TMS320C55x Chip Support Library API Reference Guide SPRU433J September 2004 Printed on Recycled Paper IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2004, Texas Instruments Incorporated Preface Read This First About This Manual The TMS320C55x™ DSP Chip Support Library (CSL) provides C-program functions to configure and control on-chip peripherals, which makes it easier for algorithms to run in a real system. The CSL provides peripheral ease of use, shortened development time, portability, and hardware abstraction, along with some level of standardization and compatibility among devices. A version of the CSL is available for all TMS320C55x DSP devices. This document provides reference information for the CSL library and is organized as follows: How to Use This Manual The contents of the TMS320C5000™ DSP Chip Support Library (CSL) are as follows: Chapter 1 provides an overview of the CSL, includes tables showing CSL API module support for various C5000 devices, and lists the API modules. Chapter 2 provides basic examples of how to use CSL functions, and shows how to define Build options in the Code Composer Studio™ environment. Chapters 3-21 provide basic examples, functions, and macros, for the in- dividual CSL modules. Read This First iii Notational Conventions Notational Conventions This document uses the following conventions: Program listings, program examples, and interactive displays are shown in a special typeface. In syntax descriptions, the function or macro appears in a bold typeface and the parameters appear in plainface within parentheses. Portions of a syntax that are in bold should be entered as shown; portions of a syntax that are within parentheses describe the type of information that should be entered. Macro names are written in uppercase text; function names are written in lowercase. TMS320C55x™ DSP devices are referred to throughout this reference guide as C5501, C5502, etc. iv Related Documentation From Texas Instruments Related Documentation From Texas Instruments The following books describe the TMS320C55x™ DSP and related support tools. To obtain a copy of any of these TI documents, call the Texas Instruments Literature Response Center at (800) 477-8924. When ordering, please identify the book by its title and literature number. Many of these documents are located on the internet at http://www.ti.com. TMS320C55x DSP Algebraic Instruction Set Reference Guide (literature number SPRU375) describes the algebraic instructions individually. Also includes a summary of the instruction set,a list of the instruction opcodes, and a cross-reference to the mnemonic instruction set. TMS320C55x Assembly Language Tools User’s Guide (literature number SPRU280) describes the assembly language tools (assembler, linker, and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for TMS320C55x devices. TMS320C55x Optimizing C Compiler User’s Guide (literature number SPRU281) describes the C55x C Compiler. This C compiler accepts ANSI standard C source code and produces assembly language source code for TMS320C55x devices. TMS320C55x DSP CPU Reference Guide (literature number SPRU371) describes the architecture, registers, and operation of the CPU for these digital signal processors (DSPs). This book also describes how to make individual portions of the DSP inactive to save power. TMS320C55x DSP Mnemonic Instruction Set Reference Guide (literature number SPRU374) describes the mnemonic instructions individually. Also includes a summary of the instruction set, a list of the instruction opcodes, and a cross-reference to the algebraic instruction set. TMS320C55x Programmer’s Guide (literature number SPRU376) describes ways to optimize C and assembly code for the TMS320C55x DSPs and explains how to write code that uses special features and instructions of the DSP. TMS320C55x Technical Overview (SPRU393). This overview is an introduction to the TMS320C55x digital signal processor (DSP). The TMS320C55x is the latest generation of fixed-point DSPs in the TMS320C5000 DSP platform. Like the previous generations, this processor is optimized for high performance and low-power operation. This book describes the CPU architecture, low-power enhancements, and embedded emulation features of the TMS320C55x. Read This First v Trademarks Trademarks The Texas Instruments logo and Texas Instruments are registered trademarks of Texas Instruments. Trademarks of Texas Instruments include: TI, Code Composer Studio, DSP/BIOS, and the TMS320C5000 family and devices. All other brand or product names are trademarks or registered trademarks of their respective companies or organizations. vi Contents Contents 1 CSL Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.1 Introduction to CSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 1.1.1 How the CSL Benefits You . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 1.1.2 CSL Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 1.2 Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 1.3 CSL Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 1.4 CSL Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 1.4.1 Peripheral Initialization via Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 1.4.2 Peripheral Initialization via Functional Parameters . . . . . . . . . . . . . . . . . . . . . . 1-10 1.5 CSL Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11 1.6 CSL Symbolic Constant Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13 1.7 Resource Management and the Use of CSL Handles . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 1.7.1 Using CSL Handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 2 How to Use CSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Using the CSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Using the DMA_config() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Compiling and Linking with the CSL Using Code Composer Studio . . . . . . . . . . . . . . . . 2.3.1 Specifying Your Target Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2-2 2-2 2-2 2-7 2-7 3 ADC Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3-2 3-4 3-5 3-8 3-9 4 CHIP Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 CHIP Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 4-2 4-2 4-3 4-4 5 DAT Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 5.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 vii Contents 6 DMA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 6.1.1 DMA Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 6.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 6.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 6.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11 7 EMIF Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 7.1.1 EMIF Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 7.2 Configuration Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 7.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8 7.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11 8 GPIO Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 8.2 Configuration Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 8.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 8.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17 9 HPI Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 9-2 9-4 9-5 9-6 10 I2C Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2 10.1.1 I2C Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4 10.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5 10.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7 10.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-17 10.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-18 11 ICACHE Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 11-2 11-3 11-5 11-8 12 IRQ Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.1 The Event ID Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2 Using Interrupts with CSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1 12-2 12-3 12-7 12-8 viii Contents 12.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-9 13 McBSP Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1 13.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2 13.1.1 MCBSP Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3 13.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 13.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-7 13.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-8 13.5 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-23 13.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-26 14 MMC Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1 14.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2 14.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-5 14.3 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-6 14.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-13 15 PLL Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1 15-2 15-4 15-5 15-7 16 PWR Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1.1 PWR Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-1 16-2 16-2 16-3 16-4 17 RTC Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1 17.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-2 17.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-6 17.3 API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-9 17.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-16 18 Timer Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1 18-2 18-3 18-4 18-9 19 UART Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.3.1 CSL Primary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-1 19-2 19-5 19-8 19-8 Contents ix Contents 19.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-14 19.4.1 General Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-14 19.4.2 UART Control Signal Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-15 20 WDTIM Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1 20.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-2 20.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-3 20.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-4 20.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-14 21 GPT Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Configuration Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 21-1 21-2 21-3 21-4 Figures Figures 1−1 2−1 2−2 2−3 CSL Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 Defining the Target Device in the Build Options Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 Defining Large Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 Defining Library Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 Contents xi Tables Tables 1−1 1−2 1−3 1−4 1−5 1−6 1−7 1−8 2−1 3−1 3−2 3−3 3−4 4−1 4−2 4−3 5−1 6−1 6−2 6−3 6−4 7−1 7−2 7−3 7−4 8−1 8−2 8−3 9−1 9−2 9−3 9−4 10−1 10−2 10−3 10−4 xii CSL Modules and Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 CSL Device Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 CSL Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 CSL Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 Generic CSL Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 Generic CSL Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11 Generic CSL Macros (Handle-based) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12 Generic CSL Symbolic Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13 CSL Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 ADC Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 ADC Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 ADC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 ADC Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 CHIP Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 CHIP Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 CHIP Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 DAT Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 DMA Configuration Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 DMA Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 DMA Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 DMA Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 EMIF Configuration Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 EMIF Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 EMIF CSL Macros Using EMIF Port Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11 GPIO Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 GPIO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 GPIO CSL Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17 HPI Module Configuration Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 HPI Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 HPI Registers and Bit Field Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 HPI Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 I2C Configuration Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2 I2C Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2 I2C Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4 I2C Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-17 Tables 11−1 11−2 11−3 12−1 12−2 12−3 13−1 13−2 13−3 13−4 13−5 14−1 14−2 14−3 14−4 15−1 15−2 15−3 15−4 16−1 16−2 16−3 17−1 17−2 17−3 17−4 17−5 18−1 18−2 18−3 18−4 18−5 19−1 19−2 20−1 20−2 21−1 21−2 ICACHE Configuration Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2 ICACHE Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2 ICACHE CSL Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8 IRQ Configuration Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2 IRQ Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3 IRQ_EVT_NNNN Events List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4 McBSP Configuration Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2 McBSP Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2 MCBSP Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3 McBSP Macros Using McBSP Port Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-23 McBSP CSL Macros Using Handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-24 MMC Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2 MMC Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2 MMC Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2 OCR Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-24 PLL Configuration Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2 PLL Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2 PLL Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3 PLL CSL Macros Using PLL Port Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-7 PWR Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-2 PWR Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-2 PWR CSL Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-4 RTC Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-3 RTC Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-3 RTC ANSI C-Style Time Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-4 RTC Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-4 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-5 TIMER Configuration Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-2 TIMER Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-2 TIMER CSL Macros Using Timer Port Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-9 TIMER CSL Macros Using Handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-10 UART APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-2 UART CSL Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-14 WDTIM Structure and APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-2 WDTIM CSL Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-14 GPT Configuration Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-2 GPT Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-2 Contents xiii Examples Examples 1−1 1−2 2−1 12−1 13−1 xiv Using PER_config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10 Using PER_setup() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10 Using a Linker Command File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 Manual Interrupt Setting Outside DSP/BIOS HWIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-7 McBSP Port Initialization Using MCBSP_config() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-26 Chapter 1 CSL Overview This chapter introduces the Chip Support Library, briefly describes its architecture, and provides a generic overview of the collection of functions, macros, and constants that help you program DSP peripherals. Topic Page 1.1 Introduction to CSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 1.2 Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 1.3 CSL Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 1.4 CSL Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 1.5 CSL Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11 1.6 CSL Symbolic Constant Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13 1.7 Resource Management and the Use of CSL Handles . . . . . . . . . . . . 1-14 1-1 Introduction to CSL 1.1 Introduction to CSL The chip support library(CSL) is a collection of functions, macros, and symbols used to configure and control on-chip peripherals. It is a fully scalable component of DSP/BIOS and does not require the use of other DSP/BIOS components to operate. 1.1.1 How the CSL Benefits You The benefits of the CSL include peripheral ease of use, shortened development time, portability, hardware abstraction, and a level of standardization and compatibility among devices. Specifically, the CSL offers: Standard Protocol to Program Peripherals The CSL provides you with a standard protocol to program on-chip peripherals. This protocol includes data types and macros to define a peripherals configuration, and functions to implement the various operations of each peripheral. Basic Resource Management Basic resource management is provided through the use of open and close functions for many of the peripherals. This is especially helpful for peripherals that support multiple channels. Symbol Peripheral Descriptions As a side benefit to the creation of the CSL, a complete symbolic description of all peripheral registers and register fields has been created. It is suggested you should use the higher level protocols described in the first two benefits, as these are less device-specific, thus making it easier to migrate code to newer versions of DSPs. 1.1.2 CSL Architecture The CSL consists of modules that are built and archived into a library file. Each peripheral is covered by a single module while additional modules provide general programming support. Figure 1−1 illustrates the individual CSL modules. This architecture allows for future expansion because new modules can be added as new peripherals emerge. Figure 1−1. CSL Modules CSL 1-2 DAT CHIP DMA ... McBSP TIMER ... Introduction to CSL Although each CSL module provides a unique set of functions, some interdependency exists between the modules. For example, the DMA module depends on the IRQ module because of DMA interrupts; as a result, when you link code that uses the DMA module, a portion of the IRQ module is linked automatically. Each module has a compile-time support symbol that denotes whether or not the module is supported for a given device. For example, the symbol _DMA_SUPPORT has a value of 1 if the current device supports it and a value of 0 otherwise. The available symbols are located in Table 1−1. You can use these support symbols in your application code to make decisions. CSL Overview 1-3 Introduction to CSL Table 1−1. CSL Modules and Include Files † Peripheral Module (PER) Description Include File Module Support Symbol ADC Analog-to-digital converter csl_adc.h _ADC_SUPPORT CHIP General device module csl_chip.h _CHIP_SUPPORT DAT A data copy/fill module based on the DMA C55x csl_dat.h _DAT_SUPPORT DMA DMA peripheral csl_dma.h _DMA_SUPPORT EMIF External memory bus interface csl_emif.h _EMIF_SUPPORT GPIO Non-multiplexed general purpose I/O csl_gpio.h _GPIO_SUPPORT I2C I2C peripheral csl_i2c.h _I2C_SUPPORT ICACHE Instruction cache csl_icache.h _ICACHE_SUPPORT IRQ Interrupt controller csl_irq.h _IRQ_SUPPORT McBSP Multichannel buffered serial port csl_mcbsp.h _MCBSP_SUPPORT MMC Multimedia controller csl_mmc.h _MMC_SUPPORT PLL PLL csl_pll.h _PLL_SUPPORT PWR Power savings control csl_pwr.h _PWR_SUPPORT RTC Real-time clock csl_rtc.h _RTC_SUPPORT TIMER Timer peripheral csl_timer.h _TIMER_SUPPORT WDTIM Watchdog timer csl_wdtim.h _WDT_SUPPORT USB† USB peripheral csl_usb.h _USB_SUPPORT UART Universal asynchronous receiver/ transmitter csl_uart.h _UART_SUPPORT HPI Host port interface csl_hpi.h _HPI_SUPPORT GPT 64-bit General purpose timer csl_gpt.h _GPT_SUPPORT Information and instructions for the configuration of the USB module are found in the TMS320C55x CSL USB Programmer’s Reference Guide (SPRU511). 1-4 Introduction to CSL Table 1−2 lists the C5000 devices that the CSL supports and the large and small-model libraries included in the CSL. The device support symbol must be used with the compiler (−d option), for the correct peripheral configuration to be used in your code. Table 1−2. CSL Device Support Device Small-Model Library Large-Model Library Device Support Symbol C5501 csl5501.lib csl5501x.lib CHIP_5501 C5502 csl5502.lib csl5502x.lib CHIP_5502 C5509 csl5509.lib csl5509x.lib CHIP_5509 C5509A csl5509a.lib CSL5509ax.lig CHIP_5509A C5510PG1.0 csl5510PG1_0.lib csl5510PG1_0x.lib CHIP_5510PG1_0 C5510PG1.2 csl5510PG1_2.lib csl5510PG1_2x.lib CHIP_5510PG1_2 C5510PG2.0 csl5510PG2_0.lib csl5510PG2_0x.lib CHIP_5510PG2_0 C5510PG2.1 csl5510PG2_1.lib csl5510PG2_1x.lib CHIP_5510PG2_1 C5510PG2.2 csl5510PG2_2.lib csl5510PG2_2x.lib CHIP_5510PG2_2 CSL Overview 1-5 Naming Conventions 1.2 Naming Conventions The following conventions are used when naming CSL functions, macros, and data types. Table 1−3. CSL Naming Conventions † Object Type Naming Convention Function PER_funcName()† Variable PER_varName()† Macro PER_MACRO_NAME† Typedef PER_Typename† Function Argument funcArg Structure Member memberName PER is the placeholder for the module name. All functions, macros, and data types start with PER_ (where PER is the peripheral module name listed in Table 1−1) in uppercase letters. Function names use all lowercase letters. Uppercase letters are used only if the function name consists of two separate words. For example, PER_getConfig(). Macro names use DMA_DMPREC_RMK. all uppercase letters; for example, Data types start with an uppercase letter followed by lowercase letters, e.g., DMA_Handle. 1-6 CSL Data Types 1.3 CSL Data Types The CSL provides its own set of data types that all begin with an uppercase letter. Table 1−4 lists the CSL data types as defined in the stdinc.h file. Table 1−4. CSL Data Types Data Type Description CSLBool unsigned short PER_Handle void * Int16 short Int32 long Uchar unsigned char Uint16 unsigned short Uint32 unsigned long DMA_AdrPtr void (*DMA_AdrPtr)() pointer to a void function CSL Overview 1-7 CSL Functions 1.4 CSL Functions Table 1−5 provides a generic description of the most common CSL functions where PER indicates a peripheral module as listed in Table 1−1. Note: Not all of the peripheral functions are available for all the modules. See the specific module chapter for specific module information. Also, each peripheral module may offer additional peripheral specific functions. The following conventions are used and are shown in Table 1−5: Italics indicate variable names. Brackets [...] indicate optional parameters. [handle] is required only for the handle-based peripherals: DAT, DMA, McBSP, and TIMER. See section 1.7.1. [priority] is required only for the DAT peripheral module. CSL functions provide a way to program peripherals by: Direct register initialization using the PER_config() function (see sec- tion 1.4.1). Using functional parameters using the PER_setup() function and vari- ous module specific functions (see section 1.4.2). This method provides a higher level of abstraction compared with the direct register initialization method, but typically at the expense of a larger code size and higher cycle count. Note: These functions are not available for all CSL peripheral modules. 1-8 CSL Functions Table 1−5. Generic CSL Functions Function Description handle = PER_open( channelNumber, [priority,] flags Opens a peripheral channel and then performs the operation indicated by flags; must be called before using a channel. The return value is a unique device handle to use in subsequent API calls. The priority parameter applies only to the DAT module. ) PER_config( [handle,] *configStructure ) Writes the values of the configuration structure to the peripheral registers. Initialize the configuration structure with: Integer constants Integer variables CSL symbolic constants, PER_REG_DEFAULT (See Section 1.6 on page 1-13, CSL Symbolic Constant Values) Merged field values created with the PER_REG_RMK macro PER_setup( [handle,] *setupStructure ) Initializes the peripheral based on the functional parameters included in the initialization structure. Functional parameters are peripheral specific. This function may not be supported in all peripherals. Please consult the chapter that includes the module for specific details. PER_start( [handle,]) [txrx,] [delay] ) Starts the peripheral after using PER_config(). [txrx] and [delay] apply only to McBSP. PER_reset( [handle] ) Resets the peripheral to its power-on default values. PER_close( handle ) Closes a peripheral channel previously opened with PER_open(). The registers for the channel are set to their power-on defaults, and any pending interrupt is cleared. 1.4.1 Peripheral Initialization via Registers The CSL provides a generic function, Per_config(), for initializing the registers of a peripheral (PER is the peripheral as listed in Table 1−1). PER_config() allows you to initialize a configuration structure with the appropriate register values and pass the address of that structure to the function, which then writes the values to the writable register. Example 1−1 shows an example of this method. The CSL also provides the PER_REG_RMK (make) macros, which form merged values from a list of field arguments. Macros are covered in section 1.5, CSL Macros. CSL Overview 1-9 CSL Functions Example 1−1. Using PER_config PER_Config MyConfig = { reg0, reg1, … }; main() { … PER_config(&MyConfig); … ; 1.4.2 Peripheral Initialization via Functional Parameters The CSL also provides functions to initialize peripherals via functional parameters. This method provides a higher level of abstraction compared with the direct register initialization method, which produces larger code size and higher cycle count. Even though each CSL module may offer different parameter-based functions, PER_setup() is the most commonly used. PER_setup() initializes the parameters in the peripheral that are typically initialized only once in your application. PER_setup() can then be followed by other module functions implementing other common run-time peripheral operations as shown in Example 1−2. Other parameter-based functions include module-specific functions such as the PLL_setFreq() or the ADC_setFreq() functions. Example 1−2. Using PER_setup() PER_setup mySetup = {param_1, .... param_n}; main() { ... PER_setup (&mySetup); ... } Note: In previous versions of CSL, PER_setup() is referred to as PER_init(). 1-10 CSL Macros 1.5 CSL Macros Table 1−6 provides a generic description of the most common CSL macros. The following naming conventions are used: PER indicates a peripheral module as listed in Table 1−1 (with the excep- tion of the DAT module). REG indicates a register name (without the channel number). REG# indicates, if applicable, a register with the channel number. (For example: DMAGCR, TCR0, ...) FIELD indicates a field in a register. regval indicates an integer constant, an integer variable, a symbolic constant (PER_REG_DEFAULT), or a merged field value created with the PER_REG_RMK() macro. fieldval indicates an integer constant, integer variable, macro, or symbolic constant (PER_REG_FIELD_SYMVAL) as explained in section 1.6; all field values are right justified. CSL also offers equivalent macros to those listed in Table 1−6, but instead of using REG# to identify which channel the register belongs to, it uses the Handle value. The Handle value is returned by the PER_open() function. These macros are shown Table 1−7. Please note that REG is the register name without the channel/port number. Table 1−6. Generic CSL Macros Macro Description PER_REG_RMK(, fieldval_15, . . . fieldval_0 ) Creates a value to store in the peripheral register; _RMK macros make it easier to construct register values based on field values. PER_RGET(REG# ) Returns the value in the peripheral register. PER_RSET(REG#, regval ) Writes the value to the peripheral register. The following rules apply to the _RMK macros: Defined only for registers with more than one field. Include only fields that are writable. Specify field arguments as most-significant bit first. Whether or not they are used, all writable field values must be included. If you pass a field value exceeding the number of bits allowed for that particular field, the _RMK macro truncates that field value. CSL Overview 1-11 CSL Macros Table 1−6. Generic CSL Macros (Continued) Macro Description PER_FMK (REG, FIELD, fieldval) Creates a shifted version of fieldval that you could OR with the result of other _FMK macros to initialize register REG. This allows you to initialize few fields in REG as an alternative to the _RMK macro that requires that ALL the fields in the register be initialized. PER_FGET(REG#, FIELD ) Returns the value of the specified FIELD in the peripheral register. PER_FSET(REG#, FIELD, fieldval ) Writes fieldval to the specified FIELD in the peripheral register. PER_ADDR(REG# ) If applicable, gets the memory address (or sub-address) of the peripheral register REG#. Table 1−7. Generic CSL Macros (Handle-based) Macro Description PER_RGETH(handle, REG ) Returns the value of the peripheral register REG associated with Handle. PER_RSETH(handle, REG, regval ) Writes the value to the peripheral register REG associated with Handle. PER_ADDRH(handle, REG ) If applicable, gets the memory address (or sub-address) of the peripheral register REG associated with Handle. PER_FGETH(handle, REG, FIELD ) Returns the value of the specified FIELD in the peripheral register REG associated with Handle. PER_FSETH(handle, REG, FIELD, fieldval ) Sets the value of the specified FIELD in the peripheral register REG to fieldval. 1-12 CSL Symbolic Constant Values 1.6 CSL Symbolic Constant Values To facilitate initialization of values in your application code, the CSL provides symbolic constants for peripheral registers and writable field values as described in Table 1−8. The following naming conventions are used: PER indicates a peripheral module as listed in Table 1−1 (with the excep- tion of the DAT module, which does not have its own registers). REG indicates a peripheral register. FIELD indicates a field in the register. SYMVAL indicates the symbolic value of a register field. Table 1−8. Generic CSL Symbolic Constants (a) Constant Values for Registers Constant Description PER_REG_DEFAULT Default value for a register; corresponds to the register value after a reset or to 0 if a reset has no effect. (b) Constant Values for Fields Constant Description PER_REG_FIELD_SYMVAL Symbolic constant to specify values for individual fields in the specified peripheral register. PER_REG_FIELD_DEFAULT Default value for a field; corresponds to the field value after a reset or to 0 if a reset has no effect. CSL Overview 1-13 Resource Management and the Use of CSL Handles 1.7 Resource Management and the Use of CSL Handles The CSL provides limited support for resource management in applications that involve multiple threads, reusing the same multichannel peripheral device. Resource management in the CSL is achieved through calls to the PER_open and PER_close functions. The PER_open function normally takes a channel/port number as the primary argument and returns a pointer to a Handle structure that contains information about which channel (DMA) or port (McBSP) was opened. When given a specific channel/port number, the open function checks a global flag to determine its availability. If the port/channel is available, then it returns a pointer to a predefined Handle structure for this device. If the device has already been opened by another process, then an invalid Handle is returned with a value equal to the CSL symbolic constant, INV. Calling PER_close frees a port/channel for use by other processes. PER_close clears the in_use flag and resets the port/channel. Note: All CSL modules that support multiple ports or channels, such as McBSP, TIMER, DAT, and DMA, require a device Handle as primary argument to most functions. For these functions, the definition of a PER_Handle object is required. 1.7.1 Using CSL Handles CSL Handle objects are used to uniquely identify an opened peripheral channel/port or device. Handle objects must be declared in the C source, and initialized by a call to a PER_open function before calling any other API functions that require a handle object as argument. For example: DMA_Handle myDma; /* Defines a DMA_Handle object, myDma */ Once defined, the CSL Handle object is initialized by a call to PER_open: . . myDma = DMA_open(DMA_CHA0,DMA_OPEN_RESET); /* Open DMA channel 0 */ The call to DMA_open initializes the handle, myDma. This handle can then be used in calls to other API functions: DMA_start(myDma); . . . DMA_close(myDma); 1-14 /* Begin transfer */ /* Free DMA channel */ Chapter 21 How to Use CSL This chapter provides instructions on how to use the CSL to configure and program peripherals as well as how to compile and link the CSL using Code Composer Studio. Topic Page 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 2.2 Using the CSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 2.3 Compiling and Linking with the CSL Using Code Composer Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 2-1 Overview 2.1 Overview Peripherals are configured using the CSL by declaring/initializing objects and invoking the CSL functions inside your C source code. 2.2 Using the CSL This section provides an example of using CSL APIs. There are two ways to program peripherals using the CSL: Register-based configuration (PER_config()): Configures peripherals by setting the full values of memory-map registers. Compared to functional parameter-based configurations, register-based configurations require less cycles and code size, but are not abstracted. Functional parameter-based configuration (PER_setup()): Config- ures peripherals via a set of parameters. Compared to register-based configurations, functional parameter-based configurations require more cycles and code size, but are more abstracted. The following example illustrates the use of the CSL to initialize DMA channel 0 and to copy a table from address 0x3000 to address 0x2000 using the register based configuration (DMA_config()) Source address: Destination address: Transfer size: 2.2.1 2000h in data space 3000h in data space Sixteen 16-bit single words Using the DMA_config() function The example and steps below use the DMA_config() function to initialize the registers. This example is written for the C5509 device. Step 1: Include the csl.h and the header file of the module/peripheral you will use <csl_dma.h>. The different header files are shown in Table 1.1. #include <csl.h> #include <csl_dma.h> // Example-specific initialization #define N 16 // block size to transfer #pragma DATA_SECTION(src,”table1”) /* scr data table address */ 2-2 Using the CSL Uint16 src[N] = 0xBEEFu, 0xBEEFu, 0xBEEFu, 0xBEEFu, }; { 0xBEEFu, 0xBEEFu, 0xBEEFu, 0xBEEFu, 0xBEEFu, 0xBEEFu, 0xBEEFu, 0xBEEFu, 0xBEEFu, 0xBEEFu, 0xBEEFu, 0xBEEFu #pragma DATA_SECTION(dst, ”table2”) /* dst data table address */ Uint16 dst[N]; Step 2: Define and initialize the DMA channel configuration structure. DMA_Config myconfig = { /* DMA configuration structure*/ DMA_DMACSDP_RMK( DMA_DMACSDP_DSTBEN_NOBURST , /* Destination burst :− DMA_DMACSDP_DSTBEN_NOBURST DMA_DMACSDP_DSTBEN_BURST4 */ DMA_DMACSDP_DSTPACK_OFF, /* Destination packing :− DMA_DMACSDP_DSTPACK_ON DMA_DMACSDP_DSTPACK_OFF */ DMA_DMACSDP_DST_SARAM , /* Destination selection :− DMA_DMACSDP_DST_SARAM DMA_DMACSDP_DST_DARAM DMA_DMACSDP_DST_EMIF DMA_DMACSDP_DST_PERIPH */ DMA_DMACSDP_SRCBEN_NOBURST , /* Source burst :− DMA_DMACSDP_SRCBEN_NOBURST DMA_DMACSDP_SRCBEN_BURST4 */ DMA_DMACSDP_SRCPACK_OFF, DMA_DMACSDP_SRC_SARAM , DMA_DMACSDP_DATATYPE_16BIT /* Source packing :− DMA_DMACSDP_SRCPACK_ON DMA_DMACSDP_SRCPACK_OFF */ /* Source selection :− DMA_DMACSDP_SRC_SARAM DMA_DMACSDP_SRC_DARAM DMA_DMACSDP_SRC_EMIF DMA_DMACSDP_SRC_PERIPH */ /* Data type :− DMA_DMACSDP_DATATYPE_8BIT DMA_DMACSDP_DATATYPE_16BIT DMA_DMACSDP_DATATYPE_32BIT */ ) /* DMACSDP */ How to Use CSL 2-3 Using the CSL DMA_DMACCR_RMK( DMA_DMACCR_DSTAMODE_POSTINC, /* Destination address mode :− DMA_DMACCR_DSTAMODE_CONST DMA_DMACCR_DSTAMODE_POSTINC DMA_DMACCR_DSTAMODE_SGLINDX DMA_DMACCR_DSTAMODE_DBLINDX */ DMA_DMACCR_SRCAMODE_POSTINC, /* Source address mode :− DMA_DMACCR_SRCAMODE_CONST DMA_DMACCR_SRCAMODE_POSTINC DMA_DMACCR_SRCAMODE_SGLINDX DMA_DMACCR_SRCAMODE_DBLINDX */ DMA_DMACCR_ENDPROG_OFF, /* End of programmation bit :− DMA_DMACCR_ENDPROG_ON DMA_DMACCR_ENDPROG_OFF */ DMA_DMACCR_REPEAT_OFF,/* Repeat condition :− DMA_DMACCR_REPEAT_ON DMA_DMACCR_REPEAT_ALWAYS DMA_DMACCR_REPEAT_ENDPROG1 DMA_DMACCR_REPEAT_OFF */ DMA_DMACCR_AUTOINIT_OFF,/* Auto initialization bit :− DMA_DMACCR_AUTOINIT_ON DMA_DMACCR_AUTOINIT_OFF */ DMA_DMACCR_EN_STOP,/* Channel enable :− DMA_DMACCR_EN_START DMA_DMACCR_EN_STOP DMA_DMACCR_PRIO_LOW, /* Channel priority :− DMA_DMACCR_PRIO_HI DMA_DMACCR_PRIO_LOW */ */ DMA_DMACCR_FS_ELEMENT, /* Frame\Element Sync :− DMA_DMACCR_FS_ENABLE DMA_DMACCR_FS_DISABLE DMA_DMACCR_FS_ELEMENT DMA_DMACCR_FS_FRAME */ DMA_DMACCR_SYNC_NONE 2-4 /* Synchronization control :− DMA_DMACCR_SYNC_NONE DMA_DMACCR_SYNC_REVT0 DMA_DMACCR_SYNC_XEVT0 DMA_DMACCR_SYNC_REVTA0 DMA_DMACCR_SYNC_XEVTA0 DMA_DMACCR_SYNC_REVT1 DMA_DMACCR_SYNC_XEVT1 DMA_DMACCR_SYNC_REVTA1 DMA_DMACCR_SYNC_XEVTA1 DMA_DMACCR_SYNC_REVT2 Using the CSL DMA_DMACCR_SYNC_XEVT2 DMA_DMACCR_SYNC_REVTA2 DMA_DMACCR_SYNC_XEVTA2 DMA_DMACCR_SYNC_TIM1INT DMA_DMACCR_SYNC_TIM2INT DMA_DMACCR_SYNC_EXTINT0 DMA_DMACCR_SYNC_EXTINT1 DMA_DMACCR_SYNC_EXTINT2 DMA_DMACCR_SYNC_EXTINT3 DMA_DMACCR_SYNC_EXTINT4 DMA_DMACCR_SYNC_EXTINT5 */ ) /* DMACCR */ DMA_DMACICR_RMK( DMA_DMACICR_BLOCKIE_ON , /* Whole block interrupt enable :− DMA_DMACICR_BLOCKIE_ON DMA_DMACICR_BLOCKIE_OFF */ DMA_DMACICR_LASTIE_ON, /* Last frame Interrupt enable :− DMA_DMACICR_LASTIE_ON DMA_DMACICR_LASTIE_OFF */ DMA_DMACICR_FRAMEIE_ON, /* Whole frame interrupt enable :− DMA_DMACICR_FRAMEIE_ON DMA_DMACICR_FRAMEIE_OFF */ DMA_DMACICR_FIRSTHALFIE_ON, /* HAlf frame interrupt enable :− DMA_DMACICR_FIRSTHALFIE_ON DMA_DMACICR_FIRSTHALFIE_OFF */ DMA_DMACICR_DROPIE_ON, /* Sync. event drop interrupt enable :− DMA_DMACICR_DROPIE_ON DMA_DMACICR_DROPIE_OFF */ DMA_DMACICR_TIMEOUTIE_ON /* Time out inetrrupt enable DMA_DMACICR_TIMEOUTIE_ON DMA_DMACICR_TIMEOUTIE_OFF :− */ ), /* DMACICR */ (DMA_AdrPtr) &src, /* DMACSSAL */ 0, /* DMACSSAU */ (DMA_AdrPtr)&dst, /* DMACDSAL */ 0, /* DMACDSAU */ N, /* DMACEN */ 1, /* DMACFN */ 0, /* DMACFI */ 0 /* DMACEI */ }; How to Use CSL 2-5 Using the CSL Step 3: Define a DMA_Handle pointer. DMA_open will initialize this handle when a DMA channel is opened. DMA_Handle myhDma; void main(void) { // ..... Step 4: Initialize the CSL Library. A one-time only initialization of the CSL library must be done before calling any CSL module API: CSL_init(); /* Init CSL */ Step 5: For multi-resource peripherals such as McBSP and DMA, call PER_open to reserve resources (McBSP_open(), DMA_open()...): myhDma = DMA_open(DMA_CHA0, 0);/* Open DMA Channel 0 */ By default, the TMS320C55xx compiler assigns all data symbols word addresses. The DMA however, expects all addresses to be byte addresses. Therefore, you must shift the address by 2 in order to change the word address to a byte address for the DMA transfer. Step 6: Configure the DMA channel by calling DMA_config() function: myconfig.dmacssal = (DMA_AdrPtr)(((Uint16)(myconfig.dmacssal)<<1)&0xFFFF); myconfig.dmacdsal = (DMA_AdrPtr)(((Uint16)(myconfig.dmacdsal)<<1)&0xFFFF); myconfig.dmacssau = (((Uint32) &src) >> 15) & 0xFFFF; myconfig.dmacdsau = (((Uint32) &dst) >> 15) & 0xFFFF; DMA_config(myhDma, &myConfig); /* Configure Channel */ Step 7: Call DMA_start() to begin DMA transfers: DMA_start(myhDma); /* Begin Transfer */ Step 8: Wait for FRAME status bit in DMA status register to signal transfer is complete while (!DMA_FGETH(myhDma, DMACSR, FRAME)) { ; } Step 9: Close DMA channel DMA_close(myhDma); } 2-6 /* Close channel (Optional) */ Compiling and Linking with the CSL Using Code Composer Studio 2.3 Compiling and Linking with the CSL Using Code Composer Studio To compile and link with the CSL, you must configure the Code Composer Studio IDE project environment. To complete this process, follow these steps: Step 1: Specify the target device. (Refer to section 2.3.1) Step 2: Determine whether or not you are using a small or large memory model and specify the CSL and RTS libraries you require. (Refer to section 2.3.1.1) Step 3: Create the linker command file (with a special .csldata section) and add the file to the project. (Refer to section 2.3.1.2) Step 4: Determine if you must enable inlining. (Refer to section 2.3.1.3) The remaining sections in this chapter will provide more details and explanations for the steps above. Note: Code Composer Studio will automatically define the search paths for include files and libraries as defined in Table 2−1. You are not required to set the −i option. Table 2−1. CSL Directory Structure 2.3.1 This CSL component... Is located in this directory... Libraries <Install_Dir>\c5500\csl\lib Source Library <Install_Dir>\c5500\csl\lib Include files <Install_Dir>\c5500\csl\include Examples <Install_Dir>\examples\<target>\csl Documentation <Install_Dir>\docs Specifying Your Target Device Use the following steps to specify the target device you are configuring: Step 1: In Code Composer Studio, select Project → Options. Step 2: In the Build Options dialog box, select the Compiler tab (see Figure 2−1). Step 3: In the Category list box, highlight Preprocessor. How to Use CSL 2-7 Compiling and Linking with the CSL Using Code Composer Studio Step 4: In the Define Symbols field, enter one of the device support symbols in Table 1−2, on page 1-5. For example, if you are using the 5510PG1.2 device, enter CHIP_5510PG1_2. Step 5: Click OK. Figure 2−1. Defining the Target Device in the Build Options Dialog 2.3.1.1 Large/Small Memory Model Selection Use of CSL requires that all data resides in the base 64k (Page 0) of memory because of the way in which the small data memory model is implemented. Page independence for the small data memory model is achieved in the compiler by setting all XAR registers to initially point to the area in memory where the .bss section is located. This is done when the C environment boot routine _c_int00 is executed. The compiler then uses ARx addressing for all data accesses, leaving the upper part of XARx untouched. 