Product Folder Sample & Buy Technical Documents Tools & Software Support & Community TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 TMS320F2837xD Dual-Core Delfino™ Microcontrollers 1 Device Overview 1.1 Features 1 • Dual-Core Architecture – Two TMS320C28x 32-Bit CPUs – 200 MHz – IEEE 754 Single-Precision Floating-Point Unit (FPU) – Trigonometric Math Unit (TMU) – Viterbi/Complex Math Unit (VCU-II) • Two Programmable Control Law Accelerators (CLAs) – 200 MHz – IEEE 754 Single-Precision Floating-Point Instructions – Executes Code Independently of Main CPU • On-Chip Memory – 512KB (256KW) or 1MB (512KW) of Flash (ECC-Protected) – 172KB (86KW) or 204KB (102KW) of RAM (ECC-Protected or Parity-Protected) – Dual-Zone Security Supporting Third-Party Development • Clock and System Control – Two Internal Zero-Pin 10-MHz Oscillators – On-Chip Crystal Oscillator – Windowed Watchdog Timer Module – Missing Clock Detection Circuitry • 1.2-V Core, 3.3-V I/O Design • System Peripherals – Two External Memory Interfaces (EMIFs) With ASRAM and SDRAM Support – Dual 6-Channel Direct Memory Access (DMA) Controllers – Up to 169 Individually Programmable, Multiplexed General-Purpose Input/Output (GPIO) Pins With Input Filtering – Expanded Peripheral Interrupt Controller (ePIE) – Multiple Low-Power Mode (LPM) Support With External Wakeup • Communications Peripherals – USB 2.0 (MAC + PHY) – Support for 12-Pin 3.3 V-Compatible Universal Parallel Port (uPP) Interface – Two Controller Area Network (CAN) Modules (Pin-Bootable) – Three High-Speed (up to 50-MHz) SPI Ports (Pin-Bootable) – Two Multichannel Buffered Serial Ports (McBSPs) – Four Serial Communications Interfaces (SCI/UART) (Pin-Bootable) – Two I2C Interfaces (Pin-Bootable) • Analog Subsystem – Up to Four Analog-to-Digital Converters (ADCs) • 16-Bit Mode – 1.1 MSPS Each (up to 4.4-MSPS System Throughput) – Differential Inputs – Up to 12 External Channels • 12-Bit Mode – 3.5 MSPS Each (up to 14-MSPS System Throughput) – Single-Ended Inputs – Up to 24 External Channels • Single Sample-and-Hold (S/H) on Each ADC • Hardware-Integrated Post-Processing of ADC Conversions – Saturating Offset Calibration – Error From Setpoint Calculation – High, Low, and Zero-Crossing Compare, With Interrupt Capability – Trigger-to-Sample Delay Capture – Eight Windowed Comparators With 12-Bit Digital-to-Analog Converter (DAC) References – Three 12-Bit Buffered DAC Outputs • Enhanced Control Peripherals – 24 Pulse Width Modulator (PWM) Channels With Enhanced Features – 16 High-Resolution Pulse Width Modulator (HRPWM) Channels • High Resolution on Both A and B Channels of 8 PWM Modules • Dead-Band Support (on Both Standard and High Resolution) – Six Enhanced Capture (eCAP) Modules – Three Enhanced Quadrature Encoder Pulse (eQEP) Modules – Eight Sigma-Delta Filter Module (SDFM) Input Channels, 2 Parallel Filters per Channel • Standard SDFM Data Filtering • Comparator Filter for Fast Action for Out of Range 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 • Package Options: – Lead-Free, Green Packaging – 337-Ball New Fine Pitch Ball Grid Array (nFBGA) [ZWT Suffix] – 176-Pin PowerPAD™ Thermally Enhanced LowProfile Quad Flatpack (HLQFP) [PTP Suffix] – 100-Pin PowerPAD Thermally Enhanced Thin Quad Flatpack (HTQFP) [PZP Suffix] 1.2 • • • • • Temperature Options: – T: –40ºC to 105ºC Junction – S: –40ºC to 125ºC Junction – Q: –40ºC to 125ºC Free-Air (Q100 Qualification for Automotive Applications) Applications Industrial Drives Solar Micro Inverters and Converters Radar Digital Power 1.3 www.ti.com • • • Smart Metering Automotive Transportation Power Line Communications Description The Delfino™ TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such as industrial drives and servo motor control; solar inverters and converters; digital power; transportation; and power line communications. Complete development packages for digital power and industrial drives are available as part of the powerSUITE and DesignDRIVE initiatives. While the Delfino product line is not new to the TMS320C2000™ portfolio, the F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200 MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control co-processors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. 2 Device Overview Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Peripherals such as EMIFs, CAN modules (ISO11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Device Information (1) PACKAGE BODY SIZE TMS320F28379DZWT PART NUMBER nFBGA (337) 16.0 mm × 16.0 mm TMS320F28377DZWT nFBGA (337) 16.0 mm × 16.0 mm TMS320F28376DZWT nFBGA (337) 16.0 mm × 16.0 mm TMS320F28375DZWT nFBGA (337) 16.0 mm × 16.0 mm TMS320F28374DZWT nFBGA (337) 16.0 mm × 16.0 mm TMS320F28379DPTP HLQFP (176) 24.0 mm × 24.0 mm TMS320F28377DPTP HLQFP (176) 24.0 mm × 24.0 mm TMS320F28376DPTP HLQFP (176) 24.0 mm × 24.0 mm TMS320F28375DPTP HLQFP (176) 24.0 mm × 24.0 mm TMS320F28374DPTP HLQFP (176) 24.0 mm × 24.0 mm TMS320F28375DPZP HTQFP (100) 14.0 mm × 14.0 mm (1) For more information on these devices, see Section 9, Mechanical Packaging and Orderable Information. Device Overview Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 3 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 1.4 www.ti.com Functional Block Diagram Figure 1-1 shows the CPU system and associated peripherals. PSWD Dual Code Security Module + Emulation Code Security Logic (ECSL) Secure Memories shown in Red User Configurable DCSM OTP 1K x 16 User Configurable DCSM PSWD OTP 1K x 16 FLASH FLASH 256K x 16 Secure 256K x 16 Secure PUMP Dual Code Security Module + Emulation Code Security Logic (ECSL) CPU2.CLA1 OTP/Flash Wrapper OTP/Flash Wrapper MEMCPU1 MEMCPU2 CPU1.M0 RAM 1Kx16 CPU1.CLA1 to CPU1 128x16 MSG RAM CPU1 to CPU1.CLA1 128x16 MSG RAM C28 CPU-1 CPU1.M1 RAM 1Kx16 C28 CPU-2 FPU VCU-II TMU CPU2.M0 RAM 1Kx16 FPU VCU-II TMU CPU2.M1 RAM 1Kx16 CPU1 Local Shared 6x 2Kx16 LS0-LS5 RAMs CPU1.D1 RAM 2Kx16 WD Timer NMI-WDT CPU1.CLA1 Data ROM (4Kx16) 16-/12-bit ADC x4 A5:0 A B ADC Result Regs D Config D5:0 ADCIN14 ADCIN15 Data Bus Bridge Comparator DAC Subsystem x3 (CMPSS) External Crystal or Oscillator Secure-ROM 32Kx16 Secure Aux PLL AUXCLKIN Boot-ROM 32Kx16 Nonsecure ePIE (up to 192 interrupts) TRST TCK CPU2.DMA JTAG TDI TMS TDO GPIO GPIOn EMIF2 EM2Dx EMIF1 EM2Ax Data Bus Bridge EM2CTLx Data Bus Bridge EM1CTLx UPPAST UPPACLK UPPAEN MFSXx MFSRx UPPAWT RAM uPP UPPAD[7:0] MCLKXx MCLKRx MDXx MRXx SPISTEx SPICLKx SPISIMOx SPISOMIx McBSPA/B Data Bus Bridge EM1Dx SPIA/B/C (16L FIFO) Peripheral Frame 2 EM1Ax CANA/B (32-MBOX) CANTXx USB Ctrl / PHY CANRXx SDAx SCITXDx SDx_Cy SDx_Dy EQEPxI EQEPxS I2C-A/B (16L FIFO) Data Bus Bridge USBDP SCIA/B/C/D (16L FIFO) SCLx SDFM-1/2 Data Bus Bridge USBDM Data Bus Bridge eQEP-1/2/3 EQEPxB ECAPx eCAP1/../6 EXTSYNCOUT EPWMxB EXTSYNCIN EPWMxA TZ1-TZ6 CPU Timer 0 CPU Timer 1 CPU Timer 2 CPU2 to CPU1 1Kx16 MSG RAM INTOSC2 CPU2.CLA1 Data ROM (4Kx16) CPU2 Buses EQEPxA ePWM-1/../12 Main PLL CPU2.D1 RAM 2Kx16 WD Timer NMI-WDT CPU1 Buses Peripheral Frame 1 HRPWM-1/../8 (CPU1 only) (up to 192 interrupts) INTOSC1 CPU2.D0 RAM 2Kx16 CPU1 to CPU2 1Kx16 MSG RAM ePIE CPU1.DMA SCIRXDx Analog MUX C5:2 C Boot-ROM 32Kx16 Nonsecure CPU1.CLA1 Bus B5:0 Watchdog 1/2 CPU2 Local Shared 6x 2Kx16 LS0-LS5 RAMs Global Shared 16x 4Kx16 GS0-GS15 RAMs CPU Timer 0 CPU Timer 1 CPU Timer 2 Secure-ROM 32Kx16 Secure GPIO MUX CPU2.CLA1 to CPU2 128x16 MSG RAM Interprocessor Communication (IPC) Module CPU1.D0 RAM 2Kx16 Low-Power Mode Control CPU2 to CPU2.CLA1 128x16 MSG RAM CPU2.CLA1 Bus CPU1.CLA1 GPIO MUX, Input X-BAR, Output X-BAR Copyright © 2016, Texas Instruments Incorporated Figure 1-1. Functional Block Diagram 4 Device Overview Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table of Contents 1 Device Overview ......................................... 1 6.3 Memory 1.1 Features .............................................. 1 6.4 Identification........................................ 187 1.2 Applications ........................................... 2 6.5 Bus Architecture – Peripheral Connectivity ........ 188 1.3 Description ............................................ 2 6.6 C28x Processor .................................... 189 ........................... 4 Revision History ......................................... 6 Device Comparison ..................................... 7 3.1 Related Products ..................................... 9 Terminal Configuration and Functions ............ 10 4.1 Pin Diagrams ........................................ 10 4.2 Signal Descriptions .................................. 16 4.3 Pins With Internal Pullup and Pulldown ............. 38 4.4 Connections for Unused Pins ....................... 39 4.5 Pin Multiplexing...................................... 40 Specifications ........................................... 47 5.1 Absolute Maximum Ratings ........................ 47 5.2 ESD Ratings ........................................ 47 5.3 Recommended Operating Conditions ............... 48 5.4 Power Consumption Summary ...................... 49 5.5 Electrical Characteristics ............................ 53 5.6 Thermal Resistance Characteristics ................ 54 5.7 System .............................................. 56 5.8 Analog Peripherals .................................. 93 5.9 Control Peripherals ................................ 118 5.10 Communications Peripherals ...................... 135 Detailed Description.................................. 177 6.1 Overview ........................................... 177 6.2 Functional Block Diagram ......................... 177 6.7 Control Law Accelerator ........................... 191 6.8 Direct Memory Access ............................. 192 1.4 2 3 4 5 6 Functional Block Diagram 7 8 9 ............................................ 6.9 Interprocessor Communication Module............ 194 6.10 Boot ROM and Peripheral Booting................. 195 6.11 Dual Code Security Module 6.12 6.13 Timers .............................................. 198 Nonmaskable Interrupt With Watchdog Timer (NMIWD) ........................................... 198 ....................... .......................................... ................... Applications, Implementation, and Layout ...... 7.1 TI Design or Reference Design .................... Device and Documentation Support .............. 198 6.14 Watchdog 199 6.15 Configurable Logic Block (CLB) 199 200 200 201 8.1 Device and Development Support Tool Nomenclature ...................................... 201 8.2 Tools and Software ................................ 202 8.3 Documentation Support ............................ 204 8.4 Related Links 8.5 Community Resources............................. 205 8.6 Trademarks ........................................ 205 8.7 Electrostatic Discharge Caution 8.8 Glossary............................................ 205 ...................................... ................... 205 205 Mechanical Packaging and Orderable Information ............................................. 206 9.1 Packaging Information ............................. 206 Table of Contents Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 179 5 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 2 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from November 9, 2015 to May 6, 2016 (from F Revision (November 2015) to G Revision) • • • • • • • • • • • • • • • • • • • • • • • • • • • • 6 Page Global: Restructured document. ................................................................................................... 1 Section 1.3 (Description): Removed paragraph about Configurable Logic Block (CLB). ................................... 2 Section 3.1 (Related Products): Added section. ................................................................................. 9 Table 4-1 (Signal Descriptions): Updated DESCRIPTION of VREFHIA, VREFHIB, VREFHIC, VREFHID, and VDDA. ............ 16 Table 5-19 (Flash Wait States): Changed title from "Minimum Required Flash Wait States at Different Frequencies" to "Flash Wait States." Updated table. ........................................................................... 66 Section 5.7.5.1 (JTAG Electrical Data and Timing): Added section. ........................................................ 70 Table 5-39 (EMIF Asynchronous Memory Timing Requirements): Parameter 14 [tsu(EMOEL-EMWAIT)]: Changed MIN value from 4E to 4E+20............................................................................................................. 86 Table 5-39: Parameter 28 [tsu(EMWEL-EMWAIT)]: Changed MIN value from 4E to 4E+20. ..................................... 86 Table 5-40 (EMIF Asynchronous Memory Switching Characteristics): Parameter 11 [td(EMWAITH-EMOEH)]: Changed MIN value from 3E+8 to 4E+10. Changed MAX value from 4E+10 to 5E+15. .............................................. 86 Table 5-40: Parameter 25 [td(EMWAITH-EMWEH)]: Changed MIN value from 3E+8 to 4E+10. Changed MAX value from 4E+10 to 5E+15. .............................................................................................................. 86 Section 5.9.4 (High-Resolution Pulse Width Modulator (HRPWM)): Removed NOTE about dual-edge highresolution being enabled. ........................................................................................................ 130 Table 5-80 (SPI Master Mode External Timings Where (SPIBRR + 1) is Odd and SPIBRR > 3): Parameter 2 [tw(SPCH)M, clock polarity = 0]: Updated MIN value and MAX value. ......................................................... 155 Table 5-80: Parameter 3 [tw(SPCL)M, clock polarity = 0]: Updated MIN value and MAX value. ........................... 155 Table 5-82 (SPI Master Mode External Timings Where (SPIBRR + 1) is Odd or SPIBRR > 3): Parameter 2 [tw(SPCL)M, clock polarity = 1]: Updated MIN value and MAX value. ......................................................... 158 Table 5-82: Parameter 3 [tw(SPCH)M, clock polarity = 1]: Updated MIN value and MAX value. .......................... 158 Table 5-86 (High-Speed SPI Master Mode External Timings Where (SPIBRR + 1) is Odd and SPIBRR > 3): Parameter 2 [tw(SPCH)M, clock polarity = 0]: Updated MIN value and MAX value. ......................................... 163 Table 5-86: Parameter 3 [tw(SPCL)M, clock polarity = 0]: Updated MIN value and MAX value. ........................... 163 Table 5-88 (High-Speed SPI Master Mode External Timings Where (SPIBRR + 1) is Odd or SPIBRR > 3): Parameter 2 [tw(SPCL)M, clock polarity = 1]: Updated MIN value and MAX value. ......................................... 166 Table 5-88: Parameter 3 [tw(SPCH)M, clock polarity = 1]: Updated MIN value and MAX value. .......................... 166 Section 6.1 (Overview): Removed paragraph about Configurable Logic Block (CLB). .................................. 177 Table 6-5 (Peripheral Registers Memory Map): Added PROTECTED column and associated footnote. ............. 182 Table 6-9 (Device Identification Registers): Added UID_UNIQUE. ........................................................ 187 Table 6-10 (Bus Master Peripheral Access): Peripheral Frame 2: Separated SPI and McBSP from uPP Configuration. ...................................................................................................................... 188 Section 6.15 (Configurable Logic Block (CLB)): Updated section. ......................................................... 199 Section 8 (Device and Documentation Support): Updated and restructured section. ................................... 201 Section 8.2 (Tools and Software): Added section. ........................................................................... 202 Section 8.3 (Documentation Support): Updated section. .................................................................... 204 Section 9.1 (Packaging Information): Updated section. ...................................................................... 206 Revision History Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 3 Device Comparison Table 3-1 lists the features of each 2837xD device. Table 3-1. Device Comparison 28379D FEATURE(1) Package Type (ZWT is an nFBGA package. PTP is an HLQFP package. PZP is an HTQFP package.) 337-Ball ZWT 28377D 176-Pin PTP 337-Ball ZWT 28376D 176-Pin PTP 337-Ball ZWT 28375D 176-Pin PTP 337-Ball ZWT 176-Pin PTP 28374D 100-Pin PZP 337-Ball ZWT 176-Pin PTP Processor and Accelerators Number C28x 2 Frequency (MHz) 200 Floating-Point Unit (FPU) Yes VCU-II Yes TMU – Type 0 Yes Number 2 CLA – Type 1 Frequency (MHz) 200 6-Channel DMA – Type 0 2 Memory 1MB (512KW) [512KB (256KW) per CPU] Flash (16-bit words) 1MB (512KW) [512KB (256KW) per CPU] 1MB (512KW) [512KB (256KW) per CPU] 512KB (256KW) [256KB (128KW) per CPU] 72KB (36KW) [36KB (18KW) per CPU] Dedicated and Local Shared RAM Global Shared RAM 512KB (256KW) [256KB (128KW) per CPU] 128KB (64KW) 128KB (64KW) 96KB (48KW) 128KB (64KW) 96KB (48KW) 204KB (102KW) 172KB (86KW) RAM (16-bit words) 4KB (2KW) [2KB (1KW) per CPU] Message RAM Total RAM 204KB (102KW) 204KB (102KW) 172KB (86KW) Code security for on-chip flash, RAM, and OTP blocks Yes Boot ROM Yes System Configurable Logic Block (CLB) Yes No 32-bit CPU timers 6 (3 per CPU) Watchdog timers 2 (1 per CPU) Nonmaskable Interrupt Watchdog (NMIWD) timers 2 (1 per CPU) Crystal oscillator/External clock input 1 0-pin internal oscillator I/O pins (shared) 2 GPIO 169 97 169 97 169 External interrupts 97 169 97 41 169 97 5 EMIF1 (16-bit or 32-bit) 1 1 – 1 EMIF EMIF2 (16-bit) 1 – 1 – 1 – 1 – – 1 – Analog Peripherals MSPS 1.1 ADC 16-bit mode – 915 (2) Conversion Time (ns) – Input pins 24 20 24 20 24 20 – Channels (differential) 12 9 12 9 12 9 – MSPS 3.5 290 Conversion Time (ns)(2) ADC 12-bit mode Input pins 24 20 24 20 24 20 24 20 14 24 20 Channels (single-ended) 24 20 24 20 24 20 24 20 14 24 20 Number of 16-bit or 12-bit ADCs 4 Number of 12-bit only ADCs – Temperature sensor CMPSS (each CMPSS has two comparators and two internal DACs) Buffered DAC – 4 2 4 8 4 8 1 8 3 Device Comparison Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 7 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 3-1. Device Comparison (continued) 28379D FEATURE(1) Package Type (ZWT is an nFBGA package. PTP is an HLQFP package. PZP is an HTQFP package.) 337-Ball ZWT 28377D 176-Pin PTP 337-Ball ZWT 28376D 176-Pin PTP 337-Ball ZWT 28375D 176-Pin PTP 337-Ball ZWT 176-Pin PTP 28374D 100-Pin PZP 337-Ball ZWT 176-Pin PTP Control Peripherals(3) eCAP inputs – Type 0 6 Enhanced Pulse Width Modulator (ePWM) channels – Type 4 24 24 15 24 eQEP modules – Type 0 3 3 2 3 High-resolution ePWM channels – Type 4 16 16 9 16 SDFM channels – Type 0 8 8 6 8 4 3 4 Yes No Yes (3) Communication Peripherals Controller Area Network (CAN) – Type 0(4) 2 Inter-Integrated Circuit (I2C) – Type 0 2 Multichannel Buffered Serial Port (McBSP) – Type 1 2 SCI – Type 0 4 Serial Peripheral Interface (SPI) – Type 2 3 USB – Type 0 1 uPP – Type 0 1 Temperature and Qualification T: –40°C to 105°C Junction Temperature (TJ) Free-Air Temperature (TA) Yes S: –40°C to 125°C Yes Q: –40°C to 150°C(5) No Yes No (5) No Yes No Q: –40°C to 125°C (1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor differences between devices that do not affect the basic functionality of the module. For more information, see the C2000 Real-Time Control Peripherals Reference Guide. (2) Time between start of sample-and-hold window to start of sample-and-hold window of the next conversion. (3) For devices that are available in more than one package, the peripheral count listed in the smaller package is reduced because the smaller package has less device pins available. The number of peripherals internally present on the device is not reduced compared to the largest package offered within a part number. See Section 4 to identify which peripheral instances are accessible on pins in the smaller package. (4) The CAN module uses the IP known as D_CAN. This document uses the names CAN and D_CAN interchangeably to reference this peripheral. (5) The letter Q refers to Q100 qualification for automotive applications. 8 Device Comparison Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 3.1 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Related Products For information about other devices in this family of products, see the following links: TMS320F2837xS Delfino™ Microcontrollers The Delfino™ TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such as industrial drives and servo motor control; solar inverters and converters; digital power; transportation; and power line communications. Complete development packages for digital power and industrial drives are available as part of the powerSUITE and DesignDRIVE initiatives. TMS320F2807x Piccolo™ Microcontrollers The TMS320F2807x microcontroller platform is part of the Piccolo™ family and is suited for advanced closed-loop control applications such as industrial drives and servo motor control; solar inverters and converters; digital power; transportation; and power line communications. Complete development packages for digital power and industrial drives are available as part of the powerSUITE and DesignDRIVE initiatives. TMS320F2833x Digital Signal Controllers (DSCs) The TMS320F28335, TMS320F28334, and TMS320F28332 devices, members of the TMS320C28x/ Delfino™ DSC/MCU generation, are highly integrated, high-performance solutions for demanding control applications. TMS320F2823x Digital Signal Controllers (DSCs) The TMS320F28235, TMS320F28234, and TMS320F28232 devices, members of the TMS320C28x/ Delfino™ DSC/MCU generation, are highly integrated, high-performance solutions for demanding control applications. TMS320C2834x Delfino Microcontrollers The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI's existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. Device Comparison Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 9 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 4 Terminal Configuration and Functions 4.1 Pin Diagrams Figure 4-1 to Figure 4-4 show the terminal assignments on the 337-ball ZWT New Fine Pitch Ball Grid Array. Each figure shows a quadrant of the terminal assignments. Figure 4-5 shows the pin assignments on the 176-pin PTP PowerPAD Thermally Enhanced Low-Profile Quad Flatpack. Figure 4-6 shows the pin assignments on the 100-pin PZP PowerPAD Thermally Enhanced Thin Quad Flatpack. 1 2 3 4 5 6 7 8 9 10 W VSSA ADCINB1 ADCINB3 ADCINB5 VREFHIB VREFLOD VSS VDDIO GPIO128 GPIO116 W V VREFHIA ADCINB0 ADCINB2 ADCINB4 VREFHID VREFLOB VSSA GPIO124 GPIO127 GPIO131 V U ADCINA0 ADCINA2 ADCINA4 ADCIN15 ADCIND1 ADCIND3 ADCIND5 GPIO123 GPIO126 GPIO130 U T ADCINA1 ADCINA3 ADCINA5 ADCIN14 ADCIND0 ADCIND2 ADCIND4 GPIO122 GPIO125 GPIO129 T R VREFHIC VREFLOA ADCINC2 ADCINC4 VSSA VDDA VSS VSS VDDIO VDD R P VSSA VREFLOC ADCINC3 ADCINC5 VSSA VDDA VSS VSS VDDIO VDD P 7 8 9 10 N VSS GPIO109 GPIO114 GPIO113 VSS VSS N M VDDIO GPIO110 GPIO112 GPIO111 VDDIO VDDIO M VSS VSS VSS M L GPIO27 GPIO106 GPIO107 GPIO108 VSS VSS L VSS VSS VSS L K GPIO26 GPIO25 GPIO24 GPIO23 VDD VDD K VSS VSS VSS K 1 2 3 4 5 6 8 9 10 A. Only the GPIO function is shown on GPIO terminals. See Table 4-1 for the complete, muxed signal name. Figure 4-1. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant A] 10 Terminal Configuration and Functions Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com A. SPRS880G – DECEMBER 2013 – REVISED MAY 2016 11 12 13 14 15 16 17 18 19 W GPIO29 FLT1 TDI TMS TDO GPIO121 GPIO39 GPIO132 VSS W V GPIO28 GPIO115 FLT2 TRST TCK GPIO36 GPIO40 GPIO134 VDDIO V U GPIO31 GPIO117 GPIO32 GPIO34 GPIO120 GPIO37 GPIO41 GPIO135 ERRORSTS U T GPIO30 GPIO118 GPIO33 GPIO35 GPIO119 GPIO38 GPIO136 GPIO137 GPIO138 T R VDD3VFL VDD3VFL VDD VSS VSS GPIO48 GPIO49 GPIO50 GPIO51 R P VSS VSS VDD VSS VSS GPIO52 GPIO53 GPIO54 GPIO55 P 11 12 13 N VDDIO VDDIO GPIO56 GPIO58 GPIO57 GPIO139 N M VSS VSS M VSS VSS GPIO59 GPIO60 GPIO141 GPIO140 M L VSS VSS L VDDIO VDDIO GPIO61 GPIO64 VSS GPIO142 L K VSS VSS K VSS VSS GPIO65 GPIO66 GPIO44 GPIO45 K 11 12 14 15 16 17 18 19 Only the GPIO function is shown on GPIO terminals. See Table 4-1 for the complete, muxed signal name. Figure 4-2. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant B] Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 11 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 A. www.ti.com 14 15 16 17 18 19 J VDD VDD GPIO63 GPIO62 VREGENZ X2 J H VSS VSS VDDOSC VDDOSC VSSOSC VSSOSC H G VDD VDD VSS VSS GPIO133 X1 G VDDIO VSS VSS VDDIO GPIO144 GPIO143 XRS F VSS VDDIO VSS VSS VDDIO GPIO145 GPIO47 GPIO46 E GPIO87 GPIO156 GPIO152 GPIO148 GPIO80 GPIO75 GPIO147 GPIO146 GPIO42 D C GPIO86 GPIO155 GPIO151 GPIO83 GPIO79 GPIO76 GPIO74 GPIO68 GPIO43 C B GPIO85 GPIO154 GPIO150 GPIO82 GPIO78 GPIO72 GPIO71 GPIO69 GPIO67 B A GPIO84 GPIO153 GPIO149 GPIO81 GPIO77 GPIO73 GPIO70 VDDIO VSS A 11 12 13 14 15 16 17 18 19 11 12 J VSS VSS H VSS VSS 11 12 13 F VDD VSS E VDD D Only the GPIO function is shown on GPIO terminals. See Table 4-1 for the complete, muxed signal name. Figure 4-3. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant C] 12 Terminal Configuration and Functions Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 8 9 10 J VSS VSS VSS J VDDIO H VSS VSS VSS H VDDIO G 7 8 9 10 1 2 3 4 5 6 J GPIO103 GPIO104 GPIO105 GPIO22 VSS VSS H GPIO100 GPIO101 GPIO102 NC VDDIO G GPIO99 GPIO8 GPIO9 VDDIO VDDIO F GPIO98 GPIO20 GPIO21 VDDIO VSS VSS VDDIO VSS VDD VDDIO F E GPIO16 GPIO17 GPIO18 GPIO19 VSS VSS VDDIO VSS VDD VDDIO E D GPIO13 GPIO14 GPIO15 GPIO168 GPIO166 GPIO89 GPIO5 GPIO1 GPIO162 GPIO159 D C GPIO11 GPIO12 GPIO96 GPIO167 GPIO165 GPIO88 GPIO4 GPIO0 GPIO161 GPIO158 C B VDDIO GPIO10 GPIO95 GPIO93 GPIO91 GPIO7 GPIO3 GPIO164 GPIO160 GPIO157 B A VSS GPIO97 GPIO94 GPIO92 GPIO90 GPIO6 GPIO2 GPIO163 VDDIO VSS A 1 2 3 4 5 6 7 8 9 10 A. Only the GPIO function is shown on GPIO terminals. See Table 4-1 for the complete, muxed signal name. Figure 4-4. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant D] Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 13 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 GPIO67 GPIO43 GPIO42 GPIO47 GPIO46 VDDIO VDD VDDOSC XRS X1 VSSOSC X2 VDDOSC VREGENZ GPIO133 VDD VDDIO GPIO45 VDDIO GPIO44 GPIO66 GPIO65 GPIO64 GPIO63 GPIO62 GPIO61 VDDIO GPIO60 GPIO59 GPIO58 GPIO57 GPIO56 GPIO55 VDDIO GPIO54 GPIO53 GPIO52 GPIO51 GPIO50 GPIO49 ERRORSTS VDDIO GPIO48 GPIO41 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 VDDIO GPIO40 GPIO39 GPIO38 GPIO37 GPIO36 VDDIO TCK TMS TRST TDO TDI VDD VDDIO FLT2 FLT1 VDD3VFL GPIO35 GPIO34 GPIO33 VDDIO GPIO32 GPIO31 GPIO29 GPIO28 GPIO30 VDDIO VDD ADCIND4 ADCIND3 ADCIND2 ADCIND1 ADCIND0 VREFHID VDDA VREFHIB VSSA VREFLOD VREFLOB ADCINB3 ADCINB2 ADCINB1 ADCINB0 ADCIN15 GPIO10 GPIO11 VDDIO GPIO12 GPIO13 GPIO14 GPIO15 GPIO16 GPIO17 GPIO18 VDDIO GPIO19 GPIO20 GPIO21 VDDIO VDD GPIO99 GPIO8 GPIO9 VDDIO VDD GPIO22 GPIO23 GPIO24 GPIO25 VDDIO GPIO26 GPIO27 ADCINC4 ADCINC3 ADCINC2 VREFLOC VREFLOA VSSA VREFHIC VDDA VREFHIA ADCINA5 ADCINA4 ADCINA3 ADCINA2 ADCINA1 ADCINA0 ADCIN14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 GPIO68 GPIO69 GPIO70 GPIO71 VDD VDDIO GPIO72 GPIO73 GPIO74 GPIO75 GPIO76 GPIO77 GPIO78 GPIO79 VDDIO GPIO80 GPIO81 GPIO82 GPIO83 VDDIO VDD GPIO84 GPIO85 GPIO86 GPIO87 VDD VDDIO GPIO0 GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 GPIO6 GPIO7 VDDIO VDD GPIO88 GPIO89 GPIO90 GPIO91 GPIO92 GPIO93 GPIO94 A. Only the GPIO function is shown on GPIO pins. See Table 4-1 for the complete, muxed signal name. Figure 4-5. 176-Pin PTP PowerPAD Thermally Enhanced Low-Profile Quad Flatpack (Top View) 14 Terminal Configuration and Functions Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D GPIO60 GPIO59 GPIO58 GPIO41 54 53 52 51 56 55 GPIO62 GPIO61 VDDIO 57 GPIO64 GPIO63 59 58 GPIO66 GPIO65 60 VDDIO 62 61 VREGENZ VDD 64 63 X2 VDDOSC 66 X1 VSSOSC 65 XRS 69 68 67 VDD VDDOSC 71 72 70 GPIO43 GPIO42 VDDIO 73 GPIO69 GPIO70 76 50 TCK GPIO71 VDD 77 49 TMS 78 48 TRST VDDIO 79 47 TDO GPIO72 80 46 GPIO73 81 45 TDI VDD GPIO78 VDDIO 82 44 VDDIO 83 43 FLT2 VDD 84 42 GPIO84 85 41 FLT1 VDD3VFL GPIO85 86 40 VDDIO GPIO86 87 39 VDD GPIO87 VDD 88 38 VDDA 89 37 VREFHIB 21 22 23 24 25 ADCINA4 ADCINA3 ADCINA2 ADCINA1 ADCINA0 19 20 VREFHIA ADCINA5 3 GPIO12 14 2 GPIO11 VDDIO 17 ADCIN14 18 26 VDDA 100 VSSA/VREFLOA ADCIN15 GPIO10 16 27 VDD 99 15 ADCINB0 GPIO92 GPIO99 VDDIO 28 12 98 13 ADCINB1 GPIO91 GPIO21 29 GPIO20 97 11 ADCINB2 GPIO90 10 ADCINB3 30 GPIO19 31 GPIO89 95 96 9 ADCINB4 VDD GPIO18 VDDIO 32 7 ADCINB5 94 8 VREFLOB 33 GPIO16 34 93 GPIO17 92 GPIO4 VDDIO 6 GPIO3 GPIO15 VSSA 4 VSSA 35 5 36 91 GPIO14 90 GPIO13 VDDIO GPIO2 1 A. 74 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 75 www.ti.com Only the GPIO function is shown on GPIO pins. See Table 4-1 for the complete, muxed signal name. Figure 4-6. 100-Pin PZP PowerPAD HTQFP (Top View) NOTE PCB footprints and schematic symbols are available for download in a vendor-neutral format, which can be exported to the leading EDA CAD/CAE design tools. See the CAD/CAE Symbols section in the product folder for each device, under the Packaging section. These footprints and symbols can also be searched for at http://webench.ti.com/cad/. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 15 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 4.2 www.ti.com Signal Descriptions Table 4-1 describes the signals. The GPIO function is the default at reset, unless otherwise mentioned. The peripheral signals that are listed under them are alternate functions. Some peripheral functions may not be available in all devices. See Table 3-1 for details. All GPIO pins are I/O/Z and have an internal pullup, which can be selectively enabled or disabled on a per-pin basis. This feature only applies to the GPIO pins. The pullups are not enabled at reset. Table 4-1. Signal Descriptions TERMINAL NAME MUX POSITION ZWT BALL NO. PTP PIN NO. PZP PIN NO. I/O/Z(1) DESCRIPTION ADC, DAC, AND COMPARATOR SIGNALS VREFHIA VREFHIB VREFHIC V1 W5 R1 37 53 35 19 37 – I ADC-A high reference. Place at least a 1-µF capacitor on this pin for the 12-bit mode, or at least a 22-µF capacitor for the 16-bit mode. This capacitor should be placed as close to the device as possible between the VREFHIA and VREFLOA pins. NOTE: Do not load this pin externally. I ADC-B high reference. Place at least a 1-µF capacitor on this pin for the 12-bit mode, or at least a 22-µF capacitor for the 16-bit mode. This capacitor should be placed as close to the device as possible between the VREFHIB and VREFLOB pins. NOTE: Do not load this pin externally. I ADC-C high reference. Place at least a 1-µF capacitor on this pin for the 12-bit mode, or at least a 22-µF capacitor for the 16-bit mode. This capacitor should be placed as close to the device as possible between the VREFHIC and VREFLOC pins. NOTE: Do not load this pin externally. VREFHID V5 55 – I ADC-D high reference. Place at least a 1-µF capacitor on this pin for the 12-bit mode, or at least a 22-µF capacitor for the 16-bit mode. This capacitor should be placed as close to the device as possible between the VREFHID and VREFLOD pins. NOTE: Do not load this pin externally. VREFLOA R2 33 17 I ADC-A low reference. On the PZP package, pin 17 is double-bonded to VSSA and VREFLOA. On the PZP package, pin 17 must be connected to VSSA on the system board. VREFLOB V6 50 34 I ADC-B low reference VREFLOC P2 32 – I ADC-C low reference VREFLOD W6 51 – I ADC-D low reference I Input 14 to all ADCs. This pin can be used as a generalpurpose ADCIN pin or it can be used to calibrate all ADCs together (either single-ended or differential) from an external reference. CMPIN4P I Comparator 4 positive input ADCIN15 I Input 15 to all ADCs. This pin can be used as a generalpurpose ADCIN pin or it can be used to calibrate all ADCs together (either single-ended or differential) from an external reference. CMPIN4N I Comparator 4 negative input ADCINA0 I ADC-A input 0. There is a 50-kΩ internal pulldown on this pin in both an ADC input or DAC output mode which cannot be disabled. O DAC-A output ADCIN14 T4 U4 U1 DACOUTA 16 Terminal Configuration and Functions 44 45 43 26 27 25 Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 4-1. Signal Descriptions (continued) TERMINAL ZWT BALL NO. PTP PIN NO. PZP PIN NO. I/O/Z(1) DESCRIPTION I ADC-A input 1. There is a 50-kΩ internal pulldown on this pin in both an ADC input or DAC output mode which cannot be disabled. DACOUTB O DAC-B output ADCINA2 I ADC-A input 2 I Comparator 1 positive input I ADC-A input 3 I Comparator 1 negative input I ADC-A input 4 I Comparator 2 positive input I ADC-A input 5 I Comparator 2 negative input I ADC-B input 0. There is a 100-pF capacitor to VSSA on this pin in both ADC input or DAC reference mode which cannot be disabled. If this pin is being used as a reference for the on-chip DACs, place at least a 1-µF capacitor on this pin. I Optional external reference voltage for on-chip DACs. There is a 100-pF capacitor to VSSA on this pin in both ADC input or DAC reference mode which cannot be disabled. If this pin is being used as a reference for the on-chip DACs, place at least a 1-µF capacitor on this pin. I ADC-B input 1. There is a 50-kΩ internal pulldown on this pin in both an ADC input or DAC output mode which cannot be disabled. O DAC-C output I ADC-B input 2 I Comparator 3 positive input I ADC-B input 3 NAME MUX POSITION ADCINA1 T1 CMPIN1P ADCINA3 CMPIN1N ADCINA4 CMPIN2P ADCINA5 CMPIN2N U2 42 41 24 23 T2 40 22 U3 39 21 T3 38 20 ADCINB0 VDAC V2 46 28 W2 47 29 ADCINB1 DACOUTC ADCINB2 CMPIN3P ADCINB3 V3 48 30 W3 49 31 I Comparator 3 negative input ADCINB4 V4 – 32 I ADC-B input 4 ADCINB5 W4 – 33 I ADC-B input 5 I ADC-C input 2 I Comparator 6 positive input I ADC-C input 3 I Comparator 6 negative input I ADC-C input 4 I Comparator 5 positive input I ADC-C input 5 I Comparator 5 negative input I ADC-D input 0 I Comparator 7 positive input I ADC-D input 1 I Comparator 7 negative input I ADC-D input 2 I Comparator 8 positive input I ADC-D input 3 I Comparator 8 negative input CMPIN3N ADCINC2 CMPIN6P ADCINC3 CMPIN6N ADCINC4 CMPIN5P ADCINC5 CMPIN5N ADCIND0 CMPIN7P ADCIND1 CMPIN7N ADCIND2 CMPIN8P ADCIND3 CMPIN8N R3 31 – P3 30 – R4 29 – P4 T5 U5 – 56 57 – – – T6 58 – U6 59 – Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 17 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 4-1. Signal Descriptions (continued) TERMINAL ZWT BALL NO. PTP PIN NO. PZP PIN NO. I/O/Z(1) ADCIND4 T7 60 – I ADC-D input 4 ADCIND5 U7 – – I ADC-D input 5 NAME MUX POSITION DESCRIPTION GPIO AND PERIPHERAL SIGNALS GPIO0 0, 4, 8, 12 EPWM1A 1 C8 160 – I/O General-purpose input/output 0 O Enhanced PWM1 output A (HRPWM-capable) SDAA 6 I/OD GPIO1 0, 4, 8, 12 I/O General-purpose input/output 1 EPWM1B 1 O Enhanced PWM1 output B (HRPWM-capable) MFSRB 3 I/O McBSP-B receive frame synch SCLA 6 I/OD GPIO2 0, 4, 8, 12 I/O General-purpose input/output 2 O Enhanced PWM2 output A (HRPWM-capable) O Output 1 of the output XBAR D8 161 – I2C-A data open-drain bidirectional port I2C-A clock open-drain bidirectional port EPWM2A 1 OUTPUTXBAR1 5 SDAB 6 I/OD GPIO3 0, 4, 8, 12 I/O General-purpose input/output 3 EPWM2B 1 O Enhanced PWM2 output B (HRPWM-capable) OUTPUTXBAR2 2 O Output 2 of the output XBAR MCLKRB 3 I/O McBSP-B receive clock OUTPUTXBAR2 5 O Output 2 of the output XBAR SCLB 6 I/OD GPIO4 0, 4, 8, 12 I/O General-purpose input/output 4 O Enhanced PWM3 output A (HRPWM-capable) O Output 3 of the output XBAR A7 B7 162 163 91 92 I2C-B data open-drain bidirectional port I2C-B clock open-drain bidirectional port EPWM3A 1 OUTPUTXBAR3 5 CANTXA 6 O CAN-A transmit 0, 4, 8, 12 I/O General-purpose input/output 5 GPIO5 EPWM3B 1 MFSRA 2 OUTPUTXBAR3 3 CANRXA C7 D7 164 165 93 – O Enhanced PWM3 output B (HRPWM-capable) I/O McBSP-A receive frame synch O Output 3 of the output XBAR CAN-A receive 6 I 0, 4, 8, 12 I/O General-purpose input/output 6 EPWM4A 1 O Enhanced PWM4 output A (HRPWM-capable) OUTPUTXBAR4 2 O Output 4 of the output XBAR EXTSYNCOUT 3 O External ePWM synch pulse output EQEP3A 5 I Enhanced QEP3 input A CANTXB 6 O CAN-B transmit GPIO6 GPIO7 A6 166 – 0, 4, 8, 12 I/O General-purpose input/output 7 EPWM4B 1 O Enhanced PWM4 output B (HRPWM-capable) MCLKRA 2 I/O McBSP-A receive clock OUTPUTXBAR5 3 O Output 5 of the output XBAR EQEP3B 5 I Enhanced QEP3 input B CANRXB 6 I CAN-B receive 18 B6 Terminal Configuration and Functions 167 – Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 4-1. Signal Descriptions (continued) TERMINAL NAME GPIO8 MUX POSITION ZWT BALL NO. PTP PIN NO. PZP PIN NO. I/O/Z(1) DESCRIPTION 0, 4, 8, 12 I/O General-purpose input/output 8 EPWM5A 1 O Enhanced PWM5 output A (HRPWM-capable) CANTXB 2 O CAN-B transmit ADCSOCAO 3 O ADC start-of-conversion A output for external ADC EQEP3S 5 I/O Enhanced QEP3 strobe SCITXDA G2 18 – 6 O SCI-A transmit data 0, 4, 8, 12 I/O General-purpose input/output 9 EPWM5B 1 O Enhanced PWM5 output B (HRPWM-capable) SCITXDB 2 O SCI-B transmit data OUTPUTXBAR6 3 O Output 6 of the output XBAR EQEP3I 5 I/O Enhanced QEP3 index GPIO9 SCIRXDA G3 19 – 6 I 0, 4, 8, 12 I/O General-purpose input/output 10 EPWM6A 1 O Enhanced PWM6 output A (HRPWM-capable) CANRXB 2 I CAN-B receive ADCSOCBO 3 O ADC start-of-conversion B output for external ADC EQEP1A 5 I Enhanced QEP1 input A SCITXDB 6 O SCI-B transmit data UPP-WAIT 15 I/O Universal parallel port wait. Receiver asserts to request a pause in transfer. GPIO10 GPIO11 B2 1 100 SCI-A receive data 0, 4, 8, 12 I/O General-purpose input/output 11 EPWM6B 1 O Enhanced PWM6 output B (HRPWM-capable) SCIRXDB 2, 6 I SCI-B receive data O Output 7 of the output XBAR 5 I Enhanced QEP1 input B 15 I/O Universal parallel port start. Transmitter asserts at start of DMA line. 0, 4, 8, 12 I/O General-purpose input/output 12 EPWM7A 1 O Enhanced PWM7 output A (HRPWM-capable) CANTXB 2 O CAN-B transmit MDXB 3 O McBSP-B transmit serial data EQEP1S 5 I/O Enhanced QEP1 strobe OUTPUTXBAR7 3 EQEP1B UPP-START GPIO12 C1 C2 2 4 1 3 SCITXDC 6 O SCI-C transmit data UPP-ENA 15 I/O Universal parallel port enable. Transmitter asserts while data bus is active. GPIO13 0, 4, 8, 12 I/O General-purpose input/output 13 EPWM7B 1 O Enhanced PWM7 output B (HRPWM-capable) CANRXB 2 I CAN-B receive MDRB 3 I McBSP-B receive serial data EQEP1I 5 I/O SCIRXDC 6 I UPP-D7 15 I/O D1 5 4 Enhanced QEP1 index SCI-C receive data Universal parallel port data line 7 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 19 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 4-1. Signal Descriptions (continued) TERMINAL NAME GPIO14 MUX POSITION ZWT BALL NO. PTP PIN NO. PZP PIN NO. I/O/Z(1) DESCRIPTION 0, 4, 8, 12 I/O General-purpose input/output 14 EPWM8A 1 O Enhanced PWM8 output A (HRPWM-capable) SCITXDB 2 O SCI-B transmit data MCLKXB 3 I/O McBSP-B transmit clock OUTPUTXBAR3 6 O Output 3 of the output XBAR UPP-D6 15 I/O Universal parallel port data line 6 GPIO15 0, 4, 8, 12 I/O General-purpose input/output 15 EPWM8B 1 O Enhanced PWM8 output B (HRPWM-capable) SCIRXDB 2 I SCI-B receive data MFSXB 3 OUTPUTXBAR4 D2 D3 6 7 5 6 I/O McBSP-B transmit frame synch 6 O Output 4 of the output XBAR UPP-D5 15 I/O Universal parallel port data line 5 GPIO16 0, 4, 8, 12 I/O General-purpose input/output 16 SPISIMOA 1 I/O SPI-A slave in, master out CANTXB 2 O CAN-B transmit OUTPUTXBAR7 3 O Output 7 of the output XBAR EPWM9A 5 O Enhanced PWM9 output A SD1_D1 7 I Sigma-Delta 1 channel 1 data input UPP-D4 15 I/O Universal parallel port data line 4 GPIO17 0, 4, 8, 12 I/O General-purpose input/output 17 SPISOMIA 1 