 60 MIN. 2 R6235 67.5 ± 0.6 1 R6234 12 P 13 G 14 K DY4 5 IC 9 10 DY7 11 DY8 DY3 4 DY2 3 IC IC 8 2 1 DY1 12 P 13 G 14 K TPMHA0391EB TPMHA0392EC 54 K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) (at 25 °C) A Anode Characteristics M Cathode Characteristics Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) Notes Type No. 80 110 11.5 — 95 3 30 2.6 × 104 2.7 × 105 2 20 9.5 52 Semiflexible lead: R6234-01 R6234 80 110 11.5 — 95 3 30 2.6 × 104 2.7 × 105 2 20 9.5 52 Semiflexible lead: R6235-01 R6235 80 110 11.5 — 95 3 30 2.6 × 104 2.7 × 105 2 20 9.5 52 Semiflexible lead: R6236-01 R6236 30 52 Semiflexible lead: R6237-01 R6237 — 3 95 2.6 × 2.7 × 104 1.1 × 106 60 95 9.5 — 76 30 100 8.0 × 60 80 9.5 — 76 50 200 1.9 × 105 2.5 × 106 20 9.5 1 50 0.9 9 20 250 1.8 20 6 R1548-07 8 MIN. 8 MIN. 76.0 ± 1.5 8 MIN. 9.8 ± 0.4 PHOTOCATHODE 70 ± 2 8 MIN. PHOTOCATHODE 56.5 ± 0.5 11 PIN BASE DY5 DY6 7 6 DY7 5 IC 9 10 DY7 DY4 5 11 DY8 DY3 4 12 P DY2 3 IC IC 8 2 1 DY1 13 G 14 K DY5 P 6 17 PIN BASE P2 DY10 DY8 DY7 8 9 10 11 DY6 7 DY9 12 6 DY7 5 13 DY4 14 DY2 DY5 4 3 15 DY3 2 16 IC 1 17 IC DY1 IC K DY8 7 8 4 P1 DY6 9 DY4 DY3 3 2 DY1 PHOTOCATHODE 45.0 ± 1.5 100 ± 3 51.5 ± 1.5 123 MAX. FACEPLATE 14 PIN BASE JEDEC No. B14-38 24.0 ± 0.5 FACEPLATE 70 MIN. 10 MAX. FACEPLATE R1548-07 18 MIN. 70 MIN. 5 R2248 R2248 2 anode type 76.0 ± 1.5 4 R6237 2 1 IC 11 K 10 DY2 SHORT PIN SHORT PIN TPMHA0393EC 24.0 ± 0.5 11.5 13 MAX. 110 105 9.8 ± 0.4 80 104 TPMHA0098EB TPMHA0223EA 55 Metal Package Photomultiplier Tubes Spectral Response A Max. Ratings H Remarks C Type No. 100 200 D E F Effective Area (mm) Spectral Peak Photo- Win- Out- Dynode Response Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) R9880U-01 8 230 to 870 400 MA K 1 MC/10 E678-12-01 %1%2 1100 0.1 1000 !1 ∗R9880U-04 8 185 to 870 400 MA U 1 MC/10 E678-12-01 %1%2 1100 0.1 1000 !1 230 to 920 630 MA K 1 MC/10 E678-12-01 %1%2 1100 0.1 1000 !1 230 to 700 400 SBA K 1 MC/10 E678-12-01 %1%2 1100 0.1 1000 !1 185 to 700 400 SBA U 1 MC/10 E678-12-01 %1%2 1100 0.1 1000 !1 230 to 700 400 UBA K 1 MC/10 E678-12-01 %1%2 1100 0.1 1000 !1 8 R9880U-20 8 R9880U-110 ∗R9880U-113 8 8 R9880U-210 Dimensional Outlines (Unit: mm) 1 R9880U, -01, -20, etc. 16.0 ± 0.3 WINDOW 9.4 ± 0.3 0.5 ± 0.2 4.6 ± 0.8 12.4 ± 0.4 PHOTOCATHODE EFFECTIVE AREA 8.0 INSULATION COVER SIDE VIEW 2.54 PITCH 10.16 2.54 PITCH GUIDE MARK 10.16 12- 0.45 DY3 DY5 DY7 BOTTOM VIEW 1 2 3 GUIDE MARK DY9 11 5 P DY2 10 6 DY10 9 8 7 DY8 4 DY1 DY6 12 DY4 K TPMHA0539ED 56 Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) (at 25 °C) A Anode Characteristics M Cathode Characteristics K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) Notes Type No. 100 200 — 0.2 77 100 400 1.5 × 105 2.0 × 106 1 10 0.57 2.7 R9880U-01 100 200 — 0.2 77 100 400 1.5 × 105 2.0 × 106 1 10 0.57 2.7 R9880U-04∗ 106 350 500 — 0.45 78 350 1000 1.5 × 10 100 0.57 2.7 R9880U-20 80 105 13.5 — 110 80 210 2.2 × 105 2.0 × 106 1 10 0.57 2.7 R9880U-110 210 1 10 0.57 2.7 R9880U-113∗ 270 1 10 0.57 2.7 R9880U-210 80 105 100 135 13.5 15.5 — 110 — 130 80 100 105 2.0 × 2.2 × 105 2.0 × 106 2.6 × 105 2.0 × 106 ■Spectral Response TPMHB0814EC 1000 R9880U-110 100 R9880U-210 10 R9880U-113 1 CATHODE RADIANT SENSITIVITY QUANTUM EFFICIENCY CATHODE RADIANT SENSITIVITY (mA/W) QUANTUM EFFICIENCY (%) CATHODE RADIANT SENSITIVITY (mA/W) QUANTUM EFFICIENCY (%) 1000 TPMHB0815EC R9880U-01 R9880U-20 100 R9880U-04 10 1 CATHODE RADIANT SENSITIVITY QUANTUM EFFICIENCY 0.1 100 200 300 400 500 600 700 800 900 1000 WAVELENGTH (nm) 0.1 100 200 300 400 500 600 700 800 900 1000 WAVELENGTH (nm) ■Gain 107 TPMHB0804EA GAIN 106 105 104 103 500 600 700 800 900 SUPPLY VOLTAGE (V) 1000 1100 57 Metal Package Photomultiplier Tubes Spectral Response A Max. Ratings H Remarks C Type No. 100 200 D E F Effective Area (mm) Spectral Peak Photo- Win- Out- Dynode Response Wave- cathode dow line Structure MateWavelength (nm) Range length Material rial No. / Stages 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) 18 R7600U 18 R7600U-01 18 R7600U-20 18 (M4 ch) R7600U-00-M4 18 (M4 ch) R7600U-01-M4 G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) 300 to 650 420 BA K 1 MC/10 E678-32B %3 900 0.1 800 @4 300 to 850 400 MA K 1 MC/10 E678-32B %3 900 0.1 800 @4 300 to 920 530 MA K 1 MC/10 E678-32B %3 900 0.1 800 @4 300 to 650 420 BA K 2 MC/10 E678-32B %4 900 0.1 800 @4 300 to 850 400 MA K 2 MC/10 E678-32B %4 900 0.1 800 @4 300 to 920 530 MA K 2 MC/10 E678-32B %4 900 0.1 800 @4 R5900U-00-L16 0.8 × 16 × (L16 ch) 300 to 650 420 BA K 3 MC/10 E678-32B %5 900 0.1 800 !2 R5900U-01-L16 0.8 × 16 × (L16 ch) 300 to 880 420 MA K 3 MC/10 E678-32B %5 900 0.1 800 !2 R5900U-20-L16 0.8 × 16 × (L16 ch) 300 to 920 630 MA K 3 MC/10 E678-32B %5 900 0.1 800 !2 300 to 650 420 BA K 4 MC/11 E678-32B %6 1000 0.1 800 @7 18 (M4 ch) R7600U-20-M4 23.5 R8900U-00-C12 R7600-00-M16, R7600-00-M64 and R5900-20-L16 are listed in the group of photomultiplier tube assemblies on page 76. Dimensional Outlines (Unit: mm) 1 R7600U, R7600U-01, R7600U-20 2 R7600U-00-M4, R7600U-01-M4, R7600U-20-M4 30.0 ± 0.5 30.0 ± 0.5 PHOTOCATHODE P1 IC IC IC IC P IC IC TOP VIEW K IC (Dy10) IC Dy1 Dy2 Dy3 Dy4 IC (Dy10) CUT (K) 22.0 ± 0.5 INSULATION COVER 4 MAX. 12.0 ± 0.5 SIDE VIEW 15- 0.45 BASING DIAGRAM 20.32 2.54 PITCH 1 2 3 4 5 6 7 8 9 IC IC IC IC IC IC IC 25 26 27 28 29 30 31 32 24 23 22 21 GUIDE CORNER 20 19 18 17 16 15 14 13 12 11 10 CUT (IC) P4 CUT (IC) CUT (IC) CUT (IC) P1 CUT (IC) P2 P4 CUT (K) Dy10 Dy9 Dy8 Dy7 Dy6 Dy5 CUT (IC) CUT (K) 25 26 27 28 29 30 31 32 24 23 22 21 GUIDE CORNER 20 19 18 17 16 15 14 13 12 11 10 K 1 2 3 4 5 6 7 8 9 CUT (IC) CUT (IC) Dy1 Dy2 Dy3 Dy4 CUT (IC) CUT (K) CUT (IC) P3 CUT (IC) CUT (IC) CUT (IC) P2 CUT (IC) 18 MIN. BASING DIAGRAM K : Photocathode Dy : Dynode P : Anode CUT : Short Pin IC : Internal Connection (Do not Use) 20.32 20.32 CUT (K) Dy10 Dy9 Dy8 Dy7 Dy6 Dy5 IC (Dy10) CUT (K) 20.32 29- 0.45 2.54 PITCH SIDE VIEW 4.4 ± 0.7 4 MAX. 12.0 ± 0.5 P3 PHOTOCATHODE 22.0 ± 0.5 INSULATION COVER 0.6 ± 0.4 TOP VIEW PHOTOCATHODE 18 MIN. 18 MIN. PHOTOCATHODE 0.6 ± 0.4 18 MIN. 25.7 ± 0.5 4.4 ± 0.7 25.7 ± 0.5 K : Photocathode Dy : Dynode P : Anode CUT : Short Pin IC : Internal Connection (Do not Use) BOTTOM VIEW BOTTOM VIEW TPMHA0297EI TPMHA0278EI 3 R5900U-00-L16, R5900U-01-L16, R5900U-20-L16 4 R8900U-00-C12 30.0 ± 0.5 PHOTOCATHODE BOTTOM VIEW 58 CUT (Dy11) Dy10 Dy8 Dy6 Dy4 Dy2 K PX6 PX5 PX4 PX3 PX2 PX1 Dy10 P14 P16 P15 IC Dy4 Dy2 12.0 ± 0.5 SIDE VIEW 25- 0.45 20.32 K : Photocathode Dy : Dynode P : Anode CUT : Short Pin IC : Internal Connection (Do not Use) TPMHA0298EG BOTTOM VIEW CUT (G) PY6 PY5 PY4 CUT (IC) PY3 PY2 CUT (Dy11) CUT (G) 25 26 27 28 29 30 31 32 24 23 22 21 GUIDE CORNER 20 19 18 16 15 14 13 12 11 10 17 1 2 3 4 5 6 7 8 9 G CUT (Dy11) Dy1 Dy3 Dy5 Dy7 Dy9 Dy11 CUT (G) BASING DIAGRAM 20.32 BASING DIAGRAM 29.0 ± 0.5 INSULATION COVER 4.4 ± 0.7 K Dy6 P13 P11 P9 P7 P5 Dy7 CUT (K) 0.6 ± 0.4 1 2 3 4 5 6 7 8 9 4 MAX. 25 26 27 28 29 30 31 32 24 23 22 21 GUIDE 20 CORNER 19 18 17 16 15 14 13 12 11 10 TOP VIEW 2.54 PITCH 20.32 20.32 30- 0.45 CUT (K) Dy8 P12 P10 P8 P6 P4 Dy5 K PY1 PY2 PY3 PY4 PY5 PY6 PHOTOCATHODE Dy1 Dy3 IC P2 P1 P3 Dy9 SIDE VIEW 2.54 PITCH 12.0 ± 0.5 4.4 ± 0.7 4 MAX. 22.0 ± 0.5 INSULATION COVER 0.6 ± 0.4 TOP VIEW PHOTOCATHODE 23.5 23.5 15.8 0.8 16 P16 26.2 ± 0.5 PX6 PX5 PX4 PY1 PX3 PX2 PX1 16 P1 23.5 1.0 PITCH 30.0 ± 0.5 25.7 ± 0.5 PHOTOCATHODE G K Dy P : Grid : Photocathode : Dynode : Anode (PX1-PX6) (PY1-PY6) CUT : Short Pin IC : Internal Connection (Do not Use) TPMHA0524EC Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) (at 25 °C) A Anode Characteristics M Cathode Characteristics K Red / Luminous White Radiant Ratio (R-68) Typ. Typ. Min. Typ. (mA/W) (A/lm) (A/lm) Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) Notes Type No. UV glass window: R7600U-03 For photon counting: R7600P UV glass window: R7600U-04 60 80 9.5 — 80 40 160 1.6 × 105 2.0 × 106 2 20 1.6 9.6 150 200 — 0.2 65 50 200 6.5 × 104 1.0 × 106 10 50 1.6 9.6 20 50 1.6 9.6 1.2 9.5 UV glass window: R7600U-03-M4 R7600U-00-M4 UV glass window: R7600U-04-M4 R7600U-01-M4 350 500 — 0.4 78 100 500 7.8 × 60 80 9.5 — 80 25 140 1.4 × 105 1.8 × 106 0.5/ch 5/ch 200 200 150 — 0.2 50 65 104 6.5 × 104 104 1.0 × 106 1.0 × 106 2.5/ch 12.5/ch 1.2 9.5 1.0 × 106 2.5/ch 12.5/ch 1.2 9.5 350 500 — 0.4 78 100 500 7.8 × 50 70 8.5 — 72 50 280 2.9 × 105 4.0 × 106 0.2/ch 2/ch 0.6 7.4 R7600U-01 R7600U-20 R7600U-20-M4 UV glass window: R5900U-03-L16 Silica glass window: R5900U-06-L16 UV glass window: R5900U-04-L16 Silica glass window: R5900U-07-L16 R5900U-00-L16 150 250 — 0.3 65 75 250 6.5 × 0.6 7.4 350 500 — 0.45 78 175 500 7.8 × 104 1.0 × 106 1/ch 10/ch 0.6 7.4 R5900U-20-L16 60 7.4 × 11.9 R8900U-00-C12 50 85 10.0 — 15 82 104 104 1.0 × R7600U 0.7 × 106 0.5/ch 5/ch 106 2 10 2.2 R5900U-01-L16 ■Spectral Response 100 10 1 R7600U R7600U-00-M4 0.1 TPMHB0709EB 10 R5900U-20-L16 1 R5900U-01-L16 R5900U-00-L16 0.1 CATHODE RADIANT SENSITIVITY QUANTUM EFFICIENCY CATHODE RADIANT SENSITIVITY QUANTUM EFFICIENCY 0.01 200 300 400 500 600 100 CATHODE RADIANT SENSITIVITY (mA/W) QUANTUM EFFICIENCY (%) TPMHB0266EC CATHODE RADIANT SENSITIVITY (mA/W) QUANTUM EFFICIENCY (%) CATHODE RADIANT SENSITIVITY (mA/W) QUANTUM EFFICIENCY (%) 100 700 800 900 WAVELENGTH (nm) 10 R7600U-20 R7600U-20-M4 R7600U-01 R7600U-01-M4 1 0.1 CATHODE RADIANT SENSITIVITY QUANTUM EFFICIENCY 0.01 100 200 300 400 500 600 700 800 900 1000 0.01 100 200 300 400 500 600 700 800 900 1000 1000 TPMHB0710EB WAVELENGTH (nm) WAVELENGTH (nm) ■Gain 108 TPMHB0681EA 108 TPMHB0774EB R5900U-00-L16 107 10 R5900U-01-L16 R5900U-20-L16 106 GAIN 106 107 R7600U R7600U-00-M4 GAIN CATHODE RADIANT SENSITIVITY (mA/W) QUANTUM EFFICIENCY (%) 100 TPMHB0773EA 1 R8900U-00-C12 105 R8900U-00-C12 0.1 104 105 R7600U-01 R7600U-01-M4 R7600U-20 R7600U-20-M4 104 CATHODE RADIANT SENSITIVITY QUANTUM EFFICIENCY 0.01 200 300 400 500 600 WAVELENGTH (nm) 700 800 103 500 600 700 800 SUPPLY VOLTAGE (V) 900 103 500 600 700 800 900 1000 SUPPLY VOLTAGE (V) 59 UBA (Ultra Bialkali), SBA (Super Bialkali) Photomultiplier Tubes, Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F QE Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) length Material rial No. / Stages Range 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) Head-on Types R1924A-100 22 300 to 650 440K 350 SBA K 1 C+L/10 E678-14C* @1@2@3 1250 R3998-100-02 25 300 to 650 440K 350 SBA K 2 R9420-100 34 300 to 650 440K 350 SBA K 3 R6231-100 46 300 to 650 440K 350 SBA K 4 R6233-100 70 300 to 650 440K 350 SBA K 5 B+L/8 R877-100 111 300 to 650 440K 350 SBA K 6 0.1 1000 !7 E678-14C* #1 1500 0.1 1000 !0 L/8 E678-12A* 1500 0.1 1300 y B+L/8 E678-14W #4#5 1500 0.1 1000 t E678-14W #4#5 1500 0.1 1000 t B/10 E678-14W $0$1$2$3 1500 0.1 1250 !3 B+L/9 Dimensional Outlines (Unit: mm) 1 R1924A-100 2 R3998-100-02 3 R9420-100 38 ± 1 FACEPLATE 34 MIN. 87 ± 2 PHOTOCATHODE 28.5 ± 0.5 FACEPLATE SEMIFLEXIBLE LEADS 25 MIN. 22 MIN. FACEPLATE 13 MAX. PHOTOCATHODE A 60 ± 2 43.0 ± 1.5 PHOTOCATHODE 12 PIN BASE JEDEC No. B12-43 LEAD LENGTH 70 MIN. 25.4 ± 0.5 14 PIN BASE 14 PIN BASE 37.3 ± 0.5 13 MAX. 13 MAX. B A Glass Base P DY9 6 7 IC 8 P DY8 IC 9 DY7 5 10 DY10 DY5 4 11 DY8 DY3 3 12 DY6 13 DY4 14 DY2 DY1 2 1 K DY6 6 5 22.5° 11 IC IC 4 DY4 12 3 2 1 DY2 G SHORT PIN 7 DY9 DY7 8 9 10 DY5 DY3 13 14 DY1 K IC TPMHA0040EC (23) B Bottom View SHORT PIN TPMHA0114EA P 6 IC 7 DY8 5 8 DY7 4 DY5 DY3 9 DY6 10 DY4 3 11 2 1 DY1 12 K P 7 11 DY8 12 DY6 DY7 6 DY5 5 13 DY4 14 DY2 DY3 4 DY2 2 DY1 1 K TPMHA0519EC 60 EGBA (Extended Green Bialkali) Photomultiplier Tubes (at 25 °C) A Anode Characteristics M Cathode Characteristics K Blue Luminous Luminous Sensitivity Quantum Radiant Index Efficiency (CS 5-58) Typ. Typ. Typ. Min. Typ. Min. Typ. (%) (mA/W) (A/lm) (A/lm) (µA/lm) (µA/lm) Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) Notes Type No. 100 130 13.5 35 110 50 260 2.2 × 105 2.0 × 106 5 25 1.5 17 R1924A-100 100 130 13.5 35 110 50 130 1.1 × 105 1.0 × 106 5 25 4.4 32 R3998-100-02 100 130 13.5 35 110 5 65 5.5 × 104 5.0 × 105 10 100 1.6 17 R9420-100 110 130 13.5 35 110 3 30 2.5 × 104 2.3 × 105 10 30 8.5 48 R6231-100 30 10 30 9.5 52 R6233-100 46 20 100 20 115 R877-100 110 90 13.5 130 35 13.5 105 110 35 110 3 20 2.5 × 104 2.3 × 105 4.8 × 104 4.4 × 105 Quantum efficiency is measured at the peak wavelength (350 nm). Cathode radiant sensitivity is measured at the 400 nm. 5 R6233-100 4 R6231-100 6 R877-100 133.0 ± 1.5 111 MIN. 76.0 ± 0.8 51.0 ± 0.5 FACEPLATE FACEPLATE 70 MIN PHOTOCATHODE 100 ± 3 51.5 ± 1.5 14 PIN BASE JEDEC No. B14-38 55 MAX. 123 MAX. 90 ± 3 PHOTOCATHODE 113 MAX. 171 ± 3 FACEPLATE PHOTOCATHODE 194 MAX. 46 MIN. 14 PIN BASE JEDEC No. B14-38 56.5 ± 0.5 56.5 ± 0.5 56.5 ± 0.5 14 PIN BASE JEDEC No. B14-38 DY5 DY6 7 6 DY4 5 DY5 IC 9 11 DY8 DY2 3 2 1 DY1 DY6 7 6 10 DY7 DY3 4 IC IC 8 12 P 13 G 14 K TPMHA0388EB DY4 5 IC 2 1 DY1 DY7 7 6 11 DY8 DY2 3 DY6 9 10 DY7 DY3 4 IC IC 8 12 P 13 G 14 K TPMHA0389EB DY5 5 DY8 DY9 8 9 10 DY10 DY4 4 11 P DY3 3 12 IC 13 G 14 K DY2 2 1 DY1 TPMHA0074EC 61 UBA (Ultra Bialkali), SBA (Super Bialkali) Photomultiplier Tubes, Spectral Response A Type No. 100 200 Max. Ratings H Remarks B C D E F QE Effective Area (mm) Spectral Curve Peak Photo- Win- Out- Dynode Response Code Wave- cathode dow line Structure MateWavelength (nm) length Material rial No. / Stages Range 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) G Socket & Socket Assembly J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) Metal Package Types R7600U-100 18 300 to 650 440K 350 SBA K 1 MC/10 E678-32B %3 900 0.1 800 @4 R7600U-200 18 300 to 650 441K 350 UBA K 1 MC/10 E678-32B %3 900 0.1 800 @4 R7600U-100-M4 18 (M4 ch) 300 to 650 440K 350 SBA K 2 MC/10 E678-32B %4 900 0.1 800 @4 R7600U-200-M4 18 (M4 ch) 300 to 650 441K 350 UBA K 2 MC/10 E678-32B %4 900 0.1 800 @4 R5900U-100-L16 0.8×16×(L16 ch) 300 to 650 440K 350 SBA K 3 MC/10 E678-32B %5 900 0.1 800 !2 R5900U-200-L16 0.8×16×(L16 ch) 300 to 650 441K 350 UBA K 3 MC/10 E678-32B %5 900 0.1 800 !2 23 300 to 650 440K 400 SBA K 4 MC/12 E678-19K %7 1000 0.1 900 #5 ∗R11265U-200 23 300 to 650 441K 400 UBA K 4 MC/12 E678-19K %7 1000 0.1 900 #5 R8900U-100-C12 23.5 300 to 650 440K 350 SBA K 5 MC/11 E678-32B %6 1000 0.1 800 @7 H8711-100 18.1 (M16 ch) 300 to 650 440K 350 SBA K P81@2 MC/12 — -1000 0.017 -800 #3 H8711-200 18.1 (M16 ch) 300 to 650 441K 350 UBA K P81@2 MC/12 — -1000 0.017 -800 #3 ∗H8711-300 18.1 (M16 ch) 300 to 700 444K 420 EGBA K P81@2 MC/12 — -1000 0.017 -800 #3 ∗H12445-100 23 (M16 ch) 300 to 650 440K 400 SBA K P83#0 MC/12 — -1100 0.1 1000 #6 ∗H12445-200 23 (M16 ch) 300 to 650 441K 400 UBA K P83#0 MC/12 — -1100 0.1 1000 #6 H7546B-100 18.1 (M64 ch) 300 to 650 440K 350 SBA K P81@3 MC/12 — -1000 0.023 -800 #4 H7546B-200 ∗R11265U-100 18.1 (M64 ch) 300 to 650 441K 350 UBA K P81@3 MC/12 — -1000 0.023 -800 #4 ∗H7546B-300 18.1 (M64 ch) 300 to 700 444K 420 EGBA K P81@3 MC/12 — -1000 0.023 -800 #4 ∗H12428-100 23 (M64 ch) 300 to 650 440K 400 SBA K P83#1 MC/12 — -1100 0.1 1000 #6 ∗H12428-200 23 (M64 ch) 300 to 650 441K 400 UBA K P83#1 MC/12 — -1100 0.1 1000 #6 H7260-100 0.8 × 7 × (L32 ch) 300 to 650 440K 350 SBA K P81@4 MC/10 — -900 0.1 -800 !2 H7260-200 0.8 × 7 × (L32 ch) 300 to 650 441K 350 UBA K P81@4 MC/10 — -900 0.1 -800 !2 Dimensional Outlines (Unit: mm) 2 R7600U-100-M4, R7600U-200-M4 30.0 ± 0.5 30.0 ± 0.5 1 2 3 4 5 6 7 8 9 K : Photocathode Dy : Dynode P : Anode CUT : Short Pin IC : Internal Connection (Do not Use) BASING DIAGRAM TPMHA0278EI 15.8 20.32 K CUT (IC) CUT (IC) Dy1 Dy2 Dy3 Dy4 CUT (IC) CUT (K) BOTTOM VIEW K : Photocathode Dy : Dynode P : Anode CUT : Short Pin IC : Internal Connection (Do not Use) 0.6 ± 0.4 SIDE VIEW CUT (K) Dy8 P12 P10 P8 P6 P4 Dy5 K 25 26 27 28 29 30 31 32 24 23 22 21 GUIDE 20 CORNER 19 18 17 16 15 14 13 12 11 10 30- 0.45 1 2 3 4 5 6 7 8 9 K Dy6 P13 P11 P9 P7 P5 Dy7 CUT (K) 20.32 4.4 ± 0.7 4 MAX. 12.0 ± 0.5 BASING DIAGRAM TPMHA0297EI 22.0 ± 0.5 INSULATION COVER Dy10 P14 P16 P15 IC Dy4 Dy2 15- 0.45 2.54 PITCH SIDE VIEW TOP VIEW PHOTOCATHODE 20.32 25 26 27 28 29 30 31 32 24 23 22 21 GUIDE CORNER 20 19 18 16 15 14 13 12 11 10 17 0.8 0.6 ± 0.4 4 MAX. CUT (K) Dy10 Dy9 Dy8 Dy7 Dy6 Dy5 CUT (IC) CUT (K) 16 P16 Dy1 Dy3 IC P2 P1 P3 Dy9 BOTTOM VIEW 12.0 ± 0.5 CUT (IC) P4 CUT (IC) CUT (IC) CUT (IC) P1 CUT (IC) 20.32 16 P1 22.0 ± 0.5 INSULATION COVER CUT (IC) P3 CUT (IC) CUT (IC) CUT (IC) P2 CUT (IC) IC IC IC IC IC IC IC TOP VIEW 20.32 29- 0.45 2.54 PITCH IC IC IC IC P IC IC SIDE VIEW 62 P1 PHOTOCATHODE 4.4 ± 0.7 4 MAX. 12.0 ± 0.5 BASING DIAGRAM P4 22.0 ± 0.5 INSULATION COVER K IC (Dy10) IC Dy1 Dy2 Dy3 Dy4 IC (Dy10) CUT (K) P2 4.4 ± 0.7 18 MIN. PHOTOCATHODE 1 2 3 4 5 6 7 8 9 P3 0.6 ± 0.4 TOP VIEW 25 26 27 28 29 30 31 32 24 23 22 21 GUIDE CORNER 20 19 18 17 16 15 14 13 12 11 10 18 MIN. 18 MIN. 25.7 ± 0.5 PHOTOCATHODE 20.32 18 MIN. PHOTOCATHODE 30.0 ± 0.5 25.7 ± 0.5 PHOTOCATHODE 1.0 PITCH 25.7 ± 0.5 CUT (K) Dy10 Dy9 Dy8 Dy7 Dy6 Dy5 IC (Dy10) CUT (K) 3 R5900U-100-L16, R5900U-200-L16 2.54 PITCH 1 R7600U-100, R7600U-200 BOTTOM VIEW K : Photocathode Dy : Dynode P : Anode CUT : Short Pin IC : Internal Connection (Do not Use) TPMHA0298EG EGBA (Extended Green Bialkali) Photomultiplier Tubes (at 25 °C) A Anode Characteristics M Cathode Characteristics K Blue Luminous Luminous Sensitivity Quantum Radiant Index Efficiency (CS 5-58) Typ. Typ. Typ. Min. Typ. Min. Typ. (µA/lm) (µA/lm) (%) (mA/W) (A/lm) (A/lm) Radiant Gain Typ. (A/W) Typ. Time Dark Current (After 30 min.) Response Rise Transit Time Time Typ. Max. Typ. Typ. (nA) (nA) (ns) (ns) Notes Type No. 90 105 13.5 35 110 40 105 1.1 × 105 1.0 × 106 2 20 1.6 9.6 R7600U-100 110 135 15.5 43 130 50 135 1.3 × 105 1.0 × 106 2 20 1.6 9.6 R7600U-200 90 105 13.5 35 110 25 140 1.4 × 0.5 /ch 5 /ch 1.2 9.5 R7600U-100-M4 110 135 15.5 43 130 25 175 1.7 × 105 1.3 × 106 0.5 /ch 5 /ch 1.2 9.5 R7600U-200-M4 315 R5900U-100-L16 90 105 13.5 35 45 110 105 3.3 × 105 105 1.3 × 106 1.0 × 106 0.2 /ch 2 /ch 0.6 7.4 1.0 × 106 0.2 /ch 2 /ch 110 135 15.5 43 130 55 405 3.9 × 90 105 13.5 35 110 25 90 135 15.5 43 130 25 130 (50) 162 (65) 9.2 × 104 (4.1 × 104) 1.7 × 105 (6.5 × 104) 90 105 13.5 35 110 20 70 7.3 × 104 6.7 × 105 1.2 × 106 (4.8 × 105) 1.2 × 106 (4.8 × 105) 7.4 20 1.3 5.8 2 20 1.3 5.8 2 20 2.2 11.9 R5900U-200-L16 UV glass window: R11265U-103 Asembly type: H11934-100 UV glass window: R11265U-203 Asembly type: H11934-200 R11265U-100∗ R11265U-200∗ R8900U-100-C12 90 105 13.5 35 110 50 210 2.2 × 0.8 /ch 4 /ch 0.83 12 H8711-100 110 135 15.5 43 130 50 270 2.6 × 105 2.0 × 106 0.8 /ch 4 /ch 0.83 12 H8711-200 105 2.0 × 0.6 2 120 160 14 14 125 50 400 3.1 × 0.8 /ch 4 /ch 0.83 12 90 105 13.5 35 110 25 105 1.1 × 105 1.0 × 106 0.8 /ch 4 /ch 0.52 5 UV glass window: H12445-103 H12445-100∗ 5 UV glass window: H12445-203 H12445-200∗ 105 2.5 × 106 H8711-300∗ 110 135 15.5 43 130 25 135 1.3 × 90 105 13.5 35 110 15 53 5.5 × 104 5.0 × 105 0.2 /ch 2 /ch 1.0 12 H7546B-100 H7546B-200 105 1.0 × 106 0.8 /ch 4 /ch 0.52 110 135 15.5 43 130 15 68 6.5 × 0.2 /ch 2 /ch 1.0 12 120 160 14 14 125 — 80 6.3 × 104 5.0 × 105 0.2 /ch 2 /ch 1.0 12 90 105 13.5 35 25 110 104 5.0 × 106 105 105 1.1 × 105 1.0 × 106 0.4 /ch 4 /ch 5.1 H12428-100∗ UV glass window: H12428-203 H12428-200∗ 110 135 15.5 43 130 25 135 1.3 × 0.4 /ch 4 /ch 0.6 5.1 90 105 13.5 35 110 45 210 2.2 × 105 1.0 × 106 0.2 /ch 2 /ch 0.6 6.8 H7260-100 270 2.6 × 0.6 6.8 H7260-200 110 135 15.5 43 55 130 105 105 1.0 × 0.6 H7546B-300∗ UV glass window: H12428-103 1.0 × 106 106 0.2 /ch 2 /ch Quantum efficiency is measured at the peak sensitivity wavelength (UBA/SBA: 350 nm, EGBA: 550 nm). Cathode radiant sensitivity is measured at the peak sensitivity wavelength (400 nm). 4 R11265U-100, R11265U-200 5 R8900U-100-C12 30.0 ± 0.5 30.0 ± 0.5 PHOTOCATHODE +0 26.2 - 0.5 23.5 23.5 PY1 PY2 PY3 PY4 PY5 PY6 PX6 PX5 PX4 PX3 PX2 PX1 23.5 23 MIN. 2.22 PITCH 22.56 22.95 20 21 22 23 24 25 26 27 28 1 BASING DIAGRAM BOTTOM VIEW CUT (G) PY6 PY5 PY4 CUT (IC) PY3 PY2 CUT (Dy11) CUT (G) 25 26 27 28 29 30 31 32 24 23 22 21 GUIDE CORNER 20 19 18 17 16 15 14 13 12 11 10 1 2 3 4 5 6 7 8 9 BASING DIAGRAM K : Photocathode Dy : Dynode P : Anode IC : Internal Connection (Do not Use) TPMHA0585EA G CUT (Dy11) Dy1 Dy3 Dy5 Dy7 Dy9 Dy11 CUT (G) 20.32 29.0 ± 0.5 0.6 ± 0.4 SIDE VIEW 25- 0.45 4.4 ± 0.7 12.0 ± 0.5 PX6 PX5 PX4 PY1 PX3 PX2 PX1 IC (P) Dy7 Dy8 Dy9 IC (P) Dy10 Dy11 Dy12 P 15 14 13 12 11 10 9 8 7 4 MAX. SIDE VIEW 2.54 PITCH 12.0 ± 0.5 CUT (Dy11) Dy10 Dy8 Dy6 Dy4 Dy2 K 3.5 ± 0.7 19- 0.45 IC (P) Dy6 Dy5 Dy4 IC (P) Dy3 Dy2 Dy1 IC (P) K INSULATION COVER 18.7 ± 0.5 4.2 MAX. INSULATION COVER TOP VIEW PHOTOCATHODE 0.6 ± 0.4 TOP VIEW PHOTOCATHODE 20.32 PHOTOCATHODE 26.2 ± 0.5 BOTTOM VIEW G K Dy P : Grid : Photocathode : Dynode : Anode (PX1-PX6) (PY1-PY6) CUT : Short Pin IC : Internal Connection (Do not Use) TPMHA0524EC 63 Photomultiplier Tubes for High Magnetic Environments Spectral Response A Type No. Effective Area (mm) Tube Diameter Wavelength (nm) mm (inch) 100 Max. Ratings H Remarks C D E F Spectral Peak Photo- Win- Out- Dynode Response Wave- cathode dow line Structure MateRange length Material rial No. / Stages (nm) 200 300 400 500 600 700 800 900 1000 1100 1200 G Socket & Socket Assembly (nm) J L Anode Average Anode to to Anode Cathode Cathode Current Supply Voltage Voltage (V) (V) (mA) R5505-70 25 (1) 17.5 300 to 650 420 BA K 1 FM / 15 E678-17A* %8 +2300 0.01 +2000 #8 R7761-70 38 (1-1/2) 27 300 to 650 420 BA K 2 FM / 19 — +2300 0.01 +2000 #9 R5924-70 51 (2) 39 300 to 650 420 BA K 3 FM / 19 — +2300 0.1 +2000 #9 Dimensional Outlines (Unit: mm) 2 R7761-70 3 R5924-70 25.8 ± 0.7 52 ± 1 39 ± 1 FACEPLATE 27 MIN. FACEPLATE PHOTOCATHODE 17 PIN BASE 50 ± 2 50 ± 2 HA TREATMENT HA TREATMENT 13 MAX. HA TREATMENT PHOTOCATHODE SEMIFLEXIBLE LEADS 0.7 DY15 P DY13 9 10 DY14 DY11 7 8 11 12 DY12 DY9 6 13 DY10 DY7 5 14 DY8 DY5 4 15 3 DY6 DY3 16 2 DY4 1 17 DY1 DY2 K LEAD LENGTH 45 MIN. 40.0 ± 1.5 PHOTOCATHODE 39 MIN. 13 MAX. 17.5 MIN. 13 MAX. FACEPLATE SEMIFLEXIBLE LEADS 0.7 27 Glass Base ° (360/22) LEAD LENGTH 80 MIN. 1 R5505-70 31 SHORT PIN Glass Base ° (360/26) (27) TPMHA0236EA DY17 DY19 P DY18 DY15 10 11 12 13 DY16 9 DY13 8 14 DY11 15 DY14 7 DY9 6 DY7 5 4 DY5 3 DY3 2 1 DY1 K 16 DY12 17 DY10 18 DY8 19 20 DY6 21 DY4 DY2 (31) P DY19 11 DY17 10 9 TPMHA0469EC DY18 DY16 DY14 14 15 16 DY12 17 DY10 18 DY8 DY15 8 DY13 7 6 DY11 5 DY9 4 3 2 1 26 DY7 DY5 DY3 DY1 K 19 20 DY6 21 DY4 22 DY2 TPMHA0490EB 64 K Blue Lumi- Sensitivity LumiRadiant nous nous Index (CS 5-58) Typ. Typ. Typ. Typ. (µA/lm) (mA/W) (A/lm) Dark Current (After 30 min.) Gain at 0 T Typ. at 0.5 T Typ. at 1.0 T Typ. Typ. (nA) Max. (nA) Time Response Rise Transit Time Time Typ. Typ. (ns) (ns) 80 9.5 76 40 5.0 × 105 2.3 × 105 1.8 × 104 5 30 1.5 5.6 80 9.5 76 800 1.0 × 107 3.0 × 106 1.5 × 105 15 100 2.1 7.5 700 1.0 × 4.1 × 2.0 × 30 200 2.5 9.5 70 72 9.0 107 ■Spectral Response 106 105 Notes (For +HV operation) Assembly type: H6152-70 Recommended (For +HV operation) Assembly type: H8409-70 Recommended (For +HV operation) Assembly type: H6614-70 Recommended Type No. R5505-70 R7761-70 R5924-70 ■Gain TPMHB0684EA 108 100 at 0 T TPMHB0258EC 107 1.5" R7761-70 2" R5924-70 10 106 GAIN PHOTOCATHODE RADIANT SENSITIVITY (mA/W) QUANTUM EFFICIENCY (%) (at 25 °C) A Anode Characteristics M Cathode Characteristics 1 PHOTOCATHODE RADIANT SENSITIVITY 0.1 300 400 500 600 1" R5505-70 104 QUANTUM EFFICIENCY 0.01 200 105 103 700 800 102 500 WAVELENGTH (nm) 1000 1500 2000 2500 SUPPLY VOLTAGE (V) ■R5924-70 Relative Gain in Magnetic Fields 101 TPMHB0247EC SUPPLY VOLTAGE: 2000 V RELATIVE GAIN 100 30 ° 10-1 10-2 0° MAGNETIC FIELD 10-3 0 0.25 0.50 0.75 1.0 1.25 1.5 MAGNETIC FLUX DENSITY (T) 65 Microchannel Plate-Photomultiplier Tubes (MCP-PMTs) Remarks Max. Ratings H C D E Anode Current -HV Signal Anode Spectral Peak Photo- Win- Out- No. of Curve to Input Output Cathode Contin- Pulsed Response Wave- cathode dow line MCP MateCode Range length Material rial No. Stage Terminals Terminals Voltage uous Peak Spectral Response A B Effective Area (mm) Type No. Wavelength (nm) 100 200 300 400 500 600 700 800 900 1000 1100 1200 (nm) (nm) (V) (nA) (mA) Standard Types 11 R3809U-50 11 R3809U-51 11 R3809U-52 R3809U-53 11 10 R3809U-61 R3809U-64 430 MA Q 1 2 SHV-R SMA-R -3400 100 350 160 to 910 501S 600 ERMA Q 1 2 SHV-R SMA-R -3400 100 350 160 to 650 403K 400 BA Q 1 2 SHV-R SMA-R -3400 100 350 160 to 320 200S 230-250 Cs-Te Q 1 2 SHV-R SMA-R -3400 100 350 370 to 920 602K 750-850 K 1 2 SHV-R SMA-R -3400 100 350 GaAs Red 280 to 820 601K 550-650 Extended K GaAsP 10 R3809U-63 160 to 850 500S 1 2 SHV-R SMA-R -3400 100 350 K 1 2 SHV-R SMA-R -3400 100 350 MA Q 2 2 SHV-R SMA-R -3400 100 350 600 ERMA Q 2 2 SHV-R SMA-R -3400 100 350 400 BA Q 2 2 SHV-R SMA-R -3400 100 350 Q 2 2 SHV-R SMA-R -3400 100 350 10 280 to 720 600K 550-650 GaAsP 10 160 to 850 500S 430 160 to 910 501S 160 to 650 403K Gated Types R5916U-50 10 R5916U-51 10 R5916U-52 R5916U-53 10 160 to 320 200S 230-250 Cs-Te The R5916 series can be gated by input of a +10 V to +20 V gate signal. Standard types are normally OFF, but normally ON types are also available. Gate operation is 5 ns, though this depends on the gate signal input pulse. Consult us regarding the R5916U series with a GaAs or GaAsP photocathode. Dimensional Outlines (Unit: mm) 1 R3809U Series MCP 70.2 ± 0.5 -HV INPUT SHV-R CONNECTOR 7.0 ± 0.2 -50, -51, -52, -53: 3.2 ± 0.1 -61, -63, -64: 4.2 ± 0.1 PHOTOCATHODE SIGNAL OUTPUT SMA-R 13.7 ± 0.2 -50, -51, -52, -53: 3.0 ± 0.2 -61, -63, -64: 2.8 ± 0.2 ANODE CATHODE 52.5 ± 0.5 45.0 ± 0.3 EFFECTIVE WINDOW PHOTOCATHODE FACEPLATE DIAMETER: 11 MIN. (-50, -51, -52, -53) 10 MIN. (-61, -63, -64) 12 MΩ 24 MΩ 6 MΩ 1000 pF 1000 pF 300 pF ANODE OUTPUT SMA-R CONNECTOR -HV SHV-R * Actual resistor values may slightly differ from the above. TPMHC0089EC TPMHA0352EB 2 R5916U Series GATE 71.5 ± 0.5 WINDOW FACE PLATE 53.8 ± 0.5 3.0 ± 0.2 MCP CATHODE -HV INPUT SHV-R CONNECTOR ANODE 19.0 ± 0.2 EFFECTIVE PHOTOCATHODE DIAMETER 10 MIN. ANODE OUTPUT SMA-R 4.6 ± 0.1 7.0 ± 0.2 7.9 ± 0.2 PHOTOCATHODE 33 kΩ 1000 pF ANODE OUTPUT SMA-R CONNECTOR 17.5 ± 0.2 10 MIN. 55.0 ± 0.3 100 kΩ 330 pF GATE PULSE INPUT SMA-R CONNECTOR 12 MΩ 330 pF 24 MΩ 330 pF 6 MΩ 300 pF 50 Ω GND GND 10 kΩ -HV SHV-R GATE SIGNAL INPUT SMA-R * Actual resistor values may slightly differ from the above. TPMHA0348EC 66 TPMHC0090ED K Radiant Luminous Luminous (at 25 °C) A Anode Characteristics M Cathode Characteristics Dark Current (After 30 min.) Time Response Transit I.R.F.A Time (FWHM) Typ. Typ. (ns) (ns) Anode to Cathode Supply Voltage (V) Min. (µA/lm) Typ. (µA/lm) Typ. (mA/W) Typ. (A/lm) Typ. Max. (nA) Rise Time Typ. (ns) -3000 100 180 70 36 3.0 × 105 10 0.16 0.55 0.045 Transit time spread: 0.025 ns R3809U-50 -3000 240 290 45 58 3.0 × 105 10 0.16 0.55 0.045 Transit time spread: 0.025 ns R3809U-51 R3809U-52 R3809U-53 Gain Notes Type No. -3000 20 50 50 10 3.0 × 0.5 0.16 0.55 0.045 Transit time spread: 0.025 ns -3000 — — 20 — 3.0 × 105 0.1 0.16 0.55 0.045 Transit time