2-8 Compiling and Linking with the CSL Using Code Composer Studio Because, CSL is written in C, it relies on the compiler to perform the data/peripheral memory access to read/write peripheral and CPU registers. So in the small data memory model, all peripheral/CPU registers are accessed via ARx addressing. Because the peripheral control registers and CPU status registers reside in the base 64K of I/O and data space respectively, this forces all data to be on page 0 of memory when compiling in small model and using the CSL. Note that this is a problem only when using the small data memory model. This limitation does not exist when compiling with a large data memory model. If you use any large memory model libraries, define the -ml option for the compiler and link with the large memory model runtime library (rts55x.lib) using the following steps: Step 1: In Code Composer Studio, select Project → Options. Step 2: In the Build Options dialog box, select the Compiler Tab (Figure 2−2). Step 3: In the Category list box, highlight advanced. Step 4: Select Use Large memory model (-ml). Step 5: Click OK. How to Use CSL 2-9 Compiling and Linking with the CSL Using Code Composer Studio Figure 2−2. Defining Large Memory Model Then, you must specify which CSL and RTS libraries will be linked in your project. In Code Composer Studio, select Project → Options. In the Build Options dialog box, Select the Linker Tab (see Figure 2−3). In the Category list, highlight Basic. The Library search Path field (-l), should show: <Install_Dir>\c5500\csl\lib (automatically configured by Code Composer Studio) In the Include Libraries (-l) field, enter the correct library from Table 1−2, on page 1-5. 2-10 Compiling and Linking with the CSL Using Code Composer Studio For example, if you are using the 5510 device, enter csl5510.lib for near mode or csl5510x.lib for far mode. In addition, you must include the corresponding rts55.lib or rts55x.lib compiler runtime support libraries. Click OK. Figure 2−3. Defining Library Paths How to Use CSL 2-11 Compiling and Linking with the CSL Using Code Composer Studio 2.3.1.2 Creating a Linker Command File The CSL has two requirements for the linker command file: You must allocate the .csldata section. The CSL creates a .csl data section to maintain global data that is used to implement functions with configurable data. You must allocate this section within the base 64K address space of the data space. You must reserve address 0x7b in scratch pad memory The CSL uses address 0x7b in the data space as a pointer to the .csldata section, which is initialized during the execution of CSL_init(). For this reason, you must call CSL_init() before calling any other CSL functions. Overwriting memory location 0x7b can cause the CSL functions to fail. Example 2−1 illustrates these requirements which must be included in the linker command file. Example 2−1. Using a Linker Command File MEMORY { PROG0: PROG1: DATA: } SECTIONS { .text .cinit .switch .data .bss .const .sysmem .stack .csldata } origin = 8000h, length = 0D000h origin = 18000h, length = 08000h origin = > > > > > > > > > PROG0 PROG0 PROG0 DATA DATA DATA DATA DATA DATA table1 : load = table2 : load = 2.3.1.3 1000h, length = 04000h 6000h 4000h Using Function Inlining Because some CSL functions are short (they may set only a single bit field), incurring the overhead of a C function call is not always necessary. If you enable inline, the CSL declares these functions as static inline. Using this technique helps you improve code performance. 2-12 Chapter 3 ADC Module This chapter describes the ADC module, lists the API structure, functions, and macros within the module, and provides an ADC API reference section. The ADC module is not handle-based. Topic Page 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 3.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 3.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 3.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 3-1 Overview 3.1 Overview The configuration of the ADC can be performed by using one of the following methods: Register-based configuration A register-based configuration is performed by calling ADC_config() or any of the SET register/field macros. Parameter-based configuration A parameter-based configuration can be performed by calling ADC_setFreq(). Using ADC_setFreq() to initialize the ADC registers for the desired sampling frequency is the recommended approach. The sampled value can also be read using the ADC_read() function. Compared to the register-based approach, this method provides a higher level of abstraction. The downside is larger code size and higher cycle counts. Table 3−1 lists the configuration structure used to set up the ADC. Table 3−2 lists the functions available for use with the ADC module. Table 3−3 lists ADC registers and fields. Table 3−1. ADC Configuration Structures Syntax Description ADC_Config ADC configuration structure used to set up the ADC (register based) See page… 3-4 Table 3−2. ADC Functions Syntax Description ADC_config() Sets up the ADC using the configuration structure 3-5 ADC_getConfig() Obtains the current configuration of all the ADC registers 3-5 ADC_read() Performs conversion and reads sampled values from the data register 3-6 ADC_setFreq() Sets up the ADC using parameters passed 3-6 3-2 See page… Overview Table 3−3. ADC Registers Register Field ADCCTL CHSELECT, ADCSTART ADCDATA ADCDATA(R), CHSELECT, ADCBUSY(R) ADCCLKDIV CONVRATEDIV, SAMPTIMEDIV ADCCLKCTL CPUCLKDIV, IDLEEN Note: R = Read Only; W = Write; By default, most fields are Read/Write ADC Module 3-3 ADC_Config 3.2 Configuration Structures The following is the configuration structure used to set up the ADC (register based). ADC_Config ADC configuration structure used to set up the ADC interface Structure ADC_Config Members Uint16 adcctl Control Register Uint16 adcclkdiv Clock Divider Register Uint16 adcclkctl Clock Control Register Description ADC configuration structure used to set up the ADC. You create and initialize this structure and then pass its address to the ADC_config() function. You can either use literal values or use ADC_RMK macros to create the structure member values. Example ADC_Config 0xFFFF, 0xFFFF, 0xFFFF } 3-4 Config = { /* ADCCTL */ /* ADCCLKDIV */ /* ADCCLKCTL */ ADC_getConfig 3.3 Functions The following are functions available for use with the ADC module. ADC_config Writes the values to ADC registers using the configuration structure Function void ADC_config(ADC_Config *Config); Arguments Config Return Value None Description Writes a value to set up the ADC using the configuration structure. The values of the configuration structure are written to the port registers. Example ADC_Config Config = { 0xFFFF, /* ADCCTL */ 0xFFFF, /* ADCCLKDIV */ 0xFFFF /* ADCCLKCTL */ Pointer to an initialized configuration structure (see ADC_Config) }; ADC_getConfig Writes values to ADC registers using the configuration structure Function void ADC_getConfig(ADC_Config *Config); Arguments Config Return Value None Description Reads the current value of all ADC registers being used and places them into the corresponding configuration structure member. Example ADC_Config testConfig; ADC_getConfig(&testConfig); Pointer to a configuration structure (see ADC_Config) ADC Module 3-5 ADC_read ADC_read Performs an ADC conversion and reads the digital data Function void ADC_read(int channelnumber, Uint16 date, int length); Arguments int channelnumber Analog Input Selector Value from 0−3 Uint16 *data Data array to store digital data converted from analog signal int length number of samples to convert Return Value None Description Performs conversions by setting the ADC start bit (ADCCTL) and polling ADC busy (ADCDATA) until done. The sampled values are then read into the array. Example int i=7,j=15,k=1; int channel=0,samplenumber=3; Uint16 samplestorage[3]={0,0,0}; ADC_setFreq(i,j,k); ADC_read(channel,samplestorage,samplenumber); /* performs 3 conversions from analog input 0 */ /* and reads the digital data into the */ /* samplestorage array. */ ADC_setFreq Initializes the ADC for a desired sampling frequency Function void ADC_setFreq(int cpuclkdiv, int convratediv, int sampletimediv); Arguments cpuclkdiv CPU clock divider value (inside ADCCLKCTL register) Value from 0−255 convratediv Conversion clock rate divider value (inside ADCCLKDIV) Value from 0−16 sampletimediv Sample and hold time divider value (inside ADCCLKDIV) Value from 0−255 Return Value 3-6 None ADC_setFreq Description Initializes the ADC peripheral by setting the system clock divider, conversion clock rate divider, and sample and hold time divider values into the appropriate registers. Refer to the TMS320C55x Peripherals Reference Guide (SPRU317A) for explanations on how to produce a desired ADC sampling frequency using these three parameters. Example int i=7,j=15,k=1; ADC_setFreq(i,j,k); /* This example sets the ADC sampling frequency */ /* to 21.5 KHZ, given a 144 MHZ clockout frequency */ ADC Module 3-7 Macros 3.4 Macros This section contains descriptions of the macros available in the ADC module. See the general macros description in section 1.5 on page 1-11. To use these macros, you must include “csl_adc.h.” The ADC module defines macros that have been designed for the following purposes: The RMK macros create individual control-register masks for the following purposes: To initialize a ADC_Config structure that can be passed to functions such as ADC_Config(). To use as arguments for the appropriate RSET macro. Other macros are available primarily to facilitate reading and writing individual bits and fields in the ADC control registers. Table 3−4. ADC Macros (a) Macros to read/write ADC register values Macro Syntax ADC_RGET() Uint16 ADC_RGET(REG) ADC_RSET() Void ADC_RSET(REG, Uint16 regval) (b) Macros to read/write ADC register field values (Applicable to register with more than one field) Macro Syntax ADC_FGET() Uint16 ADC_FGET(REG, FIELD) ADC_FSET() Void ADC_FSET(REG,FIELD,Uint16 fieldval) Notes: 1) REG indicates the registers, ADCCTL, ADCCLKDIV, ADCCLKCTL 2) FIELD indicates the register field name For REG_FSET and REG_FMK, FIELD must be a writable field. For REG_FGET, the field must be a readable field. 3) regval indicates the value to write in the register (REG). 4) fieldval indicates the value to write in the field (FIELD). 3-8 Examples Table 3−4. ADC Macros (Continued) (c) Macros to create values to ADC registers and fields (Applicable to registers with more than one field) Macro Syntax ADC_REG_RMK() Uint16 ADC_REG_RMK(fieldval_n,…fieldval_0) Note: *Start with field values with most significant field positions: field_n: MSB field field_0: LSB field *only writable fields allowed ADC_FMK() Uint16 ADC_FMK(REG, FIELD, fieldval) (d) Macros to read a register address Macro Syntax ADC_ADDR() Uint16 ADC_ADDR(REG) Notes: 1) REG indicates the registers, ADCCTL, ADCCLKDIV, ADCCLKCTL 2) FIELD indicates the register field name For REG_FSET and REG_FMK, FIELD must be a writable field. For REG_FGET, the field must be a readable field. 3) regval indicates the value to write in the register (REG). 4) fieldval indicates the value to write in the field (FIELD). 3.5 Examples ADC programming examples using CSL are provided in the: \examples\<target>\CSL directory of Code Composer Studio and in Programming the C5509 ADC Peripheral Application Report (SPRA785). ADC Module 3-9 3-10 Chapter 4 CHIP Module This chapter describes the CHIP module, lists the API functions and macros within the module, and provides a CHIP API reference section. The CSL CHIP module is not handle-based; it offers general CPU functions and macros for C55x register accesses. Topic Page 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 4.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 4.3 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 4-1 Overview 4.1 Overview The following sections contain all the information required to run the CHIP module. Table 4−1 lists the functions available, section 4.3 contains the macros, and Table 4−2 lists CHIP registers. Table 4−1. CHIP Functions Function Description CHIP_getDieId_High32 Returns the high 32 bits of the DieID register. 4-3 CHIP_getDieId_Low32 Returns the low 32 bits of the DieID register. 4-3 CHIP_getRevId Returns the value of the RevID register. 4-3 4.1.1 See page ... CHIP Registers Table 4−2. CHIP Registers Register Field ST0_55 ACOV0, ACOV1, ACOV2, ACOV3, TC1, TC2, CARRY, DP ST1_55 BRAF, CPL, XF, HM, INTM, M40, SATD, SXMD, C16, FRCT, C54CM, ASM ST2_55 ARMS, DBGM, EALLOW, RDM, CDPLC, AR7LC, AR6LC, AR5LC, AR4LC, AR3LC, AR2LC, AR1LC, AR0LC ST3_55 CAFRZ, CAEN, CACLR, HINT, CBERR, MPNMC, SATA, AVIS, CLKOFF, SMUL, SST IER0 DMAC5, DMAC4, XINT2, RINT2, INT3, DSPINT, DMAC1, XINT1, RINT1, RINT0, TINT0, INT2, INT0 IER1 INT5, TINT1, DMAC3, DMAC2, INT4, DMAC0, XINT0, INT1 IFR0 DMAC5, DMAC4, XINT2, RINT2, INT3, DSPINT, DMAC1, XINT1, RINT1, RINT0, TINT0, INT2, INT0 IFR1 INT5, TINT1, DMAC3, DMAC2, INT4, DMAC0, XINT0, INT1 IVPD IVPD IVPH IVPH PDP PDP SYSR HPE, BH, HBH, BOOTM3(R), CLKDIV XBSR CLKOUT, OSCDIS, EMIFX2, SP2, SP1, PP Note: 4-2 R = Read Only; W = Write; By default, most fields are Read/Write CHIP_getRevId 4.2 Functions The following are functions available for use with theCHIP module. CHIP_getDieId_High32 Get the high 32 bits of the Die ID register Function Uint32 CHIP_getDieId_High32(); Arguments None Return Value high 32 bits of Die ID Description Returns high 32 bits of the Die ID register Example Uint32 DieId_32_High; … DieId_32_High = CHIP_getDieId_High32(); CHIP_getDieId_Low32 Get the low 32 bits of the Die ID register Function Uint32 CHIP_getDieId_Low32(); Arguments None Return Value low 32 bits of Die ID Description Returns low 32 bits of the Die ID register Example Uint32 DieId_32_Low; … DieId_32_Low = CHIP_getDieId_Low32(); CHIP_getRevId Gets the Rev ID Register Function Uint16 CHIP_getRevId(); Arguments None Return Value Rev ID Description This function returns the Rev Id register. Example Uint16 RevId; ... RevId = CHIP_getRevId(); CHIP Module 4-3 Macros 4.3 Macros CSL offers a collection of macros to gain individual access to the CHIP peripheral registers and fields. Table 4−3 contains a list of macros available for the CHIP module. To use them, include “csl_chip.h.” Table 4−3. CHIP Macros (a) Macros to read/write CHIP register values Macro Syntax CHIP_RGET() Uint16 CHIP_RGET(REG) CHIP_RSET() void CHIP_RSET(REG, Uint16 regval) (b) Macros to read/write CHIP register field values (Applicable only to registers with more than one field) Macro Syntax CHIP_FGET() Uint16 CHIP_FGET(REG, FIELD) CHIP_FSET() void CHIP_FSET(REG,FIELD, Uint16 fieldval) (c) Macros to read/write CHIP register field values (Applicable only to registers with more than one field) Macro Syntax CHIP_REG_RMK() Uint16 CHIP_REG_RMK(fieldval_n,...fieldval_0) Note: *Start with field values with most significant field positions: field_n: MSB field field_0: LSB field * only writeable fields allowed CHIP_FMK() Uint16 CHIP_FMK(REG, FIELD, fieldval) (d) Macros to read a register address Macro Syntax CHIP_ADDR() Uint16 CHIP_ADDR(REG) Notes: 1) REG indicates the register XBSR 2) FIELD indicates the register field name For REG_FSET and REG_FMK, FIELD must be a writable field. For REG_FGET, the field must be a readable field. 3) regval indicates the value to write in the register (REG). 4) fieldval indicates the value to write in the field (FIELD). 4-4 Chapter 5 DAT Module This chapter describes the DAT (data) module, lists the API functions within the module, and provides a DAT API reference section. The handle-based DAT module allows you to use DMA hardware to move data. Topic Page 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 5.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 5-1 Overview 5.1 Overview The handle-based DAT(data) module allows you to use DMA hardware to move data. This module works the same for all devices that support the DMA regardless of the type of the DMA controller. Therefore, any application code using the DAT module is compatible across all devices as long as the DMA supports the specific address reach and memory space. The DAT copy operations occur on dedicated DMA hardware independent of the CPU. Because of this asynchronous nature, you can submit an operation to be performed in the background while the CPU performs other tasks in the foreground. Then you can use the DAT_wait() function to block completion of the operation before moving to the next task. Since the DAT module uses the DMA peripheral, it cannot use a DMA channel that is already allocated by the application. To ensure this does not happen, you must call the DAT_open() function to allocate a DMA channel for exclusive use. When the module is no longer needed, you can free the DMA resource by calling DAT_close(). It should be noted that for 5509/5510/5509A targets, the source as well as destination data is in SARAM (since DMA internally is configured for this port) and for 5502, the data is in DARAM (since DMA internally is configured for DARAM PORT0). Table 5−1 lists the functions for use with the DAT modules. The functions are listed in alphabetical order. Your application must call DAT_open() and DAT_close(); the other functions are used at your discretion. Table 5−1. DAT Functions Function Purpose DAT_close() Closes the DAT 5-3 DAT_copy() Copies data of specific length from the source memory to the destination memory. 5-3 DAT_copy2D() Copies 2D data of specific line length from the source memory to the destination memory. 5-4 DAT_fill() Fills the destination memory with a data value 5-5 DAT_open() Opens the DAT with a channel number and a channel priority 5-6 DAT_wait() DAT wait function 5-7 5-2 See page ... DAT_copy 5.2 Functions The following are functions available for use with the DAT module. DAT_close Closes a DAT device Function void DAT_close( DAT_Handle hDat ); Arguments hDat Return Value None Description Closes a previously opened DAT device. Any pending requests are first allowed to complete. Example DAT_close(hDat); DAT_copy Performs bytewise copy from source to destination memory Function Uint16 DAT_copy(DAT_Handle hDat, (DMA_AdrPtr)Src, (DMA_AdrPtr)Dst, Uint16 ElemCnt ); Arguments hDat Device Handler (see DAT_open) Src Pointer to source memory assumes byte addresses Dst Pointer to destination memory assumes byte addresses ByteCnt Number of bytes to transfer to *Dst Return Value DMA status Returns status of data transfer at the moment of exiting the routine: 0: transfer complete 1: on-going transfer Description Copies the memory values from the Src to the Dst memory locations. Example DAT_copy(hDat, /* (DMA_AdrPtr)0xF000, /* (DMA_AdrPtr)0xFF00, /* 0x0010 /* ); Device Handler src dst ByteCnt */ */ */ */ DAT Module 5-3 DAT_copy2D DAT_copy2D Copies 2−dimensional data from source memory to destination memory Function Uint16 DAT_copy2D(DAT_Handle hDat, Uint16 Type, (DMA_AdrPtr)Src, (DMA_AdrPtr)Dst, Uint16 LineLen, Uint16 LineCnt, Uint16 LinePitch ); Arguments hDat Device Handler (see DAT_open) Type Type of 2D DMA transfer, must be one of the following: DAT_1D2D : 1D to 2D transfer DAT_2D1D : 2D to 1D transfer DAT_2D2D : 2D to 2D transfer Src Pointer to source memory assumes byte addresses Dst Pointer to destination memory assumes byte addresses LineLen Number of 16-bit words in one line LineCnt Number of lines to copy LinePitch Number of bytes between start of one line to start of next line (always an even number since underlying DMA transfer assumes 16-bit elements) Return Value DMA status Description Copies the memory values from the Src to the Dst memory locations. 5-4 Returns status of data transfer at the moment of exiting the routine: 0: transfer complete 1: on-going transfer DAT_fill Example DAT_fill DAT_copy2D(hDat, /* DAT_2D2D, /* (DMA_AdrPtr)0xFF00, /* (DMA_AdrPtr)0xF000, /* 0x0010, /* 0x0004, /* 0x0110, /* ); Device Handler Type src dst linelen Line Cnt LinePitch */ */ */ */ */ */ */ Fills DAT destination memory with value Function Uint16 DAT_fill(DAT_Handle hDat, (DMA_AdrPtr)Dst, Uint16 ElemCnt, Uint16 *Value ); Arguments hDat Device Handler (DAT_open) (DMA_AdrPtr)Dst Pointer to destination memory location ElemCnt Number of 16-bit words to fill *Value Pointer to value that will fill the memory Return Value DMA status Returns status of data transfer at the moment of exiting the routine: 0: transfer complete 1: on-going transfer Description Fills the destination memory with a value for a specified byte count using DMA hardware. You must open the DAT channel with DAT_open() before calling this function. You can use the DAT_wait() function to poll for the completed transfer of data. Example Uint16 value; DAT_fill(hDat, /* (DMA_AdrPtr)0x00FF, /* 0x0010, /* &value /* ); Device Handler dst ElemCnt Value */ */ */ */ DAT Module 5-5 DAT_open DAT_open Opens DAT for DAT calls Function DAT_Handle DAT_open( int ChaNum, int Priority, Uint32 flags ); Arguments ChaNum Specifies which DMA channel to allocate; must be one of the following: DAT_CHA_ANY (allocates Channel 2 or 3) DAT_CHA0 DAT_CHA1 DAT_CHA2 DAT_CHA3 DAT_CHA4 DAT_CHA5 Priority Specifies the priority of the DMA channel, must be one of the following: DAT_PRI_LOW sets the DMA channel for low priority level DAT_PRI_HIGH sets the DMA channel for high priority level Flags Miscellaneous open flags (currently None available). Return Value DAT_Handle hdat Description Before a DAT channel can be used, it must first be opened by this function with an assigned priority. Once opened, it cannot be opened again until closed (see DAT_close). Example DAT_open(DAT_CHA0,DAT_PRI_LOW,0); 5-6 Device Handler (see DAT_open). If the requested DMA channel is currently being used, an INV(-1) value is returned. DAT_wait DAT_wait DAT wait function Function void DAT_wait DAT_Handle hDat ); Arguments hDat Return Value none Description This function polls the IFRx flag to see if the DMA channel has completed a transfer. If the transfer is already completed, the function returns immediately. If the transfer is not complete, the function waits for completion of the transfer as identified by the handle; interrupts are not disabled during the wait. Example DAT_wait(myhDat); Device handler (see DAT_open). DAT Module 5-7 DAT_wait 5-8 Chapter 6 DMA Module This chapter describes the DMA module, lists the API structure, functions, and macros within the module, and provides a DMA API reference section. Topic Page 6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 6.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 6.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 6.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11 6-1 Overview 6.1 Overview Table 6−2 summarizes the primary API functions and macros. Your application must call DMA_open() and DMA_close(). Your application can also call DMA_reset(hDma). You can perform configuration by calling DMA_config() or any of the SET register macros. Because DMA_config() initializes 11 control registers, macros are provided to enable efficient access to individual registers when you need to set only one or two. The recommended approach is to use DMA_config() to initialize the DMA registers. The CSL DMA module defines macros (see section 6.4) designed for these primary purposes: The RMK macros create individual control-register masks for the following purposes: To initialize an DMA_Config structure that you then pass to functions such as DMA_config(). To use as arguments for the appropriate SET macro. Other macros are available primarily to facilitate reading and writing individual bits and fields in the DMA control registers. 6-2 Overview Table 6−1. DMA Configuration Structure Configuration Structure Description See page ... DMA_Config DMA configuration structure used to setup the DMA interface 6-5 Table 6−2. DMA Functions Function Description See page ... DMA_close() Closes the DMA and its corresponding handler 6-6 DMA_config() Sets up DMA using configuration structure (DMA_Config) 6-6 DMA_getConfig() Reads the DMA configuration 6-7 DMA_getEventId() Returns the IRQ Event ID for the DMA completion interrupt 6-7 DMA_open() Opens the DMA and assigns a handler to it 6-8 DMA_pause() Interrupts the transfer in the corresponding DMA channel 6-9 DMA_reset() Resets the DMA registers with default values 6-9 DMA_start() Enables transfers in the corresponding DMA channel 6-9 DMA_stop() Disables the transfer in the corresponding DMA channel 6-10 Table 6−3. DMA Macros Macro Description See page ... DMA_ADDR() Gets the address of a DMA register 6-11 DMA_ADDRH() Gets the address of a DMA local register for channel used in hDma 6-11 DMA_FGET() Gets the DMA register field value 6-12 DMA_FGETH() Gets the DMA register field value 6-13 DMA_FMK() Creates register value based on individual field values 6-14 DMA_FSET() Sets the DMA register value to regval 6-15 DMA_FSETH() Sets value of register field 6-16 DMA_REG_RMK() Creates register value based on individual field values 6-17 DMA_RGET() Gets value of a DMA register 6-18 DMA_RGETH() Gets value of DMA register used in handle 6-19 DMA_RSET() Sets the DMA register REG value to regval 6-19 DMA_RSETH() Sets the DMA register LOCALREG for the channel associated with handle to the value regval 6-20 DMA Module 6-3 Overview 6.1.1 DMA Registers Table 6−4. DMA Registers Register Field DMAGCR FREE, EHPIEXCL, EHPIPRIO DMACSDP DSTBEN, DSTPACK, DST, SRCBEN, SRCPACK, SRC, DATATYPE DMACCR DSTAMODE, SRCAMODE, ENDPROG, FIFOFLUSH, REPEAT, AUTOINIT, EN, PRIO, FS, SYNC DMACICR BLOCKIE, LASTIE, FRAMEIE, FIRSTHALFIE, DROPIE, TIMEOUTIE DMACSR (R)SYNC, (R)BLOCK, (R)LAST, (R)FRAME, (R)HALF, (R)DROP, (R)TIMEOUT DMACSSAL SSAL DMACSSAU SSAU DMACDSAL DSAL DMACDSAU DSAU DMACEN ELEMENTNUM DMACFI FRAMENDX DMACEI ELEMENTNDX DMACSFI FRAMENDX DMACSEI ELEMENTNDX DMACDFI FRAMENDX DMACDEI ELEMENTNDX DMACSAC DMACSAC DMACDAC DMACDAC DMAGTCR PTE, ETE, ITE1, ITE0 DMAGTCR DTCE, STCE DMAGSCR COMPMODE Note: 6-4 R = Read Only; W = Write; By default, most fields are Read/Write DMA_Config 6.2 Configuration Structures The following configuration structure is used to set up the DMA. DMA_Config DMA configuration structure used to set up DMA interface Structure DMA_Config Members Uint16 dmacsdp Uint16 dmaccr Uint16 dmacicr (DMA_AdrPtr) dmacssal Uint16 dmacssau (DMA_AdrPtr) dmacdsal Uint16 dmacdsau Uint16 dmacen Uint16 dmacfn DMA Channel Control Register DMA Channel Interrupt Register DMA Channel Status Register DMA Channel Source Start Address (Lower Bits) DMA Channel Source Start Address (Upper Bits) DMA Channel Source Destination Address (Lower Bits) DMA Channel Source Destination Address (Upper Bits) DMA Channel Element Number Register DMA Channel Frame Number Register For CHIP_5509, CHIP_5510PG1_x (x=0, 2) Int16 dmacfi DMA Channel Frame Index Register Int16 dmacei DMA Channel Element Index Register For CHIP_5510PG2_x (x=0, 1, 2), 5509A, 5502, 5501 Int16 dmacsfi DMA Channel Source Frame Index Register Int16 dmacsei DMA Channel Source Element Index Register Int16 dmacdfi DMA Channel Destination Frame Index Register Int16 dmacdei DMA Channel Destination Element Index Description DMA configuration structure used to set up a DMA channel. You create and initialize this structure and then pass its address to the DMA_config() function. You can use literal values or the DMA_RMK macros to create the structure member values. Example Refer to section 2.2.1, step 2 and step 6. DMA Module 6-5 DMA_close 6.3 Functions The following are functions available for use with the DMA module. DMA_close Closes DMA Function void DMA_close( DMA_Handle hDma ); Arguments hDma Return Value None Description Closes a previously opened DMA device. The DMA event is disabled and cleared. The DMA registers are set to their default values. Example Refer to section 2.2.1, step 6. DMA_config Device Handle, see DMA_open(); Writes value to up DMA using configuration structure Function void DMA_config(DMA_Handle hDma, DMA_Config *Config ); Arguments hDma DMA Device handle Config Pointer to an initialized configuration structure Return Value None Description Writes a value to the DMA using the configuration structure. The values of the structure are written to the port registers. See also DMA_Config. Example Refer to section 2.2.1, step 2 and step 6. 6-6 DMA_getEventId DMA_getConfig Reads the DMA configuration Function void DMA_getConfig( DMA_Handle hDma DMA_Config *Config ); Arguments hDma DMA device handle Config Pointer to an un-initialized configuration structure Return Value None Description Reads the DMA configuration into the Config structure (see DMA_Config). Example DMA_Config myConfig; DMA_getConfig (hDma, &myConfig); DMA_getEventId Returns IRQ Event ID for DMA completion interrupt Function Uint16 DMA_getEventId( DMA_Handle hDma ); Arguments hDma Handle to DMA channel; see DMA_open(). Return Value Event ID IRQ Event ID for DMA Channel Description Returns the IRQ Event ID for the DMA completion interrupt. Use this ID to manage the event using the IRQ module. Example EventId = DMA_getEventId(hDma); IRQ_enable(EventId); DMA Module 6-7 DMA_open DMA_open Opens DMA for DMA calls Function DMA_Handle DMA_open( int ChaNum, Uint32 flags ); Arguments ChaNum DMA Channel Number: DMA_CHA0, DMA_CHA1 DMA_CHA2, DMA_CHA3, DMA_CHA4, DMA_CHA5, DMA_CHA_ANY flags Event Flag Number: Logical open or DMA_OPEN_RESET Return Value DMA_Handle Device handler Description Before a DMA device can be used, it must first be opened by this function. Once opened, it cannot be opened again until closed (see DMA_close). The return value is a unique device handle that is used in subsequent DMA API calls. If the function fails, INV is returned. If the DMA_OPEN_RESET is specified, then the power on defaults are set and any interrupts are disabled and cleared. Example DMA_Handle hDma; ... hDma = DMA_open(DMA_CHA0,0); 6-8 DMA_reset DMA_pause Interrupts the transfer in the corresponding DMA channel Function void DMA_pause(hDMA); Arguments hDma Return Value None Description If a DMA transfer is already active in the channel, DMA_pause will cause the DMA controller to stop the transfer and reset the channel. Example DMA_pause(hDma); DMA_reset Handle to DMA channel; see DMA_open(). Resets DMA Function void DMA_reset( DMA_Handle hDma ); Arguments hDma Return Value None Description Resets the DMA device. Disables and clears the interrupt event and sets the DMA registers to default values. If INV is specified, all DMA devices are reset. Example DMA_reset(hDma); DMA_start Device handle, see DMA_open(); Enables transfers in the corresponding DMA channel Function void DMA_start( DMA_Handle hDma ); Arguments hDma Return Value None Description Enables the DMA channel indicated by hDma so it can be serviced by the DMA controller at the next available time slot. Example DMA_start(hDma); Handle to DMA channel; see DMA_open(). DMA Module 6-9 DMA_reset DMA_stop Disables the transfer in the corresponding DMA channel Function void DMA_stop( DMA_Handle hDma ); Arguments hDma Return Value None Description The transfer in the DMA channel, indicated by hDma, is disabled. The channel can’t be serviced by the DMA controller. Example DMA_stop(hDma); 6-10 Handle to DMA channel; see DMA_open(). DMA_ADDRH 6.4 Macros The CSL offers a collection of macros that allow individual access to the peripheral registers and fields. To use the DMA macros include “csl_dma.h” in your project. Because the DMA has several channels, the macros identify the channel used by either the channel number or the handle used. DMA_ADDR Gets address of given register Macro Uint16 DMA_ADDR (REG) Arguments REG Return Value Address of register LOCALREG and GLOBALREG Description Gets the address of a DMA register. Example 1 LOCALREG# or GLOBALREG as listed in DMA_RGET() macro For local registers: myvar = DMA_ADDR (DMACSDP1); Example 2 For global registers: myvar = DMA_ADDR (DMAGCR); DMA_ADDRH Gets address of given register Macro Uint16 DMA_ADDRH (DMA_Handle hDma, LOCALREG,) Arguments hDma Handle to DMA channel that identifies the specific DMA channel used. LOCALREG Same register as in DMA_RSET(), but without channel number (#). Example: DMACSDP (instead of DMACSDP#) Return Value Address of register LOCALREG Description Gets the address of a DMA local register for channel used in hDma Example DMA_Handle myHandle; Uint16 myVar ... myVar = DMA_ADDRH (myHandle, DMACSDP); DMA Module 6-11 DMA_FGET DMA_FGET Gets value of register field Macro Uint16 DMA_FGET (REG, FIELD) Arguments REG Only writable registers containing more than one field are supported by this macro. Also notice that for local registers, the channel number is used as part of the register name. For example: DMAGCR DMACSDP1 FIELD Symbolic name for field of register REG Possible values: Field names as listed in the TMS320C55x DSP Peripherals Reference Guide (SPRU317C). Only writable fields are allowed. Return Value Value of register field Description Gets the DMA register field value Example 1 For local registers: Uint16 myregval; ... myregval = DMA_FGET (DMACCR0, AUTOINIT); Example 2 For global registers: Uint16 myvar; ... myregval = DMA_FGET (DMAGCR, EHPIEXCL); 6-12 DMA_FGETH DMA_FGETH Gets value of register field Macro Uint16 DMA_FGETH (DMA_Handle hDma, LOCALREG, FIELD) Arguments hDma Handle to DMA channel that identifies the specific DMA channel used. LOCALREG Same register as in DMA_RGET(), but without channel number (#). Example: DMACSDP (instead of DMACSDP#) Only registers containing more than one field are supported by this macro. FIELD Symbolic name for field of register REG. Possible values: Field names as listed in the TMS320C55x DSP Peripherals Reference Guide (SPRU317C). Only writable fields are allowed. Return Value Value of register field given by FIELD. Description Gets the DMA register field value Example DMA_Handle myHandle; ... myHandle = DMA_open (DMA_CHA0, DMA_OPEN_RESET); ... myVar = DMA_FGETH (myHandle, DMACCR, AUTOINIT); DMA Module 6-13 DMA_FMK DMA_FMK Creates register value based on individual field values Macro Uint16 DMA_FMK (REG, FIELD, fieldval) Arguments REG Only writable registers containing more than one field are supported by this macro. Also notice that for local registers, the channel number is not used as part of the register name. For example: DMAGCR DMACSDP FIELD Symbolic name for field of register REG Possible values: Field names as listed in the TMS320C55x DSP Peripherals Reference Guide (SPRU317C). Only writable fields are allowed. fieldval Field values to be assigned to the writable register fields. Rules to follow: Only writable fields are allowed Value should be a right-justified constant. If fieldval_n value exceeds the number of bits allowed for that field, fieldval_n is truncated accordingly. Return Value Shifted version of fieldval. fieldval is shifted to the bit numbering appropriate for FIELD. Description Returns the shifted version of fieldval. Fieldval is shifted to the bit numbering appropriate for FIELD within register REG. This macro allows the user to initialize few fields in REG as an alternative to the DMA_REG_RMK() macro that requires ALL the fields in the register to be initialized. The returned value could be ORed with the result of other _FMK macros, as show