I/O SPI-A slave out, master in CANRXB 2 OUTPUTXBAR8 3 EPWM9B SD1_C1 E1 8 7 I CAN-B receive O Output 8 of the output XBAR 5 O Enhanced PWM9 output B 7 I Sigma-Delta 1 channel 1 clock input UPP-D3 15 I/O Universal parallel port data line 3 GPIO18 0, 4, 8, 12 I/O General-purpose input/output 18 SPICLKA 1 I/O SPI-A clock SCITXDB 2 O SCI-B transmit data CANRXA 3 I CAN-A receive EPWM10A 5 O Enhanced PWM10 output A Sigma-Delta 1 channel 2 data input E2 E3 9 10 8 9 SD1_D2 7 I UPP-D2 15 I/O Universal parallel port data line 2 GPIO19 0, 4, 8, 12 I/O General-purpose input/output 19 SPISTEA 1 I/O SPI-A slave transmit enable SCIRXDB 2 CANTXA 3 EPWM10B 5 E4 12 11 I SCI-B receive data O CAN-A transmit O Enhanced PWM10 output B Sigma-Delta 1 channel 2 clock input SD1_C2 7 I UPP-D1 15 I/O 20 Terminal Configuration and Functions Universal parallel port data line 1 Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 4-1. Signal Descriptions (continued) TERMINAL NAME MUX POSITION ZWT BALL NO. PTP PIN NO. PZP PIN NO. I/O/Z(1) I/O DESCRIPTION GPIO20 0, 4, 8, 12 EQEP1A 1 I Enhanced QEP1 input A MDXA 2 O McBSP-A transmit serial data CANTXB 3 O CAN-B transmit EPWM11A 5 O Enhanced PWM11 output A Sigma-Delta 1 channel 3 data input F2 13 12 General-purpose input/output 20 SD1_D3 7 I UPP-D0 15 I/O Universal parallel port data line 0 GPIO21 0, 4, 8, 12 I/O General-purpose input/output 21 EQEP1B 1 I Enhanced QEP1 input B MDRA 2 I McBSP-A receive serial data CANRXB 3 I CAN-B receive EPWM11B 5 O Enhanced PWM11 output B SD1_C3 7 I Sigma-Delta 1 channel 3 clock input UPP-CLK 15 I/O Universal parallel port transmit clock GPIO22 0, 2, 4, 8 I/O General-purpose input/output 22 EQEP1S 1 I/O Enhanced QEP1 strobe MCLKXA 2 I/O McBSP-A transmit clock SCITXDB 3 O SCI-B transmit data EPWM12A 5 O Enhanced PWM12 output A SPICLKB 6 I/O SPI-B clock SD1_D4 7 I GPIO23 0, 2, 4, 8 I/O General-purpose input/output 23 EQEP1I 1 I/O Enhanced QEP1 index MFSXA 2 I/O McBSP-A transmit frame synch SCIRXDB 3 EPWM12B SPISTEB F3 J4 K4 14 22 23 13 – – Sigma-Delta 1 channel 4 data input I SCI-B receive data 5 O Enhanced PWM12 output B 6 I/O SPI-B slave transmit enable SD1_C4 7 I GPIO24 Sigma-Delta 1 channel 4 clock input 0, 4, 8, 12 I/O General-purpose input/output 24 OUTPUTXBAR1 1 O Output 1 of the output XBAR EQEP2A 2 I Enhanced QEP2 input A MDXB 3 O McBSP-B transmit serial data SPISIMOB 6 I/O SPI-B slave in, master out SD2_D1 7 I GPIO25 0, 4, 8, 12 I/O General-purpose input/output 25 OUTPUTXBAR2 1 O Output 2 of the output XBAR EQEP2B 2 I Enhanced QEP2 input B MDRB 3 I McBSP-B receive serial data SPISOMIB 6 I/O SD2_C1 7 I K3 K2 24 25 – – Sigma-Delta 2 channel 1 data input SPI-B slave out, master in Sigma-Delta 2 channel 1 clock input Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 21 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 4-1. Signal Descriptions (continued) TERMINAL NAME GPIO26 MUX POSITION ZWT BALL NO. PTP PIN NO. PZP PIN NO. 0, 4, 8, 12 I/O/Z(1) DESCRIPTION I/O General-purpose input/output 26 OUTPUTXBAR3 1 O Output 3 of the output XBAR EQEP2I 2 I/O Enhanced QEP2 index MCLKXB 3 I/O McBSP-B transmit clock OUTPUTXBAR3 5 O Output 3 of the output XBAR SPICLKB 6 I/O SPI-B clock SD2_D2 7 I GPIO27 0, 4, 8, 12 I/O General-purpose input/output 27 K1 27 – Sigma-Delta 2 channel 2 data input OUTPUTXBAR4 1 O Output 4 of the output XBAR EQEP2S 2 I/O Enhanced QEP2 strobe MFSXB 3 I/O McBSP-B transmit frame synch OUTPUTXBAR4 5 O Output 4 of the output XBAR SPISTEB 6 I/O SPI-B slave transmit enable SD2_C2 7 I GPIO28 0, 4, 8, 12 I/O L1 28 – Sigma-Delta 2 channel 2 clock input General-purpose input/output 28 SCIRXDA 1 I SCI-A receive data EM1CS4 2 O External memory interface 1 chip select 4 OUTPUTXBAR5 5 O Output 5 of the output XBAR EQEP3A 6 I Enhanced QEP3 input A SD2_D3 7 I Sigma-Delta 2 channel 3 data input GPIO29 0, 4, 8, 12 I/O General-purpose input/output 29 SCITXDA 1 O SCI-A transmit data EM1SDCKE 2 O External memory interface 1 SDRAM clock enable OUTPUTXBAR6 5 O Output 6 of the output XBAR EQEP3B 6 I Enhanced QEP3 input B Sigma-Delta 2 channel 3 clock input V11 W11 64 65 – – SD2_C3 7 I GPIO30 0, 4, 8, 12 I/O CANRXA 1 I CAN-A receive EM1CLK 2 O External memory interface 1 clock OUTPUTXBAR7 5 O Output 7 of the output XBAR EQEP3S 6 I/O Enhanced QEP3 strobe T11 63 – General-purpose input/output 30 SD2_D4 7 I GPIO31 0, 4, 8, 12 I/O General-purpose input/output 31 CANTXA 1 O CAN-A transmit EM1WE 2 O External memory interface 1 write enable OUTPUTXBAR8 5 O Output 8 of the output XBAR EQEP3I 6 I/O Enhanced QEP3 index SD2_C4 7 I GPIO32 0, 4, 8, 12 SDAA 1 EM1CS0 2 GPIO33 0, 4, 8, 12 SCLA 1 EM1RNW 2 22 U11 66 – I/O U13 T13 Terminal Configuration and Functions 67 69 – – I/OD Sigma-Delta 2 channel 4 data input Sigma-Delta 2 channel 4 clock input General-purpose input/output 32 I2C-A data open-drain bidirectional port O External memory interface 1 chip select 0 I/O General-purpose input/output 33 I/OD O I2C-A clock open-drain bidirectional port External memory interface 1 read not write Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 4-1. Signal Descriptions (continued) TERMINAL NAME GPIO34 MUX POSITION ZWT BALL NO. PTP PIN NO. PZP PIN NO. 0, 4, 8, 12 I/O/Z(1) I/O General-purpose input/output 34 O Output 1 of the output XBAR O External memory interface 1 chip select 2 OUTPUTXBAR1 1 EM1CS2 2 SDAB 6 I/OD 0, 4, 8, 12 I/O GPIO35 U14 70 – SCIRXDA 1 EM1CS3 2 SCLB 6 I/OD GPIO36 T14 71 – DESCRIPTION I2C-B data open-drain bidirectional port General-purpose input/output 35 I SCI-A receive data O External memory interface 1 chip select 3 I2C-B clock open-drain bidirectional port 0, 4, 8, 12 I/O General-purpose input/output 36 SCITXDA 1 O SCI-A transmit data EM1WAIT 2 I External memory interface 1 Asynchronous SRAM WAIT CAN-A receive V16 83 – CANRXA 6 I GPIO37 0, 4, 8, 12 I/O General-purpose input/output 37 OUTPUTXBAR2 1 O Output 2 of the output XBAR EM1OE 2 O External memory interface 1 output enable U16 84 – CANTXA 6 O CAN-A transmit GPIO38 0, 4, 8, 12 I/O General-purpose input/output 38 EM1A0 2 O External memory interface 1 address line 0 SCITXDC 5 O SCI-C transmit data CANTXB 6 O CAN-B transmit GPIO39 0, 4, 8, 12 I/O General-purpose input/output 39 EM1A1 2 O External memory interface 1 address line 1 SCIRXDC 5 I SCI-C receive data CANRXB 6 I CAN-B receive GPIO40 0, 4, 8, 12 I/O General-purpose input/output 40 EM1A2 2 O External memory interface 1 address line 2 SDAB 6 I/OD 0, 4, 8, 12 I/O General-purpose input/output 41. For applications using the Hibernate low-power mode, this pin serves as the GPIOHIBWAKE signal. For details, see the Low Power Modes section of the System Control chapter in the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual. External memory interface 1 address line 3 GPIO41 T16 W17 V17 U17 85 86 87 89 – – – 51 EM1A3 2 O SCLB 6 I/OD 0, 4, 8, 12 I/O GPIO42 SDAA 6 SCITXDA 15 USB0DM Analog GPIO43 D19 130 73 I/OD I2C-A data open-drain bidirectional port SCI-A transmit data USB PHY differential data General-purpose input/output 43 I/O 6 I/OD SCIRXDA 15 74 General-purpose input/output 42 I/O 0, 4, 8, 12 131 I2C-B clock open-drain bidirectional port O SCLA C19 I2C-B data open-drain bidirectional port I I2C-A clock open-drain bidirectional port SCI-A receive data USB0DP Analog I/O USB PHY differential data GPIO44 0, 4, 8, 12 I/O General-purpose input/output 44 EM1A4 2 O External memory interface 1 address line 4 K18 113 – Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 23 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 4-1. Signal Descriptions (continued) TERMINAL NAME GPIO45 MUX POSITION 0, 4, 8, 12 EM1A5 2 GPIO46 0, 4, 8, 12 EM1A6 2 SCIRXDD 6 GPIO47 0, 4, 8, 12 EM1A7 2 SCITXDD GPIO48 ZWT BALL NO. PTP PIN NO. PZP PIN NO. K19 115 – E19 128 – I/O/Z(1) DESCRIPTION I/O General-purpose input/output 45 O External memory interface 1 address line 5 I/O General-purpose input/output 46 O External memory interface 1 address line 6 I SCI-D receive data I/O General-purpose input/output 47 O External memory interface 1 address line 7 6 O SCI-D transmit data E18 129 – 0, 4, 8, 12 I/O General-purpose input/output 48 OUTPUTXBAR3 1 O Output 3 of the output XBAR EM1A8 2 O External memory interface 1 address line 8 SCITXDA 6 O SCI-A transmit data SD1_D1 7 I Sigma-Delta 1 channel 1 data input GPIO49 0, 4, 8, 12 I/O General-purpose input/output 49 OUTPUTXBAR4 1 O Output 4 of the output XBAR EM1A9 2 O External memory interface 1 address line 9 SCIRXDA 6 I SCI-A receive data SD1_C1 7 I Sigma-Delta 1 channel 1 clock input GPIO50 0, 4, 8, 12 I/O EQEP1A 1 I Enhanced QEP1 input A EM1A10 2 O External memory interface 1 address line 10 SPISIMOC 6 I/O SPI-C slave in, master out SD1_D2 7 I GPIO51 0, 4, 8, 12 I/O EQEP1B 1 I Enhanced QEP1 input B EM1A11 2 O External memory interface 1 address line 11 SPISOMIC 6 I/O SPI-C slave out, master in SD1_C2 7 I GPIO52 0, 4, 8, 12 I/O General-purpose input/output 52 EQEP1S 1 I/O Enhanced QEP1 strobe EM1A12 2 O External memory interface 1 address line 12 SPICLKC 6 I/O SPI-C clock SD1_D3 7 I GPIO53 0, 4, 8, 12 I/O General-purpose input/output 53 EQEP1I 1 I/O Enhanced QEP1 index EM1D31 2 I/O External memory interface 1 data line 31 EM2D15 3 I/O External memory interface 2 data line 15 SPISTEC 6 I/O SPI-C slave transmit enable SD1_C3 7 I 24 R16 R17 R18 R19 P16 P17 Terminal Configuration and Functions 90 93 94 95 96 97 – – – – – – General-purpose input/output 50 Sigma-Delta 1 channel 2 data input General-purpose input/output 51 Sigma-Delta 1 channel 2 clock input Sigma-Delta 1 channel 3 data input Sigma-Delta 1 channel 3 clock input Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 4-1. Signal Descriptions (continued) TERMINAL NAME GPIO54 MUX POSITION ZWT BALL NO. PTP PIN NO. PZP PIN NO. I/O/Z(1) DESCRIPTION 0, 4, 8, 12 I/O General-purpose input/output 54 SPISIMOA 1 I/O SPI-A slave in, master out EM1D30 2 I/O External memory interface 1 data line 30 EM2D14 3 I/O External memory interface 2 data line 14 EQEP2A 5 I Enhanced QEP2 input A SCITXDB 6 O SCI-B transmit data SD1_D4 7 I Sigma-Delta 1 channel 4 data input GPIO55 0, 4, 8, 12 I/O General-purpose input/output 55 SPISOMIA 1 I/O SPI-A slave out, master in EM1D29 2 I/O External memory interface 1 data line 29 EM2D13 3 I/O External memory interface 2 data line 13 EQEP2B 5 I Enhanced QEP2 input B SCIRXDB 6 I SCI-B receive data SD1_C4 7 I Sigma-Delta 1 channel 4 clock input GPIO56 0, 4, 8, 12 I/O General-purpose input/output 56 SPICLKA 1 I/O SPI-A clock EM1D28 2 I/O External memory interface 1 data line 28 EM2D12 3 I/O External memory interface 2 data line 12 EQEP2S 5 I/O Enhanced QEP2 strobe SCITXDC 6 O SCI-C transmit data SD2_D1 7 I Sigma-Delta 2 channel 1 data input GPIO57 P18 P19 N16 98 100 101 – – – 0, 4, 8, 12 I/O General-purpose input/output 57 SPISTEA 1 I/O SPI-A slave transmit enable EM1D27 2 I/O External memory interface 1 data line 27 EM2D11 3 I/O External memory interface 2 data line 11 EQEP2I 5 I/O Enhanced QEP2 index SCIRXDC 6 I SCI-C receive data SD2_C1 7 I Sigma-Delta 2 channel 1 clock input GPIO58 0, 4, 8, 12 I/O General-purpose input/output 58 MCLKRA 1 I/O McBSP-A receive clock EM1D26 2 I/O External memory interface 1 data line 26 EM2D10 3 I/O External memory interface 2 data line 10 OUTPUTXBAR1 5 O Output 1 of the output XBAR SPICLKB 6 I/O SPI-B clock SD2_D2 7 I SPISIMOA 15 I/O SPI-A slave in, master out(2) GPIO59 0, 4, 8, 12 I/O General-purpose input/output 59(3) MFSRA 1 I/O McBSP-A receive frame synch EM1D25 2 I/O External memory interface 1 data line 25 EM2D9 3 I/O External memory interface 2 data line 9 OUTPUTXBAR2 5 O Output 2 of the output XBAR SPISTEB 6 I/O SPI-B slave transmit enable SD2_C2 7 I SPISOMIA 15 I/O N18 N17 M16 102 103 104 – 52 53 Sigma-Delta 2 channel 2 data input Sigma-Delta 2 channel 2 clock input SPI-A slave out, master in(2) Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 25 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 4-1. Signal Descriptions (continued) TERMINAL NAME MUX POSITION ZWT BALL NO. PTP PIN NO. PZP PIN NO. I/O/Z(1) DESCRIPTION GPIO60 0, 4, 8, 12 I/O General-purpose input/output 60 MCLKRB 1 I/O McBSP-B receive clock EM1D24 2 I/O External memory interface 1 data line 24 EM2D8 3 I/O External memory interface 2 data line 8 OUTPUTXBAR3 5 O Output 3 of the output XBAR SPISIMOB 6 I/O SPI-B slave in, master out SD2_D3 7 I SPICLKA 15 I/O SPI-A clock(2) GPIO61 0, 4, 8, 12 I/O General-purpose input/output 61(3) MFSRB 1 I/O McBSP-B receive frame synch EM1D23 2 I/O External memory interface 1 data line 23 EM2D7 3 I/O External memory interface 2 data line 7 OUTPUTXBAR4 5 O Output 4 of the output XBAR SPISOMIB 6 I/O SPI-B slave out, master in SD2_C3 7 I SPISTEA 15 I/O SPI-A slave transmit enable(2) General-purpose input/output 62 GPIO62 M17 L16 105 107 54 56 Sigma-Delta 2 channel 3 data input Sigma-Delta 2 channel 3 clock input 0, 4, 8, 12 I/O SCIRXDC 1 I EM1D22 2 EM2D6 3 EQEP3A 5 I Enhanced QEP3 input A CANRXA 6 I CAN-A receive SD2_D4 7 I Sigma-Delta 2 channel 4 data input GPIO63 0, 4, 8, 12 I/O General-purpose input/output 63 SCITXDC 1 O SCI-C transmit data EM1D21 2 I/O External memory interface 1 data line 21 EM2D5 3 I/O External memory interface 2 data line 5 EQEP3B 5 CANTXA SD2_C4 SPISIMOB J17 J16 108 109 57 58 SCI-C receive data I/O External memory interface 1 data line 22 I/O External memory interface 2 data line 6 I Enhanced QEP3 input B 6 O CAN-A transmit 7 I Sigma-Delta 2 channel 4 clock input 15 I/O SPI-B slave in, master out(2) GPIO64 0, 4, 8, 12 I/O General-purpose input/output 64(3) EM1D20 2 I/O External memory interface 1 data line 20 EM2D4 3 I/O External memory interface 2 data line 4 EQEP3S 5 I/O Enhanced QEP3 strobe L17 110 59 SCIRXDA 6 I SPISOMIB 15 I/O SPI-B slave out, master in(2) GPIO65 0, 4, 8, 12 I/O General-purpose input/output 65 EM1D19 2 I/O External memory interface 1 data line 19 EM2D3 3 I/O External memory interface 2 data line 3 EQEP3I 5 I/O Enhanced QEP3 index K16 111 60 SCI-A receive data SCITXDA 6 O SCI-A transmit data SPICLKB 15 I/O SPI-B clock(2) 26 Terminal Configuration and Functions Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 4-1. Signal Descriptions (continued) TERMINAL NAME MUX POSITION ZWT BALL NO. PTP PIN NO. PZP PIN NO. I/O/Z(1) DESCRIPTION I/O General-purpose input/output 66(3) I/O External memory interface 1 data line 18 I/O External memory interface 2 data line 2 6 I/OD I2C-B data open-drain bidirectional port 15 I/O SPI-B slave transmit enable(2) I/O General-purpose input/output 67 I/O External memory interface 1 data line 17 I/O External memory interface 2 data line 1 I/O General-purpose input/output 68 I/O External memory interface 1 data line 16 GPIO66 0, 4, 8, 12 EM1D18 2 EM2D2 3 SDAB SPISTEB K17 112 61 GPIO67 0, 4, 8, 12 EM1D17 2 EM2D1 3 GPIO68 0, 4, 8, 12 EM1D16 2 EM2D0 3 I/O External memory interface 2 data line 0 GPIO69 0, 4, 8, 12 I/O General-purpose input/output 69 EM1D15 2 I/O External memory interface 1 data line 15 SCLB 6 I/OD I2C-B clock open-drain bidirectional port SPISIMOC 15 I/O SPI-C slave in, master out(2) GPIO70 0, 4, 8, 12 I/O General-purpose input/output 70(3) EM1D14 2 I/O External memory interface 1 data line 14 CANRXA 5 B19 C18 B18 A17 132 133 134 135 – – 75 76 I CAN-A receive SCITXDB 6 O SCI-B transmit data SPISOMIC 15 I/O SPI-C slave out, master in(2) GPIO71 0, 4, 8, 12 I/O General-purpose input/output 71 EM1D13 2 I/O External memory interface 1 data line 13 CANTXA 5 O CAN-A transmit SCIRXDB 6 I SCI-B receive data SPICLKC 15 I/O SPI-C clock(2) 0, 4, 8, 12 I/O General-purpose input/output 72.(3) This is the factory default boot mode select pin 1. I/O External memory interface 1 data line 12 GPIO72 EM1D12 B17 136 77 2 B16 139 80 CANTXB 5 O CAN-B transmit SCITXDC 6 O SCI-C transmit data SPISTEC 15 I/O SPI-C slave transmit enable(2) GPIO73 0, 4, 8, 12 I/O General-purpose input/output 73 EM1D11 2 I/O External memory interface 1 data line 11 XCLKOUT 3 O/Z External clock output. This pin outputs a divided-down version of a chosen clock signal from within the device. The clock signal is chosen using the CLKSRCCTL3.XCLKOUTSEL bit field while the divide ratio is chosen using the XCLKOUTDIVSEL.XCLKOUTDIV bit field. A16 140 81 CANRXB 5 I CAN-B receive SCIRXDC 6 I SCI-C receive 0, 4, 8, 12 I/O General-purpose input/output 74 I/O External memory interface 1 data line 10 I/O General-purpose input/output 75 I/O External memory interface 1 data line 9 GPIO74 EM1D10 2 GPIO75 0, 4, 8, 12 EM1D9 2 C17 D16 141 142 – – Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 27 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 4-1. Signal Descriptions (continued) TERMINAL NAME MUX POSITION GPIO76 0, 4, 8, 12 EM1D8 2 SCITXDD 6 GPIO77 0, 4, 8, 12 EM1D7 2 SCIRXDD ZWT BALL NO. C16 A15 PTP PIN NO. 143 144 PZP PIN NO. – – I/O/Z(1) DESCRIPTION I/O General-purpose input/output 76 I/O External memory interface 1 data line 8 O SCI-D transmit data I/O General-purpose input/output 77 I/O External memory interface 1 data line 7 6 I GPIO78 0, 4, 8, 12 I/O General-purpose input/output 78 EM1D6 2 I/O External memory interface 1 data line 6 B15 145 82 SCI-D receive data EQEP2A 6 I GPIO79 0, 4, 8, 12 I/O General-purpose input/output 79 EM1D5 2 I/O External memory interface 1 data line 5 C15 146 – Enhanced QEP2 input A EQEP2B 6 I GPIO80 0, 4, 8, 12 I/O General-purpose input/output 80 EM1D4 2 I/O External memory interface 1 data line 4 EQEP2S 6 I/O Enhanced QEP2 strobe GPIO81 0, 4, 8, 12 I/O General-purpose input/output 81 EM1D3 2 I/O External memory interface 1 data line 3 EQEP2I 6 I/O Enhanced QEP2 index GPIO82 0, 4, 8, 12 I/O General-purpose input/output 82 EM1D2 2 I/O External memory interface 1 data line 2 GPIO83 0, 4, 8, 12 I/O General-purpose input/output 83 EM1D1 2 I/O External memory interface 1 data line 1 GPIO84 0, 4, 8, 12 I/O General-purpose input/output 84. This is the factory default boot mode select pin 0. O SCI-A transmit data SCITXDA 5 D15 A14 B14 C14 A11 148 149 150 151 154 – – – – 85 Enhanced QEP2 input B MDXB 6 O McBSP-B transmit serial data MDXA 15 O McBSP-A transmit serial data GPIO85 0, 4, 8, 12 I/O General-purpose input/output 85 EM1D0 2 I/O External memory interface 1 data line 0 SCIRXDA 5 MDRB MDRA B11 I SCI-A receive data 6 I McBSP-B receive serial data 15 I McBSP-A receive serial data GPIO86 0, 4, 8, 12 I/O General-purpose input/output 86 EM1A13 2 O External memory interface 1 address line 13 EM1CAS 3 O External memory interface 1 column address strobe SCITXDB 5 O SCI-B transmit data MCLKXB 6 I/O McBSP-B transmit clock MCLKXA 15 I/O McBSP-A transmit clock GPIO87 0, 2, 4, 8 I/O General-purpose input/output 87 EM1A14 2 O External memory interface 1 address line 14 EM1RAS 3 O External memory interface 1 row address strobe SCIRXDB 5 I SCI-B receive data C11 D11 155 156 157 86 87 88 MFSXB 6 I/O McBSP-B transmit frame synch MFSXA 15 I/O McBSP-A transmit frame synch 28 Terminal Configuration and Functions Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 4-1. Signal Descriptions (continued) TERMINAL NAME MUX POSITION GPIO88 0, 2, 4, 8 EM1A15 2 EM1DQM0 3 GPIO89 ZWT BALL NO. PTP PIN NO. PZP PIN NO. I/O/Z(1) DESCRIPTION I/O General-purpose input/output 88 O External memory interface 1 address line 15 O External memory interface 1 Input/output mask for byte 0 0, 2, 4, 8 I/O General-purpose input/output 89 EM1A16 2 O External memory interface 1 address line 16 EM1DQM1 3 O External memory interface 1 Input/output mask for byte 1 SCITXDC 6 O SCI-C transmit data GPIO90 0, 2, 4, 8 I/O General-purpose input/output 90 EM1A17 2 O External memory interface 1 address line 17 EM1DQM2 3 O External memory interface 1 Input/output mask for byte 2 SCIRXDC 6 I SCI-C receive data GPIO91 0, 2, 4, 8 I/O General-purpose input/output 91 EM1A18 2 O External memory interface 1 address line 18 EM1DQM3 3 O External memory interface 1 Input/output mask for byte 3 SDAA 6 I/OD GPIO92 0, 2, 4, 8 I/O General-purpose input/output 92 EM1A19 2 O External memory interface 1 address line 19 EM1BA1 3 O External memory interface 1 bank address 1 SCLA C6 D6 A5 B5 A4 170 171 172 173 174 – 96 97 98 99 I2C-A data open-drain bidirectional port 6 I/OD GPIO93 0, 2, 4, 8 I/O General-purpose input/output 93 EM1BA0 3 O External memory interface 1 bank address 0 6 O SCI-D transmit data 0, 2, 4, 8 I/O General-purpose input/output 94 SCITXDD GPIO94 SCIRXDD 6 GPIO95 0, 2, 4, 8 GPIO96 0, 2, 4, 8 EM2DQM1 3 EQEP1A 5 GPIO97 0, 2, 4, 8 EM2DQM0 3 EQEP1B 5 GPIO98 0, 2, 4, 8 EM2A0 3 EQEP1S B4 175 – A3 176 – B3 – – C3 – – A2 – – I I2C-A clock open-drain bidirectional port SCI-D receive data I/O General-purpose input/output 95 I/O General-purpose input/output 96 O External memory interface 2 Input/output mask for byte 1 I Enhanced QEP1 input A I/O General-purpose input/output 97 O External memory interface 2 Input/output mask for byte 0 I Enhanced QEP1 input B I/O General-purpose input/output 98 O External memory interface 2 address line 0 5 I/O Enhanced QEP1 strobe GPIO99 0, 2, 4, 8 I/O General-purpose input/output 99 EM2A1 3 O External memory interface 2 address line 1 EQEP1I 5 I/O Enhanced QEP1 index GPIO100 0, 4, 8, 12 I/O General-purpose input/output 100 O External memory interface 2 address line 2 I Enhanced QEP2 input A F1 G1 – 17 – 14 EM2A2 3 EQEP2A 5 SPISIMOC 6 I/O SPI-C slave in, master out GPIO101 H1 – – 0, 4, 8, 12 I/O General-purpose input/output 101 EM2A3 3 O External memory interface 2 address line 3 EQEP2B 5 I Enhanced QEP2 input B SPISOMIC 6 H2 – – I/O SPI-C slave out, master in Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 29 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 4-1. Signal Descriptions (continued) TERMINAL NAME GPIO102 MUX POSITION ZWT BALL NO. PTP PIN NO. PZP PIN NO. 0, 4, 8, 12 EM2A4 3 EQEP2S 5 SPICLKC GPIO103 I/O/Z(1) DESCRIPTION I/O General-purpose input/output 102 O External memory interface 2 address line 4 I/O Enhanced QEP2 strobe 6 I/O SPI-C clock 0, 4, 8, 12 I/O General-purpose input/output 103 EM2A5 3 EQEP2I 5 SPISTEC 6 GPIO104 H3 J1 – – – – O External memory interface 2 address line 5 I/O Enhanced QEP2 index I/O SPI-C slave transmit enable General-purpose input/output 104 0, 4, 8, 12 I/O SDAA 1 I/OD EM2A6 3 EQEP3A SCITXDD GPIO105 J2 External memory interface 2 address line 6 5 I Enhanced QEP3 input A 6 O SCI-D transmit data 0, 4, 8, 12 I/O General-purpose input/output 105 SCLA 1 I/OD EM2A7 3 O External memory interface 2 address line 7 EQEP3B 5 I Enhanced QEP3 input B SCIRXDD 6 I SCI-D receive data GPIO106 – – I2C-A data open-drain bidirectional port O J3 – – I2C-A clock open-drain bidirectional port 0, 4, 8, 12 I/O General-purpose input/output 106 EM2A8 3 O External memory interface 2 address line 8 EQEP3S 5 I/O Enhanced QEP3 strobe L2 – – SCITXDC 6 O SCI-C transmit data GPIO107 0, 4, 8, 12 I/O General-purpose input/output 107 EM2A9 3 O External memory interface 2 address line 9 EQEP3I 5 I/O Enhanced QEP3 index L3 – – SCIRXDC 6 I GPIO108 0, 4, 8, 12 I/O General-purpose input/output 108 EM2A10 3 O External memory interface 2 address line 10 GPIO109 0, 4, 8, 12 I/O General-purpose input/output 109 EM2A11 3 O External memory interface 2 address line 11 GPIO110 0, 4, 8, 12 I/O General-purpose input/output 110 EM2WAIT 3 GPIO111 0, 4, 8, 12 EM2BA0 3 GPIO112 0, 4, 8, 12 EM2BA1 3 GPIO113 0, 4, 8, 12 EM2CAS 3 GPIO114 0, 4, 8, 12 EM2RAS 3 GPIO115 0, 4, 8, 12 EM2CS0 3 GPIO116 0, 4, 8, 12 EM2CS2 3 30 L4 – – N2 – – M2 M4 M3 – – – – – – N4 – – N3 – – V12 W10 Terminal Configuration and Functions – – – – I SCI-C receive data External memory interface 2 Asynchronous SRAM WAIT I/O General-purpose input/output 111 O External memory interface 2 bank address 0 I/O General-purpose input/output 112 O External memory interface 2 bank address 1 I/O General-purpose input/output 113 O External memory interface 2 column address strobe I/O General-purpose input/output 114 O External memory interface 2 row address strobe I/O General-purpose input/output 115 O External memory interface 2 chip select 0 I/O General-purpose input/output 116 O External memory interface 2 chip select 2 Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 4-1. Signal Descriptions (continued) TERMINAL NAME GPIO117 MUX POSITION 0, 4, 8, 12 EM2SDCKE 3 GPIO118 0, 4, 8, 12 EM2CLK 3 GPIO119 0, 4, 8, 12 EM2RNW 3 GPIO120 0, 4, 8, 12 EM2WE 3 USB0PFLT GPIO121 EM2OE GPIO122 PTP PIN NO. PZP PIN NO. U12 – – T12 T15 – – – – I/O/Z(1) I/O General-purpose input/output 117 O External memory interface 2 SDRAM clock enable I/O General-purpose input/output 118 O External memory interface 2 clock I/O General-purpose input/output 119 O External memory interface 2 read not write General-purpose input/output 120 O External memory interface 2 write enable 15 I/O USB external regulator power fault indicator 0, 4, 8, 12 I/O General-purpose input/output 121 O External memory interface 2 output enable 15 I/O USB external regulator enable 0, 4, 8, 12 I/O General-purpose input/output 122 I/O SPI-C slave in, master out SPISIMOC 6 SD1_D1 7 GPIO123 0, 4, 8, 12 U15 W16 T8 – – – – – – I SPI-C slave out, master in 7 GPIO124 0, 4, 8, 12 SPICLKC 6 SD1_D2 7 GPIO125 0, 4, 8, 12 SPISTEC 6 SD1_C2 7 I GPIO126 0, 4, 8, 12 I/O 7 0, 4, 8, 12 SD1_C3 7 GPIO128 0, 4, 8, 12 SD1_D4 7 GPIO129 0, 4, 8, 12 SD1_C4 7 GPIO130 0, 4, 8, 12 SD2_D1 7 GPIO131 0, 4, 8, 12 SD2_C1 7 GPIO132 0, 4, 8, 12 SD2_D2 7 I V8 – – T9 U9 – – – – V9 – – W9 – – T10 U10 V10 W18 – – – – – – – – 0, 4, 8, 12 General-purpose input/output 124 I/O SPI-C clock 7 Sigma-Delta 1 channel 2 data input I/O General-purpose input/output 125 I/O SPI-C slave transmit enable I I/O I I/O I I/O I I/O I I/O I I/O I I/O 118 Sigma-Delta 1 channel 1 clock input I/O I G18 SD2_C2 – General-purpose input/output 123 SD1_C1 GPIO127 – I/O 6 SD1_D3 U8 Sigma-Delta 1 channel 1 data input I/O SPISOMIC GPIO133/AUXCLKIN DESCRIPTION I/O 3 USB0EPEN ZWT BALL NO. – I Sigma-Delta 1 channel 2 clock input General-purpose input/output 126 Sigma-Delta 1 channel 3 data input General-purpose input/output 127 Sigma-Delta 1 channel 3 clock input General-purpose input/output 128 Sigma-Delta 1 channel 4 data input General-purpose input/output 129 Sigma-Delta 1 channel 4 clock input General-purpose input/output 130 Sigma-Delta 2 channel 1 data input General-purpose input/output 131 Sigma-Delta 2 channel 1 clock input General-purpose input/output 132 Sigma-Delta 2 channel 2 data input General-purpose input/output 133. The AUXCLKIN function of this GPIO pin could be used to provide a single-ended 3.3-V level clock signal to the Auxiliary Phase-Locked Loop (AUXPLL), whose output is used for the USB module. The AUXCLKIN clock may also be used for the CAN module. Sigma-Delta 2 channel 2 clock input Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 31 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 4-1. Signal Descriptions (continued) TERMINAL NAME GPIO134 MUX POSITION 0, 4, 8, 12 SD2_D3 7 GPIO135 0, 4, 8, 12 SCITXDA 6 SD2_C3 7 GPIO136 0, 4, 8, 12 SCIRXDA 6 SD2_D4 7 GPIO137 0, 4, 8, 12 SCITXDB 6 SD2_C4 7 GPIO138 0, 4, 8, 12 SCIRXDB 6 GPIO139 0, 4, 8, 12 SCIRXDC 6 GPIO140 0, 4, 8, 12 SCITXDC 6 GPIO141 0, 4, 8, 12 SCIRXDD 6 GPIO142 0, 4, 8, 12 SCITXDD 6 GPIO143 GPIO144 GPIO145 0, 4, 8, 12 EPWM1A 1 GPIO146 0, 4, 8, 12 EPWM1B 1 GPIO147 0, 4, 8, 12 PTP PIN NO. PZP PIN NO. V18 – – U18 – – I/O/Z(1) I/O I T18 T19 – – – – – – N19 – – M19 – – M18 – – General-purpose input/output 134 Sigma-Delta 2 channel 3 data input I/O General-purpose input/output 135 O SCI-A transmit data I Sigma-Delta 2 channel 3 clock input I/O T17 DESCRIPTION General-purpose input/output 136 I SCI-A receive data I Sigma-Delta 2 channel 4 data input I/O General-purpose input/output 137 O SCI-B transmit data I Sigma-Delta 2 channel 4 clock input I/O I I/O I General-purpose input/output 138 SCI-B receive data General-purpose input/output 139 SCI-C receive data I/O General-purpose input/output 140 O SCI-C transmit data I/O General-purpose input/output 141 I SCI-D receive data I/O General-purpose input/output 142 O SCI-D transmit data L19 – – 0, 4, 8, 12 F18 – – I/O General-purpose input/output 143 0, 4, 8, 12 F17 – – I/O General-purpose input/output 144 I/O General-purpose input/output 145 O Enhanced PWM1 output A (HRPWM-capable) I/O General-purpose input/output 146 O Enhanced PWM1 output B (HRPWM-capable) I/O General-purpose input/output 147 EPWM2A 1 GPIO148 0, 4, 8, 12 EPWM2B 1 GPIO149 0, 4, 8, 12 EPWM3A 1 GPIO150 0, 4, 8, 12 EPWM3B 1 GPIO151 0, 4, 8, 12 EPWM4A 1 GPIO152 0, 4, 8, 12 EPWM4B 1 GPIO153 0, 4, 8, 12 EPWM5A 1 GPIO154 0, 4, 8, 12 EPWM5B 1 GPIO155 0, 4, 8, 12 EPWM6A 1 32 ZWT BALL NO. E17 – – D18 – – D17 – – D14 – – A13 – – B13 – – C13 – – D13 – – A12 – – B12 – – C12 Terminal Configuration and Functions – – O Enhanced PWM2 output A (HRPWM-capable) I/O General-purpose input/output 148 O Enhanced PWM2 output B (HRPWM-capable) I/O General-purpose input/output 149 O Enhanced PWM3 output A (HRPWM-capable) I/O General-purpose input/output 150 O Enhanced PWM3 output B (HRPWM-capable) I/O General-purpose input/output 151 O Enhanced PWM4 output A (HRPWM-capable) I/O General-purpose input/output 152 O Enhanced PWM4 output B (HRPWM-capable) I/O General-purpose input/output 153 O Enhanced PWM5 output A (HRPWM-capable) I/O General-purpose input/output 154 O Enhanced PWM5 output B (HRPWM-capable) I/O General-purpose input/output 155 O Enhanced PWM6 output A (HRPWM-capable) Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 4-1. Signal Descriptions (continued) TERMINAL NAME GPIO156 MUX POSITION 0, 4, 8, 12 EPWM6B 1 GPIO157 0, 4, 8, 12 EPWM7A 1 GPIO158 0, 4, 8, 12 EPWM7B 1 GPIO159 0, 4, 8, 12 EPWM8A 1 GPIO160 0, 4, 8, 12 EPWM8B 1 GPIO161 0, 4, 8, 12 EPWM9A 1 GPIO162 0, 4, 8, 12 EPWM9B 1 GPIO163 0, 4, 8, 12 EPWM10A GPIO164 EPWM10B GPIO165 EPWM11A GPIO166 EPWM11B GPIO167 EPWM12A GPIO168 EPWM12B 1 0, 4, 8, 12 1 0, 4, 8, 12 1 0, 4, 8, 12 1 0, 4, 8, 12 1 0, 4, 8, 12 1 ZWT BALL NO. PTP PIN NO. PZP PIN NO. D12 – – B10 C10 – – – – D10 – – B9 – – C9 D9 A8 – – – – – – B8 – – C5 – – D5 C4 D4 – – – I/O/Z(1) – – – DESCRIPTION I/O General-purpose input/output 156 O Enhanced PWM6 output B (HRPWM-capable) I/O General-purpose input/output 157 O Enhanced PWM7 output A (HRPWM-capable) I/O General-purpose input/output 158 O Enhanced PWM7 output B (HRPWM-capable) I/O General-purpose input/output 159 O Enhanced PWM8 output A (HRPWM-capable) I/O General-purpose input/output 160 O Enhanced PWM8 output B (HRPWM-capable) I/O General-purpose input/output 161 O Enhanced PWM9 output A I/O General-purpose input/output 162 O Enhanced PWM9 output B I/O General-purpose input/output 163 O Enhanced PWM10 output A I/O General-purpose input/output 164 O Enhanced PWM10 output B I/O General-purpose input/output 165 O Enhanced PWM11 output A I/O General-purpose input/output 166 O Enhanced PWM11 output B I/O General-purpose input/output 167 O Enhanced PWM12 output A I/O General-purpose input/output 168 O Enhanced PWM12 output B RESET XRS F19 124 69 I/OD Device Reset (in) and Watchdog Reset (out). The devices have a built-in power-on reset (POR) circuit. During a power-on condition, this pin is driven low by the device. An external circuit may also drive this pin to assert a device reset. This pin is also driven low by the MCU when a watchdog reset or NMI watchdog reset occurs. During watchdog reset, the XRS pin is driven low for the watchdog reset duration of 512 OSCCLK cycles. A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRS and VDDIO. If a capacitor is placed between XRS and VSS for noise filtering, it should be 100 nF or smaller. These values will allow the watchdog to properly drive the XRS pin to VOL within 512 OSCCLK cycles when the watchdog reset is asserted. The output buffer of this pin is an open drain with an internal pullup. CLOCKS X1 G19 123 68 I On-chip crystal-oscillator input. To use this oscillator, a quartz crystal must be connected across X1 and X2. If this pin is not used, it must be tied to GND. This pin can also be used to feed a single-ended 3.3-V level clock. In this case, X2 is a No Connect (NC). X2 J19 121 66 O On-chip crystal-oscillator output. A quartz crystal may be connected across X1 and X2. If X2 is not used, it must be left unconnected. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 33 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 4-1. Signal Descriptions (continued) TERMINAL NAME MUX POSITION ZWT BALL NO. PTP PIN NO. PZP PIN NO. I/O/Z(1) DESCRIPTION NO CONNECT No connect. BGA ball is electrically open and not connected to the die. NC H4 – – TCK V15 81 50 I JTAG test clock with internal pullup (see Section 5.5) TDI W13 77 46 I JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCK. TDO W15 78 47 O/Z JTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK.(3) TMS W14 80 49 I JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. I JTAG test reset with internal pulldown. TRST, when driven high, gives the scan system control of the operations of the device. If this signal is driven low, the device operates in its functional mode, and the test reset signals are ignored. NOTE: TRST must be maintained low at all times during normal device operation. An external pulldown resistor is required on this pin. The value of this resistor should be based on drive strength of the debugger pods applicable to the design. A 2.2-kΩ or smaller resistor generally offers adequate protection. The value of the resistor is application-specific. TI recommends that each target board be validated for proper operation of the debugger and the application. This pin has an internal 50-ns (nominal) glitch filter. JTAG TRST V14 79 48 INTERNAL VOLTAGE REGULATOR CONTROL VREGENZ J18 119 64 I Internal voltage regulator enable with internal pulldown. The internal VREG is not supported and must be disabled. Connect VREGENZ to VDDIO. ANALOG, DIGITAL, AND I/O POWER VDD VDD3VFL VDDA 34 E9 16 16 E11 21 39 F9 61 45 F11 76 63 G14 117 71 G15 126 78 J14 137 84 J15 153 89 K5 158 95 K6 169 – P10 – – P13 – – R10 – – R13 – – R11 72 41 R12 – – P6 36 18 R6 54 38 Terminal Configuration and Functions 1.2-V digital logic power pins. TI recommends placing a decoupling capacitor near each VDD pin with a minimum total capacitance of approximately 20 uF. The exact value of the decoupling capacitance should be determined by your system voltage regulation solution. 3.3-V Flash power pin. Place a minimum 0.1-µF decoupling capacitor on each pin. 3.3-V analog power pins. Place a minimum 2.2-µF decoupling capacitor to VSSA on each pin. Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 4-1. Signal Descriptions (continued) TERMINAL NAME VDDIO VDDOSC MUX POSITION ZWT BALL NO. PTP PIN NO. PZP PIN NO. A9 3 2 A18 11 10 B1 15 15 E7 20 40 E10 26 44 E13 62 55 E16 68 62 F4 75 72 F7 82 79 F10 88 83 F13 91 90 F16 99 94 G4 106 – G5 114 – G6 116 – H5 127 – H6 138 – L14 147 – L15 152 – M1 159 – M5 168 – M6 – – N14 – – N15 – – P9 – – R9 – – V19 – – W8 – – H16 120 65 H17 125 70 I/O/Z(1) DESCRIPTION 3.3-V digital I/O power pins. Place a minimum 0.1-µF decoupling capacitor on each pin. The exact value of the decoupling capacitance should be determined by your system voltage regulation solution. Power pins for the 3.3-V on-chip crystal oscillator (X1 and X2) and the two zero-pin internal oscillators (INTOSC). Place a 0.1-μF (minimum) decoupling capacitor on each pin. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 35 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 4-1. Signal Descriptions (continued) TERMINAL NAME MUX POSITION ZWT BALL NO. PTP PIN NO. PZP PIN NO. PWR PAD PWR PAD I/O/Z(1) DESCRIPTION A1 A10 A19 E5 E6 E8 E12 E14 E15 F5 F6 F8 F12 F14 F15 G16 G17 H8 H9 H10 VSS H11 H12 Analog and digital ground. For Quad Flatpacks (QFPs), the PowerPAD on the bottom of the package must be soldered to the ground plane of the PCB. H14 H15 J5 J6 J8 J9 J10 J11 J12 K8 K9 K10 K11 K12 K14 K15 L5 L6 L8 L9 36 Terminal Configuration and Functions Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 4-1. Signal Descriptions (continued) TERMINAL NAME MUX POSITION ZWT BALL NO. PTP PIN NO. PZP PIN NO. PWR PAD PWR PAD H18 122 67 H19 – – P1 34 17 P5 52 35 R5 – 36 V7 – – W1 – – I/O/Z(1) DESCRIPTION L10 L11 L12 L18 M8 M9 M10 M11 M12 M14 M15 N1 VSS N5 N6 Analog and digital ground. For Quad Flatpacks (QFPs), the PowerPAD on the bottom of the package must be soldered to the ground plane of the PCB. P7 P8 P11 P12 P14 P15 R7 R8 R14 R15 W7 W19 VSSOSC VSSA Crystal oscillator (X1 and X2) ground pin. When using an external crystal, do not connect this pin to the board ground. Instead, connect it to the ground reference of the external crystal oscillator circuit. If an external crystal is not used, this pin may be connected to the board ground. Analog module ground pins. On the PZP package, pin 17 is double-bonded to VSSA and VREFLOA. This pin must be connect to VSSA. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 37 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 4-1. Signal Descriptions (continued) TERMINAL NAME MUX POSITION ZWT BALL NO. PTP PIN NO. PZP PIN NO. I/O/Z(1) DESCRIPTION SPECIAL FUNCTIONS ERRORSTS U19 92 – O Error status output. This pin has an internal pulldown. TEST PINS FLT1 W12 73 42 I/O Flash test pin 1. Reserved for TI. Must be left unconnected. FLT2 V13 74 43 I/O Flash test pin 2. Reserved for TI. Must be left unconnected. (1) I = Input, O = Output, OD = Open Drain, Z = High Impedance (2) High-Speed SPI-enabled GPIO mux option. This pin mux option is required when using the SPI in High-Speed Mode (HS_MODE = 1 in SPICCR). This mux option is still available when not using the SPI in High-Speed Mode (HS_MODE = 0 in SPICCR). (3) This pin has output impedance that can be as low as 22 Ω. This output could have fast edges and ringing depending on the system PCB characteristics. If this is a concern, the user should take precautions such as adding a 39Ω (10% tolerance) series termination resistor or implement some other termination scheme. It is also recommended that a system-level signal integrity analysis be performed with the provided IBIS models. The termination is not required if this pin is used for input function. 