spread: 0.025 ns 140 3.0 × 105 25 0.2 0.55 0.15 R3809U-61 105 -3000 700 400 85 105 -3000 450 750 160 150 3.0 × 15 0.18 0.55 0.08 R3809U-63 -3000 400 700 180 140 3.0 × 105 15 0.18 0.55 0.08 R3809U-64 -3000 100 150 52 30 3.0 × 105 10 0.18 1.0 0.095 R5916U-50 105 -3000 200 250 36 50 3.0 × 10 0.18 1.0 0.095 R5916U-51 -3000 20 45 45 9 3.0 × 105 0.5 0.18 1.0 0.095 R5916U-52 — 3.0 × 0.1 0.18 1.0 0.095 R5916U-53 -3000 20 — — 105 NOTE: AI.R.F. stands for Instrument Response Function which is a convolution of the δ-function (H(t)) of the measuring apparatus and the exciation function (E(t)) of a laser. The I.R.F. is given by the following formula: I.R.F. = H(t)∗ E(t) ■Spectral Response 103 ●R5916U Series TPMHB0177EE QE = 40 % -53 QE = 25 % QE = 10 % 102 -51 101 QE = 1 % -50 -52 100 -61 QE = 0.1 % -64 -63 10-1 10-2 100 200 300 400 500 600 700 800 900 1000 1100 WAVELENGTH (nm) PHOTOCATHODE RADIANT SENSITIVITY (mA/W) PHOTOCATHODE RADIANT SENSITIVITY (mA/W) ●R3809U Series 103 TPMHB0940EA QE = 25 % 102 -53 -52 QE = 10 % -50 -51 QE = 1 % 101 QE = 0.1 % 100 10-1 10-2 100 200 300 400 500 600 700 800 900 1000 1100 WAVELENGTH (nm) ■Gain TPMHB0179EB 107 106 GAIN 105 104 103 102 -2.0 -2.2 -2.4 -2.6 -2.8 -3.0 SUPPLY VOLTAGE (kV) -3.2 -3.4 67 Micro PMT Assemblies / Micro PMT Modules Spectral Response A Effective Area (mm) Type No. Remarks Max. Ratings C D F Spectral Peak Photo- Win- Out- Dynode Response Wave- cathode dow line Structure MateRange length Material rial No. / Stages Wavelength (nm) (nm) 100 200 300 400 500 600 700 800 900 1000 1100 1200 J L Anode to Cathode Voltage Average Anode Current Anode to Cathode Supply Voltage (V) (mA) (V) (nm) Micro PMT Assemblies 3×1 ∗H12400-00-01 3×1 ∗H12400-01-01 300 to 650 420 BA K 1 SC/12 -1150 0.005 -900 300 to 850 420 MA K 1 SC/12 -1150 0.005 -900 Spectral Response A Type No. 100 200 Remarks Max. Ratings C D F Recommended Effective Area (mm) Control Spectral Peak Photo- Win- Out- Dynode Maximum Maximum Maximum Maximum Input Voltage Input Output Control Response Wave- cathode dow line Structure Input Voltage Adjustment MateWavelength (nm) Range length Material No. / Stages Voltage Current Signal Voltage Range rial Current 300 400 500 600 700 800 900 1000 1100 1200 (mA) (mA) (V) (nm) (V) (V) (nm) (V) Micro PMT Modules 3×1 ∗H12402 3×1 ∗H12402-01 3×1 ∗H12403 3×1 ∗H12403-01 300 to 650 420 BA K 2 SC/12 +5.5 20 0.005 +1.15 +4.5 to +5.5 +0.5 to +1.0 300 to 850 420 MA K 2 SC/12 +5.5 20 0.005 +1.15 +4.5 to +5.5 +0.5 to +1.1 300 to 650 420 BA K 3 SC/12 +5.5 20 0.005 +1.15 +4.5 to +5.5 +0.5 to +1.0 300 to 850 420 MA K 3 SC/12 +5.5 20 0.005 +1.15 +4.5 to +5.5 +0.5 to +1.1 Dimensional Outlines (Unit: mm) 1 H12400-00-01, H12400-01-01 4 × M1.4 DEPTH 1.5 MOUNTING THREADED HOLE 19 ± 0.25 7.2 ± 0.25 17 ± 0.25 2.2 ± 0.2 4 ± 0.25 A Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 4.3 ± 0.2 13 ± 0.1 SMA CONNECTOR C1 GND C1: 1 nF FLEXIBLE C2, C3, C4: 22 nF PRINTED CIRCUIT R1, R12: 1 MΩ R2, R11: 680 kΩ R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R3 to R10: 470 kΩ R13: 2 MΩ -HV GND FLEXIBLE PRINTED CIRCUIT ABS CASE VOLTAGE DIVIDER CIRCUIT ■Common to Micro PMT assemblies and Micro PMT modules ■DETAILS OF INPUT WINDOW 15 ± 0.5 GND C2 C3 C4 GND INPUT WINDOW 36 ± 2 P SIGNAL OUTPUT : SMA CONNECTOR 6 ± 0.5 ■A CROSS SECTION 1.4 22 ± 0.5 COAXIAL CABLE 180 ± 10 8 ± 0.5 18.6 ± 0.1 21 ± 0.25 5.5 ± 0.2 K 4 PHOTOCATHODE INPUT WINDOW RESIN PACKAGE EFFECTIVE AREA 3×1 -HV AWG26 PURPLE 500 ± 10 MICRO PMT C0.3 0.5 0.5 GND 0.2SQ BLACK 500 ± 10 TPMHA0590EB 2 H12402, H12402-01 3 H12403, H12403-01 15 ± 0.25 CABLE 4 × M2 DEPTH 4 450 ± 20 PHOTOCATHODE 3 × 1 MIN. CABLE INPUT WINDOW 12 ± 0.25 4 × M2 DEPTH 4 ●CABLE LOW VOLTAGE INPUT (+5 V) : AWG26 (RED) : AWG26 (BLACK) GND : AWG26 (BLUE) Vref OUTPUT (+1.2 V) : AWG26 (WHITE) Vcont INPUT : RG-174/U SIGNAL OUTPUT ●CABLE LOW VOLTAGE INPUT (+5 V) : AWG26 (RED) : AWG26 (BLACK) GND : AWG26 (BLUE) Vref OUTPUT (+1.2 V) : AWG26 (WHITE) Vcont INPUT : RG-174/U SIGNAL OUTPUT 68 34 ± 0.1 38 ± 0.35 A A 13 ± 0.1 26 ± 0.1 30 ± 0.25 INPUT WINDOW PHOTOCATHODE 3 × 1 MIN. 34 ± 0.35 11 ± 0.1 2 × M1.4 DEPTH 1.5 2 12.5 ± 0.25 450 ± 20 34 ± 0.1 13 ± 0.1 38 ± 0.35 2 TPMOA0083EB TPMOA0084EB Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) (at 25 °C) A Anode Characteristics M Cathode Characteristics K Red / White Radiant Luminous Ratio Radiant (R-68) Typ. Typ. Min. Typ. Typ. (mA/W) (A/lm) (A/lm) (A/W) Gain Typ. Dark Current (After 30 min.) Typ. Max. (nA) (nA) Time Response Rise Transit Time Time Typ. Typ. (ns) (ns) Notes Type No. 50 80 8.0 — 80 30 160 1.6 × 105 2.0 × 106 0.3 3 1.2 8.0 H12400-00-01∗ 100 200 — 0.2 62 15 70 2.1 × 104 3.5 × 105 0.3 3 1.2 8.0 H12400-01-01∗ Blue Luminous Sensitivity Index (CS 5-58) Typ. Min. Typ. (µA/lm) (µA/lm) 50 K Red / White Radiant Luminous Ratio Radiant (R-68) Typ. Typ. Min. Typ. Typ. (mA/W) (A/lm) (A/lm) (A/W) — 8.0 80 (at 25 °C) A Anode Characteristics M Cathode Characteristics 30 80 Gain Typ. Dark Current (After 30 min.) Typ. Max. (nA) (nA) Time Response Rise Transit Time Time Typ. Typ. (ns) (ns) Notes Type No. 160 1.6 × 105 2.0 × 106 0.3 3 1.2 8.0 H12402∗ 105 100 200 — 0.2 62 15 70 2.1 × 0.3 3 1.2 8.0 H12402-01∗ 50 80 8.0 — 80 30 160 1.6 × 105 2.0 × 106 0.3 3 1.2 8.0 H12403∗ 70 2.1 × 0.3 3 1.2 8.0 H12403-01∗ 100 0.2 — 200 15 62 ■Spectral Response 104 3.5 × 3.5 × 105 ■Gain TPMHB0884EA 107 MULTIALKALI PHOTOCATHODE TPMHB0885EA BIALKALI PHOTOCATHODE 106 10 105 1 GAIN CATHODE RADIANT SENSITIVITY (mA/W) QUANTUM EFFICIENCY (%) 100 104 BIALKALI PHOTOCATHODE MULTIALKALI PHOTOCATHODE 104 0.1 103 CATHODE RADIANT SENSITIVITY QUANTUM EFFICIENCY 0 200 300 400 500 600 700 800 900 1000 WAVELENGTH (nm) 102 0.5 -500 0.6 -600 0.7 -700 0.8 -800 0.9 1.0 1.1 -900 -1000 -1100 CONTROL VOLTAGE (V)* SUPPLY VOLTAGE (V) * Control voltage of a Micro PMT module. ■Sensitivity Adjustment Method (Micro PMT Module) VOLTAGE PROGRAMMING SIGNAL OUTPUT LOW VOLTAGE INPUT (RED) GND (BLACK) Vref OUTPUT (BLUE) Vcont INPUT (WHITE) • Adjust the control voltage to adjust the sensitivity. • Electrically insulate the reference voltage output. POWER SUPPLY +5 V GND +0.5 V to +1.0 V *1 (No suffix) GND *1 Suffix -01: +1.1 V POWER SUPPLY MICRO PMT MODULE SIGNAL OUTPUT LOW VOLTAGE INPUT (RED) GND (BLACK) Vref OUTPUT (BLUE) Vcont INPUT (WHITE) +5 V GND CW MICRO PMT MODULE RESISTANCE PROGRAMMING MONITOR POTENTIOMETER (10 KΩ) • When using a potentiometer, adjust sensitivity while monitoring the control voltage so it does not exceed +1.15 V. TPMOC0256EA 69 Gain Characteristics For tubes not listed here, please consult our sales office. Side-on Types 108 Head-on Types (10 mm and 19 mm Dia.) TPMSB0079EC 108 TPMHB0198EH R9 28 R1878 107 R1617 107 R6357 5 R5610A, R5611A-01 R3 103 103 1000 1500 2000 72 104 700 102 500 3000 700 1000 1500 2000 3000 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) Head-on Types (13 mm and 25 mm Dia.) 108 8 105 104 102 500 47 R9 GAIN 105 R1 106 R6 36 -1 0 GAIN 63 R6350 106 Head-on Types (28 mm Dia.) TPMHB0682EB 108 TPMHB0199EE R6 42 R2228, R5929 R1924A R3550A 107 06 -0 1 107 7 R3998-02 72 R6834, R6836, R374 106 ,R R7899 9 24 104 R1 28 44 R6 105 R6 R12421 8, 105 24 GAIN GAIN R7 20 5- 01 106 104 R5070A 103 102 500 103 700 1000 1500 2000 SUPPLY VOLTAGE (V) 70 3000 102 500 700 1000 1500 2000 SUPPLY VOLTAGE (V) 3000 Head-on Types (38 mm Dia.) 108 Head-on Types (51 mm Dia.) TPMHB0200EF 108 TPMHB0201EE R1828-01 R3886A 107 107 R943-02 R12845 R9722A 104 105 R4 64 GAIN R9420 105 R3 29 -0 2 106 106 GAIN R6 23 1 R580 R11102 R13089 104 103 103 102 500 700 1000 1500 2000 102 500 3000 700 1000 SUPPLY VOLTAGE (V) 1500 2000 3000 SUPPLY VOLTAGE (V) Head-on Types (76 mm Dia.) Head-on Types (127 mm Dia.) and Special Types TPMHB0202ED 109 TPMHB0203EE R6 108 R1307 6 R6234 R6235 R6236 R6237 107 GAIN R 3 23 106 07 8- 105 104 103 102 500 700 1000 1500 2000 SUPPLY VOLTAGE (V) 3000 103 500 R8 77 R1 R4 104 54 14 3 R1 105 3 106 51 107 GAIN R1 09 1 25 0 108 3 08 R2 700 1000 1500 2000 3000 SUPPLY VOLTAGE (V) 71 Voltage Distribution Ratio The characteristic values tabulated in the catalog for the individual tube types are measured with the voltage-divider networks having the voltage distribution ratio shown below. Distribution Ratio Codes Number of Voltage Distribution Ratio Stage K: Photocathode Dy: Dynode P: Anode G: Grid F: Focus ACC: Accelerating Electrode GR: Guard Ring 8 2 w 1 1 e 3 — r 7 — t 2 y 4 8 — 1.3 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1.5 1.5 1 1 1 1 1 1 1 1.5 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 — 1.5 1.5 1 1 1 1 1 1 1.2 1 1 1 1 1 3 1 — 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1.5 1 1 1 Dy7 Dy6 Dy5 Dy4 Dy3 Dy2 Dy1 G 2.5 P Dy9 Dy8 !0 K P Dy8 Dy7 0.5 Dy7 Dy6 Dy5 1 Acc Dy6 Dy5 1 Dy4 Dy3 1 P (Note 1) Dy7 Dy8(Acc) Dy6 Dy5 1 Dy4 Dy3 1.8 Dy2 Dy1 1 o 10 1 1 P Dy9 Dy10 Dy8 !1 1 — 1 1 1 1 1 1 1 1 1 0.5 !2 1 — 1 1 1 1 1 1 1 1 1 1 !3 1 1 1 1 1 1 1 1 1 1 1 1 !4 1.5 — 1 1 1 1 1 1 1 1 1 1 !5 2 — 1 1 1 1 1 1 1 1 1 1 !6 2 — 1 1.5 1 1 1 1 1 1 1 0.75 !7 3 — 1 1 1 1 1 1 1 1 1 1 !8 3 — 1 1.5 1 1 1 1 1 1 1 1 !9 3 — 1.5 1 1 1 1 1 1 1 1 1 @0 4 — 1 1.5 1 1 1 1 1 1 1 1 @1 4 — 1 2 1 1 1 1 1 1 2 1 @2 1.3 4.8 1.2 1.8 1 1 1 1 1 1.5 3 2.5 @3 1.3 4.8 1.5 1.5 1 1 1 1 1 1 1 1 @4 1.5 — 1.5 1.5 1 1 1 1 1 1 1 1 @5 0.5 1.5 2 1 1 1 1 1 1 1 1 0.5 11 Dy7 Dy6 Dy5 Dy4 Dy3 Dy2 Dy1 G K Dy9 Dy10 Dy11 Dy8 P @6 1 — 1 1 1 1 1 1 1 1 1 1 1 @7 0.5 1.5 2 1 1 1 1 1 1 1 1 1 0.5 @8 2 — 1 1 1 1 1 1 1 1 1 1 1 12 Dy7 Dy6 Dy5 Dy4 Dy3 Dy2 Dy1 G K Dy9 Dy10 Dy11 Dy12 GR Dy8 P @9 1.2 2.8 1.2 1.8 1 1 1 1 1 1 1.5 1.5 3 — #0 4 0 1 1.4 1 1 1 1 1 1 1 1 1 — #1 4 0 2.5 1.5 1 1 1 1 1 1 1 1 1 — 1 #2 1 3 1.2 1.8 1 1 1 1 1 1 1.5 1.5 3 — 2.5 #3 2 — 2 2 1 1 1 1 1 1 1 1 1 — 1 #4 3 — 2 2 1 1 1 1 1 1 1 1 2 — 5 #5 2.5 — 1.3 0.8 0.8 1 1 1 1 1 1 1 1 — 0.5 1.2 1 1 1 1 1 1 0.5 #6 2.3 14 2.5 15 2 19 #9 7.5 2 1 Note 1: The Acc should be connected to Dy8. 1 1.8 1 1 1 1 1 Dy6 Dy5 1 1 1 1 1 2.5 1 (Note 2) Dy9 Dy10 Dy11 Dy12 Dy13 Dy14 Dy8 Dy7 1 1 1 1.5 1.5 3 Dy9 Dy10 Dy11 Dy12 Dy13 Dy14 Dy15 Dy8 Dy7 Dy6 Dy5 Dy4 1 Dy3 Dy2 1 1.2 Dy3 Dy2 1 Dy1 K 0 1 Dy4 Dy3 Dy2 Dy1 G2 Dy1 K #8 — G1 K #7 72 1.5 Dy2 Dy1 4.8 G K 1.5 Dy4 Dy3 Dy2 Dy1 4.8 1.3 P 1 G K i Dy8 Dy7 Dy6 Dy5 1 G K u 2 Dy4 Dy3 Dy2 Dy1 G K q 1 1 1 1 1 1 1 1 1 · · · · · · · · · · · · · · · · · · 2: The shield pin should be connected to Dy5. 1 1 P 1 Dy17 Dy18 Dy19 1 1 P 2.5 1 1 P Lens for Side-on Type Photomultiplier Tubes The optimized cylindrical lens which can be attached at the entrance window of 1-1/8 inch side-on photomultiplier tube. This lens helps the incident light reaches the photocathode efficiently. With these lenses, the effective area widens by the factor of three in case of 1-1/8" PMT (13 mm width) or the factor of two in case of 1/2" PMT (7.5 mm width). The lens transmits above 300 nm light only. Transmittance of Lens 100 LENS TPMSB0214EA 90 TRANSMITTANCE (%) LUMINOUS FLUX LENS LENS 80 1/2 inch 1-1/8 inch 70 60 50 40 30 20 10 1/2 inch PMT 1-1/8 inch PMT TPMSC0042EA 0 200 TPMSC0038EA 300 400 500 600 700 800 900 WAVELENGTH (nm) Lens Effect Lens Effect (at anode sensitivity) WITH LENS WITHOUT LENS 300 TPMSB0215EA 100 100 50 3.75 0 50 100 0 6.5 LENS 50 100 200 PARALLEL LIGHT WITH LENS 150 DIFFUSED LIGHT WITH LENS 100 WITHOUT LENS 50 R6357 (1/2 inch dia.) R928 (1-1/8 inch dia.) 1-1/8 inch PMT 0 300 12 6.5 1/2 inch PMT 6.5 0 0 Y-AXIS (mm) 0 Y-AXIS (mm) LENS 0 X-AXIS (mm) 12 0 X-AXIS (mm) 6.5 0 3.75 RELATIVE OUTPUT (%) 250 50 MEASUREMENT CONDITIONS WAVELENGTH: 400 nm SUPPLY VOLTAGE: 1000 V A 1 mm diameter spot light (parallel light) is scanned at the center of the photocathode in X and Y directions. 400 500 600 700 800 900 WAVELENGTH (nm) TPMSC0041EA TPMSC0037EB Parallel light: Uniform and sufficiently large area, than the sensitive area size, of the parallel incident light (40 mm dia.) shall be given to the photomultiplier tube. Diffused light: Parallel light (40 mm dia.) is given to the photomultiplier tube through the diffuser, which locates 100 mm from the tube. Dimensional Outlines (Unit: mm) 50 MAX. 40 ± 2 10 DY9 DY2 3 11 2 P 19.6 ± 1.0 80 MAX. DY8 94 MAX. 3±2 9 DY3 4 DY1 DY7 8 28.5 ± 1.5 49.0 ± 2.5 7 DY4 5 28.5 ± 1.5 24 MIN. 6 24.0 ± 1.5 17 ± 1 13 MIN. 18 ± 1 DY6 DY5 EFFECTIVE AREA 7.5 × 13 30.0 ± 0.8 7.5 ± 1 31.0 ± 0.8 10.5 ± 1 EFFECTIVE AREA 13 × 24 mm 13 DY6 DY5 1 6 7 DY4 5 K DIRECTION OF LIGHT 9 DY3 4 13.5 ± 0.8 32.2 ± 0.5 11 PIN BASE JEDEC No. B11-88 TPMSA0041EA DY8 10 DY9 DY2 3 11 2 DY1 DY7 8 P 1 K DIRECTION OF LIGHT TPMSA0036EB 73 Photomultiplier Tube Socket Dimensional Outline (Unit: mm) E678-11U E678-11A E678-11N 24 49 18 38 5.5 3.5 33 45 ° 4.3 5 2- 2.2 10.5 9.5 13 11 3 18 9.5 4 0.5 10.5 4 3 3 29 11 TACCA0181EC E678-12A, E678-12R* TACCA0064EA E678-13F TACCA0043EB E678-13E 47 40 12.4 17 11 24 5.5 18 2- 2.2 13 7 3.4 15 5 10 3 34 10.5 3 2- 3.2 8 11 * Gold Plating type TACCA0009EB E678-12L E678-14C 44 35 28.6 2- 3.2 1.9 30 2-R4 6.7 360 ° 13 24 360 13 18.5 2.9 13 35 19.1 2- 3.5 11.6 35 28.5 13 TACCA0013EB 9 (23.6) E678-12T TACCA0005EA 2- 3.5 18 (8) 7 9 2.5 6.6 9.5 3.3 3.7 10.5 7.5 6.5 3 26 25 18 TACCA0275EA 74 TACCA0047EB TACCA0004EA E678-14W E678-20B E678-21C 19.8 57.8 51 52.5 19 56.8 20 28 R5 62 13 13 6.5 4 34 30 2 17 11 5 56 * Pins are housed in the socket. TACCA0200EA TACCA0066EC E678-17A E678-15C 60 50 50 45 40 45 40 4 4 18.0 60 24.0 E678-19J TACCA0309EB 21.9 16.3 0.1 2 12 12.0 5 2 12 11.5 40 14.0 5 5 22.8 6.5 40 TACCA0203EB TACCA0046EC E678-32B 22.86 1. 2.54 R 2.54 5 E678-12-01 TACCA0201EA 4.45 12.7 22.86 20.32 45° 10.16 2.92 2.54 20.32 0.51 16 0.5 17.5 1.57 1.5 4 3 12.7 MATERIAL: Glass Epoxy 15.5 16.5 TACCA0304EA TACCA0094ED 75 Photomultiplier Tube Assemblies Photomultiplier Tube Assemblies Photomultiplier tube assemblies are made up of a photomultiplier tube, a voltagedivider circuit and other components, all integrated into a single case. Max. Rating A Type No. H3164-10 H3695-10 H3165-10 ∗H12690 H6520 H6524 H6612 H6152-70 H6533 H7415 ∗H10828 H3178-51 H8409-70 H1949-51 H6410 H7195 H2431-50 H6614-70 H6559 H6527 H6528 B Assembly PMT Dia. Dia. mm (mm) (inch) 10 (3/8) 10 11.3 (3/8) 13 14.3 (1/2) 13 14.3 (1/2) 19 23.5 (3/4) 19 23.5 (3/4) 19 23.5 (3/4) 25 31.0 (1) 25 31.0 (1) 28 33.0 (1-1/8) 38 47.0 (1-1/2) 38 47.0 (1-1/2) 38 45.0 (1-1/2) 51 60.0 (2) 51 60.0 (2) 51 60.0 (2) 51 60.0 (2) 51 60.0 (2) 76 83.0 (3) 127 142.0 (5) 127 142.0 (5) 10.5 Built-in PMT ( Type No. for referring ) Curve Code Wavelength (nm) F Anode to Cathode Out- Dynode line Structure Voltage No. / Stages Max. (V) Divider Current Max. (mA) Cathode Sensitivity Anode to Cathode Supply Voltage (V) Typ. (µA/lm) Blue Sensitivity Index (CS 5-58) Typ. R1635 400K 300 to 650 q L/8 -1500 0.41 -1250 100 10.0 R2496 400S 160 to 650 w L/8 -1500 0.37 -1250 100 10.0 R647-01 400K 300 to 650 e L/10 -1250 0.34 -1000 110 10.0 R12421 400K 300 to 650 r L/10 -1250 0.31 -1000 110 10.0 R1166 400K 300 to 650 t L/10 -1250 0.33 -1000 110 10.5 R1450 400K 300 to 650 y L/10 -1800 0.43 -1500 115 11.0 R3478 400K 300 to 650 u L/8 -1800 0.35 -1700 115 11.0 R5505-70 400K 300 to 650 i FM/15 +2300 0.41 +2000 80 9.5 R4998 400K 300 to 650 o L/10 -2500 0.36 -2250 70 9.0 R6427 400K 300 to 650 !0 L/10 -2000 0.41 -1500 95 11.0 R9420 400K 300 to 650 !1 L/8 -1500 0.39 -1300 95 11.0 R580 400K 300 to 650 !2 L/10 -1750 0.63 -1500 95 11.0 R7761-70 400K 300 to 650 !3 FM/19 +2300 0.33 +2000 80 9.5 R1828-01 400K 300 to 650 !4 L/12 -3000 0.70 -2500 90 10.5 R329 400K 300 to 650 !5 L/12 -2700 0.67 -2000 90 10.5 R329 400K 300 to 650 !6 L/12 -2700 1.23 -2000 90 10.5 R2083 400K 300 to 650 !7 L/8 -3500 0.61 -3000 80 10.0 R5924-70 400K 300 to 650 !8 FM/19 +2300 0.33 +2000 70 9.0 R6091 400K 300 to 650 !9 L/12 -2500 0.62 -2000 90 10.5 R1250 400K 300 to 650 @0 L/14 -3000 1.02 -2000 70 9.0 R1584 400U 185 to 650 @0 L/14 -3000 1.02 -2000 70 9.0 — — 300 to 920 @1 MC/12 -1200 0.42 -1000 500 — H8711 30 — R7600-00-M16 — 300 to 650 @2 MC/12 -1000 0.35 -800 80 9.5 H8711-20 30 — R7600-20-M16 — 300 to 920 @2 MC/12 -1000 0.35 -800 500 — H7546B 30 — R7600-00-M64 — 300 to 650 @3 MC/12 -1000 0.45 -800 80 9.5 H7546B-20 30 — R7600-20-M64 — 300 to 920 @3 MC/12 -1000 0.45 -800 500 — — R7259-20 — 300 to 920 @4 MC/10 -900 0.37 -800 500 — 52 — R10551-00-M64 — 300 to 650 @5 MC/12 -1100 0.173 -1000 60 9.5 52 — R8400-00-M256 — 300 to 650 @6 MC/12 -1100 0.18 -1000 60 9.5 52 — R10552-00-M64 — 300 to 650 @7 MC/8 -1100 0.245 -1000 60 9.5 52 — R12699-00-M64 — 300 to 650 @8 MC/10 -1100 0.225 -1000 75 12.0 30 — R5900-20-L16 — 300 to 920 @9 MC/10 -900 0.37 -800 500 — H9530-20 H7260-20 H8500C H9500 H10966A ∗H12700A H10515B-20 35 × 16 52 × 24 — CAUTION: Photomultiplier tube assemblies listed in this catalog are not designed for use in a vacuum, please consult our sales office. When using them in a vacuum or under low pressure conditions, please consult us. 76 Luminous Anode Characteristics Dark Current Gain Typ. (A/lm) Typ. Typ. (nA) Max. (nA) 100 1.0 × 106 1 50 0.8 9.0 100 1.0 × 106 2 50 0.7 150 1.4 × 106 1 2 220 2.0 × 106 0.5 110 1.0 × 106 200 1.7 × 106 200 A Pulse Linearity Time Response Luminous Rise Time Transit Time Transit Time Spread Typ. Typ. Typ. (ns) (ns) (ns) Type No. 2% Typ. (mA) 5% Typ. (mA) 0.5 3 7 9.0 0.5 3 7 2.1 22 2.0 3 7 2 1.2 14 1.4 3 12 1 5 2.5 27 2.8 4 7 3 50 1.8 19 0.76 4 8 H6524-01 (with 50 Ω) H6524 1.7 × 106 10 300 1.3 14 0.36 4 8 H6612-01 (with 50 Ω) H6612 40 5.0 × 105 400 Notes H3164-12: SHV, BNC connector type H3164-14: SHV, LEMO connector type H3695-12: SHV, BNC connector type H3695-14: SHV, LEMO connector type H3165-12: SHV, BNC connector type H3165-14: SHV, LEMO connector type H12690-00-01: SHV, BNC connector type H12690-00-02: SHV, LEMO connector type H3164-10 H3695-10 H3165-10 H12690∗ H6520 5 30 1.5 5.6 0.35 180 250 5.7 × 106 100 800 0.7 10 0.16 40 70 475 5.0 × 106 10 200 1.7 16 0.5 10 30 47 5.0 × 105 10 100 1.6 17 0.55 30 50 H10828∗ 75 7.9 × 105 2 15 2.7 40 4.5 150 200 H3178-51 800 1.0 × 107 15 100 2.1 7.5 0.35 350 500 H8409-70 1800 1.0 × 107 50 400 1.3 28 0.55 100 200 H3177-51 (R2059) 270 3.0 × 106 10 100 2.7 40 1.1 100 200 H6521 (R2256) H6522 (R5113) H6410 270 3.0 × 106 10 100 2.7 40 1.1 80 110 H7195 200 2.5 × 106 100 800 0.7 16 0.37 100 150 700 1.0 × 107 30 200 2.5 9.5 0.44 500 700 H6614-70 900 1.0 × 107 30 120 2.7 40 1.5 80 110 H6559 1000 1.4 × 107 50 300 2.5 54 1.2 100 150 H6527 1000 1.4 × 107 50 300 2.5 54 1.2 100 150 H6528 1500 3.0 × 106 1/ch 10/ch 0.7 6.0 0.25 0.9/ch 1/ch 280 3.5 × 106 0.8/ch 4/ch 0.83 12 0.33 0.5/ch 1/ch 8 ch Linearanode H9530-20 16 ch Multianode H8711-10 (Taper Divider Type) H8711 250 5.0 × 105 0.8/ch 4/ch 0.83 12 0.33 0.5/ch 1/ch H8711-20 50 6.0 × 105 0.2/ch 2/ch 1.0 12 0.38 0.3/ch 0.6/ch 64 ch Multianode 250 5.0 × 105 0.2/ch 2/ch 1.0 12 0.38 0.3/ch 0.6/ch 500 1.0 × 106 1/ch 10/ch 0.6 6.8 0.23 0.6/ch 0.8/ch 90 1.5 × 106 0.1/ch 50/in total 0.8 6.0 0.4 1/ch 2/ch H7546B-20 32 ch Linearanode H7260A-20 (-HV Cable Input Type) H7260-20 H8500C-03 (UV Glass Type) H8500C H8500D (HV Pin Input Type) 90 1.5 × 106 0.02/ch 30/in total 0.8 6.0 0.4 0.2/ch 0.5/ch 20 3.3 × 105 0.1/ch 30/in total 0.4 4.0 — 1.2/ch 3/ch 110 1.5 × 106 0.1/ch 50/in total 0.65 5.3 0.28 0.8/ch 500 1.0 × 106 1/ch 10/ch 0.6 7.4 0.23 0.8/ch H6152-70 H6610 (R5320) H7415-01 (with 50 Ω) H7416 (R7056) H3378-50 (R3377) H6533 H7415 H1949-51 H2431-50 H7546B H9500-03 (UV Glass Type) H9500 H10966A 2/ch H10966B (HV Pin Input Type) H12700A-03 (UV Glass Type) H12700B (HV Pin Input Type) 1/ch 16 ch Linearanode H10515B-20 H12700A∗ 77 Photomultiplier Tube Assemblies Dimensional Outlines and Diagrams (Unit: mm) q H3164-10 w H3695-10 10.5 ± 0.6 11.3 ± 0.7 8 MIN. 8 MIN. SIGNAL OUTPUT : RG-174/U (BLACK) SIGNAL OUTPUT : RG-174/U (BLACK) P R11 C3 DY8 R10 C2 P DY7 R9 MAGNETIC SHIELD (t=0.2 mm) WITH HEAT SHRINKABLE TUBE C1 95.0 ± 2.5 95.0 ± 2.5 PMT: R1635 WITH HA TREATMENT PHOTOCATHODE 45.0 ± 1.5 45.0 ± 1.5 PHOTOCATHODE DY6 R8 DY5 R7 DY4 PMT: R2496 WITH HA TREATMENT DY8 MAGNETIC SHIELD (t=0.2 mm) WITH HEAT SHRINKABLE TUBE DY6 R6 R5 DY5 R6 DY4 R4 R3 DY1 R3 R2 DY1 R2 R1 R1 to R11 : 330 kΩ C1 to C3 : 0.01 µF *TO MAGNETIC SHIELD CASE -HV : SHIELD CABLE (GRAY) 10.6 ± 0.2 -HV : SHIELD CABLE (GRAY) 1500 1500 R1 K -HV : SHIELD CABLE (GRAY) * MAGNETIC SHIELD IS CONNECTED TO -HV INSIDE OF THIS PRODUCT. ** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U. SIGNAL OUTPUT : RG-174/U (BLACK) C1 R7 DY2 R4 -HV : SHIELD CABLE (GRAY) C2 R8 DY3 DY2 K C3 R9 R5 DY3 10.6 ± 0.2 R10 DY7 SIGNAL OUTPUT : RG-174/U (BLACK) R1 to R4 : 510 kΩ R5 to R10 : 330 kΩ C1 to C3 : 0.01 µF *TO MAGNETIC SHIELD CASE * MAGNETIC SHIELD IS CONNECTED TO -HV INSIDE OF THIS PRODUCT. ** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U. TPMHA0309ED e H3165-10 TPMHA0310ED r H12690 14.3 ± 0.6 14.3 ± 0.7 10 MIN. 10 MIN. PHOTOCATHODE PHOTOCATHODE SIGNAL OUTPUT : RG-174/U (BLACK) 71 ± 2 PMT: R647-01 WITH HA TREATMENT P P R11 C3 R10 C2 DY9 R9 MAGNETIC SHIELD CASE (t=0.2) WITH HEAT SHRINKABLE TUBE 88 ± 3 DY10 MAGNETIC SHIELD CASE (t=0.2 mm) WITH HEAT SHRINKABLE TUBE 116.0 ± 3.0 SIGNAL OUTPUT RG-174/U (BLACK) PMT: R12421 WITH HA TREATMENT C1 DY8 R7 R8 DY6 R6 R7 DY5 DY5 R5 R6 DY4 DY4 12.4 ± 0.5 R4 R5 DY3 DY3 R3 R4 DY2 DY2 SIGNAL OUTPUT RG-174/U (BLACK) R2 R1 R1 to R11 : 330 kΩ C1 to C3 : 0.01 µF R3 DY1 R2 1500 -HV : SHIELD CABLE (RED) 12.4 ± 0.5 -HV: SHIELD CABLE (RED) * MAGNETIC SHIELD IS CONNECTED TO -HV INSIDE OF THIS PRODUCT. ** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U. R1 K * TO MAGNETIC SHIELD CASE R1 to R12: 330 kΩ C1 to C3: 0.01 µF -HV SHIELD CABLE (RED) * TO MAGNETIC SHIELD CASE * MAGNETIC SHIELD IS CONNECTED TO -HV INSIDE OF THIS PRODUCT. ** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U. 5 10 1500 C1 R9 DY7 DY6 SIGNAL OUTPUT : RG-174/U (BLACK) C2 R10 DY8 R8 -HV : SHIELD CABLE (RED) C3 R11 DY9 DY7 DY1 K R12 DY10 TPMHA0311ED y H6524 23.5 ± 0.5 19.3 ± 0.7 19.3 ± 0.7 15 MIN. 15 MIN. P C3 R10 C2 R9 C1 DY10 MAGNETIC SHIELD CASE (t=0.5 mm) DY9 DY8 R8 DY7 R7 DY6 MAGNETIC SHIELD CASE (t=0.5 mm) R7 R6 R5 DY4 R4 R4 DY3 R3 R3 DY2 DY2 R2 R2 -HV : SHIELD CABLE (GRAY) * TO MAGNETIC SHIELD CASE 1500 1500 DY1 K * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. ** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U. -HV : SHIELD CABLE (GRAY) SIGNAL OUTPUT : RG-174/U (BLACK) TPMHA0312EC 78 C1 DY5 DY3 SIGNAL OUTPUT : RG-174/U (BLACK) C2 R9 DY8 DY6 R5 R1 : 510 kΩ R2 to R11 : 330 kΩ C1 to C3 : 0.01 µF C3 R10 R8 DY4 -HV : SHIELD CABLE (GRAY) R11 DY9 DY7 R6 R1 P DY10 DY5 DY1 K SIGNAL OUTPUT : RG-174/U (BLACK) PHOTOCATHODE PMT: R1450 WITH HA TREATMENT R11 88 ± 2 88 ± 2 130.0 ± 0.8 SIGNAL OUTPUT : RG-174/U (BLACK) PHOTOCATHODE PMT: R1166 WITH HA TREATMENT 1 MAX. 23.5 ± 0.5 130.0 ± 0.8 1 MAX. t H6520 TPMHA0596EA R1 R1 R3 R2, R4 to R11 C1 to C3 -HV : SHIELD CABLE (GRAY) : 680 kΩ : 510 kΩ : 330 kΩ : 0.01 µF * TO MAGNETIC SHIELD CASE * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. ** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U. TPMHA0313EB u H6612 i H6152-70 23.5 ± 0.5 31.0 ± 0.5 19.3 ± 0.7 25.8 ± 0.7 15 MIN. SIGNAL OUTPUT : RG-174/U (BLACK) 17.5 MIN. R23 PHOTOCATHODE 65 ± 2 P PMT: R3478 WITH HA TREATMENT R11 C3 R10 C2 R9 C1 C6 1 MAX. 1 MAX. SIGNAL OUTPUT : RG-174/U (BLACK) P 100.0 ± 0.8 130.0 ± 0.8 R8 DY5 R7 DY4 C2 R13 C1 R1 to R17 : 330 kΩ R18, R23 : 1 MΩ R19 to R21 : 51 Ω R22 : 100 kΩ R24 : 10 kΩ C1 to C5 : 0.01 µF C6, C7 : 0.0047 µF R12 DY10 R6 R11 DY9 R5 R10 POM CASE DY8 R4 R9 DY1 R3 DY7 R2 DY6 R1 DY5 R8 R7 -HV : SHIELD CABLE (GRAY) R6 DY4 R5 1500 * TO MAGNETIC SHIELD CASE R1 C1 to C3 R2 : 1 MΩ R3 : 750 kΩ R4, R6 to R11 : 560 kΩ R5 : 330 kΩ DY3 +HV : SHIELD CABLE (GRAY) R4 DY2 R3 DY1 R2 * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. ** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U. SIGNAL OUTPUT : RG-174/U (BLACK) 5 10 1500 C3 R14 DY11 DY2 SIGNAL OUTPUT : RG-174/U (BLACK) C4 R19 R15 +HV : SHIELD CABLE (GRAY) DY12 DY3 -HV : SHIELD CABLE (GRAY) R20 R16 R24 DY13 DY6 K C5 DY14 DY7 MAGNETIC SHIELD CASE (t=0.5 mm) R21 R17 DY15 PMT: R5505-70 WITH HA TREATMENT DY8 C7 R22 PHOTOCATHODE K R18 R1 * HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U. TPMHA0470EB TPMHA0315EB !0 H7415 o H6533 31.0 ± 0.5 26 ± 1 33.0 ± 0.5 SIGNAL OUTPUT : RG-174/U (BLACK) P 20 MIN. SIGNAL OUTPUT : RG-174/U (BLACK) 29.0 ± 0.7 R19 25 MIN. C4 P R22 R18 1 MAX. DY10 R16 C3 R21 R15 PMT: R4998 (H6533) R5320 (H6610) WITH HA TREATMENT 120.0 ± 0.8 PMT: R6427 (H7415) R7056 (H7416) WITH HA TREATMENT R14 C2 R20 R13 C1 MAGNETIC SHIELD CASE (t=0.8 mm) R11 DY6 R10 DY5 R1, R3, R19 : 430 kΩ R2, R7 to R12, R15 to R17 : 330 kΩ R4 : 820 kΩ R5, R18 : 390 kΩ R6, R14 : 270 kΩ R13 : 220 kΩ R20 to R22 : 51 Ω C1 to C3 : 0.022 µF C4 : 0.033 µF R9 DY4 R8 DY3 R7 R6 DY2 R5 DY1 R4 R10 R8 DY5 MAGNETIC SHIELD CASE (t=0.8 mm) R7 DY4 R6 DY3 R5 DY2 R4 DY1 R3 R2 K 1500 R2 R1 -HV : SHIELD CABLE (GRAY) R1 -HV : SHIELD CABLE (GRAY) -HV : SHIELD CABLE (GRAY) * TO MAGNETIC SHIELD CASE SIGNAL OUTPUT : RG-174/U (BLACK) R1,R2 : 430 kΩ R3 : 470 kΩ R5 : 510 kΩ R4,R6 to R13 : 300 kΩ R14 to R16 : 51 Ω C1 to C3 : 0.01 µF DY7 R9 1500 ACC G K C1 DY8 R3 -HV : SHIELD CABLE (GRAY) C2 R14 R11 DY6 130.0 ± 0.8 R12 DY7 C3 R15 R12 DY9 DY9 DY8 R16 R13 DY10 PHOTOCATHODE 85 ± 2 71 ± 1 PHOTOCATHODE 1 MAX. R17 SIGNAL OUTPUT : RG-174/U (BLACK) * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. ** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U. * TO MAGNETIC SHIELD CASE * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. ** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U. TPMHA0317EC !2 H3178-51 !1 H10828 47.0 ± 0.5 SIGNAL OUTPUT : BNC-R 39 ±1 DY8 DY7 DY6 MAGNETIC SHIELD CASE (t=0.8 mm) R12 C3 R11 C2 R10 C1 C4 R14 R12 R11 C3 R9 R8 DY3 R7 R8 C1 R7 DY6 R6 DY5 DY4 R4 DY3 R3 DY2 R5 R4 : 300 kΩ : 150 kΩ : 180 kΩ : 220 kΩ : 330 kΩ : 240 kΩ : 51 Ω : 10 kΩ : 0.01 µF : 0.022 µF : 0.047 µF : 0.1 µF : 4700 pF R3 DY1 R2 C4 K R13 * TO MAGNETIC SHIELD CASE SIGNAL OUTPUT : BNC-R R1 R15 -HV : SHV-R * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. -HV R1 : 470 kΩ R2 : 430 kΩ R3, R5, R7 to R9 : 300 kΩ R4, R6 : 150 kΩ R10, R11 : 51 Ω R12 : 100 Ω R13 : 10 kΩ C1 to C3 : 0.022 µF C4 : 0.001 µF C5 DY1 -HV : SHV-R SIG -HV SIG -HV : SHV-R C2 DY7 R5 R1 R9 DY8 MAGNETIC SHIELD CASE (t=0.8 mm) R6 R2 R1, R10, R12 R2 to R6, R13 R7 R8 R9 R11 R14 R15 C1 C2 C3 C4 C5 R10 DY9 PMT: R580 WITH HA TREATMENT DY2 SIGNAL OUTPUT : BNC-R R13 DY10 PHOTOCATHODE DY4 162.0 ± 0.8 P DY5 K SIGNAL OUTPUT : BNC-R 34 MIN. 162.0 ± 0.8 PHOTOCATHODE ACTIVE VOLTAGE DIVIDER P 34 MIN. * TO MAGNETIC SHIELD CASE 39 ± 1 1 MAX. 47.0 ± 0.5 1 MAX. TPMHA0318EC -HV : SHV-R * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. TPMHA0600EA TPMHA0320EC 79 Photomultiplier Tube Assemblies Dimensional Outlines and Diagrams (Unit: mm) !3 H8409-70 !4 H1949-51 60.0 ± 0.5 45.0 ± 0.5 C7 1 MAX. 39 ± 1 C6 R27 P 27 MIN. R25 R21 R26 R24 R20 C4 R23 R19 C3 SIGNAL OUTPUT : BNC-R 46 MIN. P +HV : SHIELD CABLE (GRAY) C5 DY19 PHOTOCATHODE * TO MAGNETIC SHIELD CASE 53.0 ± 1.5 1 MAX. SIGNAL OUTPUT : RG-174/U (BLACK) R28 DY18 R18 C2 R17 C1 DY15 R1 to R21 : 330 kΩ R22, R28 : 1 