below. Example Uint16 myregval; myregval = DMA_FMK (DMAGCR, FREE, 1) | DMA_FMK (DMAGCR, EHPIEXCL, 1); 6-14 DMA_FSET DMA_FSET Sets value of register field Macro Void DMA_FSET (REG, FIELD, fieldval) Arguments REG Only writable registers containing more than one field are supported by this macro. Also notice that for local registers, the channel number is used as part of the register name. For example: DMAGCR DMACSDP1 FIELD Symbolic name for field of register REG. Possible values: Field names as listed in the TMS320C55x DSP Peripherals Reference Guide (SPRU317C). Only writable fields are allowed. fieldval Field values to be assigned to the writable register fields. Rules to follow: Only writable fields are allowed If fieldval value exceeds the number of bits allowed for field, fieldval is truncated accordingly. Return Value None Description Sets the DMA register field value to fieldval. Example 1 For local registers: DMA_FSET (DMACCR0, AUTOINIT, 1); Example 2 For global registers: DMA_FSET (DMAGCR, EHPIEXCL, 1); DMA Module 6-15 DMA_FSETH DMA_FSETH Sets value of register field Macro void DMA_FSETH (DMA_Handle hDma, LOCALREG, FIELD, fieldval) Arguments hDma Handle to DMA channel that identifies the specific DMA channel used. LOCALREG Same register as in DMA_RGET(), but without channel number (#). Example: DMACSDP (instead of DMACSDP#) Only register containing more than one field are supported by this macro. FIELD Symbolic name for field of register REG Possible values: Field names as listed in the TMS320C55x DSP Peripherals Reference Guide (SPRU317C). Only writable fields are allowed. fieldval Field values to be assigned to the writable register fields. Rules to follow: Only writable fields are allowed Value should be a right-justified constant. If fieldval value exceeds the number of bits allowed for that field, fieldval is truncated accordingly. Return Value None Description Sets the DMA register field FIELD of the LOCALREG register to fieldval for the channel associated with handle to the value fieldval. Example DMA_Handle myHandle; ... myHandle = DMA_open (DMA_CHA0, DMA_OPEN_RESET); ... DMA_FSETH (myHandle, DMACCR, AUTOINIT, 1); 6-16 DMA_REG_RMK DMA_REG_RMK Creates register value based on individual field values Macro Uint16 DMA_REG_RMK (fieldval_n,...,fieldval_0) Arguments REG Only writable registers containing more than one field are supported by this macro. Also notice that the channel number is not used as part of the register name. For example: DMAGCR DMACSDP fieldval Field values to be assigned to the writable register fields. Rules to follow: Only writable fields are allowed Start from Most-significant field first Value should be a right-justified constant. If fieldval_n value exceeds the number of bits allowed for that field, fieldval_n is truncated accordingly. Return Value Value of register that corresponds to the concatenation of values passed for the fields. Description Returns the DMA register value given specific field values. You can use constants or the CSL symbolic constants covered in Section 1.6. Example Uint16 myregval; /* free, ehpiexcl, ehpi prio fields */ myregval = DMA_DMAGCR_RMK (0,0,1); DMA_REG_RMK are typically used to initialize a DMA configuration structure used for the DMA_config() function (see section 6.2). DMA Module 6-17 DMA_RGET DMA_RGET Gets value of a DMA register Macro Uint16 DMA_RGET (REG) Arguments REG LOCALREG# or GLOBALREG, where: LOCALREG# Local register name with channel number (#), where # = 0, 1, 2 ,3, 4, 5, DMACSDP# DMACCR# DMACICR# DMACSR# DMACSSAL# DMACSSAU# DMACDSAL# DMACDSAU# DMACEN# DMACFN# DMACFI# DMACEI# For CHIP_5509 and CHIP_550PG2_0: DMACSFI# DMACSEI# DMACDFI# DMACDEI# GLOBALREG Global register name DMGCR DMGSCR Return Value value of register Description Returns the DMA register value Example 1 For local registers: Uint16 myvar; myVar = DMA_RGET(DMACSDP1); /*read DMACSDP for channel 1*/ Example 2 For global registers: Uint16 myVar; ... myVar = DMA_RGET(DMAGCR); 6-18 DMA_RSET DMA_RGETH Gets value of DMA register used in handle Macro Uint16 DMA_RGETH (DMA_Handle hDma, LOCALREG) Arguments hDma Handle to DMA channel that identifies the specific DMA channel used. LOCALREG Same register as in DMA_RGET(), but without channel number (#). Example: DMACSDP (instead of DMACSDP#) Return Value Value of register Description Returns the DMA value for register LOCALREG for the channel associated with handle. Example DMA_Handle myHandle; Uint16 myVar; ... myHandle = DMA_open (DMA_CHA0, DMA_OPEN_RESET); ... myVar = DMA_RGETH (myHandle, DMACSDP); DMA_RSET Sets value of DMA register Macro Void DMA_RSET (REG, Uint16 regval) Arguments REG LOCALREG# or GLOBALREG, as listed in DMA_RGET() macro regval register value that wants to write to register REG Return Value value of register Description Sets the DMA register REG value to regval Example 1 For local registers: /*DMACSDP for channel 1 = 0x8000 */ DMA_RSET(DMACSDP1, 0x8000); Example 2 For global registers: DMA_RSET(DMAGCR, 3); /* DMAGCR = 3 */ DMA Module 6-19 DMA_RSETH DMA_RSETH Sets value of DMA register Macro void DMA_RSETH (DMA_Handle hDma, LOCALREG, Uint16 regval) Arguments hDma Handle to DMA channel that identifies the specific DMA channel used. LOCALREG Same register as in DMA_RGET(), but without channel number (#). Example: DMACSDP (instead of DMACSDP#) regval value to write to register LOCALREG for the channel associated with handle. Return Value None Description Sets the DMA register LOCALREG for the channel associated with handle to the value regval. Example DMA_Handle myHandle; ... myHandle = DMA_open (DMA_CHA0, DMA_OPEN_RESET); ... DMA_RSETH (myHandle, DMACSDP, 0x123); 6-20 Chapter 7 EMIF Module This chapter describes the EMIF module, lists the API structure, functions, and macros within the module, and provides an EMIF API reference section. Topic Page 7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 7.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 7.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8 7.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11 7-1 Overview 7.1 Overview The EMIF configuration can be performed by calling either EMIF_config() or any of the SET register macros. Because EMIF_config() initializes 17 control registers, macros are provided to enable efficient access to individual registers when you need to set only one or two. The recommended approach is to use EMIF_config() to initialize the EMIF registers. The RMK macros create individual control-register masks for the following purposes: To initialize an EMIF_Config structure that is passed to EMIF_config(). To use as arguments for the appropriate SET macros. Other macros are available primarily to facilitate reading and writing individual bits and fields in the control registers. Section 7.4 includes a description of all EMIF macros. Table 7−1 lists the configuration structure used to set up the EMIF. Table 7−2 lists the functions available for use with the EMIF module. Table 7−3 lists DMA registers and fields. 7-2 Overview Table 7−1. EMIF Configuration Structure Syntax Description See page ... EMIF_Config EMIF configuration structure used to setup the EMIF interface 7-6 Table 7−2. EMIF Functions Syntax Description See page ... EMIF_config() Sets up EMIF using configuration structure (EMIF_Config) 7-8 EMIF_getConfig() Reads the EMIF configuration structure 7-9 EMIF_enterselfRefresh (for 5509A only) Places SDRAM in refresh mode 7-9 EMIF_exitselfRefresh (for 5509A only) SDRAM exit refresh mode 7-10 EMIF_reset (for 5510xx, 5509, 5509A only) Resets memory connected in EMIF CE Space 7-10 EMIF Module 7-3 Overview 7.1.1 EMIF Registers Table 7−3. Registers (a) EMIF Registers Register Field EGCR MEMFREQ, WPE, MEMCEN, (R)ARDY, (R)HOLD, (R)HOLDA, NOHOLD EMIRST (W)EMIRST EMIBE (R)TIME, (R)CE3, (R)CE2, (R)CE1, (R)CE0, (R)DMA, (R)FBUS, (R)EBUS, (R)DBUS, (R)CBUS, (R)PBUS CE01 MTYPE, RDSETUP, RDSTROBE, RDHOLD CE11 MTYPE, RDSETUP, RDSTROBE, RDHOLD CE21 MTYPE, RDSETUP, RDSTROBE, RDHOLD CE31 MTYPE, RDSETUP, RDSTROBE, RDHOLD CE02 RDEXHLD, WREXHLD, WRSETUP, WRSTROBE, WRHOLD CE12 RDEXHLD, WREXHLD, WRSETUP, WRSTROBE, WRHOLD CE22 RDEXHLD, WREXHLD, WRSETUP, WRSTROBE, WRHOLD CE32 RDEXHLD, WREXHLD, WRSETUP, WRSTROBE, WRHOLD CE03 TIMOUT CE13 TIMOUT CE23 TIMOUT CE33 TIMOUT SDC1 TRC, SDSIZE, SDWID, RFEN, TRCD, TRP SDPER PERIOD SDCNT (R)COUNTER INIT INIT SDC2 TMRD, TRAS, TACTV2ACTV 7-4 Overview Table 7−3. Registers (Continued) (b) 5502 and 5501 Registers Register Field GBLCTL1 EK1EN,EK1HZ,NOHOLD,HOLDA,HOLD,ARDY GBLCTL2 EK2EN,EK2HZ,EK2RATE CE1CTL1 READ_HOLD,WRITE_HOLD,MTYPE,READ_STROBE,TA CE1CTL2 READ_SETUP,WRITE_HOLD,WRITE_STROBE,WRITE_SETUP CE0CTL1 READ_HOLD,WRITE_HOLD,MTYPE,READ_STROBE,TA CE0CTL2 READ_SETUP,WRITE_HOLD,WRITE_STROBE,WRITE_SETUP CE2CTL1 READ_HOLD,WRITE_HOLD,MTYPE,READ_STROBE,TA CE2CTL2 READ_SETUP,WRITE_HOLD,WRITE_STROBE,WRITE_SETUP CE3CTL1 READ_HOLD,WRITE_HOLD,MTYPE,READ_STROBE,TA CE3CTL2 READ_SETUP,WRITE_HOLD,WRITE_STROBE,WRITE_SETUP SDCTL1 SLFRFR,TRC SDCTL2 TRP,TRCD,INIT,RFEN,SDWTH SDRFR1 PERIOD,COUNTER SDRFR2 COUNTER,EXTRA_REFRESHES SDEXT1 TCL,TRAS,TRRD,TWR,THZP,RD2RD,RD2DEAC,RD2WR,R2WDQM SDEXT2 R2WDQM,WR2WR,WR2DEAC,WR2RD CE1SEC1 SYNCRL,SYNCWL,CEEXT,RENEN,SNCCLK CE0SEC1 SYNCRL,SYNCWL,CEEXT,RENEN,SNCCLK CE2SEC1 SYNCRL,SYNCWL,CEEXT,RENEN,SNCCLK CE3SEC1 SYNCRL,SYNCWL,CEEXT,RENEN,SNCCLK CESCR CES Note: R = Read Only; W = Write; By default, most fields are Read/Write EMIF Module 7-5 EMIF_Config 7.2 Configuration Structure The following is the configuration structure used to set up the EMIF. EMIF_Config EMIF configuration structure used to set up EMIF interface Structure EMIF_Config Members Uint16 egcr Uint16 emirst Uint16 ce01 Uint16 ce02 Uint16 ce03 Uint16 ce11 Uint16 ce12 Uint16 ce13 Uint16 ce21 Uint16 ce22 Uint16 ce23 Uint16 ce31 Uint16 ce32 Uint16 ce33 Uint16 sdc1 Uint16 sdper Uint16 init Uint16 sdc2 Members 5502 and 5501 only Uint16 gblctl1 EMIF Global Control Register 1 Uint16 gblctl2 EMIF Global Control Register 2 Uint16 ce1ctl1 CE1 Space Control Register 1 Uint16 ce1ctl2 CE1 Space Control Register 2 Uint16 ce0ctl1 CE0 Space Control Register 1 Uint16 ce0ctl2 CE0 Space Control Register 2 Uint16 ce2ctl1 CE2 Space Control Register 1 Uint16 ce2ctl2 CE2 Space Control Register 2 Uint16 ce3ctl1 CE3 Space Control Register 1 Uint16 ce3ctl2 CE3 Space Control Register 2 Uint16 sdctl1 SDRAM Control Register 1 Uint16 sdctl2 SDRAM Control Register 2 7-6 Global Control Register Global Reset Register EMIF CE0 Space Control Register 1 EMIF CE0 Space Control Register 2 EMIF CE0 Space Control Register 3 EMIF CE1 Space Control Register 1 EMIF CE1 Space Control Register 2 EMIF CE1 Space Control Register 3 EMIF CE2 Space Control Register 1 EMIIF CE2 Space Control Register 2 EMIF CE2 Space Control Register 3 EMIF CE3 Space Control Register 1 EMIF CE3 Space Control Register 2 EMIF CE3 Space Control Register 3 EMIF SDRAM Control Register 1 EMIF SDRAM Period Register EMIF SDRAM Initialization Register EMIF SDRAM Control Register 2 EMIF_Config Uint16 sdrfr1 Uint16 sdrfr2 Uint16 sdext1 Uint16 sdext2 Uint16 ce1sec1 Uint16 ce0sec1 Uint16 ce2sec1 Uint16 ce3sec1 Uint16 cescr SDRAM Refresh Control Register 1 SDRAM Refresh Control Register 2 SDRAM Extension Register 1 SDRAM Extension Register 2 CE1 Secondary Control Register 1 CE0 Secondary Control Register 1 CE2 Secondary Control Register 2 CE3 Secondary Control Register 1 CE Size Control Register Description The EMIF configuration structure is used to set up the EMIF Interface. You create and initialize this structure and then pass its address to the EMIF_config() function. You can use literal values or the EMIF_RMK macros to create the structure member values. Example EMIF_Config Config1 = { 0x06CF, /* egcr */ 0xFFFF, /* emirst */ 0x7FFF, /* ce01 */ 0xFFFF, /* ce02 */ 0x00FF, /* ce03 */ 0x7FFF, /* ce11 */ 0xFFFF, /* ce12 */ 0x00FF, /* ce13 */ 0x7FFF, /* ce21 */ 0xFFFF, /* ce22 */ 0x00FF, /* ce23 */ 0x7FFF, /* ce31 */ 0xFFFF, /* ce32 */ 0x00FF, /* ce33 */ 0x07FF, /* sdc1 */ 0x0FFF, /* sdper */ 0x07FF, /* init */ 0x03FF /* sdc2 */ } EMIF Module 7-7 EMIF_config 7.3 Functions The following are functions available for use with the ADC module. EMIF_config Writes value to up EMIF using configuration structure Function void EMIF_config( EMIF_Config *Config ); Arguments Config Return Value None Description Writes a value to up the EMIF using the configuration structure. The values of the structure are written to the port registers. Example EMIF_Config MyConfig 0x06CF, /* egcr 0xFFFF, /* emirst 0x7FFF, /* ce01 0xFFFF, /* ce02 0x00FF, /* ce03 0x7FFF, /* ce11 0xFFFF, /* ce12 0x00FF, /* ce13 0x7FFF, /* ce21 0xFFFF, /* ce22 0x00FF, /* ce23 0x7FFF, /* ce31 0xFFFF, /* ce32 0x00FF, /* ce33 0x07FF, /* sdc1 0x0FFF, /* sdper 0x07FF, /* init 0x03FF /* sdc2 Pointer to an initialized configuration structure = { */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ } EMIF_config(&MyConfig); 7-8 EMIF_config EMIF_getConfig Reads the EMIF configuration structure Function void EMIF_getConfig( EMIF_Config *Config ); Arguments Config Return Value None Description Reads the EMIF configuration in a configuration structure. Example EMIF_Config myConfig; EMIF_getConfig(&myConfig); EMIF_enterselfRefresh Pointer to an initialized configuration structure Performs self refresh for SDRAM connected to EMIF (5509A only) Function void EMIF_enterSelfRefresh( Uint16 ckePin, Uint16 tRasDelay ); Arguments ckePin — selects which pin to use for CKE ckePin — 0 selects XF pin ckePin — 1 selects GPIO.4 tRasDelay — number of CPU cycles to hold memory in refresh Return Value None Description Performs SDRAM self refresh, given GPIO pin to use toggle for refresh enable, and the minimum number of CPU cycles to hold the memory in refresh. Example EMIF_enterSelfRefresh(1,1000); EMIF Module 7-9 EMIF_config EMIF_exitselfRefresh Exits self refresh for SDRAM connected to EMIF (5509A only) Function void EMIF_exitSelfRefresh( Uint16 tXsrDelay ); Arguments tXsrDelay — number of CPU cycles to wait for refresh to complete before de-asserting refresh enable Return Value None Description Exits SDRAM self refresh after waiting tXsrDelay CPU cycles to allow current refresh to complete. Example EMIF_exitSelfRefresh(1000); EMIF_reset Resets memory connected in EMIF CE space (5510xx,5509,5509A) Function void EMIF_reset (void ); Arguments None Return Value None Description Resets mememory in EMIF CE spaces. Has no effect on EMIF configuration registers. These register retain their current value. Example EMIF_reset(); 7-10 Macros 7.4 Macros The CSL offers a collection of macros to gain individual access to the EMIF peripheral registers and fields. Table 7−4 contains a list of macros available for the EMIF module. To use them, include “csl_emif.h.” Table 7−4. EMIF CSL Macros Using EMIF Port Number (a) Macros to read/write EMIF register values Macro Syntax EMIF_RGET() Uint16 EMIF_RGET(REG) EMIF_RSET() Void EMIF_RSET(REG, Uint16 regval) (b) Macros to read/write EMIF register field values (Applicable only to registers with more than one field) Macro Syntax EMIF_FGET() Uint16 EMIF_FGET(REG, FIELD) EMIF_FSET() Void EMIF_FSET(REG, FIELD, Uint16 fieldval) (c) Macros to create value to EMIF registers and fields (Applies only to registers with more than one field) Macro Syntax EMIF_REG_RMK() Uint16 EMIF_REG_RMK(fieldval_n,…fieldval_0) (see note 5) Note: *Start with field values with most significant field positions: field_n: MSB field field_0: LSB field *only writable fields allowed EMIF_FMK() Uint16 EMIF_FMK(REG, FIELD, fieldval) (see note 5) (d) Macros to read a register address Macro Syntax EMIF_ADDR() Uint16 EMIF_ADDR(REG) Notes: 1) REG indicates the register: EGCR, EMIRST, EMIBE, CE01, CE02, CE03, CE11, CE12, CE13, CE21, CE22, CE23, CE31, CE32, CE33, SDC1, SDPER, SDCNT, INIT, SDC2 2) FIELD indicates the register field name as specified in the 55x Peripheral User’s Guide. For REG_FSET and REG_FMK, FIELD must be a writable field. For REG_FGET, the field must be a readable field. 3) regval indicates the value to write in the register (REG). 4) fieldval indicates the value to write in the field (FIELD). 5) For the special case of the CEx0, CEx1, CEx2, and CEx3, EMIF_REG_RMK(), and EMIF_FMK() both use REG = CEx0, CEx1, CEx2, and CEx3, where x is the letter X EMIF Module 7-11 7-12 Chapter 8 GPIO Module This chapter describes the GPIO module, lists the API functions and macros within the module, and provides a GPIO API reference section. Topic Page 8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 8.2 Configuration Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 8.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 8.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17 8-1 Overview 8.1 Overview The GPIO module is designed to allow central control of the non-multiplexed and address GPIO pins available in the C55x devices. The following three tables list the functions, registers and macros used with this module. Table 8−1. GPIO Functions Syntax Description See page ... GPIO_pinDirection Sets the GPIO pins as either an input or output pin 8-8 GPIO_pinDisable Disables a pin as a GPIO pin 8-13 GPIO_pinEnable Enables a pin as a GPIO pin 8-13 GPIO_pinRead Reads the GPIO pin value 8-14 GPIO_pinWrite Writes a value to a GPIO pin 8-15 The following functions are supported by C5502 and C5501. GPIO_close Frees one or more GPIO pins for use 8-5 GPIO_config Configures GPIO pins 8-7 GPIO_open Allocates one or more GPIO pins to the current process 8-5 GPIO_pinReadAll Reads the value of one or more pins 8-14 GPIO_pinWriteAll Writes the value to one or more pins 8-15 GPIO_pinReset Resets the value of one or more pins 8-16 8-2 Overview Table 8−2. GPIO Registers Register Field IODIR IO7DIR, IO6DIR, IO5DIR, IO4DIR, IO3DIR, IO2DIR, IO1DIR, IO0DIR IODATA IO7D, IO6D, IO5D, IO4D, IO3D, IO2D, IO1D, IO0D The following registers are supported by C5509 and C5509A. AGPIOEN IO13, IO12, IO11, IO10, IO9, IO8 AGPIODIR IO13DIR, IO12DIR, IO11DIR, IO10DIR, IO9DIR, IO8DIR AGPIODATA IO13D, IO12D, IO11D, IO10D, IO9D, IO8D The following registers are supported by C5502 and C5501. PGPIOEN0 IO15EN, IO14EN, IO13EN, IO12EN, IO11EN, IO10EN, IO9EN, IO8EN, IO7EN, IO6EN, IO5EN, IO4EN, IO3EN, IO2EN, IO1EN, IO0EN PGPIODIR0 IO15DIR, IO14DIR, IO13DIR, IO12DIR, IO11DIR, IO10DIR, IO9DIR, IO8DIR, IO7DIR, IO6DIR, IO5DIR, IO4DIR, IO3DIR, IO2DIR, IO1DIR PGPIODAT0 IO15DAT, IO14DAT, IO13DAT, IO12DAT, IO11DAT, IO10DAT, IO9DAT, IO8DAT, IO7DAT, IO6DAT, IO5DAT, IO4DAT, IO3DAT, IO2DAT, IO1DAT, IO0DAT PGPIOEN1 IO31EN, IO30EN, IO29EN, IO28EN, IO27EN, IO26EN, IO25EN, IO24EN, IO23EN, IO22EN, IO21EN, IO20EN, IO19EN, IO18EN, IO17EN, IO16EN PGPIODIR1 IO31DIR, IO30DIR, IO29DIR, IO28DIR, IO27DIR, IO26DIR, IO25DIR, IO24DIR, IO23DIR, IO22DIR, IO21DIR, IO20DIR, IO19DIR, IO18DIR, IO17DIR, IO16DIR PGPIODAT1 IO31DAT, IO30DAT, IO29DAT, IO28DAT, IO27DAT, IO26DAT, IO25DAT, IO24DAT, IO23DAT, IO22DAT, IO20DAT, IO19DAT, IO18DAT, IO17DAT, IO16DAT PGPIOEN2 IO45EN, IO44EN, IO43EN, IO42EN, IO41EN, IO40EN, IO39EN, IO38EN, IO37EN, IO36EN, IO35EN, IO34EN, IO33EN, IO32EN PGPIODIR2 IO45DIR, IO44DIR, IO43DIR, IO42DIR, IO41DIR, IO40DIR, IO39DIR, IO38DIR, IO37DIR, IO36DIR, IO35DIR, IO34DIR, IO33DIR, IO32DIR PGPIODAT2 IO45DAT, IO44DAT, IO43DAT, IO42DAT, IO41DAT, IO40DAT, IO39DAT, IO38DAT, IO37DAT, IO36DAT, IO35DAT, IO34DAT, IO33DAT, IO32DAT Note: R = Read Only; W = Write; By default, most fields are Read/Write GPIO Module 8-3 GPIO_Config 8.2 Configuration Structure The following is the configuration structure used to set up the GPIO. GPIO_Config Configuration structure for non-parallel GPIO pins Structure GPIO_Config Members Uint16 ioen Uint16 iodir Description The GPIO configuration structure is used to set up the non-parallel GPIO pins. You create and initialize this structure and then pass its address to the GPIO_config() function. You can use literal values or the GPIO_RMK macros to create the structure member values. GPIO_ConfigAll Pin Enable Register IOEN Pin Direction Register IODIR Configuration structure for both parallel and non-parallel GPIO pins Structure GPIO_ConfigAll Description The GPIO configuration structure is used to set up both non-parallel and parallel GPIO pins. You create and initialize this structure and then pass its address to the GPIO_ConfigAll() function. You can use literal values or the GPIO_RMK macros to create the structure member values. Members Uint16 ioen Uint16 iodir Uint16 pgpioen Uint16 pgpiodir Uint16 pgpioen1 Uint16 pgpiodir1 Uint16 pgpioen2 Uint16 pgpiodir2 8-4 Non-parallel GPIO pin enable register IOEN Non-parallel GPIO pin direction register IODIR Parallel GPIO pin enable register 0 PGPIOEN0 Parallel GPIO pin direction register 0 PGPIODIR0 Parallel GPIO pin enable register 1 PGPIOEN1 Parallel GPIO pin direction register 1 PGPIODIR1 Parallel GPIO pin enable register 2 PGPIOEN2 Parallel GPIO pin direction register 2 PGPIODIR2 GPIO_open 8.3 Functions The following are functions available for the GPIO module. They are supported by C5502 and C5501. GPIO_close Frees GPIO pins previously reserved by call to GPIO_open() Function void GPIO_close(GPIO_Handle hGpio); Arguments hGpio Return Value None Description Frees GPIO pins previously reserved in call to GPIO_open(). Example GPIO_close(hGpio); GPIO_open GPIO pin Handle (see GPIO_open()). Reserves GPIO pin for exclusive use Function GPIO_Handle GPIO_open(Uint32 allocMask, Uint32 flags); Arguments allocMask GPIO pins to reserve. For list of pins, please see GPIO_pinDirection(). flags Open flags , currently non defined. Return Value GPIO_Handle Device handle GPIO Module 8-5 GPIO_open Description Before a GPIO pin can be used, it must be reserved for use by the application. Once reserved, it cannot be requested again until, closed by GPIO_close(). The return value is a unique device handle that is used in subsequent GPIO API calls. If the function fails, INV (-1) is returned. For C5502 and C5501, there are four groups of GPIO pins. (See GPIO_pinDirection() for list of pins in each group). GPIO_open() must be called to open one or more pins of only one group at a time. Calling the allocMask of pins in different groups will produce unknown results. Example: The first parameter to GPIO_open() could be (GPIO_GPIO_PIN4 | GPIO_GPIO_PIN2 as they are in the same group, but (GPIO_GPIO_PIN4 | GPIO_PGPIO_PIN2) will produce unknown results. If GPIO_open() is called for one or more pins in a particular group, it cannot be called again to open other pins of the same group unless corresponding GPIO_close() is called. However, GPIO_open() can be called again to open one or more pins of another group. Example: If GPIO_open() is called for the first time with GPIO_GPIO_PIN4 as the first parameter, it can not be called again with GPIO_GPIO_PIN2 parameter, as they belong to the same pin group. However, it can be called again with GPIO_PGPIO_PIN2 as the first parameter. Example 8-6 GPIO_Handle hGPIO; hGPio = GPIO_open(GPIO_PGPIO_PIN1,0); GPIO_configAll GPIO_config Writes value to non-parallel registers using GPIO_config Function void GPIO_config(GPIO_Handle hGpio, GPIO_Config *cfg); Arguments hGpio cfg Return Value None Description Writes values to the non-parallel GPIO control registers using the configuration structure. Note: GPIO_Config structure is common for GPIO and PGPIO pins. The GPIO_config() function just discards the enable field in case of GPIO [0:7] pins. Example GPIO_Handle hGpio; GPIO_Config myConfig = {GPIO_PIN1_OUTPUT | GPIO_PIN3_OUTPUT } configuration for 5502 and 5501 GPIO Device handle Pointer to an initialized configuration structure hGpio = GPIO_open(GPIO_GPIO_PIN1 | GPIO_GPIO_PIN3,0); GPIO_config(hGpio &myConfig); GPIO_configAll Writes value to both non-parallel and parallel GPIO control registers Function void GPIO_config(GPIO_ConfigAll &gCfg); Arguments gCfg Return Value None Description Writes values to both parallelowe and non−parallel GPIO control registers using the configuration structure. See also GPIO_ConfigAll. Example GPIO_ConfigAll gCfg = { GPIO_PIN1_OUTPUT | GPIO_PIN3_OUTPUT, /* IODIR */ 0, /* PGPIOEN0 */ 0, /* PGPIODIR0 */ 0, /* PGPIOEN1 */ 0, /* PGPIODIR1 */ 0, /* PGPIOEN2 */ 0 /* PGPIODIR2 */ }; /* GPIO configuration for 5502 and 5501 */ GPIO_configAll(&gCfg); Configuration structure for both power and non−power, non-muxedGPIO pins. GPIO Module 8-7 GPIO_pinDirection GPIO_pinDirection Sets the GPIO pin as either an input oroutpit pin Function For C5502 and 5501: void GPIO_pinDirection(GPIO_Handle hGpio, Uint32 pinMask, Uint16 direction); For C5509/C5509A/C5510: void GPIO_pinDirection(Uint32 pinMask, Uint16 direction); Arguments hGPIO pinMask GPIO Handle returned from previous call to GPIO_open() (This argument is only for C5502 and C5501 CSL) GPIO pins affected by direction For 5502 and 5501, pinMask may be any of the following: GPIO Pin Group 0 (Non-Parallel GPIO Pins): GPIO_GPIO_PIN0 GPIO_GPIO_PIN1 GPIO_GPIO_PIN2 GPIO_GPIO_PIN3 GPIO_GPIO_PIN4 GPIO_GPIO_PIN5 GPIO_GPIO_PIN6 GPIO_GPIO_PIN7 GPIO Pin Group 1 (Parallel GPIO Pins 0-15): GPIO_PGPIO_PIN0 GPIO_PGPIO_PIN1 GPIO_PGPIO_PIN2 GPIO_PGPIO_PIN3 GPIO_PGPIO_PIN4 GPIO_PGPIO_PIN5 GPIO_PGPIO_PIN6 GPIO_PGPIO_PIN7 GPIO_PGPIO_PIN8 GPIO_PGPIO_PIN9 GPIO_PGPIO_PIN10 GPIO_PGPIO_PIN11 GPIO_PGPIO_PIN12 GPIO_PGPIO_PIN13 8-8 GPIO_pinDirection GPIO_PGPIO_PIN14 GPIO_PGPIO_PIN15 GPIO Pin Group 2 (Parallel GPIO Pins 16-31): GPIO_PGPIO_PIN16 GPIO_PGPIO_PIN17 GPIO_PGPIO_PIN18 GPIO_PGPIO_PIN19 GPIO_PGPIO_PIN20 GPIO_PGPIO_PIN21 GPIO_PGPIO_PIN22 GPIO_PGPIO_PIN23 GPIO_PGPIO_PIN24 GPIO_PGPIO_PIN25 GPIO_PGPIO_PIN26 GPIO_PGPIO_PIN27 GPIO_PGPIO_PIN28 GPIO_PGPIO_PIN29 GPIO_PGPIO_PIN30 GPIO_PGPIO_PIN31 GPIO Pin Group 3 (Parellel GPIO Pins 32-45): GPIO_PGPIO_PIN32 GPIO_PGPIO_PIN33 GPIO_PGPIO_PIN34 GPIO_PGPIO_PIN35 GPIO_PGPIO_PIN36 GPIO_PGPIO_PIN37 GPIO_PGPIO_PIN38 GPIO_PGPIO_PIN39 GPIO_PGPIO_PIN40 GPIO_PGPIO_PIN41 GPIO_PGPIO_PIN42 GPIO_PGPIO_PIN43 GPIO_PGPIO_PIN44 GPIO_PGPIO_PIN45 The pinMask may be formed by using a single pin Id listed above or you may combine pin IDs from pins within the same group (i.e., GPIO_PGPIO_PIN23 | GPIO_PGPIO_PIN30) direction Mask used to set pin direction for pins selected in pinMask GPIO Module 8-9 GPIO_pinDirection GPIO Pin Group 0 (Non-Parallel GPIO Pins): GPIO_GPIO_PIN0_OUTPUT GPIO_GPIO_PIN1_OUTPUT GPIO_GPIO_PIN2_OUTPUT GPIO_GPIO_PIN3_OUTPUT GPIO_GPIO_PIN4_OUTPUT GPIO_GPIO_PIN5_OUTPUT GPIO_GPIO_PIN6_OUTPUT GPIO_GPIO_PIN7_OUTPUT GPIO_GPIO_PIN0_INPUT GPIO_GPIO_PIN1_INPUT GPIO_GPIO_PIN2_INPUT GPIO_GPIO_PIN3_INPUT GPIO_GPIO_PIN4_INPUT GPIO_GPIO_PIN5_INPUT GPIO_GPIO_PIN6_INPUT GPIO_GPIO_PIN7_INPUT GPIO Pin Group 1 (Parallel GPIO Pins 0-15): GPIO_PGPIO_PIN0_OUTPUT GPIO_PGPIO_PIN1_OUTPUT GPIO_PGPIO_PIN2_OUTPUT GPIO_PGPIO_PIN3_OUTPUT GPIO_PGPIO_PIN4_OUTPUT GPIO_PGPIO_PIN5_OUTPUT GPIO_PGPIO_PIN6_OUTPUT GPIO_PGPIO_PIN7_OUTPUT GPIO_PGPIO_PIN8_OUTPUT GPIO_PGPIO_PIN9_OUTPUT GPIO_PGPIO_PIN10_OUTPUT GPIO_PGPIO_PIN11_OUTPUT GPIO_PGPIO_PIN12_OUTPUT GPIO_PGPIO_PIN13_OUTPUT GPIO_PGPIO_PIN14_OUTPUT GPIO_PGPIO_PIN15_OUTPUT GPIO_PGPIO_PIN0_INPUT GPIO_PGPIO_PIN1_INPUT GPIO_PGPIO_PIN2_INPUT GPIO_PGPIO_PIN3_INPUT 8-10 GPIO_pinDirection GPIO_PGPIO_PIN4_INPUT GPIO_PGPIO_PIN5_INPUT GPIO_PGPIO_PIN6_INPUT GPIO_PGPIO_PIN7_INPUT GPIO_PGPIO_PIN8_INPUT GPIO_PGPIO_PIN9_INPUT GPIO_PGPIO_PIN10_INPUT GPIO_PGPIO_PIN11_INPUT GPIO_PGPIO_PIN12_INPUT GPIO_PGPIO_PIN13_INPUT GPIO_PGPIO_PIN14_INPUT GPIO_PGPIO_PIN15_INPUT GPIO Pin Group 2 (Parallel GPIO Pins 16-31): GPIO_PGPIO_PIN16_OUTPUT GPIO_PGPIO_PIN17_OUTPUT GPIO_PGPIO_PIN18_OUTPUT GPIO_PGPIO_PIN19_OUTPUT GPIO_PGPIO_PIN20_OUTPUT GPIO_PGPIO_PIN21_OUTPUT GPIO_PGPIO_PIN22_OUTPUT GPIO_PGPIO_PIN23_OUTPUT GPIO_PGPIO_PIN24_OUTPUT GPIO_PGPIO_PIN25_OUTPUT GPIO_PGPIO_PIN26_OUTPUT GPIO_PGPIO_PIN27_OUTPUT GPIO_PGPIO_PIN28_OUTPUT GPIO_PGPIO_PIN29_OUTPUT GPIO_PGPIO_PIN30_OUTPUT GPIO_PGPIO_PIN31_OUTPUT GPIO_PGPIO_PIN16_INPUT GPIO_PGPIO_PIN17_INPUT GPIO_PGPIO_PIN18_INPUT GPIO_PGPIO_PIN19_INPUT GPIO_PGPIO_PIN20_INPUT GPIO_PGPIO_PIN21_INPUT GPIO_PGPIO_PIN22_INPUT GPIO_PGPIO_PIN23_INPUT GPIO_PGPIO_PIN24_INPUT GPIO_PGPIO_PIN25_INPUT GPIO_PGPIO_PIN26_INPUT GPIO Module 8-11 GPIO_pinDirection GPIO_PGPIO_PIN27_INPUT GPIO_PGPIO_PIN28_INPUT GPIO_PGPIO_PIN29_INPUT GPIO_PGPIO_PIN30_INPUT GPIO_PGPIO_PIN31_INPUT GPIO Pin Group 3 (Parellel GPIO Pins 32-45): GPIO_PGPIO_PIN32_OUTPUT GPIO_PGPIO_PIN33_OUTPUT GPIO_PGPIO_PIN34_OUTPUT GPIO_PGPIO_PIN35_OUTPUT GPIO_PGPIO_PIN36_OUTPUT GPIO_PGPIO_PIN37_OUTPUT GPIO_PGPIO_PIN38_OUTPUT GPIO_PGPIO_PIN39_OUTPUT GPIO_PGPIO_PIN40_OUTPUT GPIO_PGPIO_PIN41_OUTPUT GPIO_PGPIO_PIN42_OUTPUT GPIO_PGPIO_PIN43_OUTPUT GPIO_PGPIO_PIN44_OUTPUT GPIO_PGPIO_PIN45_OUTPUT GPIO_PGPIO_PIN32_INPUT GPIO_PGPIO_PIN33_INPUT GPIO_PGPIO_PIN34_INPUT GPIO_PGPIO_PIN35_INPUT GPIO_PGPIO_PIN36_INPUT GPIO_PGPIO_PIN37_INPUT GPIO_PGPIO_PIN38_INPUT GPIO_PGPIO_PIN39_INPUT GPIO_PGPIO_PIN40_INPUT GPIO_PGPIO_PIN41_INPUT GPIO_PGPIO_PIN42_INPUT GPIO_PGPIO_PIN43_INPUT GPIO_PGPIO_PIN44_INPUT GPIO_PGPIO_PIN45_INPUT Direction may be set using any of the symbolic constant defined above. Direction for multiple pins within the same group may be set by OR’ing together several constants: GPIO_PGPIO_PIN45_INPUT | GPIO_PGPIO_PIN40_OUTPUT Return Value 8-12 None GPIO_pinEnable Description Sets the direction for oneor more General purpose I/O pins (input or output) Example /* sets the pin pgpio1 as an input */ GPIO_handle hGpio = GPIO_open(GPIO_PGPIO_PIN1|GPIO_PGPIO_PIN15); GPIO_pinDirection(hGPio, GPIO_PGPIO_PIN1, GPIO_PGPIO_PIN1_INPUT); GPIO_pinDisable Disables a pin as a GPIO pin Function For C5502 and 5501: void GPIO_pinDisable(GPIO_Handle hGpio, Uint32 pinId) For C5509/C5509A/C5510: void GPIO_pinDisable((Uint32 pinId) Arguments hGpio pinID GPIO handle returned from previous call to GPIO_open (This argument is only for C5502 and C5501 CSL) IDs of the pins to disable. Please see GPIO_pinDirection() for list of possible pin IDs. Return Value None Description Disables one or more pins as GPIO pins. Example /* disables pin pgpio1 as a GPIO pin */ GPIO_handle hGpio = GPIO_open(GPIO_PGPIO_PIN1|GPIO_PGPIO_PIN15); GPIO_pinDisable (hGpio,GPIO_PGPIO_PIN1); /* disables parallel pin IO1 as GPIO */ GPIO_pinEnable Enables a pin as a GPIO pin Function For C5502 and C5501: void GPIO_pinEnable(GPIO_Handle hGpio, Uint32 pinId) For C5509/C5509A/C5510: void GPIO_pinEnable(Uint32 pinId) Arguments hGpio pinID GPIO Handle returned from call to GPIO_open(). (This argument is only for C5502 and C5501 CSL) ID of the pin to enable. For valid pin IDs, please see GPIO_pinDirection(). Return Value None Description Enables a pin as a general purpose I/O pin. Example GPIO_pinEnable (hGpio, GPIO_GPIO_PIN1); /* enables pin IO1 as GPIO */ GPIO Module 8-13 GPIO_pinRead GPIO_pinRead Reads a GPIO pin value Function For C5502 and C5501: int GPIO_pinRead(GPIO_Handle hGpio, Uint32 pinId) For C5509/C5509A/C5510 int GPIO_pinRead(Uint32 pinId) Arguments hGPio pinId GPIO Handle returned from previous call to GPIO_open(). (This argument is only for C5502 and C5501 CSL) IDs of the GPIO pins to read. Return Value Value Value read in GPIO pin (1 or 0) Description Reads the value in a general purpose input pin. Example int val; val = GPIO_pinRead (hGPio,GPIO_GPIO_PIN1); /* reads IO1 pin value */ GPIO_pinReadAll Reads a value of one or more GPIO pins Function For C5502 and C5501: int GPIO_pinReadAll(GPIO_Handle hGpio, Uint32 pinMask) For C5509/C5509A/C5510 int GPIO_pinReadAll(Uint32 pinMask) Arguments hGPio pinMask GPIO Handle returned from previous call to GPIO_open(). (This argument is only for C5502 and C5501 CSL) IDs of the GPIO pins to read. Please see GPIO_pinDirection() for list of pin IDs. Return Value Value Description Reads in the value of the GPIO pins specified by pinMask. The function returns the value in place of the pins. It does not right-justify the value to return a raw result. Example int val; /* reads IOO and IO7 pin values */ val=GPIO_pinRead (hGPio,GPIO_GPIO_PIN0| GPIO_GPIO_PIN7); 8-14 Value read in GPIO pin/s GPIO_pinWriteAll GPIO_pinWrite Writes a value to a GPIO pin Function For C5502 and C5501: void GPIO_pinWrite(GPIO_Handle hGpio, Uint32 pinMask, Uint16 val) For C5509/C5509A/C5510: void GPIO_pinWrite(Uint32 pinMask Uint16 val) Arguments hGpio pinMask val GPIO Handle returned from previous call to GPIO_open(). (This argument is only for C5502 and C5501 CSL) ID of one or more GPIO pins to write. Please see GPIO_pinDirection for a list of valid pin IDs. Value (0 or 1) to write to selected GPIO pins. Return Value None Description Writes a value to a general purpose output pin. Example /* writes 1 to IO pin0 and IO pin 5 */ GPIO_pinWrite (hGpio, GPIO_GPIO_PIN0 | GPIO_GPIO_PIN5, 1); GPIO_pinWriteAll Writes a value to one or more GPIO pins Function For C5502 and C5501: void GPIO_pinWriteAll(GPIO_Handle hGpio, Uint32 pinMask, Uint16 val) For C5509/C5509A/C5510: void GPIO_pinWriteAll(Uint32 pinMask, Uint16 val) Arguments hGpio pinMask val GPIO Handle returned from previous call to GPIO_open(). (This argument is only for C5502 and C5501 CSL) ID of one or more GPIO pins to write. Please see GPIO_pinDirection for a list of valid pin IDs. Value mask to write to selected GPIO pins. Return Value None Description Writes a value to one or more general purpose output pins. Ths function assumes an in-place value mask for writing to the GPIO pins. It will not left-justify values. Example /* writes 1 to IO pin0 and IO pin 5 */ GPIO_pinWrite (hGpio,GPIO_GPIO_PIN0| GPIO_GPIO_PIN5,0x0021); GPIO Module 8-15 GPIO_pinReset GPIO_pinReset Resets GPIO pins to default values Function void GPIO_pinReset(GPIO_Handle hGpio, Uint32 pinMask) Arguments hGpio pinMask Return Value None Description Restores selected GPIO pins to default value of 0. Example /* writes 1 to IO pin1 and IO pin 3 */ GPIO_pinReset (hGpio, GPIO_GPIO_PIN1 | GPIO_GPIO_PIN3); 8-16 GPIO Handle returned from previous call to GPIO_open(). ID of one or more GPIO pins to write. Please see GPIO_pinDirection for list of valid pin IDs. Macros 8.4 Macros The CSL offers a collection of macros to gain individual access to the GPIO peripheral registers and fields. Table 8−3 contains a list of macros available for the GPIO module. To use them, include “csl_gpio.h.” Table 8−3. GPIO CSL Macros (a) Macros to read/write GPIO register values Macro Syntax GPIO_RGET() Uint16 GPIO_RGET(REG) GPIO_RSET() Void GPIO_RSET(REG, Uint16 regval) (b) Macros to read/write GPIO register field values (Applicable only to registers with more than one field) Macro Syntax GPIO_FGET() Uint16 GPIO_FGET(REG, FIELD) GPIO_FSET() Void GPIO_FSET(REG, FIELD, Uint16 fieldval) (c) Macros to create value to GPIO registers and fields (Applies only to registers with more than one field) Macro Syntax GPIO_REG_RMK() Uint16 GPIO_REG_RMK(fieldval_n,…fieldval_0) Note: *Start with field values with most significant field positions: field_n: MSB field field_0: LSB field *only writable fields allowed GPIO_FMK() Uint16 GPIO_FMK(REG, FIELD, fieldval) (d) Macros to read a register address Macro Syntax GPIO_ADDR() Uint16 GPIO_ADDR(REG) Notes: 1) REG include the registers IODIR, IODATA, GPIODIR, GPIODATA, GPIOEN, AGPIODIR, AGPIODATA, and AGPIOEN. 2) FIELD indicates the register field name For REG_FSET and REG_FMK, FIELD must be a writable field. For REG_FGET, the field must be a readable field. 3) regval indicates the value to write in the register (REG). 4) fieldval indicates the value to write in the field (FIELD). GPIO Module 8-17 8-18 Chapter 9 HPI Module This chapter describes the HPI module, lists the API structure, macros, functions, and provides an HPI API reference. The HPI module applies to the C5502 and C5501 devices. Topic Page 9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 9.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 9.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 9.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 9-1 Overview 9.1 Overview This module enables configuration of the 5502 and 5501 HPI. The HPI module is not handle based. Configuration of the HPI is easily accomplished by calling HPI_config() or any of the SET register macros. Using HPI_config() is the preferred method for configuration. Table 9−1 Lists the configuration structure for HPI modules Table 9−2 Lists the function APIs Table 9−3 Lists the register and bit field names Lists the API macros Table 9−1. HPI Module Configuration Structure Syntax Description HPI_Config HPI module configuration structure See page ... 9-4 Table 9−2. HPI Functions Syntax Description See page ... HPI_config() Sets up HPI using configuration structure (HPI_Config) 9-5 HPI_getConfig() Returns current HPI control register values in a configuration structure (HPI_Config) 9-5 Table 9−3. HPI Registers and Bit Field Names Register Field HGPIOEN EN0, EN1, EN2, EN4, EN6, EN7, EN8, EN9, EN11, EN12 HGPIODIR HDn(n=0−15) HGPIODAT HDn(n=0−15) HPIC HPIASEL, DUALHPIA, BOBSTAT, HPIRST, FETCH, HRDY, HINT, DSPINT, BOB HPIAW HPIAW HPIAR HPIAR HPWREMU FREE, SOFT 9-2 Overview Table 9−4. HPI Macros Syntax Description See page ... HPI_ADDR Get the address of a given register 9-6 HPI_FGET Gets value of a register field 9-6 HPI_FMK Creates register value based on individual field value 9-7 HPI_FSET Sets value of register field 9-7 HPI_REG_RMK Creates register value based on individual field values 9-8 HPI_RGET Gets the value of an HPI register 9-9 HPI_RSET Set the value of an HPI register 9-9 HPI Module 9-3 Configuration Structures 9.2 Configuration Structures The following is the HPI configuration structure used to set up the HPI interface. HPI_Config HPI configuration structure used to set up HPI interface Structure HPI_Config Members Uint16 Uint16 Uint16 Uint16 9-4 hpwremu hgpioen hgpiodir hpic HPI power/emulation management register HPI GPIO pin enable register HPI GPIO pin direction register HPI Control register HPI_getConfig 9.3 Functions The following are functions available for the HPI module. HPI_config Writes to HPI registers using values in configuration structure Function void HPI_config( HPI_Config *myConfig ); Arguments myConfig Return Value None Description Writes the values given in the initialized configuration structure to the corresponding HPI control register. See HPI_Config. Pointer to an initialized configuration structure Example HPI_Config myConfig = {0x3, /* HPWREMU , Select FREE = SOFT = 1 */ 0x0, /* HGPIOEN , Disable all GPIO pins 0x0, /* HGPIODIR, Default GPIO pins to output */ 0x80 /* HPIC , Reset HPI */ */ }; HPI_config(&myConfig); HPI_getConfig Reads current HPI configuration Function void HPI_getConfig( HPI_Config *myConfig ); Arguments myConfig Return Value None Description Reads the curent values of the HPI control registers, returning those values in the given configuration structure. See HPI_config Pointer to an initialized configuration structure Example HPI_Config myConfig; HPI_getConfig(&myConfig); HPI Module 9-5 HPI_ADDR 9.4 Macros The following is a listing of HPI macros. HPI_ADDR Gets address of given register Macro HPI_ADDR(REG) Function void DMA_reset( DMA_Handle hDma ); Arguments REG register as listed in HPI_RGET() Return Value Address of Register Description Gets the address of an HPI register Example ioport Uint16 *hpi_ctl; hpi_ctl = HPI_ADDR(HPIC); HPI_FGET Gets the value of register field Macro HPI_FGET(REG,FIELD) Arguments REG register as listed in HPI_RGET() FIELD symbolic name for field of register REG. Possible values: All field names are listed in the TMS320VC5501/5502 DSP Host Port Interface (HPI) Reference Guide (SPRU620A) Return Value Value of register field Description Gets current value of register field Example Uint16 bob = HPI_FGET(HPIC,BOB); 9-6 HPI_FSET HPI_FMK Creates register value based on individual field value Macro HPI_FMK(REG,FIELD,fieldval) Arguments REG register as listed in HPI_RGET() FIELD symbolic name for field of register REG. Possible values: All field names are listed in the TMS320VC5501/5502 DSP Host Port Interface (HPI) Reference Guide (SPRU620A) Return Value Shifted version of fieldval. Value is shifted to appropriate bit position for FIELD. Description Returns the shifted version of fieldval. Fieldval is shifted to the bit numbering appropriate for FIELD within register REG. This macro allows the user to initialize few fields in REG as an alternative to the HPI_REG_RMK() macro that requires ALL the fields in the register to be initialized. The returned value could be ORed with the result of other _FMK macros, as show below. Example unt16 gpioenMask = HPI_FMK(HGPIOEN,EN2,1) | HPI_FMK(HGPIOEN,EN8,1); HPI_FSET Sets the value of register field Macro Void HPI_FSET (REG, FIELD, fieldval) Arguments REG Only writable registers containing more than one field are supported by this macro. FIELD symbolic name for field of register REG. Possible values: All writeable field names are listed in the TMS320VC5501/5502 DSP Host Port Interface (HPI) Reference Guide (SPRU620A) Return Value None Description Sets the HPI register field value to fieldval. Example HPI_FSET(HGPIOEN,EN0,1); HPI Module 9-7 HPI_REG_RMK HPI_REG_RMK Creates register value based on individual field values Macro Uint16 HPI_REG_RMK (fieldval_n,...,fieldval_0) Arguments REG Only writable registers containing more than one field are supported by this macro. fieldval Field values to be assigned to the writable register fields. Rules to follow: Only writable fields are allowed Start from most−significant field first Value should be a right-justified constant If fieldval_n value exceeds the number of bits allowed for that field, field- val_n is truncated accordingly. Return Value Value of register that corresponds to the concatenation of values passed for the fields. Description Returns the HPI register value given specific field values. You can use constants or the CSL symbolic constants covered in Section 1.6. Example Uint16 myregval; /* enable HA[0:7], HD[8:15], HD[0:7] for GPIO */ myregval = HPI_HGPIOEN_RMK (0,1,1,1,0,0,0,0,0); HPI_REG_RMK are typically used to initialize a HPI configuration structure used for the HPI_config() function (see section 9.2). 