4.3 Pins With Internal Pullup and Pulldown Some pins on the device have internal pullups or pulldowns. Table 4-2 lists the pull direction and when it is active. The pullups on GPIO pins are disabled by default and can be enabled through software. In order to avoid any floating unbonded inputs, the Boot ROM will enable internal pullups on GPIO pins that are not bonded out in a particular package. Other pins noted in Table 4-2 with pullups and pulldowns are always on and cannot be disabled. Table 4-2. Pins With Internal Pullup and Pulldown RESET (XRS = 0) DEVICE BOOT APPLICATION SOFTWARE Pullup disabled Pullup disabled (1) Pullup enable is applicationdefined PIN GPIOx TRST Pulldown active TCK Pullup active TMS Pullup active TDI Pullup active XRS Pullup active VREGENZ Pulldown active ERRORSTS Other pins (1) 38 Pulldown active No pullup or pulldown present Pins not bonded out in a given package will have the internal pullups enabled by the Boot ROM. Terminal Configuration and Functions Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 4.4 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Connections for Unused Pins For applications that do not need to use all functions of the device, Table 4-3 lists acceptable conditioning for any unused pins. When multiple options are listed in Table 4-3, any are acceptable. Pins not listed in Table 4-3 must be connected according to Table 4-1. Table 4-3. Connections for Unused Pins SIGNAL NAME ACCEPTABLE PRACTICE Analog VREFHIx Tie to VDDA VREFLOx Tie to VSSA ADCINx • • No Connect Tie to VSSA Digital GPIOx • • • Input mode with internal pullup enabled Input mode with external pullup or pulldown resistor Output mode with internal pullup disabled X1 Tie to VSS X2 No Connect TCK • • No Connect Pullup resistor TDI • • No Connect Pullup resistor TDO No Connect TMS No Connect TRST Pulldown resistor (2.2 kΩ or smaller) VREGENZ Tie to VDDIO ERRORSTS No Connect FLT1 No Connect FLT2 No Connect VDD All VDD pins must be connected per Table 4-1. VDDA If a separate analog supply is not used, tie to VDDIO. VDDIO All VDDIO pins must be connected per Table 4-1. VDD3VFL Must be tied to VDDIO VDDOSC Must be tied to VDDIO VSS All VSS pins must be connected to board ground. VSSA If a separate analog ground is not used, tie to VSS. VSSOSC If an external crystal is not used, this pin may be connected to the board ground. Power and Ground Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 39 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 4.5 www.ti.com Pin Multiplexing 4.5.1 GPIO Muxed Pins Table 4-4 shows the GPIO muxed pins. The default for each pin is the GPIO function, secondary functions can be selected by setting both the GPyGMUXn.GPIOz and GPyMUXn.GPIOz register bits. The GPyGMUXn register should be configured prior to the GPyMUXn to avoid transient pulses on GPIO's from alternate mux selections. Columns not shown and blank cells are reserved GPIO Mux settings. Table 4-4. GPIO Muxed Pins (1) (2) GPIO Mux Selection GPIO Index 0, 4, 8, 12 GPyGMUXn. GPIOz = 00b, 01b, 10b, 11b GPyMUXn. GPIOz = (1) (2) 40 00b 1 2 3 5 6 00b 01b 7 15 01b 10b 11b 01b 10b 11b 11b 11b GPIO0 EPWM1A (O) SDAA (I/OD) GPIO1 EPWM1B (O) GPIO2 EPWM2A (O) GPIO3 EPWM2B (O) GPIO4 EPWM3A (O) GPIO5 EPWM3B (O) MFSRA (I/O) OUTPUTXBAR3 (O) GPIO6 EPWM4A (O) OUTPUTXBAR4 (O) EXTSYNCOUT (O) GPIO7 EPWM4B (O) MCLKRA (I/O) OUTPUTXBAR5 (O) EQEP3B (I) CANRXB (I) GPIO8 EPWM5A (O) CANTXB (O) ADCSOCAO (O) EQEP3S (I/O) SCITXDA (O) GPIO9 EPWM5B (O) SCITXDB (O) OUTPUTXBAR6 (O) EQEP3I (I/O) SCIRXDA (I) GPIO10 EPWM6A (O) CANRXB (I) ADCSOCBO (O) EQEP1A (I) SCITXDB (O) UPP-WAIT (I/O) GPIO11 EPWM6B (O) SCIRXDB (I) OUTPUTXBAR7 (O) EQEP1B (I) SCIRXDB (I) UPP-START (I/O) GPIO12 EPWM7A (O) CANTXB (O) MDXB (O) EQEP1S (I/O) SCITXDC (O) UPP-ENA (I/O) GPIO13 EPWM7B (O) CANRXB (I) MDRB (I) EQEP1I (I/O) SCIRXDC (I) UPP-D7 (I/O) GPIO14 EPWM8A (O) SCITXDB (O) MCLKXB (I/O) OUTPUTXBAR3 (O) UPP-D6 (I/O) GPIO15 EPWM8B (O) SCIRXDB (I) MFSXB (I/O) OUTPUTXBAR4 (O) GPIO16 SPISIMOA (I/O) CANTXB (O) OUTPUTXBAR7 (O) EPWM9A (O) SD1_D1 (I) UPP-D4 (I/O) GPIO17 SPISOMIA (I/O) CANRXB (I) OUTPUTXBAR8 (O) EPWM9B (O) SD1_C1 (I) UPP-D3 (I/O) GPIO18 SPICLKA (I/O) SCITXDB (O) CANRXA (I) EPWM10A (O) SD1_D2 (I) UPP-D2 (I/O) GPIO19 SPISTEA (I/O) SCIRXDB (I) CANTXA (O) EPWM10B (O) SD1_C2 (I) UPP-D1 (I/O) GPIO20 EQEP1A (I) MDXA (O) CANTXB (O) EPWM11A (O) SD1_D3 (I) UPP-D0 (I/O) GPIO21 EQEP1B (I) MDRA (I) CANRXB (I) EPWM11B (O) SD1_C3 (I) UPP-CLK (I/O) GPIO22 EQEP1S (I/O) MCLKXA (I/O) SCITXDB (O) EPWM12A (O) SPICLKB (I/O) SD1_D4 (I) GPIO23 EQEP1I (I/O) MFSXA (I/O) SCIRXDB (I) EPWM12B (O) SPISTEB (I/O) SD1_C4 (I) GPIO24 OUTPUTXBAR1 (O) EQEP2A (I) MDXB (O) SPISIMOB (I/O) SD2_D1 (I) GPIO25 OUTPUTXBAR2 (O) EQEP2B (I) MDRB (I) SPISOMIB (I/O) SD2_C1 (I) GPIO26 OUTPUTXBAR3 (O) EQEP2I (I/O) MCLKXB (I/O) OUTPUTXBAR3 (O) SPICLKB (I/O) SD2_D2 (I) GPIO27 OUTPUTXBAR4 (O) EQEP2S (I/O) MFSXB (I/O) OUTPUTXBAR4 (O) SPISTEB (I/O) SD2_C2 (I) GPIO28 SCIRXDA (I) EM1CS4 (O) OUTPUTXBAR5 (O) EQEP3A (I) SD2_D3 (I) GPIO29 SCITXDA (O) EM1SDCKE (O) OUTPUTXBAR6 (O) EQEP3B (I) SD2_C3 (I) GPIO30 CANRXA (I) EM1CLK (O) OUTPUTXBAR7 (O) EQEP3S (I/O) SD2_D4 (I) GPIO31 CANTXA (O) EM1WE (O) OUTPUTXBAR8 (O) EQEP3I (I/O) SD2_C4 (I) GPIO32 SDAA (I/OD) EM1CS0 (O) GPIO33 SCLA (I/OD) EM1RNW (O) GPIO34 OUTPUTXBAR1 (O) EM1CS2 (O) SDAB (I/OD) GPIO35 SCIRXDA (I) EM1CS3 (O) SCLB (I/OD) GPIO36 SCITXDA (O) EM1WAIT (I) CANRXA (I) GPIO37 OUTPUTXBAR2 (O) EM1OE (O) CANTXA (O) MFSRB (I/O) SCLA (I/OD) OUTPUTXBAR1 (O) OUTPUTXBAR2 (O) MCLKRB (I/O) SDAB (I/OD) OUTPUTXBAR2 (O) SCLB (I/OD) OUTPUTXBAR3 (O) CANTXA (O) EQEP3A (I) CANTXB (O) CANRXA (I) GPIO38 EM1A0 (O) SCITXDC (O) CANTXB (O) GPIO39 EM1A1 (O) SCIRXDC (I) CANRXB (I) UPP-D5 (I/O) I = Input, O = Output, OD = Open Drain GPIO Index settings of 9, 10, 11, 13, and 14 are reserved. Terminal Configuration and Functions Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 4-4. GPIO Muxed Pins(1)(2) (continued) GPIO Mux Selection GPIO Index 0, 4, 8, 12 GPyGMUXn. GPIOz = 00b, 01b, 10b, 11b GPyMUXn. GPIOz = 00b 1 2 3 00b 01b 10b GPIO40 EM1A2 (O) GPIO41 EM1A3 (O) 6 7 01b 11b 01b 10b 15 11b 11b 11b SDAB (I/OD) SCLB (I/OD) GPIO42 SDAA (I/OD) SCITXDA (O) GPIO43 SCLA (I/OD) SCIRXDA (I) GPIO44 EM1A4 (O) GPIO45 EM1A5 (O) GPIO46 EM1A6 (O) SCIRXDD (I) GPIO47 EM1A7 (O) SCITXDD (O) GPIO48 OUTPUTXBAR3 (O) EM1A8 (O) SCITXDA (O) SD1_D1 (I) GPIO49 OUTPUTXBAR4 (O) EM1A9 (O) SCIRXDA (I) SD1_C1 (I) GPIO50 EQEP1A (I) EM1A10 (O) SPISIMOC (I/O) SD1_D2 (I) GPIO51 EQEP1B (I) EM1A11 (O) SPISOMIC (I/O) SD1_C2 (I) GPIO52 EQEP1S (I/O) EM1A12 (O) SPICLKC (I/O) SD1_D3 (I) GPIO53 EQEP1I (I/O) EM1D31 (I/O) EM2D15 (I/O) SPISTEC (I/O) SD1_C3 (I) GPIO54 SPISIMOA (I/O) EM1D30 (I/O) EM2D14 (I/O) EQEP2A (I) SCITXDB (O) SD1_D4 (I) GPIO55 SPISOMIA (I/O) EM1D29 (I/O) EM2D13 (I/O) EQEP2B (I) SCIRXDB (I) SD1_C4 (I) GPIO56 SPICLKA (I/O) EM1D28 (I/O) EM2D12 (I/O) EQEP2S (I/O) SCITXDC (O) SD2_D1 (I) GPIO57 SPISTEA (I/O) EM1D27 (I/O) EM2D11 (I/O) EQEP2I (I/O) SCIRXDC (I) SD2_C1 (I) GPIO58 MCLKRA (I/O) EM1D26 (I/O) EM2D10 (I/O) OUTPUTXBAR1 (O) SPICLKB (I/O) SD2_D2 (I) SPISIMOA (3) (I/O) GPIO59 MFSRA (I/O) EM1D25 (I/O) EM2D9 (I/O) OUTPUTXBAR2 (O) SPISTEB (I/O) SD2_C2 (I) SPISOMIA (3) (I/O) GPIO60 MCLKRB (I/O) EM1D24 (I/O) EM2D8 (I/O) OUTPUTXBAR3 (O) SPISIMOB (I/O) SD2_D3 (I) SPICLKA (3) (I/O) GPIO61 MFSRB (I/O) EM1D23 (I/O) EM2D7 (I/O) OUTPUTXBAR4 (O) SPISOMIB (I/O) SD2_C3 (I) SPISTEA (3) (I/O) GPIO62 SCIRXDC (I) EM1D22 (I/O) EM2D6 (I/O) EQEP3A (I) CANRXA (I) SD2_D4 (I) GPIO63 SCITXDC (O) EM1D21 (I/O) EM2D5 (I/O) EQEP3B (I) CANTXA (O) SD2_C4 (I) GPIO64 EM1D20 (I/O) EM2D4 (I/O) EQEP3S (I/O) SCIRXDA (I) SPISOMIB (3) (I/O) GPIO65 EM1D19 (I/O) EM2D3 (I/O) EQEP3I (I/O) SCITXDA (O) SPICLKB (3) (I/O) GPIO66 EM1D18 (I/O) EM2D2 (I/O) SDAB (I/OD) SPISTEB (3) (I/O) GPIO67 EM1D17 (I/O) EM2D1 (I/O) GPIO68 EM1D16 (I/O) EM2D0 (I/O) GPIO69 EM1D15 (I/O) SCLB (I/OD) SPISIMOC (3) (I/O) GPIO70 EM1D14 (I/O) CANRXA (I) SCITXDB (O) SPISOMIC (3) (I/O) GPIO71 EM1D13 (I/O) CANTXA (O) SCIRXDB (I) SPICLKC (3) (I/O) GPIO72 EM1D12 (I/O) CANTXB (O) SCITXDC (O) SPISTEC (3) (I/O) GPIO73 EM1D11 (I/O) CANRXB (I) SCIRXDC (I) GPIO74 EM1D10 (I/O) GPIO75 EM1D9 (I/O) GPIO76 EM1D8 (I/O) SCITXDD (O) GPIO77 EM1D7 (I/O) SCIRXDD (I) GPIO78 EM1D6 (I/O) EQEP2A (I) GPIO79 EM1D5 (I/O) EQEP2B (I) GPIO80 EM1D4 (I/O) EQEP2S (I/O) GPIO81 EM1D3 (I/O) EQEP2I (I/O) GPIO82 EM1D2 (I/O) GPIO83 EM1D1 (I/O) XCLKOUT (O) GPIO84 (3) 5 SPISIMOB (3) (I/O) SCITXDA (O) MDXB (O) SCIRXDA (I) MDRB (I) MDRA (I) EM1CAS (O) SCITXDB (O) MCLKXB (I/O) MCLKXA (I/O) EM1A14 (O) EM1RAS (O) SCIRXDB (I) MFSXB (I/O) MFSXA (I/O) EM1A15 (O) EM1DQM0 (O) EM1A16 (O) EM1DQM1 (O) GPIO85 EM1D0 (I/O) GPIO86 EM1A13 (O) GPIO87 GPIO88 GPIO89 MDXA (O) SCITXDC (O) High-Speed SPI-enabled GPIO mux option. This pin mux option is required when using the SPI in High-Speed Mode (HS_MODE = 1 in SPICCR). This mux option is still available when not using the SPI in High-Speed Mode (HS_MODE = 0 in SPICCR). Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 41 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 4-4. GPIO Muxed Pins(1)(2) (continued) GPIO Mux Selection GPIO Index 0, 4, 8, 12 GPyGMUXn. GPIOz = 00b, 01b, 10b, 11b GPyMUXn. GPIOz = 00b 1 2 3 5 6 00b 01b 01b 10b 11b GPIO90 EM1A17 (O) EM1DQM2 (O) SCIRXDC (I) GPIO91 EM1A18 (O) EM1DQM3 (O) SDAA (I/OD) GPIO92 EM1A19 (O) EM1BA1 (O) SCLA (I/OD) EM1BA0 (O) SCITXDD (O) GPIO93 7 01b 10b GPIO94 15 11b 11b 11b SCIRXDD (I) GPIO95 GPIO96 EM2DQM1 (O) GPIO97 EM2DQM0 (O) EQEP1A (I) EQEP1B (I) GPIO98 EM2A0 (O) EQEP1S (I/O) GPIO99 EM2A1 (O) EQEP1I (I/O) GPIO100 EM2A2 (O) EQEP2A (I) SPISIMOC (I/O) GPIO101 EM2A3 (O) EQEP2B (I) SPISOMIC (I/O) GPIO102 EM2A4 (O) EQEP2S (I/O) SPICLKC (I/O) GPIO103 EM2A5 (O) EQEP2I (I/O) SPISTEC (I/O) SCITXDD (O) GPIO104 SDAA (I/OD) EM2A6 (O) EQEP3A (I) GPIO105 SCLA (I/OD) EM2A7 (O) EQEP3B (I) SCIRXDD (I) EM2A8 (O) EQEP3S (I/O) SCITXDC (O) GPIO107 EM2A9 (O) EQEP3I (I/O) SCIRXDC (I) GPIO108 EM2A10 (O) GPIO106 GPIO109 EM2A11 (O) GPIO110 EM2WAIT (I) GPIO111 EM2BA0 (O) GPIO112 EM2BA1 (O) GPIO113 EM2CAS (O) GPIO114 EM2RAS (O) GPIO115 EM2CS0 (O) GPIO116 EM2CS2 (O) GPIO117 EM2SDCKE (O) GPIO118 EM2CLK (O) GPIO119 EM2RNW (O) GPIO120 EM2WE (O) USB0PFLT GPIO121 EM2OE (O) USB0EPEN GPIO122 SPISIMOC (I/O) SD1_D1 (I) GPIO123 SPISOMIC (I/O) SD1_C1 (I) GPIO124 SPICLKC (I/O) SD1_D2 (I) GPIO125 SPISTEC (I/O) SD1_C2 (I) GPIO126 SD1_D3 (I) GPIO127 SD1_C3 (I) GPIO128 SD1_D4 (I) GPIO129 SD1_C4 (I) GPIO130 SD2_D1 (I) GPIO131 SD2_C1 (I) GPIO132 SD2_D2 (I) GPIO133/ AUXCLKIN SD2_C2 (I) GPIO134 42 SD2_D3 (I) GPIO135 SCITXDA (O) SD2_C3 (I) GPIO136 SCIRXDA (I) SD2_D4 (I) GPIO137 SCITXDB (O) SD2_C4 (I) GPIO138 SCIRXDB (I) GPIO139 SCIRXDC (I) GPIO140 SCITXDC (O) Terminal Configuration and Functions Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 4-4. GPIO Muxed Pins(1)(2) (continued) GPIO Mux Selection GPIO Index 0, 4, 8, 12 GPyGMUXn. GPIOz = 00b, 01b, 10b, 11b GPyMUXn. GPIOz = 00b 1 2 3 5 00b 01b 10b 6 7 01b 11b 01b 10b GPIO141 SCIRXDD (I) GPIO142 SCITXDD (O) 15 11b 11b 11b GPIO143 GPIO144 GPIO145 EPWM1A (O) GPIO146 EPWM1B (O) GPIO147 EPWM2A (O) GPIO148 EPWM2B (O) GPIO149 EPWM3A (O) GPIO150 EPWM3B (O) GPIO151 EPWM4A (O) GPIO152 EPWM4B (O) GPIO153 EPWM5A (O) GPIO154 EPWM5B (O) GPIO155 EPWM6A (O) GPIO156 EPWM6B (O) GPIO157 EPWM7A (O) GPIO158 EPWM7B (O) GPIO159 EPWM8A (O) GPIO160 EPWM8B (O) GPIO161 EPWM9A (O) GPIO162 EPWM9B (O) GPIO163 EPWM10A (O) GPIO164 EPWM10B (O) GPIO165 EPWM11A (O) GPIO166 EPWM11B (O) GPIO167 EPWM12A (O) GPIO168 EPWM12B (O) Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 43 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 4.5.2 www.ti.com Input X-BAR The Input X-BAR is used to route any GPIO input to the ADC, eCAP, and ePWM peripherals as well as to external interrupts (XINT) (see Figure 4-7). Table 4-5 shows the input X-BAR destinations. For details on configuring the Input X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual. Asynchronous Synchronous Sync. + Qual. Input X-BAR INPUT14 INPUT13 GPIOx CPU PIE CLA INPUT7 INPUT8 INPUT9 INPUT10 INPUT11 INPUT12 eCAP1 eCAP2 eCAP3 eCAP4 eCAP5 eCAP6 INPUT6 INPUT5 INPUT4 INPUT3 INPUT2 INPUT1 GPIO0 TZ1,TRIP1 TZ2,TRIP2 TZ3,TRIP3 XINT5 XINT4 XINT3 XINT2 XINT1 TRIP4 TRIP5 ePWM Modules TRIP7 TRIP8 TRIP9 TRIP10 TRIP11 TRIP12 ePWM X-BAR TRIP6 ADCEXTSOC ADC EXTSYNCIN1 EXTSYNCIN2 ePWM and eCAP Sync Chain Output X-BAR Figure 4-7. Input X-BAR Table 4-5. Input X-BAR Destinations INPUT 44 DESTINATIONS INPUT1 EPWM[TZ1,TRIP1], EPWM X-BAR, Output X-BAR INPUT2 EPWM[TZ2,TRIP2], EPWM X-BAR, Output X-BAR INPUT3 EPWM[TZ3,TRIP3], EPWM X-BAR, Output X-BAR INPUT4 XINT1, EPWM X-BAR, Output X-BAR INPUT5 XINT2, ADCEXTSOC, EXTSYNCIN1, EPWM X-BAR, Output X-BAR INPUT6 XINT3, EPWM[TRIP6], EXTSYNCIN2, EPWM X-BAR, Output X-BAR INPUT7 ECAP1 INPUT8 ECAP2 INPUT9 ECAP3 INPUT10 ECAP4 INPUT11 ECAP5 INPUT12 ECAP6 INPUT13 XINT4 INPUT14 XINT5 Terminal Configuration and Functions Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 4.5.3 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Output X-BAR and ePWM X-BAR The Output X-BAR has eight outputs which can be selected on the GPIO mux as OUTPUTXBARx. The ePWM X-BAR has eight outputs which are connected to the TRIPx inputs of the ePWM. The sources for both the Output X-BAR and ePWM X-BAR are shown in Figure 4-8. For details on the Output X-BAR and ePWM X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual. CTRIPOUTH CTRIPOUTL (Output X-BAR only) CMPSSx CTRIPH CTRIPL ePWM and eCAP Sync Chain EXTSYNCOUT ADCSOCAO Select Ckt ADCSOCAO ADCSOCBO Select Ckt ADCSOCBO eCAPx ECAPxOUT ADCx Output X-BAR EVT1 EVT2 EVT3 EVT4 INPUT1 INPUT2 INPUT3 Input X-Bar (ePWM X-BAR only) OUTPUT1 OUTPUT2 OUTPUT3 OUTPUT4 OUTPUT5 OUTPUT6 OUTPUT7 OUTPUT8 GPIO Mux TRIP4 TRIP5 ePWM X-BAR INPUT4 INPUT5 INPUT6 TRIP7 TRIP8 TRIP9 TRIP10 TRIP11 TRIP12 All ePWM Modules OTHER DESTINATIONS (see Input X-BAR) FLT1.COMPH X-BAR Flags (shared) FLT1.COMPL SDFMx FLT4.COMPH FLT4.COMPL Figure 4-8. Output X-BAR and ePWM X-BAR Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 45 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 4.5.4 www.ti.com USB Pin Muxing Table 4-6 shows assignment of the alternate USB function mapping. These can be configured with the GPBAMSEL register. Table 4-6. Alternate USB Function 4.5.5 GPIO GPBAMSEL SETTING USB FUNCTION GPIO42 GPBAMSEL[10] = 1b USB0DM GPIO43 GPBAMSEL[11] = 1b USB0DP High-Speed SPI Pin Muxing The SPI module on this device has a high-speed mode. To achieve the highest possible speed, a special GPIO configuration is used on a single GPIO mux option for each SPI. These GPIOs may also be used by the SPI when not in high-speed mode (HS_MODE = 0). To select the mux options that enable the SPI high-speed mode, configure the GPyGMUX and GPyMUX registers as shown in Table 4-7. Table 4-7. GPIO Configuration for High-Speed SPI GPIO SPI SIGNAL MUX CONFIGURATION SPIA GPIO58 SPISIMOA GPBGMUX2[21:20]=11b GPBMUX2[21:20]=11b GPIO59 SPISOMIA GPBGMUX2[23:22]=11b GPBMUX2[23:22]=11b GPIO60 SPICLKA GPBGMUX2[25:24]=11b GPBMUX2[25:24]=11b GPIO61 SPISTEA GPBGMUX2[27:26]=11b GPBMUX2[27:26]=11b GPIO63 SPISIMOB GPBGMUX2[31:30]=11b GPBMUX2[31:30]=11b GPIO64 SPISOMIB GPCGMUX1[1:0]=11b GPCMUX1[1:0]=11b GPIO65 SPICLKB GPCGMUX1[3:2]=11b GPCMUX1[3:2]=11b GPIO66 SPISTEB GPCGMUX1[5:4]=11b GPCMUX1[5:4]=11b SPIB SPIC 46 GPIO69 SPISIMOC GPCGMUX1[11:10]=11b GPCMUX1[11:10]=11b GPIO70 SPISOMIC GPCGMUX1[13:12]=11b GPCMUX1[13:12]=11b GPIO71 SPICLKC GPCGMUX1[15:14]=11b GPCMUX1[15:14]=11b GPIO72 SPISTEC GPCGMUX1[17:16]=11b GPCMUX1[17:16]=11b Terminal Configuration and Functions Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5 Specifications Absolute Maximum Ratings (1) (2) 5.1 over operating free-air temperature range (unless otherwise noted) Supply voltage MIN MAX VDDIO with respect to VSS –0.3 4.6 VDD3VFL with respect to VSS –0.3 4.6 VDDOSC with respect to VSS –0.3 4.6 UNIT V VDD with respect to VSS –0.3 1.5 Analog voltage VDDA with respect to VSSA –0.3 4.6 V Input voltage VIN (3.3 V) –0.3 4.6 V Output voltage VO –0.3 4.6 V Digital input (per pin), IIK (VIN < VSS or VIN > VDDIO) –20 20 Analog input (per pin), IIKANALOG (VIN < VSSA or VIN > VDDA) –20 20 Total for all inputs, IIKTOTAL (VIN < VSS/VSSA or VIN > VDDIO/VDDA) –20 20 Output current Digital output (per pin), IOUT –20 20 mA Free-Air temperature TA –40 125 °C Operating junction temperature TJ –40 150 °C Tstg –65 150 °C Input clamp current Storage temperature (1) (2) (3) (3) mA Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Section 5.3 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to VSS, unless otherwise noted. Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device life. For additional information, see Semiconductor and IC Package Thermal Metrics. 5.2 ESD Ratings VALUE UNIT TMS320F2837xD in 337-ball ZWT package V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002 (1) All pins ±2000 Charged device model (CDM), per AEC Q100-011 All pins ±500 Corner balls on 337-ball ZWT: A1, A19, W1, W19 ±750 Human body model (HBM), per AEC Q100-002 (1) All pins ±2000 Charged device model (CDM), per AEC Q100-011 All pins ±500 Corner pins on 176-pin PTP: 1, 44, 45, 88, 89, 132, 133, 176 ±750 Human body model (HBM), per AEC Q100-002 (1) All pins ±2000 Charged device model (CDM), per AEC Q100-011 All pins ±500 Corner pins on 100-pin PZP: 1, 25, 26, 50, 51, 75, 76, 100 ±750 V TMS320F2837xD in 176-pin PTP package V(ESD) Electrostatic discharge V TMS320F2837xD in 100-pin PZP package V(ESD) (1) Electrostatic discharge V AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 47 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.3 www.ti.com Recommended Operating Conditions MIN NOM MAX UNIT Device supply voltage, I/O, VDDIO (1) 3.14 3.3 3.47 V Device supply voltage, VDD 1.14 1.2 1.26 V Supply ground, VSS 0 Analog supply voltage, VDDA 3.14 Analog ground, VSSA S version (2) Q version (Q100 qualification) Free-Air temperature, TA (1) (2) 48 V 3.47 0 T version Junction temperature, TJ 3.3 Q version (Q100 qualification) (2) V V –40 105 –40 125 –40 150 –40 125 °C °C VDDIO, VDD3VFL, and VDDOSC should be maintained within 0.3 V of each other. Operation above TJ = 105°C for extended duration will reduce the lifetime of the device. See Calculating Useful Lifetimes of Embedded Processors for more information. Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.4 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Power Consumption Summary Current values listed in this section are representative for the test conditions given and not the absolute maximum possible. The actual device currents in an application will vary with application code and pin configurations. Table 5-1 shows the device current consumption at 200-MHz SYSCLK. Table 5-1. Device Current Consumption at 200-MHz SYSCLK MODE TEST CONDITIONS Flash Erase/Program TYP (2) MAX (3) 13 mA 20 mA 33 mA 40 mA 210 mA 3 mA 10 mA 10 µA 150 µA 10 µA 150 µA • • Both CPU1 and CPU2 are in STANDBY mode. Flash is powered down. XCLKOUT is turned off. 30 mA 135 mA 3 mA 10 mA 5 µA 150 µA 10 µA 150 µA • • • CPU1 watchdog is running. Flash is powered down. XCLKOUT is turned off. 1.5 mA 110 mA 750 µA 2 mA 5 µA 150 µA 10 µA 150 µA • CPU1.M0 and CPU1.M1 RAMs are in low-power data retention mode. CPU2.M0 and CPU2.M1 RAMs are in low-power data retention mode. 300 µA 4 mA 750 µA 2 mA 5 µA 75 µA 1 µA 50 µA CPU1 is running from RAM. CPU2 is running from Flash. All I/O pins are left unconnected. Peripheral clocks are disabled. CPU1 is performing Flash Erase and Programming. CPU2 is accessing Flash locations to keep bank active. XCLKOUT is turned off. 242 mA 360 mA 3 mA 10 mA 10 µA 150 µA 53 mA 65 mA • • • • • • • (5) (6) MAX (3) 105 mA • (1) (2) (3) (4) IDD3VFL TYP (2) Both CPU1 and CPU2 are in IDLE mode. Flash is powered down. XCLKOUT is turned off. • HIBERNATE (6) IDDA MAX (3) 30 mA • • HALT (5) TYP (2) 440 mA • STANDBY MAX 325 mA • • IDLE TYP (3) Code is running out of RAM. (4) All I/O pins are left unconnected. Peripherals not active have their clocks disabled. FLASH is read and in active state. XCLKOUT is enabled at SYSCLK/4. • • • Operational (RAM) IDDIO (1) IDD (2) IDDIO current is dependent on the electrical loading on the I/O pins. TYP: Vnom, 30°C MAX: Vmax, 125°C The following is executed in a loop on CPU1: • All of the communication peripherals are exercised in loop-back mode: CAN-A to CAN-B; SPI-A to SPI-C; SCI-A to SCI-D; I2C-A to I2C-B; McBSP-A to McBSP-B; USB • SDFM1 to SDFM4 active • ePWM1 to ePWM12 generate 400-kHz PWM output on 24 pins • CPU TIMERs active • DMA does 32-bit burst transfers • CLA1 does multiply-accumulate tasks • All ADCs perform continuous conversion • All DACs ramp voltage up/down at 150 kHz • CMPSS1 to CMPSS8 active The following is executed in a loop on CPU2: • CPU TIMERs active • CLA1 does multiply-accumulate tasks • VCU does complex multiply/accumulate with parallel load • TMU calculates a cosine • FPU does multiply/accumulate with parallel load CPU2 must go into IDLE mode before CPU1 enters HALT mode. CPU2 must go into reset/IDLE/STANDBY mode before CPU1 enters HIBERNATE mode. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 49 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.4.1 www.ti.com Current Consumption Graphs Figure 5-1 and Figure 5-2 are a typical representation of the relationship between frequency and current consumption/power on the device. The operational test from Table 5-1 was run across frequency at Vmax and high temperature. Actual results will vary based on the system implementation and conditions. 0.5 0.45 0.4 0.35 Current (A) 0.3 0.25 0.2 0.15 0.1 0.05 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 170 180 190 200 SYSCLK (MHz) VDD VDDIO VDDA VDD3VFL Figure 5-1. Operational Current Versus Frequency 1 0.9 0.8 0.7 Power (W) 0.6 0.5 0.4 0.3 0.2 0.1 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 SYSCLK (MHz) Power Figure 5-2. Power Versus Frequency 50 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Leakage current will increase with operating temperature in a nonlinear manner. The difference in VDD current between TYP and MAX conditions can be seen in Figure 5-3. The current consumption in HALT mode is primarily leakage current as there is no active switching if the internal oscillator has been powered down. Figure 5-3 shows the typical leakage current across temperature. The device was placed into HALT mode under nominal voltage conditions. Figure 5-3. IDD Leakage Current Versus Temperature Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 51 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.4.2 www.ti.com Reducing Current Consumption The F2837xD devices provide some methods to reduce the device current consumption: • Any one of the four low-power modes—IDLE, STANDBY, HALT, and HIBERNATE—could be entered during idle periods in the application. • The flash module may be powered down if the code is run from RAM. • Disable the pullups on pins that assume an output function. • Each peripheral has an individual clock-enable bit (PCLKCRx). Reduced current consumption may be achieved by turning off the clock to any peripheral that is not used in a given application. Table 5-2 indicates the typical current reduction that may be achieved by disabling the clocks using the PCLKCRx register. Table 5-2. Current on VDD Supply by Various Peripherals (at 200 MHz) (1) PERIPHERAL MODULE (2) IDD CURRENT REDUCTION (mA) ADC (3) 3.3 CAN 3.3 CLA 1.4 CMPSS (3) 1.4 CPUTIMER 0.3 DAC (3) 0.6 DMA 2.9 eCAP 0.6 EMIF1 2.9 EMIF2 2.6 ePWM1 to ePWM4 (4) ePWM5 to ePWM12 (1) (2) (3) (4) 52 Specifications (4) 4.5 1.7 HRPWM (4) 1.7 I2C 1.3 McBSP 1.6 SCI 0.9 SDFM 2 SPI 0.5 uPP 7.3 USB and AUXPLL at 60 MHz 23.8 At Vmax and 125°C. All peripherals are disabled upon reset. Use the PCLKCRx register to individually enable peripherals. For peripherals with multiple instances, the current quoted is for a single module. This number represents the current drawn by the digital portion of the ADC, CMPSS, and DAC modules. The ePWM is at /2 of SYSCLK. Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.5 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Electrical Characteristics over recommended operating conditions (unless otherwise noted) TEST CONDITIONS PARAMETER VOH High-level output voltage VOL Low-level output voltage IOH High-level output source current for all output pins IOL Low-level output sink current for all output pins VIH GPIO0–GPIO7, High-level input voltage GPIO42–GPIO43, GPIO46–GPIO47 (3.3 V) VIL Low-level input voltage (3.3 V) IOH = IOH MIN VDDIO * 0.8 IOH = –100 μA VDDIO – 0.2 0.2 –4 Ipullup Input current Digital inputs with pullup enabled (1) VDDIO = 3.3 V VIN = 0 V Digital Pullups disabled 0 V ≤ VIN ≤ VDDIO CI (1) (2) V mA 4 Input current UNIT V IOL = 100 µA Ipulldown Analog (except ADCINB0 or DACOUTx) MAX 0.4 Digital inputs with pulldown (1) Pin leakage TYP IOL = IOL MAX All other pins ILEAK MIN VDDIO * 0.7 VDDIO + 0.3 2.0 VDDIO + 0.3 VSS – 0.3 0.8 mA V V VDDIO = 3.3 V VIN = VDDIO 120 µA 150 µA 2 2 0 V ≤ VIN ≤ VDDA ADCINB0 2 DACOUTx 66 Input capacitance µA 11 (2) 2 pF See Table 4-2 for a list of pins with a pullup or pulldown. The MAX input leakage shown on ADCINB0 is at high temperature. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 53 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.6 www.ti.com Thermal Resistance Characteristics 5.6.1 ZWT Package °C/W (1) AIR FLOW (lfm) (2) RΘJC Junction-to-case thermal resistance 8.3 N/A RΘJB Junction-to-board thermal resistance 11.6 N/A RΘJA (High k PCB) Junction-to-free air thermal resistance 21.5 0 19.0 150 17.8 250 16.5 500 0.2 0 0.3 150 0.4 250 0.5 500 RΘJMA Junction-to-moving air thermal resistance PsiJT Junction-to-package top PsiJB (1) (2) Junction-to-board 11.4 0 11.3 150 11.2 250 11.0 500 These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute 5.6.2 PTP Package °C/W (1) AIR FLOW (lfm) (2) RΘJC Junction-to-case thermal resistance 6.97 N/A RΘJB Junction-to-board thermal resistance 6.05 N/A RΘJA (High k PCB) Junction-to-free air thermal resistance 17.8 0 12.8 150 11.4 250 10.1 500 RΘJMA Junction-to-moving air thermal resistance PsiJT Junction-to-package top PsiJB (1) (2) 54 Junction-to-board 0.11 0 0.24 150 0.33 250 0.42 500 6.1 0 5.5 150 5.4 250 5.3 500 These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.6.3 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 PZP Package °C/W (1) AIR FLOW (lfm) (2) RΘJC Junction-to-case thermal resistance 4.3 N/A RΘJB Junction-to-board thermal resistance 5.9 N/A RΘJA (High k PCB) Junction-to-free air thermal resistance 19.1 0 14.3 150 RΘJMA Junction-to-moving air thermal resistance 12.8 250 11.4 500 PsiJT PsiJB (1) (2) Junction-to-package top Junction-to-board 0.03 0 0.09 150 0.12 250 0.20 500 6.0 0 5.5 150 5.5 250 5.3 500 These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 55 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.7 5.7.1 www.ti.com System Power Sequencing An external power supply must be used to supply 3.3 V to VDDIO, VDD3VFL, VDDOSC, and VDDA and to provide 1.2 V to VDD. The internal VREG is not supported; therefore, the VREGENZ pin must be tied high to 3.3 V. The supplies should ramp to full rail within 10 ms. Table 5-3 shows the supply ramp rate. Table 5-3. Supply Ramp Rate Supply ramp rate VDDIO, VDD, VDDA, VDD3VFL, VDDOSC with respect to VSS MIN MAX 330 5 10 UNIT V/s The voltage on VDDIO should be greater than VDD or no less than 0.3 V below VDD at all times. VDDIO, VDD3VFL, VDDOSC, and VDDA should be powered up together and be kept within 0.3 V of each other during operation. Before powering the device, no voltage larger than 0.3 V above VDDIO should be applied to any digital pin, and no voltage larger than 0.3 V above VDDA should be applied to any analog pin. An internal power-on-reset (POR) circuit holds the device in reset and keeps the I/Os in a high-impedance state during power up. External supply voltage supervisors (SVS) can be used to monitor the voltage on the 3.3-V and 1.2-V rails and drive XRS low should supplies fall outside operational specifications. 5.7.2 Reset Timing XRS is the device reset pin. It functions as an input and open-drain output. The device has a built-in power-on reset (POR). During power up, the POR circuit drives the XRS pin low. A watchdog or NMI watchdog reset also drives the pin low. An external circuit may drive the pin to assert a device reset. A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRS and VDDIO. A capacitor should be placed between XRS and VSS for noise filtering; the capacitance should be 100 nF or smaller. These values will allow the watchdog to properly drive the XRS pin to VOL within 512 OSCCLK cycles when the watchdog reset is asserted. Figure 5-4 shows the recommended reset circuit. VDDIO 2.2 kW – 10 kW XRS £100 nF Figure 5-4. Reset Circuit 56 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.7.2.1 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Reset Sources The following reset sources exist on this device: XRS, WDRS, NMIWDRS, SYSRS, SCCRESET, and HIBRESET. See the Reset Signals table in the System Control chapter of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual. The parameter th(boot-mode) must account for a reset initiated from any of these sources. CAUTION Some reset sources are internally driven by the device. Some of these sources will drive XRS low. Use this to disable any other devices driving the boot pins. The SCCRESET and debugger reset sources do not drive XRS; therefore, the pins used for boot mode should not be actively driven by other devices in the system. The boot configuration has a provision for changing the boot pins in OTP; for more details, see the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual. 5.7.2.2 Reset Electrical Data and Timing Table 5-4 shows the reset (XRS) timing requirements. Table 5-5 shows the reset (XRS) switching characteristics. Figure 5-5 shows the power-on reset. Figure 5-6 shows the warm reset. Table 5-4. Reset (XRS) Timing Requirements MIN MAX UNIT th(boot-mode) Hold time for boot-mode pins 1.5 ms tw(RSL2) Pulse duration, XRS low on warm reset 3.2 µs Table 5-5. Reset (XRS) Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER tw(RSL1) Pulse duration, XRS driven low by device after supplies are stable tw(WDRS) Pulse duration, reset pulse generated by watchdog MIN TYP MAX UNIT 100 512tc(OSCCLK) µs cycles Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 57 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com VDDIO, VDDA (3.3 V) VDD (1.2 V) tw(RSL1) XRS (A) Boot ROM CPU Execution Phase User-code th(boot-mode)(B) Boot-Mode Pins User-code dependent GPIO pins as input Boot-ROM execution starts Peripheral/GPIO function Based on boot code GPIO pins as input (pullups are disabled) I/O Pins User-code dependent A. B. The XRS pin can be driven externally by a supervisor or an external pullup resistor, see Table 4-1. On-chip POR logic will hold this pin low until the supplies are in a valid range. After reset from any source (see Section 5.7.2.1), the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in debugger environment), the boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled. Figure 5-5. Power-on Reset tw(RSL2) XRS User Code CPU Execution Phase User Code Boot ROM Boot-ROM execution starts (initiated by any reset source) Boot-Mode Pins Peripheral/GPIO Function GPIO Pins as Input th(boot-mode)(A) Peripheral/GPIO Function User-Code Execution Starts I/O Pins User-Code Dependent GPIO Pins as Input (Pullups are Disabled) User-Code Dependent A. After reset from any source (see Section 5.7.2.1), the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in debugger environment), the Boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled. Figure 5-6. Warm Reset 58 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.7.3 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Clock Specifications 5.7.3.1 Clock Sources Table 5-6 lists four possible clock sources. Figure 5-7 provides an overview of the device's clocking system. Table 5-6. Possible Reference Clock Sources CLOCK SOURCE MODULES CLOCKED COMMENTS INTOSC1 Can be used to provide clock for: • Watchdog block • Main PLL • CPU-Timer 2 Internal oscillator 1. Zero-pin overhead 10-MHz internal oscillator. INTOSC2 (1) Can be used to provide clock for: • Main PLL • Auxiliary PLL • CPU-Timer 2 Internal oscillator 2. Zero-pin overhead 10-MHz internal oscillator. XTAL Can be used to provide clock for: • Main PLL • Auxiliary PLL • CPU-Timer 2 External crystal or resonator connected between the X1 and X2 pins or single-ended clock connected to the X1 pin. AUXCLKIN Can be used to provide clock for: • Auxiliary PLL • CPU-Timer 2 Single-ended 3.3-V level clock source. GPIO133/AUXCLKIN pin should be used to provide the input clock. (1) On reset, internal oscillator 2 (INTOSC2) is the default clock source for both system PLL (OSCCLK) and auxiliary PLL (AUXOSCCLK). Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 59 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com INTOSC1 WDCLK CLKSRCCTL1 INTOSC2 SYSPLLCTL1 SYSCLKDIVSEL SYSCLK Divider OSCCLK X1 (XTAL) System PLL To watchdog timers PLLRAWCLK PLLSYSCLK To GS RAMs, GPIOs, NMIWDs, and IPC CPU1.SYSCLK CPU1 CPU1.CPUCLK To local memories CPU2.SYSCLK CPU2 CPU2.CPUCLK To local memories CPU1.SYSCLK CPU2.SYSCLK To ePIEs, LS RAMs, CLA message RAMs, and DCSMs PERx.SYSCLK To peripherals PERx.LSPCLK To SCIs, SPIs, and McBSPs EPWMCLK To ePWMs One per SYSCLK peripheral CPUSELx CPU1.PCLKCRx CPU2.PCLKCRx One per LSPCLK peripheral LOSPCP CPUSELx CPU1.PCLKCRx LSP Divider CPU2.PCLKCRx One per ePWM EPWMCLKDIV PLLSYSCLK CPU1.PCLKCRx CPUSELx /1 /2 CPU2.PCLKCRx HRPWM CPU1.PCLKCRx HRPWMCLK To HRPWM Registers CAN Bit Clock To CANs AUXPLLCLK To USB bit clock One per CAN module CPUSELx CLKSRCCTL2 AUXCLKIN CLKSRCCTL2 AUXPLLCTL1 AUXOSCCLK Auxiliary PLL AUXPLLRAWCLK AUXCLKDIVSEL AUXCLK Divider Figure 5-7. Clocking System 60 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.7.3.2 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Clock Frequencies, Requirements, and Characteristics This section provides the frequencies and timing requirements of the input clocks, PLL lock times, frequencies of the internal clocks, and the frequency and switching characteristics of the output clock. 5.7.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times Table 5-7 shows the frequency requirements for the input clocks. Table 5-16 shows the crystal equivalent series resistance requirements. Table 5-8 shows the X1 input level characteristics when using an external clock source. Table 5-9 and Table 5-10 show the timing requirements for the input clocks. Table 5-11 shows the PLL lock times for the Main PLL and the USB PLL. Table 5-7. Input Clock Frequency f(XTAL) MIN MAX UNIT 10 20 MHz Frequency, X1/X2, from external crystal or resonator f(X1) f(AUXI) Frequency, X1, from external oscillator (PLL enabled) 2 20 MHz Frequency, X1, from external oscillator (PLL disabled) 2 100 MHz Frequency, AUXCLKIN, from external oscillator 2 60 MHz Table 5-8. X1 Input Level Characteristics When Using an External Clock Source (Not a Crystal) over recommended operating conditions (unless otherwise noted) PARAMETER X1 VIL Valid low-level input voltage X1 VIH Valid high-level input voltage MIN MAX UNIT –0.3 0.3 * VDDIO V 0.7 * VDDIO VDDIO + 0.3 V Table 5-9. X1 Timing Requirements MIN MAX UNIT tf(X1) Fall time, X1 6 ns tr(X1) Rise time, X1 6 ns tw(X1L) Pulse duration, X1 low as a percentage of tc(X1) 45% 55% tw(X1H) Pulse duration, X1 high as a percentage of tc(X1) 45% 55% MIN MAX Table 5-10. AUXCLKIN Timing Requirements UNIT tf(AUXI) Fall time, AUXCLKIN 6 ns tr(AUXI) Rise time, AUXCLKIN 6 ns tw(AUXL) Pulse duration, AUXCLKIN low as a percentage of tc(XCI) 45% 55% tw(AUXH) Pulse duration, AUXCLKIN high as a percentage of tc(XCI) 45% 55% NOM MAX Table 5-11. PLL Lock Times MIN µs µs t(PLL) Lock time, Main PLL (X1, from external oscillator) 50 µs + 2500 * tc(OSCCLK) t(USB) Lock time, USB PLL (AUXCLKIN, from external oscillator) 50 µs + 2500 * tc(OSCCLK) (1) (1) UNIT (1) The PLL lock time here includes the two required PLL lock sequences. Cycle count includes code execution of the PLL initialization routine, which could vary depending on compiler optimizations and flash wait states. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 61 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 5.7.3.2.2 Internal Clock Frequencies Table 5-12 provides the clock frequencies for the internal clocks. Table 5-12. Internal Clock Frequencies MAX UNIT f(SYSCLK) Frequency, device (system) clock MIN 2 200 MHz tc(SYSCLK) Period, device (system) clock 5 500 ns f(PLLRAWCLK) Frequency, system PLL output (before SYSCLK divider) 120 400 MHz f(AUXPLLRAWCLK) Frequency, auxiliary PLL output (before AUXCLK divider) 120 400 MHz f(AUXPLL) Frequency, AUXPLLCLK 60 60 MHz f(PLL) Frequency, PLLSYSCLK 2 200 MHz 2 200 MHz 5 500 ns (1) f(LSP) Frequency, LSPCLK tc(LSPCLK) Period, LSPCLK f(OSCCLK) Frequency, OSCCLK (INTOSC1 or INTOSC2 or XTAL or X1) f(EPWM) Frequency, EPWMCLK (2) f(HRPWM) Frequency, HRPWMCLK (1) (2) NOM See respective clock MHz 60 100 MHz 100 MHz Lower LSPCLK will reduce device power consumption. The default at reset is SYSCLK/4. For SYSCLK above 100 MHz, the EPWMCLK must be half of SYSCLK. 5.7.3.2.3 Output Clock Frequency and Switching Characteristics Table 5-13 provides the frequency of the output clock. Table 5-14 shows the switching characteristics of the output clock, XCLKOUT. Table 5-13. Output Clock Frequency MIN f(XCO) MAX UNIT 50 MHz Frequency, XCLKOUT Table 5-14. XCLKOUT Switching Characteristics (PLL Bypassed or Enabled) (1) (2) over recommended operating conditions (unless otherwise noted) PARAMETER MIN MAX UNIT tf(XCO) Fall time, XCLKOUT tr(XCO) Rise time, XCLKOUT tw(XCOL) Pulse duration, XCLKOUT low H–2 tw(XCOH) Pulse duration, XCLKOUT high H–2 H+2 ns (1) (2) 62 5 ns 5 ns H+2 ns A load of 40 pF is assumed for these parameters. H = 0.5tc(XCO) Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.7.3.3 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Input Clocks and PLLs In addition to the internal 0-pin oscillators, multiple external clock source options are available. Figure 5-8 shows the recommended methods of connecting crystals, resonators, and oscillators to pins X1/X2 (also referred to as XTAL) and AUXCLKIN. X1 vssosc X2 X1 vssosc X2 RESONATOR CRYSTAL RD C L2 C L1 X1 vssosc X2 GPIO133/AUXCLKIN NC 3.3V CLK VDD OUT 3.3V CLK VDD OUT GND 3.3V OSCILLATOR GND 3.3V OSCILLATOR Figure 5-8. Connecting Input Clocks to a 2837xD Device Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 63 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.7.3.4 www.ti.com Crystal Oscillator When using a quartz crystal, it may be necessary to include a damping resistor (RD) in the crystal circuit to prevent over-driving the crystal (drive level can be found in the crystal data sheet). In higher-frequency applications (10 MHz or greater), RD is generally not required. If a damping resistor is required, RD should be as small as possible because the size of the resistance affects start-up time (smaller RD = faster startup time). TI recommends that the crystal manufacturer characterize the crystal with the application board. Table 5-15 shows the crystal oscillator parameters. Table 5-16 shows the crystal equivalent series resistance (ESR) requirements. Table 5-17 shows the crystal oscillator electrical characteristics. Table 5-15. Crystal Oscillator Parameters CL1, CL2 Load capacitance C0 Crystal shunt capacitance MIN MAX 12 24 UNIT pF 7 pF Table 5-16. Crystal Equivalent Series Resistance (ESR) Requirements (1) (2) CRYSTAL FREQUENCY (MHz) MAXIMUM ESR (Ω) (CL1 = CL2 = 12 pF) MAXIMUM ESR (Ω) (CL1 = CL2 = 24 pF) 10 55 110 12 50 95 14 50 90 16 45 75 18 45 65 20 45 50 (1) (2) Crystal shunt capacitance (C0) should be less than or equal to 7 pF. ESR = Negative Resistance/3 Table 5-17. Crystal Oscillator Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER Start-up time (1) Crystal drive level (DL) (1) 64 TEST CONDITIONS f = 20 MHz ESR MAX = 50 Ω CL1 = CL2 = 24 pF C0 = 7 pF MIN TYP MAX 2 UNIT ms 1 mW Start-up time is dependent on the crystal and tank circuit components. TI recommends that the crystal vendor characterize the application with the chosen crystal. Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.7.3.5 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Internal Oscillators To reduce production board costs and application development time, all F2837xD devices contain two independent internal oscillators, referred to as INTOSC1 and INTOSC2. By default, both oscillators are enabled at power up. INTOSC2 is set as the source for the system reference clock (OSCCLK) and INTOSC1 is set as the backup clock source. INTOSC1 can also be manually configured as the system reference clock (OSCCLK). Table 5-18 provides the electrical characteristics of the internal oscillators to determine if this module meets the clocking requirements of the application. Table 5-18 provides the electrical characteristics of the two internal oscillators. NOTE This oscillator cannot be used as the PLL source if the PLLSYSCLK is configured to frequencies above 194 MHz. Table 5-18. Internal Oscillator Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER f(INTOSC) Frequency, INTOSC1 and INTOSC2 Frequency stability at room temperature tOSCST TEST CONDITIONS Start-up and settling time MIN TYP 9.7 30°C MAX UNIT 10.3 MHz ±0.1% 22 Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated µs 65 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.7.4 www.ti.com Flash Parameters The on-chip flash memory is tightly integrated to the CPU, allowing code execution directly from flash through 128-bit-wide prefetch reads and a pipeline buffer. Flash performance for sequential code is equal to execution from RAM. Factoring in discontinuities, most applications will run with an efficiency of approximately 80% relative to code executing from RAM. This flash efficiency lets designers realize a 2× improvement in performance when migrating from the previous generation Delfino MCUs. This device also has an OTP (One-Time-Programmable) sector used for the dual code security module (DCSM), which cannot be erased after it is programmed. Table 5-19 shows the minimum required flash wait states at different frequencies. Table 5-20 shows the flash parameters at 200 MHz. Table 5-21 shows the flash/OTP endurance. Table 5-22 shows the flash data retention duration. Table 5-19. Flash Wait States CPUCLK (MHz) MINIMUM WAIT STATES EXTERNAL OSCILLATOR OR CRYSTAL INTOSC1 OR INTOSC2 150 < CPUCLK ≤ 200 145 < CPUCLK ≤ 194 3 100 < CPUCLK ≤ 150 97 < CPUCLK ≤ 145 2 50 < CPUCLK ≤ 100 48 < CPUCLK ≤ 97 1 CPUCLK ≤ 50 CPUCLK ≤ 48 0 (1) (1) Minimum required FRDCNTL[RWAIT]. Table 5-20. Flash Parameters at 200 MHz (1) PARAMETER TYP MAX UNIT 40 300 µs 8KW sector 90 180 ms 32KW sector 360 720 ms Erase Time at < 25 cycles 8KW sector 25 50 32KW sector 30 55 Erase Time (3) at 50k cycles 8KW sector 105 4000 32KW sector 110 4000 128 data bits + 16 ECC bits Program Time (3) (1) (2) (3) 66 (2) MIN ms ms The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required before programming, when programming the device for the first time. However, the erase operation is needed on all subsequent programming operations. Program time includes overhead of the flash state machine but does not include the time to transfer the following into RAM: • Code that uses flash API to program the flash • Flash API itself • Flash data to be programmed In other words, the time indicated in this table is applicable after all the required code/data is available in the device RAM, ready for programming. The transfer time will significantly vary depending on the speed of the emulator used. Program time calculation is based on programming 144 bits at a time at the specified operating frequency. Program time includes Program verify by the CPU. The program time does not degrade with write/erase (W/E) cycling, but the erase time does. Erase time includes Erase verify by the CPU and does not involve any data transfer. Erase time includes Erase verify by the CPU. Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 5-21. Flash/OTP Endurance Nf Flash endurance for the array (write/erase cycles) MIN TYP 20000 50000 MAX UNIT cycles Table 5-22. Flash Data Retention Duration PARAMETER tretention Data retention duration TEST CONDITIONS TJ = 85°C MIN MAX 20 Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated UNIT years 67 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.7.5 www.ti.com Emulation/JTAG The JTAG port has five dedicated pins: TRST, TMS, TDI, TDO, and TCK. The TRST signal should always be pulled down through a 2.2-kΩ pulldown resistor on the board. This MCU does not support the EMU0 and EMU1 signals that are present on 14-pin and 20-pin emulation headers. These signals should always be pulled up at the emulation header through a pair of board pullup resistors ranging from 2.2 kΩ to 4.7 kΩ (depending on the drive strength of the debugger ports). Typically, a 2.2-kΩ value is used. See Figure 5-9 to see how the 14-pin JTAG header connects to the MCU’s JTAG port signals. Figure 5-10 shows how to connect to the 20-pin header. The 20-pin JTAG header terminals EMU2, EMU3, and EMU4 are not used and should be grounded. The PD (Power Detect) terminal of the emulator header should be connected to the board 3.3-V supply. Header GND terminals should be connected to board ground. TDIS (Cable Disconnect Sense) should also be connected to board ground. The JTAG clock should be looped from the header TCK output terminal back to the RTCK input terminal of the header (to sense clock continuity by the emulator). Header terminal RESET is an open-drain output from the emulator header that enables board components to be reset through emulator commands (available only through the 20-pin header). Typically, no buffers are needed on the JTAG signals when the distance between the MCU target and the JTAG header is smaller than 6 inches (15.24 cm), and no other devices are present on the JTAG chain. Otherwise, each signal should be buffered. Additionally, for most emulator operations at 10 MHz, no series resistors are needed on the JTAG signals. However, if high emulation speeds are expected (35 MHz or so), 22-Ω resistors should be placed in series on each JTAG signal. See the XDS Target Connection Guide for more information about JTAG emulation. Distance between the header and the target should be less than 6 inches (15.24 cm). 2.2 kW TRST GND 1 TMS 3 TDI 100 W MCU 3.3 V 5 7 TDO 9 11 TCK 4.7 kW 3.3 V 13 TMS TRST TDI TDIS PD KEY 2 4 6 TDO GND 8 RTCK GND 10 TCK GND 12 EMU1 14 EMU0 GND 4.7 kW 3.3 V Figure 5-9. Connecting to the 14-Pin JTAG Header 68 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Distance between the header and the target should be less than 6 inches (15.24 cm). 2.2 kW TRST GND 1 TMS 3 TDI 100 W MCU 5 3.3V 7 TDO 9 11 TCK TMS TRST TDI TDIS PD KEY TDO GND RTCK GND TCK GND 2 4 GND 6 8 10 12 4.7 kW 4.7 kW 13 3.3 V 15 open drain A low pulse from the emulator can be tied with other reset sources to reset the board. 17 19 EMU0 EMU1 RESET GND EMU2 EMU3 EMU4 GND GND 14 3.3 V 16 18 20 GND Figure 5-10. Connecting to the 20-Pin JTAG Header Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 69 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.7.5.1 www.ti.com JTAG Electrical Data and Timing Table 5-23 lists the JTAG timing requirements. Table 5-24 lists the JTAG switching characteristics. Figure 5-11 shows the JTAG timing. Table 5-23. JTAG Timing Requirements NO. MIN MAX UNIT 1 tc(TCK) Cycle time, TCK 66.66 ns 1a tw(TCKH) Pulse duration, TCK high (40% of tc) 26.66 ns 1b tw(TCKL) Pulse duration, TCK low (40% of tc) 26.66 ns tsu(TDI-TCKH) Input setup time, TDI valid to TCK high 13 ns tsu(TMS-TCKH) Input setup time, TMS valid to TCK high 13 ns th(TCKH-TDI) Input hold time, TDI valid from TCK high 7 ns th(TCKH-TMS) Input hold time, TMS valid from TCK high 7 ns 3 4 Table 5-24. JTAG Switching Characteristics over recommended operating conditions (unless otherwise noted) NO. 2 PARAMETER td(TCKL-TDO) Delay time, TCK low to TDO valid MIN MAX 6 25 UNIT ns 1 1a 1b TCK 2 TDO 3 4 TDI/TMS Figure 5-11. JTAG Timing 70 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.7.6 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 GPIO Electrical Data and Timing The peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. On reset, GPIO pins are configured as inputs. For specific inputs, the user can also select the number of input qualification cycles to filter unwanted noise glitches. The GPIO module contains an Output X-BAR which allows an assortment of internal signals to be routed to a GPIO in the GPIO mux positions denoted as OUTPUTXBARx. The GPIO module also contains an Input X-BAR which is used to route signals from any GPIO input to different IP blocks such as the ADC(s), eCAP(s), ePWM(s), and external interrupts. For more details, see the X-BAR chapter in the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual. 5.7.6.1 GPIO - Output Timing Table 5-25 shows the general-purpose output switching characteristics. Figure 5-12 shows the generalpurpose output timing. Table 5-25. General-Purpose Output Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER MIN MAX UNIT tr(GPO) Rise time, GPIO switching low to high All GPIOs 8 (1) ns tf(GPO) Fall time, GPIO switching high to low All GPIOs 8 (1) ns tfGPO Toggling frequency, GPO pins 25 MHz (1) Rise time and fall time vary with load. These values assume a 40-pF load. GPIO tf(GPO) tr(GPO) Figure 5-12. General-Purpose Output Timing Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 71 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.7.6.2 www.ti.com GPIO - Input Timing Table 5-26 shows the general-purpose input timing requirements. Figure 5-13 shows the sampling mode. Table 5-26. General-Purpose Input Timing Requirements MIN tw(SP) Sampling period tw(IQSW) Input qualifier sampling window tw(GPI) (1) (2) (2) UNIT 1tc(SYSCLK) cycles QUALPRD ≠ 0 2tc(SYSCLK) * QUALPRD cycles tw(SP) * (n (1) – 1) cycles 2tc(SYSCLK) cycles tw(IQSW) + tw(SP) + 1tc(SYSCLK) cycles Synchronous mode Pulse duration, GPIO low/high MAX QUALPRD = 0 With input qualifier "n" represents the number of qualification samples as defined by GPxQSELn register. For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal. (A) GPIO Signal GPxQSELn = 1,0 (6 samples) 1 1 0 0 0 0 0 0 0 1 tw(SP) 0 0 0 1 1 1 1 Sampling Window 1 1 1 1 Sampling Period determined by GPxCTRL[QUALPRD] tw(IQSW) 1 (SYSCLK cycle * 2 * QUALPRD) * 5 (B) (C) SYSCLK QUALPRD = 1 (SYSCLK/2) (D) Output From Qualifier A. B. C. D. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLK cycle. For any other value "n", the qualification sampling period in 2n SYSCLK cycles (that is, at every 2n SYSCLK cycles, the GPIO pin will be sampled). The qualification period selected through the GPxCTRL register applies to groups of 8 GPIO pins. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLK cycles or greater. In other words, the inputs should be stable for (5 x QUALPRD x 2) SYSCLK cycles. This would ensure 5 sampling periods for detection to occur. Because external signals are driven asynchronously, an 13-SYSCLK-wide pulse ensures reliable recognition. Figure 5-13. Sampling Mode 72 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.7.6.3 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Sampling Window Width for Input Signals The following section summarizes the sampling window width for input signals for various input qualifier configurations. Sampling frequency denotes how often a signal is sampled with respect to SYSCLK. Sampling frequency = SYSCLK/(2 × QUALPRD), if QUALPRD ≠ 0 Sampling frequency = SYSCLK, if QUALPRD = 0 Sampling period = SYSCLK cycle × 2 × QUALPRD, if QUALPRD ≠ 0 In the above equations, SYSCLK cycle indicates the time period of SYSCLK. Sampling period = SYSCLK cycle, if QUALPRD = 0 In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the signal. This is determined by the value written to GPxQSELn register. Case 1: Qualification using 3 samples Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0 Sampling window width = (SYSCLK cycle) × 2, if QUALPRD = 0 Case 2: Qualification using 6 samples Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0 Sampling window width = (SYSCLK cycle) × 5, if QUALPRD = 0 Figure 5-14 shows the general-purpose input timing. SYSCLK GPIOxn tw(GPI) Figure 5-14. General-Purpose Input Timing Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 73 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.7.7 www.ti.com Interrupts Figure 5-15 provides a high-level view of the interrupt architecture. As shown in Figure 5-15, the devices support five external interrupts (XINT1 to XINT5) that can be mapped onto any of the GPIO pins. In this device, 16 ePIE block interrupts are grouped into 1 CPU interrupt. In total, there are 12 CPU interrupt groups, with 16 interrupts per group. CPU1.TIMER0 LPM Logic CPU1.WD CPU1.LPMINT CPU1.TINT0 CPU1.W AKEINT CPU1.NMIWD NMI CPU1.W DINT CPU1 GPIO0 GPIO1 ... ... GPIOx INPUTXBAR4 Input X-BAR INPUTXBAR5 INPUTXBAR6 INPUTXBAR13 INPUTXBAR14 CPU1.XINT1 Control CPU1.XINT2 Control CPU1.XINT3 Control CPU1.XINT4 Control CPU1.XINT5 Control INT1 to INT12 CPU1. ePIE CPU1.TIMER1 CPU1.TIMER2 IPC 4 Interrupts CPU1.TINT1 CPU1.TINT2 INT13 INT14 Peripherals CPU1.NMIWD CPU2.XINT1 Control CPU2.XINT2 Control CPU2.XINT3 Control CPU2.XINT4 Control CPU2.XINT5 Control LPM Logic CPU2.WD CPU2 INT1 to INT12 CPU2 ePIE CPU2.TIMER1 CPU2 .LPMINT CPU2.W AKEINT CPU2.TIMER2 CPU2.W DINT CPU2.TIMER0 NMI CPU2.TINT1 CPU2.TINT2 INT13 INT14 CPU2.TINT0 Figure 5-15. External and ePIE Interrupt Sources 74 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.7.7.1 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 External Interrupt (XINT) Electrical Data and Timing Table 5-27 lists the external interrupt timing requirements. Table 5-28 lists the external interrupt switching characteristics. Figure 5-16 shows the external interrupt timing. Table 5-27. External Interrupt Timing Requirements (1) MIN tw(INT) (1) Pulse duration, INT input low/high MAX UNIT Synchronous 2tc(SYSCLK) cycles With qualifier tw(IQSW) + tw(SP) + 1tc(SYSCLK) cycles For an explanation of the input qualifier parameters, see Table 5-26. Table 5-28. External Interrupt Switching Characteristics (1) over recommended operating conditions (unless otherwise noted) PARAMETER td(INT) Delay time, INT low/high to interrupt-vector fetch (2) (1) (2) MIN MAX UNIT tw(IQSW) + 14tc(SYSCLK) tw(IQSW) + tw(SP) + 14tc(SYSCLK) cycles For an explanation of the input qualifier parameters, see Table 5-26. This assumes that the ISR is in a single-cycle memory. tw(INT) XINT1, XINT2, XINT3, XINT4, XINT5 td(INT) Address bus (internal) Interrupt Vector Figure 5-16. External Interrupt Timing Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 75 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.7.8 www.ti.com Low-Power Modes This device has three clock-gating low-power modes and a special power-gating mode. Further details, as well as the entry and exit procedure, for all of the low-power modes can be found in the Low Power Modes section of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual. 5.7.8.1 Clock-Gating Low-Power Modes IDLE, STANDBY, and HALT modes on this device are similar to those on other C28x devices. Table 5-29 describes the effect on the system when any of the clock-gating low-power modes are entered. Table 5-29. Effect of Clock-Gating Low-Power Modes on the Device MODULES/ CLOCK DOMAIN CPU1 IDLE CPU1 STANDBY CPU2 IDLE CPU2 STANDBY HALT CPU1.CLKIN Active Gated N/A N/A Gated CPU1.SYSCLK Active Gated N/A N/A Gated CPU1.CPUCLK Gated Gated N/A N/A Gated CPU2.CLKIN N/A N/A Active Gated Gated CPU2.SYSCLK N/A N/A Active Gated Gated CPU2.CPUCLK N/A N/A Gated Gated Gated Clock to modules Connected to PERx.SYSCLK Active Gated if CPUSEL.PERx = CPU1 Active Gated if CPUSEL.PERx = CPU2 Gated CPU1.WDCLK Active Active N/A N/A Gated if CLKSRCCTL1.WDHALTI = 0 CPU2.WDCLK N/A N/A Active Active Gated Active Active Active Active Gated PLL Powered Powered Powered Powered Software must power down PLL before entering HALT INTOSC1 Powered Powered Powered Powered Powered down if CLKSRCCTL1.WDHALTI = 0 INTOSC2 Powered Powered Powered Powered Powered down if CLKSRCCTL1.WDHALTI = 0 Flash Powered Powered Powered Powered Software-Controlled X1/X2 Crystal Oscillator Powered Powered Powered Powered Powered-Down AUXPLLCLK 5.7.8.2 Power-Gating Low-Power Modes HIBERNATE mode is the lowest power mode on this device. It is a global low-power mode that gates the supply voltages to most of the system. HIBERNATE is essentially a controlled power-down with remote wakeup capability, and can be used to save power during long periods of inactivity. Table 5-30 describes the effects on the system when the HIBERNATE mode is entered. Table 5-30. Effect of Power-Gating Low-Power Mode on the Device MODULES/POWER DOMAINS HIBERNATE M0 and M1 memories ● ● CPU1, CPU2, digital peripherals Powered down Dx, LSx, GSx memories Power down, memory contents are lost IOs On with output state preserved Oscillators, PLL, analog peripherals, Flash Enters Low-Power Mode 76 Specifications Remain on with memory retention if LPMCR.M0M1MODE = 0x00 Are off when LPMCR.M0M1MODE = 0x01 Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.7.8.3 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Low-Power Mode Wakeup Timing Table 5-31 shows the IDLE mode timing requirements, Table 5-32 shows the switching characteristics, and Figure 5-17 shows the timing diagram for IDLE mode. Table 5-31. IDLE Mode Timing Requirements (1) MIN tw(WAKE) (1) Pulse duration, external wake-up signal Without input qualifier With input qualifier MAX 2tc(SYSCLK) UNIT cycles 2tc(SYSCLK) + tw(IQSW) For an explanation of the input qualifier parameters, see Table 5-26. Table 5-32. IDLE Mode Switching Characteristics (1) over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS Delay time, external wake signal to program execution resume td(WAKE-IDLE) MIN MAX • Wakeup from Flash – Flash module in active state Without input qualifier • Wakeup from Flash – Flash module in sleep state Without input qualifier 40tc(SYSCLK) With input qualifier With input qualifier 40tc(SYSCLK) + tw(WAKE) 6700tc(SYSCLK) (3) (1) (2) (3) Wakeup from RAM cycles 6700tc(SYSCLK) (3) + tw(WAKE) Without input qualifier • UNIT (2) With input qualifier 25tc(SYSCLK) 25tc(SYSCLK) + tw(WAKE) For an explanation of the input qualifier parameters, see Table 5-26. This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered by the wake-up signal) involves additional latency. This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and FPAC1[PSLEEP]. For more information, see the Flash and OTP Power-Down Modes and Wakeup section of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and FPAC1[PSLEEP] is 0x860. td(WAKE-IDLE) Address/Data (internal) XCLKOUT tw(WAKE) WAKE A. (A) WAKE can be any enabled interrupt, WDINT or XRS. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted. Figure 5-17. IDLE Entry and Exit Timing Diagram Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 77 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 5-33 shows the STANDBY mode timing requirements, Table 5-34 shows the switching characteristics, and Figure 5-18 shows the timing diagram for STANDBY mode. Table 5-33. STANDBY Mode Timing Requirements MIN Pulse duration, external wake-up signal tw(WAKE-INT) (1) QUALSTDBY = 0 | 2tc(OSCCLK) 3tc(OSCCLK) QUALSTDBY > 0 | (2 + QUALSTDBY)tc(OSCCLK) (1) (2 + QUALSTDBY) * tc(OSCCLK) MAX UNIT cycles QUALSTDBY is a 6-bit field in the LPMCR register. Table 5-34. STANDBY Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN Delay time, IDLE instruction executed to XCLKOUT stop td(IDLE-XCOS) MAX UNIT 16tc(INTOSC1) cycles Delay time, external wake signal to program execution resume (1) • Wakeup from flash – Flash module in active state • Wakeup from flash – Flash module in sleep state • Wakeup from RAM td(WAKE-STBY) (1) (2) 78 175tc(SYSCLK) + tw(WAKE-INT) cycles 6700tc(SYSCLK) (2) + tw(WAKE-INT) 3tc(OSC) + 15tc(SYSCLK) + tw(WAKE-INT) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered by the wake-up signal) involves additional latency. This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and FPAC1[PSLEEP]. For more information, see the Flash and OTP Power-Down Modes and Wakeup section of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and FPAC1[PSLEEP] is 0x860. Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 (C) (A) (B) Device Status (F) (D)(E) STANDBY STANDBY (G) Normal Execution Flushing Pipeline Wake-up Signal tw(WAKE-INT) td(WAKE-STBY) OSCCLK XCLKOUT td(IDLE-XCOS) A. B. C. D. E. F. G. IDLE instruction is executed to put the device into STANDBY mode. The LPM block responds to the STANDBY signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off. This delay enables the CPU pipeline and any other pending operations to flush properly. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted. The external wake-up signal is driven active. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wakeup behavior of the device will not be deterministic and the device may not exit low-power mode for subsequent wakeup pulses. After a latency period, the STANDBY mode is exited. Normal execution resumes. The device will respond to the interrupt (if enabled). Figure 5-18. STANDBY Entry and Exit Timing Diagram Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 79 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 5-35 shows the HALT mode timing requirements, Table 5-36 shows the switching characteristics, and Figure 5-19 shows the timing diagram for HALT mode. Table 5-35. HALT Mode Timing Requirements MIN MAX UNIT tw(WAKE-GPIO) Pulse duration, GPIO wake-up signal (1) toscst + 2tc(OSCCLK) cycles tw(WAKE-XRS) Pulse duration, XRS wake-up signal (1) toscst + 8tc(OSCCLK) cycles (1) For applications using X1/X2 for OSCCLK, the user must characterize their specific oscillator start-up time as it is dependent on circuit/layout external to the device. See Table 5-17 for more information. For applications using INTOSC1 or INTOSC2 for OSCCLK, see Section 5.7.3.5 for toscst. Oscillator start-up time does not apply to applications using a single-ended crystal on the X1 pin, as it is powered externally to the device. Table 5-36. HALT Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER td(IDLE-XCOS) Delay time, IDLE instruction executed to XCLKOUT stop MIN MAX UNIT 16tc(INTOSC1) cycles Delay time, external wake signal end to CPU1 program execution resume • Wakeup from flash – Flash module in active state • Wakeup from flash – Flash module in sleep state • Wakeup from RAM td(WAKE-HALT) (1) 80 75tc(OSCCLK) cycles 17500tc(OSCCLK) (1) 75tc(OSCCLK) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and FPAC1[PSLEEP]. For more information, see the Flash and OTP Power-Down Modes and Wakeup section of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and FPAC1[PSLEEP] is 0x860. Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 (C) (A) (F) (B) Device Status (D)(E) HALT (G) HALT Flushing Pipeline Normal Execution GPIOn td(WAKE-HALT) tw(WAKE-GPIO) OSCCLK Oscillator Start-up Time XCLKOUT td(IDLE-XCOS) A. B. C. D. E. F. G. H. IDLE instruction is executed to put the device into HALT mode. The LPM block responds to the HALT signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off. This delay enables the CPU pipeline and any other pending operations to flush properly. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes very little power. It is possible to keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in HALT MODE. This is done by writing a 1 to CLKSRCCTL1.WDHALTI. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wakeup sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean clock signal during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wakeup procedure, care should be taken to maintain a low noise environment prior to entering and during HALT mode. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wakeup behavior of the device will not be deterministic and the device may not exit low-power mode for subsequent wakeup pulses. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after some latency. The HALT mode is now exited. Normal operation resumes. The user must relock the PLL upon HALT wakeup to ensure a stable PLL lock. Figure 5-19. HALT Entry and Exit Timing Diagram NOTE CPU2 should enter IDLE mode before CPU1 puts the device into HALT mode. CPU1 should verify that CPU2 has entered IDLE mode using the LPMSTAT register before calling the IDLE instruction to enter HALT. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 81 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 5-37 shows the HIBERNATE mode timing requirements, Table 5-38 shows the switching characteristics, and Figure 5-20 shows the timing diagram for HIBERNATE mode. Table 5-37. HIBERNATE Mode Timing Requirements MIN MAX UNIT tw(HIBWAKE) Pulse duration, HIBWAKE signal 40 µs tw(WAKEXRS) Pulse duration, XRS wake-up signal 40 µs Table 5-38. HIBERNATE Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER td(IDLE-XCOS) Delay time, IDLE instruction executed to XCLKOUT stop td(WAKE-HIB) Delay time, external wake signal to lORestore function start 82 Specifications MIN MAX UNIT 30tc(SYSCLK) cycles 1.5 ms Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 (A) (B) (C) (D) (F) (G)(H) (I)(J) (E) CPU1 IDLE Instruction CPU1 HIB config Device Status Device Active CPU1 Boot ROM HIBERNATE IoRestore() or Application Specific Operation Td(WAKE-HIB) GPIOHIBWAKEn, XRSn tw(HIBWAKEn), tw(XRSn) I/O Isolation PLLs Bypassed & Powered -Down Enabled INTOSC1,INTOSC2, X1/X2 Powered Down On XCLKCOUT Application SpecificOperation Powering up On Inactive Application Specific Operation td(IDLE-XCOS) A. B. C. D. E. F. G. H. I. J. CPU1 does necessary application-specific context save to M0/M1 memories if required. This includes GPIO state if using I/O Isolation. Configures the LPMCR register of CPU1 for HIBERNATE mode. Powers down Flash Pump/Bank, USB-PHY, CMPSS, DAC, and ADC using their register configurations. The application should also power down the PLL and peripheral clocks before entering HIBERNATE. In dual-core applications, CPU1 should confirm that CPU2 has entered IDLE/STANDBY using the LPMSTAT register. IDLE instruction is executed to put the device into HIBERNATE mode. The device is now in HIBERNATE mode. If configured, I/O isolation is turned on, M0 and M1 memories are retained. CPU1 and CPU2 are powered down. Digital peripherals are powered down. The oscillators, PLLs, analog peripherals, and Flash are in their software-controlled Low-Power modes. Dx, LSx, and GSx memories are also powered down, and their memory contents lost. A falling edge on the GPIOHIBWAKEn pin will drive the wakeup of the devices clock sources INTOSC1, INTOSC2, and X1/X2 OSC. The wakeup source must keep the GPIOHIBWAKEn pin low long enough to ensure full power-up of these clock sources. After the clock sources are powered up, the GPIOHIBWAKEn must be driven high to trigger the wakeup sequence of the remainder of the device. The BootROM will then begin to execute. The BootROM can distinguish a HIBERNATE wakeup by reading the CPU1.REC.HIBRESETn bit. After the TI OTP trims are loaded, the BootROM code will branch to the user-defined IoRestore function if it has been configured. At this point, the device is out of HIBERNATE mode, and the application may continue. The IoRestore function is a user-defined function where the application may reconfigure GPIO states, disable I/O isolation, reconfigure the PLL, restore peripheral configurations, or branch to application code. This is up to the application requirements. If the application has not branched to application code, the BootROM will continue after completing IoRestore. It will disable I/O isolation automatically if it was not taken care of inside of IoRestore. CPU2 will be brought out of reset at this point as well. BootROM will then boot as determined by the HIBBOOTMODE register. Refer to the ROM Code and Peripheral Booting chapter of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual for more information. Figure 5-20. HIBERNATE Entry and Exit Timing Diagram NOTE 1. If the IORESTOREADDR is configured as the default value, the BootROM will continue its execution to boot as determined by the HIBBOOTMODE register. Refer to the ROM Code and Peripheral Booting chapter of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual for more information. 2. The user may choose to disable I/O Isolation at any point in the IoRestore function. Regardless if the user has disabled Isolation in the IoRestore function or if IoRestore is not defined, the BootROM will automatically disable isolation before booting as determined by the HIBBOOTMODE register. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 83 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com NOTE For applications using both CPU1 and CPU2, TI recommends that the application puts CPU2 in either IDLE or STANDBY before entering HIBERNATE mode. If any GPIOs are used and the state is to be preserved, data can be stored in M0/M1 memory of CPU1 to be reconfigured upon wakeup. This should be done before step A of Figure 5-20. 84 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.7.9 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 External Memory Interface (EMIF) The EMIF provides a means of connecting the CPU to various external storage devices like asynchronous memories (SRAM, NOR flash) or synchronous memory (SDRAM). 5.7.9.1 Asynchronous Memory Support The EMIF supports asynchronous memories: • SRAMs • NOR Flash memories There is an external wait input that allows slower asynchronous memories to extend the memory access. The EMIF module supports up to three chip selects (EMIF_CS[4:2]). Each chip select has the following individually programmable attributes: • Data bus width • Read cycle timings: setup, hold, strobe • Write cycle timings: setup, hold, strobe • Bus turnaround time • Extended wait option with programmable time-out • Select strobe option 5.7.9.2 Synchronous DRAM Support The EMIF memory controller is compliant with the JESD21-C SDR SDRAMs that use a 32-bit or 16-bit data bus. The EMIF has a single SDRAM chip select (EMIF_CS[0]). The address space of the EMIF, for the synchronous memory (SDRAM), lies beyond the 22-bit range of the program address bus and can only be accessed through the data bus, which places a restriction on the C compiler being able to work effectively on data in this space. Therefore, when using SDRAM, the user is advised to copy data (using the DMA) from external memory to RAM before working on it. See the examples in controlSUITE™ (CONTROLSUITE) and the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual. SDRAM configurations supported are: • One-bank, two-bank, and four-bank SDRAM devices • Devices with 8-, 9-, 10-, and 11-column addresses • CAS latency of two or three clock cycles • 16-bit/32-bit data bus width • 3.3-V LVCMOS interface Additionally, the EMIF supports placing the SDRAM in self-refresh and power-down modes. Self-refresh mode allows the SDRAM to be put in a low-power state while still retaining memory contents because the SDRAM will continue to refresh itself even without clocks from the microcontroller. Power-down mode achieves even lower power, except the microcontroller must periodically wake up and issue refreshes if data retention is required. The EMIF module does not support mobile SDRAM devices. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 85 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.7.9.3 www.ti.com EMIF Electrical Data and Timing 5.7.9.3.1 Asynchronous RAM Table 5-39 shows the EMIF asynchronous memory timing requirements. Table 5-40 shows the EMIF asynchronous memory switching characteristics. Figure 5-21 through Figure 5-24 show the EMIF asynchronous memory timing diagrams. Table 5-39. EMIF Asynchronous Memory Timing Requirements NO. MIN MAX UNIT Reads and Writes E EMIF clock period 2 tw(EM_WAIT) Pulse duration, EMxWAIT assertion and deassertion 12 tsu(EMDV-EMOEH) Setup time, EMxD[y:0] valid before EMxOE high 13 th(EMOEH-EMDIV) Hold time, EMxD[y:0] valid after EMxOE high 14 tsu(EMOEL-EMWAIT) Setup Time, EMxWAIT asserted before end of Strobe Phase (1) tc(SYSCLK) ns 2E ns 15 ns 0 ns 4E+20 ns 4E+20 ns Reads Writes 28 (1) tsu(EMWEL-EMWAIT) Setup Time, EMxWAIT asserted before end of Strobe Phase (1) Setup before end of STROBE phase (if no extended wait states are inserted) by which EMxWAIT must be asserted to add extended wait states. Figure 5-22 and Figure 5-24 describe EMIF transactions that include extended wait states inserted during the STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where the HOLD phase would begin if there were no extended wait cycles. Table 5-40. EMIF Asynchronous Memory Switching Characteristics (1) (2) (3) NO. PARAMETER MIN MAX UNIT (TA)*E–3 (TA)*E+2 ns EMIF read cycle time (EW = 0) (RS+RST+RH+2)*E–3 (RS+RST+RH+2)*E+2 ns EMIF read cycle time (EW = 1) (RS+RST+RH+2+ (EWC*16))*E–3 (RS+RST+RH+2+ (EWC*16))*E+2 ns Output setup time, EMxCS[y:2] low to EMxOE low (SS = 0) (RS)*E–3 (RS)*E+2 ns Output setup time, EMxCS[y:2] low to EMxOE low (SS = 1) –3 2 ns Output hold time, EMxOE high to EMxCS[y:2] high (SS = 0) (RH)*E–3 (RH)*E ns Output hold time, EMxOE high to EMxCS[y:2] high (SS = 1) –3 0 ns Reads and Writes 1 td(TURNAROUND) Turn around time Reads 3 4 5 (1) (2) (3) 86 tc(EMRCYCLE) tsu(EMCEL-EMOEL) th(EMOEH-EMCEH) 6 tsu(EMBAV-EMOEL) Output setup time, EMxBA[y:0] valid to EMxOE low (RS)*E–3 (RS)*E+2 ns 7 th(EMOEH-EMBAIV) Output hold time, EMxOE high to EMxBA[y:0] invalid (RH)*E–3 (RH)*E ns 8 tsu(EMAV-EMOEL) Output setup time, EMxA[y:0] valid to EMxOE low (RS)*E–3 (RS)*E+2 ns TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold, MEWC = Maximum external wait cycles. These parameters are programmed through the Asynchronous Bank and Asynchronous Wait Cycle Configuration Registers. These support the following ranges of values: TA[4–1], RS[16–1], RST[64–4], RH[8–1], WS[16–1], WST[64–1], WH[8–1], and MEWC[1–256]. See the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual for more information. E = EMxCLK period in ns. EWC = external wait cycles determined by EMxWAIT input signal. EWC supports the following range of values. EWC[256–1]. The maximum wait time before time-out is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. See the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual for more information. Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 5-40. EMIF Asynchronous Memory Switching Characteristics(1)(2)(3) (continued) NO. PARAMETER Output hold time, EMxOE high to EMxA[y:0] invalid 9 th(EMOEH-EMAIV) 10 tw(EMOEL) 11 td(EMWAITH-EMOEH) Delay time from EMxWAIT deasserted to EMxOE high 29 tsu(EMDQMV-EMOEL) 30 th(EMOEH-EMDQMIV) MIN MAX UNIT (RH)*E–3 (RH)*E ns EMxOE active low width (EW = 0) (RST)*E–1 (RST)*E+1 ns EMxOE active low width (EW = 1) (RST+(EWC*16))*E–1 (RST+(EWC*16))*E+1 ns 4E+10 5E+15 ns Output setup time, EMxDQM[y:0] valid to EMxOE low (RS)*E–3 (RS)*E+2 ns Output hold time, EMxOE high to EMxDQM[y:0] invalid (RH)*E–3 (RH)*E ns EMIF write cycle time (EW = 0) (WS+WST+WH+2)*E–3 (WS+WST+WH+2)*E+1 ns EMIF write cycle time (EW = 1) (WS+WST+WH+2+ (EWC*16))*E–3 (WS+WST+WH+2+ (EWC*16))*E+1 ns Output setup time, EMxCS[y:2] low to EMxWE low (SS = 0) (WS)*E–3 (WS)*E+1 ns Output setup time, EMxCS[y:2] low to EMxWE low (SS = 1) –3 1 ns Output hold time, EMxWE high to EMxCS[y:2] high (SS = 0) (WH)*E–3 (WH)*E ns Output hold time, EMxWE high to EMxCS[y:2] high (SS = 1) –3 0 ns Writes 15 16 17 tc(EMWCYCLE) tsu(EMCEL-EMWEL) th(EMWEH-EMCEH) 18 tsu(EMDQMV-EMWEL) Output setup time, EMxDQM[y:0] valid to EMxWE low (WS)*E–3 (WS)*E+1 ns 19 th(EMWEH-EMDQMIV) Output hold time, EMxWE high to EMxDQM[y:0] invalid (WH)*E–3 (WH)*E ns 20 tsu(EMBAV-EMWEL) Output setup time, EMxBA[y:0] valid to EMxWE low (WS)*E–3 (WS)*E+1 ns 21 th(EMWEH-EMBAIV) Output hold time, EMxWE high to EMxBA[y:0] invalid (WH)*E–3 (WH)*E ns 22 tsu(EMAV-EMWEL) Output setup time, EMxA[y:0] valid to EMxWE low (WS)*E–3 (WS)*E+1 ns 23 th(EMWEH-EMAIV) Output hold time, EMxWE high to EMxA[y:0] invalid (WH)*E–3 (WH)*E ns EMxWE active low width (EW = 0) (WST)*E–1 (WST)*E+1 ns EMxWE active low width (EW = 1) (WST+(EWC*16))*E–1 (WST+(EWC*16))*E+1 ns 4E+10 5E+15 ns 24 tw(EMWEL) 25 td(EMWAITH-EMWEH) Delay time from EMxWAIT deasserted to EMxWE high 26 tsu(EMDV-EMWEL) Output setup time, EMxD[y:0] valid to EMxWE low (WS)*E–3 (WS)*E+1 ns 27 th(EMWEH-EMDIV) Output hold time, EMxWE high to EMxD[y:0] invalid (WH)*E–3 (WH)*E ns Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 87 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 3 1 EMxCS[y:2] EMxBA[y:0] EMxA[y:0] EMxDQM[y:0] 4 8 5 9 6 29 7 30 10 EMxOE 13 12 EMxD[y:0] EMxWE Figure 5-21. Asynchronous Memory Read Timing SETUP Extended Due to EMxWAIT STROBE STROBE HOLD EMxCS[y:2] EMxBA[y:0] EMxA[y:0] EMxD[y:0] 14 11 EMxOE 2 EMxWAIT Asserted 2 Deasserted Figure 5-22. EMxWAIT Read Timing Requirements 88 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 15 1 EMxCS[y:2] EMxBA[y:0] EMxA[y:0] EMxDQM[y:0] 16 17 18 19 20 21 24 22 23 EMxWE 27 26 EMxD[y:0] EMxOE Figure 5-23. Asynchronous Memory Write Timing SETUP Extended Due to EMxWAIT STROBE STROBE HOLD EMxCS[y:2] EMxBA[y:0] EMxA[y:0] EMxD[y:0] 28 25 EMxWE 2 Asserted EMxWAIT 2 Deasserted Figure 5-24. EMxWAIT Write Timing Requirements Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 89 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 5.7.9.3.2 Synchronous RAM Table 5-41 shows the EMIF synchronous memory timing requirements. Table 5-42 shows the EMIF synchronous memory switching characteristics. Figure 5-25 and Figure 5-26 show the synchronous memory timing diagrams. Table 5-41. EMIF Synchronous Memory Timing Requirements NO. MIN 19 tsu(EMIFDV-EM_CLKH) Input setup time, read data valid on EMxD[y:0] before EMxCLK rising 20 th(CLKH-DIV) Input hold time, read data valid on EMxD[y:0] after EMxCLK rising MAX UNIT 2 ns 1.5 ns Table 5-42. EMIF Synchronous Memory Switching Characteristics NO. 90 PARAMETER MIN 1 tc(CLK) Cycle time, EMIF clock EMxCLK 10 ns 2 tw(CLK) Pulse width, EMIF clock EMxCLK high or low 3 ns 3 td(CLKH-CSV) Delay time, EMxCLK rising to EMxCS[y:2] valid 4 toh(CLKH-CSIV) Output hold time, EMxCLK rising to EMxCS[y:2] invalid 5 td(CLKH-DQMV) Delay time, EMxCLK rising to EMxDQM[y:0] valid 6 toh(CLKH-DQMIV) Output hold time, EMxCLK rising to EMxDQM[y:0] invalid 7 td(CLKH-AV) Delay time, EMxCLK rising to EMxA[y:0] and EMxBA[y:0] valid 8 toh(CLKH-AIV) Output hold time, EMxCLK rising to EMxA[y:0] and EMxBA[y:0] invalid 9 td(CLKH-DV) Delay time, EMxCLK rising to EMxD[y:0] valid 10 toh(CLKH-DIV) Output hold time, EMxCLK rising to EMxD[y:0] invalid 11 td(CLKH-RASV) Delay time, EMxCLK rising to EMxRAS valid 12 toh(CLKH-RASIV) Output hold time, EMxCLK rising to EMxRAS invalid 13 td(CLKH-CASV) Delay time, EMxCLK rising to EMxCAS valid 14 toh(CLKH-CASIV) Output hold time, EMxCLK rising to EMxCAS invalid 15 td(CLKH-WEV) Delay time, EMxCLK rising to EMxWE valid 16 toh(CLKH-WEIV) Output hold time, EMxCLK rising to EMxWE invalid 17 td(CLKH-DHZ) Delay time, EMxCLK rising to EMxD[y:0] tri-stated 18 toh(CLKH-DLZ) Output hold time, EMxCLK rising to EMxD[y:0] driving Specifications MAX 8 1 ns ns 8 1 ns ns 8 1 ns ns 8 1 ns ns 8 1 ns ns 8 1 ns ns 8 1 ns ns 8 1 UNIT ns ns Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 BASIC SDRAM READ OPERATION 1 2 2 EMxCLK 4 3 EMxCS[y:2] 6 5 EMxDQM[y:0] 7 8 7 8 EMxBA[y:0] EMxA[y:0] 19 2 EM_CLK Delay 17 20 18 EMxD[y:0] 11 12 EMxRAS 13 14 EMxCAS EMxWE Figure 5-25. Basic SDRAM Read Operation Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 91 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com BASIC SDRAM WRITE OPERATION 1 2 2 EMxCLK 4 3 EMxCS[y:2] 6 5 EMxDQM[y:0] 7 8 7 8 EMxBA[y:0] EMxA[y:0] 9 10 EMxD[y:0] 11 12 EMxRAS 13 EMxCAS 15 16 EMxWE Figure 5-26. Basic SDRAM Write Operation 92 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.8 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Analog Peripherals This analog subsystem module is described in this section. The analog modules on this device include the ADC, temperature sensor, buffered DAC, and CMPSS. The analog subsystem has the following features: • Flexible voltage references – VREFHIA and VREFLOA, VREFHIB and VREFLOB, VREFHIC and VREFLOC, and VREFHID and VREFLOD externally supplied reference voltage pins • Selectable by ADCs and buffered DACs – VDAC externally supplied reference voltage pin • Selectable by buffered DACs and comparator subsystem DACs • Low reference is VSSA • Flexible pin usage – Buffered DAC and comparator subsystem functions multiplexed with ADC inputs • Internal connection to VREFLO on all ADCs for offset self-calibration Figure 5-27 shows the Analog Subsystem Block Diagram for the 337-ball ZWT package. Figure 5-28 shows the Analog Subsystem Block Diagram for the 176-pin PTP package. Figure 5-29 shows the Analog Subsystem Block Diagram for the 100-pin PZP package. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 93 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com VREFLOA VREFLOA TEMP SENSOR CMPIN4P/ADCIN14 CMPIN4N/ADCIN15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 REFHI VREFHIA VDAC DACREFSEL ADC-A 16-bits or 12-bits (selectable) VDDA or VDAC Digital Filter CTRIP1H CTRIPOUT1H Digital Filter CTRIP1L CTRIPOUT1L DAC12 DAC12 VSSA VDAC DACREFSEL VREFLOA Comparator Subsystem 1 CMPIN1N VREFHIA REFLO CMPIN1P 12-bit Buffered DAC DACOUTB DACOUTA/ADCINA0 DACOUTB/ADCINA1 CMPIN1P/ADCINA2 CMPIN1N/ADCINA3 CMPIN2P/ADCINA4 CMPIN2N/ADCINA5 DACOUTA VREFHIA 12-bit Buffered DAC CMPIN2P Comparator Subsystem 2 VDDA or VDAC Digital Filter CTRIP2H CTRIPOUT2H Digital Filter CTRIP2L CTRIPOUT2L DAC12 DAC12 CMPIN2N VREFHIB VSSA VREFLOB VREFLOB 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 REFHI CMPIN3P VREFHIB VDAC DACREFSEL ADC-B 16-bits or 12-bits (selectable) 12-bit Buffered DAC DACOUTC VDAC/ADCINB0 DACOUTC/ADCINB1 CMPIN3P/ADCINB2 CMPIN3N/ADCINB3 ADCINB4 ADCINB5 Comparator Subsystem 3 VDDA or VDAC DAC12 CMPIN4P Digital Filter CTRIP3L CTRIPOUT3L Comparator Subsystem 4 VDDA or VDAC Digital Filter CTRIP4H CTRIPOUT4H Digital Filter CTRIP4L CTRIPOUT4L DAC12 REFLO DAC12 VREFLOB CTRIP3H CTRIPOUT3H DAC12 CMPIN3N VSSA Digital Filter CMPIN4N VREFHIC CMPIN6P/ADCINC2 CMPIN6N/ADCINC3 CMPIN5P/ADCINC4 CMPIN5N/ADCINC5 VREFLOC VREFLOC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 REFHI CMPIN5P Comparator Subsystem 5 VDDA or VDAC Digital Filter CTRIP5H CTRIPOUT5H Digital Filter CTRIP5L CTRIPOUT5L DAC12 ADC-C 16-bits or 12-bits (selectable) DAC12 CMPIN5N CMPIN6P Comparator Subsystem 6 VDDA or VDAC CTRIP6H CTRIPOUT6H Digital Filter CTRIP6L CTRIPOUT6L DAC12 REFLO DAC12 VREFLOC Digital Filter CMPIN6N VREFHID CMPIN7P/ADCIND0 CMPIN7N/ADCIND1 CMPIN8P/ADCIND2 CMPIN8N/ADCIND3 ADCIND4 ADCIND5 VREFLOD VREFLOD VREFLOD 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 REFHI CMPIN7P Comparator Subsystem 7 VDDA or VDAC Digital Filter CTRIP7H CTRIPOUT7H Digital Filter CTRIP7L CTRIPOUT7L DAC12 ADC-D 16-bits or 12-bits (selectable) DAC12 CMPIN7N CMPIN8P Comparator Subsystem 8 VDDA or VDAC Digital Filter CTRIP8H CTRIPOUT8H Digital Filter CTRIP8L CTRIPOUT8L DAC12 REFLO DAC12 CMPIN8N Figure 5-27. Analog Subsystem Block Diagram (337-Ball ZWT) 94 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 TEMP SENSOR CMPIN4P/ADCIN14 CMPIN4N/ADCIN15 REFHI VREFHIA VDAC DACREFSEL ADC-A 16-bits or 12-bits (selectable) VREFLOB VREFLOB Digital Filter CTRIP1H CTRIPOUT1H DAC12 Digital Filter CTRIP1L CTRIPOUT1L VSSA VDAC 12-bit Buffered DAC VREFHIB VDAC/ADCINB0 DACOUTC/ADCINB1 CMPIN3P/ADCINB2 CMPIN3N/ADCINB3 VDDA or VDAC DAC12 DACREFSEL VREFLOA Comparator Subsystem 1 CMPIN1N VREFHIA REFLO CMPIN1P 12-bit Buffered DAC DACOUTB VREFLOA VREFLOA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMPIN2P Comparator Subsystem 2 VDDA or VDAC Digital Filter CTRIP2H CTRIPOUT2H Digital Filter CTRIP2L CTRIPOUT2L DAC12 DAC12 CMPIN2N VSSA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 REFHI CMPIN3P VREFHIB DACOUTC DACOUTA/ADCINA0 DACOUTB/ADCINA1 CMPIN1P/ADCINA2 CMPIN1N/ADCINA3 CMPIN2P/ADCINA4 CMPIN2N/ADCINA5 DACOUTA VREFHIA VDAC DACREFSEL ADC-B 16-bits or 12-bits (selectable) Comparator Subsystem 3 VDDA or VDAC CMPIN3N VSSA CMPIN4P Digital Filter CTRIP3L CTRIPOUT3L Comparator Subsystem 4 VDDA or VDAC Digital Filter CTRIP4H CTRIPOUT4H Digital Filter CTRIP4L CTRIPOUT4L DAC12 REFLO DAC12 VREFLOB CTRIP3H CTRIPOUT3H DAC12 DAC12 12-bit Buffered DAC Digital Filter CMPIN4N VREFHIC CMPIN6P/ADCINC2 CMPIN6N/ADCINC3 CMPIN5P/ADCINC4 VREFLOC VREFLOC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 REFHI CMPIN5P Comparator Subsystem 5 VDDA or VDAC Digital Filter CTRIP5H CTRIPOUT5H Digital Filter CTRIP5L CTRIPOUT5L DAC12 ADC-C DAC12 16-bits or 12-bits (selectable) CMPIN6P Comparator Subsystem 6 VDDA or VDAC CTRIP6H CTRIPOUT6H Digital Filter CTRIP6L CTRIPOUT6L DAC12 REFLO DAC12 VREFLOC Digital Filter CMPIN6N VREFHID CMPIN7P/ADCIND0 CMPIN7N/ADCIND1 CMPIN8P/ADCIND2 CMPIN8N/ADCIND3 ADCIND4 VREFLOD VREFLOD 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 REFHI CMPIN7P Comparator Subsystem 7 VDDA or VDAC Digital Filter CTRIP7H CTRIPOUT7H Digital Filter CTRIP7L CTRIPOUT7L DAC12 ADC-D 16-bits or 12-bits (selectable) DAC12 CMPIN7N CMPIN8P Comparator Subsystem 8 VDDA or VDAC CTRIP8H CTRIPOUT8H Digital Filter CTRIP8L CTRIPOUT8L DAC12 REFLO DAC12 VREFLOD Digital Filter CMPIN8N Figure 5-28. Analog Subsystem Block Diagram (176-Pin PTP) Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 95 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com TEMP SENSOR CMPIN4P/ADCIN14 CMPIN4N/ADCIN15 REFHI VREFHIA VDAC DACREFSEL ADC-A 16-bits or 12-bits (selectable) VREFLOA VREFLOB VREFLOB VREFLOB VDDA or VDAC DAC12 CMPIN1N Digital Filter CTRIP1H CTRIPOUT1H Digital Filter CTRIP1L CTRIPOUT1L VSSA VREFHIA VDAC CMPIN2P Comparator Subsystem 2 VDDA or VDAC Digital Filter CTRIP2H CTRIPOUT2H Digital Filter CTRIP2L CTRIPOUT2L DAC12 12-bit Buffered DAC VREFHIB VDAC/ADCINB0 DACOUTC/ADCINB1 CMPIN3P/ADCINB2 CMPIN3N/ADCINB3 ADCINB4 ADCINB5 Comparator Subsystem 1 DAC12 DACREFSEL REFLO CMPIN1P 12-bit Buffered DAC DACOUTB VREFLOA VREFLOA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 DAC12 CMPIN2N VSSA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 REFHI VREFHIB VDAC DACREFSEL ADC-B 16-bits or 12-bits (selectable) 12-bit Buffered DAC DACOUTC DACOUTA/ADCINA0 DACOUTB/ADCINA1 CMPIN1P/ADCINA2 CMPIN1N/ADCINA3 CMPIN2P/ADCINA4 CMPIN2N/ADCINA5 DACOUTA VREFHIA CMPIN3P Comparator Subsystem 3 VDDA or VDAC Digital Filter CTRIP3H CTRIPOUT3H Digital Filter CTRIP3L CTRIPOUT3L DAC12 DAC12 CMPIN3N VSSA CMPIN4P Comparator Subsystem 4 VDDA or VDAC Digital Filter CTRIP4H CTRIPOUT4H Digital Filter CTRIP4L CTRIPOUT4L DAC12 REFLO DAC12 CMPIN4N Figure 5-29. Analog Subsystem Block Diagram (100-Pin PZP) 96 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.8.1 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Analog-to-Digital Converter (ADC) The ADCs on this device are successive approximation (SAR) style ADCs with selectable resolution of either 16 bits or 12 bits. There are multiple ADC modules which allow simultaneous sampling. The ADC wrapper is start-of-conversion (SOC) based [see the SOC Principle of Operation section of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual. Each ADC has the following features: • Selectable resolution of 16 bits or 12 bits • Ratiometric external reference set by VREFHI and VREFLO • Differential signal conversions (16-bit mode only) • Single-ended signal conversions (12-bit mode only) • Input multiplexer with up to 16 channels (single-ended) or 8 channels (differential) • 16 configurable SOCs • 16 individually addressable result registers • Multiple trigger sources – Software immediate start – All ePWMs – GPIO XINT2 – CPU timers – ADCINT1 or 2 • Four flexible PIE interrupts • Burst mode • Four post-processing blocks, each with: – Saturating offset calibration – Error from setpoint calculation – High, low, and zero-crossing compare, with interrupt and ePWM trip capability – Trigger-to-sample delay capture Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 97 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Figure 5-30 shows the ADC module block diagram. Analog to Digital Core Analog to Digital Wrapper Logic SIGNALMODE RESOLUTION RESOLUTION CHSEL ADCIN0 ADCIN1 ADCIN2 ADCIN3 ADCIN4 ADCIN5 ADCIN6 ADCIN7 ADCIN8 ADCIN9 ADCIN10 ADCIN11 ADCIN12 ADCIN13 ADCIN14 ADCIN15 [15:0] ADCSOC 0 1 SOC Arbitration & Control SOCx (0-15) [15:0] ACQPS [15:0] CHSEL u DOUT1 8 xV 2 IN- 9 10 11 12 13 14 S/H Circuit EOCx[15:0] xV1IN+ 7 ADCCOUNTER ADCRESULT 0–15 Regs + - S Trigger Timestamp ADCPPBxOFFCAL saturate ADCPPBxOFFREF - + S VREFHI CONFIG VREFLO Reference Voltage Levels TRIGGER[15:0] SOC Delay Timestamp Converter RESULT 15 ... 5 6 ... 4 SOCxSTART[15:0] 2 3 TRIGSEL Triggers Input Circuit SIGNALMODE ADCPPBxRESULT Event Logic ADCEVT ADCEVTINT Post Processing Block (1-4) Interrupt Block (1-4) ADCINT1-4 Figure 5-30. ADC Module Block Diagram 98 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.8.1.1 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 ADC Electrical Data and Timing Table 5-43 shows the ADC operating conditions for 16-bit differential mode. Table 5-44 shows the ADC characteristics for 16-bit differential mode. Table 5-45 shows the ADC operating conditions for 12-bit single-ended mode. Table 5-46 shows the ADC characteristics for 12-bit single-ended mode. Table 5-47 shows the ADCEXTSOC timing requirements. Table 5-43. ADC Operating Conditions (16-Bit Differential Mode) over recommended operating conditions (unless otherwise noted) MIN ADCCLK (derived from PERx.SYSCLK) TYP 5 MAX UNIT 50 MHz 320 Sample window duration (set by ACQPS and PERx.SYSCLK) ns 1 ADCCLK VREFHI 2.4 2.5 or 3.0 VDDA V VREFLO VSSA 0 VSSA V 2.4 VDDA V VREFLO VREFHI VREFHI – VREFLO ADC input conversion range ADC input signal common mode voltage (1) (1) VREFCM – 50 VREFCM VREFCM + 50 V mV VREFCM = (VREFHI + VREFLO)/2 NOTE The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input exceeds this level, the VREF internal to the device may be disturbed, which can impact results for other ADC or DAC inputs using the same VREF. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 99 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 5-44. ADC Characteristics (16-Bit Differential Mode) over recommended operating conditions (unless otherwise noted) (1) PARAMETER TEST CONDITIONS ADC conversion cycles (2) MIN TYP 29.6 Power-up time (after setting ADCPWDNZ to first conversion) MAX UNIT 31 ADCCLKs 500 µs Gain error –64 ±9 64 LSBs Offset error (3) –16 ±9 16 LSBs Channel-to-channel gain error ±6 LSBs Channel-to-channel offset error ±3 LSBs ±6 LSBs ADC-to-ADC gain error Identical VREFHI and VREFLO for all ADCs ADC-to-ADC offset error Identical VREFHI and VREFLO for all ADCs DNL (4) INL ±3 LSBs > –1 ±0.5 1 LSBs –3 ±1.5 3 LSBs (5) (6) VREFHI = 2.5 V, fin = 10 kHz 87.6 dB THD (5) (6) VREFHI = 2.5 V, fin = 10 kHz –93.5 dB SFDR (5) (6) VREFHI = 2.5 V, fin = 10 kHz 95.4 dB SINAD (5) (6) VREFHI = 2.5 V, fin = 10 kHz 86.6 dB VREFHI = 2.5 V, fin = 10 kHz, single ADC (7) 14.1 VREFHI = 2.5 V, fin = 10 kHz, synchronous ADCs (8) 14.1 VREFHI = 2.5 V, fin = 10 kHz, asynchronous ADCs (9) Not supported PSRR VDDA = 3.3-V DC + 200 mV DC up to Sine at 1 kHz 77 dB PSRR VDDA = 3.3-V DC + 200 mV Sine at 800 kHz 74 dB CMRR DC to 1 MHz 60 dB SNR ENOB (5) (6) VREFHI input current 190 VREFHI = 2.5 V, synchronous ADCs (8) ADC-to-ADC isolation (6) (10) (11) bits VREFHI = 2.5 V, asynchronous ADCs (9) –2 µA 2 Not supported LSBs (1) Typical values are measured with VREFHI = 2.5 V and VREFLO = 0 V. Minimum and Maximum values are tested or characterized with VREFHI = 2.5 V and VREFLO = 0 V. (2) See Section 5.8.1.1.2. (3) Difference from conversion result 32768 when ADCINp = ADCINn = VREFCM. (4) No missing codes. (5) AC parameters will be impacted by clock source accuracy and jitter, this should be taken into account when selecting the clock source for the system. The clock source used for these parameters was a high-accuracy external clock fed through the PLL. The on-chip Internal Oscillator has higher jitter than an external crystal and these parameters will degrade if it is used as a clock source. (6) IO activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and crosstalk. (7) One ADC operating while all other ADCs are idle. (8) All ADCs operating with identical ADCCLK, S+H durations, triggers, and resolution. (9) Any ADCs operating with heterogeneous ADCCLK, S+H durations, triggers, or resolution. (10) Maximum DC code deviation due to operation of multiple ADCs simultaneously. (11) Value based on characterization. 100 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 5-45. ADC Operating Conditions (12-Bit Single-Ended Mode) over recommended operating conditions (unless otherwise noted) MIN ADCCLK (derived from PERx.SYSCLK) TYP 5 Sample window duration (set by ACQPS and PERx.SYSCLK) MAX UNIT 50 MHz 75 ns 1 ADCCLK VREFHI 2.4 2.5 or 3.0 VDDA V VREFLO VSSA 0 VSSA V 2.4 VDDA V VREFLO VREFHI V VREFHI – VREFLO ADC input conversion range NOTE The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input exceeds this level, the VREF internal to the device may be disturbed, which can impact results for other ADC or DAC inputs using the same VREF. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 101 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 5-46. ADC Characteristics (12-Bit Single-Ended Mode) over recommended operating conditions (unless otherwise noted) (1) PARAMETER TEST CONDITIONS MIN ADC conversion cycles (2) TYP 10.1 MAX 11 Power-up time 500 UNIT ADCCLKs µs Gain error –5 ±3 5 LSBs Offset error –4 ±2 4 LSBs Channel-to-channel gain error Channel-to-channel offset error ±4 LSBs ±2 LSBs ADC-to-ADC gain error Identical VREFHI and VREFLO for all ADCs ±4 LSBs ADC-to-ADC offset error Identical VREFHI and VREFLO for all ADCs ±2 LSBs DNL (3) INL > –1 ±0.5 1 LSBs –2 ±1.0 2 LSBs SNR (4) (5) VREFHI = 2.5 V, fin = 100 kHz 68.8 dB (4) (5) THD VREFHI = 2.5 V, fin = 100 kHz –78.4 dB SFDR (4) (5) VREFHI = 2.5 V, fin = 100 kHz 79.2 dB SINAD (4) (5) VREFHI = 2.5 V, fin = 100 kHz 68.4 dB VREFHI = 2.5 V, fin = 100 kHz, single ADC (6), all packages 11.1 VREFHI = 2.5 V, fin = 100 kHz, synchronous ADCs (7), all packages 11.1 ENOB (4) (5) VREFHI = 2.5 V, fin = 100 kHz, asynchronous ADCs (8), 100-pin PZP package Not supported VREFHI = 2.5 V, fin = 100 kHz, asynchronous ADCs (8), 176-pin PTP package 9.7 VREFHI = 2.5 V, fin = 100 kHz, asynchronous ADCs (8), 337-ball ZWT package 10.9 PSRR VDDA = 3.3-V DC + 200 mV DC up to Sine at 1 kHz PSRR VDDA = 3.3-V DC + 200 mV Sine at 800 kHz bits 60 dB 57 dB (7) VREFHI = 2.5 V, synchronous ADCs , all packages ADC-to-ADC isolation VREFHI input current (5) (9) (10) –1 VREFHI = 2.5 V, asynchronous ADCs (8), 100-pin PZP package 1 Not supported LSBs VREFHI = 2.5 V, asynchronous ADCs (8), 176-pin PTP package –9 9 VREFHI = 2.5 V, asynchronous ADCs (8), 337-ball ZWT package –2 2 130 µA (1) Typical values are measured with VREFHI = 2.5 V and VREFLO = 0 V. Minimum and Maximum values are tested or characterized with VREFHI = 2.5 V and VREFLO = 0 V. (2) See Section 5.8.1.1.2. (3) No missing codes. (4) AC parameters will be impacted by clock source accuracy and jitter, this should be taken into account when selecting the clock source for the system. The clock source used for these parameters was a high-accuracy external clock fed through the PLL. The on-chip Internal Oscillator has higher jitter than an external crystal and these parameters will degrade if it is used as a clock source. (5) IO activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and crosstalk. (6) One ADC operating while all other ADCs are idle. (7) All ADCs operating with identical ADCCLK, S+H durations, triggers, and resolution. (8) Any ADCs operating with heterogeneous ADCCLK, S+H durations, triggers, or resolution. (9) Maximum DC code deviation due to operation of multiple ADCs simultaneously. (10) Value based on characterization. 102 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 5-47. ADCEXTSOC Timing Requirements (1) MIN tw(INT) (1) Pulse duration, INT input low/high MAX UNIT Synchronous 2tc(SYSCLK) cycles With qualifier tw(IQSW) + tw(SP) + 1tc(SYSCLK) cycles For an explanation of the input qualifier parameters, see Table 5-26. 5.8.1.1.1 ADC Input Models NOTE ADC channels ADCINA0, ADCINA1, and ADCINB1 have a 50-kΩ pulldown resistor to VSSA. For single-ended operation, the ADC input characteristics are given by Table 5-48 and Figure 5-31. Table 5-48. Single-Ended Input Model Parameters DESCRIPTION Cp Parasitic input capacitance Ron Sampling switch resistance Ch Sampling capacitor Rs Nominal source impedance VALUE (12-BIT MODE) See Table 5-50 425 Ω 14.5 pF 50 Ω ADC ADCINx Rs Switch AC Ron Cp Ch VREFLO Figure 5-31. Single-Ended Input Model For differential operation, the ADC input characteristics are given by Table 5-49 and Figure 5-32. Table 5-49. Differential Input Model Parameters DESCRIPTION VALUE (16-BIT MODE) Cp Parasitic input capacitance See Table 5-50 Ron Sampling switch resistance 700 Ω Ch Sampling capacitor Rs Nominal source impedance 16.5 pF 50 Ω ADC ADCINxP Rs Cp Switch Ron Ch VSSA AC Cp ADCINxN Switch Ron Rs Figure 5-32. Differential Input Model Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 103 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 5-50 shows the parasitic capacitance on each channel. Also, enabling a comparator adds approximately 1.4 pF of capacitance on positive comparator inputs and 2.5 pF of capacitance on negative comparator inputs. Table 5-50. Per-Channel Parasitic Capacitance ADC CHANNEL Cp (pF) COMPARATOR DISABLED COMPARATOR ENABLED ADCINA0 12.9 N/A ADCINA1 10.3 N/A ADCINA2 5.9 7.3 ADCINA3 6.3 8.8 ADCINA4 5.9 7.3 ADCINA5 6.3 8.8 ADCINB0 117.0 N/A ADCINB1 10.6 N/A ADCINB2 5.9 7.3 ADCINB3 6.2 8.7 ADCINB4 5.2 N/A ADCINB5 5.1 N/A ADCINC2 5.5 6.9 ADCINC3 5.8 8.3 ADCINC4 5.0 6.4 ADCINC5 5.3 7.8 ADCIND0 5.3 6.7 ADCIND1 5.7 8.2 ADCIND2 5.3 6.7 ADCIND3 5.6 8.1 ADCIND4 4.3 N/A ADCIND5 4.3 N/A ADCIN14 8.6 10.0 ADCIN15 9.0 11.5 These input models should be used along with actual signal source impedance to determine the acquisition window duration. See the Choosing an Acquisition Window Duration section of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual for more information. The user should analyze the ADC input setting assuming worst-case initial conditions on Ch. This will require assuming that Ch could start the S+H window completely charged to VREFHI or completely discharged to VREFLO. When the ADC transitions from an odd-numbered channel to an even-numbered channel, or vice-versa, the actual initial voltage on Ch will be close to being completely discharged to VREFLO. For even-to-even or odd-to-odd channel transitions, the initial voltage on Ch will be close to the voltage of the previously converted channel. 104 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.8.1.1.2 ADC Timing Diagrams Table 5-51 shows the ADC timings in 12-bit mode (SYSCLK cycles). Table 5-52 shows the ADC timings in 16-bit mode. Figure 5-33 and Figure 5-34 show the ADC conversion timings for two SOCs given the following assumptions: • SOC0 and SOC1 are configured to use the same trigger. • No other SOCs are converting or pending when the trigger occurs. • The round robin pointer is in a state that causes SOC0 to convert first. • ADCINTSEL is configured to set an ADCINT flag upon end of conversion for SOC0 (whether this flag propagates through to the CPU to cause an interrupt is determined by the configurations in the PIE module). The following parameters are identified in the timing diagrams: • The parameter tSH is the duration of the S+H window. At the end of this window, the value on the S+H capacitor becomes the voltage to be converted into a digital value. The duration is given by (ACQPS + 1) SYSCLK cycles. ACQPS can be configured individually for each SOC, so tSH will not necessarily be the same for different SOCs. • The parameter tLAT is the time from the end of the S+H window until the ADC conversion results latch in the ADCRESULTx register. If the ADCRESULTx register is read before this time, the previous conversion results will be returned. • The parameter tEOC is the time from the end of the S+H window until the next ADC conversion S+H window can begin. In 16-bit mode, this will coincide with the latching of the conversion results, while in 12-bit mode, the subsequent sample can start before the conversion results are latched. • The parameter tINT is the time from the end of the S+H window until an ADCINT flag is set (if configured). If the INTPULSEPOS bit in the ADCCTL1 register is set, this will coincide with the conversion results being latched into the result register. If the bit is cleared, this will coincide with the end of the S+H window. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 105 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 5-51. ADC Timings in 12-Bit Mode (SYSCLK Cycles) ADCCLK PRESCALE ADCCTL2 [PRESCALE] ADCCLK CYCLES SYSCLK CYCLES RATIO ADCCLK:SYSCLK tEOC tLAT 0 1 11 13 1 1.5 2 2 21 23 3 2.5 26 4 3 31 5 3.5 6 tINT(EARLY) tINT(LATE) tEOC 1 11 11.0 1 21 10.5 28 1 26 10.4 34 1 31 10.3 36 39 1 36 10.3 4 41 44 1 41 10.3 7 4.5 46 49 1 46 10.2 8 5 51 55 1 51 10.2 9 5.5 56 60 1 56 10.2 10 6 61 65 1 61 10.2 11 6.5 66 70 1 66 10.2 12 7 71 76 1 71 10.1 13 7.5 76 81 1 76 10.1 14 8 81 86 1 81 10.1 15 8.5 86 91 1 86 10.1 Invalid Sample n Input on SOC0.CHSEL Input on SOC1.CHSEL Sample n+1 ADC S+H SOC0 SOC1 SYSCLK ADCCLK ADCTRIG ADCSOCFLG.SOC0 ADCSOCFLG.SOC1 ADCRESULT0 (old data) ADCRESULT1 (old data) Sample n Sample n+1 ADCINTFLG.ADCINTx tSH tLAT tEOC tINT Figure 5-33. ADC Timings for 12-Bit Mode 106 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 5-52. ADC Timings in 16-Bit Mode ADCCLK PRESCALE ADCCTL2 [PRESCALE] ADCCLK CYCLES SYSCLK CYCLES RATIO ADCCLK:SYSCLK tEOC tLAT 0 1 31 32 1 1.5 2 2 60 61 3 2.5 75 4 3 90 5 3.5 6 tINT(EARLY) tINT(LATE) tEOC 1 31 31.0 1 60 30.0 75 1 75 30.0 91 1 90 30.0 104 106 1 104 29.7 4 119 120 1 119 29.8 7 4.5 134 134 1 134 29.8 8 5 149 150 1 149 29.8 9 5.5 163 165 1 163 29.6 10 6 178 179 1 178 29.7 11 6.5 193 193 1 193 29.7 12 7 208 209 1 208 29.7 13 7.5 222 224 1 222 29.6 14 8 237 238 1 237 29.6 15 8.5 252 252 1 252 29.6 Invalid Sample n Input on SOC0.CHSEL Input on SOC1.CHSEL Sample n+1 ADC S+H SOC0 SOC1 SYSCLK ADCCLK ADCTRIG ADCSOCFLG.SOC0 ADCSOCFLG.SOC1 ADCRESULT0 (old data) ADCRESULT1 (old data) Sample n Sample n+1 ADCINTFLG.ADCINTx tSH tLAT tEOC tINT Figure 5-34. ADC Timings for 16-Bit Mode Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 107 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.8.1.2 www.ti.com Temperature Sensor Electrical Data and Timing The temperature sensor can be used to measure the device junction temperature. The temperature sensor is sampled through an internal connection to the ADC and translated into a temperature through TI-provided software. When sampling the temperature sensor, the ADC must meet the acquisition time in Table 5-53. Table 5-53. Temperature Sensor Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER MIN Temperature accuracy Start-up time (TSNSCTL[ENABLE] to sampling temperature sensor) ADC acquisition time 108 Specifications TYP MAX UNIT ±15 °C 500 µs 700 ns Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.8.2 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Comparator Subsystem (CMPSS) Each CMPSS module includes two comparators, two internal voltage reference DACs (CMPSS DACs), two digital glitch filters, and one ramp generator. There are two inputs, CMPINxP and CMPINxN. Each of these inputs will be internally connected to an ADCIN pin. The CMPINxP pin is always connected to the positive input of the CMPSS comparators. CMPINxN can be used instead of the DAC output to drive the negative comparator inputs. There are two comparators, and therefore two outputs from the CMPSS module, which are connected to the input of a digital filter module before being passed on to the Comparator TRIP crossbar and either PWM modules or directly to a GPIO pin. Figure 5-35 shows the CMPSS connectivity on the 337-ball ZWT and 176-pin PTP packages. Figure 5-36 shows CMPSS connectivity on the 100-pin PZP package. CMPIN1P Pin Comparator Subsystem 1 VDDA or VDAC Digital Filter CTRIP1H CTRIPOUT1H DAC12 DAC12 CMPIN1N Pin CMPIN2P Pin Digital Filter CTRIP1L CTRIPOUT1L Comparator Subsystem 2 VDDA or VDAC Digital Filter CTRIP2H CTRIPOUT2H Digital Filter CTRIP2L CTRIPOUT2L CTRIP1H CTRIP1L CTRIP2H CTRIP2L ePWM X-BAR ePWMs Output X-BAR GPIO Mux CTRIP8H CTRIP8L DAC12 DAC12 CMPIN2N Pin CMPIN8P Pin Comparator Subsystem 8 VDDA or VDAC Digital Filter CTRIP8H CTRIPOUT8H CTRIPOUT8H CTRIPOUT8L DAC12 DAC12 CMPIN8N Pin CTRIPOUT1H CTRIPOUT1L CTRIPOUT2H CTRIPOUT2L Digital Filter CTRIP8L CTRIPOUT8L Figure 5-35. CMPSS Connectivity (337-Ball ZWT and 176-Pin PTP) Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 109 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Comparator Subsystem 1 CMPIN1P Pin VDDA or VDAC Digital Filter CTRIP1H CTRIPOUT1H DAC12 DAC12 CMPIN1N Pin Digital Filter CTRIP1L CTRIPOUT1L Comparator Subsystem 2 CMPIN2P Pin VDDA or VDAC Digital Filter CTRIP2H CTRIPOUT2H Digital Filter CTRIP2L CTRIPOUT2L CTRIP1H CTRIP1L CTRIP2H CTRIP2L CTRIP3H CTRIP3L CTRIP4H CTRIP4L ePWM X-BAR ePWMs CTRIPOUT1H CTRIPOUT1L CTRIPOUT2H CTRIPOUT2L CTRIPOUT3H CTRIPOUT3L CTRIPOUT4H CTRIPOUT4L Output X-BAR GPIO Mux DAC12 DAC12 CMPIN2N Pin Comparator Subsystem 3 CMPIN3P Pin VDDA or VDAC Digital Filter CTRIP3H CTRIPOUT3H Digital Filter CTRIP3L CTRIPOUT3L DAC12 DAC12 CMPIN3N Pin Comparator Subsystem 4 CMPIN4P Pin VDDA or VDAC Digital Filter CTRIP4H CTRIPOUT4H Digital Filter CTRIP4L CTRIPOUT4L DAC12 DAC12 CMPIN4N Pin Figure 5-36. CMPSS Connectivity (100-Pin PZP) 110 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.8.2.1 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 CMPSS Electrical Data and Timing Table 5-54 shows the comparator electrical characteristics. Figure 5-37 shows the CMPSS comparator input referred offset. Figure 5-38 shows the CMPSS comparator hysteresis. Table 5-54. Comparator Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP Power-up time (from COMPCTL[COMPDACE] to comparator ready) Input referred offset error Response time (delay from CMPINx input change to output on ePWM X-BAR or Output X-BAR) (1) UNIT 10 Comparator input (CMPINxx) range Hysteresis (1) MAX 0 VDDA –20 20 1x 12 2x 24 3x 36 4x 48 Step response 21 Ramp response (1.65 V/µs) 26 Ramp response (8.25 mV/µs) 30 µs V mV CMPSS DAC LSB 60 ns Hysteresis will scale with the CMPSS reference voltage. NOTE The CMPSS inputs must be kept below VDDA + 0.3 V to ensure proper functional operation. If a CMPSS input exceeds this level, an internal blocking circuit will isolate the internal comparator from the external pin until the external pin voltage returns below VDDA + 0.3 V. During this time, the internal comparator input will be floating and can decay below VDDA within approximately 0.5 µs. After this time, the comparator could begin to output an incorrect result depending on the value of the other comparator input. Input Referred Offset CTRIPx Logic Level CTRIPx = 1 CTRIPx = 0 0 COMPINxP Voltage CMPINxN or DACxVAL Figure 5-37. CMPSS Comparator Input Referred Offset Hysteresis CTRIPx Logic Level CTRIPx = 1 CTRIPx = 0 0 CMPINxN or DACxVAL COMPINxP Voltage Figure 5-38. CMPSS Comparator Hysteresis Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 111 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 5-55 shows the CMPSS DAC static electrical characteristics. Figure 5-39 shows the CMPSS DAC static offset. Figure 5-40 shows the CMPSS DAC static gain. Figure 5-41 shows the CMPSS DAC static linearity. Table 5-55. CMPSS DAC Static Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Internal reference 0 VDDA External reference 0 VDAC Static offset error (1) –25 25 mV Static gain error (1) –2 2 % of FSR CMPSS DAC output range V Static DNL Endpoint corrected >–1 4 LSB Static INL Endpoint corrected –16 16 LSB Settling time Settling to 1 LSB after full-scale output change 1 µs Resolution 12 CMPSS DAC output disturbance (2) Error induced by comparator trip or CMPSS DAC code change within the same CMPSS module –100 CMPSS DAC disturbance time (2) 100 200 VDAC reference voltage When VDAC is reference VDAC load (3) When VDAC is reference (1) (2) (3) bits 2.4 2.5 or 3.0 LSB ns VDDA 6 V kΩ Includes comparator input referred errors. Disturbance error may be present on the CMPSS DAC output for a certain amount of time after a comparator trip. Per active CMPSS module. Offset Error Figure 5-39. CMPSS DAC Static Offset 112 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Ideal Gain Actual Gain Actual Linear Range Figure 5-40. CMPSS DAC Static Gain Linearity Error Figure 5-41. CMPSS DAC Static Linearity Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 113 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.8.3 www.ti.com Buffered Digital-to-Analog Converter (DAC) The buffered DAC module consists of an internal reference DAC and an analog output buffer that is capable of driving an external load. An integrated pulldown resistor on the DAC output helps to provide a known pin voltage when the output buffer is disabled. This pulldown resistor cannot be disabled and remains as a passive component on the pin, even for other shared pin mux functions. Software writes to the DAC value register can take effect immediately or can be synchronized with PWMSYNC events. Each buffered DAC has the following features: • 12-bit programmable internal DAC • Selectable reference voltage • Pulldown resistor on output • Ability to synchronize with PWMSYNC The block diagram for the buffered DAC is shown in Figure 5-42. DACCTL[DACREFSEL] VDAC 0 VREFHI 1 SYSCLK DACVALS > D Q DACCTL[LOADMODE] 0 DACVALA D Q PWMSYNC1 0 PWMSYNC2 1 PWMSYNC3 2 ... … PWMSYNCn n-1 > VDDA 1 12-bit DAC Buffer RPD VSSA VSSA DACCTL[SYNCSEL] Figure 5-42. DAC Module Block Diagram 114 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.8.3.1 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Buffered DAC Electrical Data and Timing Table 5-56 shows the buffered DAC electrical characteristics. Figure 5-43 shows the buffered DAC offset. Figure 5-44 shows the buffered DAC gain. Figure 5-45 shows the buffered DAC linearity. Table 5-56. Buffered DAC Electrical Characteristics over recommended operating conditions (unless otherwise noted) (1) PARAMETER TEST CONDITIONS MIN TYP Power-up time (DACOUTEN to DAC output valid) Trimmed offset error MAX UNIT 10 Midpoint Gain error (2) µs –10 10 mV –2.5 2.5 % of FSR DNL (3) Endpoint corrected > –1 1 LSB INL Endpoint corrected –5 5 LSB DACOUTx settling time Settling to 2 LSBs after 0.3V-to-3V transition 2 Resolution µs 12 Voltage output range (4) 0.3 Capacitive load Output drive capability Resistive load Output drive capability bits VDDA – 0.3 V 100 pF 5 RPD kΩ 50 kΩ Reference voltage (5) VDAC or VREFHI Reference load (6) VDAC or VREFHI 170 Integrated noise from 100 Hz to 100 kHz 500 µVrms Noise density at 10 kHz 711 nVrms/√Hz 1.5 V-ns Output noise 2.4 Glitch energy PSRR (7) 2.5 or 3.0 DC up to 1 kHz 70 100 kHz 30 VDDA V kΩ dB SNR 1020 Hz 67 dB THD 1020 Hz –63 dB SFDR (1) (2) (3) (4) (5) (6) (7) 1020 Hz, including harmonics and spurs 1020 Hz, including only spurs 66 104 dBc Typical values are measured with VREFHI = 3.3 V and VREFLO = 0 V unless otherwise noted. Minimum and Maximum values are tested or characterized with VREFHI = 2.5 V and VREFLO = 0 V. Gain error is calculated for linear output range. The DAC output is monotonic. This is the linear output range of the DAC. The DAC can generate voltages outside this range, but the output voltage will not be linear due to the buffer. For best PSRR performance, VDAC or VREFHI should be less than VDDA. Per active Buffered DAC module. VREFHI = 3.2 V, VDDA = 3.3 V DC + 100 mV Sine. NOTE The VDAC pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If the VDAC pin exceeds this level, a blocking circuit may activate, and the internal value of VDAC may float to 0 V internally, giving improper DAC output. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 115 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Offset Error Code 2048 Figure 5-43. Buffered DAC Offset Actual Gain Ideal Gain Code 3722 Code 373 Linear Range (3.3-V Reference) Figure 5-44. Buffered DAC Gain 116 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Linearity Error Code 3722 Code 373 Linear Range (3.3-V Reference) Figure 5-45. Buffered DAC Linearity Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 117 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.9 www.ti.com Control Peripherals NOTE For the actual number of each peripheral on a specific device, see Table 3-1. 5.9.1 Enhanced Capture (eCAP) The eCAP module can be used in systems where accurate timing of external events is important. Applications for eCAP include: • Speed measurements of rotating machinery (for example, toothed sprockets sensed through Hall sensors) • Elapsed time measurements between position sensor pulses • Period and duty cycle measurements of pulse train signals • Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors The eCAP module includes the following features: • 4-event time-stamp registers (each 32 bits) • Edge-polarity selection for up to four sequenced time-stamp capture events • Interrupt on either of the four events • Single shot capture of up to four event timestamps • Continuous mode capture of timestamps in a four-deep circular buffer • Absolute time-stamp capture • Difference (Delta) mode time-stamp capture • All of the above resources dedicated to a single input pin • When not used in capture mode, the eCAP module can be configured as a single-channel PWM output (APWM). The eCAP inputs connect to any GPIO input through the Input X-BAR. The APWM outputs connect to GPIO pins through the Output X-BAR to OUTPUTx positions in the GPIO mux. See Section 4.5.2 and Section 4.5.3. Figure 5-46 shows the block diagram of an eCAP module. 118 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 SYNC www.ti.com SYNCIn CTRPHS (phase register−32 bit) SYNCOut TSCTR (counter−32 bit) APWM mode OVF RST CTR_OVF Delta−mode CTR [0−31] PRD [0−31] CMP [0−31] PWM compare logic 32 CTR=PRD CTR [0−31] CTR=CMP 32 32 CAP1 (APRD active) APRD shadow 32 LD LD1 MODE SELECT PRD [0−31] Polarity select 32 CMP [0−31] 32 CAP2 (ACMP active) 32 LD LD2 Polarity select Event qualifier ACMP shadow 32 CAP3 (APRD shadow) LD 32 CAP4 (ACMP shadow) LD eCAPx Event Prescale Polarity select LD3 LD4 Polarity select 4 Capture events 4 CEVT[1:4] to PIE Interrupt Trigger and Flag control CTR_OVF Continuous / Oneshot Capture Control CTR=PRD CTR=CMP Copyright © 2016, Texas Instruments Incorporated Figure 5-46. eCAP Block Diagram The eCAP module is clocked by PERx.SYSCLK. The clock enable bits (ECAP1–ECAP6) in the PCLKCR3 register turn off the eCAP module individually (for low-power operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock is off. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 119 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.9.1.1 www.ti.com eCAP Electrical Data and Timing Table 5-57 shows the eCAP timing requirement and Table 5-58 shows the eCAP switching characteristics. Table 5-57. eCAP Timing Requirement (1) MIN Asynchronous tw(CAP) Capture input pulse width Synchronous With input qualifier (1) MAX UNIT 2tc(SYSCLK) cycles 2tc(SYSCLK) cycles 1tc(SYSCLK) + tw(IQSW) cycles For an explanation of the input qualifier parameters, see Table 5-26. Table 5-58. eCAP Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER tw(APWM) 120 Pulse duration, APWMx output high/low Specifications MIN MAX 20 UNIT ns Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.9.2 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Enhanced Pulse Width Modulator (ePWM) The ePWM peripheral is a key element in controlling many of the power electronic systems found in both commercial and industrial equipment. The ePWM type-4 module is able to generate complex pulse width waveforms with minimal CPU overhead by building the peripheral up from smaller modules with separate resources that can operate together to form a system. Some of the highlights of the ePWM type-4 module include complex waveform generation, dead-band generation, a flexible synchronization scheme, advanced trip-zone functionality, and global register reload capabilities. Figure 5-47 shows the signal interconnections with the ePWM. Figure 5-48 shows the ePWM trip input connectivity. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 121 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com TBCTL2[SYNCOSELX] Time-Base (TB) Disable CTR=CPMC CTR=CPMD Rsvd TBPRD Shadow (24) TBPRDHR (8) TBPRD Active (24) 8 CTR=PRD 00 01 10 11 CTR=ZERO CTR=CMPB TBCTL[SWFSYNC] Sync Out Select EPWMxSYNCO EPWMxSYNCI TBCTL[PHSEN] TBCTL[SYNCOSEL] Counter Up/Down (16 Bit) (A) DCAEVT1.sync (A) DCBEVT1.sync CTR=ZERO TBCTR Active (16) CTR_Dir CTR=PRD TBPHSHR (8) 16 8 TBPHS Active (24) EPWMxINT CTR=ZERO CTR=PRD or ZERO Phase Control CTR=CMPA CTR=CMPB CTR=CMPC CTR=CMPD Counter Compare (CC) CTR=CMPA Event Trigger and Interrupt (ET) EPWMxSOCA EPWMxSOCB ADCSOCOUTSEL CTR_Dir Action Qualifier (AQ) DCAEVT1.soc DCBEVT1.soc CMPAHR (8) Select and pulse stretch for external ADC (A) (A) EPWMSOCAO EPWMSOCBO 16 CMPA Active (24) CMPA Shadow (24) ePWMxA EPWMA Dead Band (DB) CMPBHR (8) 16 HiRes PWM (HRPWM) CMPAHR (8) CTR=CMPB On-chip ADC PWM Chopper (PC) Trip Zone (TZ) ePWMxB EPWMB CMPB Active (24) CMPB Shadow (24) CMPBHR (8) EPWMxTZINT TBCNT(16) CTR=CMPC CMPC[15-0] 16 CMPC Active (16) CMPC Shadow (16) TZ1 to TZ3 CTR=ZERO DCAEVT1.inter DCBEVT1.inter DCAEVT2.inter DCBEVT2.inter EMUSTOP CLOCKFAIL EQEPxERR DCAEVT1.force DCAEVT2.force DCBEVT1.force DCBEVT2.force TBCNT(16) (A) (A) (A) (A) CTR=CMPD CMPD[15-0] 16 CMPD Active (16) CMPD Shadow (16) Copyright © 2016, Texas Instruments Incorporated A. These events are generated by the ePWM digital compare (DC) submodule based on the levels of the TRIPIN inputs. Figure 5-47. ePWM Submodules and Critical Internal Signal Interconnects 122 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 PIE(s), CLA(s) XINT5 XINT4 INPUT14 INPUT13 Input X-Bar INPUT1 INPUT2 INPUT3 INPUT4 INPUT5 INPUT6 GPIOx Async/ Sync/ Sync+Filter INPUT7 INPUT8 INPUT9 INPUT10 INPUT11 INPUT12 GPIO0 eCAP6 eCAP5 PIE(s), CLA(s) XINT1 eCAP4 XINT2 eCAP3 XINT3 eCAP2 eCAP1 ADC EXTSYNCIN1 Wrapper(s) TZ1 TZ2 TZ3 TRIP1 TRIP2 TRIP3 TRIP6 ePWM X-Bar Reserved ECCERR CPU1.PIEVECTERROR CPU2.PIEVECTERROR CPU1.EMUSTOP CPU2.EMUSTOP ePWM and eCAP Sync Chain EXTSYNCIN2 EQEPERR CLKFAIL EPWMn.EMUSTOP TRIP4 TRIP5 TRIP7 TRIP8 TRIP9 TRIP10 TRIP11 TRIP12 TRIP13 TRIP14 TRIP15 TZ4 TZ5 TZ6 EPWMINT TZINT PIE(s), CLA(s) EPWMx.EPWMCLK EPWMENCLK TBCLKSYNC ADCSOCAO Select Ckt ADCSOCBO Select Ckt All ePWM Modules SOCA ADC Wrapper(s) SOCB PWM11.CMPC PWM11.CMPD Filter-Reset SD1 FLT1 FLT1 FLT1 FLT1 Filter-Reset Filter-Reset FLT1 FLT1 FLT1 FLT1 PWM12.CMPC PWM12.CMPD Filter-Reset CPUSEL0.EPWMx SD2 Copyright © 2016, Texas Instruments Incorporated Figure 5-48. ePWM Trip Input Connectivity Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 123 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.9.2.1 www.ti.com Control Peripherals Synchronization The ePWM and eCAP synchronization chain on the device provides flexibility in partitioning the ePWM and eCAP modules between CPU1 and CPU2 and allows localized synchronization within the modules belonging to the same CPU. Like the other peripherals, the partitioning of the ePWM and eCAP modules needs to be done using the CPUSELx registers. Figure 5-49 shows the synchronization chain architecture. EXTSYNCIN1 EXTSYNCIN2 EPWM1 EPWM1SYNCOUT EPWM2 EPWM4 EPWM3 EXTSYNCOUT EPWM4SYNCOUT Pulse-Stretched (8 PLLSYSCLK Cycles) EPWM5 SYNCSEL.EPWM4SYNCIN EPWM6 EPWM7 EPWM7SYNCOUT EPWM8 SYNCSEL.EPWM7SYNCIN EPWM9 EPWM10 EPWM10SYNCOUT EPWM11 SYNCSEL.EPWM10SYNCIN EPWM12 ECAP1 ECAP1SYNCOUT SYNCSEL.SYNCOUT SYNCSEL.ECAP1SYNCIN ECAP2 ECAP3 SYNCSEL.ECAP4SYNCIN ECAP4 ECAP5 ECAP6 Figure 5-49. Synchronization Chain Architecture 124 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.9.2.2 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 ePWM Electrical Data and Timing Table 5-59 shows the PWM timing requirements and Table 5-60 shows the PWM switching characteristics. Table 5-59. ePWM Timing Requirements (1) MIN Asynchronous tw(SYNCIN) Sync input pulse width (1) UNIT cycles 2tc(EPWMCLK) cycles 1tc(EPWMCLK) + tw(IQSW) cycles Synchronous With input qualifier MAX 2tc(EPWMCLK) For an explanation of the input qualifier parameters, see Table 5-26. Table 5-60. ePWM Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER tw(PWM) Pulse duration, PWMx output high/low tw(SYNCOUT) Sync output pulse width td(TZ-PWM) Delay time, trip input active to PWM forced high Delay time, trip input active to PWM forced low Delay time, trip input active to PWM Hi-Z MIN MAX UNIT 20 ns 8tc(SYSCLK) cycles 25 ns 5.9.2.2.1 Trip-Zone Input Timing Table 5-61 shows the trip-zone input timing requirements. Figure 5-50 shows the PWM Hi-Z characteristics. Table 5-61. Trip-Zone Input Timing Requirements (1) MIN tw(TZ) Pulse duration, TZx input low UNIT Asynchronous 1tc(EPWMCLK) cycles Synchronous 2tc(EPWMCLK) cycles 1tc(EPWMCLK) + tw(IQSW) cycles With input qualifier (1) MAX For an explanation of the input qualifier parameters, see Table 5-26. EPWMCLK tw(TZ) (A) TZ td(TZ-PWM) (B) PWM A. B. TZ: TZ1, TZ2, TZ3, TRIP1–TRIP12 PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software. Figure 5-50. PWM Hi-Z Characteristics Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 125 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.9.2.3 www.ti.com External ADC Start-of-Conversion Electrical Data and Timing Table 5-62 shows the external ADC start-of-conversion switching characteristics. Figure 5-51 shows the ADCSOCAO or ADCSOCBO timing. Table 5-62. External ADC Start-of-Conversion Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER tw(ADCSOCL) MIN Pulse duration, ADCSOCxO low MAX 32tc(SYSCLK) UNIT cycles tw(ADCSOCL) ADCSOCAO or ADCSOCBO Figure 5-51. ADCSOCAO or ADCSOCBO Timing 126 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.9.3 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Enhanced Quadrature Encoder Pulse (eQEP) The eQEP module interfaces directly with linear or rotary incremental encoders to obtain position, direction, and speed information from rotating machines used in high-performance motion and positioncontrol systems. Each eQEP peripheral comprises five major functional blocks: • Quadrature Capture Unit (QCAP) • Position Counter/Control Unit (PCCU) • Quadrature Decoder Unit (QDU) • Unit Time Base for speed and frequency measurement (UTIME) • Watchdog timer for detecting stalls (QWDOG) The eQEP peripherals are clocked by PERx.SYSCLK. Figure 5-52 shows the eQEP block diagram. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 127 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com System Control Registers To CPU EQEPxENCLK Data Bus SYSCLK QCPRD QCAPCTL QCTMR 16 16 16 Quadrature Capture Unit (QCAP) QCTMRLAT QCPRDLAT Registers Used by Multiple Units QUTMR QWDTMR QUPRD QWDPRD 32 16 QEPCTL QEPSTS UTIME QFLG UTOUT QWDOG QDECCTL 16 WDTOUT PIE EQEPxAIN QCLK EQEPxINT 16 QPOSLAT EQEPxIIN QI Position Counter/ Control Unit (PCCU) QS Quadrature Decoder PHE (QDU) PCSOUT QPOSSLAT QPOSILAT QPOSCNT QPOSINIT QPOSMAX 32 QPOSCMP EQEPxB/XDIR EQEPxIOUT EQEPxIOE GPIO MUX EQEPxI EQEPxSIN EQEPxSOUT EQEPxSOE 32 EQEPxA/XCLK EQEPxBIN QDIR EQEPxS 16 QEINT QFRC QCLR QPOSCTL eQEP Peripheral Copyright © 2016, Texas Instruments Incorporated Figure 5-52. eQEP Block Diagram 128 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.9.3.1 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 eQEP Electrical Data and Timing Table 5-63 lists the eQEP timing requirement and Table 5-64 lists the eQEP switching characteristics. Table 5-63. eQEP Timing Requirements (1) MIN tw(QEPP) Synchronous QEP input period tw(INDEXH) With input qualifier QEP Index Input High time tw(INDEXL) QEP Index Input Low time cycles 2tc(SYSCLK) cycles 2tc(SYSCLK) + tw(IQSW) cycles 2tc(SYSCLK) cycles 2tc(SYSCLK) + tw(IQSW) cycles 2tc(SYSCLK) cycles 2tc(SYSCLK) + tw(IQSW) cycles 2tc(SYSCLK) cycles 2tc(SYSCLK) + tw(IQSW) cycles Synchronous tw(STROBH) QEP Strobe High time tw(STROBL) QEP Strobe Input Low time (1) 2[1tc(SYSCLK) + tw(IQSW)] Synchronous With input qualifier With input qualifier Synchronous With input qualifier UNIT cycles Synchronous With input qualifier MAX 2tc(SYSCLK) For an explanation of the input qualifier parameters, see Table 5-26. Table 5-64. eQEP Switching Characteristics over recommended operating conditions (unless otherwise noted) MAX UNIT td(CNTR)xin Delay time, external clock to counter increment PARAMETER MIN 4tc(SYSCLK) cycles td(PCS-OUT)QEP Delay time, QEP input edge to position compare sync output 6tc(SYSCLK) cycles Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 129 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.9.4 www.ti.com High-Resolution Pulse Width Modulator (HRPWM) The HRPWM combines multiple delay lines in a single module and a simplified calibration system by using a dedicated calibration delay line. For each ePWM module, there are two HR outputs: • HR Duty and Deadband control on Channel A • HR Duty and Deadband control on Channel B The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are: • Significantly extends the time resolution capabilities of conventionally derived digital PWM • This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual edge control for frequency/period modulation. • Finer time granularity control or edge positioning is controlled through extensions to the Compare A, B, phase, period and deadband registers of the ePWM module. NOTE The minimum HRPWMCLK frequency allowed for HRPWM is 60 MHz. 5.9.4.1 HRPWM Electrical Data and Timing Table 5-65 lists the high-resolution PWM switching characteristics. Table 5-65. High-Resolution PWM Characteristics PARAMETER Micro Edge Positioning (MEP) step size (1) (1) 130 MIN TYP MAX UNIT 150 310 ps Maximum MEP step size is based on worst-case process, maximum temperature and minimum voltage. MEP step size will increase with low voltage and high temperature and decrease with voltage and cold temperature. Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per SYSCLK period dynamically while the HRPWM is in operation. Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.9.5 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Sigma-Delta Filter Module (SDFM) The SDFM is a four-channel digital filter designed specifically for current measurement and resolver position decoding in motor control applications. Each channel can receive an independent sigma-delta (ΣΔ) modulated bit stream. The bit streams are processed by four individually programmable digital decimation filters. The filter set includes a fast comparator for immediate digital threshold comparisons for overcurrent and undercurrent monitoring. Figure 5-53 shows a block diagram of the SDFMs. SDFM features include: • Eight external pins per SDFM module: – Four sigma-delta data input pins per SDFM module (SDx_Dy, where x = 1 to 2 and y = 1 to 4) – Four sigma-delta clock input pins per SDFM module (SDx_Cy, where x = 1 to 2 and y = 1 to 4) • Four different configurable modulator clock modes: – Modulator clock rate equals modulator data rate – Modulator clock rate running at half the modulator data rate – Modulator data is Manchester encoded. Modulator clock not required. – Modulator clock rate is double that of modulator data rate • Four independent configurable comparator units: – Four different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available – Ability to detect over-value and under-value conditions – Comparator Over-Sampling Ratio (COSR) value for comparator programmable from 1 to 32 • Four independent configurable data filter units: – Four different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available – Data filter Over-Sampling Ratio (DOSR) value for data filter unit programmable from 1 to 256 – Ability to enable or disable individual filter module – Ability to synchronize all four independent filters of a SDFM module using the Master Filter Enable (MFE) bit or the PWM signals. • Filter data can be 16-bit or 32-bit representation • PWMs can be used to generate modulator clock for sigma-delta modulators Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 131 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com SDFM- Sigma Delta Filter Module G4 Streams Filter Channel 1 R Comparator filter SD1_D1 Input Ctrl SD1_C1 Data filter SD1INT IEL IEH Interrupt Unit SD2INT PIE R FILRES PWM11.CMPC Filter Channel 2 SD1_D2 SD1_C2 FILRES SD1_D3 Filter Channel 3 Register Map Data bus SD1_C3 FILRES PWM11.CMPD SD1_D4 SD1_C4 Filter Channel 4 SD1FLT1.IEH SD1FLT1.IEL SD1FLT2.IEH SD1FLT2.IEL FILRES GPIO MUX SDFM- Sigma Delta Filter Module G4 Streams Output XBar Filter Channel 1 R Comparator filter SD2_D1 SD2_C1 SD1FLT3.IEH SD1FLT3.IEL SD1FLT4.IEH SD1FLT4.IEL Input Ctrl Data filter Data filter IEL IEH SD2FLT1.IEH SD2FLT1.IEL SD2FLT2.IEH SD2FLT2.IEL Interrupt Unit R FILRES SD2FLT3.IEH SD2FLT3.IEL SD2FLT4.IEH SD2FLT4.IEL PWM12.CMPC SD2_D2 SD2_C2 Filter Channel 2 FILRES SD2_D3 SD2_C3 Filter Channel 3 PWM12.CMPD Register Map Data bus FILRES SD2_D4 SD2_C4 Filter Channel 4 FILRES Figure 5-53. SDFM Block Diagram 132 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 5.9.5.1 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 SDFM Electrical Data and Timing Table 5-66 shows the SDFM timing requirements. Figure 5-54 through Figure 5-57 show the SDFM timing diagrams. Table 5-66. SDFM Timing Requirements MIN MAX UNIT Mode 0 tc(SDC)M0 Cycle time, SDx_Cy 40 256 * SYSCLK period ns tw(SDCH)M0 Pulse duration, SDx_Cy high 10 tc(SDC)M0 – 10 ns tsu(SDDV-SDCH)M0 Setup time, SDx_Dy valid before SDx_Cy goes high 5 ns th(SDCH-SDD)M0 Hold time, SDx_Dy wait after SDx_Cy goes high 5 ns Mode 1 tc(SDC)M1 Cycle time, SDx_Cy 80 256 * SYSCLK period ns tw(SDCH)M1 Pulse duration, SDx_Cy high 10 tc(SDC)M1 – 10 ns tsu(SDDV-SDCL)M1 Setup time, SDx_Dy valid before SDx_Cy goes low 5 ns tsu(SDDV-SDCH)M1 Setup time, SDx_Dy valid before SDx_Cy goes high 5 ns th(SDCL-SDD)M1 Hold time, SDx_Dy wait after SDx_Cy goes low 5 ns th(SDCH-SDD)M1 Hold time, SDx_Dy wait after SDx_Cy goes high 5 ns Mode 2 tc(SDD)M2 Cycle time, SDx_Dy tw(SDDH)M2 Pulse duration, SDx_Dy high 8 * tc(SYSCLK) 20 * tc(SYSCLK) 10 ns ns Mode 3 tc(SDC)M3 Cycle time, SDx_Cy 40 256 * SYSCLK period ns tw(SDCH)M3 Pulse duration, SDx_Cy high 10 tc(SDC)M3 – 5 ns tsu(SDDV-SDCH)M3 Setup time, SDx_Dy valid before SDx_Cy goes high 5 ns th(SDCH-SDD)M3 Hold time, SDx_Dy wait after SDx_Cy goes high 5 ns Mode 0 tw(SDCH)M0 tc(SDC)M0 SDx_Cy tsu(SDDV-SDCH)M0 th(SDCH-SDD)M0 SDx_Dy Figure 5-54. SDFM Timing Diagram – Mode 0 Mode 1 tw(SDCH)M1 tc(SDC)M1 SDx_Cy tsu(SDDV-SDCL)M1 tsu(SDDV-SDCH)M1 SDx_Dy th(SDCL-SDD)M1 th(SDCH-SDD)M1 Figure 5-55. SDFM Timing Diagram – Mode 1 Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 133 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Mode 2 (Manchester-encoded bit stream) tc(SDD)M2 Modulator internal clock tw(SDDH)M2 Modulator internal data 1 0 1 1 1 0 0 1 1 SDx-Dy Figure 5-56. SDFM Timing Diagram – Mode 2 Mode 3 (CLKx is driven externally) tc(SDC)M3 tw(SDCH)M3 SDx_Cy tsu(SDDV-SDCH)M3 th(SDCH-SDD)M3 SDx_Dy Figure 5-57. SDFM Timing Diagram – Mode 3 134 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.10 Communications Peripherals NOTE For the actual number of each peripheral on a specific device, see Table 3-1. 5.10.1 Controller Area Network (CAN) NOTE The CAN module uses the IP known as D_CAN. This document uses the names CAN and D_CAN interchangeably to reference this peripheral. The CAN module implements the following features: • Complies with ISO11898-1 ( Bosch® CAN protocol specification 2.0 A and B) • Bit rates up to 1 Mbps • Multiple clock sources • 32 message objects, each with the following properties: – Configurable as receive or transmit – Configurable with standard or extended identifier – Programmable receive and identifier masks for each object – Supports data and remote frames – Holds 0 to 8 bytes of data – Parity-checked configuration and data RAM • Individual identifier mask for each message object • Programmable FIFO mode for receive message objects • Programmable loop-back modes for self-test operation • Suspend mode for debug support • Software module reset • Automatic bus on after Bus-Off state by a programmable 32-bit timer • Message RAM parity check mechanism • Two interrupt lines • Global power down and wakeup support NOTE For a CANx Bit-CLK of 200 MHz, the smallest bit rate possible is 7.8125 kbps. NOTE The accuracy of the on-chip zero-pin oscillator is in Table 5-18, Internal Oscillator Electrical Characteristics. Depending on parameters such as the CAN bit timing settings, bit rate, bus length, and propagation delay, the accuracy of this oscillator may not meet the requirements of the CAN protocol. In this situation, an external clock source must be used. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 135 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 5.10.2 Inter-Integrated Circuit (I2C) The I2C module has the following features: • Compliance with the Philips Semiconductors I2C-bus specification (version 2.1): – Support for 1-bit to 8-bit format transfers – 7-bit and 10-bit addressing modes – General call – START byte mode – Support for multiple master-transmitters and slave-receivers – Support for multiple slave-transmitters and master-receivers – Combined master transmit/receive and receive/transmit mode – Data transfer rate of from 10 kbps up to 400 kbps (I2C Fast-mode rate) • One 16-byte receive FIFO and one 16-byte transmit FIFO • One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the following conditions: – Transmit-data ready – Receive-data ready – Register-access ready – No-acknowledgment received – Arbitration lost – Stop condition detected – Addressed as slave • An additional interrupt that can be used by the CPU when in FIFO mode • Module enable/disable capability • Free data format mode 136 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Figure 5-58 shows how the I2C peripheral module interfaces within the device. 2 I C Module I2CXSR I2CDXR TX FIFO FIFO Interrupt to CPU/PIE SDA RX FIFO Peripheral Bus I2CRSR SCL Clock Synchronizer I2CDRR Control/Status Registers CPU Prescaler Noise Filters I2C INT Interrupt to CPU/PIE Arbitrator Figure 5-58. I2C Peripheral Module Interfaces Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 137 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 5.10.2.1 I2C Electrical Data and Timing Table 5-67 shows the I2C timing requirements. Table 5-68 shows the I2C switching characteristics. Table 5-67. I2C Timing Requirements MIN MAX UNIT th(SDA-SCL)START Hold time, START condition, SCL fall delay after SDA fall 0.6 µs tsu(SCL-SDA)START Setup time, Repeated START, SCL rise before SDA fall delay 0.6 µs th(SCL-DAT) Hold time, data after SCL fall 0 µs tsu(DAT-SCL) Setup time, data before SCL rise tr(SDA) Rise time, SDA Input tolerance 20 300 ns tr(SCL) Rise time, SCL Input tolerance 20 300 ns tf(SDA) Fall time, SDA Input tolerance 11.4 300 ns tf(SCL) Fall time, SCL Input tolerance 11.4 300 ns tsu(SCL-SDA)STOP Setup time, STOP condition, SCL rise before SDA rise delay 100 ns 0.6 µs Table 5-68. I2C Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN MAX UNIT 0 400 kHz fSCL SCL clock frequency tw(SCLL) Pulse duration, SCL clock low 1.3 µs tw(SCLH) Pulse duration, SCL clock high 0.6 µs tw(SP) Pulse duration of spikes that will be suppressed by the input filter tBUF Bus free time between STOP and START conditions tv(SCL-DAT) Valid time, data after SCL fall 0.9 µs tv(SCL-ACK) Valid time, Acknowledge after SCL fall 0.9 µs VIL Valid low-level input voltage VIH Valid high-level input voltage VOL Low-level output voltage Sinking 3 mA II Input current on pins 0.1 Vbus < Vi < 0.9 Vbus 138 Specifications 0 50 1.3 ns µs –0.3 0.3 * VDDIO V 0.7 * VDDIO VDDIO + 0.3 V 0 0.4 V –10 10 µA Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.10.3 Multichannel Buffered Serial Port (McBSP) The McBSP module has the following features: • Compatible with McBSP in TMS320C28x and TMS320F28x DSP devices • Full-duplex communication • Double-buffered data registers that allow a continuous data stream • Independent framing and clocking for receive and transmit • External shift clock generation or an internal programmable frequency shift clock • 8-bit data transfer mode can be configured to transmit with LSB or MSB first • Programmable polarity for both frame synchronization and data clocks • Highly programmable internal clock and frame generation • Direct interface to industry-standard CODECs, Analog Interface Chips (AICs), and other serially connected A/D and D/A devices • Supports AC97, I2S, and SPI protocols • McBSP clock rate, CLKG = CLKSRG (1 + CLKGDV ) where CLKSRG source could be LSPCLK, CLKX, or CLKR. Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 139 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Figure 5-59 shows the block diagram of the McBSP module. TX Interrupt MXINT Peripheral Write Bus TX Interrupt Logic To CPU 16 16 DXR2 Transmit Buffer DXR1 Transmit Buffer McBSP Transmit Interrupt Select Logic PERx.LSPCLK DMA Bus Bridge CPU Peripheral Bus 16 CPU 16 MFSXx Compand Logic MCLKXx XSR2 XSR1 RSR2 RSR1 16 16 Expand Logic RBR2 Register RBR1 Register 16 16 MDXx MDRx MCLKRx MFSRx McBSP Receive Interrupt Select Logic MRINT To CPU RX Interrupt Logic RX Interrupt DRR2 Receive Buffer DRR1 Receive Buffer 16 16 Peripheral Read Bus CPU Figure 5-59. McBSP Block Diagram 140 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.10.3.1 McBSP Electrical Data and Timing 5.10.3.1.1 McBSP Transmit and Receive Timing Table 5-69 shows the McBSP timing requirements. Table 5-70 shows the McBSP switching characteristics. Figure 5-60 and Figure 5-61 show the McBSP timing diagrams. Table 5-69. McBSP Timing Requirements (1) (2) NO. MIN McBSP module cycle time (CLKG, CLKX, CLKR) range (2) UNIT 25 MHz 1 McBSP module clock (CLKG, CLKX, CLKR) range (1) MAX kHz 40 ns 1 ms M11 tc(CKRX) Cycle time, CLKR/X CLKR/X ext 2P ns M12 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X ext P–7 ns M13 tr(CKRX) Rise time, CLKR/X CLKR/X ext 7 ns M14 tf(CKRX) Fall time, CLKR/X CLKR/X ext 7 ns M15 tsu(FRH-CKRL) Setup time, external FSR high before CLKR low M16 th(CKRL-FRH) Hold time, external FSR high after CLKR low M17 tsu(DRV-CKRL) Setup time, DR valid before CLKR low M18 th(CKRL-DRV) Hold time, DR valid after CLKR low M19 tsu(FXH-CKXL) Setup time, external FSX high before CLKX low M20 th(CKXL-FXH) Hold time, external FSX high after CLKX low CLKR int 18 CLKR ext 2 CLKR int 0 CLKR ext 6 CLKR int 18 CLKR ext 5 CLKR int 0 CLKR ext 3 CLKX int 18 CLKX ext 2 CLKX int 0 CLKX ext 6 ns ns ns ns ns ns Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted. 2P = 1/CLKG in ns. CLKG is the output of sample rate generator mux. CLKG = CLKSRG / (1 + CLKGDV). CLKSRG can be LSPCLK, CLKX, CLKR as source. CLKSRG ≤ (SYSCLK/2). Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 141 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 5-70. McBSP Switching Characteristics (1) (2) over recommended operating conditions (unless otherwise noted) NO. M1 PARAMETER tc(CKRX) MIN Cycle time, CLKR/X CLKR/X int 2P M2 tw(CKRXH) Pulse duration, CLKR/X high CLKR/X int D–5 (3) M3 tw(CKRXL) Pulse duration, CLKR/X low CLKR/X int C–5 (3) MAX ns D+5 (3) ns C+5 (3) ns CLKR int 0 4 CLKR ext 3 27 CLKX int 0 4 CLKX ext 3 27 M4 td(CKRH-FRV) Delay time, CLKR high to internal FSR valid M5 td(CKXH-FXV) Delay time, CLKX high to internal FSX valid M6 tdis(CKXH-DXHZ) Disable time, CLKX high to DX high impedance following last data bit CLKX int 8 CLKX ext 14 Delay time, CLKX high to DX valid. CLKX int 9 This applies to all bits except the first bit transmitted. CLKX ext 28 M7 M8 M9 M10 (1) (2) (3) 142 td(CKXH-DXV) ten(CKXH-DX) td(FXH-DXV) ten(FXH-DX) Delay time, CLKX high to DX DXENA = 0 valid CLKX int 8 CLKX ext 14 Only applies to first bit transmitted when in Data DXENA = 1 Delay 1 or 2 (XDATDLY=01b or 10b) modes CLKX int P+8 CLKX ext P + 14 Enable time, CLKX high to DX driven CLKX int DXENA = 0 CLKX ext 6 CLKX int P CLKX ext P+6 Delay time, FSX high to DX valid DXENA = 0 FSX int 8 FSX ext 14 Only applies to first bit transmitted when in Data Delay 0 (XDATDLY=00b) mode. FSX int P+8 DXENA = 1 FSX ext P + 14 Enable time, FSX high to DX driven DXENA = 0 Only applies to first bit transmitted when in Data Delay 0 (XDATDLY=00b) mode DXENA = 1 ns ns ns ns 0 Only applies to first bit transmitted when in Data DXENA = 1 Delay 1 or 2 (XDATDLY=01b or 10b) modes FSX int UNIT ns ns 0 FSX ext 6 FSX int P FSX ext P+6 ns Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted. 2P = 1/CLKG in ns. C = CLKRX low pulse width = P D = CLKRX high pulse width = P Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 M1, M11 M2, M12 M13 M3, M12 CLKR M4 M4 M14 FSR (int) M15 M16 FSR (ext) M18 M17 DR (RDATDLY=00b) Bit (n−1) (n−2) (n−3) M17 (n−4) M18 DR (RDATDLY=01b) Bit (n−1) (n−2) (n−3) M17 M18 DR (RDATDLY=10b) Bit (n−1) (n−2) Figure 5-60. McBSP Receive Timing M1, M11 M2, M12 M13 M3, M12 CLKX M5 M5 FSX (int) M19 M20 FSX (ext) M9 M7 M10 DX (XDATDLY=00b) Bit 0 Bit (n−1) (n−2) (n−3) M7 M8 DX (XDATDLY=01b) Bit 0 Bit (n−1) M7 M6 DX (XDATDLY=10b) (n−2) M8 Bit 0 Bit (n−1) Figure 5-61. McBSP Transmit Timing Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 143 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 5.10.3.1.2 McBSP as SPI Master or Slave Timing For CLKSTP = 10b and CLKXP = 0, Table 5-71 shows the timing requirements, Table 5-72 shows the switching characteristics, and Figure 5-62 shows the timing diagram. Table 5-71. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0) (1) NO. M30 tsu(DRV-CKXL) Setup time, DR valid before CLKX low M31 th(CKXL-DRV) Hold time, DR valid after CLKX low M32 tsu(BFXL-CKXH) Setup time, FSX low before CLKX high M33 tc(CKX) Cycle time, CLKX (1) MASTER SLAVE MIN MIN MAX MAX UNIT 30 8P – 10 ns 1 8P – 10 ns 8P + 10 ns 16P ns 2P (2) For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV = 1. 2P = 1/CLKG (2) Table 5-72. McBSP as SPI Master or Slave Switching Characteristics Over Recommended Operating Conditions (Unless Otherwise Noted) (CLKSTP = 10b, CLKXP = 0) NO. MASTER PARAMETER MIN SLAVE MAX MIN MAX UNIT M24 th(CKXL-FXL) Hold time, FSX low after CLKX low 2P (1) ns M25 td(FXL-CKXH) Delay time, FSX low to CLKX high P ns M28 tdis(FXH-DXHZ) Disable time, DX high impedance following last data bit from FSX high 6 6P + 6 ns M29 td(FXL-DXV) Delay time, FSX low to DX valid 6 4P + 6 ns (1) 2P = 1/CLKG M32 LSB M33 MSB CLKX M25 M24 FSX M28 DX M29 Bit 0 Bit(n-1) M30 DR Bit 0 (n-2) (n-3) (n-4) M31 Bit(n-1) (n-2) (n-3) (n-4) Figure 5-62. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 144 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 For CLKSTP = 11b and CLKXP = 0, Table 5-73 shows the timing requirements, Table 5-74 shows the switching characteristics, and Figure 5-63 shows the timing diagram. Table 5-73. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0) (1) MASTER NO. MIN M39 tsu(DRV-CKXH) Setup time, DR valid before CLKX high M40 th(CKXH-DRV) Hold time, DR valid after CLKX high M41 tsu(FXL-CKXH) Setup time, FSX low before CLKX high M42 tc(CKX) Cycle time, CLKX (1) (2) SLAVE MAX MIN MAX UNIT 30 8P – 10 ns 1 8P – 10 ns 16P + 10 ns 16P ns 2P (2) For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV = 1. 2P = 1/CLKG Table 5-74. McBSP as SPI Master or Slave Switching Characteristics Over Recommended Operating Conditions (Unless Otherwise Noted) (CLKSTP = 11b, CLKXP = 0) NO. (1) MASTER PARAMETER MIN SLAVE MAX MIN MAX UNIT M34 th(CKXL-FXL) Hold time, FSX low after CLKX low P ns M35 td(FXL-CKXH) Delay time, FSX low to CLKX high 2P (1) ns M37 tdis(CKXL-DXHZ) Disable time, DX high impedance following last data bit from CLKX low P+6 7P + 6 ns M38 td(FXL-DXV) Delay time, FSX low to DX valid 6 4P + 6 ns 2P = 1/CLKG LSB M42 MSB M41 CLKX M34 M35 FSX M37 DX M38 Bit 0 Bit(n-1) M39 DR Bit 0 (n-2) (n-3) (n-4) M40 Bit(n-1) (n-2) (n-3) (n-4) Figure 5-63. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 145 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com For CLKSTP = 10b and CLKXP = 1, Table 5-75 shows the timing requirements, Table 5-76 shows the switching characteristics, and Figure 5-64 shows the timing diagram. Table 5-75. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1) (1) NO. M49 tsu(DRV-CKXH) Setup time, DR valid before CLKX high M50 th(CKXH-DRV) Hold time, DR valid after CLKX high M51 tsu(FXL-CKXL) Setup time, FSX low before CLKX low M52 tc(CKX) Cycle time, CLKX (1) MASTER SLAVE MIN MIN MAX MAX UNIT 30 8P – 10 ns 1 8P – 10 ns 8P + 10 ns 16P ns 2P (2) For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV = 1. 2P = 1/CLKG (2) Table 5-76. McBSP as SPI Master or Slave Switching Characteristics Over Recommended Operating Conditions (Unless Otherwise Noted) (CLKSTP = 10b, CLKXP = 1) NO. PARAMETER SLAVE MIN MIN MAX MAX UNIT 2P (1) ns Delay time, FSX low to CLKX low P ns tdis(FXH-DXHZ) Disable time, DX high impedance following last data bit from FSX high 6 6P + 6 ns td(FXL-DXV) Delay time, FSX low to DX valid 6 4P + 6 ns M43 th(CKXH-FXL) Hold time, FSX low after CLKX high M44 td(FXL-CKXL) M47 M48 (1) MASTER 2P = 1/CLKG M51 LSB M52 MSB CLKX M43 M44 FSX M47 DX M48 Bit 0 Bit(n-1) M49 DR Bit 0 (n-2) (n-3) (n-4) M50 Bit(n-1) (n-2) (n-3) (n-4) Figure 5-64. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 146 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 For CLKSTP = 11b and CLKXP = 1, Table 5-77 shows the timing requirements, Table 5-78 shows the switching characteristics, and Figure 5-65 shows the timing diagram. Table 5-77. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1) (1) MASTER NO. MIN M58 tsu(DRV-CKXL) Setup time, DR valid before CLKX low M59 th(CKXL-DRV) Hold time, DR valid after CLKX low M60 tsu(FXL-CKXL) Setup time, FSX low before CLKX low M61 tc(CKX) Cycle time, CLKX (1) (2) SLAVE MAX MIN MAX UNIT 30 8P – 10 ns 1 8P – 10 ns 16P + 10 ns 16P ns 2P (2) For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV = 1. 2P = 1/CLKG Table 5-78. McBSP as SPI Master or Slave Switching Characteristics Over Recommended Operating Conditions (Unless Otherwise Noted) (CLKSTP = 11b, CLKXP = 1) (1) NO. MASTER (2) PARAMETER MIN M53 th(CKXH-FXL) Hold time, FSX low after CLKX high M54 td(FXL-CKXL) Delay time, FSX low to CLKX low M55 td(CLKXH-DXV) Delay time, CLKX high to DX valid M56 tdis(CKXH-DXHZ) Disable time, DX high impedance following last data bit from CLKX high M57 td(FXL-DXV) Delay time, FSX low to DX valid (1) (2) SLAVE MAX MIN MAX UNIT P ns 2P (1) ns –2 0 3P + 6 5P + 20 ns P+6 7P + 6 ns 6 4P + 6 ns 2P = 1/CLKG C = CLKX low pulse width = P D = CLKX high pulse width = P M60 LSB M61 MSB CLKX M53 M54 FSX M56 DX M55 M57 Bit 0 Bit(n-1) M58 DR Bit 0 (n-2) (n-3) (n-4) M59 Bit(n-1) (n-2) (n-3) (n-4) Figure 5-65. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 147 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 5.10.4 Serial Communications Interface (SCI) The SCI is a 2-wire asynchronous serial port, commonly known as a UART. The SCI module supports digital communications between the CPU and other asynchronous peripherals that use the standard nonreturn-to-zero (NRZ) format The SCI receiver and transmitter each have a 16-level-deep FIFO for reducing servicing overhead, and each has its own separate enable and interrupt bits. Both can be operated independently for half-duplex communication, or simultaneously for full-duplex communication. To specify data integrity, the SCI checks received data for break detection, parity, overrun, and framing errors. The bit rate is programmable to different speeds through a 16-bit baud-select register. Figure 5-66 shows the SCI block diagram. Features of the SCI module include: • Two external pins: – SCITXD: SCI transmit-output pin – SCIRXD: SCI receive-input pin NOTE: Both pins can be used as GPIO if not used for SCI. – Baud rate programmable to 64K different rates • Data-word format – One start bit – Data-word length programmable from 1 to 8 bits – Optional even/odd/no parity bit – 1 or 2 stop bits • Four error-detection flags: parity, overrun, framing, and break detection • Two wakeup multiprocessor modes: idle-line and address bit • Half- or full-duplex operation • Double-buffered receive and transmit functions • Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with status flags. – Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY flag (transmitter-shift register is empty) – Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break condition occurred), and RX ERROR flag (monitoring four interrupt conditions) • Separate enable bits for transmitter and receiver interrupts (except BRKDT) • NRZ format • Auto baud-detect hardware logic • 16-level transmit and receive FIFO NOTE All registers in this module are 8-bit registers. When a register is accessed, the register data is in the lower byte (bits 7–0), and the upper byte (bits 15–8) is read as zeros. Writing to the upper byte has no effect. 148 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 SCICTL1.1 Frame Format and Mode SCITXD TXSHF Register Parity Even/Odd TXENA Enable TX EMPTY SCICTL2.6 8 SCICCR.6 SCICCR.5 SCITXD TXRDY Transmitter-Data Buffer Register TX INT ENA SCICTL2.7 SCICTL2.0 TXWAKE 8 SCICTL1.3 TX FIFO _0 1 TX FIFO Interrupt TX FIFO _1 −−−−− TX Interrupt Logic TXINT To CPU TX FIFO _15 WUT SCI TX Interrupt select logic SCITXBUF.7−0 TX FIFO registers SCIFFENA Auto baud detect logic SCIFFTX.14 SCIHBAUD. 15 − 8 SCIRXD RXSHF Baud Rate MSbyte Register SCIRXD Register RXWAKE LSPCLK SCIRXST.1 SCILBAUD. 7 − 0 RXENA Baud Rate LSbyte Register 8 SCICTL1.0 SCICTL2.1 Receive Data Buffer register RXRDY RX/BK INT ENA SCIRXST.6 SCIRXBUF.7−0 8 RX FIFO _15 −−−−− BRKDT SCIRXST.5 RX FIFO_1 RX FIFO _0 SCIRXBUF.7−0 RX FIFO Interrupt RX Interrupt Logic RXINT To CPU RX FIFO registers SCIRXST.7 RXFFOVF SCIRXST.4 – 2 SCIFFRX.15 RX Error FE OE PE RX Error RX ERR INT ENA SCICTL1.6 SCI RX Interrupt select logic Figure 5-66. SCI Block Diagram Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 149 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com The major elements used in full-duplex operation include: • A transmitter (TX) and its major registers: – SCITXBUF register – Transmitter Data Buffer register. Contains data (loaded by the CPU) to be transmitted – TXSHF register – Transmitter Shift register. Accepts data from the SCITXBUF register and shifts data onto the SCITXD pin, 1 bit at a time • A receiver (RX) and its major registers: – RXSHF register – Receiver Shift register. Shifts data in from the SCIRXD pin, 1 bit at a time – SCIRXBUF register – Receiver Data Buffer register. Contains data to be read by the CPU. Data from a remote processor is loaded into the RXSHF register and then into the SCIRXBUF and SCIRXEMU registers • A programmable baud generator • Data-memory-mapped control and status registers enable the CPU to access the I2C module registers and FIFOs. The SCI receiver and transmitter operate independently. 150 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.10.5 Serial Peripheral Interface (SPI) The SPI is a high-speed synchronous serial input/output (I/O) port that allows a serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate. The SPI is normally used for communications between the microcontroller and external peripherals or another controller. Typical applications include external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs. Multidevice communications are supported by the master/slave operation of the SPI. The port supports 16-level receive and transmit FIFOs for reducing CPU servicing overhead. The SPI module features include: • SPISOMI: SPI slave-output/master-input pin • SPISIMO: SPI slave-input/master-output pin • SPISTE: SPI slave transmit-enable pin • SPICLK: SPI serial-clock pin • Two operational modes: master and slave • Baud rate: 125 different programmable rates • Data word length: 1 to 16 data bits • Four clocking schemes (controlled by clock polarity and clock phase bits) include: – Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal. – Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal. – Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal. – Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal. • Simultaneous receive-and-transmit operation (transmit function can be disabled in software) • Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms. • 16-level transmit and receive FIFO • Delayed transmit control • 3-wire SPI mode • SPISTE inversion for digital audio interface receive mode on devices with two SPI modules • DMA support • High-speed mode for up to 50-MHz full-duplex communication Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 151 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com The SPI operates in master or slave mode. The master initiates data transfer by sending the SPICLK signal. For both the slave and the master, data is shifted out of the shift registers on one edge of the SPICLK and latched into the shift register on the opposite SPICLK clock edge. If the CLOCK PHASE bit (SPICTL.3) is high, data is transmitted and received a half-cycle before the SPICLK transition. As a result, both controllers send and receive data simultaneously. The application software determines whether the data is meaningful or dummy data. There are three possible methods for data transmission: • Master sends data; slave sends dummy data • Master sends data; slave sends data • Master sends dummy data; slave sends data The master can initiate a data transfer at any time because it controls the SPICLK signal. The software, however, determines how the master detects when the slave is ready to broadcast data. Figure 5-67 shows the SPI CPU Interface. PCLKCR8 Low-Speed Prescaler SYSCLK Bit Clock CPU Peripheral Bus LSPCLK SYSRS SPISIMO GPIO MUX SPISOMI SPICLK SPI SPIINT SPITXINT PIE SPIRXDMA SPITXDMA DMA SPISTE Figure 5-67. SPI CPU Interface 152 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.10.5.1 SPI Electrical Data and Timing The following sections contain the SPI External Timings in Non-High-Speed Mode: Section 5.10.5.1.1 Master Mode External Timings Where Clock Phase = 0 Section 5.10.5.1.2 Master Mode External Timings Where Clock Phase = 1 Section 5.10.5.1.3 Slave Mode External Timings Where Clock Phase = 0 Section 5.10.5.1.4 Slave Mode External Timings Where Clock Phase = 1 The following sections contain the SPI External Timings in High-Speed Mode: Section 5.10.5.1.5 High-Speed Master Mode External Timings Where Clock Phase = 0 Section 5.10.5.1.6 High-Speed Master Mode External Timings Where Clock Phase = 1 Section 5.10.5.1.7 High-Speed Slave Mode External Timings Where Clock Phase = 0 Section 5.10.5.1.8 High-Speed Slave Mode External Timings Where Clock Phase = 1 NOTE All timing parameters for SPI High-Speed Mode assume a load capacitance of 5 pF on SPICLK, SPISIMO, and SPISOMI. For more information about the SPI in High-Speed mode, see the Serial Peripheral Interface (SPI) chapter of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual. To use the SPI in High-Speed mode, the application must use the high-speed enabled GPIOs (see Section 4.5.5). Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 153 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 5.10.5.1.1 Master Mode External Timings Where Clock Phase = 0 Table 5-79 shows the SPI master mode external timings where (SPIBRR + 1) is even or SPIBRR = 0 or 2. Table 5-80 shows the SPI master mode external timings where (SPIBRR + 1) is odd and SPIBRR > 3. Figure 5-68 shows the SPI master mode external timing where the clock phase = 0. Table 5-79. SPI Master Mode External Timings Where (SPIBRR + 1) is Even or SPIBRR = 0 or 2 NO. 1 MIN MAX 4tc(LSPCLK) 128tc(LSPCLK) tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 0) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 1) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 0) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 1) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 td(SPCH-SIMO)M Delay time, SPICLK high to SPISIMO valid (clock polarity = 0) 3 td(SPCL-SIMO)M Delay time, SPICLK low to SPISIMO valid (clock polarity = 1) 3 tv(SPCL-SIMO)M Valid time, SPISIMO data valid after SPICLK low (clock polarity = 0) 0.5tc(SPC)M – 3 tv(SPCH-SIMO)M Valid time, SPISIMO data valid after SPICLK high (clock polarity = 1) 0.5tc(SPC)M – 3 tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK low (clock polarity = 0) 20 tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK high (clock polarity = 1) 20 th(SPCL-SOMI)M Hold time, SPISOMI data valid after SPICLK low (clock polarity = 0) 0 th(SPCH-SOMI)M Hold time, SPISOMI data valid after SPICLK high (clock polarity = 1) 0 td(STE-SPCH)M Delay time, SPISTE low to SPICLK high (clock polarity = 0) 0.5tc(SPC) – 3 td(STE-SPCL)M Delay time, SPISTE low to SPICLK low (clock polarity = 1) 0.5tc(SPC) – 3 td(SPCL-STE)M Delay time, SPICLK low to SPISTE invalid (clock polarity = 0) 0.5tc(SPC) – 3 td(SPCH-STE)M Delay time, SPICLK high to SPISTE invalid (clock polarity = 1) 0.5tc(SPC) – 3 tc(SPC)M Cycle time, SPICLK 2 3 4 5 8 9 23 24 154 Specifications UNIT ns ns ns ns ns ns ns ns ns Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 5-80. SPI Master Mode External Timings Where (SPIBRR + 1) is Odd and SPIBRR > 3 NO. 1 MIN MAX 5tc(LSPCLK) 127tc(LSPCLK) tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 0) 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(SPC)M + 0.5tc(LSPCLK) + 1 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 1) 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 0.5tc(SPC)M – 0.5tc(LSPCLK) + 1 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 0) 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 0.5tc(SPC)M – 0.5tc(LSPCLK) + 1 tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 1) 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(SPC)M + 0.5tc(LSPCLK) + 1 td(SPCH-SIMO)M Delay time, SPICLK high to SPISIMO valid (clock polarity = 0) 3 td(SPCL-SIMO)M Delay time, SPICLK low to SPISIMO valid (clock polarity = 1) 3 tv(SPCL-SIMO)M Valid time, SPISIMO data valid after SPICLK low (clock polarity = 0) 0.5tc(SPC)M + 0.5tc(LSPCLK) – 3 tv(SPCH-SIMO)M Valid time, SPISIMO data valid after SPICLK high (clock polarity = 1) 0.5tc(SPC)M + 0.5tc(LSPCLK) – 3 tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK low (clock polarity = 0) 20 tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK high (clock polarity = 1) 20 th(SPCL-SOMI)M Hold time, SPISOMI data valid after SPICLK low (clock polarity = 0) 0 th(SPCH-SOMI)M Hold time, SPISOMI data valid after SPICLK high (clock polarity = 1) 0 td(STE-SPCH)M Delay time, SPISTE low to SPICLK high (clock polarity = 0) 0.5tc(SPC) – 3 td(STE-SPCL)M Delay time, SPISTE low to SPICLK low (clock polarity = 1) 0.5tc(SPC) – 3 td(SPCL-STE)M Delay time, SPICLK low to SPISTE invalid (clock polarity = 0) 0.5tc(SPC) – 3 td(SPCH-STE)M Delay time, SPICLK high to SPISTE invalid (clock polarity = 1) 0.5tc(SPC) – 3 tc(SPC)M Cycle time, SPICLK 2 3 4 5 8 9 23 24 ns ns ns ns ns ns ns ns ns Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated UNIT 155 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 4 5 SPISIMO Master Out Data Is Valid 8 9 Master In Data Must Be Valid SPISOMI 23 24 (A) SPISTE A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes. Figure 5-68. SPI Master Mode External Timing (Clock Phase = 0) 156 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.10.5.1.2 Master Mode External Timings Where Clock Phase = 1 Table 5-81 shows the SPI master mode external timings where (SPIBRR + 1) is even or SPIBRR = 0 or 2. Table 5-82 shows the SPI master mode external timings where (SPIBRR + 1) is odd or SPIBRR > 3. Figure 5-69 shows the SPI master mode external timing where the clock phase = 1. Table 5-81. SPI Master Mode External Timings Where (SPIBRR + 1) is Even or SPIBRR = 0 or 2 NO. 1 MIN MAX 4tc(LSPCLK) 128tc(LSPCLK) tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 0) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 tw(SPCL))M Pulse duration, SPICLK low (clock polarity = 1) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 0) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 1) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 td(SIMO-SPCH)M Delay time, SPISIMO data valid to SPICLK high (clock polarity = 0) 0.5tc(SPC)M – 3 td(SIMO-SPCL)M Delay time, SPISIMO data valid to SPICLK low (clock polarity = 1) 0.5tc(SPC)M – 3 tv(SPCH-SIMO)M Valid time, SPISIMO data valid after SPICLK high (clock polarity = 0) 0.5tc(SPC)M – 3 tv(SPCL-SIMO)M Valid time, SPISIMO data valid after SPICLK low (clock polarity = 1) 0.5tc(SPC)M – 3 tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK high (clock polarity = 0) 20 tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK low (clock polarity = 1) 20 th(SPCH-SOMI)M Hold time, SPISOMI data valid after SPICLK high (clock polarity = 0) 0 th(SPCL-SOMI)M Hold time, SPISOMI data valid after SPICLK low (clock polarity = 1) 0 td(STE-SPCH)M Delay time, SPISTE low to SPICLK high (clock polarity = 0) 0.5tc(SPC) – 3 td(STE-SPCL)M Delay time, SPISTE low to SPICLK low (clock polarity = 1) 0.5tc(SPC) – 3 td(SPCL-STE)M Delay time, SPICLK low to SPISTE invalid (clock polarity = 0) 0.5tc(SPC) – 3 td(SPCH-STE)M Delay time, SPICLK high to SPISTE invalid (clock polarity = 1) 0.5tc(SPC) – 3 tc(SPC)M Cycle time, SPICLK 2 3 6 7 10 11 23 24 UNIT ns ns ns ns ns ns ns ns Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated ns 157 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 5-82. SPI Master Mode External Timings Where (SPIBRR + 1) is Odd or SPIBRR > 3 NO. 1 MIN MAX 5tc(LSPCLK) 127tc(LSPCLK) tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 0) 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 0.5tc(SPC)M – 0.5tc(LSPCLK) + 1 tw(SPCL))M Pulse duration, SPICLK low (clock polarity = 1) 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(SPC)M + 0.5tc(LSPCLK) + 1 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 0) 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(SPC)M + 0.5tc(LSPCLK) + 1 tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 1) 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 0.5tc(SPC)M – 0.5tc(LSPCLK) + 1 td(SIMO-SPCH)M Delay time, SPISIMO data valid to SPICLK high (clock polarity = 0) 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 td(SIMO-SPCL)M Delay time, SPISIMO data valid to SPICLK low (clock polarity = 1) 0.5tc(SPC)M + 0.5tc(LSPCLK) – 3 tv(SPCH-SIMO)M Valid time, SPISIMO data valid after SPICLK high (clock polarity = 0) 0.5tc(SPC)M + 0.5tc(LSPCLK) – 3 tv(SPCL-SIMO)M Valid time, SPISIMO data valid after SPICLK low (clock polarity = 1) 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK high (clock polarity = 0) 20 tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK low (clock polarity = 1) 20 th(SPCH-SOMI)M Hold time, SPISOMI data valid after SPICLK high (clock polarity = 0) 0 th(SPCL-SOMI)M Hold time, SPISOMI data valid after SPICLK low (clock polarity = 1) 0 td(STE-SPCH)M Delay time, SPISTE low to SPICLK high (clock polarity = 0) 0.5tc(SPC) – 3 td(STE-SPCL)M Delay time, SPISTE low to SPICLK low (clock polarity = 1) 0.5tc(SPC) – 3 td(SPCL-STE)M Delay time, SPICLK low to SPISTE invalid (clock polarity = 0) 0.5tc(SPC) – 3 td(SPCH-STE)M Delay time, SPICLK high to SPISTE invalid (clock polarity = 1) 0.5tc(SPC) – 3 tc(SPC)M Cycle time, SPICLK 2 3 6 7 10 11 23 24 UNIT ns ns ns ns ns ns ns ns ns 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 6 7 Master Out Data Is Valid SPISIMO 10 11 Master In Data Must Be Valid SPISOMI (A) 24 23 SPISTE A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes. Figure 5-69. SPI Master Mode External Timing (Clock Phase = 1) 158 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.10.5.1.3 Slave Mode External Timings Where Clock Phase = 0 Table 5-83 and Figure 5-70 show the SPI slave mode external timings where the clock phase = 0. Table 5-83. SPI Slave Mode External Timings Where Clock Phase = 0 NO. 12 13 14 15 MIN Cycle time, SPICLK tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 0) 2tc(SYSCLK) – 1 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 1) 2tc(SYSCLK) – 1 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 0) 2tc(SYSCLK) – 1 tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 1) 2tc(SYSCLK) – 1 td(SPCH-SOMI)S Delay time, SPICLK high to SPISOMI valid (clock polarity = 0) 20 td(SPCL-SOMI)S Delay time, SPICLK low to SPISOMI valid (clock polarity = 1) 20 tv(SPCH-SOMI)S Valid time, SPISOMI data valid after SPICLK high (clock polarity = 0) 0 tv(SPCL-SOMI)S Valid time, SPISOMI data valid after SPICLK low (clock polarity = 1) 0 tsu(SIMO-SPCL)S Setup time, SPISIMO before SPICLK low (clock polarity = 0) 5 tsu(SIMO-SPCH)S Setup time, SPISIMO before SPICLK high (clock polarity = 1) 5 th(SPCL-SIMO)S Hold time, SPISIMO data valid after SPICLK low (clock polarity = 0) 5 th(SPCH-SIMO)S Hold time, SPISIMO data valid after SPICLK high (clock polarity = 1) 5 tsu(STE-SPCH)S Setup time, SPISTE valid before SPICLK high (clock polarity = 0) 2tc(SYSCLK) tsu(STE-SPCL)S Setup time, SPISTE valid before SPICLK low (clock polarity = 1) 2tc(SYSCLK) th(SPCL-STE)S Hold time, SPISTE invalid after SPICLK low (clock polarity = 0) 2tc(SYSCLK) th(SPCH-STE)S Hold time, SPISTE invalid after SPICLK high (clock polarity = 1) 2tc(SYSCLK) 16 19 20 25 26 MAX tc(SPC)S 4tc(SYSCLK) ns ns ns ns ns ns ns ns Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated UNIT ns 159 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 12 SPICLK (clock polarity = 0) 13 14 SPICLK (clock polarity = 1) 15 SPISOMI 16 SPISOMI Data Is Valid 19 20 SPISIMO Data Must Be Valid SPISIMO 25 26 SPISTE Figure 5-70. SPI Slave Mode External Timing (Clock Phase = 0) 160 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.10.5.1.4 Slave Mode External Timings Where Clock Phase = 1 Table 5-84 and Figure 5-71 show the SPI slave mode external timings where the clock phase = 1. Table 5-84. SPI Slave Mode External Timings Where Clock Phase = 1 NO. 12 13 14 17 MIN Cycle time, SPICLK tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 0) 4tc(SYSCLK) – 1 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 1) 4tc(SYSCLK) – 1 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 0) 4tc(SYSCLK) – 1 tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 1) 4tc(SYSCLK) – 1 td(SPCL-SOMI)S Delay time, SPICLK low to SPISOMI (clock polarity = 0) 20 td(SPCH-SOMI)S Delay time, SPICLK high to SPISOMI (clock polarity = 1) 20 tv(SPCL-SOMI)S Valid time, SPISOMI data valid after SPICLK low (clock polarity = 0) 0 tv(SPCH-SOMI)S Valid time, SPISOMI data valid after SPICLK high (clock polarity = 1) 0 tsu(SIMO-SPCH)S Setup time, SPISIMO before SPICLK high (clock polarity = 0) 5 tsu(SIMO-SPCL)S Setup time, SPISIMO before SPICLK low (clock polarity = 1) 5 th(SPCH-SIMO)S Hold time, SPISIMO data valid after SPICLK high (clock polarity = 0) 5 th(SPCL-SIMO)S Hold time, SPISIMO data valid after SPICLK low (clock polarity = 1) 5 tsu(STE-SPCH)S Setup time, SPISTE valid before SPICLK high (clock polarity = 0) 2tc(SYSCLK) tsu(STE-SPCL)S Setup time, SPISTE valid before SPICLK low (clock polarity = 1) 2tc(SYSCLK) th(STE-SPCL)S Hold time, SPISTE invalid after SPICLK low (clock polarity = 0) 2tc(SYSCLK) th(STE-SPCH)S Hold time, SPISTE invalid after SPICLK high (clock polarity = 1) 2tc(SYSCLK) 18 21 22 25 26 MAX tc(SPC)S 8tc(SYSCLK) UNIT ns ns ns ns ns ns ns ns ns 12 SPICLK (clock polarity = 0) 13 14 SPICLK (clock polarity = 1) 17 SPISOMI Data Valid SPISOMI Data Is Valid Data Valid 18 21 22 SPISIMO Data Must Be Valid SPISIMO 25 26 SPISTE Figure 5-71. SPI Slave Mode External Timing (Clock Phase = 1) Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 161 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 5.10.5.1.5 High-Speed Master Mode External Timings Where Clock Phase = 0 Table 5-85 shows the high-speed SPI master mode external timings where (SPIBRR + 1) is even or SPIBRR = 0 or 2. Table 5-86 shows the high-speed SPI master mode external timings where (SPIBRR + 1) is odd and SPIBRR > 3. Figure 5-72 shows the high-speed SPI master mode external timing where the clock phase = 0. Table 5-85. High-Speed SPI Master Mode External Timings Where (SPIBRR + 1) is Even or SPIBRR = 0 or 2 NO. 1 MIN MAX 4tc(LSPCLK) 128tc(LSPCLK) Pulse duration, SPICLK high (clock polarity = 0) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 1) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 0) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 1) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 td(SPCH-SIMO)M Delay time, SPICLK high to SPISIMO valid (clock polarity = 0) 1 td(SPCL-SIMO)M Delay time, SPICLK low to SPISIMO valid (clock polarity = 1) 1 tv(SPCL-SIMO)M Valid time, SPISIMO data valid after SPICLK low (clock polarity = 0) 0.5tc(SPC)M – 1 tv(SPCH-SIMO)M Valid time, SPISIMO data valid after SPICLK high (clock polarity = 1) 0.5tc(SPC)M – 1 tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK low (clock polarity = 0) 1 tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK high (clock polarity = 1) 1 th(SPCL-SOMI)M Hold time, SPISOMI data valid after SPICLK low (clock polarity = 0) 5 th(SPCH-SOMI)M Hold time, SPISOMI data valid after SPICLK high (clock polarity = 1) 5 td(STE-SPCH)M Delay time, SPISTE low to SPICLK high (clock polarity = 0) 0.5tc(SPC) – 1 td(STE-SPCL)M Delay time, SPISTE low to SPICLK low (clock polarity = 1) 0.5tc(SPC) – 1 td(SPCL-STE)M Delay time, SPICLK low to SPISTE invalid (clock polarity = 0) 0.5tc(SPC) – 1 td(SPCH-STE)M Delay time, SPICLK high to SPISTE invalid (clock polarity = 1) 0.5tc(SPC) – 1 tc(SPC)M Cycle time, SPICLK tw(SPCH)M 2 3 4 5 8 9 23 24 162 Specifications UNIT ns ns ns ns ns ns ns ns ns Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 5-86. High-Speed SPI Master Mode External Timings Where (SPIBRR + 1) is Odd and SPIBRR > 3 NO. 1 MIN MAX 5tc(LSPCLK) 127tc(LSPCLK) tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 0) 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(SPC)M + 0.5tc(LSPCLK) + 1 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 1) 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 0.5tc(SPC)M – 0.5tc(LSPCLK) + 1 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 0) 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 0.5tc(SPC)M – 0.5tc(LSPCLK) + 1 tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 1) 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(SPC)M + 0.5tc(LSPCLK) + 1 td(SPCH-SIMO)M Delay time, SPICLK high to SPISIMO valid (clock polarity = 0) 1 td(SPCL-SIMO)M Delay time, SPICLK low to SPISIMO valid (clock polarity = 1) 1 tv(SPCL-SIMO)M Valid time, SPISIMO data valid after SPICLK low (clock polarity = 0) 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 tv(SPCH-SIMO)M Valid time, SPISIMO data valid after SPICLK high (clock polarity = 1) 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK low (clock polarity = 0) 1 tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK high (clock polarity = 1) 1 th(SPCL-SOMI)M Hold time, SPISOMI data valid after SPICLK low (clock polarity = 0) 5 th(SPCH-SOMI)M Hold time, SPISOMI data valid after SPICLK high (clock polarity = 1) 5 td(STE-SPCH)M Delay time, SPISTE low to SPICLK high (clock polarity = 0) 0.5tc(SPC) – 1 td(STE-SPCL)M Delay time, SPISTE low to SPICLK low (clock polarity = 1) 0.5tc(SPC) – 1 td(SPCL-STE)M Delay time, SPICLK low to SPISTE invalid (clock polarity = 0) 0.5tc(SPC) – 1 td(SPCH-STE)M Delay time, SPICLK high to SPISTE invalid (clock polarity = 1) 0.5tc(SPC) – 1 tc(SPC)M Cycle time, SPICLK 2 3 4 5 8 9 23 24 ns ns ns ns ns ns ns ns ns Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated UNIT 163 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 4 5 SPISIMO Master Out Data Is Valid 8 9 Master In Data Must Be Valid SPISOMI 23 24 (A) SPISTE A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes. Figure 5-72. High-Speed SPI Master Mode External Timing (Clock Phase = 0) 164 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.10.5.1.6 High-Speed Master Mode External Timings Where Clock Phase = 1 Table 5-87 shows the high-speed SPI master mode external timings where (SPIBRR + 1) is even or SPIBRR = 0 or 2. Table 5-88 shows the high-speed SPI master mode external timings where (SPIBRR + 1) is odd or SPIBRR > 3. Figure 5-73 shows the high-speed SPI master mode external timing where the clock phase = 1. Table 5-87. High-Speed SPI Master Mode External Timings Where (SPIBRR + 1) is Even or SPIBRR = 0 or 2 NO. 1 MIN MAX 4tc(LSPCLK) 128tc(LSPCLK) Pulse duration, SPICLK high (clock polarity = 0) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 tw(SPCL))M Pulse duration, SPICLK low (clock polarity = 1) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 0) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 1) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 td(SIMO-SPCH)M Delay time, SPISIMO data valid to SPICLK high (clock polarity = 0) 0.5tc(SPC)M – 1 td(SIMO-SPCL)M Delay time, SPISIMO data valid to SPICLK low (clock polarity = 1) 0.5tc(SPC)M – 1 tv(SPCH-SIMO)M Valid time, SPISIMO data valid after SPICLK high (clock polarity = 0) 0.5tc(SPC)M – 1 tv(SPCL-SIMO)M Valid time, SPISIMO data valid after SPICLK low (clock polarity = 1) 0.5tc(SPC)M – 1 tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK high (clock polarity = 0) 1 tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK low (clock polarity = 1) 1 th(SPCH-SOMI)M Hold time, SPISOMI data valid after SPICLK high (clock polarity = 0) 5 th(SPCL-SOMI)M Hold time, SPISOMI data valid after SPICLK low (clock polarity = 1) 5 td(STE-SPCH)M Delay time, SPISTE low to SPICLK high (clock polarity = 0) 0.5tc(SPC) – 1 td(STE-SPCL)M Delay time, SPISTE low to SPICLK low (clock polarity = 1) 0.5tc(SPC) – 1 td(SPCL-STE)M Delay time, SPICLK low to SPISTE invalid (clock polarity = 0) 0.5tc(SPC) – 1 td(SPCH-STE)M Delay time, SPICLK high to SPISTE invalid (clock polarity = 1) 0.5tc(SPC) – 1 tc(SPC)M Cycle time, SPICLK tw(SPCH)M 2 3 6 7 10 11 23 24 UNIT ns ns ns ns ns ns ns ns Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated ns 165 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 5-88. High-Speed SPI Master Mode External Timings Where (SPIBRR + 1) is Odd or SPIBRR > 3 NO. 1 MIN MAX 5tc(LSPCLK) 127tc(LSPCLK) tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 0) 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 0.5tc(SPC)M – 0.5tc(LSPCLK) + 1 tw(SPCL))M Pulse duration, SPICLK low (clock polarity = 1) 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(SPC)M + 0.5tc(LSPCLK) + 1 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 0) 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(SPC)M + 0.5tc(LSPCLK) + 1 tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 1) 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 0.5tc(SPC)M – 0.5tc(LSPCLK) + 1 td(SIMO-SPCH)M Delay time, SPISIMO data valid to SPICLK high (clock polarity = 0) 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 td(SIMO-SPCL)M Delay time, SPISIMO data valid to SPICLK low (clock polarity = 1) 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 tv(SPCH-SIMO)M Valid time, SPISIMO data valid after SPICLK high (clock polarity = 0) 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 tv(SPCL-SIMO)M Valid time, SPISIMO data valid after SPICLK low (clock polarity = 1) 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK high (clock polarity = 0) 1 tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK low (clock polarity = 1) 1 th(SPCH-SOMI)M Hold time, SPISOMI data valid after SPICLK high (clock polarity = 0) 5 th(SPCL-SOMI)M Hold time, SPISOMI data valid after SPICLK low (clock polarity = 1) 5 td(STE-SPCH)M Delay time, SPISTE low to SPICLK high (clock polarity = 0) 0.5tc(SPC) – 1 td(STE-SPCL)M Delay time, SPISTE low to SPICLK low (clock polarity = 1) 0.5tc(SPC) – 1 td(SPCL-STE)M Delay time, SPICLK low to SPISTE invalid (clock polarity = 0) 0.5tc(SPC) – 1 td(SPCH-STE)M Delay time, SPICLK high to SPISTE invalid (clock polarity = 1) 0.5tc(SPC) – 1 tc(SPC)M Cycle time, SPICLK 2 3 6 7 10 11 23 24 UNIT ns ns ns ns ns ns ns ns ns 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 6 7 Master Out Data Is Valid SPISIMO 10 11 Master In Data Must Be Valid SPISOMI 23 (A) 24 SPISTE A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes. Figure 5-73. High-Speed SPI Master Mode External Timing (Clock Phase = 1) 166 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.10.5.1.7 High-Speed Slave Mode External Timings Where Clock Phase = 0 Table 5-89 and Figure 5-74 show the high-speed SPI slave mode external timings where the clock phase = 0. Table 5-89. High-Speed SPI Slave Mode External Timings Where Clock Phase = 0 NO. 12 13 14 15 MIN Cycle time, SPICLK tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 0) 2tc(SYSCLK) – 1 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 1) 2tc(SYSCLK) – 1 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 0) 2tc(SYSCLK) – 1 tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 1) 2tc(SYSCLK) – 1 td(SPCH-SOMI)S Delay time, SPICLK high to SPISOMI valid (clock polarity = 0) 9 td(SPCL-SOMI)S Delay time, SPICLK low to SPISOMI valid (clock polarity = 1) 9 tv(SPCH-SOMI)S Valid time, SPISOMI data valid after SPICLK high (clock polarity = 0) 0 tv(SPCL-SOMI)S Valid time, SPISOMI data valid after SPICLK low (clock polarity = 1) 0 tsu(SIMO-SPCL)S Setup time, SPISIMO before SPICLK low (clock polarity = 0) 5 tsu(SIMO-SPCH)S Setup time, SPISIMO before SPICLK high (clock polarity = 1) 5 th(SPCL-SIMO)S Hold time, SPISIMO data valid after SPICLK low (clock polarity = 0) 5 th(SPCH-SIMO)S Hold time, SPISIMO data valid after SPICLK high (clock polarity = 1) 5 tsu(STE-SPCH)S Setup time, SPISTE valid before SPICLK high (clock polarity = 0) 2tc(SYSCLK) tsu(STE-SPCL)S Setup time, SPISTE valid before SPICLK low (clock polarity = 1) 2tc(SYSCLK) th(SPCL-STE)S Hold time, SPISTE invalid after SPICLK low (clock polarity = 0) 2tc(SYSCLK) th(SPCH-STE)S Hold time, SPISTE invalid after SPICLK high (clock polarity = 1) 2tc(SYSCLK) 16 19 20 25 26 MAX tc(SPC)S 4tc(SYSCLK) ns ns ns ns ns ns ns ns Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated UNIT ns 167 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 12 SPICLK (clock polarity = 0) 13 14 SPICLK (clock polarity = 1) 15 SPISOMI 16 SPISOMI Data Is Valid 19 20 SPISIMO Data Must Be Valid SPISIMO 25 26 SPISTE Figure 5-74. High-Speed SPI Slave Mode External Timing (Clock Phase = 0) 168 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.10.5.1.8 High-Speed Slave Mode External Timings Where Clock Phase = 1 Table 5-90 and Figure 5-75 show the high-speed SPI slave mode external timings where the clock phase = 1. Table 5-90. High-Speed SPI Slave Mode External Timings Where Clock Phase = 1 NO. 12 13 14 17 MIN Cycle time, SPICLK tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 0) 4tc(SYSCLK) – 1 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 1) 4tc(SYSCLK) – 1 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 0) 4tc(SYSCLK) – 1 tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 1) 4tc(SYSCLK) – 1 td(SPCL-SOMI)S Delay time, SPICLK low to SPISOMI (clock polarity = 0) 9 td(SPCH-SOMI)S Delay time, SPICLK high to SPISOMI (clock polarity = 1) 9 tv(SPCL-SOMI)S Valid time, SPISOMI data valid after SPICLK low (clock polarity = 0) 0 tv(SPCH-SOMI)S Valid time, SPISOMI data valid after SPICLK high (clock polarity = 1) 0 tsu(SIMO-SPCH)S Setup time, SPISIMO before SPICLK high (clock polarity = 0) 5 tsu(SIMO-SPCL)S Setup time, SPISIMO before SPICLK low (clock polarity = 1) 5 th(SPCH-SIMO)S Hold time, SPISIMO data valid after SPICLK high (clock polarity = 0) 5 th(SPCL-SIMO)S Hold time, SPISIMO data valid after SPICLK low (clock polarity = 1) 5 tsu(STE-SPCH)S Setup time, SPISTE valid before SPICLK high (clock polarity = 0) 2tc(SYSCLK) tsu(STE-SPCL)S Setup time, SPISTE valid before SPICLK low (clock polarity = 1) 2tc(SYSCLK) th(STE-SPCL)S Hold time, SPISTE invalid after SPICLK low (clock polarity = 0) 2tc(SYSCLK) th(STE-SPCH)S Hold time, SPISTE invalid after SPICLK high (clock polarity = 1) 2tc(SYSCLK) 18 21 22 25 26 MAX tc(SPC)S 8tc(SYSCLK) UNIT ns ns ns ns ns ns ns ns ns 12 SPICLK (clock polarity = 0) 13 14 SPICLK (clock polarity = 1) 17 SPISOMI Data Valid SPISOMI Data Is Valid Data Valid 18 21 22 SPISIMO Data Must Be Valid SPISIMO 25 26 SPISTE Figure 5-75. High-Speed SPI Slave Mode External Timing (Clock Phase = 1) Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 169 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 5.10.6 Universal Serial Bus (USB) Controller The USB controller operates as a full-speed or low-speed function controller during point-to-point communications with USB host or device functions. The USB module has the following features: • USB 2.0 full-speed (12 Mbps) and low-speed (1.5 Mbps) operation • Integrated PHY • Three transfer types: control, interrupt, and bulk • 32 endpoints – One dedicated control IN endpoint and one dedicated control OUT endpoint – 15 configurable IN endpoints and 15 configurable OUT endpoints • 4KB of dedicated endpoint memory Figure 5-76 shows the USB block diagram. Endpoint Control Transmit EP0 –31 Control Receive CPU Interface Combine Endpoints Host Transaction Scheduler Interrupt Control Interrupts EP Reg. Decoder USB PHY USB FS/LS PHY UTM Synchronization Packet Encode/Decode Data Sync Packet Encode HNP/SRP Packet Decode Timers CRC Gen/Check FIFO RAM Controller Rx Rx Buff Buff Tx Buff Common Regs CPU Bus Cycle Control Tx Buff Cycle Control FIFO Decoder USB DataLines D+ andD- Figure 5-76. USB Block Diagram NOTE The accuracy of the on-chip zero-pin oscillator (Table 5-18, Internal Oscillator Electrical Characteristics) will not meet the accuracy requirements of the USB protocol. An external clock source must be used for applications using USB. For applications using the USB boot mode, see Section 6.10 (Boot ROM and Peripheral Booting) for clock frequency requirements. 170 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 5.10.6.1 USB Electrical Data and Timing Table 5-91 shows the USB input ports DP and DM timing requirements. Table 5-92 shows the USB output ports DP and DM switching characteristics. Table 5-91. USB Input Ports DP and DM Timing Requirements MIN MAX V(CM) Differential input common mode range 0.8 2.5 UNIT Z(IN) Input impedance 300 VCRS Crossover voltage 1.3 VIL Static SE input logic-low level 0.8 VIH Static SE input logic-high level 2.0 V VDI Differential input voltage 0.2 V V kΩ 2.0 V V Table 5-92. USB Output Ports DP and DM Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS VOH D+, D– single-ended USB 2.0 load conditions VOL D+, D– single-ended USB 2.0 load conditions Z(DRV) D+, D– impedance tr Rise time tf Fall time MIN MAX 2.8 3.6 UNIT 0 0.3 V 28 44 Ω Full speed, differential, CL = 50 pF, 10%/90%, Rpu on D+ 4 20 ns Full speed, differential, CL = 50 pF, 10%/90%, Rpu on D+ 4 20 ns Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated V 171 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 5.10.7 Universal Parallel Port (uPP) Interface The uPP interface is a high-speed parallel interface with dedicated data lines and minimal control signals. The uPP interface is designed to interface cleanly with high-speed ADCs or DACs with 8-bit data width. It can also be interconnected with field-programmable gate arrays (FPGAs) or other uPP devices to achieve high-speed digital data transfer. It can operate in receive mode or transmit mode (simplex mode). The uPP interface includes an internal DMA controller to maximize throughput and minimize CPU overhead during high-speed data transmission. All uPP transactions use internal DMA to feed data to or retrieve data from the I/O channels. Even though there is only one I/O channel, the DMA controller includes two DMA channels to support data interleave mode, in which all DMA resources service a single I/O channel. On this device, the uPP interface is the dedicated resource for the CPU1 subsystem. CPU1, CPU1.CLA1, and CPU1.DMA have access to this module. Two dedicated 512-byte data RAMs (also known as MSG RAMs) are tightly coupled with the uPP module (one for each, TX and RX). These data RAMs are used to store the bulk of data to avoid frequent interruptions to the CPU. Only CPU1 and CPU1.CLA1 have access to these data RAMs. Figure 5-77 shows the integration of the uPP on this device. CPU1 Arbi Arbiter Y CPU1.CLA1 READ t RX-DATARAM 512 Byte (Dual Port Memory) uPP DMA WRITE CPU1 Arbi Arbiter X CPU1.CLA1 0 CPU1.DMA 1 uPP (Universal Parallel Port) t I/O Interface uPP DMA READ SECMSEL.PF2SEL CPU1 Arbi Arbiter Y CPU1.CLA1 WRITE t TX-DATARAM 512 Byte (Dual Port Memory) Figure 5-77. uPP Integration NOTE On some TI devices, the uPP module is also called the Radio Peripheral Interface (RPI) module. 172 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 The uPP interface supports the following: • Mainstream high-speed data converters with parallel conversion interface. • Mainstream high-speed streaming interface with frame START indication. • Mainstream high-speed streaming interface with data ENABLE indication. • Mainstream high-speed streaming interface with synchronization WAIT signal. • SDR (single-data-rate) or DDR (double-data-rate, interleaved) interface. • Multiplexing of interleaved data in SDR transmit case. • Demultiplexing and multiplexing of interleaved data in DDR case. • I/O interface clock frequency up to 50 MHz for SDR, and 25 MHz for DDR. • Single-channel 8-bit input receive or output transmit mode. • Max throughput is 50MB/s for pure read or pure write. • Available as a DSP to FPGA general-purpose streaming interface. Figure 5-78 shows the uPP functional block diagram. uPP Configuration I/F MMR Transmit Timing and Control ENABLE OUT G START OUT P WAIT IN ENABLE/GPIOx I O CPU1.SYSCLK CLK OUT CLKDIVIDER CLK IN START/GPIOx M U ENABLE IN Control Mux Interrupt/Trigger Receive Timing and Control X WAIT/GPIOx START IN WAIT OUT and CLK/GPIOx I/O Arbi I-FIFO t 64 Bit C O MEM WR I/F DATA OUT Internal Data Interleaving DMA Arbit (TX/RX) DATA IN N DATA[7:0]/GPIOx T R O 64 Bit MEM RD I/F Arbi Q-FIFO L Figure 5-78. uPP Functional Block Diagram Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 173 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 5.10.7.1 uPP Electrical Data and Timing Table 5-93 shows the uPP timing requirements. Table 5-94 shows the uPP switching characteristics. Figure 5-79 through Figure 5-82 show the uPP timing diagrams. Table 5-93. uPP Timing Requirements NO. MIN SDR mode 20 DDR mode 40 MAX UNIT 1 tc(CLK) Cycle time, CLK 2 tw(CLKH) Pulse width, CLK high 3 tw(CLKL) Pulse width, CLK low 4 tsu(STV-CLKH) Setup time, START valid before CLK high 5 th(CLKH-STV) Hold time, START valid after CLK high 6 tsu(ENV-CLKH) Setup time, ENABLE valid before CLK high 7 th(CLKH-ENV) Hold time, ENABLE valid after CLK high 8 tsu(DV-CLKH) Setup time, DATA valid before CLK high 4 ns 0.8 ns 4 ns 0.8 ns 20 ns SDR mode 8 DDR mode 18 SDR mode 8 DDR mode 18 ns ns ns 4 ns 0.8 ns 4 ns 0.8 ns 9 th(CLKH-DV) Hold time, DATA valid after CLK high 10 tsu(DV-CLKL) Setup time, DATA valid before CLK low 11 th(CLKL-DV) Hold time, DATA valid after CLK low 19 tsu(WTV-CLKH) Setup time, WAIT valid before CLK high SDR mode 20 th(CLKH-WTV) Hold time, WAIT valid after CLK high SDR mode 0 ns 21 tsu(WTV-CLKL) Setup time, WAIT valid before CLK low DDR mode 20 ns 22 th(CLKL-WTV) Hold time, WAIT valid after CLK low DDR mode 0 ns Table 5-94. uPP Switching Characteristics over recommended operating conditions (unless otherwise noted) NO. PARAMETER MIN SDR mode 20 DDR mode 40 MAX UNIT 12 tc(CLK) Cycle time, CLK 13 tw(CLKH) Pulse width, CLK high 14 tw(CLKL) Pulse width, CLK low 15 td(CLKH-STV) Delay time, START valid after CLK high 3 12 ns 16 td(CLKH-ENV) Delay time, ENABLE valid after CLK high 3 12 ns 17 td(CLKH-DV) Delay time, DATA valid after CLK high 3 12 ns 18 td(CLKL-DV) Delay time, DATA valid after CLK low 3 12 ns 174 Specifications SDR mode 8 DDR mode 18 SDR mode 8 DDR mode 18 ns ns ns Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 1 2 3 CLK 4 5 START 6 7 ENABLE WAIT 8 9 DATA[n:0] Data1 Data2 Data3 Data4 Data5 Data7 Data6 Data8 Data9 Figure 5-79. uPP Single Data Rate (SDR) Receive Timing 1 2 3 CLK 4 5 START 6 7 ENABLE WAIT 8 DATA[n:0] I1 Q1 I2 Q2 I3 Q3 10 9 I4 Q4 I5 Q5 I6 Q6 I7 11 Q7 I8 Q8 I9 Q9 Figure 5-80. uPP Double Data Rate (DDR) Receive Timing Specifications Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 175 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 12 13 14 CLK 15 START 16 ENABLE 19 20 WAIT 17 DATA[n:0] Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 Data9 Figure 5-81. uPP Single Data Rate (SDR) Transmit Timing 12 13 14 CLK 15 START 16 ENABLE 21 22 WAIT 17 DATA[n:0] I1 18 Q1 I2 Q2 I3 Q3 I4 Q4 I5 Q5 I6 Q6 I7 Q7 I8 Q8 I9 Q9 Figure 5-82. uPP Double Data Rate (DDR) Transmit Timing 176 Specifications Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 6 Detailed Description 6.1 Overview The Delfino TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such as industrial drives and servo motor control; solar inverters and converters; digital power; transportation; and power line communications. Complete development packages for digital power and industrial drives are available as part of the powerSUITE and DesignDRIVE initiatives. While the Delfino product line is not new to the TMS320C2000 portfolio, the F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200 MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control co-processors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000 MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. 6.2 Functional Block Diagram Figure 6-1 shows the CPU system and associated peripherals. Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 177 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com PSWD Dual Code Security Module + Emulation Code Security Logic (ECSL) Secure Memories shown in Red User Configurable DCSM OTP 1K x 16 User Configurable DCSM PSWD OTP 1K x 16 FLASH FLASH 256K x 16 Secure 256K x 16 Secure PUMP Dual Code Security Module + Emulation Code Security Logic (ECSL) CPU2.CLA1 OTP/Flash Wrapper OTP/Flash Wrapper MEMCPU1 MEMCPU2 CPU1.M0 RAM 1Kx16 CPU1.CLA1 to CPU1 128x16 MSG RAM CPU1 to CPU1.CLA1 128x16 MSG RAM C28 CPU-1 C28 CPU-2 FPU VCU-II TMU CPU2.M0 RAM 1Kx16 FPU VCU-II TMU CPU2.M1 RAM 1Kx16 CPU1 Local Shared 6x 2Kx16 LS0-LS5 RAMs CPU1.D1 RAM 2Kx16 WD Timer NMI-WDT CPU1.CLA1 Data ROM (4Kx16) 16-/12-bit ADC x4 A5:0 A B ADC Result Regs D Config D5:0 ADCIN14 ADCIN15 Data Bus Bridge Comparator DAC Subsystem x3 (CMPSS) INTOSC2 CPU2.CLA1 Data ROM (4Kx16) CPU Timer 0 CPU Timer 1 CPU Timer 2 External Crystal or Oscillator Secure-ROM 32Kx16 Secure Aux PLL AUXCLKIN Boot-ROM 32Kx16 Nonsecure ePIE (up to 192 interrupts) TRST TCK CPU2.DMA JTAG TDI TMS TDO CPU2 Buses GPIO GPIOn EMIF2 EM2CTLx EMIF1 EM2Dx Data Bus Bridge EM2Ax Data Bus Bridge EM1CTLx UPPACLK UPPAST UPPAEN UPPAD[7:0] MFSXx UPPAWT RAM uPP MFSRx MCLKXx MCLKRx MDXx MRXx SPISTEx SPICLKx SPISIMOx SPISOMIx McBSPA/B Data Bus Bridge EM1Dx SPIA/B/C (16L FIFO) Peripheral Frame 2 EM1Ax CANA/B (32-MBOX) CANTXx USB Ctrl / PHY CANRXx SCITXDx SDx_Cy SDx_Dy EQEPxI EQEPxS I2C-A/B (16L FIFO) Data Bus Bridge USBDP SCIA/B/C/D (16L FIFO) SCLx SDFM-1/2 Data Bus Bridge USBDM Data Bus Bridge eQEP-1/2/3 EQEPxB ECAPx eCAP1/../6 EXTSYNCOUT EPWMxB EXTSYNCIN EPWMxA TZ1-TZ6 Main PLL CPU1 Buses EQEPxA ePWM-1/../12 CPU2.D1 RAM 2Kx16 WD Timer NMI-WDT CPU2 to CPU1 1Kx16 MSG RAM CPU1.DMA Peripheral Frame 1 HRPWM-1/../8 (CPU1 only) ePIE INTOSC1 CPU2.D0 RAM 2Kx16 CPU1 to CPU2 1Kx16 MSG RAM (up to 192 interrupts) SDAx Analog MUX Boot-ROM 32Kx16 Nonsecure SCIRXDx C5:2 C Secure-ROM 32Kx16 Secure CPU1.CLA1 Bus B5:0 Watchdog 1/2 CPU2 Local Shared 6x 2Kx16 LS0-LS5 RAMs Global Shared 16x 4Kx16 GS0-GS15 RAMs CPU Timer 0 CPU Timer 1 CPU Timer 2 GPIO MUX CPU2.CLA1 to CPU2 128x16 MSG RAM Interprocessor Communication (IPC) Module CPU1.D0 RAM 2Kx16 Low-Power Mode Control CPU2 to CPU2.CLA1 128x16 MSG RAM CPU2.CLA1 Bus CPU1.CLA1 CPU1.M1 RAM 1Kx16 GPIO MUX, Input X-BAR, Output X-BAR Copyright © 2016, Texas Instruments Incorporated Figure 6-1. Functional Block Diagram 178 Detailed Description Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 6.3 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Memory 6.3.1 C28x Memory Map Both C28x CPUs on the device have the same memory map except where noted in Table 6-1. The GSx_RAM (Global Shared RAM) should be assigned to either CPU by the GSxMSEL register. Memories accessible by the CLA or DMA (direct memory access) are noted as well. Table 6-1. C28x Memory Map MEMORY M0 RAM SIZE START ADDRESS END ADDRESS 1K × 16 0x0000 0000 0x0000 03FF CLA ACCESS DMA ACCESS M1 RAM 1K × 16 0x0000 0400 0x0000 07FF PieVectTable 512 × 16 0x0000 0D00 0x0000 0EFF CPUx.CLA1 to CPUx MSGRAM 128 × 16 0x0000 1480 0x0000 14FF Yes CPUx to CPUx.CLA1 MSGRAM 128 × 16 0x0000 1500 0x0000 157F Yes UPP TX MSG RAM 512 × 16 0x0000 6C00 0x0000 6DFF Yes UPP RX MSG RAM 512 × 16 0x0000 6E00 0x0000 6FFF Yes LS0 RAM 2K × 16 0x0000 8000 0x0000 87FF Yes LS1 RAM 2K × 16 0x0000 8800 0x0000 8FFF Yes LS2 RAM 2K × 16 0x0000 9000 0x0000 97FF Yes LS3 RAM 2K × 16 0x0000 9800 0x0000 9FFF Yes LS4 RAM 2K × 16 0x0000 A000 0x0000 A7FF Yes LS5 RAM 2K × 16 0x0000 A800 0x0000 AFFF Yes D0 RAM 2K × 16 0x0000 B000 0x0000 B7FF D1 RAM 2K × 16 0x0000 B800 0x0000 BFFF GS0 RAM (1) 4K × 16 0x0000 C000 0x0000 CFFF Yes GS1 RAM (1) 4K × 16 0x0000 D000 0x0000 DFFF Yes GS2 RAM (1) 4K × 16 0x0000 E000 0x0000 EFFF Yes GS3 RAM (1) 4K × 16 0x0000 F000 0x0000 FFFF Yes GS4 RAM (1) 4K × 16 0x0001 0000 0x0001 0FFF Yes GS5 RAM (1) 4K × 16 0x0001 1000 0x0001 1FFF Yes GS6 RAM (1) 4K × 16 0x0001 2000 0x0001 2FFF Yes GS7 RAM (1) 4K × 16 0x0001 3000 0x0001 3FFF Yes GS8 RAM (1) 4K × 16 0x0001 4000 0x0001 4FFF Yes GS9 RAM (1) 4K × 16 0x0001 5000 0x0001 5FFF Yes (1) 4K × 16 0x0001 6000 0x0001 6FFF Yes GS11 RAM (1) 4K × 16 0x0001 7000 0x0001 7FFF Yes GS12 RAM (1) (2) 4K × 16 0x0001 8000 0x0001 8FFF Yes GS13 RAM (1) (2) 4K × 16 0x0001 9000 0x0001 9FFF Yes GS14 RAM (1) (2) 4K × 16 0x0001 A000 0x0001 AFFF Yes GS15 RAM (1) (2) 4K × 16 0x0001 B000 0x0001 BFFF Yes CPU2 to CPU1 MSGRAM (1) 1K × 16 0x0003 F800 0x0003 FBFF Yes CPU1 to CPU2 MSGRAM (1) 1K × 16 0x0003 FC00 0x0003 FFFF Yes CAN A Message RAM (1) 2K × 16 0x0004 9000 0x0004 97FF GS10 RAM CAN B Message RAM (1) 2K × 16 0x0004 B000 0x0004 B7FF Flash 256K × 16 0x0008 0000 0x000B FFFF Secure ROM 32K × 16 0x003F 0000 0x003F 7FFF Boot ROM 32K × 16 0x003F 8000 0x003F FFBF 64 × 16 0x003F FFC0 0x003F FFFF Vectors (1) (2) Shared between CPU subsystems. Available only on F28379D, F28377D, and F28375D. Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 179 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 6.3.2 www.ti.com Flash Memory Map On the F28379D, F28377D, and F28375D devices, each CPU has its own flash bank [512KB (256KW)], the total flash for each device is 1MB (512KW). Only one bank can be programmed or erased at a time and the code to program the flash should be executed out of RAM. Table 6-2 shows the addresses of flash sectors on CPU1 and CPU2 for F28379D, F28377D, and F28375D. Table 6-2. Addresses of Flash Sectors on CPU1 and CPU2 for F28379D, F28377D, and F28375D SECTOR SIZE START ADDRESS END ADDRESS 0x0007 0000 0x0007 03FF 0x0007 8000 0x0007 83FF OTP Sectors TI OTP 1K × 16 User configurable DCSM OTP 1K × 16 Sectors Sector A 8K × 16 0x0008 0000 0x0008 1FFF Sector B 8K × 16 0x0008 2000 0x0008 3FFF Sector C 8K × 16 0x0008 4000 0x0008 5FFF Sector D 8K × 16 0x0008 6000 0x0008 7FFF Sector E 32K × 16 0x0008 8000 0x0008 FFFF Sector F 32K × 16 0x0009 0000 0x0009 7FFF Sector G 32K × 16 0x0009 8000 0x0009 FFFF Sector H 32K × 16 0x000A 0000 0x000A 7FFF Sector I 32K × 16 0x000A 8000 0x000A FFFF Sector J 32K × 16 0x000B 0000 0x000B 7FFF Sector K 8K × 16 0x000B 8000 0x000B 9FFF Sector L 8K × 16 0x000B A000 0x000B BFFF Sector M 8K × 16 0x000B C000 0x000B DFFF Sector N 8K ×16 0x000B E000 0x000B FFFF Flash ECC Locations TI OTP ECC 128 × 16 0x0107 0000 0x0107 007F User-configurable DCSM OTP ECC 128 × 16 0x0107 1000 0x0107 107F Flash ECC 32K × 16 0x0108 0000 0x0108 7FFF 180 Detailed Description Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 On the F28376D and F28374D devices, each CPU has its own flash bank [256KB (128KW)], the total flash for each device is 512KB (256KW). Only one bank can be programmed or erased at a time and the code to program the flash should be executed out of RAM. Table 6-3 shows the addresses of flash sectors on CPU1 and CPU2 for F28376D and F28374D. Table 6-3. Addresses of Flash Sectors on CPU1 and CPU2 for F28376D and F28374D SECTOR SIZE START ADDRESS END ADDRESS OTP Sectors TI OTP 1K × 16 0x0007 0000 0x0007 03FF User configurable DCSM OTP 1K × 16 0x0007 8000 0x0007 83FF Sector A 8K × 16 0x0008 0000 0x0008 1FFF Sector B 8K × 16 0x0008 2000 0x0008 3FFF Sector C 8K × 16 0x0008 4000 0x0008 5FFF Sector D 8K × 16 0x0008 6000 0x0008 7FFF Sector E 32K × 16 0x0008 8000 0x0008 FFFF Sectors Sector F 32K × 16 0x0009 0000 0x0009 7FFF Sector G 32K × 16 0x0009 8000 0x0009 FFFF TI OTP ECC 128 × 16 0x0107 0000 0x0107 007F User-configurable DCSM OTP ECC 128 × 16 0x0107 1000 0x0107 107F Flash ECC 16K × 16 0x0108 0000 0x0108 3FFF Flash ECC Locations Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 181 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 6.3.3 www.ti.com EMIF Chip Select Memory Map The EMIF1 memory map is the same for both CPU subsystems. EMIF2 is available only on the CPU1 subsystem. The EMIF memory map is shown in Table 6-4. Table 6-4. EMIF Chip Select Memory Map EMIF CHIP SELECT SIZE START ADDRESS END ADDRESS 256M × 16 0x8000 0000 0x8FFF FFFF Yes EMIF1_CS2n - Program + Data 2M × 16 0x0010 0000 0x002F FFFF Yes EMIF1_CS3n - Program + Data 512K × 16 0x0030 0000 0x0037 FFFF Yes EMIF1_CS4n - Program + Data 393K × 16 0x0038 0000 0x003D FFFF Yes EMIF2_CS0n - Data (1) 64M × 16 0x9000 0000 0x93FF FFFF 4K × 16 0x0000 2000 0x0000 2FFF EMIF1_CS0n - Data EMIF2_CS2n - Program + Data (1) (1) CLA ACCESS DMA ACCESS Yes (Data only) Available only on the CPU1 subsystem. 