MΩ R23 to R25 : 51 Ω R26 : 10 kΩ R27 : 100 kΩ C1 to C5 : 0.01 µF C6, C7 : 0.0047 µF R16 DY14 R15 DY13 R14 DY12 R13 DY11 +HV : SHIELD CABLE (GRAY) PMT: R1828-01 (H1949-51) R2059 (H3177-51) R4004 (H4022-51) WITH HA TREATMENT C8 C4 C7 R12 C3 R11 C2 R10 C1 R1, R4 R2, R5 R3, R6 to R11, R17 R12 to R16 R18 to R20 R21 C1 to C7 C8 C9 C10 C11 DY9 DY8 DY7 R9 DY6 MAGNETIC SHIELD CASE (t=0.8 mm) R8 DY5 R7 R12 DY4 R11 DY3 R10 DY2 R9 DY1 : 240 kΩ : 360 kΩ : 200 kΩ : 300 kΩ : 51 Ω : 10 kΩ : 0.01 µF : 0.022 µF : 0.033 µF : 0.01 µF : 470 pF R6 R5 DY9 R4 DY8 R3 DY7 R8 Acc G1 K DY6 5 10 C10 DY10 DY10 SIGNAL OUTPUT : RG-174/U (BLACK) C5 R18 R13 R19 R14 DY16 POM CASE C9 DY11 235 ± 1 50 ± 2 80.0 ± 0.8 PMT: R7761-70 WITH HA TREATMENT C6 R15 PHOTOCATHODE DY17 1500 R17 R20 R16 DY12 R7 DY5 C11 R2 R21 R1 -HV : SHV-R R6 DY4 R5 DY3 R4 DY2 R3 DY1 R1 TPMHA0476EB -HV : SHV-R * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. TPMHA0326ED !6 H7195 !5 H6410 60.0 ± 0.5 DY12 DY11 DY10 DY9 DY8 DY7 DY6 DY5 PMT: R329 (H6410) R5113 (H6522) R2256 (H6521) WITH HA TREATMENT R18 R21 R17 R16 R20 R15 R14 R19 R13 R12 R11 R10 R9 R8 200 ± 1 SH MAGNETIC SHIELD CASE (t=0.8 mm) C4 R25 DY4 DY3 DY2 DY1 PHOTOCATHODE C2 C1 PMT: R329 WITH HA TREATMENT C7 DY12 DY11 MAGNETIC SHIELD CASE (t=0.8 mm) R6 R5 R4 R3 R2 R1 DY10 DY9 DY8 DY7 DY6 DY5 DY4 DY3 DY2 DY1 G C6 R22 -HV : SHV-R : 240 kΩ : 220 kΩ : 180 kΩ : 150 kΩ : 300 kΩ : 360 kΩ : 51 Ω : 100 Ω : 10 kΩ : 0.022 µF : 0.047 µF : 0.1 µF : 0.22 µF : 0.47 µF : 470 pF K R21 R24 R20 R19 R18 R23 R17 R16 R22 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 C6 C5 R1, R25 R2 to R4, R17 to R19 R5, R6, R8 to R13, R15 R16, R20, R21 R7, R14 R22 R23, R24 C1 C2 C3 C4 C5 C6 C7 C4 C3 C2 R1 C1 : 10 kΩ : 110 kΩ : 100 kΩ : 160 kΩ : 51 Ω : 100 Ω : 470 pF : 0.022 µF : 0.047 µF : 0.1 µF : 0.22 µF : 0.47 µF : 0.01 µF -HV : SHV-R DYNODE 12 OUTPUT : BNC-R ANODE OUTPUT 1 : BNC-R DY A1 -HV SIG -HV * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. TPMHA0324EC ANODE OUTPUT 2 : BNC-R A2 R1, R5 R2, R10, R16 R3, R9 R4, R6 to R8, R14, R18 R11, R13, R17 R12, R15 R19 R20, R21 R22 C1 C2 C3 C4 C5 C6 !7 H2431-50 - HV : SHV-R * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. TPMHA0323EB !8 H6614-70 60.0 ± 0.5 * TO MAGNETIC SHIELD CASE 53.0 ± 1.5 C8 C9 C6 C7 C10 C11 R17 R15 DY8 PHOTOCATHODE 60.0 ± 0.5 R14 R13 R11 C12 DY6 R10 C3 R9 C2 R8 C1 DY5 DY4 MAGNETIC SHIELD CASE (t=0.8 mm) DY3 R7 DY2 R6 DY1 R5 R4 ACC R1 : 33 kΩ R2, R15 : 390 kΩ R3, R4, R13 : 470 kΩ R5 : 499 kΩ R6, R16 : 360 kΩ R7 : 536 kΩ R8 to R11 : 300 kΩ R12 : 150 kΩ R14 : 430 kΩ R17 : 51 Ω C1, C2 : 4700 pF C3 to C11 : 0.01 µF C12, C13 : 1000 pF C14 : 2200 pF +0 C5 80-1 C4 R25 R20 C4 R24 R19 C3 R23 R18 C2 R17 C1 R27 +HV : SHIELD CABLE (GRAY) DY18 PHOTOCATHODE DY17 PMT: R5924-70 WITH HA TREATMENT DY16 DY15 R16 R15 LIGHT SHIELD STEM POM CASE DY13 R14 DY12 R13 DY11 +HV : SHIELD CABLE (GRAY) DY10 R12 R11 DY9 R10 R1 to R21 R22, R29 R23 to R26 R27 R28 C1 to C5 C6, C7 : 330 kΩ : 1 MΩ : 51 Ω : 10 kΩ : 100 kΩ : 0.01 µF : 0.0047 µF DY8 R9 C14 SIGNAL OUTPUT : RG-174/U (BLACK) R1 -HV : SHV-R 5 10 R2 C5 DY14 R3 G K R26 R21 DY19 1500 R12 C6 R28 P 39 MIN. C13 DY7 PMT: R2083 (H2431-50) R3377 (H3378-50) WITH HA TREATMENT C7 52 ± 1 R16 1 MAX. P SIGNAL OUTPUT : RG-174/U (BLACK) R29 SIGNAL OUTPUT : BNC-R 46 MIN. 200 ± 1 P C3 R7 G K -HV : SHV-R C5 ANODE OUTPUT 2 : BNC-R ANODE OUTPUT 1 : BNC-R DYNODE OUTPUT : BNC-R 46 MIN. 215 ± 1 PHOTOCATHODE 1 MAX. 1 MAX. P * TO MAGNETIC SHIELD CASE 53.0 ± 1.5 SIGNAL OUTPUT : BNC-R 46 MIN. SIGNAL OUTPUT : BNC-R 60.0 ± 0.5 * TO MAGNETIC SHIELD CASE 53.0 ± 1.5 1 MAX. SIGNAL OUTPUT : BNC-R A1 R22 K -HV R2 * HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U. DY7 R8 DY6 R8 DY5 R6 DY4 R5 DY3 R4 DY2 R3 SIGNAL OUTPUT : BNC-R DY1 SIG -HV -HV : SHV-R R2 * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. * HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U. TPMHA0327EC 80 K R22 R1 TPMHA0472EB !9 H6559 @0 H6527, H6528 83 ± 1 65 MIN. SIGNAL OUTPUT : BNC-R PMT: R6091 WITH HA TREATMENT 218 ± 1 SH C3 C2 C1 R7 DY4 DY3 DY2 DY1 MAGNETIC SHIELD CASE (t=0.8 mm) R6 R5 R4 R3 R2 R1 G K PMT: R1250 (H6527) R1584 (H6528) WITH HA TREATMENT C1 R1, R17 : 240 kΩ R2 : 360 kΩ R3 : 390 kΩ R4 : 120 kΩ R5 : 180 kΩ R6 to R13 : 100 kΩ R14, R15 : 150 kΩ R16 : 300 kΩ R18 : 51 Ω R19, R20 : 100 Ω R21 : 10 kΩ C1 : 0.022 µF C2 : 0.047 µF C3 : 0.1 µF C4 : 0.22 µF C5 : 0.47 µF C6 : 470 pF R12 DY9 R11 DY8 R10 -HV : SHV-R DY7 R9 DY6 R8 BLACK TAPE DY5 SOCKET ASSY HOUSING DY4 R7 R6 DY3 R5 DY2 R4 74 ± 0.5 DY1 R3 G2 R21 -HV : SHV-R SIG -HV : SHV-R * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. H6527=Flat window, Borosilicate H6528=Curved window, UV glass TPMHA0331EC R1 -HV SIG -HV SIGNAL OUTPUT : BNC-R -HV : SHV-R C6 R2 G1 K TPMHA0332ED @2 H8711, H8711-20, H8711-100, H8711-200, H8711-300 2.5 GUIDE MARKS 0.65 2 2 1 1 15 7 8 33.0 ± 0.5 3.08 TOP VIEW 8 K G P8 P16 GND 4-SCREWS (M2) 2.54 45.0 ± 0.8 ANODE SIZE (X) × (Y) 4.4 mm × 4.4 mm 4.2 mm × 4.4 mm 4.4 mm × 4.2 mm 4.2 mm × 4.2 mm ANODE OUTPUT TERMINAL PIN ( 0.46, 2.54 PITCH 8 × 4) -HV P9 0.8 MAX. 25.7 2.54 0.5 TYP. 13 18.1 ANODE #1 to #8 OUTPUT PIN ( 0.46) 16.0 ± 0.5 14 GND 2.54 -HV 1 3 16 DY P1 26 2 GND 4 5 6 6 5 7 4 8 2.54 × 5=12.7 2 3 GND INPUT TERMINAL PIN ( 0.46) -HV INPUT TERMINAL PIN ( 0.46) 12.7 POM CASE 5.08 3 X 30.0 ± 0.5 4 -HV INPUT TERMINAL PIN ( 0.46) 0.3 Dy12 OUTPUT TERMINAL PIN ( 0.46) PMT: R7600-M16 SERIES Y 2.54 4- 0.3 GUIDE MARKS MOUNTING THREADED HOLE (M2 DEPTH 5) 7.62 2 2.8 3 35.0 ± 0.5 21.6 C2 R13 DY10 MAGNETIC SHIELD CASE (t=0.8 mm) @1 H9530-20 2.54 × 7=17.78 2.8 SIDE VIEW BOTTOM VIEW TERMINAL PINS ANODE P1, P4, P13, P16 P2, P3, P14, P15 P5, P8, P9, P12 P6, P7, P10, P11 P1 ANODE1 OUTPUT GND P2 ANODE2 OUTPUT GND ANODE8 OUTPUT GND P8 TERMINAL PINS DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12 C1 R1 -HV C3 R14 DY11 C6 * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. SIGNAL OUTPUT : BNC-R C4 R18 R15 DY12 R1, R5 : 240 kΩ R2, R10, R16 : 220 kΩ R3, R9 : 180 kΩ R4, R6 to R8, R14, R18 : 150 kΩ R11, R13, R17 : 300 kΩ R12, R15 : 360 kΩ R19 : 51 Ω R20, R21 : 100 Ω R22 : 10 kΩ C1 : 0.022 µF C2 : 0.047 µF C3 : 0.1 µF C4 : 0.22 µF C5 : 0.47 µF C6 : 470 pF 70 ± 1 C5 R19 R16 DY13 77 R22 R20 R17 DY14 140 ± 1 DY10 DY9 DY8 DY7 DY6 DY5 P PHOTOCATHODE C4 259 ± 2 DY11 SIGNAL OUTPUT : BNC-R C5 356 ± 6 PHOTOCATHODE 40 ± 1 R18 R21 R17 R16 R20 R15 R14 R19 R13 R12 R11 R10 R9 R8 DY12 120 MIN. 56 P * TO MAGNETIC SHIELD CASE 133 ± 2 1 MAX. 1 MAX. 142.0 ± 0.8 * TO MAGNETIC SHIELD CASE 77.0 ± 1.5 R2 R3 R4 R1 to R6, R9: R7: R8: R10 to R12: C1 to C4: R5 R6 220 kΩ 1 kΩ 200 kΩ 51 Ω 0.01 µF R7 GAIN ADJUSTMENT CIRCUIT * R8 R10 C2 R11 C3 SB P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 R12 C4 ACTIVE VOLTAGE DIVIDER R9 ANODE1 ANODE2 ANODE3 ANODE4 ANODE5 ANODE6 ANODE7 ANODE8 P9 GND ANODE15 OUTPUT GND P16 DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12 ANODE16 OUTPUT GND C4 R15 R16 R17 R14 R1 R18 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 C1 C2 C3 * Gain on each channel is preset at the factory. It is prohibited to adjust gain with this circuit at user side R1 to R3 : 360 kΩ R4 to R13 : 180 kΩ R14 : 1 MΩ TPMHA0508ED @3 H7546B, H7546B-20, H7546B-100, H7546B-200, H7546B-300 ANODE9 OUTPUT P15 K F 4 × 2 LINE 2.54 PITCH TERMINAL PINS DY12 OUTPUT GND TERMINAL PINS -HV INPUT R15 to R17 : 51 Ω R18 : 10 kΩ C1 to C4 : 0.01 µF GND TPMHA0487EE @4 H7260-20, H7260-100, H7260-200 7.62 0.8 1 2.54 × 9=22.86 1.27 0.8 Typ. 7 ANODE1 OUTPUT ANODE2 OUTPUT P63 P64 ANODE63 OUTPUT ANODE64 OUTPUT .. . K F R21 C1 R18 C2 R19 R2 R3 -HV TERMINAL PIN ( 0.64) R4 R5 R6 R7 R8 R1, R5 to R14 : 100 kΩ R2 to R4, R15 : 200 kΩ R16 : 300 kΩ R17 to R19 : 51 Ω 7.5 ANODE #32 A32-ANODE - A2 -HV TPMHA0455EG P1 ANODE1 OUTPUT P2 ANODE2 OUTPUT P31 P32 ANODE31 OUTPUT KG R20 Dy12 OUTPUT TERMINAL PIN ( 0.64) DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 C3 R9 R10 R11 R12 R13 R14 R15 R16 ANODE #31 3.3 TERMINAL PINS (2.54 mm PITCH, 0.64, 8 × 8) GND TERMINAL PIN ( 0.64) R1 35.0 ± 0.5 ANODE #2 ANODE #1 to #32 OUTPUT ( 0.46) (16PIN × 2 LINE 2.54 PITCH) 24.0 ± 0.5 DY12 C4 DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 R17 .. . DY10 OUTPUT PIN ( 0.5) ANODE #32 BOTTOM VIEW P1 P2 ANODE #1 DY OUT A31-ANODE - A1 GND P64 GND P1 P8 DY 4-SCREWS (M2) 2.54 × 15 = 38.1 P57 ANODE #1 Dy12 OUTPUT TERMINAL PIN ( 0.64) 2.54 5.2 SIDE VIEW TOP VIEW -HV INPUT TERMINAL PIN ( 0.5) GND HV 2.54×7=17.78 4.2 45.0 ± 0.8 25.7 2.54 POM CASE GND TERMINAL PIN ( 0.64) 2.54 30.0 ± 0.5 1 2 3 4 5 6 7 8 57 58 59 60 61 6263 64 0.8 MAX. 18.1 5.08 2.54 POM CASE GND TERMINAL PIN ( 0.5) 31.8 0.3 ANODE OUTPUT TERMINAL PIN ( 0.64, 2.54 PITCH 8 × 8) 52.0 ± 0.5 4- 0.3 GUIDE MARKS -HV INPUT TERMINAL PIN ( 0.64) PMT: R7600-M64 SERIES 2 GND TERMINAL PIN ( 0.64) R20 : 10 kΩ R21 : 1 MΩ C1 to C3 : 0.022 µF C4 : 0.01 µF TPMHA0488ED C1 DY10 C4 R8 C2 R9 C3 16 × 2 LINE 2.54 PITCH ANODE32 OUTPUT DY10 OUTPUT R11 R10 R1 R2 R3 R4 R5 R6 R7 R1 to R7 : 220 kΩ R8, R9 : 51 Ω R10 : 1 MΩ ACTIVE VOLTAGE DIVIDER SHIELD SHIELD R11 : 10 kΩ C1 to C4 : 0.01 µF DIVIDER CURRENT : 0.37 mA (at -900 V) GND TERMINAL PIN -HV INPUT TERMINAL PIN TPMHA0192EB 81 Photomultiplier Tube Assemblies Dimensional Outlines and Diagrams (Unit: mm) @5 H8500C @6 H9500 32.7 ± 1.0 27.4 ± 0.9 1 10, 9, 2, 3 12, 11, 4, 5 GND SIDE VIEW -HV: SHV-P (SHIELD CABLE, GRAY) 3.04 P8 P64 P7 P63 P6 P62 P5 P61 P16 P256 P4 P60 P15 P255 P3 P59 P2 P58 P1 P57 K R20 R5 R6 R7 R8 R16 R17 R18 C1 C2 C3 R19 R9 ACTIVE VOLTAGE DIVIDER ANODE OUTPUT (P64) ANODE OUTPUT (P63) R22 R1 to R9: 470 kΩ R16 to R18: 51 Ω R19: 10 kΩ R20: 1 MΩ R21, R22: 4.99 kΩ C1, C7: 0.01 µF C2: 0.022 µF C3: 0.033 µF C8: 0.0047 µF -HV SHV-P (SHIELD CABLE, GRAY) 4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR ...... .... ...... ...... DIVIDER CURRENT 0.18 mA at -1100 V DIVIDER CURRENT 0.173 mA at -1100 V 4 × 0.8 mm PITCH HEADER (P/N QTE-040-03-F-D-A, SAMTEC) TPMHA0544EB @8 H12700A 6 × 6=36 6.25 6.25 PLASTIC BASE PC BOARD P64 P8 P64 P7 P63 P7 P63 P6 P62 P6 P62 P5 P61 P5 P61 P4 P60 P4 P60 P3 P59 P3 P59 P2 P58 P2 P58 P1 P57 GR P1 P57 DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 R16 R3 R4 R5 R6 R7 58.57.50.49.42.41.34.33.26.25.18.17.10.9.2.1 SIG1 R8 R23 ANODE OUTPUT (P64) ANODE OUTPUT (P63) ANODE OUTPUT (P62) ANODE OUTPUT (P61) ANODE OUTPUT (P60) ANODE OUTPUT (P59) ANODE OUTPUT (P58) ANODE OUTPUT (P8) ANODE OUTPUT (P7) ANODE OUTPUT (P6) ANODE OUTPUT (P5) ANODE OUTPUT (P4) ANODE OUTPUT (P3) 225 µA at -1100 V ANODE OUTPUT (P2) DIVIDER CURRENT SIGNAL GND -HV SHV-P (SHIELD CABLE, GRAY) C1, C2: 0.01 µF C3: 0.022 µF C4: 0.033 µF C10: 0.01 µF C11, C12: 0.0015 µF DY10 OUTPUT ...... R1 to R8: 390 kΩ R16, R20: 10 kΩ R17 to R19: 51 Ω R21: 1 MΩ R22, R23: 4.99 kΩ ANODE OUTPUT (P1) ANODE OUTPUT (P64) ANODE OUTPUT (P63) ANODE OUTPUT (P62) ANODE OUTPUT (P61) R22 ANODE OUTPUT (P60) ANODE OUTPUT (P8) ANODE OUTPUT (P7) ANODE OUTPUT (P6) ANODE OUTPUT (P5) ANODE OUTPUT (P4) ANODE OUTPUT (P3) ANODE OUTPUT (P2) ANODE OUTPUT (P1) SIGNAL GND DY8 OUTPUT C11 ANODE OUTPUT (P59) .... ...... 4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR 4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR 82 R2 C4 C12 R21 DIVIDER CURRENT 0.245 mA at -1100 V R19 C3 ACTIVE VOLTAGE DIVIDER ACTIVE VOLTAGE DIVIDER R22 -HV SHV-P (SHIELD CABLE, GRAY) R18 C2 R20 R1 R5 R1 to R9: 470 kΩ R16 to R18: 51 Ω R19: 10 kΩ R20: 1 MΩ R21, R22: 4.99 kΩ C1: 0.01 µF C2: 0.022 µF C3: 0.033 µF C7: 0.0047 µF C8, C9: 0.0015 µF R17 C1 R21 R19 ANODE OUTPUT (P58) R4 C3 ANODE OUTPUT (P57) R3 R18 C2 (P49 to P56) R2 C8 C9 R17 C1 (P9 to P16) R1 R16 GND ANODE C10 C7 R20 GND ANODE BOTTOM VIEW P8 K GR 60.59.52.51.44.43.36.35.28.27.20.19.12.11.4.3 -HV: SHV-P (SHIELD CABLE, GRAY) BOTTOM VIEW DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 30.29.22.21.14.13.6.5 SIDE VIEW -HV: SHV-P (SHIELD CABLE, GRAY) K 38.37 M3 DEPTH 2.5 4-SIGNAL OUTPUT CONNECTOR HSA-200-D36P-X mfg. JC ELECTRONICS CORPORATION PC BOARD TOP VIEW SIDE VIEW 62.61.54.53.46.45 GND ANODE 2 INSULATING TAPE 4-SIGNAL OUTPUT CONNECTOR TMM-118-03-G-D, mfg. SAMTEC SIG2 P57 P58 P59 P60 P61 P62 P63 P64 M3 DEPTH 2.5 SIG3 6.25 SIG1 58, P49 P50 P51 P52 P53 P54 P55 P56 DY.64.63.56.55.48.47.39.32.31.24.23.16.15.8.7 P41 P42 P43 P44 P45 P46 P47 P48 SIG4 57, 50, 49 P33 P34 P35 P36 P37 P38 P39 P40 36 6 × 6=36 GND 52, 51 60, 59 61, 54, 53 SIG2 62 P9 P10 P11 P12 P13 P14 P15 P16 P25 P26 P27 P28 P29 P30 P31 P32 0.5 2 × 17=34 52.0 ± 0.3 6.25 1 12, 11, 4, 10, 9, 2, 3 5 16, 15, 56, 55 36 PLASTIC BASE TOP VIEW 14, 13, 6, 8, 7 -HV 2 INSULATION TAPE P1 P2 P3 P4 P5 P6 P7 P8 P17 P18 P19 P20 P21 P22 P23 P24 12 × 3=36 4.5 ± 0.3 4 2 4 ANODE OUTPUT (P57) 6.26 16.4 ± 0.5 1.5 START MARK 450 ± 20 6.08 × 6=36.48 SIG3 P57 P58 P59 P60 P61 P62 P63 P64 DY, 64, 63 P49 P50 P51 P52 P53 P54 P55 P56 SIG4 P41 P42 P43 P44 P45 P46 P47 P48 450 ± 20 P33 P34 P35 P36 P37 P38 P39 P40 0.5 2 × 17=34 52.0 ± 0.3 P25 P26 P27 P28 P29 P30 P31 P32 52.0 ± 0.3 6.08 × 6=36.48 P9 P10 P11 P12 P13 P14 P15 P16 PHOTOCATHODE (EFFECTIVE AREA) 49 6.26 P1 P2 P3 P4 P5 P6 P7 P8 P17 P18 P19 P20 P21 P22 P23 P24 32.7 ± 1.0 27.4 ± 0.9 12 × 3=36 4.5 ± 0.3 4 2 4 52.0 ± 0.3 14.8 ± 0.5 1.5 START MARK PHOTOCATHODE (EFFECTIVE AREA) 48.5 31.1 ± 1.0 25.8 ± 0.9 6.26 TPMHA0504EB GND ANODE @7 H10966A 6.26 ANODE OUTPUT (P256) R4 ANODE OUTPUT (P255) R3 C8 ANODE OUTPUT (P62) ANODE OUTPUT (P8) ANODE OUTPUT (P7) ANODE OUTPUT (P6) ANODE OUTPUT (P5) ANODE OUTPUT (P4) ANODE OUTPUT (P3) ANODE OUTPUT (P2) ANODE OUTPUT (P1) SIGNAL GND R1 to R9 : 470 kΩ R16 to R18 : 51 Ω R19 : 10 kΩ R20 : 1 MΩ R21, R22 : 4.99 kΩ C1 : 0.01 µF C2 : 0.022 µF C3 : 0.033 µF C7 : 0.0047 µF C8, C9 : 0.0015 µF DY12 OUTPUT ...... R2 R21 ANODE OUTPUT (P61) .... ANODE OUTPUT (P60) R21 ANODE OUTPUT (P59) R22 ANODE OUTPUT (P58) (P9 to P16) R1 ANODE OUTPUT (P242) R9 ACTIVE VOLTAGE DIVIDER -HV SHV-P (SHIELD CABLE, GRAY) P241 C7 R19 ANODE OUTPUT (P241) R8 P242 P1 (P17 to P32) R7 C8 C9 P2 (P225 to P240) R6 C3 GR ANODE OUTPUT (P16) R5 C2 DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12 ANODE OUTPUT (P15) R4 C1 BOTTOM VIEW ANODE OUTPUT (P2) R3 R18 (P49 to P56) R2 R17 ANODE OUTPUT (P57) R1 R16 SIDE VIEW ...... TOP VIEW C7 R20 4-SIGNAL CONNECTOR QTE-040-03-F-D-A, SAMTEC 36.4 ± 0.9 ...... GR 8.6 M3 DEPTH 4 33.3 ± 0.9 ANODE OUTPUT (P1) DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12 23.65 14.4 ± 0.5 49 GND K 8.6 1.5 3.04 × 14=42.56 BOTTOM VIEW DY12 OUTPUT NOTE *A: Polarized position of omitted pin *B: Suitable sockets for the signal connectors will be attached. The equivalent socket is SQT-118-01-L-D (SAMTEC). As it doesn't have a polarized position marker, it can be used at any positions. 52.0 ± 0.3 M3 DEPTH 2.5 4-SIGNAL OUTPUT CONNECTOR *B TMM-118-03-G-D, mfg. SAMTEC PC BOARD PHOTOCATHODE (EFFECTIVE AREA) 49 58, 450 - 0 +20 57, 50, 49 52, 51 62 60, 59 56, 55 61, 54, 53 36 PLASTIC BASE TOP VIEW 14, 13, 6, 8, 7 H8500 16, 15, -HV 2 INSULATING TAPE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 3.04 6.26 6 INSULATING TAPE START MARK 3.04 × 14=42.56 6.08 × 6=36.48 6.26 -HV: SHV-P (SHIELD CABLE, GRAY) SIG1 P57 P58 P59 P60 P61 P62 P63 P64 SIG2 6.26 P49 P50 P51 P52 P53 P54 P55 P56 DY, 64, 63 P41 P42 P43 P44 P45 P46 P47 P48 SIG4 P33 P34 P35 P36 P37 P38 P39 P40 450 ± 20 52.0 ± 0.3 6.08 × 6=36.48 P25 P26 P27 P28 P29 P30 P31 P32 0.5 2 × 17=34 52.0 ± 0.3 P9 P10 P11 P12 P13 P14 P15 P16 PHOTOCATHODE (EFFECTIVE AREA) 49 6.26 P1 P2 P3 P4 P5 P6 P7 P8 P17 P18 P19 P20 P21 P22 P23 P24 12 × 3=36 4.5 ± 0.3 4 2 4 SIG3 16.4 ± 0.5 1.5 START MARK TPMHA0559EB TPMHA0601EA 1.0 PITCH @9 H10515B-20 ANODE OUTPUT TERMINAL PIN 30.0 ± 0.5 PHOTOCATHODE (BDL-108-G-F, Mfg. SAMTEC) 16 16 TOP VIEW 0.8 MAX. P16 DY10 R10 DY9 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 -HV GND P2 P4 P6 P8 P10 P12 P14 P16 P1 ANODE OUTPUT P15 -HV GND P2 ANODE OUTPUT P16 2.54 × 7=17.78 ANODE OUTPUT 6.35 DY7 R7 P1 P3 P5 P7 P9 P11 P13 P15 5.7 R9 DY8 GND INPUT TERMINAL PIN ( 0.46) 0.64 SIDE VIEW 24 P4 P5 GND TERMINAL PIN R11 POM CASE 4-SCREW (M2) P2 P3 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 45.0 ± 0.5 PMT: R5900-20-L16 P1 DY6 R6 DY5 R5 DY4 R4 DY3 R3 DY2 ANODE #1 to #16 OUTPUT ( 0.46) 2.54 24 R2 DY1 G K -HV INPUT TERMINAL PIN ( 0.46) BOTTOM VIEW ACTIVE VOLTAGE DIVIDER 0.8 15.8 P1 R1 R8 -HV INPUT TERMINAL PIN R1 to R7 : 220 kΩ R8 : 1 MΩ R9 to R11 : 51 Ω DIVIDER CURRENT: 0.37 mA (at -900 V) TPMHA0534EB #1 H12428-100, H12428-200 GUIDE MARK 1 REF. 30.0 ± 0.5 26.2 30.0 ± 0.5 TOP VIEW TOP VIEW SIDE VIEW 4.2 39.0 ± 0.8 26.2 ANODE2 OUTPUT GR DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12 P15 ANODE15 OUTPUT R5 R6 R7 R8 R16 R17 R18 R9 R10 R11 R12 R13 R14 C1 P16 ANODE16 OUTPUT TERMINAL PIN (2.54 mm PITCH, 0.64, 4 × 4) K C2 P1 ANODE1 OUTPUT P2 ANODE2 OUTPUT P63 ANODE63 OUTPUT P64 ANODE64 OUTPUT GR DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12 R19 DY12 OUTPUT TERMINAL PIN ( 0.64) R15 R20 R1 R2 R3 R4 R5 R6 R7 R8 R16 R17 R18 R9 R10 R11 R12 R13 R14 C3 C1 GND TERMINAL PIN ( 0.64) R16 to R18 : 51 Ω R19 : 10 kΩ R20 : 1 MΩ C1 to C4 : 0.01 µF C2 R19 DY12 OUTPUT TERMINAL PIN ( 0.64) R15 C3 GND TERMINAL PIN ( 0.64) GND TERMINAL PIN ( 0.64) -HV TERMINAL PIN ( 0.64) R1, R3 : 240 kΩ R2 : 220 kΩ R4 to R14 : 200 kΩ R15 : 100 kΩ TPMHA0591EA TERMINAL PIN (2.54 mm PITCH, 0.64, 8 × 8) C4 GND TERMINAL PIN ( 0.64) -HV TERMINAL PIN ( 0.64) R1, R3 : 240 kΩ R2 : 220 kΩ R4 to R14 : 200 kΩ R15 : 100 kΩ GND BOTTOM VIEW C4 R20 R4 DY 4-SCREW (M2) SIDE VIEW ANODE1 OUTPUT P2 K R3 P64 GND 2.54 2.54 × 9=22.86 BOTTOM VIEW P1 R1 R2 DY12 OUTPUT TERMINAL PIN ( 0.64) TS-101-T-A-1, SAMTEC P57 -HV 2.88 × 8=23.04 5.08 2.54 × 3=7.62 P1 P8 2.88 × 8=23.04 PHOTO CATHODE 23 MIN. P13 P5 P9 P1 GND DY12 -HV GND P8 P4 P16 P12 2.54 × 3=7.62 PHOTO CATHODE 23 MIN. 5.08 8 4.2 GND TERMINAL PIN ( 0.64) TS-101-T-A-1, SAMTEC POM CASE 1 1 REF. 39.0 ± 0.8 23.55 4-SCREW (M2) ANODE OUTPUT TERMINAL PIN ( 0.64, 2.54 PITCH, 8 × 8) TD-108-T-A-1, SAMTEC × 4 PCS -HV TERMINAL PIN ( 0.64) ASP-23882-A-1, SAMTEC INSULATING TAPE 0.25 64 4 16 5.75 × 4=23 DY12 OUTPUT TERMINAL PIN ( 0.64) ASP-23882-A-1, SAMTEC 57 1 13 5.75 × 4=23 POM CASE PMT: R11265-M64 SERIES 5 3 0.275 ANODE OUTPUT TERMINAL PIN ( 0.64, 2.54 PITCH, 4 × 4) TD-104-T-A-1, SAMTEC × 2 PCS -HV TERMINAL PIN ( 0.64) ASP-23882-A-1, SAMTEC 4 2 PMT: R11265-M16 SERIES 12 13 GUIDE MARK *P.62 2.54 *P.62 2.54 × 7=17.78 #0 H12445-100, H12445-200 R16 to R18 : 51 Ω R19 : 10 kΩ R20 : 1 MΩ C1 to C4 : 0.01 µF TPMHA0592EA 83 Photomultiplier Tube Socket Assemblies Photomultiplier Tube Socket Assemblies Hamamatsu provides a wide variety of socket assemblies specifically designed for simple and reliable operation of photomultiplier tubes (often abbreviated as PMTs). These socket assemblies consist primarily of a high quality socket and voltage divider circuit integrated into a compact case. Variant types are available with internal current-to-voltage conversion amplifiers, gate circuits and high voltage power supply circuits. Types of Socket Assemblies The circuit elements used in Hamamatsu socket assemblies are represented by the three letters below. The socket assembly types are grouped according to the combination of these letters. D : Voltage Divider A : Amplifier P : High Voltage Power Supply DP-Type Socket Assemblies (C12597-01, C8991, etc.) DP-type socket assemblies comprise a built-in high-voltage power supply circuit added to a D-type socket assembly. Figure 42: DP-Type Socket Assembly SOCKET HIGH VOLTAGE POWER SUPPLY SIGNAL OUTPUT SIGNAL GND LOW VOLTAGE INPUT PMT HIGH VOLTAGE CONTROL D-Type Socket Assemblies (E717, E990 Series, etc.) The D-type socket assemblies contain a voltage divider circuit along with a socket in a compact metallic or plastic case. VOLTAGE DIVIDER POWER SUPPLY GND TACCC0003EB Refer to page 90 for the selection guide to D-type socket assemblies. Figure 40: D-Type Socket Assembly SOCKET SIGNAL OUTPUT DAP-Type Socket Assemblies (C6271, C7950, etc.) This type of socket assembly has a current-to-voltage conversion amplifier and a high voltage power supply, efficiently added to the circuit components of the D-type socket assembly. Figure 43: DAP-Type Socket Assembly SIGNAL GND SOCKET AMPLIFIER SIGNAL OUTPUT PMT POWER SUPPLY GND SIGNAL GND HIGH VOLTAGE INPUT LOW VOLTAGE INPUT PMT HIGH VOLTAGE CONTROL VOLTAGE DIVIDER CIRCUIT POWER SUPPLY GND TACCC0001EB VOLTAGE DIVIDER HIGH VOLTAGE POWER SUPPLY TACCC0054EA DA-Type Socket Assemblies (C7246, C7247 Series) In addition to the circuit elements of the D-type socket assemblies, the DA-type socket assemblies include an amplifier that converts the low-level, high-impedance current output of a photomultiplier tube into a low-impedance voltage output. Possible problems from noise induction are eliminated since the high-impedance output of the photomultiplier tube is connected to the amplifier at the minimum distance. Figure 41: DA-Type Socket Assembly SOCKET AMP LOW VOLTAGE INPUT PMT SIGNAL OUTPUT SIGNAL GND HIGH VOLTAGE INPUT VOLTAGE-DIVIDER CIRCUIT TACCC0002ED 84 Basics of Voltage Dividers The following information describes voltage divider circuits which are basic to all types of socket assemblies. Refer to this section for information on proper use of the socket assemblies. Voltage Divider Circuits To operate a photomultiplier tube, a high voltage of 500 volts to 2000 volts is usually supplied between the photocathode (K) and the anode (P), with a proper voltage gradient set up along the photoelectron focusing electrode (F) or grid (G), secondary electron multiplier electrodes or dynodes (Dy) and, depending on photomultiplier tube type, an accelerating electrode (Acc). Figure 44 shows a schematic representation of photomultiplier tube operation using independent multiple power supplies, but this is not a practical method. Instead, a voltage divider circuit is commonly used to divide, by means of resistors, a high voltage supplied from a single power supply. Figure 44: Schematic Representation of Photomultiplier Tube Operation LIGHT K F Dy1 ePHOTOELECTRONS Dy2 Dy3 P SECONDARY ELECTRONS eeeANODE CURRENT Ip A V2 V1 V3 V4 V5 Figure 47: Equally Divided Voltage Divider Circuit POWER SUPPLIES TACCC0055EA Figure 45 shows a typical voltage divider circuit using resistors, with the anode side grounded. The capacitor C1 connected in parallel to the resistor R5 in the circuit is called a storage capacitor and improves the output linearity when the photomultiplier tube is used in pulse operation, and not necessarily used in providing DC output. In some applications, transistors or Zener diodes may be used in place of these resistors. Figure 45: Anode Grounded Voltage Divider Circuit K F Dy1 Dy2 Dy3 P Ip OUTPUT RL R2 R1 R3 R4 R5 C1 -HV TACCC0056EB Anode Grounding and Photocathode Grounding In order to eliminate the potential difference between the photomultiplier tube anode and external circuits such as an ammeter, and to facilitate the connection, the generally used technique for voltage divider circuits is to ground the anode and supply a high negative voltage (-HV) to the photocathode, as shown in Figure 45. This scheme provides the signal output in both DC and pulse operations, and is therefore used in a wide range of applications. In photon counting and scintillation counting applications, however, the photomultiplier tube is often operated with the photocathode grounded and a high positive voltage (+HV) supplied to the anode mainly for purposes of noise reduction. This photocathode grounding scheme is shown in Figure 46, along with the coupling capacitor Cc for isolating the high voltage from the output circuit. Accordingly, this setup cannot provide a DC signal output and is only used in pulse output applications. The resistor RP is used to give a proper potential to the anode. The resistor RL is placed as a load resistor, but the actual load resistance will be the combination of RP and RL. Figure 46: Photocathode Grounded Voltage Divider Circuit K F Dy1 Dy2 Dy3 P CC OUTPUT Ip RP R1 R2 R3 R4 R5 RL C2 C1 +HV Standard Voltage Divider Circuits Basically, the voltage divider circuits of socket assemblies listed in this catalog are designed for standard voltage distribution ratios which are suited for constant light measurement. Socket assemblies for side-on photomultiplier tubes in particular mostly use a voltage divider circuit with equal interstage voltages allowing high gain. TACCC0057EB K Dy1 Dy2 Dy3 Dy4 Dy5 P OUTPUT 1R 1R 1R 1R 1R 1R C1 C2 RL -HV TACCC0058EB Tapered Voltage Divider Circuits In most pulsed light measurement applications, it is often necessary to enhance the voltage gradient at the first and/or last few stages of the voltage divider circuit, by using larger resistances as shown in Figure 48. This is called a tapered voltage divider circuit and is effective in improving various characteristics. However it should be noted that the overall gain decreases as the voltage gradient becomes greater. In addition, care is required regarding the interstage voltage tolerance of the photomultiplier tube as higher voltage is supplied. The tapered voltage circuit types and their suitable applications are listed below. Tapered circuit at the first few stages (resistance: large / small) Photon counting (improvement in pulse height distribution) Low-light-level detection (S/N ratio enhancement) High-speed pulsed light detection (improvement in timing properties) Other applications requiring better magnetic characteristics and uniformity Tapered circuit at the last few stages (resistance: small / large) High pulsed light detection (improvement in output linearity) High-speed pulsed light detection (improvement in timing properties) Other applications requiring high output across the load resistor Figure 48: Tapered Voltage Divider Circuit K Dy1 Dy2 Dy3 Dy4 Dy5 P OUTPUT 2R 1.5R 1R 1R -HV 2R 3R C1 C2 RL TACCC0059EB Voltage Divider Circuit and Photomultiplier Tube Output Linearity In both DC and pulse operations, when the light incident on the photocathode increases to a certain level, the relationship between the incident light level and the output current begins to deviate from the ideal linearity. As can be seen from Figure 49, region A maintains good linearity, and region B is the so-called overlinearity range in which the output increase is larger than the ideal level. In region C, the output goes into saturation and becomes smaller than the ideal level. When accurate measurement with good linearity is essential, the maximum output current must be within region A. In contrast, the lower limit of the output current is determined by the dark current and noise of the photomultiplier tube as well as the leakage current and noise of the external circuit. 