9-8 HPI_RSET HPI_RGET Gets value of an HPI register Macro Uint16 HPI_RGET (REG) Arguments REG where: REG is one of the following HGPIOEN HGPIODIR HPIAR HPIAW HPWREMU HPIC Return Value Value of register Description Returns the HPI register value Example Uint16 myvar; myVar = HPI_RGET(HPIC); /*read HPI control register */ HPI_RSET Sets value of an HPI register Macro Void HPI_RSET (REG, Uint16 regval) Arguments REG register, as listed in HPI_RGET() macro regval register value that wants to write to register REG Return Value None Description Sets the HPI register REG value to regval Example HPI_RSET(HPWREMU, 0x3); /* Set FREE and SOFT bits */ CSL offers a collection of macros to gain individual access to the GPIO peripheral registers and fields. Table 8−3 contains a list of macros available for the GPIO module. To use them, include “csl_gpio.h.” HPI Module 9-9 HPI_RSET 9-10 Chapter 10 I2C Module This chapter describes the I2C module, lists the API structure, functions, and macros within the module, and provides an I2C API reference section. Topic Page 10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2 10.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5 10.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7 10.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-17 10.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-18 10-1 Overview 10.1 Overview The configuration of the I2C can be performed by using one of the following methods: Register-based configuration A register-based configuration can be performed by calling either I2C_config() or any of the SET register field macros. Parameter-based configuration (Recommended) A parameter-based configuration can be performed by calling I2C_setup(). Using I2C_setup() to initialize the I2C registers is the recommended approach. Compared to the register-based approach, this method provides a higher level of abstraction. The downside is larger code size and higher cycle counts. Table 10−3 lists DMA registers and fields. Table 10−1. I2C Configuration Structure Configuration Structure Description See page… I2C_Config I2C configuration structure used to set up the I2C (register− based) 10-5 I2C_Setup Sets up the I2C using the initialization structure 10-6 Table 10−2. I2C Functions Functions Description I2C_config() Sets up the I2C using the configuration structure 10-7 I2C_eventDisable() Disables the I2C interrupt specified. 10-8 I2C_eventEnable() Enables the I2C interrupt specified. 10-8 I2C_getConfig() Obtains the current configuration of all the I2C registers 10-8 I2C_getEventId() Returns the I2C IRQ event ID 10-9 I2C_setup() Sets up the I2C using the initialization structure 10-9 I2C_IsrAddr I2C structure containing pointers to functions that will be executed when a specific I2C interrupt is enabled and received. 10-10 10-2 See page… Overview Table 10−2. I2C Functions (Continued) Functions Description See page… I2C_read() Performs master/slave receiver functions 10-10 I2C_readByte() Performs a read from the data receive register (I2CDRR). 10-11 I2C_reset() Sets the IRS bit in the I2CMDR register to 1 (performs a reset). 10-12 I2C_rfull() Reads the RSFULL bit in the I2CSTR register. 10-12 I2C_rrdy() Reads the I2CRRDY bit in the I2CSTR register. 10-12 I2C_sendStop() Sets the STP bit in the I2CMDR register (generates a stop). 10-13 I2C_setCallback() Associates each callback function to one of the I2C interrupt events and installs the I2C dispatcher table. 10-13 I2C_start() Sets the STT bit in the I2CMDR register (generates a start). 10-14 I2C_write() Performs master/slave transmitter functions 10-14 I2C_writeByte() Performs a write to the data transmit register (I2CDXR). 10-15 I2C_xempty() Reads the XSMT bit in theI2CSTR register. 10-16 I2C_xrdy() Reads the I2CXRDY bit in the I2CSTR register. 10-16 I2C Module 10-3 Overview 10.1.1 I2C Registers Table 10−3. I2C Registers Register Field I2COAR OAR I2CIER AL , NACK , ARDY , RRDY , XRDY I2CSTR (R)AL, (R)NACK, (R)ARDY, RRDY, (R)XRDY, (R)AD0, (R)AAS, (R)XSMT, (R)RSFULL ,(R)BB I2CCLKL ICCL I2CCLKH ICCH I2CCNT ICDC I2CDRR (R)DATA I2CSAR SAR I2CDXR (R)DATA I2CMDR BC, FDF, STB, IRS, DLB, RM, XA, TRX, MST, STP, IDLEEN , STT, FREE I2CISRC (R)INTCODE, TESTMD I2CGPIO I2CPSC Note: 10-4 IPSC R = Read Only; W = Write; By default, most fields are Read/Write I2C_Config 10.2 Configuration Structures The following are the configuration structures used to set up the I2C module. I2C_Config I2C Configuration Structure used to set up the I2C interface Structure I2C_Config Members Uint16 i2coar Uint16 i2cier Uint16 i2cstr Uint16 i2cclkl Uint16 i2cclkh Uint16 i2ccnt Uint16 i2csar Uint16 i2cmdr Uint16 i2cisrc Uint16 i2cpsc Description I2C configuration structure used to set up the I2C interface. You create and initialize this structure and then pass its address to the I2C_config() function. You can use either literal values, or I2C_RMK macros to create the structure member values. Example I2C_Config 0xFFFF, 0x0000, 0xFFFF, 10, 8, 1, 0xFFFA, 0x0664, 0xFFFF, 0x0000 } Own address register Interrupt mask/status register Interrupt status register Clock Divider Low register Clock Divider High register Data Count register Slave Address register Mode register Interrupt source vector register Prescaler register Config = { /* I2COAR /* I2CIER /* I2CSTR /* I2CCLKL /* I2CCLKH /* I2CCNT /* I2CSAR /* I2CMDR /* I2CISRC /* I2CPSC */ */ */ */ */ */ */ */ */ */ I2C Module 10-5 I2C_Setup I2C_Setup I2C Initialization Structure used to set up the I2C interface Structure I2C_Setup Members Uint16 addrmode Uint16 ownaddr Uint16 sysinclock Uint16 rate Uint16 bitbyte Uint16 dlb Uint16 free Address Mode: 0 = 7 bit 1 = 10 bit Own Address (I2COAR) System Clock Value (MHz) Desired Transfer rate (10−400 kbps) Number of bits per byte to be received or transmitted: Value Bits/byte transmitted/received 0 8 1 1 2 2 3 3 4 4 5 5 6 6 7 7 Data Loopback mode 0 = off, 1 = on emulator FREE mode 0 = off, 1 = on Description I2C initialization structure used to set up the I2C interface. You create and initialize this structure and then pass its address to the I2C_setup() function. Example I2C_Setup Setup = { 0, /* 7 or 10 bit address mode */ 0x0000, /* own address − don’t care if master */ 144, /* clkout value (Mhz) */ 400, /* a number between 10 and 400 */ 0, /* number of bits/byte to be received or */ /* transmitted (8 bits) */ 0, /* DLB mode */ 1 /* FREE mode of operation */ } 10-6 I2C_config 10.3 Functions The following are functions available for use with the I2C module. I2C_config Sets up the I2C using the configuration structure Function void I2C_config (I2C_Config *Config); Arguments Config Return Value none Description Writes a value to set up the I2C using the configuration structure. The values of the configuration structure are written to the port registers. Pointer to an initialized configuration structure If desired, you can configure all I2C registers with: I2C_config(); [maintaining I2CMDR(STT)=0] and later, use the I2C_start() function to start the I2C peripheral Example I2C_Config 0xFFFF, 0x0000, 0xFFFF, 10, 8, 1, 0xFFFA, 0x0664, 0xFFFF, 0x0000 }; Config = { /* I2COAR /* I2CIER /* I2CSTR /* I2CCLKL /* I2CCLKH /* I2CCNT /* I2CSAR /* I2CMDR /* I2CSRC /* I2CPSC */ */ */ */ */ */ */ */ */ */ I2C_config(&Config); I2C Module 10-7 I2C_eventDisable I2C_eventDisable Disables the interrupt specified by the ierMask Function void I2C_eventDisable(Uint16 isrMask); Arguments isrMask can be one or the logical OR any of the following: I2C_EVT_AL // Arbitration Lost Interrupt Enable I2C_EVT_NACK // No Acknowledgement Interrupt Enable I2C_EVT_ARDY // Register Access Ready Interrupt I2C_EVT_RRDY // Data Receive Ready Interrupt I2C_EVT_XRDY // Data Transmit Ready Interrupt Description This function disables the interrupt specified by the ierMask. Example I2C_eventDisable(I2C_EVT_RRDY); ... I2C_eventDisable (I2C_EVT_RRDY|I2C_EVT_XRDY); I2C_eventEnable Enables the I2C interrupt specified by the isrMask Function void I2C_eventEnable(Uint16 isrMask); Arguments isrMask can be one or a logical OR of the following: I2C_EVT_AL // Arbitration Lost Interrupt Enable I2C_EVT_NACK // No Acknowledgement Interrupt Enable I2C_EVT_ARDY // Register Access Ready Interrupt I2C_EVT_RRDY // Data Receive Ready Interrupt I2C_EVT_XRDY // Data Transmit Ready Interrupt Description This function enables the I2C interrupts specified by the isrMask. Example I2C_eventEnable(I2C_EVT_AL); ... I2C_eventEnable (I2C_EVT_RRDY|I2C_EVT_XRDY); I2C_getConfig Writes values to I2C registers using the configuration strucucture Function void I2C_getConfig (I2C_Config *Config); Arguments Config Return Value None Description Reads the current value of all I2C registers being used and places them into the corresponding configuration structure member. 10-8 Pointer to a configuration structure I2C_setup Example I2C_getEventId I2C_Config *testConfig; I2C_getConfig(testConfig); Returns the I2C software interrupt value Function int I2C_getEventId( ); Arguments None Description Returns the I2C software interrupt value. Example int evID; evID = I2C_getEventId(); I2C_setup Initializes I2C registers using initialization structure Function void I2C_setup (I2C_Setup *Setup); Arguments Setup Return Value None Description Sets the address mode (7 or 10 bit), the own address, the prescaler value (based on system clock), the transfer rate, the number of bits/byte to be received or transmitted, the data loopback mode, and the free mode. Refer to the I2C_Setup structure for structure members. Example I2C_Setup Setup = { 0, /* 7 bit address mode */ 0x0000, /* own address */ 144, /* clkout value (Mhz) */ 400, /* a number between 10 and 400 */ 0, /* 8 bits/byte to be received or transmitted */ 0, /* DLB mode off */ 1 /* FREE mode on */ }; Pointer to an initialized initialization structure I2C_setup(&Setup); I2C Module 10-9 I2C_IsrAddr I2C_IsrAddr I2C structure used to assign functions for each interrupt structure Structure I2C_IsrAddr Members void (*alAddr)(void); void (*nackAddr)(void); void (*ardyAddr)(void); void (*rrdyAddr)(void); void (*xrdyAddr)(void); Description I2C structure used to assign functions for each of the five I2C interrupts. The structure member values should be pointers to the functions that are executed when a particular interrupt occurs. Example I2C_IsrAddr addr = { myALIsr, myNACKIsr, myARDYIsr, myRRDYIsr, myXRDYIsr }; I2C_read pointer to function for AL interrupt pointer to function for NACK interrupt pointer to function for ARDY interrupt pointer to function for RRDY interrupt pointer to function for XRDY interrupt Performs master/slave receiver functions Function int I2C_read (Uint16 *data, int length, int master, Uint16 slaveaddress, int transfermode, int timeout, int checkbus); Arguments Uint16 *data int length int master 10-10 Pointer to data array length of data to be received master mode: 0 = slave, 1 = master Uint16 slaveaddress Slave address to receive from int transfermode Transfer mode of operation (SADP, SAD, etc.) Value Transfer Mode 1 S−A−D..(n)..D−P 2 S−A−D..(n)..D (repeat n times) 3 S−A−D−D−D..... (continuous) int timeout Timeout for bus busy, no acknowledge, transmit ready int checkbus flag used to check if bus is busy. Typically, it must be set to 1, except under special I2C program conditions.) I2C_readByte Return Value int Value returned 0 1 2 4 Description No errors Bus busy; not able to generate start condition Timeout for transmit ready (first byte) Timeout for transmit ready (within main loop) Description Performs master/slave receiver functions. Inputs are the data array to be transferred, length of data, master mode, slaveaddress, timeout for errors, and a check for bus busy flag. Example Uint16 datareceive[6]={0,0,0,0,0,0}; int x; I2C_Init Init = { 0, /* 7 bit address mode */ 0x0000, /* own address */ 144, /* clkout value (Mhz) */ 400, /* a number between 10 and 400 */ 0, /* 8 bits/byte to be received or transmitted */ 0, /* DLB mode off */ 1 /* FREE mode on */ }; I2C_init(&Init); z=I2C_read(datareceive,6,1,0x50,3,30000,0); /* receives 6 bytes of data /* in master receiver /* S−A−D..(n)..D−P mode /* to from the 0x50 address /* with a timeout of 30000 /* and check for bus busy on I2C_readByte */ */ */ */ */ */ Performs a 16-bit data read Function Uint16 I2C_readByte( ); Arguments None Return Value Data read for an I2C receive port. I2C Module 10-11 I2C_readByte Description Performs a direct 16-bit read from the data receive register I2CDRR. Example Uint16 Data; ... Data = I2C_readByte(); This function does not check to see if valid data has been received. For this purpose, use I2C_rrdy(). I2C_reset Resets a given serial port Function void I2C_reset( ); Arguments None Return Value None Description Sets the IRS bit in the I2CMDR register to 1 (performs a reset). Example I2C_reset(); I2C_rfull Reads the RSFULL bit of I2CSTR Register Function Uint16 I2C_rfull( ); Arguments None Return Value RFULL Description Reads the RSFULL bit of the I2CSTR register. Example if (I2C_rfull()) { … } I2C_rrdy Returns RSFULL status bit of I2CSTR register to 0 (receive buffer empty), or 1(receive buffer full). Reads the ICRRDY status bit of I2CSTR Function Uint16 I2C_rrdy( ); Arguments None 10-12 I2C_readByte Return Value RRDY Description Reads the RRDY status bit of the I2CSTR register. A 1 indicates the receiver is ready with data to be read. Example if (I2C_rrdy()) { … } I2C_sendStop Returns RRDY status bit of SPCR1, 0 or 1 Sets the STP bit in the I2CMDR register (generates stop condition) Function void I2C_sendStop(); Arguments None Return Value None Description Sets the STP bit in the I2CMDR register (generates a stop condition). Example I2C_sendStop(); I2C_setCallback Associates functions to interrupts and installs dispatcher routines Function void I2C_setCallback(I2C_IsrAddr *isrAddr); Arguments isrAddr is a structure containing pointers to the five functions that will be executed when the corresponding interrupt is enabled and received. These five functions should not be declared using the “interrupt” keyword. Description I2C_setCallback associates each function to one of the I2C interrupts and installs the I2C dispatcher routine address in the I2C interrupt vector. It then determines what I2C interrupt as been received (by reading the I2CIMR register) and calls the corresponding function from the structure. Example I2C_IsrAddr addr = { myalIsr, mynackIsr, myardyIsr myrrdyIsr, myxrdyIsr }; I2C_setCallback(&addr); I2C Module 10-13 I2C_readByte I2C_start Starts the transmit and/or receive operation for an I2C port Function void I2C_start( ); Arguments None Return Value None Description Sets the STT bit in the I2CMDR register (generates a start condition). The values of the configuration structure are written to the port registers. If desired, you can configure all I2C registers with: I2C_config() [maintaining I2CMDR(STT)=0] and later, use the I2C_start() function to start the I2C peripheral Example I2C_write I2C_start(); Performs master/slave transmitter functions Function int I2C_write (Uint16 *data, int length, int master, Uint16 slaveaddress, int transfermode, int timeout); Arguments Uint16 *data int length int master Return Value int Pointer to data array length of data to be transmitted master mode: 0 = slave, 1 = master Uint16 slaveaddress Slave address to transmit to int transfermode Transfer mode of operation (SADP, SAD, etc.) Value Transfer Mode 1 S−A−D..(n)..D−P 2 S−A−D..(n)..D (repeat n times) 3 S−A−D−D−D..... (continuous) int timeout Timeout for bus busy, no acknowledge, or transmit ready Value returned 0 1 2 3 4 5 10-14 Description No errors Bus busy; not able to generate start condition Timeout for transmit ready (first byte) NACK (No−acknowledge) received Timeout for transmit ready (within main loop) NACK (No−acknowledge) received (last byte) I2C_readByte Description Performs master/slave transmitter functions. Inputs are the data array to be transferred, length of data, master mode, slaveaddress, and timeout for errors. int timeout Example Timeout for bus busy, no acknowledge, or transmit ready Uint16 databyte[7]={0,0,10,11,12,13,14}; int x; I2C_Init Init = { 0, /* 7 bit address mode */ 0x0000, /* own address */ 144, /* clkout value (Mhz) */ 400, /* a number between 10 and 400 */ 0, /* 8 bits/byte to be received or transmitted */ 0, /* DLB mode off */ 1 /* FREE mode on */ }; I2C_init(&Init); x=I2C_write (databyte,7,1,0x50,1,30000); /* sends 7 bytes of data /* in master transmitter /* S−A−D..(n)..D−P mode /* to the 0x50 slave /* address with a timeout /* of 30000. I2C_writeByte */ */ */ */ */ */ Writes a 16-bit data value for I2CDXR Function void I2C_writeByte( Uint16 Val ); Arguments Val Return Value None Description Directly writes a 16-bit value to the serial port data transmit register; I2CDXR; before writing the value, this function does not check if the transmitter is ready. For this purpose, use I2C_xrdy(). Example I2C_writeByte(0x34); 16-bit data value to be written to I2C transmit register. I2C Module 10-15 I2C_readByte I2C_xempty Reads an XMST bit from an I2CST register Function Uint16 I2C_xempty( ); Arguments None Return Value XSMT Description Reads the XSMT bit from the I2CSTR register. A 0 indicates the transmit shift (XSR) is empty. Example if (I2C_xempty()) { … } I2C_xrdy Returns the XSMT bit of I2CSTR register: 0 (transmit buffer empty), or 1 (transmit buffer full). Reads the ICXRDY status bit of the I2CSTR register Function Bool I2C_xrdy( ); Arguments None Return Value XRDY Returns the XRDY status bit of the I2CSTR register. Description Reads the XRDY status bit of the I2CSTR register. A “1” indicates that the transmitter is ready to transmit a new word. A ”0” indicates that the transmitter is not ready to transmit a new word. Example if (I2C_xrdy()) { ... I2C_writeByte (0x34); ... } 10-16 Macros 10.4 Macros This section contains descriptions of the macros available in the I2C module. The I2C API defines macros that have been designed for the following purposes: The RMK macros create individual control-register masks for the following purposes: To initialize a I2C_Config structure that you then pass to functions such as I2C_Config(). To use as arguments for the appropriate RSET macros. Other macros are available primarily to facilitate reading and writing indi- vidual bits and fields in the I2C control registers. Table 10−4. I2C Macros (a) Macros to read/write I2C register values Macro Syntax I2C_RGET() Uint16 I2C_RGET(REG) I2C_RSET() Void I2C_RSET(REG, Uint16 regval) (b) Macros to read/write I2C register field values (Applicable to registers with more than one field) Macro Syntax I2C_FGET() Uint16 I2C_FGET(REG, FIELD) I2C_FSET() Void I2C_FSET(REG,FIELD,Uint16 fieldval) (c) Macros to create values to I2C registers and fields (Applicable to registers with more than one field) Macro Syntax I2C_REG_RMK() Uint16 I2C_REG_RMK(fieldval_n,…fieldval_0) Note: *Start with field values with most significant field positions: field_n: MSB field field_0: LSB field *only writable fields allowed I2C_FMK() Uint16 I2C_FMK(REG, FIELD, fieldval) (d) Macros to read a register address Macro Syntax I2C_ADDR() Uint16 I2C_ADDR(REG) I2C Module 10-17 Examples Notes: 1) REG indicates the registers: I2COAR, I2CIMR, I2CSTR, I2CCLKL, I2CCLKH, I2CDRR, I2CCNT, I2CSAR, I2CDXR, I2CMDR, I2CSRC, I2CPSC. 2) FIELD indicates the register field name. For REG_FSET and REG_FMK, FIELD must be a writable field. For REG_FGET, the field must be a readable field. 3) regval indicates the value to write in the register (REG). 4) fieldval indicates the value to write in the field (FIELD). 10.5 Examples I2C programming examples using CSL are provided in: The Programming the C5509 I2C Peripheral Application Report (SPRA785) In the CCS examples directory: examples\<target>\csl\ 10-18 Chapter 11 ICACHE Module This chapter describes the ICACHE module, lists the API structure, functions, and macros within the module, and provides a ICACHE API reference section. Topic Page 11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2 11.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3 11.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5 11.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8 11-1 Overview 11.1 Overview Table 11−2 lists the configuration structures and functions used with the ICACHE module. Section 11.4 lists the macros available for the ICACHE module. Currently, there are no handles available for the Instruction Cache. Table 11−1. ICACHE Configuration Structure Structure Purpose See page ... ICACHE_Config ICACHE configuration structure used to setup the Instruction Cache 11-3 ICACHE_Setup ICACHE Configuration structure used to enable the Instruction Cache. 11-4 ICACHE_TagSet ICACHE structure used to set the tag registers. 11-4 Table 11−2. ICACHE Functions Structure Purpose ICACHE_config Sets up the ICACHE register using the configuration structure 11-5 ICACHE_disable Resets the Cache Enable bit in status register 3 11-5 ICACHE_enable Sets the Cache Enable bit in status register 3 11-6 ICACHE_flush Sets the Cache Flush bit in status register 3 11-6 ICACHE_freeze Sets the Cache Freeze bit in status register 3 11-6 ICACHE_setup Configures the ICACHE and enables it 11-7 ICACHE_tagset Sets the values of the Ramset Tags 11-7 ICACHE_unfreeze Resets the Cache Freeze bit in status register 3 11-7 11-2 See page ... ICACHE_Config 11.2 Configuration Structures The following are configuration structures used to set up the ICACHE module. ICACHE_Config ICACHE configuration structure used to setup the ICACHE Structure ICACHE_Config Members Members Uint16 icgc Uint16 icwc Uint16 icrc1 Uint16 icrtag1 Uint16 icrc2 Uint16 icrtag2 Global Control Register N-way Control Register (not supported on C5502/5501) Ramset 1 Control Register (not supported on C5502/5501) Ramset 1 Tag Register (not supported on C5502/5501) Ramset 2 Control Register (not supported on C5502/5501) Ramset 2 Tag Register (not supported on C5502/5501) Description The ICACHE configuration structure is used to set up the cache. You create and initialize this structure, then pass its address to the ICACHE_config() function. You can use literal values or the ICACHE_RMK macros to create the structure member values. Example ICACHE_Config MyConfig = { 0x0060, /* Global Control 0x1000, /* N-way Control 0x0000, /* Ramset 1 Control 0x1000, /* Ramset 1 Tag 0x0000, /* Ramset 1 Control 0x1000 /* Ramset 1 Tag }; … ICACHE_config(&MyConfig); Example */ */ */ */ */ */ For C5502 and C5501 ICACHE_Config MyConfig = { 0x0000, /* Global Control }; */ ICACHE Module 11-3 ICACHE_Setup ICACHE_Setup Structure used to configure and enable the ICACHE Structure ICACHE_Setup Members Members Uint32 Uint32 rmode Description ICACHE setup structure is used to configure and enable the ICACHE. The structure is created and initialized. Its address is passed to the ICACHE_setup() function. Example ICACHE_Setup Mysetup = { ICACHE_ICGC_RMODE_1RAMSET, 0x50000, 0x0000}; ... ICACHE_setup(&Mysetup); ICACHE_Tagset Uint16 rmode r1addr r2addr Ramset Mode. Can take the following predefined values: ICACHE_ICGC_RMODE_0RAMSET ICACHE_ICGC_RMODE_1RAMSET ICACHE_ICGC_RMODE_2RAMSET Structure used to configure the ramset tag registers Structure ICACHE_Tagset Members Members Uint32 Uint32 r2addr Description ICACHE tag set structure is used to configure the ramset tag registers of the ICACHE. Example ICACHE_Tagset Mytagset = { 0x50000, 0x0000}; ... ICACHE_tagset(&Mytagset); 11-4 r1addr ICACHE_disable 11.3 Functions The following are functions available for use with the ICACHE module. ICACHE_config Sets up ICACHE registers using configuration structure Function void ICACHE_config( ICACHE_Config *Config ); Arguments Config Return Value None Description Sets up the ICACHE register using the configuration structure. The values of the structure are written to the registers ICGC, ICWC, ICRC1, ICRTAG1, ICRC2 and ICRTAG2 (see also ICACHE_Config). Example ICACHE_Config MyConfig = { }; … ICACHE_config(&MyConfig); ICACHE_disable Pointer to an initialized configuration structure Resets the ICACHE enable bit in the Status Register 3 Function void ICACHE_disable(); Arguments None Return Value None Description Function resets the ICACHE enable bit in the Status Register 3 and disables the ICACHE. After disabling the ICACHE the values in the ICACHE are preserved. Example ICACHE_disable(); ICACHE Module 11-5 ICACHE_enable ICACHE_enable Sets the ICACHE enable bit in the Status Register 3 Function void ICACHE_enable(); Arguments None Return Value None Description Function sets the ICACHE enable bit in the Status Register 3 and then polls the enable flag in the Cache Status Register. This function is useful when the ICACHE was disabled using the ICACHE_disable() function. In order to initialize the ICACHE the use of the ICACHE_setParams is prefered since this function will also enable the ICACHE. Example ICACHE_enable(); ICACHE_flush Sets the ICACHE flush bit in the Status Register 3 Function void ICACHE_flush(); Arguments None Return Value None Description Function sets the ICACHE flush bit in the Status Register 3 The content of the ICACHE is invalidated. Example ICACHE_flush(); ICACHE_freeze Sets the ICACHE freeze bit in the Status Register 3 Function void ICACHE_freeze(); Arguments None Return Value None Description Function sets the ICACHE freeze bit in the Status Register 3 and freezes the content of the ICACHE. Example ICACHE_freeze(); 11-6 ICACHE_unfreeze ICACHE_setup Configures the ICACHE and enables it Function void ICACHE_setup(ICACHE_Setup *setup); Arguments setup Return Value None Description Sets the Ramset Mode and enables the ICACHE Example ICACHE_Setup mySetup = { }; ... ICACHE_setup (&mySetup); ICACHE_tagset Pointer to an initialized setup structure Sets the address in the Ramset Tag registers Function void ICACHE_tagset(ICACHE_Tagset *params); Arguments params Return Value None Description Function sets the addresses in the Ramset Tag registers. This function is useful when the user wants to change the Ramset addresses after the ICACHE had been flushed . Example ICACHE_Tagset mySetup = { }; ... ICACHE_tagset(&mySetup); Pointer to an initialized tagset structure ICACHE_unfreeze Resets the ICACHE freeze bit in the Status Register 3 Function void ICACHE_unfreeze(); Arguments None Return Value None Description Function resets the ICACHE freeze bit in the Status Register 3 the content of the ICACHE is unfrozen. Example ICACHE_unfreeze(); ICACHE Module 11-7 Macros 11.4 Macros The CSL offers a collection of macros to access CPU control registers and fields. Table 11−3 lists the ICACHE macros available. To use them include “csl_icache.h.” Table 11−3. ICACHE CSL Macros (a) Macros to read/write ICACHE register values Macro Syntax ICACHE_RGET() Uint16 ICACHE_RGET(REG) ICACHE_RSET() void ICACHE_RSET(REG, Uint16 regval) (b) Macros to read/write ICACHE register field values (Applicable only to registers with more than one field) Macro Syntax ICACHE_FGET() Uint16 ICACHE_FGET(REG, FIELD) ICACHE_FSET() void ICACHE_FSET(REG, FIELD, Uint16 fieldval) (c) Macros to create value to write to ICACHE registers and fields (Applicable only to registers with more than one field) Macro Syntax ICACHE_REG_RMK() Uint16 ICACHE_REG_RMK(fieldval_n,...fieldval_0) Note: *Start with field values with most significant field positions: field_n: MSB field field_0: LSB field * only writable fields allowed ICACHE_FMK() Uint16 ICACHE_FMK(REG, FIELD, fieldval) (d) Macros to read a register address Macro Syntax ICACHE_ADDR() Uint16 ICACHE_ADDR(REG) Notes: 1) REG indicates the registers:ICGC, ICWC, ICST, ICRC1&2 or ICRTAG1&2. 2) FIELD indicates the register field name. − For REG_FSET and REG__FMK, FIELD must be a writable field. − For REG_FGET, the field must be a readable field. 3) regval indicates the value to write in the register (REG) 4) fieldval indicates the value to write in the field (FIELD) 11-8 Chapter 12 IRQ Module This chapter describes the IRQ module, lists the API structure and functions within the module, and provides an IRQ API reference section. The IRQ module provides an easy to use interface for enabling/disabling and managing interrupts. Topic Page 12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2 12.2 Using Interrupts with CSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-7 12.3 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-8 12.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-9 12-1 Overview 12.1 Overview The IRQ module provides an interface for managing peripheral interrupts to the CPU. This module provides the following functionality: Masking an interrupt in the IMRx register. Polling for the interrupt status from the IFRx register. Setting the interrupt vector table address and placing the necessary code in the interrupt vector table to branch to a user-defined interrupt service routine (ISR). Enabling/Disabling Global Interrupts in the ST1 (INTM) bit. Reading and writing to parameters in the DSP/BIOS dispatch table. (When the DPS BIOS dispatcher option is enabled in DSP BIOS.) The DSP BIOS dispatcher is responsible for dynamically handling interrupts and maintains a table of ISRs to be executed for specific interrupts. The IRQ module has a set of APIs that update the dispatch table. Table 12−2 lists the IRQ APIs. The IRQ functions can be used with or without DSP/BIOS; however, if DSP/BIOS is present, do not disable interrupts for long periods of time because this could disrupt the DSP/BIOS environment. IRQ_plug() is the only API function that cannot be used when DSP/BIOS dispatcher is present or DSP/BIOS HWI module is used to configure the interrupt vectors. This function, IRQ_plug(), dynamically places code at the interrupt vector location to branch to a user-defined ISR for a specified event. If you call IRQ_plug() when DSP/BIOS dispatcher is present or HWI module has been used to configure interrupt vectors, this could disrupt the DSP/BIOS operating environment. The API functions that enable DSP/BIOS dispatcher communication are noted in the table. These functions should be used only when DSP/BIOS is present and the DSP/BIOS dispatcher is enabled. Table 12−3 lists all IRQ logical interrupt events for this module. Table 12−1. IRQ Configuration Structure Syntax Description IRQ_Config IRQ structure that contains all local registers required to set up a specific IRQ channel. 12-2 See page ... 12-8 Overview Table 12−2. IRQ Functions Syntax Description See page ... IRQ_clear() Clears the interrupt flag in the IFR0/1 registers for the specified event. 12-9 IRQ_config()† Updates the DSP/BIOS dispatch table with a new configuration for the specified event. 12-9 IRQ_disable() Disables the specified event in the IMR0/1 registers. 12-10 IRQ_enable() Enables the specified event in the IMR0/1 register flags. 12-10 IRQ_getArg()† Returns value of the argument to the interrupt service routine that the DSP/BIOS dispatcher passes when the interrupt occurs. 12-10 IRQ_getConfig()† Returns current DSP/BIOS dispatch table entries for the specified event. 12-11 IRQ_globalDisable() Globally disables all maskable interrupts. (INTM = 1) 12-11 IRQ_globalEnable() Globally enables all maskable interrupts. (INTM = 0) 12-12 IRQ_globalRestore() Restores the status of global interrupt enable/disable (INTM). 12-12 IRQ_map()† Maps a logical event to its physical interrupt. 12-13 IRQ_plug() Writes the necessary code in the interrupt vector location to branch to the interrupt service routine for the specified event. 12-13 Caution: Do not use this function if the DSP/BIOS HWI module or the DSP/BIOS dispatcher are in use. IRQ_restore() Restores the status of the specified event in the IMR0/1 register. 12-14 IRQ_setArg()† Sets the value of the argument for DSP/BIOS dispatch to pass to the interrupt service routine for the specified event. 12-14 IRQ_setVecs() Sets the base address of the interrupt vector table. 12-15 IRQ_test() Polls the interrupt flag in IFR register the specified event. 