85 Photomultiplier Tube Socket Assemblies Figure 49: Output Linearity of Photomultiplier Tube 10 K C I1 (=IK) IK I2 Dy1 IDy1 I4 (=IP) I3 Dy2 Dy3 IDy2 IR1 P IP IDy3 IR2 IR3 IR4 B 1.0 ACTUAL CURVE 0.1 R1 R2 R3 R4 V1 V2 V3 V4 IDEAL CURVE -HV ID TACCC0061EA 0.01 A RATIO OUTPUT CURRENT TO DIVIDER CURRENT Figure 51: Operation without Light Input TACCB0005EA 0.001 0.001 0.01 0.1 1.0 10 LIGHT FLUX (A.U.) Output Linearity in DC Mode Figure 50 is a simplified representation showing photomultiplier tube operation in the DC output mode, with three stages of dynodes and four dividing resistors R1 through R4 having the same resistance value. Figure 50: Basic Operation of Photomultiplier Tube and Voltage Divider Circuit K Dy1 Dy2 Dy3 I2 I1 I4 I1' < I2' < I3' < I4' Ip IK IDy1 IDy2 Thus, the interstage voltage Vn' (=IRn' • Rn) becomes smaller at the latter stages, as follows: A IDy3 R1 R2 R3 R4 IR1 IR2 IR3 IR4 IRn' = ID' - In' Where In' is the interelectrode current which has the following relation: P I3 [When light is incident on the tube] When light is allowed to strike the photomultiplier tube under the conditions in Figure 51, the resulting currents can be considered to flow through the photomultiplier tube and the voltage divider circuit as schematically illustrated in Figure 52. Here, all symbols used to represent the current and voltage are expressed with a prime ( ' ), to distinguish them from those in dark state operation. The voltage divider circuit current ID' is the sum of the voltage divider circuit current ID in dark state operation and the current flowing through the photomultiplier tube ∆ID (equal to average interelectrode current). The current flowing through each dividing resistor Rn becomes as follows: V1' > V2' > V3' > V4' ID -HV TACCC0060EA Figure 52: Operation with Light Input K [When light is not incident on the tube] In dark state operation where a high voltage is supplied to a photomultiplier tube without incident light, the current components flowing through the voltage divider circuit will be similar to those shown in Figure 51 (if we ignore the photomultiplier tube dark current). The relation of current and voltage through each component is given below Interelectrode current of photomultiplier tube I1' (=IK') Ik' Dy2 IDy1' IR1' I4' (=IP') I3' I2' Dy1 Dy3 IDy2' IR2' P IDy3' IR3' R1 R2 R3 V1' V2' V3' IP' IR4' R4 V 4' -HV ID' =ID + ∆ID TACCC0062EA I1=I2=I3=I4 (= 0 A) Electrode current of photomultiplier tube IK=IDy1=IDy2=IDy3=IP (= 0 A) Voltage divider circuit current 4 IR1=IR2=IR3=IR4=ID= (HV/ Σ Rn) n=1 Voltage divider circuit voltage V1=V2=V3=V4=ID • Rn (= HV/4) 86 Figure 53 shows changes in the interstage voltages as the incident light level varies. The interstage voltage V4' with light input drops significantly compared to V4 in dark state operation. This voltage loss is redistributed to the other stages, resulting an increases in V1', V2' and V3' which are higher than those in dark state operation. The interstage voltage V4' is only required to collect the secondary electrons emitted from the last dynode to the anode, so it has little effect on the anode current even if dropped to 20 or 30 volts. In contrast, the increases in V1', V2' and V3' directly raise the secondary emission ratios (δ1, δ2 and δ3) at the dynodes Dy1, Dy2 and Dy3, and thus boost the overall gain m (= δ1 • δ2 • δ3 ). This is the cause of overlinearity in region B in Figure 49. As the incident light level further increases so that V4' approaches 0 volts, output saturation occurs in region C. Figure 53: Changes in Interstage Voltages at Different Incident Light Levels 120 TACCB0017EA INTERSTAGE VOLTAGE (%) MODERATE LIGHT INPUT HIGH LIGHT INPUT 110 2Using the active voltage divider circuit Use of a voltage divider circuit having transistors in place of the dividing resistors in last few stages (for example, Hamamatsu C12597 series using FETs) is effective in improving the output linearity. This type of voltage divider circuit ensures good linearity up to an output current equal to 60 % to 70 % of the voltage divider current, since the interstage voltage is not affected by the interelectrode current inside the photomultiplier tube. A typical active voltage divider circuit is shown in Figure 55. 100 NO OR FAINT LIGHT INPUT 90 80 V1 V2 V3 As stated above, good output linearity can be obtained simply by increasing the voltage divider current. However, this is accompanied by heat emanating from the voltage divider. If this heat is conducted to the photomultiplier tube, it may cause problems such as an increase in the dark current, and variation in the output. V4 POSITION OF INTERSTAGE VOLTAGE Figure 55: Active Voltage Divider Circuit Linearity Improvement in DC Output Mode To improve the linearity in DC output mode, it is important to minimize the changes in the interstage voltage when photocurrent flows through the photomultiplier tube. There are several specific methods for improving the linearity, as discussed below. 1Increasing the voltage divider current Figure 54 shows the relationship between the output linearity of a 28 mm (1-1/8") diameter side-on photomultiplier tube and the ratio of anode current to voltage divider current. For example, to obtain an output linearity of 1 %, it can be seen from the figure that the anode current should be set approximately 1.4 % of the divider circuit current. However, this is a calculated plot, so actual data may differ from tube to tube even for the same type of photomultiplier tube, depending on the supply voltage and individual dynode gains. To ensure high photometric accuracy, it is recommended that the voltage divider current be maintained at least twice the value obtained from this figure. The maximum linear output in DC mode listed for the D-type socket assemblies in this catalog indicates the anode current equal to 1/20 of the voltage divider current. The output linearity at this point can be maintained within ±3 % to ±5 %. Figure 54: Output Linearity vs. Anode Current to Voltage Divider Current Ratio 10 K Dy2 Dy3 Dy4 P Dy5 RL TWO TRANSISTORS -HV TACCC0063EA 3Using Zener Diodes The output linearity can be improved by using Zener diodes in place of the dividing resistors in the last few stages, because the Zener diodes serve to maintain the interstage voltages at a constant level. However, if the supply voltage is greatly varied, the voltage distribution may be imbalanced compared to other interstage voltages, thus limiting the adjustable range of the voltage with this technique. In addition, if the supply voltage is reduced or if the current flowing through the Zener diodes becomes insufficient due to an increase in the anode current, noise may be generated from the Zener diodes. Precautions should be taken when using this type of voltage divider circuit. Figure 56 shows a typical voltage divider circuit using Zener diodes. Figure 56: Voltage Divider Circuit Using Zener Diodes TACCB0031EA K OUTPUT LINEARITY (%) Dy1 Dy1 Dy2 Dy3 Dy4 Dy5 P 1 TWO ZENER DIODES RL -HV 0.1 TACCC0064EA 0.01 0.1 1 10 RATIO OF ANODE CURRENT TO VOLTAGE DIVIDER CURRENT (%) 87 Photomultiplier Tube Socket Assemblies 4Using Cockcroft-Walton Circuit When a Cockcroft-Walton circuit as shown in Figure 57 is used to operate a 28 mm (1-1/8") diameter side-on photomultiplier tube with a supply voltage of 1000 volts, good DC linearity can be obtained up to 200 µA and even higher. Since a high voltage is generated by supplying a low voltage to the oscillator circuit, there is no need for using a high voltage power supply. This Cockcroft-Walton circuit achieves superior DC output linearity as well as low current consumption. RL Since this method directly supplies the pulse current with electrical charges from the capacitors, if the count rate is increased and the resulting duty factor becomes larger, the electrical charge will be insufficient. Therefore, in order to maintain good linearity, the capacitance value obtained from the above equation must be increased according to the duty factor, so that the voltage divider current is kept at least 50 times larger than the average anode current just as with the DC output mode. The active voltage divider circuit and the booster method using multiple power supplies discussed previously, provide superior pulse output linearity even at a higher duty factor. OSCILLATION CIRCUIT Figure 59: Equally Divided Voltage Divider Circuit and Storage Capacitors Figure 57: Cockcroft-Walton Circuit K Dy1 Dy2 Dy3 Dy4 Dy5 C > 100 • Q/V where Q is the charge of one output pulse (coulombs) and V is the voltage (volts) across the last dynode and the anode. P -HV GENERATED TACCC0065EA 5Using multiple high voltage power supplies As shown in Figure 58, this technique uses multiple power supplies to directly supply voltages to the last few stages near the anode. This is sometimes called the booster method, and is used for high pulse and high count rate applications in high energy physics experiments. K Dy1 Dy2 Dy3 Dy1 Dy2 Dy3 Dy4 Dy5 Dy5 P RL 1R 1R 1R 1R Figure 58: Voltage Divider Circuit Using Multiple Power Supplies (Booster Method) K Dy4 1R 1R C1 C2 TWO STORAGE CAPACITORS -HV P TACCC0067EB RL AUXILIARY POWER SUPPLY 2 AUXILIARY POWER SUPPLY 1 MAIN POWER SUPPLY TACCC0066EA Output Linearity in Pulsed Mode In applications such as scintillation counting where the incident light is in the form of pulses, individual pulses may range from a few to over 100 milliamperes even though the average anode current is small at low count rates. In this pulsed output mode, the peak current in extreme cases may reach a level hundreds of times higher than the voltage divider current. If this happens, it is not possible to supply interelectrode currents from the voltage divider circuit to the last few stages of the photomultiplier tube, thus leading to degradation in the output linearity. Improving Linearity in Pulsed Output Mode 1Using storage capacitors Using multiple power supplies mentioned above is not popular in view of the cost. The most commonly used technique is to supply the interelectrode current by using storage capacitors as shown in Figure 59. There are two methods for connecting these storage capacitors: the serial method and the parallel method. As Figures 59 and 60 show, the serial method is more widely used since it requires lower tolerance voltages of the capacitors. The capacitance value C (farads) of the storage capacitor between the last dynode and the anode should be at least 100 times the output charge as follows: 88 2Using tapered voltage divider circuit with storage capacitors Use of the above voltage divider circuit having storage capacitors is effective in improving pulse linearity. However, when the pulse current increases further, the electron density also increases, particularly in last stages. This may cause a space charge effect which prevents interelectrode current from flowing adequately and leading to output saturation. A commonly used technique for extracting a higher pulse current is the tapered voltage divider circuit in which the voltage distribution ratios in the latter stages are enhanced as shown in Figure 60. Care should be taken in this case regarding loss of the gain and the breakdown voltages between electrodes. Since use of a tapered voltage divider circuit allows an increase in the voltage between the last dynode and the anode, it is possible to raise the voltage across the load resistor when it is connected to the anode. It should be noted however, that if the output voltage becomes excessively high, the voltage between the last dynode and the anode may drop, causing a degradation in output linearity. Figure 60: Tapered Voltage Divider Circuit Using Storage Capacitors K Dy1 Dy2 Dy3 Dy4 Dy5 P RL 1R 1R 1R 1.5R 2.5R 3R C1 C2 TWO STORAGE CAPACITORS -HV TACCC0068EB D-Type Socket Assemblies The D-type socket assemblies are grouped as follows: (a) For DC output (-HV supply) Available only upon request (b) For DC or pulsed output (-HV supply) ex. E717-63 (c) For pulsed output (+HV supply) ex. E990-08 (d) For DC or pulsed output (-HV supply), or pulsed output (+HV supply) ex. E717-74 Connection of D-Type Socket Assemblies to External Circuits Figure 61 shows typical examples of connecting various Dtype socket assemblies to external circuits. Figure 61: Connection of D-Type Socket Assemblies to Extrernal Circuits (a) For DC output (-HV supply) K F SIG P Dy1 Dy2 Eo=Ip • RL Dy3 Ip TO VOLTMETER, AMPLIFIER UNIT OR OSCILLOSCOPE RL SIGNAL GND R1 R2 R3 R4 R5 AMMETER A Ip Rf -HV POWER SUPPLY GND - Cf Ip -HV Eout=-Ip • Rf TO VOLTMETER OR SIGNAL PROCESSING CIRCUIT + FET INPUT OP AMP (b) For DC or pulsed output (-HV supply) K TACCC0069EA F SIG P Dy1 Dy2 Eo = Ip • RL Dy3 Ip TO VOLTMETER AMPLIFIER UNIT OR OSCILLOSCOPE RL SIGNAL GND R1 R2 R3 R4 R5 C1 C2 AMMETER A Ip Rf -HV POWER SUPPLY GND - Cf Ip -HV Eout=-Ip • Rf TO VOLTMETER OR SIGNAL PROCESSING CIRCUIT + FET INPUT OP AMP K (c) For pulsed output (+HV supply) TACCC0070EA AMPLIFIER UNIT F SIG P Dy1 Dy2 Dy3 Cp Ip TO SIGNAL PROCESSING CIRCUIT CL RL Rp SIGNAL GND R1 R2 R3 R4 R5 C1 C2 CHARGE AMP Cf C3 Rf — TO SIGNAL PROCESSING CIRCUIT Qs +HV POWER SUPPLY GND + Vout =-Qs/Cf +HV (d) For DC or pulsed output (-HV supply), or pulsed output (+HV supply) K TACCC0071EB F SIG P Dy1 Dy2 Eo=Ip • RL Dy3 d-1. For DC or pulsed output (-HV supply) SIGNAL GND R1 * GND should be connected externaly. R2 R3 R4 R5 C1 C2 Ip Ip ∗ RL A TO VOLTMETER, AMPLIFIER UNIT OR OSCILLOSCOPE AMMETER Rf + - - Cf Ip -HV POWER SUPPLY GND -HV Eout =- Ip • Rf TO VOLTMETER OR SIGNAL PROCESSING CIRCUIT + FET INPUT OP AMP * GND and CB should be connected externally. K 0.001 µ F to 0.005 µ F AMPLIFIER UNIT CERAMIC DISK (2 kV to 3 kV) F P Dy1 R1 R2 Dy2 R3 Dy3 R4 C1 CP SIG 10 kΩ to 1 MΩ d-2. For pulsed output (+HV supply) For general scintillation counting and photon counting applications, recommended values for CP and RP are 0.001 µF to 0.005 µF and 10 kΩ to 1 MΩ. Since a high voltage is supplied to these parts, care must be taken when handling this circuit. R5 Ip CL RL Rp CHARGE AMP Cf - + +HV TO SIGNAL PROCESSING CIRCUIT SIGNAL GND ∗ C2 - POWER SUPPLY GND TACCC0072EA ∗ Rf TO SIGNAL PROCESSING CIRCUIT Qs + Vout=- Qs/Cf CB TACCC0073EC 89 D-Type Socket Assemblies Socket Assembly Type No. Applicable PMT Diameter B C Maximum Ratings Out- Grounded Leakage Total Maximum A Insulation line Electrode / Voltage Linear Voltage Current in Voltage and Supply between Supply Divider Signal Divider Output in Voltage Dia- Voltage Case and Max. Resistance DC Mode Current Pins gram Polarity (V) (V) (mA) (A) (MΩ) (µA) Signal Output Note For Side-on Types q Anode / - 1500 1250 0.38 1 × 10-10 3.30 E850-22 w Anode / - 1500 1250 0.38 1 × 10-10 3.30 E717-63 e Anode / - 1500 1500 0.45 1 × 10-10 3.30 28 mm (1-1/8") r Anode• Cathode / +•- 1500 1500 0.46 1 × 10-10 3.30 t Anode / - 1250 1250 0.38 1 × 10-10 3.30 y Anode / - 1500 1500 0.41 1 × 10-10 3.63 E1761-05 u Anode / - 1500 1500 0.37 1 × 10-10 4.02 E849-35 i Anode / - 1250 1250 0.34 1 × 10-10 3.63 o Anode / - 1250 1250 0.34 1 × 10-10 3.63 E849-68 !0 Anode / - 1250 1250 0.27 1 × 10-10 4.48 E849-99 !1 Anode / - 1250 1250 0.32 1 × 10-10 3.96 E974-13 !2 Anode / - 1800 1800 0.47 1 × 10-10 3.81 E974-14 !3 Cathode / + 1800 1800 0.47 — 3.81 E974-17 !4 Anode / - 1800 1800 0.47 1 × 10-10 3.81 !5 Anode / - 1800 1800 0.43 1 × 10-10 4.16 E2253-05 !6 Anode / - 1800 1800 0.35 1 × 10-10 5.13 E2253-08 !7 Cathode / + 1800 1800 0.35 — 5.13 E974-29 !8 Anode / - 1250 1250 0.29 1 × 10-10 4.30 E974-18 !9 Anode / - 1500 1500 0.37 1 × 10-10 3.98 E2924-11 @0 Anode / - 1800 1800 0.41 1 × 10-10 4.47 @1 Anode / - 1500 1250 0.30 1 × 10-10 4.29 E2924-500 @2 Anode / - 1500 1250 0.30 1 × 10-10 4.29 E2924-05 @3 Cathode / + 1500 1250 0.30 — 4.30 E990-07 @4 Anode / - 1500 1500 0.38 1 × 10-10 3.96 E990-08 @5 Cathode / + 1500 1500 0.38 — 3.96 E990-501 @6 Anode / - 1500 1500 E2624 @7 Anode / - 2500 E2624-05 @8 Cathode /+ E2624-14 @9 E850-13 13 mm (1/2") E717-74 E717-500 18 (at 1250 V) 18 (at 1250 V) 22 (at 1500 V) 22 (at 1500 V) 18 (at 1250 V) Mounting flange E5038 (P.92) supplied. E850-13 with connector DC / Pulse E5038 not supplied DC / Pulse DC / Pulse DC / Pulse Pin output DC / Pulse E717-63 with connector For Head-on Types E1761-04 10 mm (3/8") E849-90 13 mm (1/2") E974-22 19 mm (3/4") E2924 25 mm (1") 28 mm (1-1/8") Anode / - 0.38 1× 10-10 3.96 2500 0.52 1 × 10-10 4.80 2500 2500 0.52 — 4.80 2500 2500 0.52 1 × 10-10 4.80 NOTE: AMeasured with the maximum supply voltage BMeasured with a supply voltage of 1000 V except for E5996, E7083 and E6736 (900 V) CThe current at which the output linearity is kept within ±5 % 90 20 (at 1500 V) 19 (at 1500 V) 17 (at 1250 V) 17 (at 1250 V) 13 (at 1250 V) 16 (at 1250 V) 23 (at 1800 V) — DC / Pulse DC / Pulse For R2496 DC / Pulse E5038 (P.92) supplied E849-35 with connector E5038 not supplied For R4124 DC / Pulse E5038 (P.92) supplied For R12421, DC / Pulse E5038 (P.92) supplied DC / Pulse DC / Pulse Pulse For Scintillation Counting 23 DC / Pulse E974-13 with connector (at 1800 V) For R1450, 21 DC / Pulse with connector (at 1800 V) For R3478, 17 DC / Pulse with connector (at 1800 V) For R3478, Pulse — for Scintillation Counting For R5610A, R5611A, 14 DC / Pulse with connector (at 1250 V) For R1878, 18 DC / Pulse with connector (at 1500 V) 20 DC / Pulse For R7899 (at 1800 V) 14 DC / Pulse (at 1250 V) 14 DC / Pulse E2924 with connector (at 1250 V) — Pulse For Scintillation Counting 18 DC / Pulse (at 1500 V) — Pulse For Scintillation Counting 18 DC / Pulse E990-07 with connector (at 1500 V) 26 DC / Pulse For R6427, (at 2500 V) For R6427, Pulse — for Scintillation Counting 26 DC / Pulse E2624 with connector (at 2500 V) B Maximum Ratings Socket Assembly Type No. Applicable PMT Diameter Out- Grounded line Electrode / and Supply Dia- Voltage gram Polarity C Total Maximum A Leakage Insulation Linear Voltage Supply Voltage Current in Voltage between Divider Output in Divider Signal Voltage Case and Max. Resistance DC Mode Current Pins (V) (V) (mA) (A) (MΩ) (µA) Signal Output Note For Head-on Types #0 Anode / - 1500 1500 0.35 1 × 10-10 4.29 #1 Anode / - 1500 1500 0.34 1 × 10-10 4.48 #2 Anode / - 2000 1750 0.45 1 × 10-10 3.97 E2183-502 #3 Cathode / + 2000 1750 0.45 — 3.96 E1198-26 #4 Anode / - 1500 1500 0.38 1 × 10-10 4.01 #5 Cathode / + 1500 1500 0.38 — 4.01 #6 Anode / - 1500 1500 0.46 1 × 10-10 3.3 #7 Cathode / + 1500 1500 0.46 — 3.3 E990-500 28 mm (1-1/8") E990-29 E2183-500 38 mm (1-1/2") E1198-27 E1198-05 51 mm (2") 76 mm (3") E1198-20 #8 E1198-07 51 mm (2") Anode / - 1750 1750 0.44 1 × 10-10 3.98 E2979-500 #9 Anode / - 3000 3000 0.70 1 × 10-10 4.31 E1198-23 $0 Cathode / + 2200 2000 0.51 — 3.97 $1 Anode / - 2200 2000 0.51 1 × 10-10 3.97 $2 Cathode / + 2200 2000 0.51 — 3.97 E6316-01 $3 Anode / - 2200 2000 0.51 1 × 10-10 3.97 E5859-05 $4 Anode / - 1500 1500 0.38 1 × 10-10 3.98 E5859-19 $5 Anode / - -2000 2000 0.57 1 × 10-10 3.53 $6 Anode / - 2700 2700 0.67 1 × 10-10 4.06 E5859-01 $7 Anode / - 2700 2700 0.75 1 × 10-10 3.62 E5859-03 $8 Cathode / + 2700 2700 0.75 — 3.62 E1198-22 E6316 E5859 51 mm (2") 76 mm (3") 127 mm (5") 51 mm (2") 76 mm (3") E1435-02 51 mm (2") $9 Anode / - 1500 1500 0.38 1 × 10-10 3.96 E7693 127 mm (5") %0 Anode / - 3000 3000 1.03 1 × 10-10 2.94 %1 Anode / - 1100 1100 0.32 1 × 10-10 3.46 %2 Anode / - 1100 1100 0.32 1 × 10-10 3.46 %3 Anode / - 900 900 0.33 1 × 10-10 2.75 %4 Anode / - 900 900 0.33 1 × 10-10 2.75 %5 Anode / - 900 900 0.38 1 × 10-10 2.42 %6 Anode / - 1000 1000 0.34 1 × 10-10 2.97 %7 Anode / - 1000 1000 0.36 1 × 10-10 2.78 %7 Anode / - 1000 1000 0.36 1 × 10-10 2.69 %8 Cathode / + 2500 2500 0.45 — 5.62 Metal Package PMT R9880U Series Metal Package PMT E10679-51 R9880U Series Metal Package PMT E5996 R7600U Series Metal Package PMT E7083 R7600U-M4 Series Metal Package PMT E6736 R5900U-L16 Metal Package PMT E7514 R8900U-C12 Metal Package PMT E11807 R11265U Series Metal Package PMT E11807-01 R11265U Series E10679-02 E6133-04 For High Magnetic Environments 25 mm (1") 17 DC / Pulse With connector (at 1500 V) 16 DC / Pulse For R3998-02 (at 1500 V) 22 DC / Pulse With connector (at 1750 V) With connector, — Pulse for scintillation counting 18 DC / Pulse (at 1500 V) — Pulse For scintillation counting 22 DC / Pulse (at 1500 V) — Pulse 22 DC / Pulse (at 1750 V) 34 DC / Pulse (at 3000 V) — Pulse For scintillation counting For R2154-02 For R1828-01, with rear panel connector, with magnetic shield For scintillation counting 25 DC / Pulse (at 2000 V) — 25 (at 2000 V) 18 (at 1500 V) 28 (at 2000 V) 33 (at 2700 V) 37 (at 2700 V) — 18 (at 1500 V) 51 (at 3000 V) 16 (at 1100 V) 16 (at 1100 V) 16 (at 900 V) 4 D (at 900 V) 1.16 D (at 900 V) 1.4 D (at 1000 V) 17 (at 1000 V) 18 (at 1000 V) — Pulse E1198-23, with rear panel connector, for scintillation counting DC / Pulse E1198-22, with rear panel connector DC / Pulse With rear panel connector DC / Pulse For R7724 with rear panel connector DC / Pulse With rear panel connector DC / Pulse With rear panel connector Pulse With rear panel connector, for scintillation counting DC / Pulse For R1250, for R1584, with rear panel connector With connector: DC / Pulse E10679-03 DC / Pulse DC / Pulse Pin output DC / Pulse DC / Pulse DC / Pulse DC / Pulse DC / Pulse DC / Pulse Pulse E11807, with tapered voltage divider circuit For R5505, with connector NOTE: DCurrent of one anode CAUTION: Socket assemblies are not designed to operate in a vacuum. Temperature ranges of D-type socket assemblies are as follows (except for some products): Operating: 0 °C to +50 °C Storage: -15 °C to +60 °C Do not use the socket assemblies if condensation occurs, since a high voltage is output from the socket. Insert the photomultiplier tube all the way into the socket. Insert the photomultiplier tube straight into the socket, or pull the photomultiplier tube straight out of the socket when removing it. 91 D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm) Mounting flange: E5038 (For E850 series, E849 series) q E850-13 SOCKET PIN No. PMT P POTTING COMPOUND R8 C1 2.5 2 × M3 A' DY7 8 DY6 7 R7 R6 DY5 6 DY4 5 DY3 4 DY2 3 R5 R1 to R10 : 330 kΩ C1 to C3 : 10 nF R4 10.7 10.7 10 5 HOUSING (INSULATOR) C2 9 DY8 12.4 ± 0.5 C3 R9 20° 10 DY9 12.6 ± 0.5 R10 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) POWER SUPPLY GND AWG22 (BLACK) 30.0 ± 0.3 14.0 ± 0.3 450 ± 10 35.0 ± 0.5 0.5 MAX. 11 7.0 ± 0.3 2 × 3.2 A 2.5 R3 15 A–A' CROSS SECTION R2 2 DY1 K R1 -HV AWG22 (VIOLET) 1 TACCA0336EA TACCA0096EC e E717-63 SIGNAL OUTPUT RG-174/U (BLACK) BNC CONNECTOR P DY9 10 12.6 ± 0.5 DY8 9 12.4 ± 0.5 DY7 8 DY6 7 DY5 6 450 ± 10 POTTING COMPOUND C3 R9 C2 R8 C1 P 38.0 ± 0.3 49.0 ± 0.3 4 DY2 3 DY1 K 2 9 DY8 8 30.0 +0 -1 R4 R3 -HV SHIELD CABLE (RED) SHV CONNECTOR R9 C2 R8 C1 7 DY6 6 DY5 5 DY4 4 DY3 3 DY2 2 DY1 K 1 R1 to R10 : 330 kΩ C1 to C3 : 10 nF R5 31.0 ± 0.5 R4 HOUSING (INSULATOR) 450 ± 10 R1 C3 R6 R2 1 R10 POTTING COMPOUND R3 R2 R1 -HV AWG22 (VIOLET) 11 TACCA0002EH TACCA0240EB r E717-74 t E717-500 HOUSING (INSULATOR) SIGNAL OUTPUT (A) GND (G) DY8 26.0±0.2 DY7 32.0±0.5 PMT R10 C3 38.0 ± 0.3 R9 C2 49.0 ± 0.3 R8 C1 DY9 8 DY8 29.0 ± 0.3 7 DY7 R13 ° 30° K 3 × 0.7 4 × 2.8 R6 R5 DY4 4 DY3 3 R1 to R10 : 330 kΩ C1 to C3 : 10 nF 2 R2 DY1 K C2 R8 C1 8 7 HOUSING (INSULATOR) DY6 6 DY5 5 R1 to R10 : 330 kΩ C1 to C3 : 10 nF R5 DY4 4 DY3 3 DY2 2 DY1 K 1 R4 R3 DY2 C3 R9 R6 31.0 ± 0.5 R4 1 R1 11 -HV (K) POTTING COMPOUND R3 R2 R1 11 * "Wiring diagram at above applies when -HV is supplied." To supply +HV,connect the pin "G" to+HV, and the pin "K" to the GND. Refer to "(d) d-2" on page 89 for the connection method. TACCA0277EA 92 0.7 5 41.0 ± 0.5 2.7 10 22.4±0.2 6 R10 9 R7 450 ± 10 7 14.0±0.5 2 R7 DY5 SIGNAL OUTPUT RG-174/U (BLACK) BNC CONNECTOR 10 9 DY6 SOCKET PIN No. P 4 26.0±0.2 32.0±0.5 10 3.5 SOCKET PIN No. P DY9 33.0 ± 0.3 5 PMT A G SIGNAL GND SIGNAL OUTPUT RG-174/U(BLACK) POWER SUPPLY GND AWG22 (BLACK) R7 29.0 ± 0.3 R1 to R10 : 330 kΩ C1 to C3 : 10 nF R5 DY3 DY9 DY7 R6 5 SOCKET PIN No. 10 R7 DY4 PMT 4 HOUSING (INSULATOR) R10 5 0.7 14.0 ± 0.3 10 5 35.0 ± 0.5 0.5 MAX. 11 3.5 SOCKET PIN No. PMT 33.0 ± 0.3 w E850-22 -HV SHIELD CABLE (RED) SHV CONNECTOR TACCA0241EC y E1761-04 u E1761-05 SOCKET PIN No. P DY8 C3 R10 C2 R9 C1 3 5 DY6 8 R8 DY5 4 DY4 9 R1 to R11 : 330 kΩ C1 to C3 : 10 nF R7 HOUSING (INSULATOR) DY2 10 R4 POTTING COMPOUND 5 C3 R9 C2 R8 C1 8 DY5 4 DY4 9 DY3 3 DY2 10 DY1 2 R1 to R4 : 510 kΩ R5 to R10 : 330 kΩ C1 to C3 : 10 nF R6 R4 R3 R3 DY1 DY7 R10 R5 3 450 ± 10 POTTING COMPOUND 7 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) POWER SUPPLY GND AWG24 (BLACK) R7 R6 DY3 P DY8 DY6 HOUSING (INSULATOR) R5 450 ± 10 10.6 ± 0.2 POWER SUPPLY GND AWG24 (BLACK) 7 DY7 50.0 ± 0.5 R11 6 50.0 ± 0.5 10.6 ± 0.2 SOCKET PIN No. PMT SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) 6 3 PMT R2 2 R2 R1 K R1 -HV AWG24 (VIOLET) 11 K -HV AWG24 (VIOLET) 11 TACCA0019ED SOCKET PIN No. SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) 14.0 ± 0.3 10 5 P 12.6 ± 0.5 DY10 7 DY9 5 R11 C3 R10 C2 C1 R9 12.4 ± 0.5 POWER SUPPLY GND AWG22 (BLACK) 8 DY8 14.0 ± 0.3 12.6 ± 0.5 R11 C3 9 DY5 3 R6 POTTING COMPOUND 7 DY9 5 R10 C2 10 DY4 R4 DY3 2 DY2 11 DY8 8 DY7 4 DY6 9 DY5 3 DY4 10 DY3 2 R8 R7 POTTING COMPOUND R1 to R11 : 330 kΩ C1 to C3 : 10 nF R6 R5 R4 R3 R3 DY2 11 DY1 1 K 13 R2 R2 1 DY1 K R1 to R11: 330 kΩ C1 to C3: 10 nF R9 C1 HOUSING (INSULATOR) R5 450 ± 10 DY10 R7 DY6 SIGNAL OUTPUT RG-174/U (BLACK) BNC CONNECTOR P 12.4 ± 0.5 4 DY7 SOCKET PIN No. 6 R8 HOUSING (INSULATOR) PMT 450 ± 10 45.0 ± 0.5 0.5MAX. 6 45.0 ± 0.5 PMT 0.5 MAX. o E849-90 10 5 i E849-35 TACCA0208EB -HV SHIELD CABLE (RED) SHV CONNECTOR R1 R1 -HV 13 AWG22 (VIOLET) TACCA0077EC TACCA0022EB !0 E849-68 !1 E849-99 SOCKET PIN No. SIGNAL GND 12.6 ± 0.5 DY9 6 R11 C3 R10 C2 R9 12.4 ± 0.5 DY8 9 DY7 5 C1 R8 HOUSING (INSULATOR) R7 DY6 DY5 4 DY4 11 R5 R1: 1 MΩ R3: 510 kΩ R2, R4 to R11: 330 kΩ C1 to C3: 10 nF R4 DY3 3 DY2 12 DY1 K 2 R3 R1 SOCKET PIN No. 6 P DY10 7 12.6 ± 0.5 DY9 5 12.4 ± 0.5 DY8 8 DY7 4 DY6 9 DY5 3 POTTING COMPOUND SIGNAL OUTPUT RG-174/U (BLACK) R12 C3 R11 C2 R10 C1 GND AWG22 R9 R8 R7 R1 to R12: 330 kΩ C1 to C3: 0.01 µF R6 DY4 10 DY3 2 DY2 11 DY1 1 R5 R4 R3 R2 13 14.0 ± 0.3 HOUSING (INSULATOR) 10 R6 POTTING COMPOUND 450 ± 10 POWER SUPPLY GND AWG22 (BLACK) 0.5 MAX. 8 10 P DY10 450 ± 10 0.5 MAX. 10 5 45.0 ± 0.5 14.0 ± 0.3 PMT 5 SIGNAL OUTPUT RG-174/U (BLACK) 7 45.0 ± 0.5 PMT -HV AWG22 (VIOLET) TACCA0210EB R2 R1 K 13 -HV AWG22 (VIOLET) TACCA0324EA 93 D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm) !2 E974-13 !3 E974-14 PMT SOCKET PIN No. 5 P DY10 23.0 ± 0.5 17.4 ± 0.2 R11 C3 R10 C2 R9 C1 P 23.0 ± 0.5 6 DY9 7 DY7 3 R12 DY10 17.4 ± 0.2 4 DY8 SOCKET PIN No. C5 5 PMT SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) POWER SUPPLY GND AWG22 (BLACK) C4 DY9 8 DY5 2 DY4 9 R6 DY8 7 R1 : 510 kΩ R2 to R11 : 330 kΩ C1 to C3 : 10 nF DY7 3 DY6 8 DY5 2 DY4 9 HOUSING (INSULATOR) DY2 10 450 ± 10 450 ± 10 1 DY3 1 DY2 10 R3 DY1 12 R6 R4 POTTING COMPOUND R3 R2 R2 DY1 12 R1 K 11 R1 : 510 kΩ R2 to R11 : 330 kΩ R12 : 100 kΩ C1 to C3 : 10 nF C4 to C5 : 4.7 nF R5 R4 DY3 C1 R7 R5 POTTING COMPOUND C2 R9 4 R8 47.5 ± 1.0 43.0 ± 0.5 47.5 ± 1.0 43.0 ± 0.5 HOUSING (INSULATOR) DY6 C3 R10 6 R8 R7 R11 R1 K -HV AWG22 (VIOLET) POWER SUPPLY GND AWG22 (BLACK) 11 TACCA0099EB TACCA0100EB !5 E974-22 !4 E974-17 SOCKET PIN No. SIGNAL OUTPUT RG-174/U (BLACK) BNC CONNECTOR 5 P 23.0 ± 0.5 DY10 6 17.4 ± 0.2 DY9 4 R11 C3 R10 C2 R9 DY8 7 DY7 3 DY6 8 PMT P C1 R5 450 ± 10 HOUSING (INSULATOR) DY3 1 POTTING COMPOUND 450 ± 10 47.5 ± 1.0 43.0 ± 0.5 2 9 10 DY8 7 R9 C1 R1:680 kΩ R3:510 kΩ R2, R4 to R11:330 kΩ C1 to C3:10 nF R8 DY7 3 DY6 8 DY5 2 DY4 9 DY3 1 DY2 10 DY1 12 R6 R3 R2 -HV SHIELD CABLE (GRAY) SHV CONNECTOR R1 R2 K 12 DY1 K 4 R4 R3 DY2 DY9 R5 R4 POTTING COMPOUND 6 R7 R1 : 510 kΩ R2 to R11 : 330 kΩ C1 to C3 : 10 nF R6 DY4 R11 C3 DY10 R10 C2 R7 DY5 SIGNAL OUTPUT RG-174/U(BLACK) BNC CONNECTOR 5 R8 HOUSING (INSULATOR) SOCKET PIN No. 21.0 ± 0.2 40.0 ± 0.5 PMT R1 11 -HV SHIELD CABLE (GRAY) SHV CONNECTOR 11 TACCA0212EB !6 E2253-05 SOCKET PIN No. P C3 R10 C2 DY6 8 DY5 2 DY4 9 DY3 1 R8 R7 C1 R1:1 MΩ R2:750 kΩ R3:560 kΩ R4, R6 to R11:330 kΩ R5:510 kΩ C1 to C3:10 nF R6 POTTING COMPOUND 0 0.2 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) C4 R12 P HOUSING (INSULATOR) DY2 10 DY1 12 11 7 DY7 3 DY6 C3 R10 C2 R9 C1 POTTING COMPOUND -HV SHIELD CABLE (GRAY) SHV CONNECTOR +HV AWG22 (RED) 8 R8 DY5 2 DY4 9 DY3 1 DY2 10 DY1 12 R6 R4 R3 R2 R1 DY8 R11 R7 R5 K R14 R13 3 R9 HOUSING (INSULATOR) 18.0 ± 6.2 DY7 R11 SOCKET PIN No. C5 5 7 65.0 ± 0.5 DY8 450 ± 10 18.6 ± 0 0.4 PMT SIGNAL OUTPUT RG-174/U (BLACK) BNC CONNECTOR 5 55.0 ± 0.5 6.2 TACCA0078EC !7 E2253-08 PMT 450 ± 10 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) +HV AWG22 (RED) R5 R1, R14: 1 MΩ R2: 750 kΩ R3: 560 kΩ R5: 510 kΩ R4, R6 to R12: 330 kΩ R13: 10 kΩ C1 to C3: 10 nF C4, C5: 4.7 nF R4 R3 R2 R1 K 11 TACCA0079EB 94 POWER SUPPLY GND AWG22 (BLACK) TACCA0214EB !8 E974-29 !9 E974-18 SIGNAL OUTPUT RG-174/U (BLACK) BNC CONNECTOR 12 P C3 23.0 ± 0.5 R10 C2 17.4 ± 0.2 R9 C1 HOUSING (INSULATOR) DY10 1 DY9 11 DY8 2 DY7 10 R1: 1 MΩ R2 to R11: 330 kΩ C1 to C3: 0.01 µF R8 R7 450 - 0 +20 POTTING COMPOUND DY6 3 DY5 9 DY4 4 DY3 8 P R6 R5 DY9 4 DY8 7 DY7 3 DY6 8 R2 7 -HV SHIELD CABLE (GRAY) SHV CONNECTOR R1 6 450 ± 10 5 K C2 R9 C1 DY5 2 DY4 9 DY3 1 DY2 10 DY1 K 12 R1 : 680 kΩ R2 to R11 : 330 kΩ C1 to C3 : 10 nF R6 R5 R3 DY1 C3 R10 R7 HOUSING (INSULATOR) R4 DY2 R11 6 DY10 R8 47.5 ± 1.0 40.0 ± 0.5 R11 SIGNAL OUTPUT RG-174/U (BLACK) BNC CONNECTOR 5 43.0 ± 0.5 21.0 ± 0.3 SOCKET PIN No. PMT SOCKET PIN No. PMT R4 POTTING COMPOUND R3 R2 -HV SHIELD CABLE (GRAY) SHV CONNECTOR R1 11 TACCA0213EB TACCA0332EA @1 E2924 @0 E2924-11 R13 R12 C2 R11 C1 35.0 ± 0.3 30.0 ± 0.3 DY10 DY9 DY8 11 DY7 5 DY6 12 DY5 4 7 R1 to R4,R6 to R13 : 330 kΩ R5 : 510 kΩ C1 to C3 : 10 nF R6 28.0 ± 0.5 HOUSING (INSULATOR) DY3 3 R5 DY2 10 DY9 6 DY8 5 DY6 12 DY5 4 DY4 13 DY3 3 DY2 14 DY1 2 14 R1 to R13 : 330 kΩ C1 to C3 : 10 nF R9 26.0 ± 0.3 R7 R6 28.0 ± 0.5 HOUSING (INSULATOR) R5 R4 2 R3 R2 POTTING COMPOUND R3 R2 R1 K C1 R10 450 ± 10 450 ± 10 DY1 C2 R11 11 R4 POTTING COMPOUND R12 R8 43.0 ± 0.5 0.8 13 DY10 DY7 2 × 3.5 R7 DY4 R13 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) POWER SUPPLY GND C3 AWG22 (BLACK) 35.0 ± 0.3 6 R9 26.0 ± 0.3 P 10 R8 43.0 ± 0.5 44.0 ± 0.3 R10 2 × 3.5 SOCKET PIN No. 7 PMT 30.0 ± 0.3 P SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) POWER SUPPLY GND C3 AWG22 (BLACK) 7 44.0 ± 0.3 SOCKET PIN No. 7 0.8 PMT -HV AWG22 (VIOLET) 1 R1 K -HV AWG22 (VIOLET) 1 TACCA0032EC TACCA0032EC @2 E2924-500 @3 E2924-05 44.0 ± 0.3 35.0 ± 0.3 HOUSING (INSULATOR) POTTING COMPOUND 11 DY7 5 DY6 12 DY5 4 DY4 13 DY3 3 DY2 14 DY1 2 K R11 C1 DY10 10 DY9 6 DY8 11 DY7 5 DY6 12 DY5 4 DY4 13 DY3 3 DY2 14 DY1 2 R10 2 × 3.5 R9 R8 R1 to R13: 330 kΩ C1 to C3: 10 nF C4: 4.7 nF R7 R6 R5 R4 R3 R2 1 30.0 ± 0.3 6 DY8 C2 R12 7 0.8 28.0 ± 0.5 DY9 R12 P 0.8 450 ± 10 43.0 ± 0.5 7 26.0 ± 0.3 10 C3 R1 C4 -HV SHIELD CABLE (GRAY) SHV CONNECTOR C5 R11 C3 R10 C2 R9 C1 R6 R5 28.0 ± 0.5 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) +HV SHIELD CABLE (GRAY) POWER SUPPLY GND R8 26.0 ± 0.3 R7 43.0 ± 0.5 DY10 R13 HOUSING (INSULATOR) R1, R12 : 1 MΩ R2 to R11 : 330 kΩ C1 to C3 : 10 nF C4, C5 : 4.7 nF R4 R3 450 ± 10 30.0 ± 0.3 7 SOCKET PIN No. C4 7 35.0 ± 0.3 SIGNAL OUTPUT RG-174/U (BLACK) BNC CONNECTOR P 2 × 3.5 PMT 44.0 ± 0.3 PMT SOCKET PIN No. POTTING COMPOUND R2 R1 K 1 * High voltage shielded cable can be connected to a connector for RG-174/U. TACCA0081EC TACCA0102EA 95 D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm) @4 E990-07 @5 E990-08 44.0 ± 0.3 35.0 ± 0.3 7 P 30.0 ± 0.3 R12 DY11 6 DY10 8 DY9 2 × 3.5 C3 R11 C2 R10 C1 35.0 ± 0.3 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) POWER SUPPLY GND AWG22 (BLACK) 26.0 ± 0.3 9 4 DY5 3 28.0 ± 0.5 R5 DY4 28.0 ± 0.5 HOUSING (INSULATOR) 450 ± 10 450 ± 10 12 R2 DY1 C1 5 DY8 9 DY7 4 DY6 10 DY5 3 DY4 11 DY3 2 DY2 12 DY1 14 R1 to R12 R13 C1 to C3 C4, C5 R6 14 R3 POTTING COMPOUND R2 R1 R1 K -HV AWG22 (VIOLET) 13 POWER SUPPLY GND AWG22 (BLACK) 13 TACCA0101EB TACCA0103EB @7 E2624 @6 E990-501 44.0 ± 0.3 PMT SOCKET PIN No. SIGNAL OUTPUT RG-174/U (BLACK) BNC CONNECTOR 30.0 ± 0.3 P DY11 26.0 ± 0.3 C3 R11 C2 R10 C1 5 DY8 9 DY7 4 7 0.8 43.0 ± 0.5 43.0 ± 0.5 DY6 10 R6 DY5 3 DY4 11 R5 R14 C3 R16 R13 C2 R15 R12 C1 DY7 4 DY6 10 DY5 3 DY4 11 DY3 2 DY2 12 DY1 14 26.0 ± 0.3 C4 R7 28.0 ± 0.5 HOUSING (INSULATOR) R6 R5 2 R3 DY2 12 POTTING COMPOUND R4 R3 R2 DY1 14 R1 K R1 to R5, R7 to R14 : 330 kΩ R6 : 510 kΩ R15 to R17 : 51 Ω C1 to C3 : 10 nF C4 : 4.7 nF R10 R8 450 ± 10 DY3 POWER SUPPLY GND AWG22 (BLACK) 9 R4 POTTING COMPOUND 450 ± 10 5 R17 R9 R1 to R12 : 330 kΩ C1 to C3 : 10 nF R7 DY9 DY8 2 × 3.5 R8 DY10 8 R11 R9 HOUSING (INSULATOR) P 8 DY9 SIGNAL OUTPUT RG-174/U (BLACK) 35.0 ± 0.3 6 DY10 2 × 3.5 R12 SIGNAL GND 7 30.0 ± 0.3 7 SOCKET PIN No. 44.0 ± 0.3 7 PMT 0.8 35.0 ± 0.3 28.0 ± 0.5 R2 -HV SHIELD CABLE (GRAY) SHV CONNECTOR 13 R1 K -HV AWG22 (VIOLET) 13 TACCA0216EB TACCA0243EA @8 E2624-05 @9 E2624-14 30.0 ± 0.3 P DY10 8 DY9 5 DY8 9 DY7 4 DY6 10 R15 C5 R18 R14 C3 R17 R13 C2 R16 R12 C1 SIGNAL GND 44.0 ± 0.3 SIGNAL OUTPUT RG-174/U (BLACK) 35.0 ± 0.3 DY5 3 DY4 11 0.8 R8 R7 28.0 ± 0.5 HOUSING (INSULATOR) DY3 2 DY2 12 DY1 14 R5 POTTING COMPOUND 28.0 ± 0.5 HOUSING (INSULATOR) R6 450 ± 10 450 ± 10 43.0 ± 0.5 7 R9 43.0 ± 0.5 R10 P 26.0 ± 0.3 R1 to R5, R7 to R15 : 330 kΩ R6 : 510 kΩ R16 to R18 : 51 Ω C1 to C3 : 10 nF C4, C5 : 4.7 nF R4 R3 SIGNAL OUTPUT RG-174/U (BLACK) BNC CONNECTOR 7 2 × 3.5 R11 26.0 ± 0.3 PMT SOCKET PIN No. +HV AWG22 (RED) 30.0 ± 0.3 35.0 ± 0.3 C4 7 SOCKET PIN No. 7 0.8 PMT 44.0 ± 0.3 2 × 3.5 : 330 kΩ : 1 MΩ : 10 nF : 4.7 nF R4 R3 K C2 R10 R5 2 DY2 R11 +HV AWG22 (RED) R7 11 DY3 8 C3 R8 R4 POTTING COMPOUND DY10 7 R6 HOUSING (INSULATOR) 6 DY9 0.8 10 R1 to R12 : 330 kΩ C1 to C3 : 10 nF R7 53.0 ± 0.5 7 0.8 43.0 ± 0.5 DY6 DY11 C5 R12 R9 R8 DY7 C4 R13 2 × 3.5 5 DY8 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) 7 P R9 26.0 ± 0.3 SOCKET PIN No. PMT 30.0 ± 0.3 SOCKET PIN No. PMT 44.0 ± 0.3 POTTING COMPOUND DY10 8 DY9 5 DY8 9 DY7 4 DY6 10 DY5 3 DY4 11 DY3 2 DY2 12 DY1 K 14 R14 R11 C3 R13 R10 C2 R12 R9 C1 R8 R1: R3: R2, R4 to R11: R12 to R14: C1 to C3: C4: 1320 kΩ 510 kΩ 330 kΩ 51 Ω 10 nF 4.7 nF R7 R6 R5 R4 R3 R2 C4 R1 13 -HV SHIELD CABLE (GRAY) SHV CONNECTOR R2 R1 K 13 POWER SUPPLY GND AWG22 (BLACK) TACCA0217EC 96 TACCA0082EC #1 E990-29 #0 E990-500 44.0 ± 0.3 PMT 35.0 ± 0.3 SOCKET PIN No. 6 DY10 8 DY9 5 DY8 9 DY7 4 DY6 10 R13 C3 R12 C2 R11 C1 PMT SOCKET PIN No. 2 × 3.5 7 0.8 DY5 3 DY4 11 43.0 ± 0.5 R7 R6 R5 DY3 2 R4 DY2 12 DY1 14 DY9 8 DY8 6 DY7 9 DY6 5 DY5 10 R10 C2 R9 C1 26.0 ± 0.3 R8 R6 DY4 3 DY3 12 DY2 2 R5 28.0 ± 0.5 HOUSING (INSULATOR) R4 R3 DY1 R3 R2 C4 R1 K R1 : 1 MΩ R2 to R6,R8 to R11 : 330 kΩ R7 : 510 kΩ C1 to C3 : 10 nF R7 450 ± 10 450 ± 10 POTTING COMPOUND POWER SUPPLY GND AWG22 (BLACK) R11 C3 7 R1 to R13 : 330 kΩ C1 to C3 : 10 nF C4 : 4.7 nF R8 HOUSING (INSULATOR) SIGNAL OUTPUT RG-174/U (BLACK) P 0.8 R9 28.0 ± 0.5 SIGNAL GND 7 R10 26.0 ± 0.3 43.0 ± 0.5 35.0 ± 0.3 30.0 ± 0.3 30.0 ± 0.3 2 × 3.5 DY11 44.0 ± 0.3 SIGNAL OUTPUT RG-174/U (BLACK) BNC CONNECTOR 7 P 13 R2 POTTING COMPOUND G 1 R1 -HV AWG22 (VIOLET) 14 K -HV SHIELD CABLE (GRAY) SHV CONNECTOR 13 TACCA0244EA TACCA0215EB #3 E2183-502 #2 E2183-500 PMT SOCKET PIN No. 6 PMT SIGNAL OUTOPUT RG-174/U (BLACK) BNC CONNECTOR SOCKET PIN No. 6 SIGNAL OUTPUT RG-174/U (BLACK) BNC CONNECTOR C6 R13 7 DY9 5 C3 R12 C2 8.2 R11 DY8 52.0 ± 0.5 34.0 ± 0.3 8 40.0 ± 0.5 R10 DY7 : 10 kΩ R1 R2 to R13 : 330 kΩ C1 to C3 : 10 nF : 4.7 nF C4 4 R9 HOUSING (INSULATOR) DY6 9 DY5 3 P DY10 7 DY9 5 C1 8.2 34.0 ± 0.3 R13 R8 DY8 DY7 HOUSING (INSULATOR) POTTING COMPOUND 2 R5 DY2 11 R1 to R12 : 330 kΩ : 1 MΩ R13 C1, C5, C6 : 4.7 nF C2 to C4 : 10 nF DY6 9 DY5 3 DY4 10 DY3 2 DY2 11 DY1 1 R7 R5 R4 R3 1 K C1 4 R4 DY1 C2 R10 R6 10 R6 DY3 R11 +HV SHIELD CABLE (GRAY) SHV CONNECTOR C4 R8 450 ± 10 450 ± 10 DY4 C3 8 R7 POTTING COMPOUND C5 R12 R9 40.0 ± 0.5 52.0 ± 0.5 P DY10 R3 C4 R2 R1 12 R2 -HV SHIELD CABLE (GRAY) SHV CONNECTOR R1 K 12 TACCA0166EC #4 E1198-26 TACCA0167EB #5 E1198-27 PMT SOCKET PIN No. SIGNAL GND PMT SIGNAL OUTPUT RG-174/U (BLACK) 12 SOCKET PIN No. 12 R13 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) C5 R11 C4 R12 11 DY7 10 DY6 7 R11 R10 R9 C3 DY5 6 DY4 5 R1: 10 kΩ R2, R3: 680 kΩ R4 to R11: 330 kΩ C1 to C3: 10 nF C4: 4.7 nF 450 ± 10 4 DY2 3 R5 R4 HOUSING (METAL) DY1 1 R3 G R2 10 DY6 7 R1 14 * The housing is internally connected to the GND. ** High voltage shielded cable can be connected to a connector for RG-174/U. -HV SHIELD CABLE (GRAY) POWER SUPPLY GND TACCA0224EC C3 R9 C2 R8 C1 +HV SHIELD CABLE (GRAY) POWER SUPPLY GND DY5 6 DY4 5 DY3 4 DY2 3 DY1 1 R6 56.0 ± 0.3 R5 C4 13 K DY7 R10 R7 64.0 ± 0.3 38.0 ± 0.5 38.0 ± 0.5 R6 DY3 11 C1 R7 56.0 ± 0.3 DY8 C2 R8 64.0 ± 0.3 P 450 ± 10 P DY8 R4 R3 HOUSING (METAL) R1, R2 : 680 kΩ R3 to R11 : 330 kΩ R12 : 10 kΩ R13 : 1 MΩ C1 to C3 : 10 nF C4, C5 : 4.7 nF R2 G 13 R1 K 14 * The housing is internally connected to the GND. ** High voltage shielded cable can be connected to a connector for RG-174/U. TACCA0225EB 97 D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm) #7 E1198-20 #6 E1198-05 SOCKET PIN No. PMT SIGNAL GND 11 P 6 DY5 5 R9 C2 R8 C1 DY7 7 DY6 6 DY4 4 R7 64.0 ± 0.3 R6 R5 C4 3 DY2 2 DY1 1 R3 R2 13 G K R1 -HV AWG22 (VIOLET) 14 450 ± 10 R10 C3 +HV SHIELD CABLE (GRAY) R9 C2 POWER SUPPLY GND R8 C1 * The housing is internally connected to the GND. DY5 5 DY4 4 DY3 3 DY2 2 DY1 1 R6 56.0 ± 0.3 R1 to R11: 330 kΩ C1 to C3: 10 nF C4, C5: 4.7 nF R5 R4 38.0 ± 0.5 38.0 ± 0.5 R4 R1 to R10 : 330 kΩ C1 to C3 : 10 nF C4 : 4.7 nF R3 HOUSING (METAL) R2 13 G R1 K 450 ± 10 DY3 HOUSING (METAL) 8 R7 64.0 ± 0.3 56.0 ± 0.3 C4 R11 P DY8 7 DY6 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) C5 8 DY7 SOCKET PIN No. 11 POWER SUPPLY GND AWG22 (BLACK) C3 R10 DY8 PMT SIGNAL OUTPUT RG-174/U (BLACK) 14 * The housing is internally connected to the GND. ** High voltage shielded cable can be connected to a connector for RG-174/U. TACCA0221EB #8 E1198-07 TACCA0223EB #9 E2979-500 62.0 ± 0.5 SOCKET PIN No. 11 P SIGNAL GND DY9 C2 R9 C1 9 DY8 8 DY7 7 DY6 6 DY12 MAGNETIC SHIELD CASE R8 R7 R6 DY5 5 DY4 4 C4 R5 R1 : 680 kΩ R2 to R11 : 330 kΩ C1 to C3 : 10 nF C4 : 4.7 nF 38.0 ± 0.5 R4 DY3 3 × M2 11 56.0 ± 0.3 82.0 ± 0.5 64.0 ± 0.3 2 DY1 1 R1 K 8 DY10 12 DY9 7 DY8 13 DY7 6 DY6 14 5 15 DY3 3 DY2 17 DY1 G2 ACC G1 K 2 R18 R21 R17 C7 C10 R16 R20 R15 C6 C9 R19 R14 R13 C5 C8 R12 R11 C3 14 C11 C4 R1: 10 kΩ R2, R5: 240 kΩ R3, R7 to R12, R18: 200 kΩ R4, R6: 360 kΩ R13 to R17: 300 kΩ R19 to R21: 51 Ω C1: 470 pF C2 to C8, C11: 10 nF C9: 22 nF C10: 33 nF C2 R10 R9 R8 R7 R6 R5 R4 R3 R2 19 20 C1 R1 -HV AWG22 (VIOLET) SIGNAL OUTPUT : BNC-R SIG * The housing is internally connected to the GND. -H.V 450 ± 10 R2 DY11 DY4 3 DY2 11 DY5 HOUSING (METAL) R3 HOUSING (METAL) SIGNAL OUTPUT BNC CONNECTOR 10 10 R10 SOCKET PIN No. P POWER SUPPLY GND AWG22 (BLACK) C3 R11 DY10 PMT SIGNAL OUTPUT RG-174/U (BLACK) 164.0 ± 0.5 PMT -HV SHV CONNECTOR * The housing is internally connected to the GND. -HV : SHV-R TACCA0093EB TACCA0220EC $1 E1198-22 $0 E1198-23 PMT SOCKET PIN No. 11 R13 P DY10 DY9 C5 R12 C3 R11 C2 R10 C1 PMT SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) +HV SHIELD CABLE (GRAY) C6 C4 R14 P DY10 POWER SUPPLY GND 10 DY9 9 DY8 8 DY7 7 DY8 R8 DY6 6 56.0 ± 0.3 R7 DY5 5 DY4 4 DY3 3 2 R3 R2 G K C2 R11 C1 9 8 DY7 7 DY6 6 DY5 5 DY4 4 DY3 3 DY2 2 DY1 1 R1 R2 to R13 C1 to C3 C4 R8 56.0 ± 0.3 1 13 R1 14 R7 : 10 kΩ : 330 kΩ : 10 nF : 4.7 nF R5 HOUSING (METAL) R4 G K R3 C4 R2 R1 13 14 * The housing is internally connected to the GND. ** High voltage shielded cable can be connected to a connector for RG-174/U. * The housing is internally connected to the GND. ** High voltage shielded cable can be connected to a connector for RG-174/U. TACCA0169EC 98 64.0 ± 0.3 38.0 ± 0.5 DY2 C3 R12 R6 R4 DY1 450 ± 10 : 330 kΩ : 1 MΩ : 10 kΩ : 10 nF : 4.7 nF R5 HOUSING (METAL) R13 10 R9 R1 to R12 R13 R14 C1 to C4 C5, C6 450 ± 10 38.0 ± 0.5 R6 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) R10 R9 64.0 ± 0.3 SOCKET PIN No. 11 -HV SHIELD CABLE (GRAY) POWER SUPPLY GND TACCA0168EB $3 E6316-01 $2 E6316 SOCKET PIN No. 11 PMT PMT SOCKET PIN No. P SIGNAL OUTPUT BNC CONNECTOR DY10 10 DY9 9 DY8 8 3 × M3 THREADED HOLES FOR INSTALLATION OF MAGNETIC SHIELD CASE 51.5 ± 0.5 R13 HOUSING (METAL) DY7 7 DY6 6 DY5 5 DY4 4 DY3 3 DY2 2 DY1 G C3 R11 R10 C2 R14 P DY10 +HV SHV CONNECTOR C4 C1 R7 R6 R1 to R12: 330 kΩ R13: 1 MΩ R14: 10 kΩ C1 to C4: 10 nF C5, C6: 4.7 nF R5 R4 R3 14 C3 R12 C2 R11 C1 9 DY8 8 R10 R8 1 R13 10 DY9 64.0 ± 0.5 R9 13 K C5 R12 51.5 ± 0.5 64.0 ± 0.5 SIGNAL OUTPUT BNC CONNECTOR C6 11 R2 R1 3 × M3 THREADED HOLES FOR INSTALLATION OF MAGNETIC SHIELD CASE DY7 HOUSING (METAL) R1 : 10 kΩ R2 to R13 : 330 kΩ C1 to C3 : 10 nF C4 : 4.7 nF 7 R9 DY6 6 DY5 5 DY4 4 DY3 3 DY2 2 DY1 1 R8 R7 R6 R5 R4 SIGNAL OUTPUT : BNC-R +HV : SHV-R -H.V SIG +H.V SIG SIGNAL OUTPUT : BNC-R * The housing is internally connected to the GND. ** Magnetic shield case is sold separately. G -HV : SHV-R R3 C4 R2 R1 13 K 14 -HV SHV CONNECTOR * The housing is internally connected to the GND. ** Magnetic shield case is sold separately. TACCA0226EC $5 E5859-19 $4 E5859-05 SOCKET PIN No. R24 C4 R21 51.0 ± 0.4 DY10 12 12.5 9 8 DY9 6 DY8 12 DY9 3 × M2 THREADED HOLES FOR INSTALLATION OF MAGNETIC SHIELD CASE DY7 5 DY8 DY7 13 DY6 DY5 14 R1 : 10 kΩ R2 to R5,R8 to R13 : 220 kΩ R6 : 560 kΩ R7,R14 to R21,R23,R24 : 110 kΩ R22,R25 to R27 : 0 Ω C1 : 470 pF C2,C3 : 10 nF C4 : 22 nF R15 R14 R13 R12 4 DY6 13 R11 3 HOUSING (METAL) DY5 3 DY4 15 DY3 2 DY2 16 DY1 1 R21 58.0 ± 0.5 C2 R17 R16 5 R22 C3 R26 R20 R19 R25 R18 51.0 ± 0.5 12.5 9 6 R26 R20 R19 R25 R18 DY2 DY1 G 16 R6 R5 R4 R3 R2 1 17 K 21 C2 R1 : 10 kΩ R2 to R11, R20 : 220 kΩ R12, R13 : 0 Ω R14 to R19, R21 to R24 : 110 kΩ R25 : 51 Ω R26, R27 : 100 Ω C1 : 470 pF C2, C3 : 10 nF C4 : 22 nF R15 R14 R13 R12 R11 R10 60.0 ± 0.5 R9 R8 R7 2 C1 R1 SIGNAL OUTPUT :BNC-R -HV SHV CONNECTOR SIG -HV :SHV-R 15 -H.V SIG -H.V SIGNAL OUTPUT :BNC-R DY4 DY3 C3 R17 R16 R10 60.0 ± 0.5 C4 R27 R23 DY10 R22 DY11 HOUSING (METAL) R24 8 58.0 ± 0.5 SIGNAL OUTPUT BNC CONNECTOR 7 P R27 R23 DY12 3 × M2 THREADED HOLES FOR INSTALLATION OF MAGNETIC SHIELD CASE SOCKET PIN No. PMT SIGNAL OUTPUT BNC CONNECTOR 7 P 55.0 ± 0.5 PMT 55.0 ± 0.5 TACCA0245EB -HV :SHV-R K R9 R8 R7 R6 R5 R4 R3 R2 21 C1 R1 * The housing is internally connected to the GND. ** Magnetic shield case is sold separately. -HV SHV CONNECTOR * The housing is internally connected to the GND. ** Magnetic shield case is sold separately. TACCA0305EA TACCA0219EC $6 E5859 $7 E5859-01 SOCKET PIN No. R24 R27 R23 6 51.0 ± 0.4 DY10 12 12.5 9 55.0 ± 0.5 DY11 3 × M2 THREADED HOLES FOR INSTALLATION OF MAGNETIC SHIELD CASE HOUSING (METAL) DY9 5 DY8 DY7 13 DY6 DY5 14 60.0 ± 0.5 R15 R14 15 DY2 DY1 G R9 R8 R7 16 K 1 21 C2 R11 DY4 DY3 17 R1 : 10 kΩ R2, R12, R16 R17, R20, R21 : 180 kΩ R3, R13, R18, R19 R22 to R24 : 226 kΩ R4, R5, R7, R8 : 121 kΩ R6, R9 to R11 R14, R15 : 150 kΩ R25 : 51 Ω R26, R27 : 100 Ω C1 : 470 pF C2 : 22 nF C3 : 47 nF C4 : 0.1 µF C5 to C7 : 0.22 µF C3 R13 R12 R10 2 C4 R6 R5 R4 R3 R2 R1 -HV SHV CONNECTOR * The housing is internally connected to the GND. ** Magnetic shield case is sold separately. TACCA0176ED DY11 51.0 ± 0.4 DY10 R24 R27 R23 8 R22 R21 R26 R20 6 R19 R25 R18 12 R17 R16 5 R15 R14 13 R13 4 R12 14 R11 3 × M2 THREADED HOLES FOR INSTALLATION OF MAGNETIC SHIELD CASE DY9 HOUSING (METAL) SH DY4 DY3 10 R10 15 DY2 DY1 G 16 R9 R8 R7 R6 R5 R4 R3 R2 60.0 ± 0.5 SIGNAL OUTPUT :BNC-R C1 58.0 ± 0.5 SIG -HV :SHV-R 3 R17 R16 C5 -H.V SIG -H.V SIGNAL OUTPUT :BNC-R 4 R26 R20 R19 R25 R18 10 SH DY12 R22 58.0 ± 0.5 SIGNAL OUTPUT BNC CONNECTOR 7 C7 8 R21 SOCKET PIN No. P C6 12.5 9 DY12 PMT SIGNAL OUTPUT BNC CONNECTOR 7 P 55.0 ± 0.5 PMT DY8 DY7 DY6 DY5 K -HV :SHV-R C4 C3 C2 R1 : 10 kΩ R2 to R6,R9 to R13 : 220 kΩ R7,R8 : 154 kΩ R14 to R21,R23,R24 : 110 kΩ R22 : 0 Ω R25 : 51 Ω R26,R27 : 100 Ω C1 : 470 pF C2,C3 : 10 nF C4 : 22 nF 3 2 1 17 21 C1 R1 -HV SHV CONNECTOR * The housing is internally connected to the GND. ** Magnetic shield case is sold separately. TACCA0178EC 99 D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm) $9 E1435-02 $8 E5859-03 PMT SOCKET PIN No. C5 R29 C4 R28 R24 R23 60.0 ± 0.5 DY10 12 DY9 5 SIG +H.V +HV :SHV-R C7 R1 to R5,R8 to R12 : 220 kΩ R6, R7 : 154 kΩ R13 to R20, R22, R23 : 110 kΩ R21 : 0 Ω R24 : 10 kΩ R25 : 51 Ω R26, R27 : 100 Ω R28 : 100 kΩ R29 : 1 MΩ C1, C2 : 10 nF C3 : 22 nF C4, C5 : 2.2 nF C6 : 470 pF C7 to C9 : 4.7 nF R13 DY6 DY5 14 SH DY4 DY3 10 R9 15 R8 R7 R6 R12 R11 4 R10 3 2 16 R5 R4 R3 R2 R1 1 17 21 C1 R9 R1 to R12 : 330 kΩ C1 to C3 : 10 nF C4 : 4.7 nF 9 DY7 R8 R14 13 K C1 C2 R10 3 DY8 40.0 ± 0.5 C8 R16 R15 DY8 DY7 DY2 DY1 G 52.0 ± 0.5 C2 R26 R19 R18 R25 R17 2 6 C3 R11 8 DY9 36.0 ± 0.5 DY11 R12 4 C9 DY6 2 DY5 10 R7 C4 R6 HOUSING (METAL) DY4 1 DY3 11 DY2 15 DY1 12 R5 R4 450 ± 10 12.5 9 55.0 ± 0.5 HOUSING (METAL) P DY10 +HV SHV CONNECTOR R21 R20 3 × M2 THREADED HOLES FOR INSTALLATION OF MAGNETIC SHIELD CASE SIGNAL OUTPUT :BNC-R C3 8 58.0 ± 0.5 51.0 ± 0.4 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) C6 R27 R22 DY12 SOCKET PIN No. 6 PMT SIGNAL OUTPUT BNC CONNECTOR 7 P POTTING COMPOUND R3 R2 14 G K R1 13 * The housing is internally connected to the GND. ** Magnetic shield case is sold separately. * The housing is internally connected to the GND. ** High voltage shielded cable can be connected to a connector for RG-174/U. TACCA0218EE %0 E7693 -HV SHIELD CABLE (RED) POWER SUPPLY GND TACCA0246EB %1 E10679-02 PMT SOCKET PIN No. 10 100 ± 0.5 HOUSING (METAL) 8 DY12 12 DY11 7 DY10 13 DY9 6 DY8 14 DY7 5 DY6 15 DY5 4 DY4 16 DY3 3 DY2 17 DY1 R20 R17 C4 R19 R16 C3 R15 C2 R14 C1 R13 R12 R11 R10 R9 R8 R7 R6 R5 G1 G2 2 R4 R3 4 DY8 R1 R13 R11 C3 R12 R10 C2 R9 C1 POWER SUPPLY GND AWG22 (BLACK) 7 R8 DY7 3 DY6 8 DY5 2 DY4 9 DY3 1 DY2 10 DY1 11 R7 HOUSING (INSULATOR) R6 R1 to R10 : 330 kΩ R11 : 160 kΩ R12, R13 : 51 Ω C1 to C3 : 10 nF R5 R4 C6 R2 20 6 DY9 17.5 - 0 R3 R2 19 K DY10 +0.5 R1 : 10 kΩ R2, R18 : 240 kΩ R3 : 360 kΩ R4 : 390 kΩ R5 : 120 kΩ R6 : 180 kΩ R7 to R14 : 100 kΩ R15, R16 : 150 kΩ R17 : 300 kΩ R19 : 51 Ω R20, R21 : 100 Ω C1 : 22 nF C2 : 47 nF C3 : 100 nF C4 : 220 nF C5 : 470 nF C6 : 470 pF 0.5 DY13 GUIDE MARK 2 11 C5 +0.5 DY14 SIGNAL OUTPUT BNC CONNECTOR R18 24 - 0 R21 P 450 ± 10 P 74.0 ± 0.5 SIGNAL OUTPUT RG-174/U (BLACK) 5 PMT R1 K SIG -H.V -HV SHV CONNECTOR -HV AWG22 (VIOLET) 12 * The housing is internally connected to the GND. SIGNAL OUTPUT (BNC-R) -HV : SHV-R TACCA0227EC %2 E10679-51 TACCA0299EB %3 E5996 PMT SIGNAL OUTPUT (A) GND (G) 4 DY8 7 DY7 3 R12 R10 C2 PIN No.1 HOUSING (INSULATOR) C1 R8 8 DY5 2 9 DY3 1 DY2 10 DY1 11 R4 R1 to R10 : 330 kΩ R11 : 160 kΩ R12 : 51 Ω R13 : 100 Ω C1 to C3 : 0.01 µF A 12 R10 C2 R12 R9 C1 DY7 21 DY6 20 DY5 19 DY4 7 DY3 6 DY2 5 DY1 4 R1 to R3 : 330 kΩ R4 to R11 : 220 kΩ R12 to R14 : 51 Ω R15 : 1 MΩ C1 to C3 : 10 nF R4 R3 R2 R15 R1 1 -HV (K) * High voltage shielded cable can be connected to a connector for RG-174/U. 5.08 TACCA0326EA 100 R13 22 K R1 K C3 R5 R2 5.08 G 23 R11 R6 R3 K DY9 R14 R8 450 ± 10 R5 DY4 24 DY8 POTTING COMPOUND R6 HOUSING (INSULATOR) DY10 R7 R7 DY6 SIGNAL GND SIGNAL OUTPUT RG-174/U (BLACK) P 15.0 ± 0.5 0.5 17.5 - 0 15.00 ± 0.25 2 6 DY9 C3 R9 +0.5 19.5 ± 0.3 DY10 R13 R11 SOCKET PIN No. 30 30.0 ± 0.5 P GUIDE MARK PMT 30.0 ± 0.5 5 -HV SHIELD CABLE (RED) POWER SUPPLY GND TACCA0234EC %4 E7083 %5 E6736 SOCKET PIN No. P4 15 P3 SIGNAL OUTPUT P2 0.8D-QEV (GRAY) 11 P1 31 P4 P3 P2 P1 DY10 POTTING COMPOUND R14 R11 C3 R13 R10 C2 R9 C1 24 DY9 23 DY8 22 450 ± 10 R12 R8 DY7 21 DY6 20 R6 DY5 19 POTTING COMPOUND P3 R5 P2 P3 DY4 7 DY3 6 P1 -HV SHIELD CABLE (RED) P2 R3 K P4 P1 to P4 : SIGNAL OUTPUT COAXIAL CABLE (GRAY) 5 DY1 4 P13 P11 P9 P4 P7 P5 P6 P8 P10 P12 R2 GUIDE MARK P1 DY2 K GUIDE MARK P15 R1 R15 DY10 26 DY9 10 DY8 24 DY7 8 DY6 2 -HV SHIELD CABLE (RED) 1 • • • • • • • P8 • • • • • • SIGNAL OUTPUT 0.8D-QEV (GRAY) P1 R14 R11 C3 R13 R10 C2 R12 R9 C1 R8 18 R5 DY4 31 DY3 15 DY2 32 DY1 16 R4 R3 R2 R15 R1 -HV SHIELD CABLE (RED) 17 P1 to P16 : SIGNAL OUTPUT COAXIAL CABLE (GRAY) R1 to R11 : 220 kΩ R12 to R14 : 51 Ω R15 : 1 MΩ C1 to C3 : 10 nF R6 P14 P16 POWER SUPPLY GND * High voltage shielded cable can be connected to a connector for RG-174/U. POWER SUPPLY GND * High voltage shielded cable can be connected to a connector for RG-174/U. P16 R7 DY5 R4 -HV SHIELD CABLE (RED) SIGNAL GND 28 29 27 3 23 4 22 5 21 6 20 7 19 11 13 12 HOUSING (INSULATOR) R1 to R3 : 330 kΩ R4 to R11 : 220 kΩ R12 to R14 : 51 Ω R15 : 1 MΩ C1 to C3 : 10 nF R7 SOCKET PIN No. PMT 450 ± 10 15.0 ± 0.5 15.0 ± 0.5 HOUSING (INSULATOR) 30.0 ± 0.5 Pin No.1 P16 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 30.0 ± 0.5 SIGNAL GND 27 30.0 ± 0.5 PMT 30.0 ± 0.5 PIN No.1 TACCA0158ED TACCA0162ED %6 E7514 %7 E11807/E11807-01 E11807 25.4 ± 0.5 PX5 PY5 15.0 ± 0.5 PY4 PX3 PY3 PX2 15 PX5 23 PY5 PY4 12 PX3 20 PY3 11 PX2 POM HOUSING PX1 10 PX1 13 PY1 PMT SIGNAL OUTPUT RG-174/U (BLACK) R17 P C3 R20 DY12 SOCKET PIN No. 7 P C3 R16 R20 DY12 8 SIGNAL OUTPUT : COAXIAL CABLE (GRAY) DY11 R19 R14 R18 R13 C2 10 DY9 12 DY11 R19 R14 R18 R13 9 C1 DY10 10 DY9 12 DY8 13 DY7 14 DY6 21 DY5 22 DY4 23 DY3 25 DY2 26 DY1 27 R12 DY8 13 DY7 14 DY6 21 DY5 22 DY4 23 DY3 25 DY2 26 R11 R10 R10 R9 R9 R8 R8 R7 R7 R6 R6 R5 R5 R4 R18 R14 DY11 8 DY10 27 DY9 7 DY1 R4 R2 PX2 PX1 -HV SHIELD CABLE (RED) GUIDE MARK 28 R17 R13 C2 R16 R12 C1 DY7 6 R10 PY1 PX4 PX5 PX3 PX6 R9 PY2 PY3 DY6 29 DY5 5 R2 K R21 R1 1 NOTE: DIVIDER RATIO =2.5: 1.3: 0.8: 0.8: 1: 1: ..... 1: 0.5 R1 : 300 kΩ R2, R7 to R13 : 200 kΩ R3, R4 : 130 kΩ R5, R6 : 160 kΩ R14 to R16 : 100 kΩ R11 DY8 R3 27 K C3 R8 R1, R14: 110 kΩ R2: 330 kΩ R3 to R13: 220 kΩ R15: 1 MΩ R16 to R18: 51 Ω C1 to C3: 10 nF C1 R12 R11 R3 PY1 R16 8 R15 9 DY10 POTTING COMPOUND SIGNAL OUTPUT RG-174/U (BLACK) R17 R15 PY2 19 E11807-01 SOCKET PIN No. 7 C2 PX4 22 PIN No.1 GUIDE MARK PY2 450 ± 10 PY6 14 PX4 POTTING COMPOUND PX6 24 PY6 HOUSING (INSULATOR) 16 PMT 26.0 ± 0.5 26.0 ± 0.5 PX6 SIGNAL GND 15.0 ± 0.5 25.4 ± 0.5 SOCKET PIN No. 450 ± 10 PIN No. 1 PMT -HV RG-174/U (RED) R17 : 0 Ω R18 to R20 : 51 Ω R21 : 1 MΩ C1 to C3 : 0.01 µF R21 R1 -HV RG-174/U (RED) 1 NOTE: DIVIDER RATIO =3.3: 1.6: 1: 1: ..... 1: 2.7: 1.3 R1 : 300 kΩ R2, R14, R15 : 200 kΩ R3, R4 : 120 kΩ R5 to R13 : 150 kΩ R16, R17 : 100 kΩ R18 to R20 : 51 Ω R21 : 1 MΩ C1 to C3 : 0.01 µF TACCA0314EA %8 E6133-04 R7 PY4 PY5 PY6 DY4 30 DY3 4 DY2 31 PMT R6 SOCKET R20 PIN No. C6 10 R5 P R19 R4 PX1 to PX6 PY1 to PY6: SIGNAL OUTPUT COAXIAL CABLE (GRAY) R3 R2 1 R15 R1 32 * High voltage shielded cable can be connected to a connector for RG-174/U. 24.0 ± 0.5 9 22.0 ± 0.5 DY14 11 8 DY13 8 DY12 12 -H.V SHIELD CABLE (RED) POWER SUPPLY GND 55.0 ± 0.5 K 3 HOUSING (INSULATOR) TACCA0236ED POTTING COMPOUND 450 ± 10 DY1 G DY15 DY11 7 DY10 13 DY9 6 DY8 14 DY7 5 DY6 15 DY5 4 DY4 16 DY3 3 DY2 17 DY1 2 C7 R1 R24 R18 C5 R23 R17 C4 R22 R16 C3 R15 C2 R14 C1 R13 R12 R11 R10 SIGNAL OUTPUT RG-174/U (BLACK) BNC CONNECTOR +HV SHIELD CABLE (GRAY) SHV CONNECTOR R1 : 10 kΩ R2 to R18 : 330 MΩ R19 : 100 kΩ R20, R21 : 1 MΩ R22 to R24 : 51 Ω C1 to C5 : 10 nF C6, C7 : 4.7 nF R9 R8 R7 R6 R5 R4 R21 K R3 R2 1 TACCA0248EA 101 DA-Type Socket Assemblies Socket Assemblies with Transimpedance Amplifier (DA Type) DA type socket assemblies contain an active voltage-divider circuit and an amplifier that converts high impedance current signals from the photomultiplier tube into low impedance voltage signals. These socket assemblies ensure stable photomultiplier operation with excellent output linearity. Features ● Active Voltage Divider ● Superior DC Output Linearity ● Photomultiplier Tube Gain Adjustment Function (C7246 series) ● Wide Frequency Bandwidth (C7247 series) ● Input/output Connectors (C7246-22, C7246-23, C7247-22, C7247-23) Specifications Amplifier Maximum Frequency Maximum Input Voltage Input Voltage Supply Voltage Bandwidth (V) (V) (mA) (-3 dB) Applicable PMTs Type No. Current to Voltage Maximum Output Conversion Factor Signal Voltage (V) (V/µA) +20/-0.53 0.3 +10 DC to 20 kHz (load resistance (load resistance 10 kΩ) 10 kΩ) +140/-50 0.15 +3 DC to 5 MHz (load resistance (load resistance 50 Ω) 50 Ω) +20/-0.53 0.3 +10 DC to 20 kHz (load resistance (load resistance 10 kΩ) 10 kΩ) +140/-50 0.15 +3 DC to 5 MHz (load resistance (load resistance 50 Ω) 50 Ω) C7246-01 C7246-23 28 mm Side-on type C7247-01 C7247-23 ±12 to ±15 ±18 C7246 C7246-22 C7247 28 mm Head-on type R374, R2228, R5929, R6094, R6095, etc. C7247-22 NOTE: AIf the output signal voltage is 3 V or higher (with 10 kΩ load), the divider circuit input voltage should be -600 V to -1000 V. Frequency Response of Built-in Amplifier C7246/-01/-22/-23 C7247/-01/-22/-23 TACCB0065EA 10 5 5 0 -3dB -5 -10 -15 -20 0.1 RELATIVE GAIN (dB) RELATIVE GAIN (dB) TACCB0046EB 10 0 -3dB -5 -10 -15 1 10 1000 100 -20 0.01 0.1 1 FREQUENCY (kHz) 100 10 FREQUENCY (MHz) Circuit Diagrams C7246 (-01B/-22/-23B) C7247 (-01B/-22/-23B) K P DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 50 Ω C1 C2 C3 C4 ACTIVE VOLTAGE DIVIDER SIGNAL OUTPUT K P DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 50 Ω AMP C1 C2 C3 C4 AMP ACTIVE VOLTAGE DIVIDER C1, C2 : 10 nF C3 : 22 nF C4 : 47 nF SIGNAL OUTPUT C1, C2 : 10 nF C3 : 22 nF C4 : 47 nF VR = 5 MΩ * PMT GAIN ADJ. CIRCUIT -HV * PATENT NOTE: BC7247-01/-23 are for 28 mm side-on PMT so that the last dynode number is "DY9" -HV NOTE: BC7246-01/-23 are for 28 mm side-on PMT so that the last dynode number is "DY9" 102 TACCC0103EC TACCC0115EB Voltage-divider Circuit Amplifier Maximum Offset Output Noise Recommended Divider Voltage Voltage Supply Voltage Supply Voltage Current Max. (mV) Typ. (mV rms) (V) (V) (µA) Operating Storage Ambient PMT Gain Temperature Temprature Adjustable Range (°C) (°C) (dB) ±1 0.09 (load resistance -300 to -1000 A 10 kΩ) 211 (HV = -1000 V) 30 ±3 4.5 (load resistance 50 Ω) 166 (HV = -600 V) — -300 to -600 (g) 50 170 (With connectors) 50 0 to +40 -1500 ±1 0.09 (load resistance -400 to -1000 A 10 kΩ) 174 (HV = -1000 V) 10 ±3 4.5 (load resistance 50 Ω) 219 (HV = -900 V) — -400 to -900 Weight 170 (With connectors) -15 to +60 55 170 (With connectors) 55 170 (With connectors) Dimensional Outlines (Unit : mm) C7246-01/-23, C7247-01/-23 [BOTTOM VIEW] C7246/-22 49.0 ± 0.3 10.5 1) POT (VR) 8.5 29.0 ± 0.3 10.5 4 8.5 GAIN ADJ. 38.0 ± 0.3 1) POT (VR) 25.2 [BOTTOM VIEW] C7246-01/-23 GAIN ADJ. 31.7 ± 0.3 C7247/-22 37.7 ± 0.5 0.7 40.0 ± 0.5 5 33.0 ± 0.3 3.5 C7246/-22, C7247/-22 HOUSING (METAL) C7247-01/-23 31.7 ± 0.3 HOUSING (METAL) 10.5 10.5 TACCA0197ED TACCA0175EF Type No. Input/output -HV Signal Output ±15 V -HV C7246-22/-23 Signal Output C7247-22/-23 ±15 V C7246/-01 C7247/-01 Cable Type Cable Length Connector SHIELD CABLE 2) (GRAY) — COAXIAL CABLE: RG-174/U (BLACK) 450 ± 10 — — TWISTED PAIR CABLE WITH SHIELD 3) (GRAY) SHV-P SHIELD CABLE (GRAY) BNC-P COAXIAL CABLE: RG-174/U (BLACK) 1500 ± 25 TWISTED PAIR CABLE WITH SHIELD (GRAY) DIN (6 PIN)-P NOTES: 1) Turning this pot clockwise decreases the PMT gain. (25 turns max.) 2) At the end of HV cable, it's possible to attach SHV connector fitting RG-174/U. 3) Connect as follow. WHITE........ -15 V ORANGE.... +15 V SHIELD....... GND * See page 121 for details on flanges and housing contains a magnetic shield case. 103 DP-Type Socket Assemblies High Voltage Power Supply Socket Assemblies (DP Type) DP type socket assemblies include a high voltage power supply and so allow easily operating a photomultiplier tube just by supplying a low voltage (+15 V or +5 V). These socket assemblies ensure highly stable photomultiplier tube operation with excellent output linearity. Features ● Superior DC Output Linearity ● Active Voltage Divider (C12597-01, C13003-01, C13004-01) ● Fast High Voltage Programming Response (C12597-01, C13003-01, C13004-01) ● Cockcroft-Walton Circuit (C8991, C8991-01, C10344-03, C12842-01, C12842-02) ● Low Power Consumption (C8991, C8991-01, C10344-03, C12842-01, C12842-02) Specifications Type No. B PMT Maximum Maximum Anode E Linear DC Input Input Input Voltage Voltage Current Output Current Ripple Noise Min. (µA) Typ. (mVp-p) (V) (mA) (V) Applicable PMTs +15 ± 1 60 +11.5 to +15.5 8 C12597-01 C8991 28 mm side-on type 100 C 0.5 1 100 D C8991-01 +13.5 to +15.5 25 mm head-on type R1924A, R1925A, R3550A, R5070A, etc. C13003-01 C13004-01 C12842-02 A +11.5 to +15.5 +5 ± 0.5 NOTE: A C12842-01S/-02S which is with shutter(10ms to DC) function are also available. Please refer the individual datasheet for details. B When photomultiplier tube is not attached. DC Linearity Characteristics +6 8 100 D 1 3 100 D 0.6 (Max.) High Voltage Controlling Characteristics TACCB0103EC TACCB0041EE -1750 140 20 0.5 C PMT Supply Voltage: -1000 V, Within: ±2 % linearity D PMT Supply Voltage: -1000 V, Within: ±0.5 % linearity E Load resistance=1 MΩ, Load capacitance=20 pF to 25 pF Practical PMT DC Output Limits TACCB0102EB 100 C 65 8 stage dynode, head-on type R6231, R6232, R6233, R6234, R6235, R6236, R6237, etc. 10 stage dynode, head-on type R878, R550, R594, R877, R1512, R1513, etc. C12842-01 A 60 +15 ± 1 28 mm head-on type R374, R2228, R5929, R6094, R6095, etc. C10344-03 C13004-01 C12597-01, C13003-01, C13004-01 0 C8991/-01, C10344-03 120 C8991/-01, C10344-03 C12842-01/-02 -1500 C12597-01, C13003-01 OUTPUT VOLTAGE (V) (Reference) 330 kΩ / STAGE RESISTIVE DIVIDER PMT OUTPUT CURRENT (µA) DEVIATION (%) PMT SUPPLY VOLTAGE: -1000 V 10 1.5 10 +18 100 C13003-01 80 C13004-01 60 C12597-01 40 (Reference) 330 kΩ / STAGE RESISTIVE DIVIDER 20 -1250 -1000 -750 -500 C8991* C8991-01 C10344-03 C12842-01/-02 -250 C12842-01/-02 -10 1 10 100 1000 0 -400 -600 -800 -1000 -1200 -1400 -1600 0 0 0 PMT SUPPLY VOLTAGE* (V) PMT OUTPUT CURRENT (µA) * Photomultiplier tube must be used with a supply voltage within the rated range. +1 +0.2 +2 +0.4 +3 +0.6 +4 +0.8 +5 +1.0 +6 +1.2 +7 +1.4 CONTROL VOLTAGE (V) (C12597-01, C13003-01, +8 C13004-01) +1.6 (C8991/-01, C10344-03, C12842-01/-02) * C8991 can be controlled up to +1.2 V (output voltage -1200 V). Schematic Diagrams C8991 C8991-01 C10344-03 C12597-01 C13003-01 C13004-01 ACTIVE VOLTAGE DIVIDER 1.8 kΩ HIGH VOLTAGE POWER SUPPLY SIGNAL OUT (COAX) 104 COCKCROFTWALTON CIRCUIT (HIGH VOLTAGE DIVIDER) COCKCROFTWALTON CIRCUIT (HIGH VOLTAGE DIVIDER) +15 V IN (RED) PMT SOCKET C12842-01 C12842-02 1.8 kΩ GND (BLACK) Vref (+5 V) OUT (BLUE) : C12597-01, C13003-01 Vref (+6 V) OUT (BLUE) : C13004-01 HV CONTROL (WHITE) GND (BLACK) TACCC0122EB PMT SOCKET PMT SOCKET 6.2 kΩ HIGH VOLTAGE ADJUSTMENT CIRCUIT SIGNAL OUT (COAX) +15 V IN (RED) Vref (+2.5 V) OUT (C8991-01, C10344-03) (BLUE) Vref (+1.2 V) OUT (C8991) (BLUE) HV CONTROL (WHITE) GND (BLACK) HIGH VOLTAGE ADJUSTMENT CIRCUIT 6.2 kΩ +5 V IN (RED) Vref (+2.5 V) OUT (BLUE) HV CONTROL (WHITE) GND (BLACK) SIGNAL OUT (COAX) TACCC0141EA TACCC0167EA High Voltage Power Supply Output Voltage Range (V) Linear G Regulation Typ. (%) -100 to -1250 F -200 to -1200 F -200 to -1500 F -200 to -1250 F -200 to -1500 F ±0.01 -200 to -1500 F Output Voltage Control Typ. (ms) Settling Time (s) 80 — ±0.01 0 to +50 — 10 ±0.005 0 to +50 0 V to +5 V or external 50 kΩ potentiometer 0 V to +1.2 V or external 10 kΩ potentiometer 0 V to +1.5 V or external 10 kΩ potentiometer 0 V to +5 V or external 50 kΩ potentiometer 0 V to +6 V or external 50 kΩ potentiometer 0 V to +1.5 V or external 10 kΩ potentiometer F Output voltage that guarantees the characteristics. G Against ±1 V input change H for 0 %/99 % HV change Dimensional Outlines C12597-01 C13003-01 (g) 45 57 80 — ±0.01 0 to +40 — 10 ±0.005 0 to +50 57 — 10 ±0.01 0 to +50 176 -15 to +60 40 I The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V. (Unit: mm) C13004-01 C8991 C8991-01 5 C10344-03 C12842-01/-02 33.0 ± 0.3 38.0 ± 0.3 49.0 ± 0.3 31.7 ± 0.3 25.2 25.2 38.0 ± 0.3 49.0 ± 0.3 31.7 ± 0.3 31.8 ± 0.5 31.8 ± 0.5 TACCA0328EA SIGNAL OUTPUT +15 V INPUT Vref OUTPUT HV CONTROL INPUT GND GND COAXIAL CABLE RG-174/U AWG 24, RED AWG 24, BLUE AWG 24, WHITE AWG 24, BLACK AWG 24, BLACK TACCA0329EA SIGNAL OUTPUT +15 V INPUT Vref OUTPUT HV CONTROL INPUT GND GND COAXIAL CABLE RG-174/U AWG 24, RED AWG 24, BLUE AWG 24, WHITE AWG 24, BLACK AWG 24, BLACK TACCA0330JA * See page 121 for details on flanges and housing contains a magnetic shield case. 450 ± 20 HOUSING (METAL) 450 - 0 5 10 10 5 5 COAXIAL CABLE RG-174/U AWG 24, RED AWG 24, BLUE AWG 24, WHITE AWG 24, BLACK AWG 24, BLACK HOUSING (METAL) +20 450 ± 10 5 450 MIN. SIGNAL OUTPUT +15 V INPUT Vref OUTPUT HV CONTROL INPUT GND 10.5 10.5 SIGNAL OUTPUT +15 V INPUT Vref OUTPUT HV CONTROL INPUT GND GND 50.0 ± 0.5 40.0 ± 0.5 0.7 HOUSING (METAL) 31.8 ± 0.5 31.7 ± 0.3 450 MIN. 450 MIN. HOUSING (METAL) 37.7 ± 0.5 HOUSING (METAL) 37.8 ± 0.5 HOUSING (METAL) 37.8 ± 0.5 0.7 35.5 ± 0.5 4 4 65 25.2 29.0 ± 0.3 7 7 29.0 ± 0.3 31.7 ± 0.3 3.5 5 3.5 33.0 ± 0.3 Weight 59 0 V to +1.5 V or external 10 kΩ potentiometer 0 to -1500 I Operating Storage Temperature Ambient Coefficient Temperature Temperature (°C) Typ. (%/°C) (°C) Output H Voltage Programing Response COAXIAL CABLE RG-174/U AWG 24, RED AWG 24, BLUE AWG 24, WHITE AWG 24, BLACK TACCA0053EE SIGNAL OUTPUT +15 V INPUT Vref OUTPUT HV CONTROL INPUT GND COAXIAL CABLE RG-174/U AWG 24, RED AWG 24, BLUE AWG 24, WHITE AWG 24, BLACK TACCA0294EA SIGNAL OUTPUT +5 V INPUT Vref OUTPUT HV CONTROL INPUT GND COAXIAL CABLE RG-174/U AWG 26, RED AWG 26, BLUE AWG 26, WHITE AWG 26, BLACK TACCA0323EA 105 DAP-Type Socket Assemblies High Voltage Power Supply Socket Assemblies with Transimpedance Amplifier (DAP Type) DAP type socket assemblies contain an high voltage power supply and an amplifier that converts high impedance current signals from the photomultiplier tube into low impedance voltage signals. These socket assemblies ensure stable photomultiplier operation with excellent output linearity. Features ● Superior DC Output Linearity ● Active Voltage Divider (C6271, C7950, C7950-01) ● Fast High Voltage Programming Response (C6271, C7950, C7950-01) ● Cockcroft-Walton Circuit (C12843-01, C12843-02) ● Low Power Consumption (C12843-01, C12843-02) ● Wide Frequency Bandwidth (C7950, C7950-01) ● Single Power Supply Operation (C6271) Specifications Type No. B PMT Amplifier Maximum Maximum Input Frequency Current to Voltage Maximum Output Linear DC Input Input Voltage Voltage Current Output Current Bandwidth Conversion Factor Signal Voltage (V) (V) (mA) Min. (µA) (-3 dB) (V/µA) (V) 0.3 43 DC to +13 +15 ± 1 +18 +60/— (load resistance 10 kΩ) C 10 kHz (load resistance 10 kΩ) (load resistance 10 kΩ) Applicable PMTs C6271 28 mm side-on type C7950 ±15 ± 1 28 mm head-on type R374, R2228, R5929, R6094, R6095, etc. 8 stage dynode, head-on type R6231, R6232, R6233, R6234, R6235, R6236, etc. ±5 ± 0.5 10 stage dynode, head-on type R878, R550, R594, R877, R1512, R1513, etc. C7950-01 C12843-01 A C12843-02 A ±18 +65/-20 8 DC to (load resistance 50 Ω) D 5 MHz ±6 +6.5/-3.5 40 0.1 +4 DC to (load resistance 10 kΩ) E 200 kHz (load resistance 10 kΩ) (load resistance 10 kΩ) C PMT Supply Voltage: -1000 V, Within: ±2 % linearity D PMT Supply Voltage: -900 V, Within: ±2 % linearity E PMT Supply Voltage: -1000 V, Within: ±0.5 % linearity NOTE: A C12843-01S/-02S which is with shutter(10ms to DC) function are also available. Please refer the individual datasheet for details. B When photomultiplier tube is not attached. DC Linearity Characteristics Practical PMT DC Output Limits TACCB0104EB 140 DEVIATION (%) (Reference) 330 kΩ / STAGE RESISTIVE DIVIDER 10 C12843-01/-02 0 C7950/-01 C6271 PMT OUTPUT CURRENT (µA) 20 PMT SUPPLY VOLTAGE: -1000 V (C6271, C12843-01/-02) -900 V (C7950, C7950-01) TACCB0105EB 120 100 80 C6271 60 40 C7950/-01 20 -10 1 10 100 0 -400 1000 -1000 -1200 -1400 -1600 Frequency Bandwidth TACCB0106EB TACCB0108EB 10 C12843-01/-02 -1250 5 RELATIVE GAIN (dB) OUTPUT VOLTAGE (V) -800 C12843-01/-02 PMT SUPPLY VOLTAGE (V) High Voltage Controlling Characteristics -1500 C6271 -1000 -900 -750 C7950*, C7950-01* -500 C12843-01/02 C7950/-01 0 -3 dB -5 C6271 -10 -15 -250 0 0 +1 +0.25 +2 +0.5 +3 +3.6 +4 +0.75 +1.0 +5 +1.25 +6 (C6271, C7950, C7950-01) +1.5 (C12843) CONTROL VOLTAGE (V) 106 (Reference) 330 kΩ / STAGE RESISTIVE DIVIDER -600 PMT OUTPUT CURRENT (µA) 0 0.15 +1.2 (load resistance 50 Ω) (load resistance 50 Ω) * The output is -900 V even if the control voltage is set higher than +3.6 V. -20 0.1 1 10 100 1000 FREQUENCY (kHz) 10000 100000 Amplifier High Voltage Power Supply Operating Storage I Settling J Temperature Ambient Output Signal Output Induced Ripple Line H Output Voltage VoltageOutput Programing Temperature Weight Voltage Range Regulation Time Offset Voltage on Coefficient Temperature Response Control (s) Typ. (mV) Signal Output (V) Typ. (%) Typ. (%/°C) (°C) (g) Typ. (ms) (°C) 2 mVp-p F 0 V to +5 V or 80 ±0.01 0 to -1250 ±0.3 ±0.01 — 0 to +40 55 (Typ.) external 50 kΩ potentiometer ±10 10 mVrms G (Typ.) 0 to -900 1 mVp-p F (Max.) 0 to -1500 ±1 ±0.03 80 0 V to +3.6 V — ±0.03 60 0 to +40 -15 to +60 ±0.01 0 V to +1.5 V or external 10 kΩ potentiometer — 10 ±0.01 0 to +50 60 180 I for 0 %/99 % HV change J The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V. F Load resistance=1 MΩ, Load capacitance=20 pF to 25 pF G Load resistance=50 Ω, Load capacitance=25 pF H Against ±1 V input change Schematic Diagrams C7950, C7950-01 C6271 10 Ω AMP C12843-01, C12843-02 50 Ω SIGNAL OUT (COAX) AMP PMT SOCKET PMT SOCKET ACTIVE VOLTAGE DIVIDER 1.8 kΩ HIGH VOLTAGE POWER SUPPLY +15 V IN (RED) Vref (+5 V) OUT (BLUE) HV CONTROL (WHITE) GND (BLACK) GND (BLACK) -15 V IN (BLUE) ACTIVE VOLTAGE DIVIDER HIGH VOLTAGE POWER SUPPLY PMT SOCKET -5 V IN (GREEN) COCKCROFTWALTON CIRCUIT (HIGH VOLTAGE DIVIDER) HIGH VOLTAGE 6.2 kΩ ADJUSTMENT CIRCUIT TACCC0125EA Dimensional Outlines SIGNAL OUT (COAX) AMP +15 V IN (RED) HV CONTROL (WHITE) GND (SHIELD) TACCC0096EE C6271 50 Ω SIGNAL OUT (COAX) +5 V IN (RED) Vref (+2.5 V) OUT (BLUE) HV CONTROL (WHITE) GND (BLACK) TACCC0169EA (Unit: mm) C7950 C7950-01 C12843-01/-02 5 32 3.5 33.0 ± 0.3 2 × 3.2 38 38.0 ± 0.3 45 49.0 ± 0.3 31.7 ± 0.3 29.0 ± 0.3 65 25.6 HOUSING (METAL) 50.0 ± 0.5 HOUSING (METAL) 32 SIGNAL OUTPUT +15 V INPUT Vref OUTPUT HV CONTROL INPUT GND GND HOUSING (METAL) 450 ± 20 CONDUCTIVE PLASTIC 450 ± 10 450 ± 10 450 MIN. 10.5 31.7 ± 0.3 60.0 ± 0.5 48.5 R1 57.7 ± 0.5 2.5 0.7 4 4 31.5 COAXIAL CABLE RG-174/U AWG 24, RED AWG 24, BLUE AWG 24, WHITE AWG 24, BLACK AWG 24, BLACK C7950, C7950-01 TACCA0156EE 10.5 COAXIAL CABLE RG-174/U BLACK SIGNAL OUTPUT HV CONTROL INPUT SHIELDED CABLE GRAY — (TWISTED PAIR CABLE) GND +15 V INPUT SHIELDED CABLE LIGHT -15 V INPUT (TWISTED PAIR CABLE) BLUE GND — WHITE ORANGE SHIELD RED BLUE SHIELD * See page 121 for details on flanges and housing contains a magnetic shield case. SIGNAL OUTPUT +5 V INPUT Vref OUTPUT HV CONTROL INPUT GND -5 V INPUT COAXIAL CABLE RG-174/U AWG 26, RED AWG 26, BLUE AWG 26, WHITE AWG 26, BLACK AWG 26, GREEN TACCA0337EA 10.5 TACCA0261EA 107 Amplifier Units / Amplifier Modules Amplifier Series Specifications Hamamatsu provides six series of amplifier units for photomultiplier tubes. Select the one that best matches your application. Type No. Frequency Bandwidth (-3 dB) C7319 DC to 20 kHz DC to 200 kHz (Switchable) A C12419 DC to 1 MHz Current-to-Voltage Rise Time Conversion Factor Typ. (At Recommended Load Resistance) 1.75 µs 0.1 V/µA or 1 V/µA or 10 V/µA (Switchable) A to 17.5 µs A 1 V/µA C9999 350 ns 50 mV/µA DC to 10 MHz 35 ns C9999-01 10 mV/µA C6438 0.5 mV/µA C6438-01 25 mV/µA DC to 50 MHz C6438-02 ▲From left: C7319, C11184, C9663, C5594, C6438 7 ns 5 mV/µA C9663 DC to 150 MHz 4 mV/µA 2.3 ns C11184 DC to 300 MHz 1.25 mV/µA 1.2 ns 50 kHz to 1.5 GHz 3.15 mV/µA 0.23 ns M7279 DC to 10 MHz 10 mV/µA 35 ns M8879 DC to 150 MHz 4 mV/µA 2.3 ns C5594-12 C5594-22 C5594-44 ▲From left: M7279, M8879 Dimensional Outlines (Unit: mm) C7319 C6438 DIN TYPE (6 PINS) L H DIN TYPE (6 PINS) ALUMINUM HOUSING OUTPUT GAIN 105 106 107 V/A SIG IN ±5 V SIG OUT 43.2 ± 0.5 ±15 V INPUT BW BNC-R BNC-R 43.2 ± 0.5 ALUMINUM HOUSING BNC-R OFFSET VR OFFSET 47.5 ± 0.2 ∗ Exclusiver cable with a plug connector attached at one end will be provided for ±15 V supply connection together with the unit. ∗ Exclusiver cable with a plug connector attached at one end will be provided for ±5 V supply connection together with the unit. 65.0 ± 0.5 60.0 ± 0.5 ATTACHMENT SCREW HOLES (2 × M3 DEPTH 5) SCREW HOLES FOR FIXTURE (2 × M3 DEPTH 5) 47.5 ± 0.2 SWITCH OF CONVERSION RATIO 60.0 ± 0.5 SWITCH OF FREQUENCY BANDWIDTH 65.0 ± 0.5 TACCA0174EA C12419/C9999/C6438-01/C9663 TACCA0134EA C9999-01/C6438-02 ALUMINUM HOUSING BNC-R DIN TYPE (6 PINS) ALUMINUM HOUSING BNC-R DIN TYPE (6 PINS) BNC-R ±5V OFFSET 43.2 ± 0.5 OUTPUT 43.2 ± 0.5 INPUT ±5 V INPUT NON INV. OUTPUT INV. BNC-R VR OFFSET ATTACHMENT SCREW HOLES (2 × M3 DEPTH 5) MOUNTING THREADED HOLES (2 × M3 DEPTH 5) 47.5 ± 0.2 47.5 ± 0.2 ** Exclusiver cable with a plug connector attached at one end will be provided for ±5 V supply connection together with the unit. 60.0 ± 0.5 ** Exclusiver cable with a plug connector attached at one end will be provided for ±5 V / ±15 V supply connection together with the unit. 60.0 ± 0.5 * The C6438-01 has no VR offset. 65.0 ± 0.5 TACCA0262EB 108 65.0 ± 0.5 TACCA0321EA Input/Output Recommended Impedance Load Resistance (Ω) (Ω) Input Polarity (Output) Positive/Negative (inverted) Positive/Negative (inverted) Positive/Negative (non-inverted) Positive/Negative (inverted / non-inverted switchable) Low/50 10000 Low/50 1000 360/50 50 50 50 Positive/Negative (non-inverted) Positive/Negative (inverted / non-inverted switchable) Positive/Negative (non-inverted) Positive/Negative (non-inverted) 50 50 50 50 Output Noise Signal Connector Voltage Input Output Typ. (mVrms) Supply Voltage (V) Supply Weight Current Max. (g) (mA) 0.15 to 2 A BNC-R ±5 to ±15 ±50 170 D 1 BNC-R ±15 ±100 165 D ±5 ±70 180 D BNC-R ±140 165 D ±2 (RL: 1 MΩ) ±1 (RL: 50 Ω) 50 50 Max. Output Signal Voltage Min. (V) ±13 (RL: 10 kΩ) ±2 (RL: 50 Ω) ±11 (RL: 1 kΩ) ±3 (RL: 50 Ω) ±3.2 (RL: 1 MΩ) ±1.3 (RL: 50 Ω) ±3 (RL: 1 MΩ) ±1.3 (RL: 50 Ω) ±3 (RL: 1 MΩ) ±1.3 (RL: 50 Ω) ±3 (RL: 1 MΩ) ±1.4 (RL: 50 Ω) ±2 (RL: 1 MΩ) ±1 (RL: 50 Ω) 2.2 1.2 ±55 0.5 (Max.) 8 (Max.) 160 D ±80 ±5 BNC-R 2 (Max.) ±140 165 D 2.8 BNC-R ±5 ±80 180 D 1 MCX-R (with BNC adapter) ±5 ±70 40 70 SMA-P SMA-R Positive/Negative (non-inverted) +0.8 / -2.5 (RL: 50 Ω) 50 50 5 dB C 100 / 50 50 50 50 ±3.5 (RL: 1 MΩ) ±1.5 (RL: 50 Ω) ±3 (RL: 1 MΩ) ±1.4 (RL: 50 Ω) ASpecifications of C7319 Current-to-Voltge Conversion Factor 0.1 V/µA 1 V/µA DC to 20 kHz 17.5 Rise Time (µs) 1.75 DC to 200 kHz B 0.15 Output Noise Voltage DC to 20 kHz 0.2 (mVrms) 0.3 DC to 200 kHz B 0.6 2.8 ±5 to ±6.5 ±45 1.1 ±5 to ±6 ±61 2.5 BLimited to DC to 100 kHz at 10 V/µA CNoise figure DNot including the supplied cable 10 V/µA 3.5 B 0.6 2B C11184 90 On-board mounting On-board mounting 1 70 BNC-R BNC-R Positive/Negative (non-inverted) Positive/Negative (non-inverted) +95 SMA-R SMA-R +12 to +16 C5594-44 C11184 (MCX) GAIN : X25 30.5 54 RED : +5 V BLACK : GND BULE : -5 V RED: +5V BLACK:GND BLUE: -5V HIGH SPEED AMPLIFIER C5594 IN OUTPUT 7.2 ± 0.4 OUT 50 k-1.5 GHz 36 dB (MCX) GND INPUT MCX CONNECTOR* 17 30.5 33 28.0 ± 0.5 300MHz AMPLIFIER UNIT INPUT 14.5 ± 0.5 450 ± 20 ATTACHMENT SCREW HOLES (2 × M3 DEPTH 2.5) OUTPUT MCX CONNECTOR* 16.5 52.0 ± 0.5 +15 V 18 18 9.5 TACCA0303EA M7279 M8879 TACCA0295EB 20.0 ± 0.2 3.5 ± 0.8 21.0 ± 0.8 1.1 26.5 ± 0.2 1.1 13.0 ± 0.2 11.4 * MCX-BNC adapter supplied 12.6 ± 0.2 1.15 FUNCTION INPUT -Vs INTERNAL CONNECTION (DO NOT USE) OPTION GND OUTPUT +Vs TACCA0183ED .5 METAL CASE 0.5 2.54 8 PIN# 1 2 3 4 5 6 7 8 R1 3 1 2 3 4 5 6 7 8 0.3 2.1 0.5 7.5 ± 0.2 2.54 WHITE DOT (PIN#1) 3 10.4 ± 0.8 15.0 ± 0.8 R3 HAMAMATSU M7279 10.16 2.54 SILICONE PADS 2.54 2.54 2.54 +Vs 5 GND 4 -Vs 3 INPUT 2 6 OPTION PIN A 7 OPTION PIN B 8 OPTION PIN C 9 OUTPUT 1 GND !0 GND TACCA0249EA 109 High Voltage Power Supplies Voltage Dependence of Photomultiplier Tube Gain Hamamatsu regulated high voltage power supplies are products developed based on our years of experience as a photomultiplier tube manufacturer and our leading edge technology. All models are designed to conform to stability requirements demanded of photomultiplier tube operations. Various models are provided, ranging from on-board module types to general-purpose bench-top types, allowing you to choose the desired power supply that suits your application. Gain vs. Supply Voltage 108 TPMOB0082EB 107 106 GAIN The photoelectrons emitted from the photocathode of a photomultiplier tube are channeled by the electron lens to impinge on the first dynode where several times the number of secondary electrons are then emitted. This multiplicative increase of secondary electrons is repeated at the latter dynodes and as a result, the number of electrons reaching the anode is approximately 105 to 107 times the original number of photoelectrons emitted from the photocathode. The relationship of the secondary electron emission δ for each dynode to the supplied voltage is expressed as follows: δ = A • Eα where A is a constant, E is the interstage voltage, and α is another constant determined by the dynode material and geometric structure. The value of α is usually in the range 0.7 to 0.8. When a voltage V is supplied between the anode and the photocathode of a photomultiplier tube having n dynode stages, the overall gain µ is given by µ = (A • Eα)n = {A • [V/n+1]α}n = {An/ (n+1)αn}Vαn Here, if {An/ (n+1)αn} is substituted for K, µ becomes µ = K • Vαn Typical photomultiplier tubes have 9 to 12 dynode stages and as shown in the graph on the right, the gain is proportional to the 6th to 10th power of the voltage supplied between the photocathode and the anode. This essentially means that the output of a photomultiplier tube is extremely sensitive to variations in the supplied voltage. Thus the power supply stability such as drift, ripple, temperature regulation, input regulation and load regulation must be at least 10 times as stable as the output stability required of the photomultiplier tube. 105 104 103 102 200 300 500 700 1000 1500 SUPPLY VOLTAGE (V) How to select a high voltage power supply The high voltage power supply you will need differs depending on the photomultiplier tube to be used. Select an optimal high voltage power supply according to the following basic criteria for selecting the output voltage and current. Output voltage: Power supply output voltage should be higher than the maximum supply voltage for the photomultiplier tube. Check the maximum supply voltage across the anode and cathode of the photomultiplier tube to be used, and choose an appropriate high voltage power supply that covers the whole voltage range basically. Please operate the PMT not to exceed the maximum supply voltage. Output current: Power supply output current should be 1.5 times higher than the divider current. Find the divider current that will flow in the voltage?divider circuit and choose a high voltage power supply whose output current is at least 1.5 times higher than the divider current. The divider current can be calculated from the supply voltage actually used for the photomultiplier tube. For example, if the maximum supply voltage for the photomultiplier tube is 1250 V and the actual operating voltage is 1000 V, find the divider current that will flow in the voltage-divider circuit operating at 110 1000 V and select a high voltage power supply that provides an output current at least 1.5 times higher than the divider current. Giving an extra safety margin to the output current also allows increasing the operating voltage. There will be no problems with measurement if the output current capacity is greater than the divider current when operated at the maximum supply voltage. If operating two or more photomultiplier tubes from a single high voltage power supply, select a power supply that provides an output current higher than the total divider current calculated by multiplying the divider current by the number of voltage-divider circuits used. All models of Hamamatsu high voltage power supplies are designed for high stability optimized for photomultiplier tube operation. Besides output voltage and current, other factors to consider include the input voltage, size, and availability of external control. Hamamatsu provides a full line of high voltage power supplies as listed on the following pages. Choose a high voltage power supply that best meets your applications and usage. High Voltage Power Supply Modules Regulation Input Output Output Ripple/Noise Voltage Current (p-p)AB LineAB LoadA Voltage (Max.)(V) (Max.)(mA) (Typ.)(mV) (Typ.)(%) (Typ.)(%) (V) Type No. C10940 C4900 -03 -03-R2 -53 -53-R2 — -01 -50 -51 -1200 -1250 +1250 — -1250 -50 +1250 0.6 0.5 0.6 0.5 15 × 18 × 15 +15 +12 +15 +12 46 × 24 × 12 38 ±0.01 ±0.01 125 ±0.01 ±0.01 +15 46 × 24 × 12 +12 ±0.01 ±0.01 +15 +2000 -12 -1000 -52 +1000 -12 -1500 C12446 * C12766 * 46 × 24 × 12 1 ±0.01 ±0.01 2 60 ±0.01 ±0.01 5 50 ±0.01 ±0.01 +24 62 × 15 × 45 High current output 10 50 ±0.01 ±0.01 +24 62 × 15 × 45 High current output 30 75 ±0.01 ±0.01 +24 +15 +12 +15 +12 +15 +12 +15 +12 +2000 -52 UL recognized (UL 60950-1) 5 (>5 kHz) 8 (< =5 kHz) -2000 -2000 Digital Control RS-485, Daisy-chain (-R2 type only) 125 +1500 -12 Note 1 -1500 C11784 * -52 +5 0.5 C10764 * C9619 * ±0.01 0.6 -01 C11152 ±0.02 +1200 -1250 — -01 -50 -51 — -01 -50 -51 50 0.6 — C10673 * Size W×H×DC (mm) +1500 AAt maximum output voltage BAt maximum output current * Please check individual catalogue for more detailed information. 41 × 10 × 41 Low ripple / noise 62 × 15 × 45 High current output 107 × 25.5 × 72 -12 type: UL recognized (UL 60601-1) CExcluding projecting parts Bench-top Type High Voltage Power Supplies Type No. C9525 C9727 -02 -03 -52 -53 — -01 -50 -51 Regulation Input C Output Output Ripple/Noise Voltage Current (p-p)AB LineAB LoadA Voltage (Max.)(V) (Max.)(mA) (Typ.)(mV) (Typ.)(%) (Typ.)(%) (V) Note 1.8 60 ±0.005 ±0.03 AC 100 USB control Multiple 246 × 85 × 312 outputs of ±5 V, ±15 V to AC 240 and high voltage 2 105 ±0.005 ±0.03 AC 100 USB control Multiple 246 × 85 × 312 outputs of ±5 V, ±15 V to AC 240 and high voltage -2000 +2000 -3500 +3500 Size W×H×DD (mm) AAt maximum output voltage BAt maximum output current CC9525-02/C9525-52/C9727/C9727-50: AC cable with a rating 125 V is supplied with the product C9525-03/C9525-53/C9727-01/C9727-51: AC cable with a rating 250 V is supplied with the product DExcluding projecting parts 111 High Voltage Power Supplies High Voltage Power Supply Modules C10940 Series The C10940 series is an on-board type high voltage power supply module with a compact size of 15 mm × 18 mm × 15 mm. The C10940 series requires minimal mounting space or footprint on a circuit board and so helps reduce equipment size. Type "-R2" for RS-485 control is also provided. Features ● Compact and lightweight ● High stability ● High conversion efficiency ● Digital control RS-485 Daisy-chain (Max. 32 ch, -R2 type only) ● Ample protective functions Specifications Parameter C10940-53 C10940-03-R2 C10940-53-R2 +5 ± 0.5 60 230 +10 to +1200 -10 to -1200 +200 to +1200 -200 to -1200 0.6 ±0.02 ±0.01 50 By external controlling voltage (0 V to +1.2 V) or external potentiometer (50 kΩ) Controlled by command via RS-485 200 — — 200 +1.2 — — +1.2 Controlling voltage × 1000 Controlling voltage × 1000 — — 120 120 300 300 ±0.01 0 to +50 Below 80 -20 to +60 Below 80 7.7 Units protected against reversed power input, reversed/excessive controlling voltage input, continuous overloading/short circuit output C10940-03 Input Voltage with no load Typ. with full load Typ. Variable Output Voltage Range Specification Guaranteed Output Voltage Range Max. Output Current Line Regulation Against ±0.5 V Input Change AB Typ. Load Regulation Against 0 % to 100 % Load Change A Typ. Typ. Ripple / Noise (p-p) AB C10940-03/-53 Output Voltage Control C10940-03-R2/-53-R2 Controlling Voltage Input Impedance Typ. Reference Voltage Output Output Voltage Setting (Absolute Value) Typ. Output Voltage Rise Time (0 % ➝ 99 %) AB Typ. Typ. Temperature Coefficient AB Operating Ambient Temperature AB Operating Ambient Humidity C Storage Temperature Storage Humidity C Typ. Weight Input Current A Protective Functions Unit V mA mA V V mA % % mV — kΩ V V ms %/°C °C % °C % g — NOTE: AAt maximum output voltage BAt maximum output current CNo condensation * -R2 type: RS-485 control Output Voltage Controlling Characteristics 2.5 ± 0.5 BOTTOM VIEW PIN ASSIGNMENT (-03/-53 Type) 1Vcc +5 V 2Vcont GND 3Vcont 4Vref +1.2 V Typ. 5Vcc GND 6HV GND 7HV OUT 18.0 ± 0.5 BOTTOM VIEW PIN ASSIGNMENT (-03-R2/-53-R2 Type) 1Vcc +5 V 2RS-485A 3RS-485B 4UNUSED NORMALLY 5Vcc GND 6HV GND 7HV OUT TACCA0316EA 112 (C10940-03-R2) -1200 (C10940-53) +1400 -1200 +1200 -1000 +1000 -800 +800 -600 +600 -400 +400 -200 +200 0 0 0 0.2 0.4 0.6 0.8 1.0 1.2 CONTROLLING VOLTAGE (V) 1.38 1.4 OUTPUT VOLTAGE (V) 3.0 1.778 × 4=7.112 7.62 15.0 ± 0.5 ●Digital Control (C10940-03-R2/-53-R2) (C10940-03) -1400 OUTPUT VOLTAGE (V) 2.5 5 4 3 2 1 ●External Control (C10940-03/-53) OUTPUT VOLTAGE (V) 7 15.0 ± 0.5 7.9 6 7 × 0.45 PLASTIC HOUSING (C10940-53-R2) +1200 -1000 +1000 -800 +800 -600 +600 -400 +400 -200 +200 0 0 200 400 600 800 CONTROLLING SIGNAL (Digital: 10 bits) 0 1000 OUTPUT VOLTAGE (V) Dimensional Outlines (Unit: mm) Compact High Voltage Power Supply Modules C4900 Series The C4900 series is an on-board type high voltage power supply module with high performance and low power consumption. The C4900 and -01 are designed for negative output, while the C4900-50 and -51 have positive output. Features ● Compact and lightweight ● Low power consumption ● High stability ● Quick response ● Ample protective functions Specifications Parameter C4900 +15 ± 1 14 90 C4900-01 +12 ± 0.5 15 95 0 to -1250 -200 to -1250 0.6 0.5 Input Voltage C4900-50 C4900-51 +12 ± 0.5 +15 ± 1 15 14 95 90 0 to +1250 +200 to +1250 0.5 0.6 Unit V with no load Typ. with full load Typ. Variable Output Voltage Range Specification Guaranteed Output Voltage Range Output Current Max. Line Regulation Against ±1 V or ±0.5 V ±0.01 Typ. Input Change AB Load Regulation Against 0 % to 100 % ±0.01 Typ. Load Change A Ripple / Noise (p-p) AB Typ. 0.003 % (38 mV) Output Voltage Control By external controlling voltage (0 V to +5 V) or external potentiometer (50 kΩ) Controlling Voltage Input Impedance Typ. 80 Reference Voltage Output Typ. +5.1 Output Voltage Setting (Absolute Value) Typ. Controlling voltage × 250 Output Voltage Rise Time (0 % ➝ 99 %) AB Typ. 50 Temperature Coefficient AB Typ. ±0.01 Operating Ambient Temperature AB 0 to +50 Operating Ambient Humidity C Below 80 Below 80 D Storage Temperature -20 to +70 Storage Humidity C Below 80 Weight Typ. 31 Units protected against reversed power input, reversed / excessive controlling Protective Functions voltage input, continuous overloading / short circuit in output Input Current A NOTE: AAt maximum output voltage BAt maximum output current CNo condensation 12 3.81 15.88 4× 2 15.88 V V mA % % — — kΩ V V ms % / °C °C % °C % g — DAt 0 °C to +40 °C Output Voltage Controlling Characteristics Dimensional Outlines (Unit: mm) 46 mA (C4900, -01) (C4900-50, -51) TACCB0043EB +1500 -1250 +1250 -1000 +1000 -750 +750 -500 +500 -250 +250 0.5 5 MIN. 0.3 1.5 2.5 15.88 3.81 15.88 6 × 0.5 × 0.25 6 × 0.8 10.16 MOUNTING TABS ( • The • mounting tabs can be bent to the right angle only once The mounting tabs are solderable. ) 17.78 PIN ASSIGNMENT q Vcc +15 V or +12 V w GND e Vcont GND r Vcont t Vref +5.1 V Typ. y HV OUT • The housing is internally connected to pin w. • Pins w and e are internally connected. 