12-15 12.1.1 The Event ID Concept The IRQ module assigns an event ID to each of the possible physical interrupts. Because there are more events possible than events that can be masked in the IMR register, many of the events share a common physical interrupt. Therefore, it is necessary in some cases to map the logical events to the corresponding physical interrupt. IRQ Module 12-3 Overview The IRQ module defines a set of constants, IRQ_EVT_NNNN, that uniquely identify each of the possible logical interrupts (see Table 12−3). All of the IRQ APIs operate on logical events. Table 12−3. IRQ_EVT_NNNN Events List 12-4 Constant Purpose IRQ_EVT_RS Reset IRQ_EVT_SINTR Software Interrupt IRQ_EVT_NMI Non-Maskable Interrupt (NMI) IRQ_EVT_SINT16 Software Interrupt #16 IRQ_EVT_SINT17 Software Interrupt #17 IRQ_EVT_SINT18 Software Interrupt #18 IRQ_EVT_SINT19 Software Interrupt #19 IRQ_EVT_SINT20 Software Interrupt #20 IRQ_EVT_SINT21 Software Interrupt #21 IRQ_EVT_SINT22 Software Interrupt #22 IRQ_EVT_SINT23 Software Interrupt #23 IRQ_EVT_SINT24 Software Interrupt #24 IRQ_EVT_SINT25 Software Interrupt #25 IRQ_EVT_SINT26 Software Interrupt #26 IRQ_EVT_SINT27 Software Interrupt #27 IRQ_EVT_SINT28 Software Interrupt #28 IRQ_EVT_SINT29 Software Interrupt #29 IRQ_EVT_SINT30 Software Interrupt #30 IRQ_EVT_SINT0 Software Interrupt #0 IRQ_EVT_SINT1 Software Interrupt #1 IRQ_EVT_SINT2 Software Interrupt #2 IRQ_EVT_SINT3 Software Interrupt #3 IRQ_EVT_SINT4 Software Interrupt #4 IRQ_EVT_SINT5 Software Interrupt #5 Overview Table 12−3. IRQ_EVT_NNNN Events List (Continued) Constant Purpose1 IRQ_EVT_SINT6 Software Interrupt #6 IRQ_EVT_SINT7 Software Interrupt #7 IRQ_EVT_SINT8 Software Interrupt #8 IRQ_EVT_SINT9 Software Interrupt #9 IRQ_EVT_SINT10 Software Interrupt #10 IRQ_EVT_SINT11 Software Interrupt #11 IRQ_EVT_SINT12 Software Interrupt #12 IRQ_EVT_SINT13 Software Interrupt #13 IRQ_EVT_INT0 External User Interrupt #0 IRQ_EVT_INT1 External User Interrupt #1 IRQ_EVT_INT2 External User Interrupt #2 IRQ_EVT_INT3 External User Interrupt #3 IRQ_EVT_TINT0 Timer 0 Interrupt IRQ_EVT_HINT Host Interrupt (HPI) IRQ_EVT_DMA0 DMA Channel 0 Interrupt IRQ_EVT_DMA1 DMA Channel 1 Interrupt IRQ_EVT_DMA2 DMA Channel 2 Interrupt IRQ_EVT_DMA3 DMA Channel 3 Interrupt IRQ_EVT_DMA4 DMA Channel 4 Interrupt IRQ_EVT_DMA5 DMA Channel 5 Interrupt IRQ_EVT_RINT0 MCBSP Port #0 Receive Interrupt IRQ_EVT_XINT0 MCBSP Port #0 Transmit Interrupt IRQ_EVT_RINT2 MCBSP Port #2 Receive Interrupt IRQ_EVT_XINT2 MCBSP Port #2 Transmit Interrupt IRQ_EVT_TINT1 Timer #1 Interrupt IRQ_EVT_HPINT Host Interrupt (HPI) IRQ Module 12-5 Overview Table 12−3. IRQ_EVT_NNNN Events List (Continued) 12-6 Constant Purpose1 IRQ_EVT_RINT1 MCBSP Port #1 Receive Interrupt IRQ_EVT_XINT1 MCBSP Port #1 Transmit Interrupt IRQ_EVT_IPINT FIFO Full Interrupt IRQ_EVT_SINT14 Software Interrupt #14 IRQ_EVT_RTC RTC Interrupt IRQ_EVT_I2C I2C Interrupt IRQ_EVT_WDTINT Watchdog Timer Interrupt Using Interrupts with CSL 12.2 Using Interrupts with CSL Interrupts can be managed using any of the following methods: You can use DSP/BIOS HWIs: Refer to DSP/BIOS Users Guide. You can use the DSP/BIOS Dispatcher You can use CSL IRQ routines: Example 12−1 illustrates how to initialize and manage interrupts outside the DSP/BIOS environment. Example 12−1. Manual Interrupt Setting Outside DSP/BIOS HWIs extern Uint32 myVec; ; ... interrupt void myIsr(); ; ... main (){ ; ... ; Option 1: use Event IDs directly ; ... IRQ_setVecs((Uint32)(&myvec) << 1)); IRQ_plug(IRQ_EVT_TINT0,&myIsr); IRQ_enable(IRQ_EVT_TINT0); IRQ_globalEnable(); ; ... ; Option 2: Use the PER_getEventId() function (TIMER as an example) for a better abstraction ; ... IRQ_setVecs((Uint32)(&myvec) << 1)); eventId = TIMER_getEventId (hTimer); IRQ_plug (eventId,&myIsr); IRQ_enable (eventId); IRQ_globalEnable(); ; ... } interrupt void myIsr(void) { //... } IRQ Module 12-7 IRQ_Config 12.3 Configuration Structures The following is the configuration structure used to set up the IRQ module. IRQ_Config IRQ configuration structure Structure IRQ_Config Members IRQ_IsrPtr funcAddr Address of interrupt service routine Uint32 ierMask Interrupt to disable the existing ISR Uint32 cachectrl Currently, this member has no function and has been reserved for future expansion. Uint32 funcArg Argument to pass to ISR when invoked Description This is the IRQ configuration structure used to update a DSP/BIOS table entry. You create and initialize this structure then pass its address to the IRQ_config() function. Example IRQ_Config MyConfig = { 0x0000, /* funcAddr */ 0x0300, /* ierMask */ 0x0000, /* cachectrl */ 0x0000, /* funcArg */ }; 12-8 IRQ_config 12.4 Functions The following are functions available for use with the IRQ module. IRQ_clear Clears event flag from IFR register Function void IRQ_clear( Uint16 EventId ); Arguments EventId Return Value None Description Clears the event flag from the IFR register Example IRQ_clear(IRQ_EVT_TINT0); IRQ_config Event ID, see IRQ_EVT_NNNN (Table 12−3) for a complete list of events. Or, use the PER_getEventId() function to get the Event ID. Updates an entry in the DSP/BIOS Dispatch Table Function void IRQ_config( Uint16 EventId, IRQ_Config *Config ); Arguments EventID Event ID, see IRQ_EVT_NNNN for a complete list of events. Config Pointer to an initialized configuration structure Return Value None Description Updates the entry in the DSPBIOS dispatch table for the specified event. Example IRQ_config myConfig = { 0X0000, 0X0300, 0X0000, 0X0000 }; IRQ_config (IRQ_EVT_TINT0, &myConfig); IRQ Module 12-9 IRQ_disable IRQ_disable Disables specified event Function int IRQ_disable( Uint16 EventId ); Arguments EventId Return Value int Description Disables the specified event, by modifying the IMR register. Example Uint32 oldint; oldint = IRQ_disable(IRQ_EVT_TINT0); IRQ_enable Event ID, see IRQ_EVT_NNNN (Table 12−3) for a complete list of events. Or, use the PER_getEventId() function to get the EventID. Old value of the event Enables specified event Function void IRQ_enable( Uint16 EventId ); Arguments EventId Return Value None Description Enables the specified event. Example Uint32 oldint; oldint = IRQ_enable(IRQ_EVT_TINT0); IRQ_getArg Event ID, see IRQ_EVT_NNNN (Table 12−3) for a complete list of events. Or, use the PER_getEventId() function to get the Event ID. Gets value for specified event Function Uint32 IRQ_getArg( Uint16 EventId ); Arguments EventId 12-10 Event ID, see IRQ_EVT_NNNN (Table 12−3) for a complete list of events. Or, use the PER_getEventId() function to get the EventID. IRQ_globalDisable Return Value Value of argument Description Returns value for specified event. Example Uint32 evVal; evVal = IRQ_getArg(IRQ_EVT_TINT0); IRQ_getConfig Gets DSP/BIOS dispatch table entry Function void IRQ_getConfig( Uint16 EventId, IRQ_Config *Config ); Arguments EventId Event ID, see IRQ_EVT_NNNN (Table 12−3) for a complete list of events. Or, use the PER_getEventId() function to get the EventID. Config Pointer to configuration structure Return Value None Description Returns current values in DSP/BIOS dispatch table entry for the specified event. Example IRQ_Config myConfig; IRQ_getConfig(IRQ_EVT_SINT3, &myConfig); IRQ_globalDisable Globally disables interrupts Function int IRQ_globalDisable( ); Arguments None Return Value intm Description This function globally disables interrupts by setting the INTM of the ST1 register. The old value of INTM is returned. This is useful for temporarily disabling global interrupts, then enabling them again. Example int intm; intm = IRQ_globalDisable(); ... IRQ_globalRestore (intm); Returns the old INTM value IRQ Module 12-11 IRQ_globalEnable IRQ_globalEnable Globally enables interrupts Function int IRQ_globalEnable( ); Arguments None Return Value intm Description This function globally Enables interrupts by setting the INTM of the ST1 register. The old value of INTM is returned. This is useful for temporarily enabling global interrupts, then disabling them again. Example int intm; intm = IRQ_globalEnable(); ... IRQ_globalRestore (intm); Returns the old INTM value IRQ_globalRestore Restores the global interrupt mask state Function void IRQ_globalRestore( int intm ); Arguments intm Return Value None Description This function restores the INTM state to the value passed in by writing to the INTM bit of the ST1 register. This is useful for temporarily disabling/enabling global interrupts, then restoring them back to its previous state. Example int intm; intm = IRQ_globalDisable(); ... IRQ_globalRestore (intm); 12-12 Value to restore the INTM value to (0 = enable, 1 = disable) IRQ_plug IRQ_map Maps event to physical interrupt number Function void IRQ_map( Uint16 EventId ); Arguments EventId Return Value None Description This function maps a logical event to a physical interrupt number for use by DSPBIOS dispatch. Example IRQ_map(IRQ_EVT_TINT0); IRQ_plug Event ID, see IRQ_EVT_NNNN for a complete list of events. Initializes an interrupt vector table vector Function void IRQ_plug( Uint16 EventId, IRQ_IsrPtr funcAddr ); Arguments EventId Event ID, see IRQ_EVT_NNNN (Table 12−3) for a complete list of events. Or, use the PER_getEventId() function to get the EventID. funcAddr Address of the interrupt service routine to be called when the interrupt happens. This function must be C-callable and if implemented in C, it must be declared using the interrupt keyword. Return Value 0 or 1 Description Initializes an interrupt vector table vector with the necessary code to branch to the specified ISR. Caution: Do not use this function when DSP/BIOS is present and the dispatcher is enabled. Example interrupt void myIsr (); . . . IRQ_plug (IRQ_EVT_TINT0, &myIsr) IRQ Module 12-13 IRQ_setArg IRQ_restore Restores the state of a specified event Function void IRQ_restore( Uint16 EventId, Uint16 Old_flag ); Arguments EventId Event ID, see IRQ_EVT_NNNN (Table 12−3) for a complete list of events. Or, use the PER_getEventId() function to get the EventID. Old_flag Value used to restore an event (0 = enable, 1 = disable) Return Value None Description This function restores the event’s state to the value that was originally passed to it. Example int oldint; oldint = IRQ_disable(IRQ_EVT_TINT0); . . . IRQ_restore(IRQ_EVT_TINT0, oldint); IRQ_setArg Sets value of argument for DSPBIOS dispatch entry Function void IRQ_setArg( Uint16 EventId, Uint32 val ); Arguments EventId Return Value None Description Sets the argument that DSP/BIOS dispatcher will pass to the interrupt service routine for the specified event. Example IRQ_setArg(IRQ_EVT_TINT0, val); 12-14 Event ID, see IRQ_EVT_NNNN (Table 12−3) for a complete list of events. Or, use the PER_getEventId() function to get the EventID. IRQ_test IRQ_setVecs Sets the base address of the interrupt vectors Function void IRQ_setVecs( Uint32 IVPD ); Arguments IVPD Return Value Old IVPD register value Description Use this function to set the base address of the interrupt vector table in the IVPD and IVPH registers (both registers are set to the same value). IVPD pointer to the DSP interrupt vector table Caution: Changing the interrupt vector table base can have adverse effects on your system because you will be effectively eliminating all previous interrupt settings. There is a strong chance that the DSP/BIOS kernel and RTDX will fail if this function is not used with care. Example IRQ_test IRQ_setVecs (0x8000); Tests event to see if its flag is set in IFR register Function Bool IRQ_test( Uint16 EventId ); Arguments EventId Return Value Event flag, 0 or 1 Description Tests an event to see if its flag is set in the IFR register. Example while (!IRQ_test(IRQ_EVT_TINT0); Event ID, see IRQ_EVT_NNNN (Table 12−3) for a complete list of events. Or, use the PER_getEventId() function to get the EventID. IRQ Module 12-15 IRQ_test 12-16 Chapter 13 McBSP Module This chapter describes the McBSP module, lists the API structure, functions, and macros within the module, and provides a McBSP API reference section. Topic Page 13.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2 13.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 13.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-8 13.5 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-23 13.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-26 13-1 Overview 13.1 Overview The McBSP is a handle-based module that requires you to call MCBSP_open() to obtain a handle before calling any other functions. Table 13−2 lists the structure and functions for use with the McBSP modules. Table 13−1 lists the configuration structure used to set up the McBSP. Table 13−2 lists the functions available for use with the McBSP module Table 13−3 lists McBSP registers and fields. Table 13−1. McBSP Configuration Structure Syntax Description MCBSP_Config McBSP configuration structure used to setup a McBSP port. See page ... 13-6 Table 13−2. McBSP Functions Syntax Description MCBSP_channelDisable() Disables one or several McBSP channels 13-8 MCBSP_channelEnable() Enables one or several McBSP channels of the selected register 13-9 MCBSP_channelStatus() Returns the channel status 13-11 MCBSP_close() Closes the McBSP and its corresponding handle 13-12 MCBSP_config() Sets up McBSP using configuration structure (MCBSP_Config) 13-12 MCBSP_getConfig() Get MCBSP channel configuration 13-14 MCBSP_getRcvEventId() Retrieves the receive event ID for the given port 13-15 MCBSP_getXmtEventId() Retrieves the transmit event ID for the given port 13-15 MCBSP_getPort() Get MCBSP Port number used in given handle 13-14 MCBSP_open() Opens the McBSP and assigns a handle to it 13-16 MCBSP_read16() Performs a direct 16-bit read from the data receive register DRR1 13-17 MCBSP_read32() Performs two direct 16-bit reads: data receive register 2 DRR2 (MSB) and data receive register 1 DRR1 (LSB) 13-17 MCBSP_reset() Resets the McBSP registers with default values 13-18 13-2 See page ... Overview Syntax Description See page ... MCBSP_rfull() Reads the RFULL bit SPCR1 register 13-18 MCBSP_rrdy() Reads the RRDY status bit of the SPCR1 register 13-19 MCBSP_start() Starts a McBSP receive/transmit based on start flags 13-19 MCBSP_write16() Writes a 16-bit value to the serial port data transmit register, DXR1 13-21 MCBSP_write32() Writes two 16-bit values to the two serial port data transmit registers, DXR2 (16-bit MSB) and DXR1 (16-bit LSB) 13-21 MCBSP_xempty() Reads the XEMPTY bit from the SPCR2 register 13-22 MCBSP_xrdy() Reads the XRDY status bit of the SPCR2 register 13-22 13.1.1 MCBSP Registers Table 13−3. MCBSP Registers Register Field SPCR1 DLB, RJUST, CLKSTP, DXENA, ABIS, RINTM, RSYNCERR, (R)RFULL, (R)RRDY, RRST SPCR2 FREE, SOFT, FRST, GRST, XINTM, XSYNCERR, (R)XEMPTY, (R)XRDY, XRST PCR SCLKME, (R)CLKSSTAT, DXSTAT, (R)DRSTAT, FSXP, FSRP, CLKXP, CLKRP, IDLEEN, XIOEN, RIOEN, FSXM, FSRM, CLKXM, CLKRM RCR1 RFRLEN1, RWDLEN1 RCR2 RPHASE, RFRLEN2, RWDLEN2, RCOMPAND, RFIG, RDATDLY XCR1 XFRLEN1, XWDLEN1 XCR2 XPHASE, XFRLEN2, XWDLEN2, XCOMPAND, XFIG, XDATDLY SRGR1 FWID, CLKGDV SRGR2 GSYNC, CLKSP, CLKSM, FSGM, FPER MCR1 RMCME, RPBBLK, RPABLK, (R)RCBLK, RMCM MCR2 XMCME, XPBBLK, XPABLK, (R)XCBLK, XMCM XCERA XCEY15, XCEY14, XCEY13, XCEY12, XCEY11, XCEY10, XCEY9, XCEY8, XCEY7, XCEY6, XCEY5, XCEY4, XCEY3, XCEY2, XCEY1, XCEY0 McBSP Module 13-3 Overview Table 13−3. MCBSP Registers(Continued) Register Field XCERB XCEY15, XCEY14, XCEY13, XCEY12, XCEY11, XCEY10, XCEY9, XCEY8, XCEY7, XCEY6, XCEY5, XCEY4, XCEY3, XCEY2, XCEY1, XCEY0 XCERC XCEY15, XCEY14, XCEY13, XCEY12, XCEY11, XCEY10, XCEY9, XCEY8, XCEY7, XCEY6, XCEY5, XCEY4, XCEY3, XCEY2, XCEY1, XCEY0 XCERD XCEY15, XCEY14, XCEY13, XCEY12, XCEY11, XCEY10, XCEY9, XCEY8, XCEY7, XCEY6, XCEY5, XCEY4, XCEY3, XCEY2, XCEY1, XCEY0 XCERE XCEY15, XCEY14, XCEY13, XCEY12, XCEY11, XCEY10, XCEY9, XCEY8, XCEY7, XCEY6, XCEY5, XCEY4, XCEY3, XCEY2, XCEY1, XCEY0 XCERF XCEY15, XCEY14, XCEY13, XCEY12, XCEY11, XCEY10, XCEY9, XCEY8, XCEY7, XCEY6, XCEY5, XCEY4, XCEY3, XCEY2, XCEY1, XCEY0 XCERG XCEY15, XCEY14, XCEY13, XCEY12, XCEY11, XCEY10, XCEY9, XCEY8, XCEY7, XCEY6, XCEY5, XCEY4, XCEY3, XCEY2, XCEY1, XCEY0 XCERH XCEY15, XCEY14, XCEY13, XCEY12, XCEY11, XCEY10, XCEY9, XCEY8, XCEY7, XCEY6, XCEY5, XCEY4, XCEY3, XCEY2, XCEY1, XCEY0 RCERA RCEY15, RCEY14, RCEY13, RCEY12, RCEY11, RCEY10, RCEY9, RCEY8, RCEY7, RCEY6, RCEY5, RCEY4, RCEY3, RCEY2, RCEY1, RCEY0 RCERB RCEY15, RCEY14, RCEY13, RCEY12, RCEY11, RCEY10, RCEY9, RCEY8, RCEY7, RCEY6, RCEY5, RCEY4, RCEY3, RCEY2, RCEY1, RCEY0 RCERC RCEY15, RCEY14, RCEY13, RCEY12, RCEY11, RCEY10, RCEY9, RCEY8, RCEY7, RCEY6, RCEY5, RCEY4, RCEY3, RCEY2, RCEY1, RCEY0 RCERD RCEY15, RCEY14, RCEY13, RCEY12, RCEY11, RCEY10, RCEY9, RCEY8, RCEY7, RCEY6, RCEY5, RCEY4, RCEY3, RCEY2, RCEY1, RCEY0 RCERE RCEY15, RCEY14, RCEY13, RCEY12, RCEY11, RCEY10, RCEY9, RCEY8, RCEY7, RCEY6, RCEY5, RCEY4, RCEY3, RCEY2, RCEY1, RCEY0 RCERF RCEY15, RCEY14, RCEY13, RCEY12, RCEY11, RCEY10, RCEY9, RCEY8, RCEY7, RCEY6, RCEY5, RCEY4, RCEY3, RCEY2, RCEY1, RCEY0 RCERG RCEY15, RCEY14, RCEY13, RCEY12, RCEY11, RCEY10, RCEY9, RCEY8, RCEY7, RCEY6, RCEY5, RCEY4, RCEY3, RCEY2, RCEY1, RCEY0 RCERH RCEY15, RCEY14, RCEY13, RCEY12, RCEY11, RCEY10, RCEY9, RCEY8, RCEY7, RCEY6, RCEY5, RCEY4, RCEY3, RCEY2, RCEY1, RCEY0 DRR1 RCEY15, RCEY14, RCEY13, RCEY12, RCEY11, RCEY10, RCEY9, RCEY8, RCEY7, RCEY6, RCEY5, RCEY4, RCEY3, RCEY2, RCEY1, RCEY0 13-4 Overview Table 13−3. MCBSP Registers(Continued) Register Field DRR2 RCEY15, RCEY14, RCEY13, RCEY12, RCEY11, RCEY10, RCEY9, RCEY8, RCEY7, RCEY6, RCEY5, RCEY4, RCEY3, RCEY2, RCEY1, RCEY0 DXR1 RCEY15, RCEY14, RCEY13, RCEY12, RCEY11, RCEY10, RCEY9, RCEY8, RCEY7, RCEY6, RCEY5, RCEY4, RCEY3, RCEY2, RCEY1, RCEY0 DXR2 RCEY15, RCEY14, RCEY13, RCEY12, RCEY11, RCEY10, RCEY9, RCEY8, RCEY7, RCEY6, RCEY5, RCEY4, RCEY3, RCEY2, RCEY1, RCEY0 Note: R = Read Only; W = Write; By default, most fields are Read/Write McBSP Module 13-5 MCBSP_Config 13.2 Configuration Structures The following is the configuration structure used to set up the McBSP. MCBSP_Config McBSP configuration structure used to set up a McBSP port Structure MCBSP_Config Members Uint16 spcr1 Uint16 spcr2 Uint16 rcr1 Uint16 rcr2 Uint16 xcr1 Uint16 xcr2 Uint16 srgr1 Uint16 srgr2 Uint16 mcr1 Uint16 mcr2 Uint16 pcr Uint16 rcera Uint16 rcerb Uint16 rcerc Uint16 rcerd Uint16 rcere Uint16 rcerf Uint16 rcerg Uint16 rcerh Uint16 xcera Uint16 xcerb Uint16 xcerc Uint16 xcerd Uint16 xcere Uint16 xcerf Uint16 xcerg Uint16 xcerh Description The McBSP configuration structure is used to set up a McBSP port. You create and initialize this structure and then pass its address to the MCBSP_config() function. You can use literal values or the MCBSP_RMK macros to create the structure member values. 13-6 Serial port control register 1 value Serial port control register 2 value Receive control register 1 value Receive control register 2 value Transmit control register 1 value Transmit control register 2 value Sample rate generator register 1 value Sample rate generator register 2 value Multi-channel control register 1 value Multi-channel control register 2 value Pin control register value Receive channel enable register partition A value Receive channel enable register partition B value Receive channel enable register partition C value Receive channel enable register partition D value Receive channel enable register partition E value Receive channel enable register partition F value Receive channel enable register partition G value Receive channel enable register partition H value Transmit channel enable register partition A value Transmit channel enable register partition B value Transmit channel enable register partition C value Transmit channel enable register partition D value Transmit channel enable register partition E value Transmit channel enable register partition F value Transmit channel enable register partition G value Transmit channel enable register partition H value MCBSP_Config 13.3 Example MCBSP_Config config1 = { 0xFFFF, /* spcr1 */ 0x03FF, /* spcr2 */ 0x7FE0, /* rcr1 */ 0xFFFF, /* rcr2 */ 0x7FE0, /* xcr1 */ 0xFFFF, /* xcr2 */ 0xFFFF, /* srgr1 */ 0xFFFF, /* srgr2 */ 0x03FF, /* mcr1 */ 0x03FF, /* mcr2 */ 0xFFFF, /* pcr */ 0xFFFF, /* rcera */ 0xFFFF, /* rcerb */ 0xFFFF, /* rcerc */ 0xFFFF, /* rcerd */ 0xFFFF, /* rcere */ 0xFFFF, /* rcerf */ 0xFFFF, /* rcerg */ 0xFFFF, /* rcerh */ 0xFFFF, /* xcera */ 0xFFFF, /* xcerb */ 0xFFFF, /* xcerc */ 0xFFFF, /* xcerd */ 0xFFFF, /* xcere */ 0xFFFF, /* xcerf */ 0xFFFF, /* xcerg */ 0xFFFF /* xcerh */ } ... hMcbsp = MCBSP_open(MCBSP_PORT0, MCBSP_OPEN_RESET) ... MCBSP_config(hMcbsp, &config1); McBSP Module 13-7 MCBSP_channelDisable 13.4 Functions The following are functions available for use with the McBSP module. MCBSP_channelDisable Disables one or several McBSP channels Function void MCBSP_channelDisable( MCBSP_Handle hMcbsp, Uint16 RegName, Uint16 Channels ); Arguments hMcbsp Handle to McBSP port obtained by MCBSP_open() RegName Receive and Transmit Channel Enable Registers: RCERA RCERB XCERA XCERB RCERC RCERD RCERE RCERF RCERG RCERH XCERC XCERD XCERE XCERF XCERG XCERH Channels Available values for the specific RegName are: MCBSP_CHAN0 MCBSP_CHAN1 MCBSP_CHAN2 MCBSP_CHAN3 MCBSP_CHAN4 MCBSP_CHAN5 MCBSP_CHAN6 MCBSP_CHAN7 MCBSP_CHAN8 MCBSP_CHAN9 MCBSP_CHAN10 MCBSP_CHAN11 MCBSP_CHAN12 13-8 MCBSP_channelEnable MCBSP_CHAN13 MCBSP_CHAN14 MCBSP_CHAN15 Return Value None Description Disables one or several McBSP channels of the selected register. To disable several channels at the same time, the sign “|” OR has to be added in between. To see if there is pending data in the receive or transmit buffers before disabling a channel, use MCBSP_rrdy() or MCBSP_xrdy(). Example /* Disables Channel 0 of the partition A */ MCBSP_channelDisable(hMcbsp,RCERA, MCBSP_CHAN0); /* Disables Channels 1, 2 and 8 of the partition B with “|”*/ MCBSP_channelDisable(hMcbsp,RCERB, (MCBSP_CHAN1 | MCBSP_CHAN2 | MCBSP_CHAN8)); MCBSP_channelEnable Enables one or several McBSP channels of selected register Function void MCBSP_channelEnable( MCBSP_Handle hMcbsp, Uint16 RegName, Uint16 Channels ); Arguments hMcbsp Handle to McBSP port obtained by MCBSP_open() RegName Receive and Transmit Channel Enable Registers: RCERA RCERB XCERA XCERB RCERC RCERD RCERE RCERF RCERG RCERH XCERC XCERD XCERE McBSP Module 13-9 MCBSP_channelEnable XCERF XCERG XCERH Channels Available values for the specificReg Addr are: MCBSP_CHAN0 MCBSP_CHAN1 MCBSP_CHAN2 MCBSP_CHAN3 MCBSP_CHAN4 MCBSP_CHAN5 MCBSP_CHAN6 MCBSP_CHAN7 MCBSP_CHAN8 MCBSP_CHAN9 MCBSP_CHAN10 MCBSP_CHAN11 MCBSP_CHAN12 MCBSP_CHAN13 MCBSP_CHAN14 MCBSP_CHAN15 Return Value None Description Enables one or several McBSP channels of the selected register. To enable several channels at the same time, the sign “|” OR has to be added in between. Example 13-10 /* Enables Channel 0 of the partition A */ MCBSP_channelEnable(hMcbsp,RCERA, MCBSP_CHAN0); /* Enables Channel 1, 4 and 6 of the partition B with “|” */ MCBSP_channelEnable(hMcbsp,RCERB,(MCBSP_CHAN1| MCBSP_CHAN4 | MCBSP_CHAN6)); MCBSP_channelStatus MCBSP_channelStatus Returns channel status Function Uint16 MCBSP_channelStatus( MCBSP_Handle hMcbsp, Uint16 RegName, Uint16 Channel ); Arguments hMcbsp Handle to McBSP port obtained by MCBSP_open() RegName Receive and Transmit Channel Enable Registers: RCERA RCERB XCERA XCERB RCERC RCERD RCERE RCERF RCERG RCERH XCERC XCERD XCERE XCERF XCERG XCERH Channel Selectable Channels for the specific RegName are: MCBSP_CHAN0 MCBSP_CHAN1 MCBSP_CHAN2 MCBSP_CHAN3 MCBSP_CHAN4 MCBSP_CHAN5 MCBSP_CHAN6 MCBSP_CHAN7 MCBSP_CHAN8 MCBSP_CHAN9 MCBSP_CHAN10 MCBSP_CHAN11 MCBSP_CHAN12 MCBSP_CHAN13 MCBSP_CHAN14 MCBSP_CHAN15 McBSP Module 13-11 MCBSP_close Return Value Channel status Description Returns the channel status by reading the associated bit into the the selected register (RegName). Only one channel can be observed. Example Uint16 C1, C4; /* Returns Channel Status of the channel 1 of the partition B */ C1=MCBSP_channelStatus(hMcbsp,RCERB,MCBSP_CHAN1); /* Returns Channel Status of the channel 4 of the partition A */ C4=MCBSP_channelStatus(hMcbsp,RCERA,MCBSP_CHAN4); MCBSP_close 0 - Disabled 1 - Enabled Closes a McBSP Port Function void MCBSP_close( MCBSP_Handle hMcbsp ); Arguments hMcbsp Return Value None Description Closes a previously opened McBSP port. The McBSP registers are set to their default values and any associated interrupts are disabled and cleard. Example MCBSP_close(hMcbsp); MCBSP_config Device Handle (see MCBSP_open()). Sets up a McBSP port using a configuration structure Function void MCBSP_config(MCBSP_Handle hMcbsp, MCBSP_Config *Config ); Arguments hMcbsp Handle to MCBSP port obtained by MCBSP_open() Config Pointer to an initialized configuration structure Return Value None Description Sets up the McBSP port identified by hMcbsp handle using the configuration structure. The values of the structure are written directly to the Mcbsp port registers. 13-12 MCBSP_config Note: If you want to configure all McBSP registers without starting the McBSP port, use MCBSP_config() without setting the SPCR2 (XRST, RRST, GRST, and FRST) fields. Then, after you write the first data valid to the DXR registers, call MCBSP_start() when ready to start the McBSP port. This guarantees that the correct value is transmitted/received. Example MCBSP_Config MyConfig = { 0xFFFF, /* spcr1 */ 0x03FF, /* spcr2 */ 0x7FE0, /* rcr1 */ 0xFFFF, /* rcr2 */ 0x7FE0, /* xcr1 */ 0xFFFF, /* xcr2 */ 0xFFFF, /* srgr1 */ 0xFFFF, /* srgr2 */ 0x03FF, /* mcr1 */ 0x03FF, /* mcr2 */ 0xFFFF, /* pcr */ 0xFFFF, /* rcera */ 0xFFFF, /* rcerb */ 0xFFFF, /* rcerc */ 0xFFFF, /* rcerd */ 0xFFFF, /* rcere */ 0xFFFF, /* rcerf */ 0xFFFF, /* rcerg */ 0xFFFF, /* rcerh */ 0xFFFF, /* xcera */ 0xFFFF, /* xcerb */ 0xFFFF, /* xcerc */ 0xFFFF, /* xcerd */ 0xFFFF, /* xcere */ 0xFFFF, /* xcerf */ 0xFFFF, /* xcerg */ 0xFFFF /* xcerh */ }; ... MCBSP_config(myhMcbsp, &MyConfig); McBSP Module 13-13 MCBSP_getPort MCBSP_getConfig Reads the MCBSP configuration in the configuration structure Function void MCBSP_getConfig( MCBSP_Handle hMcbsp, MCBSP_Config *Config ); Arguments hMcbsp McBSP Device Handle obtained by MCBSP_open() Config Pointer to a McBSP configuration structure Return Value None Description Reads the McBSP configuration into the configuration structure. See also McBSP_Config. Example MCBSP_Config myConfig; ... hMcbsp = MCBSP_open(MCBSP_PORT0, 0); MCBSP_getConfig(hMcbsp, &myConfig); MCBSP_getPort Get McBSP port number used in given handle Function Uint16 MCBSP_getPort (MCBSP_Handle hMcbsp) Arguments hMcbsp Return Value Port number Description Get Port number used by specific handle Example Uint16 PortNum; ... PortNum = MCBSP_getPort (hMcbsp)); 13-14 Handle to McBSP port given by MCBSP_open() MCBSP_getXmt EventID MCBSP_getRcvEventId Retrieves the receive event ID for a given McBSP port Function Uint16 MCBSP_getRcvEventId( MCBSP_Handle hMcbsp ); Arguments hMcbsp Return Value Receiver event ID Description Retrieves the IRQ receive event ID for a given port. Use this ID to manage the event using the IRQ module. Example Uint16 RecvEventId; ... RecvEventId = MCBSP_getRcvEventId(hMcbsp); IRQ_enable(RecvEventId); Handle to McBSP port obtained by MCBSP_open() MCBSP_getXmt EventID Retrieves the transmit event ID for a given MCBSP port Function Uint16 MCBSP_getXmtEventId( MCBSP_Handle hMcbsp ); Arguments hMcbsp Return Value Transmitter event ID Description Retrieves the IRQ transmit event ID for the given port. Use this ID to manage the event using the IRQ module. Example Uint16 XmtEventId; ... XmtEventId = MCBSP_getXmtEventId(hMcbsp); IRQ_enable(XmtEventId); Handle to McBSP port obtained by MCBSP_open() McBSP Module 13-15 MCBSP_open MCBSP_open Opens a McBSP port Function MCBSP_Handle MCBSP_open( int devnum, Uint32 flags ); Arguments devNum McBSP device (port) number: MCBSP_PORT0 MCBSP_PORT1 MCBSP_PORT2 MCBSP_PORT_ANY flags Open flags, may be logical OR of any of the following: MCBSP_OPEN_RESET Return Value MCBSP_Handle Device handle Description Before a McBSP device can be used, it must first be opened by this function. Once opened, it cannot be opened again until closed (see MCBSP_close). The return value is a unique device handle that is used in subsequent McBSP API calls. If the function fails, INV (−1) is returned. If the MCBSP_OPEN_RESET is specified, then the power on defaults are set and any interupts are disabled and cleared. Example 13-16 MCBSP_Handle hMcbsp; ... hMcbsp = MCBSP_open(MCBSP_PORT0,MCBSP_OPEN_RESET); MCBSP_open MCBSP_read16 Reads a 16-bit value Function Uint16 MCBSP_read16( MCBSP_Handle hMcbsp ); Arguments hMcbsp Return Value 16-bit value Description Directly reads a 16-bit value from the McBSP data receive register DRR1. McBSP Device Handle obtained by MCBSP_open() Depending on the receive word data length you have selected in the RCR1/RCR2 registers, the actual data could be 8, 12, or 16 bits long. This function does not verify that new valid data has been received. Use MCBSP_rrdy() (prior to calling MCBSP_read16()) for this purpose. Example MCBSP_read32 Uint16 val16; val16 = MCBSP_read16(hMcbsp); Reads a 32-bit value Function Uint32 MCBSP_read32( MCBSP_Handle hMcbsp ); Arguments hMcbsp Return Value 32-bit value (MSW-LSW ordering) Description A 32-bit read. First, the 16-bit MSW (Most significant word) is read from register DRR2. Then, the 16-bit LSW (least significant word) is read from register DRR1. McBSP Device Handle (see MCBSP_open()) Depending on the receive word data length you have selected in the RCR1/RCR2 register, the actual data could be 20, 24, or 32 bits. This function does not check to verify that new valid data has been received. Use MCBSP_rrdy() (prior to calling MCBSP_read32()) for this purpose. Example Uint32 val32; val32 = MCBSP_read32(hMcbsp); McBSP Module 13-17 MCBSP_reset MCBSP_reset Resets a McBSP port Function void MCBSP_reset( MCBSP_Handle hMcbsp ); Arguments hMcbsp Return Value None Description Resets the McBSP device. Disables and clears the interrupt event and sets the McBSP registers to default values. If INV is specified, all McBSP devices are reset. Device handle, see MCBSP_open(); Actions Taken: All serial port registers are set to their power-on defaults. All associated interrupts are disabled and cleared. Example MCBSP_rfull MCBSP_reset(hMcbsp); MCBSP_reset(INV); Reads RFULL bit of serial port control register 1 Function CSLBool MCBSP_rfull( MCBSP_Handle hMcbsp ); Arguments hMcbsp Handle to McBSP port obtained by MCBSP_open() Return Value RFULL Returns RFULL status bit of SPCR1 register 0 − receive buffer empty 1 − receive buffer full Description Reads the RFULL bit of the serial port control register 1. (Both RBR and RSR are full. A receive overrun error could have occured.) Example if (MCBSP_rfull(hMcbsp)) { … } 13-18 MCBSP_start MCBSP_rrdy Reads RRDY status bit of SPCR1 register Function CSLBool MCBSP_rrdy( MCBSP_Handle hMcbsp ); Arguments hMcbsp Handle to McBSP port obtained by MCBSP_open() Return Value RRDY Returns RRDY status bit of SPCR1 0 − no new data to be received 1 − new data has been received Description Reads the RRDY status bit of the SPCR1 register. A 1 indicates the receiver is ready with data to be read. Example if (MCBSP_rrdy(hMcbsp)) { val = MCBSP_read16 (hMcbsp); } MCBSP_start Starts a transmit and/or receive operation for a MCBSP port Function void MCBSP_start( MCBSP_Handle hMcbsp, Uint16 startMask, Uint16 SampleRateGenDelay ); Arguments hMcbsp Handle to McBSP port obtained by MCBSP_open() startMask Start mask. It could be any of the following values (or their logical OR): MCBSP_XMIT_START: start transmit (XRST field) MCBSP_RCV_START: start receive (RRST field) MCBSP_SRGR_START: start sample rate generator (GRST field) MCBSP_SRGR_FRAMESYNC: start framesync generation (FRST field) SampleRateGenDelay Sample rate generates delay. MCBSP logic requires two sample_rate generator clock_periods after enabling the sample rate generator for its logic to stabilize. Use this parameter to provide the appropriate delay before starting the MCBSP. A conservative value should be equal to: McBSP Module 13-19 MCBSP_start SampleRateGenDelay + 2 Sample_Rate_Generator_Clock_period 4 C55x_Instruction_Cycle A default value of: MCBSP_SRGR_DEFAULT_DELAY (0xFFFF value) can be used (maximum value). Return Value None Description Starts a transmit and/or receive operation for a MCBSP port. Note: If you want to configure all McBSP registers without starting the McBSP port, use MCBSP_config() without setting the SPCR2 (XRST, RRST, GRST, and FRST) fields. Then, after you write the first data valid to the DXR registers, call MCBSP_start() when ready to start the McBSP port. This guarantees that the correct value is transmitted/received. Example 1 MCBSP_start(hMcbsp, MCBSP_XMIT_START, 0x3000); ... MCBSP_start(hMcbsp, MCBSP_XMIT_START|MCBSP_SRGR_START| MCBSP_SRGR_FRAMESYNC, 0x1000); Example 2 MCBSP_start(hMcbsp, MCBSP_SRGR_START|MCBSP_RCV_START, 0x200 ); 13-20 MCBSP_start MCBSP_write16 Writes a 16-bit value Function void MCBSP_write16( MCBSP_Handle hMcbsp, Uint16 Val ); Arguments hMcbsp McBSP Device Handle obtained by MCBSP_open() Val 16-bit value to be written Return Value None Description Directly writes a 16-bit value to the serial port data transmit register: DXR1. Depending on the receive word data length you have selected in the XCR1/XCR2 registers, the actual data could be 8, 12, or 16 bits long. This function does not verify that the transmitter is ready to transmit a new word. Use MCBSP_xrdy() (prior to calling MCBSP_write16()) for this purpose. Example MCBSP_write32 Uint16 val16; MCBSP_write16(hMcbsp, val16); Writes a 32-bit value Function void MCBSP_write32( MCBSP_Handle hMcbsp, Uint32 Val ); Arguments hMcbsp McBSP Device Handle obtained by MCBSP_open() Val 32-bit value to be written Return Value None Description Writes a 32-bit value. Depending on the transmit word data length you have selected in the XCR1|XCR2 registers, the actual data could be 20, 24, or 32 bits long. This function does not check to verify that the transmitter is ready to transmit a new word. Use MCBSP_xrdy() (prior to calling MCBSP_write32()) for this purpose. Example Uint32 val32; MCBSP_write32(hMcbsp, val32); McBSP Module 13-21 MCBSP_xempty MCBSP_xempty Reads XEMPTY bit from SPCR2 register Function CSLBool MCBSP_xempty( MCBSP_Handle hMcbsp ); Arguments hMcbsp Handle to McBSP port obtained by MCBSP_open() Return Value XEMPTY Returns XEMPTY bit of SPCR2 register 0 − transmit buffer empty) 1 − transmit buffer full Description Reads the XEMPTY bit from the SPCR2 register. A 0 indicates the transmit shift (XSR) is empty. Example if (MCBSP_xempty(hMcbsp)) { … } MCBSP_xrdy Reads XRDY status bit of SPCR2 register Function CSLBool MCBSP_xrdy( MCBSP_Handle hMcbsp ); Arguments hMcbsp Handle to McBSP port obtained by MCBSP_open() Return Value XRDY Returns XRDY status bit of SPCR2 0 − not ready to transmit new data 1 − ready to transmit new data Description Reads the XRDY status bit of the SPCR2 register. A 1 indicates that the transmitter is ready to transmit a new word. A 0 indicates that the transmitter is not ready to transmit a new word. Example if (MCBSP_xrdy(hMcbsp)) { ... MCBSP_write16 (hMcbsp, 0x1234); ... } 13-22 Macros 13.5 Macros The CSL offers a collection of macros to gain individual access to the McBSP peripheral registers and fields. Table 13−4 lists macros available for the McBSP module using McBSP port number. Table 13−5 lists macros available for the McBSP module using handle. Table 13−4. McBSP Macros Using McBSP Port Number (a) Macros to read/write McBSP register values Macro Syntax MCBSP_RGET() Uint16 MCBSP_RGET(REG#) MCBSP_RSET() Void MCBSP_RSET(REG#, Uint16 regval) (b) Macros to read/write McBSP register field values (Applicable only to registers with more than one field) Macro Syntax MCBSP_FGET() Uint16 MCBSP_FGET(REG#, FIELD) MCBSP_FSET() Void MCBSP_FSET(REG#, FIELD, Uint16 fieldval) (c) Macros to create a value for the McBSP registers and fields (Applies only to registers with more than one field) Macro Syntax MCBSP_REG_RMK() Uint16 MCBSP_REG_RMK(fieldval_n,…fieldval_0) Note: *Start with field values with most significant field positions: field_n: MSB field field_0: LSB field *only writable fields allowed MCBSP_FMK() Uint16 MCBSP_FMK(REG, FIELD, fieldval) McBSP Module 13-23 Macros Table 13−4. McBSP Macros Using McBSP Port Number (Continued) (d) Macros to read a register address Macro Syntax MCBSP_ADDR() Uint16 MCBSP_ADDR(REG#) Notes: 1) REG# indicates, if applicable, a register name with the channel number (example: DMACCR0) 2) REG indicates the registers: SPCR1, SPCR2, RCR1, RCR2, XCR1, XCR2, SRGR1, SRGR2, MCR1, MCR2, RCERA, RCERB, RCERC, RCERD, RCERE, RCERF, RCERG, RCERH, XCERA, XCERB, XCERC, XCERD, XCERE, XCERF, XCERG, XCERH, PCR 3) FIELD indicates the register field name as specified in the 55x DSP Peripherals Reference Guide. For REG_FSET and REG_FMK, FIELD must be a writable field. For REG_FGET, the field must be a readable field. 4) regval indicates the value to write in the register (REG). 5) fieldval indicates the value to write in the field (FIELD). Table 13−5. McBSP CSL Macros Using Handle (a) Macros to read/write McBSP register values Macro Syntax MCBSP_RGETH() Uint16 MCBSP_RGETH(MCBSP_Handle hMCBSP, REG) MCBSP_RSETH() Void MCBSP_RSETH( MCBSP_Handle hMCBSP, REG, Uint16 regval ) (b) Macros to read/write McBSP register field values (Applicable only to registers with more than one field) Macro Syntax MCBSP_FGETH() Uint16 MCBSP_FGETH(MCBSP_Handle hMCBSP, REG, FIELD) MCBSP_FSETH() Void MCBSP_FSETH( MCBSP_Handle hMCBSP, REG, FIELD, Uint16 fieldval) 13-24 Macros Table 13−5. McBSP CSL Macros Using Handle (Continued) (c) Macros to read a register address Macro Syntax MCBSP_ADDRH() Uint16 MCBSP_ADDRH(MCBSP_Handle hMCBSP, REG) Notes: 1) REG indicates the registers: SPCR1, SPCR2, RCR1, RCR2, XCR1, XCR2, SRGR1, SRGR2, MCR1, MCR2, RCERA, RCERB, RCERC, RCERD, RCERE, RCERF, RCERG, RCERH, XCERA, XCERB, XCERC, XCERD, XCERE, XCERF, XCERG, XCERH, PCR 2) FIELD indicates the register field name as specified in the 55x DSP Peripherals Reference Guide. For REG_FSETH, FIELD must be a writable field. For REG_FGET, the field must be a readable field. 3) regval indicates the value to write in the register (REG). 4) fieldval indicates the value to write in the field (FIELD). McBSP Module 13-25 Examples 13.6 Examples Examples for the McBSP module are found in the CCS examples\<target>\csl directory. Example 13−1 illustrates the McBSP port initialization using MCBSP_config(). The example also explains how to set the McBSP into digital loopback mode and perform 32-bit reads/writes from/to the serial port. Example 13−1. McBSP Port Initialization Using MCBSP_config() #include <csl.h> #include <csl_mcbsp.h> #define N 10 /* Step 0: This is your MCBSP register configuration */ static MCBSP_Config ConfigLoopBack32= { .... }; void main(void) { MCBSP_Handle mhMcbsp; Uint32 xmt[N], rcv[N]; .... /* Step 1: Initialize CSL */ CSL_init(); /* Step 2: Open and configure the MCBSP port */ mhMcbsp = MCBSP_open(MCBSP_PORT0, MCBSP_OPEN_RESET); MCBSP_config(mhMcbsp, &ConfigLoopBack32); /* Step 3: Write the first data value and start */ /* the sample rate genteration in the MCBSP */ MCBSP_write32(mhMcbsp, xmt[0]); MCBSP_start(mhMcbsp,MCBSP_XMIT_START|MCBSP_RCV_START| MCBSP_SRGR_START|MCBSP_SRGR_FRAMESYNC, 0x300u); ...... while (!MCBSP_rrdy(mhMcbsp)); rcv[0] = MCBSP_read32(mhMcbsp); 13-26 Examples Example 13−1. McBSP Port Initialization Using MCBSP_config() (Continued) /* Begin the data transfer loop of the remaining (N-1) values. */ for (i=1; i<N-1;i++) { /* Wait for XRDY signal before writing data to DXR */ while (!MCBSP_xrdy(mhMcbsp)); /* Write 32 bit data value to DXR */ MCBSP_write32(mhMcbsp,xmt[i]); /* Wait for RRDY signal to read data from DRR */ while (!MCBSP_rrdy(mhMcbsp)); /* Read 32 bit value from DRR */ rcv[i] = MCBSP_read32(mhMcbsp); } MCBSP_close(mhMcbsp); } /* main */ McBSP Module 13-27 13-28 Chapter 14 MMC Module This chapter contains descriptions of the configuration structures, data strucutres, and functions available in the multimedia controller (MMC) module. This module supports both MMC and SD cards. The initialization and data transfer to MMC and SD cards differ in a few aspects, and there are SD_<function> APIs provided for accessing the SD card. The MMC APIs and data structures that are valid only for MMC cards are marked accordingly. All other APIs can be used for both MMC and SD cards. Note: The SPI mode is no longer supported on the 5509 MMC Controller. Topic Page 14.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2 14.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-5 14.3 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-6 14.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-13 14-1 Overview 14.1 Overview Table 14−1. MMC Configuration Structures Config Structure Description See Page MMC_Config MMC configuration structure 14-5 Table 14−2. MMC Data Structures Data Structure Description See Page MMC_CallBackObj Structure used to assign functions for each interrupt 14-6 MMC_CardCsdObj† Contains card-specific data 14-7 SD_CardCsdObj†† Contains card-specific data 14-8 MMC_CardIdObj Contains card identification (CID) 14-9 MMC_CardObj Contains information about memory cards including CID and CSD structures for MMC/SD cards 14-10 MMC_CardXCsdObj Extended card-specific data (XCSD) 14-10 MMC_Cmdobj Structure to store commands 14-11 MMC_MmcRegObj Structure to store values of all MMC regs 14-11 MMC_SetupNative Native mode Initialization Structure 14-12 MMC_RspRegObj Structure to store values of MMC response registers 14-12 † Only for MMC card †† Only for SD card Table 14−3. MMC Functions Function Description See Page MMC_clearResponse Clears the MMC response registers 14-13 MMC_close Frees MMC controller reserved by call to MMC_open 14-13 MMC_config Writes the values of the configuration structure into the control registers for the specified MMC controller 14-14 MMC_dispatch0 ISR dispatch function to service MMC0 (port0) isrs 14-14 MMC_dispatch1 ISR dispatch function to service MMC1 (port1) isrs 14-14 14-2 Overview Table 14−3. MMC Functions (Continued) Function Description See Page MMC_drrdy Returns the contents of the DRRDY status bit in the MMCST0 register 14-15 MMC_dxrdy Returns the contents of the DXRDY status bit in the MMCST0 register 14-15 MMC_getCardCsd† Reads the card-specific data from response registers 14-16 MMC_getCardId† Reads card ID from the MMC response registers 14-16 MMC_getConfig Returns the current contents of the MMC control registers. This excludes the MMC response registers. 14-17 MMC_getNumberOfCards Returns the number of cards found when MMC_open is called with MMC_OPEN_SENDALLCID option 14-17 MMC_getStatus Returns the status of the specified field in the MMCST0 register 14-18 MMC_intEnable Enables interrupts by writing to the MMCIE register 14-28 MMC_SetupNative Initializes the controller when in Native mode 14-12 MMC_open Reserves the MMC device specified by, device 14-18 MMC_read Sends commands to read blocks of data. This is a blocking function in that it does not return until all data has been transferred. 