0 2.54 10.16 0 +1 +2 +3 +4 +5 5.3 OUTPUT VOLTAGE (V) 2.54 y q w ert OUTPUT VOLTAGE (V) 24 29 11.7 -1500 0 +6 17.78 CONTROLLING VOLTAGE (V) (BOTTOM VIEW) TACCA0157EC TACCA0159EB 113 High Voltage Power Supplies High Voltage Power Supply Modules C11152 Series The C11152 series is an on-board type low-profile high voltage power supply module developed to minimize ripple noise. The C11152 series includes a high voltage output monitor and can also be turned on and off from an external device. Features ● Low Ripple / Noise ● Compact and lightweight ● High stability ● High voltage output monitor ● Ample protective functions Specifications Parameter C11152 +15 ± 1 45 180 C11152-50 C11152-51 +15 ± 1 +12 ± 0.5 45 50 180 220 0 to +1500 +240 to +1500 C11152-01 +12 ± 0.5 50 220 0 to -1500 -240 to -1500 Input Voltage Unit V with no load Typ. with full load Typ. Variable Output Voltage Range Specification Guaranteed Output Voltage Range Max. Output Current 1 Line Regulation Against ±1 V or ±0.5 V Input Change AB Typ. ±0.01 Load Regulation Against 0 % to 100 % Load Change A Typ. ±0.01 Typ. Ripple / Noise (p-p) AB 5 (>5 kHz), 8 (< =5 kHz) Output Voltage Control By external controlling voltage (0 V to +5 V) or external potentiometer (50 kΩ) Controlling Voltage Input Impedance Typ. 150 130 Typ. Reference Voltage Output +5.2 Output Voltage Setting (Absolute Value) Typ. Controlling voltage × 300 Output Voltage Rise Time (0 % ➝ 99 %) AB Typ. 120 Typ. Temperature Coefficient AB ±0.005 High Voltage Monitor Output 0 to +5 (Output impedance 10 kΩ) ON / OFF Input TTL positive logic ON / OFF Input Impedance 30 Operating Ambient Temperature AB 0 to +50 Operating Ambient Humidity C Below 80 Storage Temperature -20 to +60 Storage Humidity C Below 80 Typ. Weight 38 Units protected against reversed power input, reversed / excessive controlling Protective Functions voltage input, continuous overloading / short circuit in output Input Current A NOTE: AAt maximum output voltage BAt maximum output current 2.54 × 6 (C11152, C11152-01) 7.62 10.16 41.0 ± 0.5 * The metal housing is internally connected to Pin 5. ** Never connect the Pin 3 and 5 directly and externally. -1800 +1800 -1500 +1500 -1200 +1200 -900 +900 -600 +600 -300 +300 0 TACCA0306EB 114 0 1 2 3 4 5 5.3 CONTROLLING VOLTAGE (V) 6 0 OUTPUT VOLTAGE (V) PIN ASSIGNMENT 1 Vref +5.2 V Typ. 2 Vcont 3 Vcont GND** 4 ON / OFF IN 5 GND** 6 Vcc +15 V or +12 V 7 HV MONITOR OUT 8 HV OUT 9 HV GND OUTPUT VOLTAGE (V) 16.51 8 13.97 41.0 ± 0.5 0.64 9× 5±1 (C11152-50, C11152-51) TACCB0113EA 1 2 3 4 5 6 7 10 — CNo condensation 2.54 9 V V mA % % mV — kΩ V V ms % / °C V — kΩ °C % °C % g Output Voltage Controlling Characteristics Dimensional Outline (Unit: mm) METAL HOUSING* mA Bench-Top Type High Voltage Power Supplies C9525 Series, C9727 Series The C9525 series and C9727 series are multi-output high voltage power supplies that include a high-voltage power supply unit and a low-voltage power supply unit and can be remotely controlled. Features ● Compact bench-top type ● High output voltage C9525 series (2 kV/1.8 mA), C9727 series (3.5 kV/2 mA) ● Low output voltage ±5 V, ±15 V ● High stability ● USB control ● Output voltage monitor ● Output current monitor (only C9727) Specifications Parameter C9525-52 C9727 C9727-50 C9525-53 C9727-01 C9727-51 0 to +2000 0 to -3500 0 to +3500 +320 to +2000 -320 to -3500 +320 to +3500 1.8 2 ±0.005 ±0.03 0.003 ±0.05 ±0.01 ±(0.1 % +2 V) SHV-R +5 ± 0.25, -5 ± 0.25, +15 ± 0.75, -15 ± 0.75 500 (Total value of two connector outputs) 200 (Total value of two connector outputs) DIN-R (6 pin) × 2 AC100 to AC240 60 0 to +40 Below 85 -20 to +50 Below 90 Approx. 3.0 Low Voltage Output High Voltage Output Output Voltage Specification Guaranteed Output Voltage Output Current Max. Line Regulation (For 10 % change in line voltage) AB Max. Load regulation (For 0 % to 100 % change in load) A Max. Ripple / Noise (p-p) AB Typ. Drift (After 30 minute warm-up) AB Typ. Temperature Coefficient AB Typ. High Voltage Output Monitoring Accuracy A Typ. Output Connector Output Voltage Max. +5 V, -5 V Output Current Max. +15 V, -15 V Output Connector AC Input Voltage Power Consumption AB Max. Operating Ambient Temperature AB Operating Ambient Humidity C Storage Temperature Storage Humidity C Weight C9525-02 C9525-03 0 to -2000 -320 to -2000 AAt maximum outut voltage BAt maximum output current Unit V V mA % % % %/h %/°C — — V mA mA — V V·A °C % °C % kg CNo condensation Accessories 1High voltage output cable (1.5 m long) terminated with SHV-P E1168-17 (C9525 series) .... 1 High voltage output cable (1.5 m long) terminated with SHV-P E1168-19 (C9727 series) .... 1 2AC line cable (2 m long) C9525-02/C9525-52/C9727/C9727-50: AC cable with a rating of 125 V ..................... 1 C9525-03/C9525-53/C9727-01/C9727-51: AC cable with a rating of 250 V ................ 1 33P/2P connector AC plug (C9525-02/C9525-52/C9727/C9727-50 only) ..................... 1 4USB cable (1.5 m long) with filter ................................................................................. 1 5Low voltage power supply section DIN connector plugs .............................................. 2 6CD-ROM (Containing instruction manual, sample software) ....................................... 1 7Clamp filter (C9525-02/-03/-52/-53 only) ...................................................................... 2 Sold Separately Connecting cable for low voltage power supply section E1168-26 (for C9744, C7319, C12419, C9999/-01, C6438/-01/-02, C9663) Dimensional Outline (Unit: mm) 246 ± 1 312 ± 1 USB ON OFF HV OUTPUT 50* A 15 HV OUT 70 ± 1 MODEL C9525 HIGH VOLTAGE POWER SUPPLY POWER LV OUTPUT B * The height of the C9525/C9727 series are 120 mm with front legs extended TACCA0290EA 115 Thermoelectric Coolers High Performance Thermoelectric Coolers C10372, C10373 For 28 mm, 38 mm, 51 mm Diameter Head-on PMT and MCP-PMT The C10372 series and C10373 series are water-cooled thermoelectric coolers designed to reduce thermal electrons emitted from the photocathode of photomultiplier tubes (PMTs) in order to improve signal-to-noise ratio (S/N ratio). The C10372 series further contains an electrostatic and magnetic shield that minimizes the influence of the ambient environment. The C10372 series are for 28 mm, 38 mm and 51 mm diameter head-on PMTs, while the C10373 series are for MCP-PMTs. Features ● Thermoelectric cooling using Peltier module ● About -30 °C cooling temperature (with +20 °C cooling water) ● Evacuated, double-pane window with heater for frost prevention ● Built-in electrostatic and magnetic shielding (C10372 series) ● Internal protective circuits safeguards Peltier module in case of low water ● Internal protective circuits prevent output short-circuit, output overvoltage, and excessive temperature rise in power supply ● Stable operation due to a regulated power supply Left: Power Supply Right: Cooled PMT Housing Specifications [Cooled PMT Housing] Parameter Cooling Method Heat Exchange Medium Cooling Temperature (with cooling water at +20 °C) Time to Stable Cooling Temperature Optical Window Material Applicable PMTs (sold separately) Applicable Socket Assembly / Holder (sold separately) Operating Ambient Temperature / Humidity C Storage Temperature / Humidity C Weight C10373/-01/-02 A C10372/-01/-02 A Thermoelectric cooling using Peltier module Water (1 L/min to 3 L/min, water pressure: below 0.3 MPa) Approx. -30 Approx. 120 Evacuated double-pane silica glass window with heater (185 nm to 2200 nm) 28 mm (1-1/8") Dia., 38 mm (1-1/2") Dia. MCP-PMT and 51 mm (2") Dia. Head-on (R3809U-50 Series, R3809U-61/-63/-64) E3059-500 E2762 Series B (R3809U-50 Series, R3809U-61/-63/-64) +5 °C to +40 °C / Below 75 % -15 °C to +50 °C / Below 80 % Approx. 5.8 Approx. 5.5 Unit — — °C min — — — — — kg NOTE: AC10372 / C10373: For AC 100 V operation. C10372-01 / C10373-01: For AC 120 V operation. C10372-02 / C10373-02: For AC 230 V operation. BSee P.117 CNo condensation [Power Supply] Parameter AC Input Voltage Maximum Power Consumption Temperature Controllable Range (with cooling water at +20 °C) Output Voltage Output Current Protection Circuit Humiditiy C Operating Ambient Temperature / Storage Temperature / Humiditiy C Weight Value / Description AC100 to AC240 (50 Hz/60 Hz) 200 Unit V V·A -30 to 0 (continuously adjustable) °C 24 to 27 4.2 Protective circuits to safeguard Peltier module in case of low water and to prevent output short-circuit, output overvoltage, and excessive temperature rise in power supply. +5 °C to +40 °C / Below 75 % -15 °C to +50 °C / Below 80 % Approx. 2.1 V A — — — kg NOTE: CNo condensation [Components and Accessories] ●Cooled PMT housing ●Power supply ●Light shield cap ●Water hose clamps (2 pcs) ●AC line cable ●Socket assembly / PMT holder mounting screws (4 pcs) ●Connection cable (1.5 m) * To use these coolers, water hoses with an inner diameter of 15 mm and a water supply line with the matching round faucet are required. Prepare those hoses of the desired length. Hoses can also be connected by using PT 1/8 pipe taper screws. ** C10372 series and C10373 series conform to the EMC directive and the LVD of the European Union. 116 Spectral Transmission Characteristics of Optical Window Cooling Characteristics COOLING WATER : +20 °C AMBIENT TEMPERATURE : +20 °C +20 +10 0 -10 -20 -30 -40 0 20 40 60 80 100 120 -10 TACCB0100EA 100 TACCB0101EA 90 80 -20 TRANSMITTANCE (%) TACCB0034EA MAXIMUM COOLING TEMPERATURE (°C) COOLING TEMPERATURE (°C) +30 -30 -40 70 60 50 40 30 20 10 -50 0 TIME (min) +10 +20 0 200 +30 300 400 500 600 700 800 WAVELENGTH (nm) COOLING WATER TEMPERATURE (°C) Dimensional Outlines (Unit: mm) E2762 SERIES (Sold Separately) POWER SUPPLY 53 16 4 × M4 160 64 104.0 ± 1.5 180 HOUSING 200 30 215 8 275 * The 1 mm thickness of the folded aluminum plate is not included in. RC 1/8 TAPER THREAD 35 MAX. 190 30 190 250 15 250 12.5 50 +2 -0 61.5 8 6 × M3 8 6 × M3 S-100 O-RING S-100 O-RING PMT 52 86 95 12 100 86 130 52 95 100 130 12 0 0 PMT EVACUATED WINDOW WINDOW FLANGE WINDOW FLANGE EVACUATED WINDOW WINDOW FLANGE HOUSING FRONT PANEL HOUSING FRONT PANEL WINDOW FLANGE (C10373 series) (C10372 series) TACCA0292EB TACCA0293EB Sold Separately (Unit: mm) Socket Assemblies for C10372 Series E2762 Series MCP-PMT Holder for C10373 Series E3059-500 (For R3809U Series) SIGNAL OUTPUT: BNC RECEPTACLE -HV: SHV RECEPTACLE 222 ± 2 HOUSING (INSULATOR) -HV : SHV RECEPTACLE 73 67.2 ± 0.2 69 119 SIGNAL OUTPUT : SMA RECEPTACLE 106 73 60 R3809U 85 ± 5 119 HIGH VOLTAGE CONTACT RING L 35 MAX. HOUSING (METAL) TACCA0130ED L: E2762-502...133.5 E2762-506...144.5 E2762-509...106.5 NOTE: A 35 MAX. 192 69 SOCKET E2762-510...106.5 E2762-511...120.5 E2762-513...120.5 E2762 Series E2762-502 E2762-506 E2762-509 E2762-510 E2762-511 E2762-513 * The high voltage contact ring is used for internal electrical connection to the magnetic shield case in the cooler. PMT R11102, R2066, etc. R943-02 R464, R649, etc. R329-02, R331-05, R2257, etc. R374, R2228, R5929, etc. R375, R669 HOUSING (INSULATOR) HOUSING (METAL) N2 GAS INLET TACCA0133EC 117 Thermoelectric Coolers High Performance Thermoelectric Coolers for 28 mm Dia. Side-on PMTs C9143, C9144 Series The C9143 and the C9144 are thermoelectric coolers designed for 28mm diameter side-on photomultiplier tubes (PMTs). The C9143 and the C9144 improve S/N (signal to noise ratio) of PMT measurement because of reduction of thermal electrons, which are emitted from PMT photocathode, and minimization of external noise by a built-in electrostatic and magnetic shield. The C9143 and the C9144 can communicate with a PC via an RS-232C serial interface. It enables the PC to control the cooling temperature, high voltage output of C9145 (optionally available socket assembly with a built in Cockcloft-Wolton high voltage power supply) and ±5 V power supply for external equipment. The C9143 and the C9144 use water and forced air respectively to exchange heat of the thermoelectric cooler (Peltier module). Features ▲Left: Controller for C9144 and C9143 Center: C9144 and socket assembly C9145 Right: C9143 and socket assembly E9146 Specifications ● Thermoelectric cooling using Peltier module ● Built-in electrostatic and magnetic shield ● Internal protective circuits safeguards Peltier module in case of low water flow or suspension of fan operation ● Low voltage output for driving C9145 (sold separately) ● Control and monitor function of high voltage output of C9145 ● ±5 V output for external equipment ● Built-in interface for controlling external equipment (D-Sub) ● PMT temperature control by PC ● Water cooling makes it robust against temperature changes (C9143) ● Air cooling means easier handling (C9144) [Cooled PMT Housing] C9144/-01/-02 A Parameter C9143/-01/-02 A Cooling Method Thermoelectric cooling using Peltier module Water Forced air Heat Exchange Medium Approx. -30 B (with cooling water of +20 °C) Approx. -25 C (with ambient temperature of +25 °C) Cooling Temperature -30 Maximum Cooling Temperature Approx. 70 Approx. 90 Time to Stable Cooling Temperature Evacuated double-pane silica glass (185 nm to 2200 nm) Optical Window Material 8 × 24 Light Input Aperture Dimension 28 mm Dia. Side-on Type Applicable PMTs (sold separately) Applicable Socket Assembly (sold separately) C9145 (DP-type), E9146 (D-type) +5 °C to +40 °C / Below 75 % +5 °C to +35 °C / Below75 % Operating Ambient Temperature / Humidity D Storage Temperature / Humidity D -20 °C to +50 °C / Below 85 % Approx. 1 Approx. 1.7 Weight Unit — — °C °C min — mm — — — — kg NOTE: AC9143/C9144: For AC 100 V operation. C9143-01/C9144-01: For AC 120 V operation. C9143-02/C9144-02: For AC 230 V operation. BC9143 achieves cooling temperature of approx. -30 °C with water temperature of +20 °C. If the water temperature is higher, the possible lowest cooling temperature becomes higher (Note: Maximum cooling temperature is -30 °C). CC9144 achieves cooling temperature of approx. -25 °C with ambient temperature of +25 °C. If the ambient temperature is higher, the possible lowest cooling temperature becomes higher. If the ambient temperature is lower, the possible lowest cooling temperature becomes lower (Note: Maximum cooling temperature is -30 °C). DNo condensation [Controller] Parameter AC Input Voltage Maximum Power Consumption Temperature Controllable Range Value/Description AC100 to AC240 (50 Hz / 60Hz) 150 -30 to -5 (0.5 °C step) E Protective circuits to safeguard Peltier module in case of low water or suspension of fan operation Protection Circuit and to prevent output short-circuit, output overvoltage, and excessive temperature rise in controller. ±5 (±0.25) Output Voltage Power Supply Unit for 0.5 Output Current External Equipment DIN (6 PIN) Connector 4 bits (TTL input) DI (Input) Control Interface 4 bits (TTL open collector output) DO (Output) RS-232C, 9600 bps Serial Interface +5 °C to +40°C / Below 75 % Operating Temperature / Humidity D Storage Temperature / Humidity D -20 °C to +50°C / Below 85 % Weight Approx. 4 Unit V V·A °C — V A — — — — — kg NOTE: DNo condensation EPMT temperature may not achieve set up cooling temperature controlled by the operator if ambient temperature and/or water temperature is high. The cooling temperature is controlled on personal computer. [Components and Accessories] ●Cooled PMT housing ●Controller ●Light shield cap ●AC line cable ●Connection cable (1.5 m) between cooled PMT housing and controller ●Serial communication cable (RS-232C crossing cable 1.8 m) ●D-Sub 15 pin connecter plug ●Cable terminated with a ±5 V plug (1.5 m, one end unterminated) ●CD-ROM (Instruction manual, sample software for control of cooling temperature and C9145 voltage) ●Spare fuses (2 pcs) 118 * To use C9143 series, water hoses with an outer diameter of 6 mm and an inner diameter of 4 mm and a water supply line with the matching round faucet are required. Prepare those hoses of the desired length. In addition, prepare a filter for removing impurities such as chlorine ions. ** C9143 series and C9144 series conform to the EMC directive and the LVD of the European Union. Spectral Transmission Characteristics of Optical Window Cooling Characteristics TACCB0069EB 30 90 AMBIENT TEMPERATURE: +25 °C COOLING WATER: +20 °C (C9143) 80 TRANSMITTANCE (%) 20 COOLING TEMPERATURE (°C) TACCB0107EA 100 10 0 -10 C9144 -20 70 60 50 40 30 20 -30 -40 C9143 0 10 20 10 30 40 50 60 70 80 90 0 100 110 120 200 300 400 500 TIME (min) 600 700 800 900 1000 1100 1200 WAVELENGTH (nm) Dimensional Outlines (Unit: mm) ●C9144 HOUSING (60) 80 60 4 × M3 L=5 (SCREW HOLES) 2 × M3 L=5 (SCREW HOLES) 50 7.5 (2 × M3 L=5) (SCREW HOLES) 72 50 60 ●C9143 HOUSING 7.5 40 LIGHT SHIELD CAP 6 TOP VIEW 93 50 C9145 (sold separately) 50 BOTTOM VIEW C9145 (sold separately) 32 21 32 PHOTOMULTIPLIER COOLER C9143 73.9 TOP VIEW LIGHT SHIELD CAP CONNECTOR FOR POWER INPUT 26 4.5 40 BOTTOM VIEW PHOTOMULTIPLIER COOLER C9144 26 INPUT 56 WATER 105 30 100 M56 P=0.75 (FOR INPUT OPTICAL SYSTEM) FRONT VIEW SIDE VIEW 3.6 5 19 24 3.6 8 CONNECTOR FOR POWER INPUT 132 24 132 20 56 24 INPUT 8 102 COOLING WATER IN/OUT Plastic hose attachment port with OD6 and ID4 FRONT VIEW REAR VIEW 5 155 21 M56 P=0.75 (FOR INPUT OPTICAL SYSTEM) SIDE VIEW REAR VIEW TACCA0253EB TACCA0254EB ●CONTROLLER ALARM READY EXT EXT POWER OUT POWER ON RS232C I/O HV ADJ TO C9145 OFF L ±5 V 121 130 H MONITOR OUTPUT + – POWER FUSE T4AL 250V LINE IN 100 V–240 V ~ 50 Hz–60 Hz 150V·A PHOTOMULTIPLIER COOLER 295 195 FRONT VIEW SIDE VIEW REAR VIEW TACCA0255EB Sold Separately (Unit: mm) HOUSING (METAL) -HV CONTROL HR10A-7R-6S, HRS SOCKET E678-11M 50.0 ± 0.5 43.8 35.0 ± 0.5 HOUSING (INSULATOR) 27 34 3 59.0 ± 0.5 4 × M3 L=14 (SCREW) SIGNAL OUTPUT BNC-R ●E9146 (D Type) *MAXIMUM SUPPLY VOLTAGE: -1250 V 1: HV MONITOR 2: Vref OUTPUT 3: HV CONTROL 4: LOW VOLTAGE INPUT (+) 5: GND 6: LOW VOLTAGE INPUT (-) -HV CONT SIG 34 2 5 16 4.3 SHIELD CABLE HR10A-7P-6P, HRS TO C9143 or C9144 TO C9145 1500 CONNECTOR BODY SIG 27 34 3 59.0 ± 0.5 SOCKET 11 PIN No. 1 HV MONITOR Vref OUTPUT HV CONTROL LOW VOLTAGE INPUT (+) GND LOW VOLTAGE INPUT (-) CONNECTOR BODY R14 -HV: SHV-R TACCA0280EA 3 4 SIGNAL OUTPUT BNC-R 43.8 50.0 ± 0.5 5 6 7 8 9 C1 C2 P 10 R11 R12 R13 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 C4 1: 2: 3: 4: 5: 6: 2 4 × M3 L=14 (SCREW) -HV K DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 POWER SUPPLY CABLE ASSEMBLY (SUPPLIED) HR10A-7P-6P, HRS -HV SHV-R HOUSING (INSULATOR) SOCKET E678-11M 43.8 50.0 ± 0.5 HOUSING (METAL) SPACER (INSULATOR) 50.0 ± 0.5 43.8 SPACER (INSULATOR) 35.0 ± 0.5 ●C9145 (DP Type) *MAXIMUM SUPPLY VOLTAGE: -1200 V C3 R1 to R8, R10: 330 kΩ R9: 680 kΩ R11 to R13: 220 Ω R14: 10 kΩ C1 to C3: 0.01 µF C4: 4700 pF DIVIDER CURRENT: 0.34 mA (at -1250 V) HOUSING SIGNAL OUTPUT: BNC-R * The E9146-01 is also available, which is rated at maximum supply voltage of -1500 V. TACCA0281EA 119 Magnetic Shield Cases Magnetic Shield Cases E989 Series Photomultiplier tubes are extremely sensitive to magnetic fields and exhibit output variations even from sources such as terrestrial magnetism. Hamamatsu E989 series magnetic shield cases are designed specifically to protect photomultiplier tubes from the influence of such magnetic fields. The E989 series uses permalloy, a material that has an extremely high permeability (approximately 105). The magnetic field intensity within the shield case can be attenuated from 1/1000 to 1/10000 of that outside the shield case (this ratio is called the shielding factor). The E989 series ensures a stable output for photomultiplier tubes operating in proximity to magnetic fields. Features TACCF0093 ● Made of high-permeability permalloy (Ni: 78 %, Fe and others: 22 %) ● Various sizes available with inner diameters from 12 mm to 138 mm ● Lusterless black paint finish Specifications Photomultiplier Tube Diameter 13 mm (1/2") Side-on 28 mm (1-1/8") * 10 mm (3/8") 13 mm (1/2") 19 mm (3/4") 25 mm (1") 28 mm (1-1/8") Head-on 38 mm (1-1/2") 51 mm (2") 76 mm (3") 127 mm (5") Internal Dia. D ( mm) Thickness t (mm) Length L (mm) 47 ± 0.5 14.5 ± 0.5 0.5 +0.2 -0.1 80 ± 1 33.6 ± 0.8 0.8 +0.2 -0.1 48 ± 0.5 12 ± 0.5 0.5 +0.2 -0.1 75 ± 0.5 16 ± 0.5 0.8 +0.2 -0.1 +0.2 95 ± 1 23 ± 0.5 0.8 -0.1 48 ± 0.5 29 ± 0.5 0.8 +0.2 -0.1 120 ± 1 32 ± 0.5 0.8 +0.2 -0.1 +1 100 ± 1 44 -0 0.8 +0.2 -0.1 +0.2 130 ± 1 60 +1 0.8 -0.1 -0 +0.2 +1.5 120 ± 1 80 -0 0.8 -0.1 170 ± 1 138 ± 1.5 0.8 +0.2 -0.1 Type No. E989-10 E989 E989-28 E989-09 E989-02 E989-39 E989-03 E989-04 E989-05 E989-15 E989-26 Weight (g) 10 66 9 28 50 32 90 102 180 170 400 * Photomultiplier tubes with HA treatment (see page 12) extending to the base portion cannot be used. Please consult our sales offices for details. Dimensional Outlines (Unit: mm) E989 E989-02 to -05, -09*, -39* 120° E989-10 E989-15 E989-26 12 22.0 ± 0.3 ° 90 ° 90 120° E989-28 3 × No.5 40UNC 0° 40 6 10 18.0 ± 0.1 2 × 2.3 5 ° 90 0.5 90 14.5 ° 12 0° 12 0° 12 0° 12 0° ± 0. R35.0 D 33.6 ± 0.8 12 5 t 0.8 80.0+1.5 -0 12.0 ± 0.5 0° 138.0 ± 1.5 0.8 0.5 0.8 48.0 ± 0.5 10 0.5 1 ° 170 ± 1 50 23 26 4× 4 5 *3 × 3.5 60.0 ± 1.5 10 68.0 ± 1.5 10 10 37 3 × M2.6 45 120 ± 1 80 ± 1 L 24 47.0 ± 0.5 8 * No mounting hole is provided for E989-09 and E989-39. TACCA0117EB 120 TACCA0118EA TACCA0119EC TACCA0120EC TACCA0121EC TACCA0122EC Housings, Flange Housings E1341-01/-02 The E1341-01/-02 are metal housings designed for the D-type socket assembly E5859 series (for 51 mm diameter head-on photomultiplier tubes; see page 99 to 100) operated at room temperature. To install the E5859 series socket assembly into the E1341-01/-02 and to ensure complete light-shielding, a magnetic shield case E989-62/-68 (sold separately) is required. The E1341-01/-02 housings can be easily attached to a monochromator by preparing a simple adapter. Type No. E1341-01 E1341-02 Suitable Photomultiplier Tube R464, R649, R329-02, etc. R943-02 Magnetic Shield Case E989-62 E989-68 TACCF0177 Dimensional Outlines (Unit: mm) 2 CAP (SUPPLIED) 3 MOUNT RING MOUNT FLANGE* (SUPPLIED) 3 7 11 L CUSHION M61 P=0.75 GND TERMINAL 52 83 M61 P=0.75 4 × M2, L=8 (HEX SCREW) 10 P.C.D. 77 70 70 69 60.5 * The O-ring (S56) is supplied. M61 P=0.75 4 × 3.2 L: E1341-01 .... 183.0 ± 0.5 E1341-02 .... 144.0 ± 0.5 O-RING (S60) TACCA0228EB Housing E7718-02 Dimensional Outline (Unit: mm) 2 3 1 5 4 7 8 1 HOUSING (ALUMINUN) 2 MAGNETIC SHIELD CASE (PC, t=0.8) ** 3 PMT 4 SLEEVE (ALUMINUN) 5 O-RINGS 6 CLAMP RING (ALUMINUN) 7 4 × M2 SCREWS L = 6 8 SOCKET ASSEMBLY 8 RESIN CAP !0 GROUNDING LUG 26 9 42 2 7 M42, P=1.5 6 !0 10 37.5 Housing E7718-02 is Including part 1, 2, 4, 5, 6, 7, 9 and !0. 131.5 * O-RING 10.2 Suitable Socket Assembly DA type C7246/-22, C7247/-22 R374, R2228, R5929 DP type C13004-01, C10344-03 R6094, R6095, etc. DAP type C7950-01 43 60 1 54 ± 0. 4 × M3 FLANGE * 3 Suitable PMT [SUGGESTED FIXTURE LAYOUT FOR THE FLANGE] 54 46 [HOW TO USE THE HOUSING WITH FLANGE] The E7718-02 housing contains a magnetic shield case and is designed for use with 28 mm diameter head-on photomultiplier tubes. It can be easily attached to another device by connecting the A7719 flange (sold separately). * Flange and O-ring are sold separately. (Type No.: A7719) ** Magnetic shield case is electrically floating. TACCA0327EA Flange A7709 Dimensional Outline (Unit: mm) 6 54 7 8 80 ± 2 5 60 [Including part 1, 4, 5, 6, 8 and !0] 2 3 4 5 35.2 ± 1.0 1 1 2 3 4 5 6 7 8 9 !0 INSULATOR (CUSHION) PMT E989 MAGNETIC SHIELD CASE CLAMPING METAL PARTS 2 × M3 SCREWS L = 5 FLANGE (METAL) SOCKET ASSEMBLY O-RING FIXTURE 2 × M3 SCREWS L = 5 9 !0 [SUGGESTED FIXTURE LAYOUT FOR THE FLANGE] 3 × M3 48 28 mm Side-on type Suitable Socket Assembly E717-63/-500 D type DA type C7246-01/-23, C7247-01/-23 DP type C8991, C8991-01, C12597-01 DAP type C7950 0° DIRECTION OF LIGHT 12 0° Suitable PMT * A7708 dedicated flange is provided for C6271. 1 54 ± 0. 