14-19 MMC_responseDone Checks the status of a register for a response complete condition 14-19 MMC_saveStatus Saves current contents of MMCST0 register in MMC Handle 14-20 MMC_selectCard Selects card with specified relative address for communication 14-20 MMC_sendAllCID† Sends broadcast command to all cards to identify themselves 14-21 MMC_sendCmd Sends a command to selected memory card/s. Optionally waits for a response 14-22 MMC_sendCSD Sends a request to card to submit its card-specific data or CSD structure 14-22 MMC_sendGoIdle Sends a broadcast GO_IDLE command 14-23 MMC_setCardPtr Sets the card pointer in the MMC global status table 14-23 MMC_setCardType Writes the card type (MMC or SD) to the MMC_CardObj structure 14-29 MMC Module 14-3 Overview Table 14−3. MMC Functions (Continued) Function Description See Page MMC_sendOpCond Sets the operating voltage window while in Native mode 14-24 MMC_setCallBack Associated functions to interrupts and installs dispatcher routines 14-25 MMC_setRca Set the relative card address of an attached memory card 14-25 MMC_stop Halts a current data transfer 14-26 MMC_waitForFlag Waits for a particular field in the MMCST0 register to be set 14-26 MMC_write Writes a block of data. This is a blocking function in that it does not return until all data has been transferred 14-27 SD_sendAllCID Sends broadcast command to SD cards to identify themselves 14-29 SD_getCardId Reads SD specific card ID from MMC response registers 14-30 SD_getCardCsd Reads SD card-specific data from response registers 14-30 SD_sendRca Asks the SD card to respond with its relative card address 14-31 SD_setWidth Sets the data bus width to either 1 bit or 4 bits 14-31 † Only for MMC card 14-4 MMC_Config 14.2 Configuration Structures The section contains the configuration structures available for the MMC module. MMC_Config Structure MMC Configuration Structure void MMC_Config Members Uint16 mmcctl /* Control register */ Uint16 mmcfclk /* Functional Clock register */ Uint16 mmcclk /* Clock Control register */ Uint16 mmcie /* Interrupt Enable register */ Uint16 mmctor /* Timeout Response register */ Uint16 mmctod /* Timeout Data Read register */ Uint16 mmcblen /* Block Length register */ Uint16 mmcnblk /* Number of Block register */ Description MMC configuration strucutre used to set up the MMC interface. You create and initialize this structure and then pass its address to the MMC_config() function. Example MMC_Config Config = { 0x000F, 0x0F00, 0x0001, 0x0FA0, 0x0500, 0x0500, 0x0200, 0x0001 /* /* /* /* /* /* /* /* MMCCTL MMCFCLK MMCCLK MMCIE MMCTOR MMCTOD MMCBLEN MMCNBLK */ */ */ */ */ */ */ */ }; MMC Module 14-5 MMC_CallBackObj 14.3 Data Structures This section contains the data structures available for use with the MMC module. MMC_CallBackObj Structure Configures pointers to functions MMC_CallBackObj Members MMC_CallBackPtr isr [12] Holds the functions to be involoved for MMC interrupt Description Configures pointers to functions. Example MMC_CallBackObj cback = { (MMC_CallBackPtr)0x0000, /* Callback for Data Transfer Done */ (MMC_CallBackPtr)0x0000, /* Callback for Busy Done */ (MMC_CallBackPtr)0x0000, /* Callback for response Done */ (MMC_CallBackPtr)0x0000, /* Callback for Read−data time−out */ (MMC_CallBackPtr)0x0000, /* Callback for Response time−out */ (MMC_CallBackPtr)0x0000, /* Callback for write−data CRC error */ } ; 14-6 (MMC_CallBackPtr)0x0000, /* Callback for read−data CRC error */ (MMC_CallBackPtr)0x0000, /* Callback for response CRC error */ (MMC_CallBackPtr)0x0000, /* This is never used */ write_interrupt, /* Callback for data xmt ready */ read_interrupt, /* Callback for data rcv ready */ (MMC_CallBackPtr)0x0000 /* Callback for DAT3 edge */ MMC_CardCsdobj MMC_CardCsdobj Contains Card Specific Data (CSD) Structure MMC_CardCsdObj Members Uint16 csdStructure 2-bit structure type field Uint16 mmcProt 2-bit MMC protocol Uint16 taac 8-bit TAAC Uint16 nsac 8-bit NSAC Uint16 tranSpeed 8-bit max data transmission speed Uint16 ccc 12-bit card command classes Uint16 readBlLen 4-bit maximum Read Block Length Uint16 readBlPartial 1-bit indicates if partial read blocks allowed Uint16 writeBlkMisalign 1-bit flag indicates write block misalignment Uint16 readBlkMisalign 1-bit flag indicates read block misalignment Uint16 dsrImp 1-bit flag indicates whether card has DSR reg Uint16 cSize 12-bit device size Uint16 vddRCurrMin 3-bit Max. Read Current @ Vdd Min Uint16 vddRCurrMax 3-bit Max. Read Current @ Vdd Max Uint16 vddWCurrMin 3-bit Max. Write Current @ Vdd Min Uint16 vddWCurrMax 3-bit Max. Write Current @ Vdd Max Uint16 cSizeMult 3-bit device size multiplier Uint16 eraseGrpSize 5-bit erase sector size Uint16 eraseGrpMult 5-bit erase group multiplier Uint16 wpGrpSize 5-bit write protect group size Uint16 wpGrpEnable 1-bit write protect enable flag Uint16 defaultEcc 2-bit Manufacturer default ECC Uint16 r2wFactor 3-bit stream write factor Uint16 writeBlLen 4-bit maximum write block length Uint16 writeBlPartial 1-bit indicates if partial write blocks allowed Uint16 fileFmtGrp 1-bit file format group Uint16 copy 1-bit copy flag Uint16 permWriteProtect 1-bit to disable/enable permanent write protection Uint16 tmpWriteProtect 1-bit to disable/enable temporary write protection MMC Module 14-7 SD_CardCsdObj Uint16 fileFmt 2-bit file format Uint16 ecc 2-bit ECC code Uint16 crc 7-bit r/w/e redundancy check Description Contains card specific data (CSD) for MMC cards Example None SD_CardCsdObj Structure Contains card-specific data (CSD) SD_CardCsdObj Members 14-8 Uint16 csdStructure 2−bit structure type field Uint16 taac 8-bit TAAC Uint16 nsac 8-bit NSAC Uint16 tranSpeed 8-bit max data transmission speed Uint16 ccc 12-bit card command classes Uint16 readBlLen 4-bit maximum Read Block Length Uint16 readBlPartial 1-bit indicates if partial read blocks allowed Uint16 writeBlkMisalign 1-bit flag indicates write block misalignment Uint16 readBlkMisalign 1-bit flag indicates read block misalignment Uint16 dsrImp 1-bit flag indicates whether card has DSR reg Uint16 cSize 12-bit device size Uint16 vddRCurrMin 3-bit Max. Read Current @ Vdd Min Uint16 vddRCurrMax 3-bit Max. Read Current @ Vdd Max Uint16 vddWCurrMin 3-bit Max. Write Current @ Vdd Min Uint16 vddWCurrMax 3-bit Max. Write Current @ Vdd Max Uint16 cSizeMult 3-bit device size multiplier Uint16 eraseBlkEn 1-bit erase single block enable Uint16 sectorSize 7-bit erase group size Uint16 wpGrpSize 7-bit write protect group size Uint16 wpGrpEnable 1-bit write protect enable flag Uint16 r2wFactor 3-bit stream write factor Uint16 writeBlLen 4-bit maximum write block length MMC_CardIdObj Uint16 writeBlPartial 1-bit indicates if partial write blocks allowed Uint16 fileFmtGrp 1-bit file format group Uint16 copy 1-bit copy flag Uint16 permWriteProtect 1-bit to disable/enable permanent write protection Uint16 tmpWriteProtect 1-bit to disable/enable temporary write protection Uint16 fileFmt 2-bit file format Uint16 crc 7-bit r/w/e redundancy check Description Contains card-specific data (CSD) for SD cards Example None MMC_CardIdObj Structure Contains Card Identification (CID) MMC_CardIdObj Members Uint32 mfgId 24-bit Manufacturer’s ID Char productName[8] 8-character Product Name Uint16 hwRev 4-bit Hardware Revision Number Uint16 fwRev 4-bit Firmware Revision Number Uint32 serialNumber 24-bit Serial Number Uint16 monthCode 4-bit Manufacturing Date (Month) Uint16 yearCode bit Manufacturing Date (Year) Uint16 checksum 7-bit crc Description Contains card identification Example None MMC Module 14-9 MMC_CardObj MMC_CardObj Structure Contains information about Memory Cards, including CID and CSD MMC_CardObj Members Uint32 rca User assigned relative card address (RCA) Uint16 status Last read status value Uint16 CardIndex MMC module assigned index for card Uint16 cardType MMC or SD Uint32 maxXfrRate Maximum transfer rate Uint32 readAccessTime TAAC exp * mantissa Uint32 cardCapacity Total memory available on card Uint32 lastAddrRead Last address read from memory card Uint32 lastAddrWritten Last address written to on memory card MMC_CardIdObj cid Manufacturers Card ID MMC_CardCsdObj *MMC_csd Card-specific data SD_CardCsdObj *SD_csd; card either sd or mmc; we will use the appropriate csd. MMC_CardXCsdObj *xcsd Extended CSD Description Contains information about memory cards, including CID and CSD. Example None MMC_CardXCsdobj Structure Extended Card Specific Data (XCSD) MMC_CardXCsdObj Members Uint16 securitySysId Security System ID Uint16 securitySysVers Security System Version Uint16 maxLicenses Maximum number of storable licenses Uint32 xStatus Extended status bits Description Extended card specific data. Example None 14-10 MMC_MmcRegObj MMC_Cmdobj Structure Stores an MMC Command MMC_Cmdobj Members Uint16 argh High part of command argument Uint16 argl Low part of command argument Uint16 cmd MMC command Description Stores an MMC command Example None MMC_MmcRegObj Structure to store values of all MMC regs Structure MMC_MmcRegObj Members Uint16 mmcfclk MMCFCLK register Uint16 mmcctl MMCCTL register Uint16 mmcclk MMCCLK register Uint16 mmcst0 MMCST0 register Uint16 mmcst1 MMCST1 register Uint16 mmcie MMCIE register Uint16 mmctor MMCTOR register Uint16 mmctod MMCTOD register Uint16 mmcblen MMCBLEN register Uint16 mmcnblk MMCNBLK register Uint16 mmcdrr MMCDRR register Uint16 mmcdxr MMCDXR register Uint16 mmccmd MMCCMD register Uint16 mmcargl MMCARGL register Uint16 mmcargh MMCARGH register MMC_RspRegObj mmcrsp MMCRSP registers Uint16 mmcdrsp MMCDRSP register Uint16 mmccidx MMCCIDX register Description Structure to store values of all MMC regs Example None MMC Module 14-11 MMC_SetupNative MMC_SetupNative Structure Native mode Initialization Structure MMC_SetupNative Members Uint16 dmaEnable Enable/disable DMA for data read/write Uint16 dat3EdgeDetection Set level of edge detection for DAT3 pin Uint16 goIdle Determines if MMC goes IDLE during IDLE instr Uint16 enableClkPin Memory clk reflected on CLK Pin Uint32 fdiv CPU CLK to MMC function clk divide down Uint32 cdiv MMC func clk to memory clk divide down Uint16 rspTimeout Number of memory clks to wait before response timeout Uint16 dataTimeout Number of memory clks to wait before data timeout uint16 blockLen Block length must be same as CSD Description Initialization structure for Native mode Example None MMC_RspRegObj Structure to store values of all MMC response regs Structure MMC_RspRegObj Members Uint16 rsp0 Uint16 rsp1 Uint16 rsp2 Uint16 rsp3 Uint16 rsp4 Uint16 rsp5 Uint16 rsp6 Uint16 rsp7 Description Structure to store values of all MMC response regs Example None 14-12 MMC_close 14.4 Functions MMC_clrResponse Clears the contents of the MMC response registers Function Void MMC_clearResponse( MMC_Handle mmc ); Arguments mmc Description Clears the contents of the MMC response registers. Example MMC_Handle myMmc; Uint16 rca = 2; Uint16 waitForRsp = TRUE; MyMmc = MMC_open(MMC_DEV1); . . . MMC_clrResponse(myMmc); MMC_sendCmd(MyMmc, MMC_SEND_CID, waitForRsp, rca); MMC_close MMC Handle returned by call to MMC_open Closes/frees the MMC device Function void MMC_close( MMC_Handle mmc ); Arguments mmc Description Closes/frees the MMC device reserved by previous call to MMC_open. Example MMC_Handle myMmc; MyMmc = MMC_open(MMC_DEV0); . . . MMC_close(myMmc); MMC Handle returned by call to MMC_open MMC Module 14-13 MMC_config MMC_config Writes the values of configuration structures for MMC controllers Function void MMC_config( MMC_Handle mmc, MMC_Config *mmcCfg ); Arguments mmc mmcCfg Description Configures the MMC controller by writing the specified values to the MMC control registers. Calls to this function are unnecessary if you have called the MMC_open function using any of the MMC_OPEN_INIT_XXX flags and have set the needed configuration parameters in the MMC_InitObj structure. Example MMC_config(myMMC, &myMMCCfg); MMC_dispatch0 MMC handle returned call to MMC_open. Pointer to user defined MMC configuration structure which contains the values to set the MMC control registers. ISR dispatch function to service the MMC0 isrs Function void MMC_dispatch0( ); Arguments None Description Interrupt service routine dispatch function to service interrupts that occur on MMC port 0. Example MMC_dispatch0(); MMC_dispatch1 ISR dispatch function to service the MMC1 isrs Function void MMC_dispatch1( ); Arguments None Description Interrupt service routine dispatch function to service interrupts that occur on MMC port 1. Example MMC_dispatch1(); 14-14 MMC_dxrdy MMC_drrdy Returns the DRRDY status bit Function int MMC_drrdy( MMC_Handle myMmc ); Arguments mmc Description Returns the value of the DRRDY field in the MMCST0 register. Example MMC_Handle myMmc; int i; . . . i = MMC_drrdy(myMmc); MMC_dxrdy MMC Handle returned by call to MMC_open Returns the DXRDY status bit Function int MMC_dxrdy( MMC_Handle mmc ); Arguments mmc Description Returns the value of the DXRDY field in the MMCST0 register. Example MMC_Handle myMmc; int i; . . . i = MMC_dxrdy(myMmc); MMC Handle returned by call to MMC_open MMC Module 14-15 MMC_getCardCSD MMC_getCardCSD Reads card specific data from response registers Function void MMC_getCardCSD( MMC_Handle mmc, MMC_CardCSD Obj *csd); Arguments mmc csd Description Parses CSD data from response registers. MMC_getCardCSD verifies that the SEND_CSD command has been issued and the response is complete. Example MMC_Handle myMmc; MMC_CardCsd Obj *csd; . . . MMC_sendCSD(myMmc); MMC_getCardCSD(myMmc, csd); MMC_getCardId MMC Handle returned by call to MMC_open Pointer to Card Specific Data object Reads card ID from the MMC response registers Function Void MMC_getCardId( MMC_Handle mmc, MMC_CardIdObj *cardId ) Arguments mmc cardId Description Parses memory card ID from contents of the MMC controller response registers and returns the card identity in the given card ID object. Example MMC_Handle myMmc; MMC_CardIdObj myCardId; myMmc = MMC_open(MMC_DEV1); . . MMC_getCardId(myMmc,&myCardId); 14-16 MMC Handle returned by call to MMC_open Pointer to user defined memory card ID object. MMC_getNumberOfCards MMC_getConfig Returns the current contents of the MMC conrtrol registers Function Void MMC_getConfig( MMC_Handle mmc, MMC_Config *mmcCfg ); Arguments mmc mmcCfg Description Returns the values of the MMC control registers in the specified MMC configuration structure. Example MMC_getConfig(myMMC, &myMMcCfg); MMC_getNumberOfCards MMC_Handle returned from a call to MMC_open. Pointer to a user defined MMC configuration structure where current values of the MMC control registers will be returned. Returns the number of cards found when MMC_Open is called Function Uint16 MMC_getNumberOfCards( MMC_Handle mmc, Uint16 *active, Uint16 *inactive ); Arguments mmc active inactive Description Returns the number of cards found when MMC_open is called with the MMC_OPEN_SENDALLCID option. Example MMC_Handle myMmc; MMC_InitObj myMmcInit; Uint16 n; Uint16 active[i] = {0}; Uint16 inactive[i] = {0}; MMC Handle returned by call to MMC_open. Pointer to where to return number of active cards. Pointer to where to return number of inactive cards. MyMmc = MMC_open(MMC_DEV1); n = MMC_getNumberOfCards(myMmc, active, inactive); MMC Module 14-17 MMC_getStatus MMC_getStatus Returns the status of a specified field in the status register Function int MMC_getStatus( MMC_Handle mm, Uint32 lmask ); Arguments mmc MMC Handle returned by call to MMC_open lmask Mask of the status flags to check Description Returns the contents of status registers Example MMC_Handle myMmc; Uint16 ready; read = MMC_getStatus(myMmc, MMC_ST0_DXRDY); MMC_open Reserves the MMC device as specified by a device Function MMC_Handle MMC_open( Uint16 device, ); Arguments device Device (port) number. It can be one of the following: MMC_DEV0 MMC_DEV1 Description MMC_open performs the following tasks: 1) Reserves the specified MMC controller and corresponding MMC port. 2) Enables controller access by setting appropriate bits in the External Bus Selection register. Example MMC_Handle myMmC; myMmc = MMC_open(MMC_DEV0); 14-18 MMC_responseDone MMC_read Reads a block of data from a pre-selected memory card Function void MMC_read( MMC_Handle mmc, Uint32 cardAddr, Void *buffer, Uint16 buflen ); Arguments mmc cardAddr buffer buflen Description Reads a block of data from the pre-selected memory card (see MMC_selectCard) and stores the information in the specified buffer. Example MMC_Handle myMmc; Uint16 mybuf[512]; MMC Handle returned by call to MMC_open. Address on card where read begins. Pointer to buffer where received data should be stored. number of bytes to store in buffer. MyMmc = MMC_open(MMC_DEV1); . . . MMC_read(myMmc, 0, mybuf, 512); MMC_responseDone Checks status register for Response Done condition Function int MMC_responseDone( MMC)Handle mmc ); Arguments mmc Description Checks the status of register MMCST0 for response done (RSPDONE) condition. If a timeout occurs before the response done flag is set, the function returns an error condition of 0xFFFF = MMC_RESPONSE_TIMEOUT. Example MMC_Handle myMmc; . . ./* wait for response done */ while ((sfd = MMC_responseDone (myMmc))==0){ } if(sfd == MMC_RESPONSE_TIMEOUT) return 0; MMC Handle returned by call to MMC_open MMC Module 14-19 MMC_saveStatus MMC_saveStatus Saves the current status of MMC Function int MMC_saveStatus( MMC_Handle mmc ); Arguments mmc Description Saves the current contents of the MMCST0 register in the MMC Handle. Example MMC_Handle myMmc; . . . MMC_saveStatus(myMmc); MMC_selectCard MMC Handle returned by call to MMC_open Selects card with specified relative address for communication Function Int MMC_selectCard( MMC_Handle mmc; MMC_CardObj *card ) Arguments mmc card Description Selects card with specified relative address for communication. Example MMC_InitObj myMmcInit; MMC_Handle myMmc; MMC_CardObj card; Uint16 rca = 2; MMC Handle returned from MMC_open Pointer to card object myMmc = MMC_open(MMC_DEV1,); MMC_selectCard(myMmc, &card); 14-20 MMC_sendAllCID MMC_sendAllCID Sends a broadcast command to all cards to identify themselves Function void MMC_sendAllCID( MMC_Handle mmc, MMC_CardId Obj *cid ); Arguments mmc cid Description This function sends the MMC_SEND_ALL_CID command to initiate identification of all memory cards attached to the controller. If a response is sent from a card, it returns the information about that card in the specified cardId object. Example MMC_Handle myMmc; MMC_CardIdObj myCardId; myMmc = MMC_open(MMC_DEV1, MMC_OPEN_ONLY); . . MMC_SendAllCID(myMmc, &myCardID); MMC Handle returned by call to MMC_open Pointer to card ID object MMC Module 14-21 MMC_sendCmd MMC_sendCmd Sends commands to selected memory cards. Function void MMC_sendCmd( MMC_Handle mmc, Uint16 cmd, Uint16 argh, Uint16 argh, Uint16 waitForRsp, ); Arguments mmc cmd argh argl waitForRsp Description Function sends the specified command to the memory card associated with the given relative card address. Optionally, the function will wait for a response from the card before returning. Example MMC_Handle myMmc; myMmc = MMC_open(MMC_DEV0); . . . MMC_SendCmd(myMmc, MMC_GO_IDLE_STATE, 0, 0, 1); MMC_sendCSD MMC Handle returned from call to MMC_open Command to send to memory card. Upper 16 bits of argument Lower 16 bits of argument Boolean. TRUE, if function should wait for response from card,FALSE otherwise. variable length set of arguments for specified command Sends a request to card to submit its CSD structure Function int MMC_sendCSD( MMC_Handle mmc ); Arguments mmc Description Sends a request to card in the identification process to submit its Card Specific Data Structures. Example MMC_Handle myMmc; . . . MMC_sendCSD(myMmc); 14-22 MMC_Handle returned from a call to MMC_open MMC_setCardPtr MMC_sendGoIdle Sends a broadcast GO_IDLE command Function void MMC_sendGoIdle( MMC_Handle mmc ); Arguments mmc Description Sends a broadcast GO_IDLE command Example MMC_Handle myMmc; . . . MMC_sendGoIdle(myMmc); MMC_setCardPtr MMC_Handle returned from a call to MMC_open Sets the card pointer in the MMC global status table Function void MMC_setCardPtr( MMC_Handle mmc, MMC_cardObj *card ); Arguments mmc card Description Sets the card pointer in the MMC global status table. This function must be used if the application performs a system/card initialization outside of the MMC_initCard function. Example MMC_Handle myMmc; MMC_cardObj *card; MMC_Handle returned from a call to MMC_open Pointer to card objects MMC_setCardPtr(myMmc, &card); MMC Module 14-23 MMC_sendOpCond MMC_sendOpCond Sends the SEND_OP_COND command to a card Function int MMC_sendOpCond( MMC_Handle mmc, Uint32 hvddMask ); Arguments mmc MMC Handle returned by call to MMC_open hvddMask Mask used to set operating voltage conditions in native mode Description Sets the operating condition in native mode. Table 14−4. OCR Register Definitions Example 14-24 OCR Bit VDD Voltage Window 0-7 Reserved 8 2.0-2.1 9 2.1-2.2 10 2.2-2.3 11 2.3-2.4 12 2.4-2.5 13 2.5-2.6 14 2.6-2.7 15 2.7-2.8 16 2.8-2.9 17 2.9-3.0 18 3.0-3.1 19 3.1-3.2 20 3.2-3.3 21 3.3-3.4 22 3.4-3.5 23 3.5-3.6 24-30 reserved 31 Card power-up status bit (busy) MMC_Handle myMmc; . MMC_setRca . . /* enables 3.2-3.3V of operating voltage by setting bit 20 */ MMC_sendOpCond(myMmc, 0x00100000) MMC_setCallBack Associates functions to interrupts and installs dispatcher routines Function void MMC_setCallBack( MMC_Handle mmc, MMC_callBackObj *callbackfuncs ); Arguments mmc callbackfuncs Description MMC_setCallBack associates each function to one of the MMC interrupts. Example MMC_Handle myMmc; MMC_callBackObj *callback; . . . MMC_setCallBack(myMmc, &callback); MMC_setRca MMC_Handle returned from a call to MMC_open Pointer to MMC_callBackObj containing a predefined set of functions to call to service flagged MMC interrupts. Sets the relative card address of an attatched memory card Function void MMC_setRca( MMC_Handle mmc, MMC_CardObj *card, Uint16 rca ); Arguments mmc card Rca Description Sends command to set a card’s relative card address. Example MMC_Handle myMmc; MMC Handle returned by call to MMC_open Pointer to card object Relative card address MMC Module 14-25 MMC_stop MMC_CardObj *card; myMmc = MMC_open(MMC_DEV0); . . . MMC_sendAllCid(myMmc, &cardid); . . . MMC_setRca(myMmc, card, 2); MMC_stop Halts a current data transfer Function int MMC_stop( MMC_Handle mmc ); Arguments mmc Description Halts a current data transfer by issuing the MMC_STOP_TRANSMISSION command. Example MMC_Handle myMmc; . . . MMC_stop(myMmc); MMC_waitForFlag MMC_Handle returned from a call to MMC_open Waits for specified flags to be set in the status register Function int MMC_waitForFlag( MMC_Handle mmc, Uint16 mask ); Arguments mmc mask Description Waits for specified flags to be set in the status register Example MMC_Handle myMmc; . . . MMC_waitForFlag(myMmc, 0x0100); 14-26 MMC Handle returned by call to MMC_open Mask of the status flags wait for (ST0) MMC_write MMC_write Writes a block of data to a pre-selected memory card Function void MMC_write( MMC_Handle mmc, Uint32 cardAddr, Void *buffer, Uint16 buflen ); Arguments mmc cardAddr buffer buflen Description Writes a block of data to the pre-selected memory card. Example MMC_Handle myMmc; Uint16 mybuf[512]; MMC Handle returned by call to MMC_open Address on card where read begins. Pointer to buffer where received data should be stored. number of bytes to store in buffer. myMmc = MMC_open(MMC_DEV1); . . . MMC_write(myMmc, 0, mybuf, 512); MMC Module 14-27 MMC_intEnable MMC_intEnable Enables interrupts by writing to the MMCIE register Function void MMC_intEnable( MMC_Handle mmc, Uint16 enableMask ); Arguments mmc enableMask Description Enables interrupts by writing to the MMCIE register. The functions that service MMC events need to be associated to the interrupts using the MMC_setCallBack before calling this function. Example MMC_Handle myMmc; Uint16 enableMask; MMC_callBackObj callback; ... myMmc = MMC_open(MMC_DEV1); . . . MMC_setCallBack(myMmc, &callback); MMC_intEnable(myMMc, 0x200); 14-28 MMC Handle returned by call to MMC_open 16-bit value to be written to the MMCIE. A bit value of 1 enables an interrupt while a bit value of 0 resets it SD_sendAllCID MMC_setCardType Writes the card type (MMC ro SD) to the MMC_CardObj structure Function void MMC_setCardType( MMC_CardObj *card, Uint16 type ); Arguments *card type Description Sets the card type in the card obj for later reference Example MMC_CardObj *card; Uint16 type; . . type = MMC_sendOpCond(myMmc,0x00100000); /* Returns either MMC_CARD or SD_CARD */ . . . MMC_setCardType(card, type); SD_sendAllCID Pointer to card obj for the controller Card type (MMC_CARD/SD_CARD) returned by the MMC_sendOpCond function Sends broadcast command to SD cards to identify themselves Function int SD_sendAllCID( MMC_Handle sd, MMC_CardIdObj *cid ); Arguments sd MMC Handle returned by call to MMC_open cid Pointer to card ID object Description Sends the MMC_SEND_ALL_CID command to initiate identification of all SDmemory cards attached to the controller. If a response is sent from a card, it returns the information about that card in the specified cardId object. Example MMC_Handle mySD; MMC_CardIdObj myCardId; mySD = MMC_open(MMC_DEV1); . . SD_SendAllCID(mySD, &myCardID); MMC Module 14-29 SD_getCardId SD_getCardId Reads SD-specific card ID from MMC response registers Function void SD_getCardID( MMC_Handle sd, MMC_CardIdObj *cid ); Arguments sd SD handle returned by call to MMC_open cid Pointer to user defined memory card ID object Description Parses memory card ID from contents of the MMC controller response registers and returns the card identity in the given card ID object. Example MMC_Handle mySD; MMC_CardIdObj myCardId; mySD = MMC_open(MMC_DEV1); . . MMC_getCardId(mySD,&myCardId); SD_getCardCsd Reads SD card-specific data from response registers Function void SD_getCardCsd( MMC_Handle sd, SD_CardCsdObj *csd ); Arguments sd SD handle returned by call to MMC_open csd Pointer to card-specific data object Description Parses CSD data from response registers. MMC_getCardCSD verifies that the SEND_CSD command has been issued and the response is complete. Example MMC_Handle mySD; MMC_CardCsd Obj *csd; . . . MMC_sendCSD(mySD); SD_getCardCSD(mySD, csd); 14-30 SD_setWidth SD_sendRca Asks the SD card to respond with its relative card address Function int SD_sendRca( MMC_Handle sd, MMC_CardObj *card ); Arguments sd card Description The host requests the SD card to set it’s Relative Card Address and send it to the host once done. This RCA will be used for all future communication with the card. Example MMC_Handle mySD; MMC_CardObj *card; . . . SD_sendRca(mySD, card); SD_setWidth SD handle returned by call to MMC_open Pointer to card object Sets the data bus width to either 1 bit or 4 bits Function int SD_setWidth( MMC_Handle sd, Uint16 width ); Arguments sd width Description The SD card supports a 4-bit width data transfer. The bus width can be set after the card is selected using the MMC_selCard API. Example MMC_Handle mySD; Uint16 retVal; MMC_CardObj *card; . . mySD = MMC_open(MMC_DEV1); . . retVal = MMC_selectCard(mySD,card); retVal = SD_setWidth(mySD, 0x4); SD Handle returned by call to MMC_open Value to set bus width for data transfer from/to the card. Width of 0x1 sets the bus width to 1 bit and a width of 0x4 sets it to 4 −bits. MMC Module 14-31 SD_setWidth 14-32 Chapter 15 PLL Module This chapter describes the PLL module, lists the API structure, functions, and macros within the module, and provides a PLL API reference section. Topic Page 15.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2 15.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4 15.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5 15.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-7 15-1 Overview 15.1 Overview The CSL PLL module offers functions and macros to control the Phase Locked Loop of the C55xx. The PLL module is not handle-based. Table 15−1 lists the configuration structure used to set up the PLL module. Table 15−2 lists the functions available for use with the PLL module. Table 15−3 lists PLL registers and fields. Section 15.4 includes a description of available PLL macros. Table 15−1. PLL Configuration Structure Syntax Description PLL_Config PLL configuration structure used to set up the PLL interface See page ... 15-4 Table 15−2. PLL Functions Syntax Description PLL_config() Sets up PLL using configuration structure (PLL_Config) 15-5 PLL_setFreq() Initializes the PLL to produce the desired CPU (core)/Fast peripherals/Slow peripherals/EMIF output frequency 15-6 15-2 See page ... Overview Table 15−3. PLL Registers Register Field CLKMD PLLENABLE, PLLDIV, PLLMULT, VCOONOFF For C5502 and C5501 PLLCSR PLLEN, PLLPWRDN, OSCPWRDN, PLLRST, LOCK, STABLE PLLM PLLM PLLDIV0 PLLDIV0, D0EN PLLDIV1 PLLDIV1, D1EN PLLDIV2 PLLDIV2, D2EN PLLDIV3 PLLDIV3, D3EN OSCDIV1 OSCDIV1, OD1EN WAKEUP WKEN0, WKEN1, WKEN2, WKEN3 CLKMD CLKMD0 CLKOUTSR CLKOUTDIS, CLKOSEL Note: R = Read Only; W = Write; By default, most fields are Read/Write PLL Module 15-3 PLL_Config 15.2 Configuration Structures The following is the configuration structure used to set up the PLL. PLL_Config PLL configuration structure used to set up PLL interface Structure PLL_Config Members For devices having a digital PLL: Uint16 iai Initialize After Idle Uint16 iob Initialize On Break Uint16 pllmult PLL Multiply value Uint16 div PLL Divide value For devices having an analog PLL (5510PG1_2 only): Uint16 vcoonoff APLL Voltage-controlled oscillator control Uint16 pllmult APLL Multiply value Uint16 div APLL Divide value For 5502 and 5501 device: Uint16 pllcsr // PLL Control Register Uint16 pllm // Clock 0 Multiplier Register Uint16 plldiv0 // Clock 0 Divide Down Register Uint16 plldiv1 // Sysclk 1 Divide Down Register Uint16 plldiv2 // Sysclk 1 Divide Down Register Uint16 plldiv3 // Sysclk3 Divide Down Register Uint16 oscdiv1 // Oscillator divide down register Uint16 wken // Oscillator Wakeup Control Register Uint16 clkmd // Clock Mode Control Register Uint16 clkoutsr // CLKOUT Select Register Description The PLL configuration structure is used to set up the PLL Interface. You create and initialize this structure and then pass its address to the PLL_config() function. You can use literal values or the PLL_RMK macros to create the structure member values. Example PLL_Config 1, 1, 31, 3 } 15-4 Config1 = { /* iai */ /* iob */ /* pllmult */ /* div */ PLL_config 15.3 Functions The following are functions available for use with the PLL module. PLL_config Writes value to up PLL using configuration structure Function void PLL_config( PLL_Config *Config ); Arguments Config Return Value None Description Writes a value to up the PLL using the configuration structure. The values of the structure are written to the port registers (see also PLL_Config). Example 1. /* Using PLL_config function and PLL_Config structure for Pointer to an initialized configuration structure Digital PLL*/ PLL_Config MyConfig = { 1, /* iai */ 1, /* iab */ 31, /* pllmult */ 3 /* div */ }; 2. /* Using PLL_config function and PLL_Config structure for 5502/5501 PLL*/ PLL_Config MyConfig = { 0x0, /* PLLCSR */ 0xA, /* PLLM */ 0x8001, /* PLLDIV0 */ 0x8003, /* PLLDIV1 */ 0x8003, /* PLLDIV2 */ 0x8003, /* PLLDIV3 */ 0x0, /* OSCDIV1 */ 0x0, /* WAKEUP */ 0x0, /* CLKMD */ 0x2 /* CLKOUTSR */ }; PLL_config(&MyConfig); PLL Module 15-5 PLL_config PLL_setFreq Function Initializes the PLL to produce the desired CPU output frequency void PLL_setFreq (Uint16 mul, Uint16 div); (For C5502 and C5501 device): void PLL_setFreq (Uint16 mode, Uint16 mul, Uint16 div0, Uint16 div1, Uint16 div2,Uint16 div3, Uint16 oscdiv); Arguments Uint16 mode Uint16 mul Uint16 div0 Uint16 div1 Uint16 div2 Uint16 div3 Uint16 oscdiv // PLL mode //PLL_PLLCSR_PLLEN_BYPASS_MODE //PLL_PLLCSR_PLLEN_PLL_MODE // Multiply factor, Valid values are (multiply by) 2 to 15. // Sysclk 0 Divide Down, Valid values are 0, (divide by 1) //to 31 (divide by 32) // Sysclk1 Divider, Valid values are 0, 1, and 3 corresponding //to divide by 1, 2, and 4 respectively // Sysclk2 Divider, Valid values are 0, 1, and 3 //corresponding to divide by 1, 2, and 4 respectively // Sysclk3 Divider, Valid values are 0, 1 and 3 //corresponding to divide by 1, 2 and 4 respectively // CLKOUT3(DSP core clock) divider,Valid values are 0 //(divide by 1) to 31 (divide by 32) Return Value None Description Initializes the PLL to produce the desired CPU output frequency (clkout) Example 1. /* Using PLL_setFreq for devices other than 5502/5501 */ PLL_setFreq (1, 2); // set clkout = 1/2 clkin 2. /* Using PLL_setFreq for 5502 device */ /* mode = 1 means PLL enabled (non−bypass mode) mul = 5 means multiply by 5 div0 = 0 means Divider0 divides by 1 div1 = 3 means Divider1 divides by 4 div2 = 3 means Divider2 divides by 4 div3 = 3 means Divider3 divides by 4 oscdiv = 1 means Oscillator Divider1 divides by 2 */ PLL_setFreq(1, 5, 0, 3, 3, 3, 1); 15-6 Macros 15.4 Macros The CSL offers a collection of macros to gain individual access to the PLL peripheral registers and fields. Table 15−4 contains a list of macros available for the PLL module. To use them, include “csl_pll.h.” Table 15−4. PLL CSL Macros Using PLL Port Number (a) Macros to read/write PLL register values Macro Syntax PLL_RGET() Uint16 PLL_RGET(REG) PLL_RSET() Void PLL_RSET(REG, Uint16 regval) (b) Macros to read/write PLL register field values (Applicable only to registers with more than one field) Macro Syntax PLL_FGET() Uint16 PLL_FGET(REG, FIELD) PLL_FSET() Void PLL_FSET(REG, FIELD, Uint16 fieldval) (c) Macros to create value to PLL registers and fields (Applies only to registers with more than one field) Macro Syntax PLL_REG_RMK() Uint16 PLL_REG_RMK(fieldval_n,…fieldval_0) Note: *Start with field values with most significant field positions: field_n: MSB field field_0: LSB field *only writable fields allowed PLL_FMK() Uint16 PLL_FMK(REG, FIELD, fieldval) (d) Macros to read a register address Macro Syntax PLL_ADDR() Uint16 PLL_ADDR(REG) Notes: 1) REG indicates the register, CLKMD. 2) FIELD indicates the register field name. For REG_FSET and REG_FMK, FIELD must be a writable field. For REG_FGET, the field must be a readable field. 3) regval indicates the value to write in the register (REG). 4) fieldval indicates the value to write in the field (FIELD). PLL Module 15-7 15-8 Chapter 16 PWR Module This chapter describes the PWR module, lists the API functions and macros within the module, and provides a PWR API reference section. The CSL PWR module offers functions to select which section in the device will power-down during an IDLE execution. Topic Page 16.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-2 16.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-3 16.3 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-4 16-1 Overview 16.1 Overview The CSL PWR module offers functions to control the power consumption of different sections in the C55x device. The PWR module is not handle-based. Table 16−1 lists the functions for use with the PWR modules that order specific parts of the C55x to power down. Table 16−2 lists DMA registers and fields. Table 16−1. PWR Functions Functions Purpose See page ... PWR_powerDown Forces the DSP to enter a power-down (IDLE) state (only for C5509 and C5510) 16-3 16.1.1 PWR Registers Table 16−2. PWR Registers Register Field Only for C5509 and C5510 ICR EMIFI, CLKGENI, PERI, CACHEI, DMAI, CPUI ISTR EMIFIS, CLKGENIS, PERIS, CACHEIS, DMAIS, CPUIS Only for C5502 and C5501 ICR IPORTI,MPORTI,XPORTI,EMIFI,CLKI,PERI,ICACHEI,MPI,CPUI ISTR IPORTIS,MPORTIS,XPORTIS,EMIFIS,CLKIS,PERIS,ICACHEIS,MPIS,CPUIS PICR MISC,EMIF,BIOST,WDT,PIO,URT,I2C,ID,IO,SP2,SP1,SP0,TIM1,TIM0 PISTR MISC,EMIF,BIOST,WDT,PIO,URT,I2C,ID,IO,SP2,SP1,SP0,TIM1,TIM0 MICR HPI,DMA Note: 16-2 R = Read Only; W = Write; By default, most fields are Read/Write PWR_powerDown 16.2 Functions The following are functions available for use with the PWR module. PWR_powerDown Forces DSP to enter power-down state (On C5509 and C5510 only) Function void PWR_powerDown (Uint16 wakeUpMode) Arguments wakeupMode PWR_WAKEUP_MI wakes up with an unmasked interrupt and jump to execute the ISRs executed. PWR_WAKEUP_NMI wakes up with an unmasked interrupt and executes the next following instruction (interrupt is not taken). Return Value None Description This function will Power-down the device in different power-down and wake-up modes by setting the C55x ICR register and invoking the IDLE instruction. Example /* This function will power-down the McBSP2 */ /*and wake-up with an unmasked interrupt */ PWR_FSET(ICR, PERI, 1); MCBSP_FSET(PCR2, IDLEEN, 1); PWR_powerDown(PWR_WAKEUP_MI); PWR Module 16-3 Macros 16.3 Macros The CSL offers a collection of macros to gain individual access to the PWR peripheral registers and fields.. Table 16−3 contains a list of macros available for the PWR module. To use them, include “csl_pwr.h.” Table 16−3. PWR CSL Macros (a) Macros to read/write PWR register values Macro Syntax PWR_RGET() Uint16 PWR_RGET(REG) PWR_RSET() Void PWR_RSET(REG, Uint16 regval) (b) Macros to read/write PWR register field values (Applicable only to registers with more than one field) Macro Syntax PWR_FGET() Uint16 PWR_FGET(REG, FIELD) PWR_FSET() Void PWR_FSET(REG, FIELD, Uint16 fieldval) (c) Macros to create value to PWR registers and fields (Applies only to registers with more than one field) Macro Syntax PWR_REG_RMK() Uint16 PWR_REG_RMK(fieldval_n,…fieldval_0) Note: *Start with field values with most significant field positions: field_n: MSB field field_0: LSB field *only writable fields allowed PWR_FMK() Uint16 PWR_FMK(REG, FIELD, fieldval) (d) Macros to read a register address Macro Syntax PWR_ADDR() Uint16 PWR_ADDR(REG) Notes: 1) REG indicates the register, ICR, ISTR 2) FIELD indicates the register field name as specified in the 55x DSP Peripherals Reference Guide. For REG_FSET and REG_FMK, FIELD must be a writable field. For REG_FGET, the field must be a readable field. 3) regval indicates the value to write in the register (REG). 4) fieldval indicates the value to write in the field (FIELD). 16-4 Chapter 17 RTC Module This chapter describes the RTC module, lists the API structure, functions, and macros within the module, and provides an RTC API reference section. Topic Page 17.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-2 17.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-6 17.3 API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-9 17.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-16 17-1 Overview 17.1 Overview The real-time clock (RTC) provides the following features: 100-year calendar up to year 2099 Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensation Binary-coded-decimal (BCD) representation of time, calendar, and alarm 12-hour (with AM and PM in 12-hour mode) or 24-hour clock modes. CSL supports only 24-hour mode. Second, minute, hour, or day alarm interrupts Update Cycle interrupt and periodic interrupts The RTC has a separate clock domain and power supply. The clock is derived from the external 32 KHz crystal. The configuration of the RTC can be performed by using one of the following methods: Register-based configuration A register-based configuration can be performed by calling either RTC_config(), or any of the SET register/field macros. Parameter-based configuration A parameter based configuration can be performed by calling the functions listed in Table 17−1, such as RTC_setTime(), RTC_setAlarm(). Compared to the register-based approach, this method provides a higher level of abstraction. The downside is larger code size and higher cycle counts. ANSI C-Style Time Configuration Time functions are provided for the RTC module, which performs the same functions as the ANSI C-style standard time functions. The time is obtained, however, from the RTC. Table 17−3 contains the a list and descriptions of the RTC ANSI C-style functions. For a complete description of the functions, the arguments and structures they use please refer to the TMS320C55x Optimizing Compiler User’s Guide (SPRU281). Table 17−1 lists the configuration structures used to set up the RTC. Table 17−2 and Table 17−3 lists the functions available for use with the RTC. 17-2 Table 17−4 lists macros for the RTC. Table 17−5 lists RTC registers and fields. Table 17−1. RTC Configuration Structures Configuration Structure Description See page ... RTC_Alarm Structure used to set RTC Time 17-6 RTC_Config RTC register Configuration Structure 17-7 RTC_Date Structure used to set RTC Calendar 17-7 RTC_IsrAddr Structure to set the RTC callback function 17-8 RTC_Time Structure used to set RTC Alarm Time 17-8 Table 17−2. RTC Functions Function Description See page ... RTC_bcdToDec Changes BCD value to a hexadecimal value 17-9 RTC_config Writes value to initialize RTC using the RTC register Configuration Structure 17-9 RTC_decToBcd Changes decimal value to BCD value 17-9 RTC_eventDisable Disables interrupt event specified by the argument 17-10 RTC_eventEnable Enables RTC interrupt event specified by an argument 17-10 RTC_getConfig Reads the RTC registers into the RTC register Configuration Structure 17-10 RTC_getDate Reads current date from RTC Registers 17-11 RTC_getEventId Obtains IRQ module event ID for RTC 17-11 RTC_getTime Reads current time from RTC Registers, in a 24-hour format 17-11 RTC_reset Sets the RTC register to the default (power-on) values 17-12 RTC_setAlarm Sets alarm to a specific time 17-12 RTC_setCallback Associates each function to one of the RTC interrupts 17-13 RTC_setDate Sets RTC Calendar 17-13 RTC_setPeriodicInterval Sets periodic interrupt rate 17-14 RTC_setTime Sets time registers 17-14 RTC Module 17-3 Table 17−2. RTC Functions(Continued) Function Description See page ... RTC_start Instructs the RTC to begin running 17-15 RTC_stop Stops the RTC 17-15 Table 17−3. RTC ANSI C-Style Time Functions Function Description RTC_asctime Converts a time to an ASCII string RTC_ctime Converts calendar time to local time RTC_difftime Returns the difference between two calendar times RTC_gmtime Converts calendar time to GMT RTC_localtime Converts calendar time to local time RTC_mktime Converts local time to calendar time RTC_strftime Formats a time into a character string RTC_time Returns the current RTC time and date Note: For documentation on these functions, please refer to the ANSI C equivalent routines in the TMS320C55x Optimizing C Compiler User’s Guide (SPRU281). Table 17−4. RTC Macros Macro Description RTC_Addr Reads register address 17-16 RTC_FGET Reads RTC register field values 17-16 RTC_FSET Writes RTC register field values 17-16 RTC_REG_FMK Creates value of RTC register fields 17-16 RTC_REG_RMK Creates value of RTC registers 17-17 RTC_RGET Reads RTC register values 17-17 RTC_RSET Writes RTC register values 17-17 17-4 See page ... Table 17−5. Registers Register Field RTCSEC SEC RTCSECA SAR RTCMIN MIN RTCMINA MAR RTCHOUR HR, AMPM RTCHOURA HAR, AMPM RTCDAYW DAY, DAEN, DAR RTCDAYM DATE RTCMONTH MONTH RTCYEAR YEAR RTCPINTR RS, (R)UIP RTCINTEN TM, UIE, AIE, PIE, SET RTCINTFL UF, AF, PF, (R)IRQF Note: R = Read Only; W = Write; By default, most fields are Read/Write RTC Module 17-5 RTC_Alarm 17.2 Configuration Structures The following is the configuration structure used to set up the RTC. RTC_Alarm Structure used to set RTC time Structure RTC_Alarm Members Uint16 alhour Alarm hour (Range: 0x00−0x23 for BCD, for 24-hour format. (12-hour format is not supported.) Uint16 alminute Alarm Minute (Range: 0x00−0x59 for BCD) Uint16 alsecond Alarm Second (Range:0x00−0x59 for BCD) Uint16 aldayw Alarm day of the week. This member is ignored if the Periodic Weekly Alarm bit (DAEN) is set to 0. In this case, the alarm will occur in the current day. You can use the “DONTCARE” value for each of the structure’s member if you want to set a periodic alarm for that specific interval. For example, using the DONTCARE value in the alminute field will generate an alarm interrupt every minute. Note: Description 17-6 Due to hardware limitations, after the first period, the every second periodic alarm does not produce an interrupt. To generate an alarm every second, use instead the update interrupt. Structure used to set the RTC time. After it is created and initialized, the structure is passed to the RTC_setAlarm() function. The values of the structure must be entered in BCD format. You can use the RTC_decToBcd() and RTC_bcdToDec() functions to switch between decimal and BCD values. RTC_Date RTC_Config RTC configuration structure Structure RTC_Config Members Uint16 rtcsec Uint16 rtcseca Uint16 rtcmin Uint16 rtcmina Uint16 rtchour Uint16 rtchoura Uint16 rtcdayw Uint16 rtcdaym Uint16 rtcmonth Uint16 rtcyear Uint16 rtcpintr Uint16 rtcinten Description RTC configuration structure. This structure is created and initialized, and then passed to the RTC_Config() function. Seconds Register Seconds Alarm Register Minutes Register Minutes Alarm Register Hour Register Hour Alarm Register Day of the Week and Day Alarm Register Day of the Month (Date) Register Month Register Year Register Periodic Interrupt selection Register Interrupt Enable Register The values put in the structure can be literal values or values created by RTC_REG_RMK macro. For the hour registers, the supported mode is 24-hour. The values of all time, alarm, and calendar fields must be entered in BCD format. You can use the RTC_decToBcd() and RTC_bcdToDec() functions to switch between decimal and BCD values. RTC_Date Structure used to set RTC calendar Structure RTC_Date Members Uint16 year Current year (Range: 0x00–0x99 for BCD) Uint16 month Current month (Range: 0x01-0x12 for BCD) Uint16 daym Day of the month, or date (Range: 0x01-0x31 for BCD) Uint16 dayw Day of the week (Range 1–7, where Sunday is 1) Description Structure used to set the RTC calendar. After it is created and initialized, the structure is passed to the RTC_setDate() function. The values of the structure must be entered in BCD format. You can use the RTC_decToBcd() and RTC_bcdToDec() functions to switch between decimal and BCD values. RTC Module 17-7 RTC_Time RTC_IsrAddr Structure used to set the RTC callback function Structure RTC_IsrAddr Members void (*periodicAddr)(void) Pointer to the function called when a periodic interrupt occurs. void (*alarmAddr)(void) Pointer to the function called when an alarm interrupt occurs. void (*updateAddr)(void) Pointer to the function called when an update interrupt occurs. Description RTC_Time This structure is used to set the RTC callback function. After it is created and initialized, the structure is passed to RTC_setCallback() function. The values of the structure are pointers to the functions that are executed when the corresponding interrupt is enabled. The functions should not be declared with the interrupt keyword. Structure used to set RTC time Structure RTC_Time Members Uint16 hour Current time (Range: 0x00−0x23 for BCD, for 24-hour format. 12-hour format is not supported.) Uint16 minute Current Minute (Range: 0x00−0x59 for BCD) Uint16 second Second (Range: 0x00−0x59 for BCD) Description 17-8 Structure used to set the RTC time. After it is created and initialized, the structure is passed to the RTC_setTime() function. The values of the structure must be entered in BCD format. You can use the RTC_decToBcd() and RTC_bcdToDec() functions to switch between decimal and BCD values. RTC_decToBcd 17.3 API Reference RTC_bcdToDec Changes BCD value to hexadecimal value Function int RTC_bcdToDec(int hex_value); Arguments hex_value A hexadecimal value Description Changes a BCD value to a hexadecimal value. Example for (i = 10;i<=30;i++) { printf(”DEC of %x is %d\n”,i,RTC_bcdToDec(i)); } RTC_config Writes value to initialize RTC using configuration structure Function void RTC_config(RTC_Config *myConfig); Arguments myConfig Description Writes a value to initialize the RTC using the configuration structure. Example RTC_Config myConfig = { 0x0, /* Seconds */ 0x10, /* Seconds Alarm */ 0x18, /* Minutes */ 0x10, /* Minutes Alarm */ 0x10, /* Hour */ 0x13, /* Hours Alarm */ 0x06, /* Day of the week and day alarm */ 0x11, /* Day of the month */ 0x05, /* Month */ 0x01, /* Year */ 0x10, /* Peridodic Interrupt Selection register */ 0x02, /* Interrupt Enable register */ }; RTC_config(&myConfig); RTC_decToBcd Pointer to an initialized configuration structure (containing values for all registers that are visible to the user) Changes decimal value to BCD value Function int RTC_decToBcd(int dec_value); Arguments dec_value A decimal value RTC Module 17-9 RTC_eventDisable Description Changes a decimal value to a BCD value, which is what RTC needs. Example for (i = 10;i<=30;i++) { printf(”BCD of %d is %x\n”,i,RTC_decToBcd(i)); } RTC_eventDisable Disables interrupt event specified by ierMask Function void RTC_eventDisable(Uint16 isrMask); Arguments isrMask Description It disables the interrupt specified by the ierMask. Example RTC_eventDisable(RTC_EVT_UPDATE); Can be one of the following: RTC_EVT_PERIODIC // Periodic Interrupt RTC_EVT_ALARM // Alarm Interrupt RTC_EVT_UPDATE // Update Ended Interrupt RTC_eventEnable Enables RTC interrupt event specified by isrMask Function void RTC_eventEnable(Uint16 isrMask); Arguments isrMask Description It enables the RTC interrupt specified by the isrMask. Example RTC_eventEnable(RTC_EVT_PERIODIC); RTC_getConfig Can be one of the following: RTC_EVT_PERIODIC // Periodic Interrupt RTC_EVT_ALARM // Alarm Interrupt RTC_EVT_UPDATE // Update Ended Interrupt Reads RTC configuration structure Function void RTC_getConfig(RTC_Config *myConfig); Arguments myConfig Description Reads the RTC register values into the RTC configuration register structure. Example RTC_Config myConfig; Pointer to an initialized configuration structure (including all registers that are visible to the user) RTC_getConfig(&myConfig); 17-10 RTC_getTime RTC_getDate Reads current date from RTC registers Function void RTC_getDate(RTC_Date *myDate); Arguments myDate Description Reads the current date from the RTC registers. Only the 24-hour format is supported. The values of the structure are read in BCD format. Example RTC_Date getDate; Pointer to an initialized configuration structure that contains values for year, month, day of the month (date), and day of the week. RTC_getDate(&getDate); RTC_getEventId Obtains IRQ module event ID for RTC Function int RTC_getEventID() Arguments None Description Obtains IRQ module event ID for RTC Example int id; id = RTC_getEventId(); RTC_getTime Reads current time from RTC registers, in 24-hour format Function void RTC_getTime(RTC_Time *myTime); Arguments myTime Description Reads the current time from the RTC registers, in 24-hour format. Only the 24-hour format is supported. The values of the structure are obtained in BCD format. Example RTC_Time getTime; Pointer to an initialized configuration structure that contains values for second, minute and hour RTC_getTime(&getTime); RTC Module 17-11 RTC_reset RTC_reset Reset RTC registers to their default values Function void RTC_reset(); Arguments None Description Resets RTC registers to their default values. This function is provided due to the RTC having a separate power supply and will remain powered even if the DSP is turned off. Example void RTC_reset(); RTC_setAlarm Sets alarm at specific time Function void RTC_setAlarm(RTC_Alarm *myAlarm); Arguments myAlarm Description Set alarm at a specific time: sec, min, hour, day of week. Only the 24-hour format is supported. The values of the structure must be entered in BCD format. Example 1 RTC_Alarm myAlarm = { 0x12, /* alHour , in 24-hour format */ 0x03, /* alMinutes */ 0x03, /* alSeconds */ 0x05, /* alDayw */ }; Pointer to an initialized configuration structure that contains the hour, minute, second, and day of the week for the alarm to occur. RTC_setAlarm(&myAlarm); /*This sets the alarm at 12:03:03am, */ /* every week, on Thursday */ Example 2 RTC_Alarm myPeriodicAlarm = { 0x1, /* alHour , in 24-hour format */ DONTCARE, /* alMinutes */ 0x0, /* alSeconds */ 0x2, /* alDayw */ }; RTC_setAlarm(&myAlarm); /* This sets the alarm every minute, at */ /* 01:**:00, on Monday of every week */ 17-12 RTC_setDate RTC_setCallback Associates a function to an RTC interrupt Function void RTC_setCallback(RTC_IsrAddr *isrAddr); Arguments isrAddr Description RTC_setCallback associates a function to each of the RTC interrupt events (periodic interrupt, alarm interrupt, or update ended interrupt): Example void myPeriodicIsr(); void myAlarmIsr(); void myUpdateIsr(); RTC_IsrAddr addr = { myPeriodicIsr, void myAlarmIsr, void myUpdateIsr }; A structure containing pointers to the 3 functions that will be executed when the corresponding interrupt is enabled. The functions should not be declared with the interrupt function keyword. RTC_setCallback(&addr); RTC_setDate Sets RTC calendar date Function void RTC_setDate(RTC_Date *myDate); Arguments myDate Description Sets the RTC calendar. Only the 24-hour format is supported. The values of the structure must be entered in BCD format. Example RTC_Date myDate = { 0x01, /* Year 2001 */ 0x05, /* Month May*/ 0x10, /* Day of month */ 0x05 /* Day of week Thursday */ }; Pointer to an initialized configuration structure that contains values for year, month, day of the month (date), and day of the week RTC_setDate(&myDate); RTC Module 17-13 RTC_setPeriodicInterval RTC_setPeriodicInterval Sets periodic interrupt rate Function void RTC_setPeriodicInterval(Uint16 interval); Arguments interval Description Sets the periodic interrupt rate. Example RTC_setPeriodicInterval(RTC_RATE_122us); RTC_setTime Symbolic value for periodic interrupt rate. An interval can be one of the following values: RTC_RATE_NONE RTC_RATE_122us RTC_RATE_244us RTC_RATE_488us RTC_RATE_976us RTC_RATE_1_95ms RTC_RATE_3_9ms RTC_RATE_7_8125ms RTC_RATE_15_625ms RTC_RATE_31_25ms RTC_RATE_62_5ms RTC_RATE_125ms RTC_RATE_250ms RTC_RATE_500ms RTC_RATE_1min Sets time registers, in 24-hour format Function void RTC_setTime(RTC_Time *myTime); Arguments myTime Description Sets the time registers. Only the 24-hour format is supported. The values of the structure must be entered in BCD format. Example RTC_Time myTime = { 0x13, /* Hour in 24-hour format */ 0x58, /* Minutes */ 0x30 /* Seconds */ }; Pointer to an initialized configuration structure that contains values for second, minute and hour RTC_setTime(&myTime); This example sets the RTC time to 13:58:30 (24-hour format) and is equivalent to 1:58:30 PM (12-hour format). 17-14 RTC_stop RTC_start Instructs the RTC to begin running Function void RTC_start(); Arguments None Description Instructs the RTC to begin running and keep the time by setting the SET bit in the RTCINTEN register to 0. Example RTC_start(); RTC_stop Stops the RTC Function void RTC_stop(); Arguments None Description Instructs the RTC to stop running by setting the SET bit in the RTCINTEN register to 0. Example RTC_stop(); RTC Module 17-15 RTC_ADDR 17.4 Macros The following are macros available for use with the RTC module. RTC_ADDR Reads register address Macro Uint16 RTC_ADDR(REG) Description Reads a register address Example Uint16 x; x = RTC_ADDR(RTCSEC); RTC_FGET Reads RTC register field values Macro Uint16 RTC_FGET(REG, FIELD) Description Reads RTC register field values. This is applicable only to registers with more than one field. Example Uint16 x; x = RTC_FGET(RTCDAYW, DAEN); RTC_FSET Writes RTC register field values Macro Void RTC_FSET(REG, FIELD, Uint16 fieldval) Description Writes RTC register field values. This is applicable only to registers with more than one field. Example Uint16 x = 1; RTC_FSET(RTCDAYW, DAEN, x); RTC_REG_FMK Creates value of RTC register fields Macro Uint16 RTC_REG_FMK(FIELD, Uint 16 fieldval) Description Creates value of RTC register fields (only for registers with more than one field). Example Uint16 x, v = 0x09; x = RTC_FMK(RTCDAYW, DAY, v); 17-16 RTC_RSET RTC_REG_RMK Creates value of RTC registers Macro Uint16 RTC_REG_RMK(Uint16 fieldval_n, 0, Uint16fieldval_0) Arguments REG Register (RTCxxxx) FIELD Register field name. For REG_FSET, REG_FGET and REG_FMK, FIELD must be a writeable field regval Value to write in the register REG fieldval Value to write in the field FIELD Description Creates value of RTC registers (only for registers with more than one field). Example Uint16 x, field1, field2, field3; x = RTC_RTDAYW_RMK(field1, field2, field3); RTC_RGET Reads RTC register values Macro Uint16 RTC_RGET(REG) Description Reads RTC register values Example Uint16 x; x = RTC_RGET(RTCSEC); RTC_RSET Writes RTC register values Macro Void RTC_RSET(REG, Uint16 regval) Description Writes RTC register values Example Uint16 x = 0x15; RTC_RSET(RTCSEC, x); RTC Module 17-17 RTC_RSET 17-18 Chapter 18 Timer Module This chapter describes the TIMER module, lists the API structure, functions and macros within the module, and provides a TIMER API reference section. Topic Page 18.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-2 18.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-3 18.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-4 18.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-9 18-1 Overview 18.1 Overview Table 18−1 lists the configuration structure used to set the TIMER module. Table 18−2 lists the functions available for the TIMER module. Table 18−3 lists registers for the TIMER module. Section 18.4 inlcudes descriptions for available TIMER macros. Table 18−1. TIMER Configuration Structure Syntax Description TIMER_Config TIMER configuration structure used to setup the TIMER_config() function See page ... 18-3 Table 18−2. TIMER Functions Syntax Description See page ... TIMER_close() Closes the TIMER and its corresponding handler 18-4 TIMER_config() Sets up TIMER using configuration structure (TIMER_Config) 18-4 TIMER_getConfig() Reads the TIMER configuration 18-5 TIMER_getEventId() Obtains IRQ event ID for TIMER device 18-5 TIMER_open() Opens the TIMER and assigns a handler to it 18-6 TIMER_reset() Resets the TIMER registers with default values 18-7 TIMER_start() Starts the TIMER device running 18-7 TIMER_stop() Stops the TIMER device running 18-7 TIMER_tintoutCfg() Sets up the TIMER Polarity pin along with settings for the FUNC, PWID, CP fields in the TCR register 18-8 Table 18−3. Registers Register Field TCR IDLEEN, (R)INTEXT, (R)ERRTIM, FUNC, TLB, SOFT, FREE, PWID, ARB, TSS, CP, POLAR, DATOUT PRD PRD TIM TIM PRSC PSC, TDDR Note: 18-2 R = Read Only; W = Write; By default, most fields are Read/Write TIMER_Config 18.2 Configuration Structures The following is the configuration structure used to set up the TIMER. TIMER_Config TIMER configuration structure Structure TIMER_Config Members Uint16 tcr Timer Control Register Uint16 prd Period Register Uint16 prsc Timer Pre-scaler Register Description The TIMER configuration structure is used to setup a timer device. You create and initialize this structure then pass its address to the TIMER_config() function. You can use literal values or the TIMER_RMK macros to create the structure member values. Example TIMER_Config Config1 = { 0x0010, /* tcr */ 0xFFFF, /* prd */ 0xF0F0, /* prsc */ }; Timer Module 18-3 TIMER_close 18.3 Functions The following are functions available for use with the TIMER module. TIMER_close Closes a previously opened TIMER device Function void TIMER_close TIMER_Handle hTimer ); Arguments hTimer Return Value TIMER_Handle Device handler Description Closes a previously opened timer device. The timer event is disabled and cleared. The timer registers are set to their default values. Example TIMER_close(hTimer); TIMER_config Device Handle (see TIMER_open). Writes value to TIMER using configuration structure Function void TIMER_config( TIMER_Handle hTimer, TIMER_Config *Config ); Arguments Config Pointer to an initialized configuration structure hTimer Device Handle, see TIMER_open Return Value none Description The values of the configuration structure are written to the timer registers (see also TIMER_Config). Example TIMER_Config MyConfig = { 0x0010, /* tcr */ 0xFFFF, /* prd */ 0xF0F0 /* prsc */ }; TIMER_config(hTimer,&MyConfig); 18-4 TIMER_getEventId TIMER_getConfig Reads the TIMER configuration Function void TIMER_getConfig( TIMER_Handle hTimer, TIMER_Config *Config ); Arguments Config Pointer to an initialized TIMER configuration structure hTimer Timer Device Handle Return Value None Description Reads the TIMER configuration into the configuration structure. See also TIMER_Config. Example TIMER_Config MyConfig; TIMER_getConfig(hTimer,&MyConfig); TIMER_getEventId Obtains IRQ event ID for TIMER device Function Uint16 TIMER_getEventId( TIMER_Handle hTimer ); Arguments hTimer Device handle (see TIMER_open). Return Value Event ID IRQ Event ID for the timer device Description Obtains the IRQ event ID for the timer device (see Chapter 10, IRQ Module). Example Uint16 TimerEventId; TimerEventId = TIMER_getEventId(hTimer); IRQ_enable(TimerEventId); Timer Module 18-5 TIMER_open TIMER_open Opens TIMER for TIMER calls Function TIMER_Handle TIMER_open( int devnum, Uint16 flags ); Arguments devnum Timer Device Number: TIMER_DEV0, TIMER_DEV1, TIMER_DEV_ANY flags Event Flag Number: Logical open or TIMER_OPEN_RESET Return Value TIMER_Handle Device handler Description Before a TIMER device can be used, it must first be opened by this function. Once opened, it cannot be opened again until closed, see TIMER_close. The return value is a unique device handle that is used in subsequent TIMER calls. If the function fails, an INV (−1) value is returned. If the TIMER_OPEN_RESET is specified, then the power on defaults are set and any interrupts are disabled and cleared. Example TIMER_Handle hTimer; ... hTimer = TIMER_open(TIMER_DEV0,0); 18-6 TIMER_stop TIMER_reset Resets TIMER Function void TIMER_reset( TIMER_Handle hTimer ); Arguments hTimer Return Value none Description Resets the timer device. Disables and clears the interrupt event and sets the timer registers to default values. If INV (−1) is specified, all timer devices are reset. Example TIMER_reset(hTimer); TIMER_start Device handle (see TIMER_open). Starts TIMER device running Function void TIMER_start( TIMER_Handle hTimer ); Arguments hTimer Return Value none Description Starts the timer device running. TSS field =0. Example TIMER_start(hTimer); TIMER_stop Device handle (see TIMER_open). Stops TIMER device running Function void TIMER_stop( TIMER_Handle hTimer ); Arguments hTimer Return Value none Description Stops the timer device running. TSS field =1. Example TIMER_stop(hTimer); Device handle (see TIMER_open). Timer Module 18-7 TIMER_tintoutCfg TIMER_tintoutCfg Configures TINT/TOUT pin Function void TIMER_tintoutCfg( TIMER_Handle hTimer, Uint16 idleen, Uint16 func, Uint16 pwid, Uint16 cp, Uint16 polar ); Arguments hTimer Device handle (see TIMER_open). idleen Timer idle mode func Function of the TIN/TOUT pin and the source of the timer module. pwid TIN/TOUT pulse width cp Clock or pulse mode polar Polarity of the TIN/TOUT pin Return Value none Description Configures the TIN/TOUT pin of the device using the TCR register Example Timer_tintoutCfg(hTimer, 1, /*idleen*/ 1, /*funct*/ 0, /*pwid*/ 0, /*cp*/ 0 /*polar*/ ); 18-8 Macros 18.4 Macros The CSL offers a collection of macros to gain individual access to the TIMER peripheral registers and fields. Table 18−4 lists of macros available for the TIMER module using TIMER port number and Table 18−5 lists the macros for the TIMER module using handle. To use them, include “csl_timer.h.” Table 18−3 lists DMA registers and fields. Table 18−4. TIMER CSL Macros Using Timer Port Number (a) Macros to read/write TIMER register values Macro Syntax TIMER_RGET() Uint16 TIMER_RGET(REG#) TIMER_RSET() Void TIMER_RSET(REG#, Uint16 regval) (b) Macros to read/write TIMER register field values (Applicable only to registers with more than one field) Macro Syntax TIMER_FGET() Uint16 TIMER_FGET(REG#, FIELD) TIMER_FSET() Void TIMER_FSET(REG#, FIELD, Uint16 fieldval) (c) Macros to create value to TIMER registers and fields (Applies only to registers with more than one field) Macro Syntax TIMER_REG_RMK() Uint16 TIMER_REG_RMK(fieldval_n,…fieldval_0) Note: *Start with field values with most significant field positions: field_n: MSB field field_0: LSB field *only writable fields allowed TIMER_FMK() Uint16 TIMER_FMK(REG, FIELD, fieldval) (d) Macros to read a register address Macro Syntax TIMER_ADDR() Uint16 TIMER_ADDR(REG#) Notes: 1) REG indicates the registers: TCR, PRD, TIM, PRSC 2) REG# indicates, if applicable, a register name with the channel number (example: TCR0) 3) FIELD indicates the register field name as specified in the C55x DSP Peripherals Reference Guide. For REG_FSET and REG_FMK, FIELD must be a writable field. For REG_FGET, the field must be a readable field. 4) regval indicates the value to write in the register (REG). 5) fieldval indicates the value to write in the field (FIELD). Timer Module 18-9 Macros Table 18−5. TIMER CSL Macros Using Handle (a) Macros to read/write TIMER register values Macro Syntax TIMER_RGETH() Uint16 TIMER_RGETH(TIMER_Handle hTimer, REG) TIMER_RSETH() Void TIMER_RSETH( TIMER_Handle hTimer, REG, Uint16 regval ) (b) Macros to read/write TIMER register field values (Applicable only to registers with more than one field) Macro Syntax TIMER_FGETH() Uint16 TIMER_FGETH(TIMER_Handle hTimer, REG, FIELD) TIMER_FSETH() Void TIMER_FSETH( TIMER_Handle hTimer, REG, FIELD, Uint16 fieldval) (c) Macros to read a register address Macro Syntax TIMER_ADDRH() Uint16 TIMER_ADDRH(TIMER_Handle hTimer, REG) Notes: 1) REG indicates the registers: TCR, PRD, TIM, and PRSC 2) FIELD indicates the register field name as specified inthe C55x DSP Peripherals Reference Guide. For REG_FSETH, FIELD must be a writable field. For REG_FGETH, the field must be a readable field. 3) regval indicates the value to write in the register (REG). 4) fieldval indicates the value to write in the field (FIELD). 18-10 Chapter 19 UART Module This chapter describes the UART module, lists the API structure, functions, and macros within the module, and provides a UART API reference section. Topic Page 19.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-2 19.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-5 19.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-8 19.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-14 19-1 Overview 19.1 Overview The Universal Asynchronous Receiver/Transmitter (UART) controller is the key component of the serial communications subsystem of a computer. Asynchronous transmission allows data to be transmitted without a clock signal to the receiver. Instead, the sender and receiver must agree on timing parameters in advance. Special bits are added to each word that is used to synchronize the sending and receiving units. The configuration of UART can be performed by using one of the following methods: 1) Register-based configuration A register-based configuration can be performed by calling either UART_config() or any of the SET register field macros. 2) Parameter-based configuration (Recommended) A parameter-based configuration can be performed by calling UART_setup(). Compared to the register-based approach, this method provides a higher level of abstraction. Table 19−1 lists the configuration structures and functions used with the UART module. Table 19−1. UART APIs Structure Type Purpose See page ... UART_Config S UART configuration structure used to setup the UART 19-5 UART_config F Sets up the UART using the configuration structure 19-8 UART_eventDisable F Disable UART interrupts 19-8 UART_eventEnable F Enable UART interrupts 19-9 UART_fgetc F Read a character from UART by polling 19-10 UART_fgets F This routine reads a string from the uart 19-11 UART_fputc F Write a character from UART by polling 19-11 UART_fputs F This routine writes a string from the uart 19-11 UART_getConfig F Reads the UART configuration 19-11 UART_read F Read a buffer of data from UART by polling 19-12 UART_setCallback F Plugs UART interrupt routines into UART dispatcher table 19-12 Note: 19-2 F = Function; S = Structure Overview Table 19−1. UART APIs (Continued) Structure Type Purpose See page ... UART_Setup S UART configuration structure used to setup the UART 19-5 UART_setup F Sets up the UART using the register values passed into the code 19-13 UART_write F Write a buffer of data to UART by polling 19-13 Note: F = Function; S = Structure UART Module 19-3 UART_Setup 19.2 Configuration Structures UART_Config Configuration Structure for UART Members Description UART_Setup Uint16 dll Divisor Latch Register (low 8 bits) Uint16 dlm Divisor Latch Register (high 8 bits) Uint16 lcr Line Control Register Uint16 fcr FIFO Control Register Uint16 mcr Modem Control Register UART configuration structure. This structure is created and initialized, and then passed to the UART_Config() function. Structure used to initialize the UART Members Uint16 clkInput UART input clock frequency. Valid symbolic values are: UART_CLK_INPUT_20 // Input clock = 20MHz UART_CLK_INPUT_40 // Input clock = 40MHz UART_CLK_INPUT_60 // Input clock = 60MHz UART_CLK_INPUT_80 // Input clock = 80MHz UART_CLK_INPUT_100 // Input clock = 100MHz UART_CLK_INPUT_120 // Input clock = 120MHz UART_CLK_INPUT_140 // Input clock = 140MHz Uint16 baud Baud Rate (Range: 150 − 115200). Valid symbolic values are: UART_BAUD_150 UART_BAUD_300 UART_BAUD_600 UART_BAUD_1200 UART_BAUD_1800 UART_BAUD_2000 UART_BAUD_2400 UART_BAUD_3600 UART Module 19-5 UART_Setup UART_BAUD_4800 UART_BAUD_7200 UART_BAUD_9600 UART_BAUD_14400 UART_BAUD_19200 UART_BAUD_38400 UART_BAUD_57600 UART_BAUD_115200 Uint16 wordLength bits per word (Range: 5,6,7,8). Valid symbolic values are: UART_WORD5 5 bits per word UART_WORD6 6 bits per word UART_WORD7 7 bits per word UART_WORD8 8 bits per word Uint16 stopBits stop bits in a word (1, 1.5, and 2) Valid symbolic values are: UART_STOP1 1 stop bit UART_STOP1_PLUS_HALF 1 and 1/2 stop bits UART_STOP2 Uint16 parity 2 stop bits parity setups Valid symbolic values are: UART_DISABLE_PARITY UART_ODD_PARITY odd parity UART_EVEN_PARITY even parity UART_MARK_PARITY mark parity (the parity bit is always ‘1’) UART_SPACE_PARITY space parity (the parity bit is always ‘0’) 19-6 UART_Setup Uint16 fifoControl FIFO Control Valid symbolic values are: UART_FIFO_DISABLE //Non FIFO mode UART_FIFO_DMA0_TRIG01 //DMA mode 0 and Trigger level 1 UART_FIFO_DMA0_TRIG04 //DMA mode 0 and Trigger level 4 UART_FIFO_DMA0_TRIG08 //DMA mode 0 and Trigger level 8 UART_FIFO_DMA0_TRIG14 //DMA mode 0 and Trigger level 14 UART_FIFO_DMA1_TRIG01 //DMA mode 1 and Trigger level 1 UART_FIFO_DMA1_TRIG04 //DMA mode 1 and Trigger level 4 UART_FIFO_DMA1_TRIG08 //DMA mode 1 and Trigger level 8 UART_FIFO_DMA1_TRIG14 //DMA mode 1 and Trigger level 14 Uint16 loopbackEnable loopback Enable Valid Symbolic values are: UART_NO_LOOPBACK UART_LOOPBACK Description Structure used to init the UART. After created and initialized, it is passed to the UART_setup() function. UART Module 19-7 UART_config 19.3 Functions 19.3.1 CSL Primary Functions UART_config Initializes the UART using the configuration structure Function void UART_config (UART_Config *Config); Arguments Configure pointer to an initialized configuration structure (containing values for all registers that are visible to the user) Description Writes a value to initialize the UART using the configuration structure. Example UART_Config Config = { 0x00, /* DLL */ 0x06, /* DLM – baud rate 150 */ 0x18, /* LCR – even parity, 1 stop bit, 5 bits word length */ 0x00, /* Disable FIFO */ 0x00 /* No Loop Back */ }; UART_config(&Config); UART_eventDisable Disables UART interrupts Function void UART_eventDisable(Uint16 ierMask); Arguments ierMask can be one or a combination of the following: UART_RINT 0x01 // Enable rx data available interrupt UART_TINT 0x02 // Enable tx hold register empty interrupt UART_LSINT 0x04 // Enable rx line status interrupt UART_MSINT 0x08 // Enable modem status interrupt UART_ALLINT 0x0f 19-8 // Enable all interrupts UART_eventEnable Description It disables the interrupt specified by the ierMask. Example UART_eventDisable(UART_TINT); UART_eventEnable Enables a UART interrupt Function void UART_eventEnable (Uint16 isrMask); Arguments isrMask can be one or a combination of the following: UART_RINT 0x01 // Enable rx data available interrupt UART_TINT 0x02 // Enable tx hold register empty interrupt UART_LSINT 0x04 // Enable rx line status interrupt UART_MSINT 0x08 // Enable modem status interrupt UART_ALLINT 0x0f // Enable all interrupts Description It enables the UART interrupt specified by the isrMask. Example UART_eventEnable(UART_RINT|UART_TINT); UART Module 19-9 UART_fgetc UART_fgetc Reads UART characters Function CSLBool UART_fgetc(int *c, Uint32 timeout); Arguments c timeout Description Read a character from UART by polling. Example Int retChar; CSLBool returnFlag Character read from UART Time out for data ready. If it is setup as 0, means there will be no time out count. The function will block forever until DR bit is set. returnFlag = UART_fgetc(&retChar,0); UART_fgets Reads UART strings Function CSLBool UART_fgets(char* pBuf, int bufSize, Uint32 timeout); Arguments pBuf bufSize timeout Description This routine reads a string from the uart. The string will be read upto a newline or until the buffer is filled. The string is always NULL terminated and does not have any newline character removed. Example char readBuf[10]; CSLBool returnFlag Pointer to a buffer Length of the buffer Time out for data ready. If it is setup as 0, means there will be no time out count. The function will block forever until DR bit is set. returnFlag = UART_fgets(&readBuf[0], 10, 0); 19-10 UART_getConfig UART_fputc Writes characters to the UART Function CSLBool UART_fputc(const int c, Uint32 timeout); Arguments c timeout Description This routine writes a character out through UART. Example Example const int putchar = ‘A’; CSLBool returnFlag; The character, as an int, to be sent to the uart. Time out for data ready. If it is setup as 0, means there will be no time out count. The function will block forever if THRE bit is not set. ReturnFlag = UART_fputc(putchar, 0); UART_fputs Writes strings to the UART Function CSLBool UART_fputs(const char* pBuf, Uint32 timeout); Arguments pBuf timeout Description This routine writes a string to the uart. The NULL terminator is not written and a newline is not added to the output. Example UART_fputs(”\n\rthis is a test!\n\r”); UART_getConfig Pointer to a buffer Time out for data ready. If it is setup as 0, means there will be no time out count. The function will block forever if THRE bit is not set. Reads the UART Configuration Structure Function void UART_getConfig (UART_Config *Config); Arguments Config Pointer to an initialized configuration structure (including all registers that are visible to the user) Description Reads the UART configuration structure. Example UART_Config Config; UART_getConfig(&Config); UART Module 19-11 UART_read UART_read Reads received data Function CSLBool UART_read(char *pBuf, Uint16 length, Uint32 timeout); Arguments pbuf length timeout Description Receive and put the received data to the buffer pointed by pbuf. Example Uint16 length = 10; char pbuf[length]; CSLBool returnFlag; Pointer to a buffer Length of data to be received Time out for data ready. If it is setup as 0, means there will be no time out count. The function will block forever until DR bit is set. ReturnFlag = UART_read(&pbuf[0],length, 0); UART_setCallback Associates a function to the UART dispatch table Function void UART_setCallback(UART_IsrAddr *isrAddr); Arguments isrAddr is a structure containing pointers to the 5 functions that will be executed when the corresponding events is enabled. Description It associates each function specified in the isrAddr structure to the UART dispatch table. Example UART_IsrAddr MyIsrAddr= { NULL, // Receiver line status UartRxIsr, // received data available UartTxIsr, // transmiter holding register empty NULL // character time-out indication }; UART_setCallback(&MyIsrAddr); 19-12 UART_write UART_setup Sets the UART based on the UART_Setup configuration structure Function void UART_setup (UART_Setup *Params); Arguments Params Pointer to an initialized configuration structure that contains values for UART setup. Description Sets UART based on UART_Setup structure. Example UART_Setup Params = { UART_CLK_INPUT_60, /* input clock freq */ UART_BAUD_115200, /* baud rate */ UART_WORD8, /* word length */ UART_STOP1, /* stop bits */ UART_DISABLE_PARITY, /* parity */ UART_FIFO_DISABLE, /* FIFO control */ UART_NO_LOOPBACK, /* Loop Back enable/disable */ }; UART_setup(&Params); UART_write Transmits buffers of data by polling Function CSLBool UART_write(char *pBuf, Uint16 length, Uint32 timeout); Arguments pbuf Length timeout Description Transmit a buffer of data by polling. Example Uint16 length = 4; char pbuf[4] = {0x74, 0x65, 0x73, 0x74}; CSLBool returnFlag; Pointer to a data buffer Length of the data buffer Time out for data ready. If it is setup as 0, means there will be no time out count. The function will block forever if THRE bit is not set. ReturnFlag = UART_write(&pbuf[0],length,0); UART Module 19-13 UART_write 19.4 Macros The following macros are used with the UART chip support library. 19.4.1 General Macros Table 19−2. UART CSL Macros Macro Syntax (a) Macros to read/write UART register values UART_RGET() Uint16 UART_RGET(REG) UART_RSET() void UART_RSET(REG, Uint16 regval) (b) Macros to read/write UART register field values (Applicable only to registers with more than one field) UART_FGET() Uint16 UART_FGET(REG, FIELD) UART_FSET() void UART_FSET(REG, FIELD, Uint16 fieldval) (c) Macros to create value to write to UART registers and fields (Applicable only to registers with more than one field) UART_REG_RMK() Uint16 UART_REG_RMK(fieldval_n,...fieldval_0) Note: *Start with field values with most significant field positions: field_n: MSB field field_0: LSB field * only writable fields allowed UART_FMK() Notes: Uint16 UART_FMK(REG, FIELD, fieldval) 1) REG indicates the registers: URIER, URIIR, URBRB, URTHR, URFCR, URLCR, URMCR, URLSR, URMSR, URDLL or URDLM. 2) FIELD indicates the register field name. 3) − or REG_FSET and REG__FMK, FIELD must be a writable field. 4) − For REG_FGET, the field must be a readable field. 5) regval indicates the value to write in the register (REG) 6) fieldval indicates the value to write in the field (FIELD) 19-14 UART_write Table 19−2. UART CSL Macros (Continued) Macro Syntax (d) Macros to read a register address UART_ADDR() Notes: Uint16 UART_ADDR(REG) 1) REG indicates the registers: URIER, URIIR, URBRB, URTHR, URFCR, URLCR, URMCR, URLSR, URMSR, URDLL or URDLM. 2) FIELD indicates the register field name. 3) − or REG_FSET and REG__FMK, FIELD must be a writable field. 4) − For REG_FGET, the field must be a readable field. 