12 The A7709 is a flange for 28 mm diameter side-on photomultiplier tubes and is designed for use in combination with the E989 magnetic shield case (sold separately). It allows a photomultiplier tube to be integrated with a socket assembly. TACCA0199EB 121 Power and Signal Cables, Connector Adapters Power and Signal Cables E1168 Series, Connector Adapters A4184 Series Hamamatsu offers the E1168 series cables for connection of photomultiplier tube assemblies and their accessories. A variety of cables are available, for handling high voltage, low voltage and signals. In addition, Hamamatsu also provides the A4184 series connector adapters designed for SHV/MHV connector conversion. TACCF0153 Selection Guide ● For High Voltage Type No. E1168 E1168-10 E1168-17 E1168-18 E1168-19 E1168-20 Cable Diameter Cable Type Connector Types MHV Plug—MHV Plug MHV Plug—SHV Plug SHV Plug—SHV Plug MHV Plug—MHV Plug SHV Plug—SHV Plug MHV Plug—SHV Plug Maximum Voltage RG-59B/U 6.15 mm 2.3 kV Max. Custom High Voltage Cable 6.15 mm 5 kV Max. ● For Low Voltage Cable Type Multiconductor Cable with Shield Type No. E1168-26 Connector Types DIN6P Plug—DIN6P Plug ● For Signal Type No. E1168-01 E1168-02 E1168-03 E1168-05 A5026 A5026-01 Cable Type Impedance 3D-2V 50 Ω 3C-2V 3D-2V 75 Ω 50 Ω Custom Coaxial Cable 50 Ω ● Connector Adapters Connector Types N Plug—N Plug N Plug—BNC Plug BNC Plug—BNC Plug BNC Plug—BNC Plug SMA Plug—SMA Plug SMA Plug—SMA Jack ● Relay Adapters Connector Types MHV Plug—SHV Jack SHV Plug—MHV Jack Type No. A4184-02 A4184-03 Type No. A5074 A7992 Connector Types SHV Jack—SHV Jack BNC Jack—BNC Jack Dimensional Outlines (Unit: mm) E1168/-18 MHV-PLUG E1168-01 MHV-PLUG TACCA0141EB A5026 SMA-PLUG N-PLUG A5026-01 SMA-PLUG TACCA0052EB SHV-PLUG SMA-PLUG TACCA0142EB 1500 BNC-PLUG TACCA0147EB 300 1500 SHV-PLUG E1168-03/-05 1500 N-PLUG 122 E1168-17/-19 1500 BNC-PLUG TACCA0148EB 300 SMA-JACK TACCA0052EB Related Products for Photon Counting Photon Counting Unit C9744 This photon counting unit contains an amplifier and a discriminator to convert the single photoelectric pulses from a photomultiplier tube into a 5 V digital signal. The C9744 has an output linearity up to 1 × 107 S-1, and a high-speed counter is not required when set to division by 10. TACCF0195 Specifications Parameter Input Impedance Discrimination Level (input conversion) PMT Gain Prescaler ÷1 Count Linearity ÷10 ÷1 Pulse-pair Resolution ÷10 Output Pulse ÷1 Output Pulse Width ÷10 Supply Voltage Input Output Connector Power Dimensions (W × H × D) Weight Operating Ambient Temperature / Humidity A Storage Temperature / Humidity A NOTE: ANo condensation Description / Value 50 Ω -0.4 mV to -16 mV 3 × 106 ÷1 / ÷10 4 × 106 s-1 1 × 107 s-1 25 ns 10 ns CMOS 5 V, POSITIVE LOGIC 10 ns Depends on count rate +5.0 V ± 0.2 V, 130 mA / -5.0 V ± 0.2 V, 50 mA BNC-R BNC-R DIN (6 PIN) B 90 mm × 32 mm × 140 mm (excluding rubber feet and projecting parts) Approx. 250 g 0 °C to +50 °C / Below 80 % -15 °C to +60 °C / Below 85 % BSupplied with a cable (1.5 m) attached to the mating plug. Dimensional Outline (Unit: mm) +1.0 INPUT PRESCALER OUTOPUT ÷1 ÷10 140 - 0 DISCRI POWER MONITOR (–) (+) PHOTON COUNTING UNIT C9744 +1.0 DIN TYPE (6 PIN) 32 90 - 0 TPHOA0031EA 123 Related Products for Photon Counting Counting Unit C8855-01 The C8855-01 is a counting unit with a USB interface and can be used as a photon counter when combined with a photon counting head, etc. The counter of the C8855-01 includes two counter circuits (double counter method) capable of counting input signals with no dead time. The USB interface easily connects to a laptop allowing measurement in an even wider application field. When used with a photon counting head, the C8855-01 supplies power (+5 V / 200 mA) necessary to operate the photon counting head. Since the C8855-01 is hot-swap compatible (plug and play compatible), it helps you set up measurement environment quickly. You can start measurement on the day the C8855-01 is delivered by using the sample software that supplied with the C8855-01. • Time-resolved measurement (minimum resolution: 50 µs) for monitoring chemiluminescence and biological clocks • Quick measurement setups (hot-swap compatible) When software such as a device driver is installed into your PC beforehand, you can start measurement by just connecting the USB cable, without restarting the PC. • Applicable to various measurement methods The C8855-01 is fully controlled by DLL (dynamic link library) functions that come with the C8855-01. All information on these DLL functions is available to support software programming that handles various types of user measurement applications. • Since the C8855-01 has an ID switch, a maximum of 16 units can be connected to one PC and controlled individually. Specifications Parameter Number of Input Signals Signal Input Level Input Signal Pulse Width Input Impedance Counter Method Maximum Count Rate Counter Maximum Counter Capacity Counter Gate Mode Counter Gate Internal Counter Gate Time A Trigger Method Trigger External Trigger Signal ID Switch B General Output Section Voltage Output Compatible OS Interface Supply Voltage Dimensions (W × H × D) Weight Operating Ambient Temperature / Humidity C Storage Temperature / Humidity C CE Marking AC Input AC Adapter Output Description / Value 1 ch CMOS positive logic (high level: 2 V min.) 8 ns or longer 50 Ω Double counter method 50 MHz 232 counts/counter gate Internal counter gate only 50 µs to 10 s (1, 2, 5 step) External trigger / Software trigger TTL negative logic 0 to F(hexadecimal number) Select Open collector / 2 bits +5 V / 200 mA Max. Windows® Vista Business / 7 Pro USB +7 V / 500 mA Max. (supplied from AC adapter) 120 mm × 30 mm × 96 mm (excluding rubber feet and projecting parts) 250 g +5 °C to +45 °C / Below 80 % 0 °C to +50 °C / Below 85 % Conforms to the IEC 61326-1 GROUP 1, CLASS B AC100 V to AC240 V +7 V / 1.6 A NOTE: AThe C8855-01 is not suitable for applications requiring time resolution higher than 50 µs. In such applications, use a counting board M9003-01. BThe ID switch is used to set ID numbers when two or more C8855-01 units are connected to single PC. CNo condensation Supplied: CD-ROM (containing instruction manual, device driver, DLL, sample software*, etc.), USB cable, AC adapter, AC cable, power output connector * Sample software is configured from Lab VIEW™ of National Instruments, Inc. 124 Counting Board M9003-01 The M9003-01 counting board is a PCI bus add-in board counter that functions as a photon counter when used along with a Hamamatsu photon counting head. The counter section of the M9003-01 has two counter circuits (double counter method) capable of counting the input signal pulses without any dead time. The counter operates in either gate counter mode or in reciprocal counter mode. Gate counter mode counts the input signal pulses only during each gate time produced by the internal oscillator. (Minimum gate time during gate counter mode is 50 ns.) Reciprocal counter mode counts the number of internal clock pulses generated between input signal pulses. The M9003-01 does not have its own memory so it sends measurement data directly to the PC's main memory by DMA (direct memory access) transfer. This enables measurement of up to 64 Mbytes. External trigger signals can also be inserted into the count data as timing information. Counting can also be performed for a predetermined number of gates starting from the input of an external trigger signal (only during gate counter mode). This allows counting periodic light emission phenomena by integrating their signals after DMA transfer. Anyone can easily make the initial settings since the M9003-01 is PnP (plug and play) compatible. You can start making measurements right away after the M9003-01 is unpacked, by just using the sample software that comes supplied with the unit. Specifications Parameter Number of Input Signals Signal Input Level Input Signal Pulse Width Input Impedance (Switchable) Counter Method Maximum Count Rate Counter Maximum Count Capacity Gate Time Resolution Gate Trigger Method External Trigger Signal Trigger Trigger Signal Pulse Width Trigger Signal Output Timing Input Signal Input Strobe Signal General I/O Output Signal Output Strobe Signal Compatible OS Bus Type Data Transfer Method Data Transfer Quantity Data Transfer Rate Size Weight Operating Ambient Temperature / Humidity A Storage Temperature / Humidity A CE Marking Description / Value 2 ch TTL positive logic 8 ns or longer 50 Ω (at SW ON), 100 kΩ (at SW OFF) Gate mode B / Reciprocal mode C 50 MHz (gate mode) / 20 MHz (reciprocal mode) 28 / 216 counts (gate mode) / 231 counts (reciprocal mode) 50 ns to 12.75 µs External trigger / Software trigger TTL negative logic 1 µs or more At start of counting by software trigger TTL level signal (3 bits) TTL level signal Open collector (4 bits) Open collector Windows® Vista Business / 7 Pro PCI bus interface (conforms to Rev 2.1) DMA transfer (scatter-gather method) Maximum 64 MB (data quantity transferable by one DMA.) 40 MB/s (depends on CPU and peripherals) PCI standard (low profile) Approx. 80 g +5 °C to +40 °C / Below 80 % 0 °C to +50 °C / Below 85 % Conforms to the IEC 61326-1 GROUP 1, CLASS B NOTE: ANo condensation BGate counter mode counts the input signal pulses only during each specified gate time. CReciprocal counter mode counts the number of internal clock pulses generated between input signal pulses. Supplied: CD-ROM (containing instruction manual, device drivers, sample software*, etc.), Signal cables E1168-22 × 2 (LEMO-BNC: coaxial 1.5 m), Flat cable plug TXA20A-26PH1-D2P1-D1 (manufactured by JAE) * Sample software is configured from Lab VIEW™ of National Instruments, Inc. 125 Cautions and Warranty SAFETY PRECAUTIONS WARNING HIGH VOLTAGE A high voltage is applied to a photomultiplier tube during operation. Always provide adequate safety measures to prevent the operator or service personnel from electrical shock and the equipment from being damaged. HANDLING PRECAUTIONS ●Handle tubes with extreme care. Photomultiplier tubes have evacuated glass envelopes. Allowing the glass to be scratched or subjected to shock can cause cracks. Take extreme care during handling, particularly for tubes with graded sealing on synthetic silica bulbs. ●Keep faceplate and base clean. Do not touch the faceplate and base with bare hands. Dirt and grime on the faceplate causes loss of transmittance and dirt or grime on the base may cause ohmic leakage. If the faceplate becomes soiled wipe it clean using alcohol. ●Carefully handle tubes with a glass base. Photomultiplier tubes with a glass base (also called button stem) are less rugged than tubes with a plastic base, so sufficient care must be taken when handling this type of tube. When fabricating a voltage-divider circuit by soldering resistors and capacitors to socket lugs, solder them while the tube is fully inserted into the socket. ●Helium permeation through silica bulb Helium will permeate through silica bulbs and increase noise, leading to damage that makes photomultiplier tubes unusable. Avoid operating or storing them in an atmosphere where helium is present. ●Do not expose to strong light. The photocathode of photomultiplier tubes may be damaged if exposed to direct sunlight or intense illumination. Never allow strong light to strike the photocathode. WARRANTY Hamamatsu photomultiplier tubes and related products are warranted to the original purchaser for a period of 12 months after delivery. The warranty is limited to repair or replacement of a defective product due to defects in workmanship or materials used in its manufacture. However, even if within the warranty period the warranty shall not apply to failures or damages caused by misoperation, mishandling, modification or accidents such as natural or man-made disasters. The customer should inspect and test all products as soon as they are delivered. ORDERING INFORMATION This catalog lists photomultiplier tubes and related products currently available from Hamamatsu Photonics. Please select those products that best match your design specifications. If you do not find the products you want in this catalog, feel free to contact our sales office nearest you. We will modify our current products or design new types to meet your specific needs. WHEN DISPOSE THE PRODUCT When disposing of the product, take appropriate measures in compliance with applicable regulations regarding waste disposal and correctly dispose of it yourself, or entrust disposal to a licensed industrial waste disposal company. In any case, be sure to comply with the regulations in your country, state, region or province to ensure the product is disposed of legally and correctly. * Characteristics and specifications in this catalog are subject to change without prior notice due to product improvement or other factors. Before you design equipment according to the characteristics and specifications of our products listed in this catalog, please contact us to check the product specifications. 126 Typical Photocathode Spectral Response Spectral Response Curve Codes Photocathode Materials Window Materials Peak Wavelength Luminous (Typ.) Range (µA/lm) (nm) (mA/W) (nm) (%) (nm) PMT Examples QE Radiant Sensitivity Semitransparent Photocathode K 100M Cs-I MgF2 — 115 to 200 14 140 13 130 R972, R1081, R6835 K 200S Cs-Te Synthetic silica — 160 to 320 29 240 16 210 R759, R821, R6834 K 200M Cs-Te MgF2 — 115 to 320 29 240 17 200 R1080, R6836 201S Cs-Te Synthetic silica — 160 to 320 31 240 17 210 R2078 K 400K Bialkali Borosilicate 95 300 to 650 88 420 27 390 K 400U Bialkali UV 95 185 to 650 88 420 27 390 R1584 K 400S Bialkali Synthetic silica 95 160 to 650 88 420 27 390 R2496 K 401K High temp. Bialkali Borosilicate 40 300 to 650 51 375 17 375 R1288A, R3991A,R4177-01, R4607A-01 K 402K Low noise Bialkali Borosilicate 40 300 to 650 54 375 18 375 R2557, R3550A, R5610A K 500K(S-20) Multialkali Borosilicate 150 300 to 850 64 420 20 375 K 500U Multialkali UV 150 185 to 850 64 420 25 280 R374, R1463 K 500S Multialkali Synthetic silica 150 160 to 850 64 420 25 280 R375 K 501K(S-25) Extended red Multialkali Borosilicate 200 300 to 900 40 600 8 580 R669, R2066, R2228, R2257 K 502K Multialkali Borosilicate (prism) 230 300 to 900 69 420 20 390 R5070A, R5929 K 600K GaAsP Borosilicate 700 280 to 720 180 550 to 650 40 480 to 530 R3809U-64 K 601K Extended red GaAsP Borosilicate 750 280 to 820 160 550 to 650 36 480 to 530 R3809U-63 K 602K GaAs Borosilicate 700 370 to 920 85 750 to 850 12 600 to 750 R3809U-61 K 700K(S-1) Ag-O-Cs Borosilicate 20 400 to 1200 2.2 800 0.36 K 900S InP/InGaAsP(CS) Synthetic silica — 950 to 1200 18 1100 2 1000 to 1100 H10330-25* K 901S InP/InGaAs(CS) Synthetic silica — 950 to 1700 24 1500 2 1000 to 1550 H10330-75* 740 R329-02, R1307, R1548-07, R1635 R1924A, R5611A-01, R11102, etc. R550, R649, R1513, R1617, R1878 R1925A R5108 Semitransparent Photocathode (UBA [Ultra Bialkali], SBA [Super Bialkali], EGBA [Extended Green Bialkali]) K 440K Super Bialkali Borosilicate 105 300 to 650 110 400 35 350 R7600U-100, R7600U-100-M4,R5900U-100-L16, etc. K 441K Ultra Bialkali Borosilicate 135 300 to 650 130 400 43 350 R7600U-200, R7600U-200-M4,R5900U-200-L16, etc. 442K Super Bialkali Borosilicate 105 230 to 700 110 400 35 350 R9880U-110 443K Ultra Bialkali Borosilicate 135 230 to 700 130 400 43 350 R9880U-210 444K Extended Green Bialkali Borosilicate 160 300 to 700 127 420 40 380 H7546B-300, H8711B-300 K Reflection Mode Photocathode K 150M Cs-I MgF2 — 115 to 195 25.5 130 26 125 R8487, R10825 K 250S Cs-Te Synthetic silica — 160 to 320 62 230 37 210 R6354, R7154 K 250M Cs-Te MgF2 — 115 to 320 63 200 35 220 R8486, R10824 K 350U(S-5) Sb-Cs UV 40 185 to 650 48 340 20 280 R6350 K 452U Bialkali UV 120 185 to 750 90 420 30 260 R3788, R6352 453K Bialkali Borosilicate 60 300 to 650 60 400 20 370 R11558 453U Bialkali UV 60 185 to 650 60 400 23 330 R11568 456U Low noise Bialkali UV 60 185 to 680 60 400 19 300 R1527, R4220, R5983, R6353, R7518 550U Multialkali UV 150 185 to 850 45 530 15 250 R6355 552U Multialkali UV 200 185 to 900 68 400 26 260 R2949 555U Multialkali UV 525 185 to 900 90 450 30 260 R3896, R9110, R9220 556U Multialkali UV 200 185 to 850 80 430 27 280 R4632 557U Multialkali UV 650 185 to 900 109 450 35 260 R10699 561U Multialkali UV 200 185 to 830 70 530 24 250 R6358 K 562U Multialkali UV 300 185 to 900 76 400 26 260 R928, R5984 K 650U GaAs UV 550 185 to 930 62 300 to 800 23 300 R636-10 K 650S GaAs Synthetic silica 550 160 to 930 62 300 to 800 23 300 R943-02 K 850U InGaAs UV 100 185 to 1010 40 400 14 330 R2658 851K InGaAs Borosilicate 150 300 to 1040 50 400 16 370 R3310-02* K 950K InP/InGaAsP(Cs) Borosilicate — 300 to 1400 21 1300 2 1000 to 1300 R5509-43* K 951K InP/InGaAs(Cs) Borosilicate — 300 to 1700 24 1500 2 1000 to 1500 R5509-73* K K ∗ : Spectral response characteristics vary from tube to tube, so the above values may differ from actual data. K: Spectral response curves are shown on page 128, 129 * : Products marked are not listed in this catalog. 127 PHOTOCATHODE RADIANT SENSITIVITY (mA/W) SEMITRANSPARENT PHOTOCATHODE SPECTRAL RESPONSE CHARACTERISTICS 1000 800 600 400 TRANSMISSION MODE PHOTOCATHODE % Y 50 C N 441K E I FFIC 25 % TUM E N A U Q 440K 200 100 80 60 40 10 % 5% 444K 2.5 % 200M 400K 20 10 8 6 4 401K, 402K 1% 400U 100M 0.5 % .25 % 400S 0 200S 2 0.1 % 1.0 0.8 0.6 0.4 0.2 0.1 100 200 300 400 500 600 700 800 1000 1200 1500 1800 PHOTOCATHODE RADIANT SENSITIVITY (mA/W) WAVELENGTH (nm) 128 1000 800 600 400 TPMOB0077EH TRANSMISSION MODE PHOTOCATHODE 600K 200 TU QUAN 602K 100 80 60 40 500K 601K 901S 500S 502K 20 10 % 5% 2.5 % 1% 0.5 % 500U 10 8 6 4 0.25 % 2 1.0 0.8 0.6 0.4 0% 25 % NCY 5 ICIE M EFF 0.1 % 501K 900S 700K 0.2 100 200 300 400 500 600 700 800 1000 1200 1500 1800 WAVELENGTH (nm) TPMOB0078EI PHOTOCATHODE RADIANT SENSITIVITY (mA/W) OPAQUE PHOTOCATHODE SPECTRAL RESPONSE CHARACTERISTICS 1000 800 600 400 REFLECTION MODE PHOTOCATHODE NCY FFICIE TUM E QUAN 200 100 80 60 40 50 % 25 % 10 % 5% 456U 150M 2.5 % 350U 20 1% 250S 10 8 6 4 250M 0.5 % .25 % 452U 0 2 0.1 % 1.0 0.8 0.6 0.4 0.2 100 200 300 400 500 600 700 800 1000 1200 1500 1800 PHOTOCATHODE RADIANT SENSITIVITY (mA/W) WAVELENGTH (nm) 1000 800 600 400 TPMOB0079EH REFLECTION MODE PHOTOCATHODE TU QUAN 200 10 8 6 4 10 % 5% 555U 100 80 60 40 20 2.5 % 650S 850U 1% 0.5 % % 0.25 650U 2 0.1 % 1.0 0.8 0.6 0.4 562U 0.2 100 0% 25 % NCY 5 ICIE M EFF 950K 951K 200 300 400 500 600 700 800 1000 1200 1500 1800 WAVELENGTH (nm) TPMOB0080EK 129 Notes A Types marked ∗ are newly listed in this catalog. B See pages 128 and 129 for typical spectral response charts. C Photocathode materials BA : Bialkali LBA : Low noise bialkali HBA : High temperature bialkali SBA : Super bialkali UBA : Ultra bialkali EGBA : Extended green Bialkali MA : Multialkali ERMA : Extended red multialkali DIA : Diamond Other photocathodes are indicated by the element symbols. D Window materials MF : Q: K: U: MgF2 Quartz (silica) Borosilicate glass UV glass E Base diagram BASING DIAGRAM SYMBOLS All base diagrams show terminals viewed from the base end of the tube. Each symbol used in basing diagrams signifies the following. Short (Index) Pin DY : Dynode Pin key G : Grid ACC : Accelerating electrode K : Photocathode P : Anode SH : Shield IC : Internal connection (Do not use.) Semiflexible NC : No connection (Do not use.) Lead F Dynode structure B: VB : CC : L: B+L: C+L: FM : CM : MC : SC : Box-and-grid Venetian blind Circular-cage Linear-focused Box and linear-focused Circular and Linear-focused Fine mesh Coarse mesh Metal channel Silicon channel G See page 90, 91 for suitable socket assemblies. See page 74, 75 for suitable sockets E678 series. *: A socket will be supplied with the tube. No mark: Sockets may be obtained from electronics supply houses or our sales office. H Operating ambient temperature range for the photomultiplier itself is -30 °C to +50 °C except for some types of tubes. However, when photomultiplier tubes are operated below -30 °C at their base section, please consult us in advance. J Averaged over any interval of 30 seconds maximum. K Measured at the peak sensitivity wavelength. L See page 72 for voltage distribution ratio. M Anode characteristics are measured with the supply voltage and voltage distribution ratio specified by Note L. Cathode and anode characteristics are measured under the following conditions if noted. a at 122 nm b at 254 nm c at 4 A/lm d at 10 A/lm e Dark count per second (s-1) f Dark count per second (s-1) after one hour storage at -20 °C g at 1 × 106 gain h Under peltier device operation How to Use This Folding Page To read this catalog, open this page as shown below. ●"NOTES" are listed on the inside of this page so that you can refer to them while looking at the specification tables. Related Product Catalogs Photomultiplier Tube Modules The photomultiplier tube module is basically comprised of a photomultiplier tube, a high-voltage power supply circuit to operate the photomultiplier tube, and a voltage divider circuit to distribute the optimum voltage to each dynode, all integrated into a compact case. In addition to these basic configurations, Hamamatsu also provides modules having various added functions such as signal conversion, photon counting, cooling and interfacing to a PC. Photomultiplier Tubes and Assemblies for Scintillation Counting & High Energy Physics PHOTOMULTIPLIER TUBES AND ASSEMBLIES PHOTOMULTIPLIER TUBES AND ASSEMBLIES This catalog is a selection guide for Hamamatsu photomultiplier tubes and assemblies specially fabricated and selected for scintillation counting and high energy physics applications. These photomultiplier tubes offer high quantum efficiency, high energy resolution, wide dynamic range and fast time response, as well as remarkable resistance to harsh environments ranging from strong magnetic fields to high temperatures. A wide variety of products are listed here ranging in diameter from 3/8 inches up to 20 inches. HAMAMATSU PHOTONICS K.K., Electron Tube Division 314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, Japan Telephone: (81)539/62-5248, Fax: (81)539/62-2205 www.hamamatsu.com Main Products Sales Offices Electron Tubes Photomultiplier Tubes Photomultiplier Tube Modules Microchannel Plates Image Intensifiers Xenon Lamps / Mercury Xenon Lamps Deuterium Lamps Light Source Applied Products Laser Applied Products Microfocus X-ray Sources X-ray Imaging Devices Japan: HAMAMATSU PHOTONICS K.K. 325-6, Sunayama-cho, Naka-ku, Hamamatsu City, Shizuoka Pref. 430-8587, Japan Telephone: (81)53-452-2141, Fax: (81)53-456-7889 E-mail: [email protected] Opto-semiconductors Si photodiodes APD Photo IC Image sensors PSD Infrared detectors LED Optical communication devices Automotive devices X-ray flat panel sensors Mini-spectrometers Opto-semiconductor modules Imaging and Processing Systems Cameras / Image Processing Measuring Systems X-ray Products Life Science Systems Medical Systems Semiconductor Failure Analysis Systems FPD / LED Characteristic Evaluation Systems Spectroscopic and Optical Measurement Systems Laser Products Semiconductor lasers Applied products of semiconductor lasers Solid state lasers China: HAMAMATSU PHOTONICS (CHINA) Co., Ltd. Main Office 1201 Tower B, Jiaming Center, 27 Dongsanhuan Beilu, Chaoyang District, 100020 Beijing, China Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866 E-mail: [email protected] Shanghai Branch 4905 Wheelock Square, 1717 Nanjing Road West, Jingan District, 200040 Shanghai, China Telephone: (86)21-6089-7018, Fax: (86)21-6089-7017 Taiwan: HAMAMATSU PHOTONICS TAIWAN Co., Ltd. Main Office 8F-3, No.158, Section2, Gongdao 5th Road, East District, Hsinchu, 300, Taiwan R.O.C. Telephone: (886)03-659-0080, Fax: (886)07-811-7238 E-mail: [email protected] Kaohsiung Office No.6, Central 6th Road, K.E.P.Z. Kaohsiung 806, Taiwan R.O.C. Telephone: (886)07-262-0736, Fax: (886)07-811-7238 U.S.A.: HAMAMATSU CORPORATION Main Office 360 Foothill Road, Bridgewater, NJ 08807, U.S.A. Telephone: (1)908-231-0960, Fax: (1)908-231-1218 E-mail: [email protected] California Office 2875 Moorpark Ave. San Jose, CA 95128, U.S.A. Telephone: (1)408-261-2022, Fax: (1)408-261-2522 E-mail: [email protected] Chicago Office 4711 Golf Road, Suite 805, Skokie, IL 60076, U.S.A. Telephone: (1)847-825-6046, Fax: (1)847-825-2189 E-mail: [email protected] Boston Office 20 Park Plaza, Suite 312, Boston, MA 02116, U.S.A. Telephone: (1)617-536-9900, Fax: (1)617-536-9901 E-mail: [email protected] REVISED FEB. 2016 Information in this catalog is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. © 2016 Hamamatsu Photonics K.K. United Kingdom: HAMAMATSU PHOTONICS UK Limited Main Office 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, UK Telephone: (44)1707-294888, Fax: (44)1707-325777 E-mail: [email protected] South Africa Office: PO Box 1112, Buccleuch 2066, Johannesburg, South Africa Telephone/Fax: (27)11-802-5505 Swiss Office Dornacherplatz 7 4500 Solothurn, Switzerland Telephone: (41)32-625-60-60, Fax: (41)32-625-60-61 E-mail: [email protected] Belgian Office Axisparc Technology, rue Andre Dumont 7 1435 Mont-Saint-Guibert, Belgium Telephone: (32)10 45 63 34, Fax: (32)10 45 63 67 E-mail: [email protected] Spanish Office C. Argenters, 4 edif 2 Parque Tecnológico del Vallés 08290 Cerdanyola (Barcelona), Spain Telephone: (34)93 582 44 30, Fax: (34)93 582 44 31 E-mail: [email protected] Germany, Denmark, The Netherlands, Poland: HAMAMATSU PHOTONICS DEUTSCHLAND GmbH Main Office Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany Telephone: (49)8152-375-0, Fax: (49)8152-265-8 E-mail: [email protected] Danish Office Lautruphøj 1-3, DK-2750 Ballerup, Denmark Telephone: (45)70-20-93-69, Fax: (45)44-20-99-10 Email: [email protected] Netherlands Office Televisieweg 2, NL-1322 AC Almere, The Netherlands Telephone: (31)36-5405384, Fax: (31)36-5244948 E-mail: [email protected] Poland Office 02-525 Warsaw, 8 St. A. Boboli Str., Poland Telephone: (48)22-646-0016, Fax: (48)22-646-0018 E-mail: [email protected] North Europe and CIS: HAMAMATSU PHOTONICS NORDEN AB Main Office Torshamnsgatan 35 16440 Kista, Sweden Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01 E-mail: [email protected] Russian Office 11, Christoprudny Boulevard, Building 1, Office 114, 101000, Moscow, Russia Telephone: (7)495 258 85 18, Fax: (7)495 258 85 19 E-mail: [email protected] Italy: HAMAMATSU PHOTONICS ITALIA S.r.l. Main Office Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy Telephone: (39)02-935-81-733, Fax: (39)02-935-81-741 E-mail: [email protected] Rome Office Viale Cesare Pavese, 435, 00144 Roma, Italy Telephone: (39)06-50513454, Fax: (39)02-935-81-741 E-mail: [email protected] France, Portugal, Belgium, Switzerland, Spain: HAMAMATSU PHOTONICS FRANCE S.A.R.L. Main Office 19, Rue du Saule Trapu Parc du Moulin de Massy, 91882 Massy Cedex, France Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E-mail: [email protected] Quality, technology and service are part of every product. TPMZ0002E01 FEB. 2016 IP Printed in Japan (4000)