5) regval indicates the value to write in the register (REG) 6) fieldval indicates the value to write in the field (FIELD) 19.4.2 UART Control Signal Macros All the UART control signals are mapped through HPIGPIO pins. They are configurable through GPIOCR and GPIOSR registers. Since C54x DSP are commonly used as DCE (Data Communication Equipment), these signals are configured as following: HD0 − DTR – Input HD1 − RTS – Input HD2 − CTS – Output HD3 − DSR – Output HD4 − DCD – Output HD5 − RI – Output UART Module 19-15 UART_ctsOff UART_ctsOff Sets a CTS signal to OFF Macro UART_ctsOff Arguments None Description Set CTS signal off. Example UART_ctsOff; UART_ctsOn Sets a CTS signal to ON Macro UART_ctsOn Arguments None Description Set CTS signal on. Example UART_ctsOn; UART_isRts Verifies that RTS is ON Macro UART_isRts Arguments None Description Check if RTS is on. Return RTS value. Example CSLBool rtsSignal; rtsSignal = UART_isRts; UART_dtcOff Sets a DTC signal to OFF Macro UART_dtcOff Arguments None Description Set DTC signal off. Example UART_dtcOff; UART_dtcOn Sets a DTC signal to ON Macro UART_dtcOn Arguments None Description Set DTC signal on. Example UART_dtcOn; 19-16 UART_isDtr UART_riOff Sets an RI signal to OFF Macro UART_riOff Arguments None Description Set RI signal off. Example UART_riOff; UART_riOn Sets an RI signal to ON Macro UART_riOn Arguments None Description Set RI signal on. Example UART_riOn; UART_dsrOff Sets a DSR signal to OFF Macro UART_dsrOff Arguments None Description Set DSR signal off. Example UART_dsrOff; UART_dsrOn Sets a DSR signal to ON Macro UART_dsrOn Arguments None Description Set DSR signal on. Example UART_dsrOn; UART_isDtr Verifies that DTR is ON Macro UART_isDtr Arguments Nobe Description Check if DTR is on. Return DTR value. Example CSLBool dtrSignal; dtrSignal = UART_isDtr; UART Module 19-17 Chapter 20 WDTIM Module This chapter describes the WDTIM module, lists the API structure, functions, and macros within the module, and provides a WDTIM API reference section. Topic Page 20.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-2 20.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-3 20.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-4 20.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-14 20-1 Overview 20.1 Overview Table 20−1 lists the configuration structures and functions used with the WDTIM module. Table 20−1. WDTIM Structure and APIs Structure Desctiption See page... WDTIM_Config Structure used to configure a WDTIM Device Syntax Desctiption WDTIM_config Configures WDTIM using configuration structure 20-4 WDTIM_service Executes the watchdog service sequence 20-9 20-3 See page... The following functions are supported by C5509/C5509A only WDTIM_getConfig Reads the WDTIM configuration structure 20-5 WDTIM_start Starts the WDTIM device running 20-10 The following functions are supported by C5502 and C5501 WDTIM_close Closes previously opened WDTIMER device 20-4 WDTIM_getCnt Gives the timer count values 20-5 WDTIM_getPID Gets peripheral ID details 20-6 WDTIM_init64 Intializes the timer in 64 bit mode 20-6 WDTIM_open Opens the WDTIM device for use 20-9 WDTIM_start Pulls both timers out of reset before activating the watchdog timer 20-10 WDTIM_stop Stops all the timers if running 20-12 WDTIM_wdStart Activates the watchdog timer 20-13 20-2 WDTIM_Config 20.2 Configuration Structures The following is the configuration structure used to set up the Watchdog Timer module. WDTIM_Config Structure used to configure a WDTIM device Structure WDTIM_Config Members For C5509/5509A only Uint16 wdprd Period register Uint16 wdtcr Control register Uint16 wdtcr2 Secondary register Members For C5502 and C5501 Uint16 wdtemu Emulation management register Uint16 wdtgpint GPIO interrupt control register Uint16 wdtgpen GPIO enable register Uint16 wdtgpdir GPIO direction register Uint16 wdtgpdat GPIO data register Uint16 wdtprd1 Timer period register 1 Uint16 wdtprd2 Timer period register 2 Uint16 wdtprd3 Timer period register 3 Uint16 wdtprd4 Timer period register 4 Uint16 wdtctl1 Timer control register 1 Uint16 wdtctl2 Timer control register 2 Uint16 wdtgctl1 Global timer control register Uint16 wdtwctl1 Watchdog timer control register 1 Uint16 wdtwctl2 Watchdog timer control register 2 Example This example shows how to configure a watchdog timer for C5509/5509A devices. WDTIM_Config MyConfig = { 0x1000, /* Period */ 0x0000, /* Control */ }; 0x1000 /* Secondary control */ WDTIM_config(&MyConfig); WDTIM Module 20-3 WDTIM_close 20.3 Functions The following functions are available for use with the Watchdog Timer module. WDTIM_close Closes a previously opened WDTIMER device Function void WDTIM_close(WDTIM_Handle hWdtim) Arguments hWdtim Device handle; see WDTIM_open Return Value None Description WDTIM_close closes a previously opened WDTIMER device Example WDTIM_Handle hWdtim; ... WDTIM_close(hWdtim); WDTIM_config Function Configures WDTIM using configuration structure For 5509/5509A only void WDTIM_config( WDTIM_Config *myConfig ); Function For 5502 and 5501 only void WDTIM_config( WDTIM_Handle hWdtim, WDTIM_Config *myConfig ); Arguments For 5509/5509A only myConfig Pointer to the initialized configuration structure Arguments For 5502 and 5501 only hWdtim Device Handle; see WDTIM_open myConfig Pointer to the initialized configuration structure Return Value None Description Configures the WDTIMER device using the configuration structure which contains members corresponding to each of the WDTIM registers. These values are directly written to the corresponding WDTIM device−registers. 20-4 WDTIM_getConfig Example This is the example skeleton code for 5502 and 5501 only WDTIM_Handle hWdtim; WDTIM_Config MyConfig; ... WDTIM_config(hWdtim, &MyConfig); WDTIM_getCnt Gives the timer count values Function void WDTIM_getCnt( WDTIM_Handleh, Uint32 *hi32, Uint32 *lo32 ) Arguments h hi32 lo32 Return Value None Description Gives the timer count values. hi32 will give CNT1 and CNT2 values aligned in 32 bit. lo32 will give CNT3 and CNT4 values aligned in 32 bit. Example WDTIM_Handle hWdtim; Uint32 *hi32,*lo32; ... Device Handle; see WDTIM_open Pointer to obtain CNT3 and CNT4 values Pointer to obtain CNT1 and CNT2 values WDTIM_getCnt(hWdtim,hi32,lo32); WDTIM_getConfig Gets the WDTIM configuration structure for a specified device Function void WDTIMER_getConfig( WDTIMER_Config *Config ); Arguments Config Return Value None Description Gets the WDTIM configuration structure for a specified device. Example WDTIM_Config MyConfig; WDTIM_getConfig(&MyConfig); Pointer to a WDTIM configuration structure WDTIM Module 20-5 WDTIM_getPID WDTIM_getPID Gets peripheral ID details Function void WDTIM_getPID( WDTIM_HandlehWdtim, Uint16 *_type, Uint16 *_class, Uint16 *revision ) Arguments hWdtim _type _class revision Return Value None Description Obtains the peripheral ID details like class ,type and revision Example WDTIM_Handle hWdtim; Uint16 *type; Uint16 *class; Uint16 *rev; Device Handle; see WDTIM_open Pointer to obtain Device type Pointer to obtain device class Pointer to obtain device revision ... WDTIM_getPID(hWdtim,type,class,rev); WDTIM_init64 Initializes the timer in 64-bit mode Function void WDTIM_init64( WDTIM_HandlehWdtim, Uint16 gptgctl, Uint16 dt12ctl, Uint32 prdHigh, Uint32 prdLow ) Arguments hWdtim gptgctl dt12ctl prdHigh prdLow Return Value None Description This API is used to set up and intialize the timer in 64 bit mode. It allows to initialize the period and also provide arguments to setup the timer control registers. 20-6 Device Handle; see WDTIM_open Global timer control(not used) timer1 control value MSB of timer period value LSB of timer period value WDTIM_initChained32 Example WDTIM_Handle hWdtim; ...... WDTIM_init64( hWdtim, // 0x0000, // 0x5F04, // 0x0000, // 0x0000 // WDTIM_initChained32 Device Global timer1 MSB of LSB of Handle; see WDTIM_open timer control(not used) control value timer period value timer period value Initializes the timer in dual 34-bit chained mode Function void WDTIM_initChained32( WDTIM_Handle hWdtim, Uint16 gctl, Uint16 ctl1, Uint32 prdHigh, Uint32 prdLow ) Arguments hWdtim gctl ctl1 prdHigh prdLow Return Value None Description This API is used to set up and intialize two 32-bit timers in chained mode. It allows to initialize the period and also provide arguments to set up the timer control registers. Example WDTIM_Handle hWdtim; ...... WDTIM_initChained32( Handle hWdtim, 0x0000 // Global timer control(not used) 0x5F04 // Timer1 control value 0x0000,// MSB of timer period value 0x0000 // LSB of timer period value ); Device Handle; see WDTIM_open Global timer control(not used) Timer1 control value Higher bytes of timer period value Lower bytes of timer period value WDTIM Module 20-7 WDTIM_initDual32 Initializes the timer in dual 32-bit unchained mode WDTIM_initDual32 Function void WDTIM_initDual32( WDTIM_Handle hWdtim, Uint16 dt1ctl, Uint16 dt2ctl, Uint32 dt1prd, Uint32 dt2prd, Uint16 dt2prsc ) Arguments hWdtim dt1ctl dt2ctl dt1prd dt2prd dt2prsc Return Value None Description This API is used to set up and intialize the timer in dual 32-bit unchained mode. It allows to initialize the period for both the timers and also the prescalar counter which specify the count of the timer.It also provide arguments to setup the timer control registers. Example WDTIM_Handle hWdtim; ...... WDTIM_initDual32( hWdtim, 0x3FE, // timer1 control value 0x3FE, // timer2 control value 0x005, // Timer1 period 0x008, // Timer2 period 0x0FF // Prescalar count ); 20-8 Device Handle; see WDTIM_open timer1 control value timer2 control value Timer1 period Timer2 period Prescalar count WDTIM_service WDTIM_open Opens the WDTIM device for use Function WDTIM_Handle WDTIM_open( void ) Arguments None Return Value WDTIM_Handle Description Before the WDTIM device can be used, it must be ’opened’ using this function. Once opened it cannot be opened again until it is ’closed’ (see WDTIM_close). The return value is a unique device handle that is used in subsequent WDTIM API calls. Example WDTIM_Handle hWdtim; ... hWdtim = WDTIM_open(); WDTIM_service Function Executes the watchdog service sequence For 5509/5509A void WDTIM_service( void ); Arguments void Return Value None Description Executes the watchdog timer service sequence Example WDTIM_service(); Function For C5502 and 5501 void WDTIM_service( WDTIM_Handle hWdt ); Arguments hWdt Device Handle; see WDTIM_open Return Value None WDTIM Module 20-9 WDTIM_start Description Executes the watchdog service sequence Example WDTIM_Handle hWdtim; ... WDTIM_service(hWdtim); WDTIM_start Function Starts the watchdog timer operation (5509/5509A)/ Pulls both timers out of reset (5502/5501) For 5509/5509A only void WDTIM_start( void ); Arguments void Return Value None Description Starts the watchdog timer device running. Example WDTIM_start(); Function For 5502 and 5501 only void WDTIM_start( WDTIM_Handle hWdt ); Arguments hWdt Device Handle; see WDTIM_open Return Value None Description Starts both the timers running, i.e., timer12 and timer34 are pulled out of reset. Example WDTIM_Handle hWdtim; ... WDTIM_start (hWdtim); 20-10 WDTIM_start34 WDTIM_start12 Starts the 32-bit timer1 device Function void WDTIM_start12( WDTIM_Handle hWdtim ) Arguments hWdtim Device Handle; see WDTIM_open Return Value None Description Starts the 32-bit timer1 device Example WDTIM_Handle hWdtim; .... WDTIM_start12(hWdtim); WDTIM_start34 Starts the 32-bit timer2 device Function void WDTIM_start34( WDTIM_Handle hWdtim ) Arguments hWdtim Device Handle; see WDTIM_open Return Value None Description Starts the 32-bit timer2 device Example WDTIM_Handle hWdtim; .... WDTIM_start12(hWdtim); WDTIM Module 20-11 WDTIM_stop WDTIM_stop Function Stops all the timers if running void WDTIM_stop( WDTIM_Handle ) hWdtim Arguments hWdtim Return Value None Example Stops the timer if running. Example WDTIM_Handle hWdtim; .... WDTIM_stop(hWdtim); WDTIM_stop12 Device Handle; see WDTIM_open. Stops the 32-bit timer1 device if running Function void WDTIM_stop12( WDTIM_Handle hWdtim ) Arguments hWdtim Return Value None Description Stops the 32-bit timer1 device if running. Example WDTIM_Handle hWdtim; .... WDTIM_stop12(hWdtim); WDTIM_stop34 Device Handle; see WDTIM_open Stops the 32-bit timer2 device if running Function void WDTIM_stop34( WDTIM_Handle hWdtim ) Arguments hWdtim Return Value None Description Stops the 32-bit timer2 device if running. Example WDTIM_Handle hWdtim; .... WDTIM_stop34(hWdtim); 20-12 Device Handle; see WDTIM_open WDTIM_wdStart WDTIM_wdStart Activates the watchdog timer Function void WDTIM_wdStart( WDTIM_Handle hWdt ) Arguments Arguments hWdt Device Handle; see WDTIM_open Return Value None Description Activates the watchdog timer. Example WDTIM_Handle hWdtim; .... WDTIM_wdStart(hWdtim); WDTIM Module 20-13 Macros 20.4 Macros The CSL offers a collection of macros to access CPU control registers and fields. For additional details, see section 1.5. Table 20−2 lists the WDTIM macros available. To use them, include “csl_wdtimer.h.” Table 3−3 lists DMA registers and fields. Table 20−2. WDTIM CSL Macros (a) Macros to read/write WDTIM register values Macro Syntax WDTIM_RGET() Uint16 WDTIM_RGET(REG) WDTIM_RSET() void WDTIM_RSET(REG, Uint16 regval) (b) Macros to read/write WDTIM register field values (Applicable only to registers with more than one field) Macro Syntax WDTIM_FGET() Uint16 WDTIM_FGET(REG, FIELD) WDTIM_FSET() void WDTIM_FSET(REG, FIELD, Uint16 fieldval) (c) Macros to create value to write to WDTIM registers and fields (Applicable only to registers with more than one field) Macro Syntax WDTIM_REG_RMK() Uint16 WDTIM_REG_RMK(fieldval_n,...fieldval_0) Note: *Start with field values with most significant field positions: field_n: MSB field field_0: LSB field * only writable fields allowed WDTIM_FMK() Uint16 WDTIM_FMK(REG, FIELD, fieldval) (d) Macros to read a register address Macro Syntax WDTIM_ADDR() Notes: Uint16 WDTIM_ADDR(REG) 1) REG indicates the registers: WDTCR, WDPRD, WDTCR2, or WDTIM. 2) FIELD indicates the register field name. For REG_FSET and REG__FMK, FIELD must be a writable field. For REG_FGET, the field must be a readable field. 3) regval indicates the value to write in the register (REG) 4) fieldval indicates the value to write in the field (FIELD) 20-14 Chapter 21 GPT Module This chapter describes the GPT module, lists the API structure, functions and macros within the module, and provides a GPT API reference section. Topic Page 21.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-2 21.2 Configuration Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-3 21.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-4 21-1 Overview 21.1 Overview This section describes the interface to the two general purpose timers (GPT0, GPT1) available in TMS320VC5501/5502 DSPs. It also lists the API functions and macros within the module, discusses how to use a GPT device, and provides a GPT API reference section. Table 21−1 lists the configuration structure used to set the GPT module. Table 21−2 lists the functions available for the GPT module. Table 21−1. GPT Configuration Structure Syntax Description GPT_Config Structure used to configure a GPT device See page ... 21-3 GPT_OPEN_RESET GPT reset flag, used while opening the GPT device 21-3 Table 21−2. GPT Functions Structure Purpose GPT_close Closes previously opened GPT device 21-4 GPT_config Configure GPT using configuration structure 21-4 GPT_getCnt Gives the timer count values 21-5 GPT_getConfig Reads the current GPT configuration values 21-5 GPT_getEventId Returns event ID of the opened GPT device 21-6 GPT_getPID Gets peripheral ID details 21-6 GPT_init64 Intialize the timer in 64 bit mode 21-7 GPT_initChained32 Intialize the timer in dual 32 bit chained mode 21-8 GPT_initDual32 Intialize the timer in dual 32 bit unchained mode 21-9 GPT_open Opens a GPT device for use 21-10 GPT_reset Resets a GPT 21-10 GPT_start Starts all the timers 21-11 GPT_start12 Starts the 32 bit timer1 device 21-11 GPT_start34 Starts the 32 bit timer2 device 21-11 GPT_stop Stops the timer if running 21-12 GPT_stop12 Stops the 32 bit timer1 device if running 21-12 GPT_stop34 Stops the 32 bit timer2 device if running 21-13 21-2 See page ... GPT_OPEN_RESET GPT 21.2 Configuration Structure The following is the configuration structure used to set up the GPT module. GPT_Config Structure used to configure a GPT device Structure GPT_Config Members Uint16 gptemu //Emulation management register Uint16 gptgpint //GPIO interrupt control register Uint16 gptgpen //GPIO enable register Uint16 gptgpdir //GPIO direction register Uint16 gptgpdat //GPIO data register Uint16 gptprd1 //Timer period register 1 Uint16 gptprd2 //Timer period register 2 Uint16 gptprd3 //Timer period register 3 Uint16 gptprd4 //Timer period register 4 Uint16 gptctl1 //Timer control register 1 Uint16 gptctl2 //Timer control register 2 Uint16 gptgctl1 //Global timer control register Description This is the GPT configuration structure used to configure a GPT device. The user should create and initalize this structure before passing its address to the GPT_config function. GPT_OPEN_RESET GPT Reset flag, used while opening the GPT device Constant GPT_OPEN_RESET Description This flag is used while opening a GPT device. Example See GPT_open GPT Module 21-3 GPT_close 21.3 Functions The following are functions available for use with the GPT module. GPT_close Function Closes previously opened GPT device void GPT_close( GPT_Handle ) hGpt Arguments hGpt Device handle; see GPT_open Return Value none Description Closes the previously opened GPT device(see GPT_open). The following tasks are performed: The GPT event is disabled and cleared The GPT registers are set to their default values Example GPT_config Function GPT_Handle hGpt; ..... GPT_close(hGpt); Configure GPT using configuration structure void GPT_config( GPT_Handle GPT_Config ) hGpt, *myConfig Arguments hGpt Device Handle; see GPT_open myConfig Pointer to the initialized configuration structure Return Value none Description Configures the GPT device using the configuration structure which contains members corresponding to each of the GPT registers. These values are directly written to the corresponding GPT device-registers. 21-4 GPT_getConfig Example GPT_getCnt Function GPT_Handle hGpt; GPT_Config MyConfig ... GPT_config(hGpt, &MyConfig); Gives the timer count values void GPT_getCnt( GPT_Handle hGpt, Uint32 *tim34, Uint32 *tim12 ) Arguments hGpt Device Handle; see GPT_open tim34 Pointer to obtain CNT3 and CNT4 values tim12 Pointer to obtain CNT1 and CNT2 values Return Value none Description Gives the timer count values. tim12 will give CNT1 and CNT2 values aligned in 32-bit format. tim34 will give CNT3 and CNT4 values aligned in 32-bit format. Example GPT_Handle hGpt; Uint32 *tim12,*tim34; ... GPT_getCnt(hGpt,tim34,tim12); GPT_getConfig Function Reads the current GPT configuration values void GPT_getConfig( GPT_Handle hGpt, GPT_Config *myConfig ) Arguments hGpt Device Handle; see GPT_open myConfig Pointer to the configuration structure GPT Module 21-5 GPT_getEventId Return Value none Description Gives the current GPT configuration values. Example GPT_Handle hGpt; GPT_Config gptCfg; ..... GPT_getConfig(hGpt, &gptCfg); GPT_getEventId Returns event ID of the opened GPT device Function Uint16 GPT_getEventId( GPT_Handle hgpt ) Arguments hGpt Return Value Uint16 Event Id value Description Before using IRQ APIs to setup/enable/disable ISR for device, this function must be used. The return value of this function can later be used as an input to IRQ APIs. Example GPT_Handle hGpt; Uint16 gptEvt_Id; ... gptEvt_Id = GPT_getEventId(hGpt); IRQ_clear(gptEvt_Id); IRQ_plus (gptEvt_Id, & gptIsr); IRQ_enable (gptEvt_Id); GPT_getPID Function Handle of GPT device opened Gets peripheral ID details void GPT_getPID( GPT_Handle hGpt, Uint16 *_type, Uint16 *_class, Uint16 *revision ) Arguments 21-6 hGpt Device Handle; see GPT_open _type Pointer to obtain device type GPT_init64 _class Pointer to obtain device class revision Pointer to obtain device revision Return Value none Description Obtains the peripheral ID details like class, type, and revision. Example GPT_Handle hGpt; Uint16 *type; Uint16 *class; Uint16 *rev; ... GPT_getPID(hGpt,type,class,rev); GPT_init64 Function Intialize the timer in 64-bit mode void GPT_init64( GPT_Handle hGpt, Uint16 gptgctl, Uint16 dt12ctl, Uint32 prdHigh, Uint32 prdLow ) Arguments hGpt Device Handle; see GPT_open gptgctl Global timer control (not used) dt12ctl timer1 control value prdHigh MSB of timer period value prdLow LSB of timer period value Return Value none Description This API is used to set up and intialize the timer in 64-bit mode. It allows to initialize the period and also provide arguments to setup the timer control registers. GPT Module 21-7 GPT_initChained32 Example GPT_initChained32 Function GPT_Handle hGpt; ...... GPT_init64( hGpt, // Device Handle; see GPT_open 0x0000, // Global timer control(not used) 0x5F04, // timer1 control value 0x0000, // MSB of timer period value 0x0000 // LSB of timer period value ); Intialize the timer in dual 32-bit chained mode void GPT_initChained32( GPT_Handle hGpt, Uint16 gctl, Uint16 ctl1, Uint32 prdHigh, Uint32 prdLow ) Arguments hGpt Device Handle; see GPT_open gctl Global timer control (not used) ctl1 Timer1 control value prdHigh MSB of timer period value prdLow LSB bytes of timer period value Return Value none Description This API is used to set up and intialize two 32-bit timers in chained mode. It allows to initialize the period and also provide arguments to setup the timer control registers. Example GPT_Handle hGpt; ...... GPT_initChained32( hGpt, 0x0000, // Global 0x5F04, // Timer1 0x0000, // MSB of 0x0000 // LSB of ); 21-8 timer control(not used) control value timer period value timer period value GPT_initDual32 GPT_initDual32 Function Intialize the timer in dual 32-bit unchained mode void GPT_initDual32( GPT_Handle hGpt, Uint16 dt1ctl, Uint16 dt2ctl, Uint32 dt1prd, Uint32 dt2prd, Uint16 dt2prsc ) Arguments hGpt Device Handle; see GPT_open dt1ctl Timer1 control value dt2ctl Timer2 control value dt1prd Timer1 period dt2prd Timer2 period dt2prsc Prescalar count Return Value none Description This API is used to set up and intialize the timer in dual 32-bit unchained mode. It allows to initialize the period for both the timers and also the prescalar counter which specify the count of the timer.It also provide arguments to setup the timer control registers. Example GPT_Handle hGpt; ...... GPT_initDual32( hGpt, 0x3FE, // 0x3FE, // 0x005, // 0x008, // 0x0FF // ); ctl1 ctl2 prd1 prd2 psc34 GPT Module 21-9 GPT_open GPT_open Function Opens a GPT device for use GPT_Handle GPT_open( Uint16 devNum, Uint16 flags ) Arguments devNum Specifies the GPT device to be opened flags Open flags GPT_OPEN_RESET: resets the GPT device Return Value GPT_HandleDevice Handle INV: open failed Description Before the GPT device can be used, it must be ‘opened’ using this function. Once opened it cannot be opened again until it is ‘closed’ (see GPT_close). The return value is a unique device handle that is used in subsequent GPT API calls. If the open fails, ‘INV’ is returned. If the GPT_OPEN_RESET flag is specified, the GPT module registers are set to their power-on defaults and any associated interrupts are disabled and cleared. Example GPT_reset Function Handle hGpt; ... hGpt = GPT_open(GPT_DEV0, GPT_OPEN_RESET); Resets a GPT void GPT_reset( GPT_Handle ) hGpt Arguments hGpt Device Handle; see GPT_open Return Value none Description Resets the timer device. Disables and clears any interrupt events and sets the GPT registers to default values. If the handle is INV (−1) , all timer devices are reset. 21-10 GPT_start34 Example GPT_start Function GPT_Handle hGpt; ...... GPT_reset(hGpt); Starts all the timers void GPT_start( GPT_Handle ) hGpt Arguments hGpt Device Handle; see GPT_open Return Value none Description Starts all the timers. Example GPT_Handle hGpt; .... GPT_start(hGpt); GPT_start12 Function Starts the 32-bit timer1 device void GPT_start12( GPT_Handle ) hGpt Arguments hGpt Device Handle; see GPT_open Return Value none Description Starts the 32-bit timer1 device. Example GPT_Handle hGpt; .... GPT_start12(hGpt); GPT_start34 Function Starts the 32-bit timer2 device void GPT_start34( GPT_Handle ) hGpt Arguments hGpt Device Handle; see GPT_open GPT Module 21-11 GPT_stop Return Value none Description Starts the 32-bit timer2 device. Example GPT_Handle hGpt; .... GPT_start34(hGpt); GPT_stop Function Stops the timer, if running void GPT_stop( GPT_Handle ) hGpt Arguments hGpt Device Handle. see GPT_open Return Value none Description Stops the timer, if running. Example GPT_Handle hGpt; .... GPT_stop(hGpt); GPT_stop12 Function Stops the 32-bit timer1 device, if running void GPT_stop12( GPT_Handle ) hGpt Arguments hGpt Device Handle; see GPT_open Return Value none Description Stops the 32-bit timer1 device, if running. Example GPT_Handle hGpt; .... GPT_stop12(hGpt); 21-12 GPT_stop34 GPT_stop34 Function Stops the 32-bit timer2 device, if running void GPT_stop34( GPT_Handle ) hGpt Arguments hGpt Device Handle; see GPT_open Return Value none Description Stops the 32-bit timer2 device, if running. Example GPT_Handle hGpt; .... GPT_stop34(hGpt); GPT Module 21-13 GPT_stop34 21-14 Index Index A ADC, registers 3-3 ADC functions ADC_config 3-5 ADC_getConfig 3-5 ADC_read 3-6 ADC_setFreq 3-6 parameter-based functions 3-2 register-based functions 3-2 ADC module configuration structure 3-4 examples 3-9 functions 3-5 include file 1-4 macros 3-8 module support symbol 1-4 ADC_Config 3-4 API modules, illustration of 1-2 architecture, of the CSL 1-2 functions 4-2 overview 4-2 CHIP module functions 4-3 macros 4-4 chip module include file 1-4 module support symbol 1-4 chip support library 1-2 constant values for fields 1-13 constant values for registers 1-13 CSL architecture 1-2 benefits of 1-2 data types 1-7 functions 1-8 generic macros, handle-based 1-12 generic symbolic constants 1-13 introduction to 1-2 macros 1-11 generic1-11 B build options defining a target device 2-8 defining large memory model 2-10 defining library paths 2-11 C CHIP functions CHIP_getDieId_High32 4-3 CHIP_getDieId_Low32 4-3 CHIP_getRevId 4-3 CHIP module modules and include files 1-4 naming conventions 1-6 CSL , generic functions 1-9 CSL compiling and linking 2-7 destination address 2-2 directory structure 2-7 See also compiling and linking with CSL how to use, overview 2-2 source address 2-2 transfer size 2-2 CSL bool. See data types CSL device support 1-5 CSL_init 2-12 .csldata, allocation of 2-12 Index-1 Index D DAT 5-2 module support symbol 1-4 DAT functions DAT_close 5-3 DAT_copy 5-3 DAT_copy2D 5-4 DAT_fill 5-5 DAT_open 5-6 DAT_wait 5-7 DAT module functions 5-2 , 5-3 include file 1-4 overview 5-2 data types 1-7 device support 1-5 device support symbols 1-5 devices. See CSL device support direct register initialization 1-8 directory structure 2-7 documentation 2-7 examples 2-7 include files 2-7 libraries 2-7 source library 2-7 DMA configuration structures, DMA_Config 6-5 DMA functions DMA_close 6-6 DMA_config 6-6 DMA_getConfig 6-7 DMA_getEventId 6-7 DMA_open 6-8 DMA_pause 6-9 DMA_reset 6-9 DMA_start 6-9 DMA_stop 6-10 DMA macros DMA_ADDR 6-11 DMA_ADDRH 6-11 DMA_FGET 6-12 DMA_FGETH 6-13 DMA_FMK 6-14 DMA_FSET 6-15 DMA_FSETH 6-16 DMA_REG_RMK 6-17 DMA_RGET 6-18 DMA_RGETH 6-19 Index-2 DMA_RSET 6-19 DMA_RSETH 6-20 DMA module configuration structure 6-5 functions 6-6 include file 1-4 macros 6-11 using channel number6-11 module support symbol 1-4 overview 6-2 DMA_AdrPtr. See data types DMA_close 6-2 DMA_config 6-2 DMA_config(), using 2-2 DMA_open 6-2 DMA_reset 6-2 documentation. See directory structure E EMIF configuration structure, EMIF_Config 7-6 EMIF functions EMIF_config 7-8 EMIF_enterselfRefresh 7-9 EMIF_exitselfRefresh 7-10 EMIF_getConfig 7-9 EMIF_reset 7-10 EMIF macros, using port number 7-11 EMIF module configuration structures 7-6 functions 7-8 include file 1-4 macros 7-11 module support symbol 1-4 overview 7-2 EMIF_config 7-2 event ID 12-3 See also IRQ module examples See also directory structure McBSP 13-26 F FIELD 1-13 explanation of 1-11 fieldval, explanation of 1-11 funcArg. See naming conventions Index function, naming conventions 1-6 function argument, naming conventions 1-6 function inlining, using 2-12 functional parameters, for use with peripheral initialization 1-10 functions 1-8 generic 1-9 G generic CSL functions 1-9 GPIO configuration structure GPIO_Config 8-4 GPIO_ConfigAll 8-4 GPIO functions GPIO_close 8-5 GPIO_config 8-7 GPIO_configAll 8-7 GPIO_open 8-5 GPIO_pinDirection 8-8 GPIO_pinDisable 8-13 GPIO_pinEnable 8-13 GPIO_pinRead 8-14 GPIO_pinReadAll 8-14 GPIO_pinReset 8-16 GPIO_pinWrite 8-15 GPIO_pinWriteAll 8-15 GPIO module, configuration structures 8-4 GPIO module functions 8-5 include file 1-4 macros 8-17 module support symbol 1-4 Overview 8-2 GPT configuration structure GPT_Config 21-3 GPT_OPEN_RESET_GPT 21-3 GPT module API reference configuration structure21-3 functions21-4 configuration structure 21-2 functions 21-2 include file 1-4 module support symbol 1-4 overview 21-2 GPT_functions GPT_close 21-4 GPT_config 21-4 GPT_getCnt 21-5 GPT_getConfig 21-5 GPT_getPID 21-6 GPT_init64 21-7 GPT_initChained32 21-8 GPT_initDual32 21-9 GPT_open 21-10 GPT_reset 21-10 GPT_start 21-11 GPT_start12 21-11 GPT_start34 21-11 GPT_stop 21-12 GPT_stop12 21-12 GPT_stop34 21-13 H handles resource management 1-14 use of 1-14 HPI module, functions 9-5 HPI Configuration Structures, HPI_Config 9-4 HPI functions HPI_config 9-5 HPI_getConfig 9-5 HPI macros HPI_ADDR 9-6 HPI_FGET 9-6 HPI_FMK 9-7 HPI_FSET 9-7 HPI_REG_RMK 9-8 HPI_RGET 9-9 HPI_RSET 9-9 HPI module HPI configuration structures 9-4 include file 1-4 macros 9-6 module support symbol 1-4 Overview 9-2 I I2C Configuration Structures I2C_Config 10-5 I2C_Setup 10-6 I2C Functions, I2C_sendStop 10-13 I2C functions I2C_config 10-7 Index-3 Index I2C_eventDisable 10-8 I2C_eventEnable 10-8 I2C_getConfig 10-8 I2C_getEventId 10-9 I2C_IsrAddr 10-10 I2C_read 10-10 I2C_readByte 10-11 I2C_reset 10-12 I2C_rfull 10-12 I2C_rrdy 10-12 I2C_setCallback 10-13 I2C_setup 10-9 I2C_start 10-14 I2C_write 10-14 I2C_writeByte 10-15 I2C_xempty 10-16 I2C_xrdy 10-16 I2C module Configuration Structures 10-5 examples 10-18 Functions 10-7 include file 1-4 macros 10-17 module support symbol 1-4 overview 10-2 ICACHE configuration structures ICACHE_Config 11-3 ICACHE_Setup 11-4 ICACHE_Tagset 11-4 ICACHE functions ICACHE_config 11-5 ICACHE_disable 11-5 ICACHE_enable 11-6 ICACHE_flush 11-6 ICACHE_freeze 11-6 ICACHE_setup 11-7 ICACHE_tagset 11-7 ICACHE_unfreeze 11-7 ICACHE macros ICACHE_ADDR 11-8 ICACHE_FGET 11-8 ICACHE_FMK 11-8 ICACHE_FSET 11-8 ICACHE_REG_RMK 11-8 ICACHE_RGET 11-8 ICACHE_RSET 11-8 ICACHE Module include file 1-4 module support Symbol 1-4 Index-4 ICACHE module Configuration Structures 11-3 functions 11-5 macros 11-8 overview 11-2 include Files. See directory structure include files, for CSL modules 1-4 Int16. See data types Int32. See data types IRQ configuration structure, IRQ_Config 12-2 , 12-8 IRQ functions IRQ_clear 12-9 IRQ_config 12-9 IRQ_disable 12-10 IRQ_enable 12-10 IRQ_getArg 12-10 IRQ_getConfig 12-11 IRQ_globalDisable 12-11 IRQ_globalEnable 12-12 IRQ_globalRestore 12-12 IRQ_map 12-13 IRQ_plug 12-13 IRQ_restore 12-14 IRQ_setArg 12-14 IRQ_setVecs 12-15 IRQ_test 12-15 IRQ module Configuration Structures 12-8 functions 12-9 include file 1-4 module support symbol 1-4 overview 12-2 using interrupts 12-7 IRQ_EVT_NNNN 12-4 events list 12-4 IRQ_EVT_WDTINT 12-6 L large-model library. See CSL device support large/small memory model selection, instructions 2-8 libraries See also directory structure linking to a project 2-10 linker command file creating. See compiling and linking with CSL using 2-12 Index M macro, naming conventions 1-6 macros generic 1-11 handle-based1-12 generic description of FIELD1-11 fieldval1-11 PER1-11 REG1-11 REG#1-11 regval1-11 McBSP 13-23 McBSP example 13-26 registers 13-3 McBSP , configuration structure 13-6 McBSP configuration structure, MCBSP_Config 13-6 MCBSP Functions, MCBSP_channelStatus 13-11 McBSP functions MCBSP_channelDisable 13-8 MCBSP_channelEnable 13-9 MCBSP_close 13-12 MCBSP_config 13-12 MCBSP_getConfig 13-14 MCBSP_getPort 13-14 MCBSP_getRcvEventID 13-15 MCBSP_getXmtEventID 13-15 MCBSP_open 13-16 MCBSP_read16 13-17 MCBSP_read32 13-17 MCBSP_reset 13-18 MCBSP_rfull 13-18 MCBSP_rrdy 13-19 MCBSP_start 13-19 MCBSP_write16 13-21 MCBSP_write32 13-21 MCBSP_xempty 13-22 MCBSP_xrdy 13-22 MCBSP Macros, MCBSP_FSET 13-23 McBSP macros MCBSP_ADDR 13-24 MCBSP_FGET 13-23 MCBSP_FMK 13-23 MCBSP_REG_RMK 13-23 MCBSP_RGET 13-23 MCBSP_RSET 13-23 using handle 13-24 using port number 13-23 McBSP module API reference 13-8 configuration structure 13-2 functions 13-2 include file 1-4 module support symbol 1-4 overview 13-2 memberName. See naming conventions MMC Configuration Structures, MMC_Config 14-5 Data Structures MMC_CardIdobj14-9 MMC_CardObj14-10 MMC_CardXCsdObj14-10 MMC_CmdObj14-11 MMC_MmcR egObj14-11 MMC_NativeInitObj14-12 MMC_RspR egObj14-12 Functions MMC_close14-13 MMC_clrR esponse14-13 MMC_config14-14 MMC_dispatch014-14 MMC_dispatch114-14 MMC_drrdy14-15 MMC_dxrdy14-15 MMC_getCardCSD14-16 MMC_getCardId14-16 MMC_getConfig14-17 MMC_getNumberOfCards14-17 MMC_getStatus14-18 MMC_open14-18 MMC_readBlock14-19 MMC_responseDone14-19 MMC_saveStatus14-20 MMC_selectCard14-20 MMC_sendAllCID14-21 MMC_sendCmd14-22 MMC_sendCSD14-22 MMC_sendGoIdle14-23 MMC_sendOpCond14-24 MMC_setCallBack14-25 MMC_setCardPtr14-23 MMC_setRca14-25 MMC_stop14-26 Index-5 Index MMC_watiF orFlag14-26 MMC_writeBlock14-27 O MMC Data Structures MMC_CallBackObj 14-6 MMC_CardCsdobj 14-7 SD_CardCsdObj 14-8 object types. See Naming Conventions MMC Module Configuration Structures 14-5 Data Structures 14-6 Functions 14-13 include file 1-4 module support Symbol 1-4 Overview 14-2 parameter-based configuration, ADC module 3-2 PER 1-13 explanation of 1-11 PER_ADDR 1-12 PER_close 1-9 PER_config 1-9 initialization of registers 1-9 PER_FGET 1-12 PER_FMK 1-12 PER_FSET 1-12 PER_funcName(). See naming conventions PER_Handle. See data types PER_MACRO_NAME. See naming conventions PER_open 1-9 PER_REG_DEFAULT 1-13 PER_REG_FIELD_DEFAULT 1-13 PER_REG_FIELD_SYMVAL 1-13 PER_REG_RMK 1-11 for use with peripheral initialization 1-9 PER_reset 1-9 PER_RGET 1-11 PER_RSET 1-11 PER_setup 1-9 PER_setup(), example of use 1-10 PER_start 1-9 PER_Typename. See naming conventions PER_varName(). See naming conventions peripheral initialization via functional parameters 1-10 using PER_setup 1-10 peripheral initialization via registers 1-9 using PER_config 1-10 peripheral modules descriptions of 1-4 include files 1-4 PLL configuration structure, PLL_Config 15-4 PLL functions PLL_config 15-5 PLL_setFreq 15-6 PLL macros, using port number 15-7 MMC_CardIdobj 14-9 MMC_CardObj 14-10 MMC_CardXCsdObj 14-10 MMC_close 14-13 MMC_clrResponse 14-13 MMC_CmdObj 14-11 MMC_Config 14-5 MMC_config, see also MMC_open 14-14 MMC_getCardId 14-16 MMC_getConfig 14-17 MMC_getNumberOfCards 14-17 MMC_MmcRegObj 14-11 MMC_NativeInitObj 14-12 MMC_open 14-18 MMC_readBlock 14-19 MMC_RspRegObj 14-12 MMC_selectCard 14-20 MMC_sendAllCID 14-21 MMC_sendCmd 14-22 MMC_setRca 14-25 MMC_writeBlock 14-27 module support symbols, for CSL modules 1-4 N naming conventions 1-6 Index-6 P Index PLL module API reference 15-5 configuration structure 15-2 functions 15-2 include file 1-4 macros 15-7 module support symbol 1-4 overview 15-2 PWR functions, PWR_powerDown 16-2 PWR macros 16-4 PWR_ADDR 16-4 PWR_FGET 16-4 PWR_FMK 16-4 PWR_FSET 16-4 PWR_REG_RMK 16-4 PWR_RGET 16-4 PWR_RSET 16-4 PWR module API reference 16-3 PWR_powerDown16-3 functions 16-2 include file 1-4 macros 16-4 module support symbol 1-4 overview 16-2 R real-time clock, features of 17-2 REG 1-13 explanation of 1-11 REG#, explanation of 1-11 register-based configuration, ADC module 3-2 Registers, MCBSP 13-3 registers, peripheral initialization 1-9 regval, explanation of 1-11 resource management, using CSL handles 1-14 RTC, ANSI C-style time functions 17-4 RTC configuration structures RTC_Alarm 17-6 RTC_Config 17-7 RTC_Date 17-7 RTC_IsrAddr 17-8 RTC_Time 17-8 RTC functions RTC_bcdToDec 17-9 RTC_config 17-9 RTC_decToBcd 17-9 RTC_getConfig 17-10 RTC_getDate 17-11 RTC_getTime 17-11 RTC_isrDisable 17-10 RTC_isrDisphook 17-13 RTC_isrEnable 17-10 RTC_setAlarm 17-12 RTC_setDate 17-13 RTC_setPeriodicInterval 17-14 RTC_setTime 17-14 RTC macros RTC_ADDR 17-16 RTC_FGET 17-16 RTC_FSET 17-16 RTC_REG_FMK 17-16 RTC_REG_RMK 17-17 RTC_RGET 17-17 RTC_RSET 17-17 RTC module API reference 17-9 configuration structure 17-3 , 17-6 functions 17-3 include file 1-4 macros 17-3 , 17-4 module support symbol 1-4 overview 17-2 RTC_bcdToDec, description of 17-3 RTC_decToBcd, description of 17-3 S scratch pad memory 2-12 small-model library. See CSL device support source library. See directory structure static inline. See function inlining structure member, naming conventions 1-6 symbolic constant values 1-13 symbolic constants, generic 1-13 SYMVAL 1-13 T target device, specifying. See compiling and linking with CSL TIMER configuration structure, TIMER_Config 18-3 TIMER functions TIMER_close 18-4 Index-7 Index TIMER_Config 18-4 TIMER_getConfig 18-5 TIMER_getEventID 18-5 TIMER_open 18-6 TIMER_reset 18-7 TIMER_start 18-7 TIMER_stop 18-7 TIMER_tintoutCfg 18-8 TIMER macros TIMER_ADDR 18-9 TIMER_FGET 18-9 TIMER_FMK 18-9 TIMER_FSET 18-9 TIMER_REG_RMK 18-9 TIMER_RGET 18-9 TIMER_RSET 18-9 using handle 18-10 using port number 18-9 TIMER module API reference 18-4 configuration structure 18-2 functions 18-2 include file 1-4 macros 18-9 module support symbol 1-4 overview 18-2 typedef, naming conventions 1-6 U UART, Control Signal Macros 19-15 UART configuration structures UART_Config 19-5 UART_Setup 19-5 UART functions UART_config 19-8 UART_eventDisable 19-8 UART_eventEnable 19-9 UART_fgetc 19-10 UART_fgets 19-10 UART_fputc 19-11 UART_fputs 19-11 UART_getConfig 19-11 UART_read 19-12 UART_setCallback 19-12 UART_setup 19-13 UART_write 19-13 UART macros UART_ctsOff 19-16 Index-8 UART_ctsOn 19-16 UART_dsrOff 19-17 UART_dsrOn 19-17 UART_dtcOff 19-16 UART_dtcOn 19-17 UART_isDtr 19-17 UART_isRts 19-16 UART_riOff 19-17 UART_riOn 19-17 WDTIM_ADDR 19-15 WDTIM_FGET 19-14 WDTIM_FMK 19-14 WDTIM_FSET 19-14 WDTIM_REG_RMK 19-14 WDTIM_RGET 19-14 WDTIM_RSET 19-14 UART module configuration structure 19-2 configuration structures 19-5 functions 19-2 , 19-8 include file 1-4 macros 19-14 module support symbol 1-4 overview 19-2 Uchar. See data types Uint16. See data types Uint32. See data types USB module configuration information 1-4 include file 1-4 module support symbol 1-4 using functional parameters 1-8 V variable, naming conventions 1-6 W WDTIM configuration structures, WDTIM_Config 20-3 WDTIM functions WDTIM_close 20-4 WDTIM_config 20-4 WDTIM_getCnt 20-5 WDTIM_getPID 20-6 WDTIM_init64 20-6 WDTIM_initChained32 20-7 WDTIM_initDual32 20-8 Index WDTIM_open 20-9 WDTIM_service 20-9 WDTIM_start 20-10 WDTIM_start12 20-11 WDTIM_start34 20-11 WDTIM_stop 20-12 WDTIM_stop12 20-12 WDTIM_stop34 20-12 WDTIM_wdStart 20-13 WDTIM macros WDTIM_ADDR 20-14 WDTIM_FGET 20-14 WDTIM_FMK 20-14 WDTIM_FSET 20-14 WDTIM_REG_RMK 20-14 WDTIM_RGET 20-14 WDTIM_RSET 20-14 WDTIM module API reference 20-4 APIs 20-2 include file 1-4 macros 20-14 module support symbol 1-4 overview 20-2 Index-9