6.3.4 Peripheral Registers Memory Map The peripheral registers memory map can be found in Table 6-5. The peripheral registers can be assigned to either the CPU1 or CPU2 subsystems except where noted in Table 6-5. Registers in the peripheral frames share a secondary master (CLA or DMA) selection with all other registers within the same peripheral frame. See the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual for details on the CPU subsystem and secondary master selection. Table 6-5. Peripheral Registers Memory Map REGISTERS STRUCTURE NAME START ADDRESS END ADDRESS CLA ACCESS DMA ACCESS AdcaResultRegs ADC_RESULT_REGS 0x0000 0B00 AdcbResultRegs ADC_RESULT_REGS 0x0000 0B20 0x0000 0B1F Yes Yes 0x0000 0B3F Yes AdccResultRegs ADC_RESULT_REGS Yes 0x0000 0B40 0x0000 0B5F Yes AdcdResultRegs Yes ADC_RESULT_REGS 0x0000 0B60 0x0000 0B7F Yes Yes (2) CPUTIMER_REGS 0x0000 0C00 0x0000 0C07 CpuTimer1Regs(2) CPUTIMER_REGS 0x0000 0C08 0x0000 0C0F CpuTimer2Regs(2) CPUTIMER_REGS 0x0000 0C10 0x0000 0C17 PIE_CTRL_REGS 0x0000 0CE0 0x0000 0CFF Cla1SoftIntRegs CLA_SOFTINT_REGS 0x0000 0CE0 0x0000 0CFF DmaRegs(2) DMA_REGS 0x0000 1000 0x0000 11FF Cla1Regs(2) CLA_REGS 0x0000 1400 0x0000 147F CpuTimer0Regs (2) PieCtrlRegs PROTECTED(1) Yes – CLA only, no CPU access Peripheral Frame 1 182 EPwm1Regs EPWM_REGS 0x0000 4000 0x0000 40FF Yes Yes Yes EPwm2Regs EPWM_REGS 0x0000 4100 0x0000 41FF Yes Yes Yes EPwm3Regs EPWM_REGS 0x0000 4200 0x0000 42FF Yes Yes Yes EPwm4Regs EPWM_REGS 0x0000 4300 0x0000 43FF Yes Yes Yes EPwm5Regs EPWM_REGS 0x0000 4400 0x0000 44FF Yes Yes Yes EPwm6Regs EPWM_REGS 0x0000 4500 0x0000 45FF Yes Yes Yes EPwm7Regs EPWM_REGS 0x0000 4600 0x0000 46FF Yes Yes Yes EPwm8Regs EPWM_REGS 0x0000 4700 0x0000 47FF Yes Yes Yes EPwm9Regs EPWM_REGS 0x0000 4800 0x0000 48FF Yes Yes Yes EPwm10Regs EPWM_REGS 0x0000 4900 0x0000 49FF Yes Yes Yes EPwm11Regs EPWM_REGS 0x0000 4A00 0x0000 4AFF Yes Yes Yes EPwm12Regs EPWM_REGS 0x0000 4B00 0x0000 4BFF Yes Yes Yes ECap1Regs ECAP_REGS 0x0000 5000 0x0000 501F Yes Yes Yes Detailed Description Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Table 6-5. Peripheral Registers Memory Map (continued) REGISTERS STRUCTURE NAME START ADDRESS END ADDRESS PROTECTED(1) CLA ACCESS DMA ACCESS ECap2Regs ECAP_REGS 0x0000 5020 0x0000 503F Yes Yes Yes ECap3Regs ECAP_REGS 0x0000 5040 0x0000 505F Yes Yes Yes ECap4Regs ECAP_REGS 0x0000 5060 0x0000 507F Yes Yes Yes ECap5Regs ECAP_REGS 0x0000 5080 0x0000 509F Yes Yes Yes ECap6Regs ECAP_REGS 0x0000 50A0 0x0000 50BF Yes Yes Yes EQep1Regs EQEP_REGS 0x0000 5100 0x0000 513F Yes Yes Yes EQep2Regs EQEP_REGS 0x0000 5140 0x0000 517F Yes Yes Yes EQep3Regs EQEP_REGS 0x0000 5180 0x0000 51BF Yes Yes Yes DacaRegs DAC_REGS 0x0000 5C00 0x0000 5C0F Yes Yes Yes DacbRegs DAC_REGS 0x0000 5C10 0x0000 5C1F Yes Yes Yes DaccRegs DAC_REGS 0x0000 5C20 0x0000 5C2F Yes Yes Yes Cmpss1Regs CMPSS_REGS 0x0000 5C80 0x0000 5C9F Yes Yes Yes Cmpss2Regs CMPSS_REGS 0x0000 5CA0 0x0000 5CBF Yes Yes Yes Cmpss3Regs CMPSS_REGS 0x0000 5CC0 0x0000 5CDF Yes Yes Yes Cmpss4Regs CMPSS_REGS 0x0000 5CE0 0x0000 5CFF Yes Yes Yes Cmpss5Regs CMPSS_REGS 0x0000 5D00 0x0000 5D1F Yes Yes Yes Cmpss6Regs CMPSS_REGS 0x0000 5D20 0x0000 5D3F Yes Yes Yes Cmpss7Regs CMPSS_REGS 0x0000 5D40 0x0000 5D5F Yes Yes Yes Cmpss8Regs CMPSS_REGS 0x0000 5D60 0x0000 5D7F Yes Yes Yes Sdfm1Regs SDFM_REGS 0x0000 5E00 0x0000 5E7F Yes Yes Yes Sdfm2Regs SDFM_REGS 0x0000 5E80 0x0000 5EFF Yes Yes Yes Peripheral Frame 2 McbspaRegs MCBSP_REGS 0x0000 6000 0x0000 603F Yes Yes Yes McbspbRegs MCBSP_REGS 0x0000 6040 0x0000 607F Yes Yes Yes SpiaRegs SPI_REGS 0x0000 6100 0x0000 610F Yes Yes Yes SpibRegs SPI_REGS 0x0000 6110 0x0000 611F Yes Yes Yes SpicRegs SPI_REGS 0x0000 6120 0x0000 612F Yes Yes Yes UPP_REGS 0x0000 6200 0x0000 62FF Yes Yes Yes WdRegs(2) WD_REGS 0x0000 7000 0x0000 703F Yes NmiIntruptRegs(2) NMI_INTRUPT_REGS 0x0000 7060 0x0000 706F Yes XintRegs(2) XINT_REGS 0x0000 7070 0x0000 707F Yes SciaRegs SCI_REGS 0x0000 7200 0x0000 720F Yes ScibRegs SCI_REGS 0x0000 7210 0x0000 721F Yes ScicRegs SCI_REGS 0x0000 7220 0x0000 722F Yes ScidRegs SCI_REGS 0x0000 7230 0x0000 723F Yes I2caRegs I2C_REGS 0x0000 7300 0x0000 733F Yes I2cbRegs I2C_REGS 0x0000 7340 0x0000 737F Yes AdcaRegs ADC_REGS 0x0000 7400 0x0000 747F Yes Yes AdcbRegs ADC_REGS 0x0000 7480 0x0000 74FF Yes Yes AdccRegs ADC_REGS 0x0000 7500 0x0000 757F Yes Yes AdcdRegs ADC_REGS 0x0000 7580 0x0000 75FF Yes Yes InputXbarRegs(3) INPUT_XBAR_REGS 0x0000 7900 0x0000 791F Yes XbarRegs(3) XBAR_REGS 0x0000 7920 0x0000 793F Yes UppRegs (3) (3) TRIG_REGS 0x0000 7940 0x0000 794F Yes DmaClaSrcSelRegs(2) DMA_CLA_SRC_SEL_REGS 0x0000 7980 0x0000 798F Yes EPwmXbarRegs(3) EPWM_XBAR_REGS 0x0000 7A00 0x0000 7A3F Yes TrigRegs (3) OUTPUT_XBAR_REGS 0x0000 7A80 0x0000 7ABF Yes GpioCtrlRegs(3) GPIO_CTRL_REGS 0x0000 7C00 0x0000 7D7F Yes GpioDataRegs(2) GPIO_DATA_REGS 0x0000 7F00 0x0000 7F2F Yes OutputXbarRegs Yes Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 183 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com Table 6-5. Peripheral Registers Memory Map (continued) STRUCTURE NAME START ADDRESS END ADDRESS PROTECTED(1) UsbaRegs(3) USB_REGS 0x0004 0000 0x0004 0FFF Yes Emif1Regs EMIF_REGS 0x0004 7000 0x0004 77FF Yes EMIF_REGS 0x0004 7800 0x0004 7FFF Yes REGISTERS Emif2Regs (3) CanaRegs CAN_REGS 0x0004 8000 0x0004 87FF Yes CanbRegs CAN_REGS 0x0004 A000 0x0004 A7FF Yes IPC_REGS_CPU1 IPC_REGS_CPU2 0x0005 0000 0x0005 0023 Yes IpcRegs (2) FlashPumpSemaphoreRegs (2) DevCfgRegs(3) AnalogSubsysRegs (3) (4) FLASH_PUMP_SEMAPHORE_REGS 0x0005 0024 0x0005 0025 Yes DEV_CFG_REGS 0x0005 D000 0x0005 D17F Yes ANALOG_SUBSYS_REGS 0x0005 D180 0x0005 D1FF Yes ClkCfgRegs CLK_CFG_REGS 0x0005 D200 0x0005 D2FF Yes CpuSysRegs(2) CPU_SYS_REGS 0x0005 D300 0x0005 D3FF Yes RomPrefetchRegs(3) ROM_PREFETCH_REGS 0x0005 E608 0x0005 E60B Yes (2) DCSM_Z1_REGS 0x0005 F000 0x0005 F02F Yes DcsmZ2Regs(2) DCSM_Z2_REGS 0x0005 F040 0x0005 F05F Yes DcsmCommonRegs(2) DCSM_COMMON_REGS 0x0005 F070 0x0005 F07F Yes DcsmZ1Regs (2) MEM_CFG_REGS 0x0005 F400 0x0005 F47F Yes Emif1ConfigRegs(2) EMIF1_CONFIG_REGS 0x0005 F480 0x0005 F49F Yes Emif2ConfigRegs(3) EMIF2_CONFIG_REGS 0x0005 F4A0 0x0005 F4BF Yes ACCESS_PROTECTION_REGS 0x0005 F4C0 0x0005 F4FF Yes MemCfgRegs AccessProtectionRegs (2) (2) MemoryErrorRegs MEMORY_ERROR_REGS 0x0005 F500 0x0005 F53F Yes RomWaitStateRegs(3) ROM_WAIT_STATE_REGS 0x0005 F540 0x0005 F541 Yes Flash0CtrlRegs(2) FLASH_CTRL_REGS 0x0005 F800 0x0005 FAFF Yes FLASH_ECC_REGS 0x0005 FB00 0x0005 FB3F Yes (2) Flash0EccRegs CLA ACCESS DMA ACCESS (1) The CPU (not applicable for CLA or DMA) contains a write followed by read protection mode to ensure that any read operation that follows a write operation within a protected address range is executed as written by delaying the read operation until the write is initiated. (2) A unique copy of these registers exist on each CPU subsystem. (3) These registers are available only on the CPU1 subsystem. (4) These registers are mapped to either CPU1 or CPU2 based on a semaphore. 184 Detailed Description Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 6.3.5 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Memory Types Table 6-6 provides more information about each memory type. Table 6-6. Memory Types ECC-CAPABLE PARITY SECURITY HIBERNATE RETENTION ACCESS PROTECTION M0, M1 Yes – – Yes – D0, D1 MEMORY TYPE Yes – Yes – Yes LSx – Yes Yes – Yes GSx – Yes – – Yes CPU/CLA MSGRAM – Yes Yes – Yes Boot ROM – – – N/A – Secure ROM – – Yes N/A – Flash Yes – Yes N/A N/A User-configurable DCSM OTP Yes – Yes N/A N/A 6.3.5.1 Dedicated RAM (Mx and Dx RAM) The CPU subsystem has four dedicated ECC-capable RAM blocks: M0, M1, D0, and D1. M0/M1 memories are small nonsecure blocks that are tightly coupled with the CPU (that is, only the CPU has access to them). D0/D1 memories are secure blocks and also have the access-protection feature (CPU write/CPU fetch protection). 6.3.5.2 Local Shared RAM (LSx RAM) RAM blocks which are dedicated to each subsystem and are accessible to its CPU and CLA only, are called local shared RAMs (LSx RAMs). All LSx RAM blocks have parity. These memories are secure and have the access protection (CPU write/CPU fetch) feature. By default, these memories are dedicated to the CPU only, and the user could choose to share these memories with the CLA by configuring the MSEL_LSx bit field in the LSxMSEL registers appropriately. Table 6-7 shows the master access for the LSx RAM. Table 6-7. Master Access for LSx RAM (With Assumption That all Other Access Protections are Disabled) MSEL_LSx CLAPGM_LSx CPU ALLOWED ACCESS CLA ALLOWED ACCESS COMMENT 00 X All – LSx memory is configured as CPU dedicated RAM. 01 0 All Data Read Data Write LSx memory is shared between CPU and CLA1. 01 1 Emulation Read Emulation Write Fetch Only LSx memory is CLA1 program memory. Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 185 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 6.3.5.3 www.ti.com Global Shared RAM (GSx RAM) RAM blocks which are accessible from both the CPU and DMA are called global shared RAMs (GSx RAMs). Each shared RAM block can be owned by either CPU subsystem based on the configuration of respective bits in the GSxMSEL register. All GSx RAM blocks have parity. When a GSx RAM block is owned by a CPU subsystem, the CPUx and CPUx.DMA will have full access to that RAM block whereas the other CPUy and CPUy.DMA will only have read access (no fetch/write access). Table 6-8 shows the master access for the GSx RAM. Table 6-8. Master Access for GSx RAM (With Assumption That all Other Access Protections are Disabled) GSxMSEL 0 1 CPU INSTRUCTION FETCH READ WRITE CPUx.DMA READ CPUx.DMA WRITE CPU1 Yes Yes Yes Yes Yes CPU2 – Yes – Yes – CPU1 – Yes – Yes – CPU2 Yes Yes Yes Yes Yes The GSx RAMs have access protection (CPU write/CPU fetch/DMA write). 6.3.5.4 CPU Message RAM (CPU MSGRAM) These RAM blocks can be used to share data between CPU1 and CPU2. Since these RAMs are used for interprocessor communication, they are also called IPC RAMs. The CPU MSGRAMs have CPU/DMA read/write access from its own CPU subsystem, and CPU/DMA read only access from the other subsystem. This RAM has parity. 6.3.5.5 CLA Message RAM (CLA MSGRAM) These RAM blocks can be used to share data between the CPU and CLA. The CLA has read and write access to the "CLA to CPU MSGRAM." The CPU has read and write access to the "CPU to CLA MSGRAM." The CPU and CLA both have read access to both MSGRAMs. This RAM has parity. 186 Detailed Description Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 6.4 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Identification Table 6-9 shows the Device Identification Registers. Table 6-9. Device Identification Registers NAME ADDRESS SIZE (x16) DESCRIPTION Device part identification number PARTIDH 0x0005 D00A 2 TMS320F28379D 0x00F9 0300 TMS320F28377D 0x00FF 0300 TMS320F28376D 0x00FE 0300 TMS320F28375D 0x00FD 0300 TMS320F28374D 0x00FC 0300 Silicon revision number REVID 0x0005 D00C UID_UNIQUE 0x0007 03C0 2 2 Revision 0 0x0000 0000 Revision A 0x0000 0000 Revision B 0x0000 0002 Revision C 0x0000 0003 Unique identification number. This number is different on each individual device with the same PARTIDH. This can be used as a serial number in the application. This number is present only on TMS Revision C devices. Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 187 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 6.5 www.ti.com Bus Architecture – Peripheral Connectivity Table 6-10 shows a broad view of the peripheral and configuration register accessibility from each bus master. Peripherals can be individually assigned to the CPU1 or CPU2 subsystem (for example, ePWM can be assigned to CPU1 and eQEP assigned to CPU2). Peripherals within peripheral frames 1 or 2 will all be mapped to the respective secondary master as a group (if SPI is assigned to CPUx.DMA, then McBSP is also assigned to CPUx.DMA). Table 6-10. Bus Master Peripheral Access PERIPHERALS (BY BUS ACCESS TYPE) CPU1.DMA CPU1.CLA1 CPU1 CPU2 CPU2.CLA1 CPU2.DMA Peripherals that can be assigned to CPU1 or CPU2 and have common selectable Secondary Masters Peripheral Frame 1: • ePWM • SDFM • eCAP (1) • eQEP (1) • CMPSS (1) • DAC (1) Y Y Y Peripheral Frame 1: • HRPWM Y Y Y Peripheral Frame 2: • SPI • McBSP Y Y Y Peripheral Frame 2: • uPP Configuration (1) Y Y Y Y Y Y Y Y Y Peripherals that can be assigned to CPU1 or CPU2 subsystems SCI Y Y I2C Y Y CAN Y Y Y Y Y Y ADC Configuration Y EMIF1 Y Y Y Peripherals and Device Configuration Registers only on CPU1 subsystem EMIF2 Y Y USB Y Device Capability, Peripheral Reset, Peripheral CPU Select Y GPIO Pin Mapping and Configuration Y Analog System Control Y uPP Message RAMs Y Reset Configuration Y Y Accessible by only one CPU at a time with Semaphore Clock and PLL Configuration Y Y Peripherals and Registers with Unique Copies of Registers for each CPU and CLA Master (2) System Configuration (WD, NMIWD, LPM, Peripheral Clock Gating) Flash Configuration (3) Y Y Y Y CPU Timers Y Y DMA and CLA Trigger Source Select Y Y Y Y Y Y Y Y Y Y GPIO Data (4) ADC Results (1) (2) (3) (4) 188 Y Y These modules are on a Peripheral Frame with DMA access; however, they cannot trigger a DMA transfer. Each CPUx and CPUx.CLA1 can only access its own copy of these registers. At any given time, only one CPU can perform program or erase operations on the Flash. The GPIO Data Registers are unique for each CPUx and CPUx.CLAx. When the GPIO Pin Mapping Register is configured to assign a GPIO to a particular master, the respective GPIO Data Register will control the GPIO. See the General-Purpose Input/Output (GPIO) chapter of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual for more details. Detailed Description Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 6.6 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 C28x Processor The CPU is a 32-bit fixed-point processor. This device draws from the best features of digital signal processing; reduced instruction set computing (RISC); and microcontroller architectures, firmware, and tool sets. The CPU features include a modified Harvard architecture and circular addressing. The RISC features are single-cycle instruction execution, register-to-register operations, and modified Harvard architecture. The microcontroller features include ease of use through an intuitive instruction set, byte packing and unpacking, and bit manipulation. The modified Harvard architecture of the CPU enables instruction and data fetches to be performed in parallel. The CPU can read instructions and data while it writes data simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU does this over six separate address/data buses. For more information on CPU architecture and instruction set, see the TMS320C28x CPU and Instruction Set Reference Guide. 6.6.1 Floating-Point Unit The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU by adding registers and instructions to support IEEE single-precision floating point operations. Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point unit registers. The additional floating-point unit registers are the following: • Eight floating-point result registers, RnH (where n = 0–7) • Floating-point Status Register (STF) • Repeat Block Register (RB) All of the floating-point registers, except the repeat block register, are shadowed. This shadowing can be used in high-priority interrupts for fast context save and restore of the floating-point registers. For more information, see the TMS320C28x Extended Instruction Sets Technical Reference Manual. 6.6.2 Trigonometric Math Unit The TMU extends the capabilities of a C28x+FPU by adding instructions and leveraging existing FPU instructions to speed up the execution of common trigonometric and arithmetic operations listed in Table 6-11. Table 6-11. TMU Supported Instructions INSTRUCTIONS C EQUIVALENT OPERATION PIPELINE CYCLES MPY2PIF32 RaH,RbH a = b * 2pi 2/3 DIV2PIF32 RaH,RbH a = b / 2pi 2/3 DIVF32 RaH,RbH,RcH a = b/c 5 SQRTF32 RaH,RbH a = sqrt(b) 5 SINPUF32 RaH,RbH a = sin(b*2pi) 4 COSPUF32 RaH,RbH a = cos(b*2pi) 4 ATANPUF32 RaH,RbH a = atan(b)/2pi 4 QUADF32 RaH,RbH,RcH,RdH Operation to assist in calculating ATANPU2 5 No changes have been made to existing instructions, pipeline or memory bus architecture. All TMU instructions use the existing FPU register set (R0H to R7H) to carry out their operations. A detailed explanation of the workings of the FPU can be found in the TMS320C28x Extended Instruction Sets Technical Reference Manual. Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 189 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 6.6.3 www.ti.com Viterbi, Complex Math, and CRC Unit II (VCU-II) The VCU-II is the second-generation Viterbi, Complex Math, and CRC extension to the C28x CPU. The VCU-II extends the capabilities of the C28x CPU by adding registers and instructions to accelerate the performance of FFTs and communications-based algorithms. The C28x+VCU-II supports the following algorithm types: • Viterbi Decoding Viterbi decoding is commonly used in baseband communications applications. The Viterbi decode algorithm consists of three main parts: branch metric calculations, compare-select (Viterbi butterfly), and a traceback operation. Table 6-12 shows a summary of the VCU performance for each of these operations. Table 6-12. Viterbi Decode Performance VITERBI OPERATION VCU CYCLES Branch Metric Calculation (code rate = 1/2) Branch Metric Calculation (code rate = 1/3) 2p Viterbi Butterfly (add-compare-select) 2 (1) Traceback per Stage 3 (2) (1) (2) • • 1 C28x CPU takes 15 cycles per butterfly. C28x CPU takes 22 cycles per stage. Cyclic Redundancy Check Cyclic redundancy check (CRC) algorithms provide a straightforward method for verifying data integrity over large data blocks, communication packets, or code sections. The C28x+VCU can perform 8-bit, 16-bit, 24-bit, and 32-bit CRCs. For example, the VCU can compute the CRC for a block length of 10 bytes in 10 cycles. A CRC result register contains the current CRC, which is updated whenever a CRC instruction is executed. Complex Math Complex math is used in many applications, a few of which are: – Fast Fourier Transform (FFT) The complex FFT is used in spread spectrum communications, as well as in many signal processing algorithms. – Complex filters Complex filters improve data reliability, transmission distance, and power efficiency. The C28x+VCU can perform a complex I and Q multiply with coefficients (four multiplies) in a single cycle. In addition, the C28x+VCU can read/write the real and imaginary parts of 16-bit complex data to memory in a single cycle. Table 6-13 shows a summary of the VCU operations enabled by the VCU. Table 6-13. Complex Math Performance COMPLEX MATH OPERATION VCU CYCLES NOTES Add or Subtract 1 32 +/- 32 = 32-bit (Useful for filters) Add or Subtract 1 16 +/- 32 = 15-bit (Useful for FFT) Multiply 2p 16 x 16 = 32-bit Multiply and Accumulate (MAC) 2p 32 + 32 = 32-bit, 16 x 16 = 32-bit RPT MAC 2p+N Repeat MAC. Single cycle after the first operation. For more information, see the TMS320C28x Extended Instruction Sets Technical Reference Manual. 190 Detailed Description Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 6.7 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Control Law Accelerator The CLA is an independent single-precision (32-bit) FPU processor with its own bus structure, fetch mechanism, and pipeline. Eight individual CLA tasks can be specified. Each task is started by software or a peripheral such as the ADC, ePWM, eCAP, eQEP, or CPU Timer 0. The CLA executes one task at a time to completion. When a task completes, the main CPU is notified by an interrupt to the PIE and the CLA automatically begins the next highest-priority pending task. The CLA can directly access the ADC Result registers, ePWM, eCAP, eQEP, Comparator and DAC registers. Dedicated message RAMs provide a method to pass additional data between the main CPU and the CLA. Figure 6-2 shows the CLA block diagram. CLA Control Register Set From Shared Peripherals MPERINT1 to MPERINT8 SYSCLK CLA Clock Enable SYSRSn MIFR(16) MIOVF(16) MICLR(16) MICLROVF(16) MIFRC(16) MIER(16) MIRUN(16) MVECT1(16) MVECT2(16) MVECT3(16) MVECT4(16) MVECT5(16) MVECT6(16) MVECT7(16) MVECT8(16) CLA_INT1 to CLA_INT8 INT11 INT12 PIE C28x CPU LVF LUF CPU Read/Write Data Bus CLA Program Bus CLA Program Memory (LSx) MCTL(16) MPC(16) MSTF(32) MR0(32) MR1(32) MR2(32) MR3(32) MAR0(16) MAR1(16) CLA Data Bus CLA Execution Register Set CLA Data Memory (LSx) CPU Data Bus LSxMSEL[MSEL_LSx] LSxCLAPGM[CLAPGM_LSx] CLA Message RAMs Shared Peripherals MEALLOW CPU Read Data Bus Figure 6-2. CLA Block Diagram Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 191 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 6.8 www.ti.com Direct Memory Access Each CPU has its own 6-channel DMA module. The DMA module provides a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Additionally, the DMA has the capability to orthogonally rearrange the data as it is transferred as well as “ping-pong” data between buffers. These features are useful for structuring data into blocks for optimal CPU processing. The DMA module is an event-based machine, meaning it requires a peripheral or software trigger to start a DMA transfer. Although it can be made into a periodic time-driven machine by configuring a timer as the interrupt trigger source, there is no mechanism within the module itself to start memory transfers periodically. The interrupt trigger source for each of the six DMA channels can be configured separately and each channel contains its own independent PIE interrupt to let the CPU know when a DMA transfer has either started or completed. Five of the six channels are exactly the same, while Channel 1 has the ability to be configured at a higher priority than the others. DMA features include: • Six channels with independent PIE interrupts • Peripheral interrupt trigger sources – ADC interrupts and EVT signals – Multichannel buffered serial port transmit and receive – External interrupts – CPU timers – EPWMxSOC signals – SPIx transmit and receive – SDFM – Software trigger • Data sources and destinations: – GSx RAM – CPU message RAM (IPC RAM) – ADC result registers – ePWMx – SPI – McBSP – EMIF • Word Size: 16-bit or 32-bit (SPI and McBSP limited to 16-bit) • Throughput: four cycles/word (without arbitration) 192 Detailed Description Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Figure 6-3 shows a device-level block diagram of the DMA. CPU1 TIMER (3) Global Shared 16x 4Kx16 GS0-15 RAMs MSG RAM 1Kx16 CPU2 to CPU1 MSG RAM 1Kx16 CPU1 to CPU2 CPU1.DMA Bus TINT (0-2) XINT (1-5) ADC INT (A-D) (1-4), EVT (A-D) SDxFLTy (x = 1 to 2, y = 1 to 4) SOCA (1-12), SOCB (1-12) MXEVT (A-B), MREVT (A-B) SPITX (A-C), SPIRX (A-C) C28x CPU1 Bus DMA Trigger Source Selection DMACHSRCSEL1.CHx DMACHSRCSEL2.CHx CHx.MODE.PERINTSEL (x = 1 to 6) DMA CPU1 DMA Trigger Source Selection XINT (1-5) TINT (0-2) DMACHSRCSEL1.CHx DMACHSRCSEL2.CHx CHx.MODE.PERINTSEL (x = 1 to 6) DMA CPU2 DMA_CHx (1-6) CPU1 XINT (5) ADC RESULTS (4) DMA_CHx (1-6) ADC WRAPPER (4) C28x CPU1 PIE C28x CPU2 PIE CPU2.DMA Bus C28x CPU2 Bus eCAP eQEP DAC CMPSS DMA Trigger Source SDFM (8) EPWM (12) McBSP (2) SPI (3) EMIF1 CPU2 XINT (5) CPU2 TIMER (3) CPU and DMA Data Path Figure 6-3. DMA Block Diagram Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 193 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 6.9 www.ti.com Interprocessor Communication Module The IPC module supports several methods of interprocessor communication: • Thirty-two IPC flags per CPU, which can be used to signal events or indicate status through software polling. Four flags per CPU can generate interrupts. • Shared data registers, which can be used to send commands or other small pieces of information between CPUs. Although the register names were chosen to support a command/response system, they can be used for any purpose as defined in software. • Boot mode and status registers, which allow CPU1 to control the CPU2 boot process. • A general-purpose free-running 64-bit counter. • Two shared message RAMs, which can be used to transfer bulk data. Each RAM can be read by both CPUs. CPU1 can write to one RAM and CPU2 can write to the other. Figure 6-4 shows the IPC architecture. SET31 CLR31 ACK31 FLG31 R=0/W=1 IPCSET[31:0] R=0/W=1 IPCCLR[31:0] SET0 CLR0 IPCACK[31:0] ACK0 R=0/W=1 FLG0 Gen Int Pulse (on FLG 0->1) IPCFLG[31:0] R C1TOC2IPCINT1/2/3/4 CPU2. ePIE IPCSTS[31:0] R R/W IPCSENDCOM[31:0] C1TOC2IPCCOM[31:0] IPCRECVCOM[31:0] R R/W IPCSENDADDR[31:0] C1TOC2IPCADDR[31:0] IPCRECVADDR[31:0] R R/W IPCSENDDATA[31:0] C1TOC2IPCDATAW[31:0] IPCRECVDATA[31:0] R R IPCREMOTEREPLY[31:0] C1TOC2IPCDATAR[31:0] IPCLOCALREPLY[31:0] R/W R/W IPCBOOTMODE[31:0] R R IPCBOOTSTS[31:0] R/W CPU1.EmulationHalt CPU1 R 64-bit Free Run Counter IPCCOUNTERH/L[31:0] CPU2.EmulationHalt PLLSYSCLK R CPU2 SET31 ACK31 CLR31 FLG31 IPCACK[31:0] R=0/W=1 SET0 CLR0 ACK0 IPCSET[31:0] R=0/W=1 IPCCLR[31:0] R=0/W=1 IPCFLG[31:0] R FLG0 CPU1. ePIE C2TOC1IPCINT1/2/3/4 Gen Int Pulse (on FLG 0->1) IPCSTS[31:0] R R IPCRECVCOM[31:0] C2TOC1IPCCOM[31:0] IPCSENDCOM[31:0] R/W R IPCRECVADDR[31:0] C2TOC1IPCADDR[31:0] IPCSENDADDR[31:0] R/W R IPCRECVDATA[31:0] C2TOC1IPCDATAW[31:0] IPCSENDDATA[31:0] R/W R/W IPCLOCALREPLY[31:0] C2TOC1IPCDATAR[31:0] IPCREMOTEREPLY[31:0] R Figure 6-4. IPC Architecture 194 Detailed Description Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 6.10 Boot ROM and Peripheral Booting The device boot ROM (on both the CPUs) contains bootloading software. The CPU1 boot ROM does the system initialization before bringing CPU2 out of reset. The device boot ROM is executed each time the device comes out of reset. Users can configure the device to boot to flash (using GET mode) or choose to boot the device through one of the bootable peripherals by configuring the boot mode GPIO pins. The CPU1 boot ROM, being master, owns the boot mode GPIO and boot configurations. The CPU2 boot ROM either boots to flash (if configured to do so through user configurable DCSM OTP) or enters a WAIT BOOT mode if no OTP is programmed. In WAIT BOOT mode, the CPU1 application instructs the CPU2 boot ROM on how to boot further using boot mode IPC commands supported by CPU2 boot ROM. Table 6-14 shows the possible boot modes supported on the device. The default boot mode pins are GPIO72 (boot mode pin 1) and GPIO 84 (boot mode pin 0). Users may choose to have weak pullups for boot mode pins if they use a peripheral on these pins as well, so the pullups can be overdriven. On this device, customers can change the factory default boot mode pins by programming user configurable DCSM OTP locations. This is recommended only for cases in which the factory default boot mode pins do not fit into the customer design. More details on the locations to be programmed is available in the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual. Table 6-14. Device Boot Mode MODE NO. CPU1 BOOT MODE CPU2 BOOT MODE TRST GPIO72 (BOOT MODE PIN 1) GPIO84 (BOOT MODE PIN 0) 0 Parallel IO Boot from Master 0 0 0 1 SCI Mode Boot from Master 0 0 1 2 Wait Boot Mode Boot from master 0 1 0 3 Get Mode Boot from Master 0 1 1 EMU Boot Mode (Emulator Connected) Boot from Master 1 X X 4-7 NOTE The default behavior of Get mode is boot-to-flash. On unprogrammed devices, using Get mode will result in repeated watchdog resets, which may prevent proper JTAG connection and device initialization. Use Wait mode or another boot mode for unprogrammed devices. CAUTION Some reset sources are internally driven by the device. The user must ensure the pins used for boot mode are not actively driven by other devices in the system for these cases. The boot configuration has a provision for changing the boot pins in OTP. For more details, see the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual. Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 195 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 6.10.1 EMU Boot or Emulation Boot The CPU enters this boot when it detects that TRST is HIGH (in other words, when an emulator/debugger is connected). In this mode, the user can program the EMUBOOTCTRL register (at location 0xD00) to instruct the device on how to boot. If the contents of the EMUBOOTCTRL locations are invalid, then the device would default into WAIT Boot mode. The emulation boot allows users to verify the device boot before programming the boot mode into OTP. 6.10.2 WAIT Boot Mode The device in this boot mode loops in the boot ROM. This mode is useful if users want to connect a debugger on a secure device or if users do not want the device to execute an application in flash yet. 6.10.3 Get Mode The default behavior of Get mode is boot-to-flash. This behavior can be changed by programming the ZxOTPBOOTCTRL locations in user configurable DCSM OTP. The user configurable DCSM OTP on this device is divided in to two secure zones: Z1 and Z2. The Get mode function in boot ROM first checks if a valid OTPBOOTCTRL value is programmed in Z1. If the answer is yes, then the device boots as per the Z1-OTPBOOTCTRL location. The Z2-OTPBOOTCTRL location is read and decodes only if Z1OTPBOOTCTRL is invalid or not programmed. If either Zx-OTPBOOTCTRL location is not programmed, then the device defaults to factory default operation, which is to use factory default boot mode pins to boot to flash if the boot mode pins are set to GET MODE. Users can choose the device through which to boot—SPI, I2C, CAN, and USB—by programming proper values into the user configurable DCSM OTP. More details on this can be found in the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual. 196 Detailed Description Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 6.10.4 Peripheral Pins Used by Bootloaders Table 6-15 shows the GPIO pins used by each peripheral bootloader. This device supports two sets of GPIOs for each mode, as shown in Table 6-15. Table 6-15. GPIO Pins Used by Each Peripheral Bootloader BOOTLOADER GPIO PINS NOTES SCI-Boot0 SCITXDA: GPIO84 SCIRXDA: GPIO85 SCIA Boot IO option 1 (default SCI option when chosen through Boot Mode GPIOs) SCI-Boot1 SCITXDA: GPIO28 SCIRXDA: GPIO29 SCIA Boot option 2 – with alternate IOs. Parallel Boot D0 – GPIO65 D1 – GPIO64 D2 – GPIO58 D3 – GPIO59 D4 – GPIO60 D5 – GPIO61 D6 – GPIO62 D7 – GPIO63 HOST_CTRL – GPIO70 DSP_CTRL – GPIO69 CAN-Boot0 CANRXA: GPIO70 CANTXA: GPIO71 CAN-A Boot -IO Option 1 CAN-Boot1 CANRXA: GPIO62 CANTXA: GPIO63 CAN-A Boot -IO option 2 I2C-Boot0 SDAA: GPIO91 SCLA: GPIO92 I2CA Boot- IO option 1 I2C-Boot1 SDAA: GPIO32 SCLA: GPIO33 I2CA Boot- IO option 2 SPI-Boot0 SPISIMOA - GPIO58 SPISOMIA - GPIO59 SPICLKA - GPIO60 SPISTEA - GPIO61 SPIA Boot- IO Option 1 SPI-Boot1 SPISIMOA – GPIO16 SPISOMIA – GPIO17 SPICLKA – GPIO18 SPISTEA – GPIO19 SPIA Boot - IO Option 2 USB Boot USB0DM - GPIO42 USB0DP - GPIO43 The USB Bootloader will switch the clock source to the external crystal oscillator (X1 and X2 pins). A 20-MHz crystal should be present on the board if this boot mode is selected. Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 197 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 6.11 Dual Code Security Module The dual code security module (DCSM) prevents access to on-chip secure memories. The term “secure” means access to secure memories and resources is blocked. The term “unsecure” means access is allowed; for example, through a debugging tool such as Code Composer Studio™ (CSS). The code security mechanism offers protection for two zones, Zone 1 (Z1) and Zone 2 (Z2). The security implementation for both the zones is identical. Each zone has its own dedicated secure resource (OTP memory and secure ROM) and allocated secure resource (CLA, LSx RAM, and flash sectors). The security of each zone is ensured by its own 128-bit password (CSM password). The password for each zone is stored in an OTP memory location based on a zone-specific link pointer. The link pointer value can be changed to program a different set of security settings (including passwords) in OTP. 6.12 Timers CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The timers have a 32-bit count-down register that generates an interrupt when the counter reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches zero, it is automatically reloaded with a 32-bit period value. CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use and is connected to INT13 of the CPU. CPU-Timer 2 is reserved for TI-RTOS. It is connected to INT14 of the CPU. If TI-RTOS is not being used, CPU-Timer 2 is available for general use. CPU-Timer 2 can be clocked by any one of the following: • SYSCLK (default) • Internal zero-pin oscillator 1 (INTOSC1) • Internal zero-pin oscillator 2 (INTOSC2) • X1 (XTAL) • AUXPLLCLK 6.13 Nonmaskable Interrupt With Watchdog Timer (NMIWD) The NMIWD module is used to handle system-level errors. There is an NMIWD module for each CPU. The conditions monitored are: • Missing system clock due to oscillator failure • Uncorrectable ECC error on CPU access to flash memory • Uncorrectable ECC error on CPU, CLA, or DMA access to RAM • Vector fetch error on the other CPU • CPU1 only: Watchdog or NMI watchdog reset on CPU2 If the CPU does not respond to the latched error condition, then the NMI watchdog will trigger a reset after a programmable time interval. The default time is 65536 SYSCLK cycles. 198 Detailed Description Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 6.14 Watchdog The watchdog module is the same as the one on previous TMS320C2000 devices, but with an optional lower limit on the time between software resets of the counter. This windowed countdown is disabled by default, so the watchdog is fully backwards-compatible. The watchdog generates either a reset or an interrupt. It is clocked from the internal oscillator with a selectable frequency divider. Figure 6-5 shows the various functional blocks within the watchdog module. WDCR(WDPS(2:0)) WDCR(WDDIS) WDCNTR(7:0) Watchdog Prescaler /512 OSCCLK SYSRSn 8-bit Watchdog Counter WDCLK Overflow 1 WDCLK delay Clear Count WDWCR(MIN(7:0)) WDKEY(7:0) Watchdog Key Detector 55 + AA WDRSn WDINTn In Window Good Key Out of Window Watchdog Window Detector Bad Key Generate 512-OSCCLK Output Pulse Watchdog Time-out SCSR(WDENINT) Figure 6-5. Windowed Watchdog 6.15 Configurable Logic Block (CLB) TI uses the CLB to offer additional interfacing and control features for select C2000 devices. Functions that would otherwise be accomplished using external logic devices are now provided by on-chip TI solutions. For example, absolute encoder master protocol interfaces such as EnDat and BiSS are now provided as Position Manager solutions. Configuration files, application programmer’s interface (API), and use examples for such solutions are provided with the C2000 controlSUITE software package. In some solutions, the TI-configured CLB is used with other on-chip resources, such as the SPI port or the C28x CPU, to perform more complex functionality. In some cases, external communications transceivers may need to be added. See Table 3-1 for the devices that support the CLB feature. Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 199 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 7 Applications, Implementation, and Layout NOTE Information in the following sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 7.1 TI Design or Reference Design TI Designs Reference Design Library is a robust reference design library spanning analog, embedded processor, and connectivity. Created by TI experts to help you jump start your system design, all TI Designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download designs at TIDesigns. Industrial Servo Drive and AC Inverter Drive Reference Design The DesignDRIVE Development Kit is a reference design for a complete industrial drive directly connecting to a three-phase ACI or PMSM motor. Many drive topologies can be created from the combined control, power, and communications technologies included on this single platform. This platform includes multiple position sensor interfaces, diverse current sensing techniques, hot-side partitioning options, and expansion for safety and industrial Ethernet. Isolated Current Shunt and Voltage Measurement Reference Design for Motor Drives This evaluation kit and reference design implement the AMC130x reinforced isolated delta-sigma modulators along with integrated Sinc filters in the C2000 TMS320F28377D Delfino microcontroller. The design provides an ability to evaluate the performance of these measurements: three motor currents, three inverter voltages, and the DC Link voltage. Provided in the kit is firmware to configure the Sinc filters, set the PLL frequency, and receive data from Sinc filters. A versatile run-time GUI is also provided to help the user validate the AMC130x performance and supports configuration changes to Sinc filter parameters in the Delfino controller. Isolated, Shunt-Based Current Sensing Reference Design This Verified TI Design implements an isolated current sensing data acqusition solution based on the AMC1304M25 isolated delta-sigma (ΔΣ) modulator and a TMS320F28377D microcontroller. This circuit was designed for shunt-based current measurement applications, which require excellent galvanic isolation and accuracy, such as industrial motor drives, photovoltaic inverters, and energy metering. It is capable of measuring load currents from –10 A to +10 A with better than 0.3% uncalibrated accuracy, and it also provides dual functionality of a high-resolution channel and an additional overcurrent or short-circuit detection channel. The design’s functionality and performance were verified against the circuit design goals by fabricating three PCBs and measuring results for dc and ac input signals. Differential Signal Conditioning Circuit for Current and Voltage Measurement Using Fluxgate Sensors This design provides a 4-channel signal conditioning solution for differential ADCs integrated into a microcontroller measuring motor current using fluxgate sensors. Also provided is an alternative measurement circuit with external differential SAR ADCs as well as circuits for high-speed overcurrent and earth fault detection. Proper differential signal conditioning improves noise immunity on critical current measurements in motor drives. This reference design can help increase the effective resolution of the analog-to-digital conversion, improving motor drive efficiency. 200 Applications, Implementation, and Layout Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 8 Device and Documentation Support 8.1 Device and Development Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320™ MCU devices and support tools. Each TMS320 MCU commercial family member has one of three prefixes: TMX, TMP, or TMS (for example, TMS320F28379D). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (with TMX for devices and TMDX for tools) through fully qualified production devices and tools (with TMS for devices and TMDS for tools). Device development evolutionary flow: TMX Experimental device that is not necessarily representative of the final device's electrical specifications TMP Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification TMS Fully qualified production device Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing TMDS Fully qualified development-support product TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PTP) and temperature range (for example, T). Figure 8-1 provides a legend for reading the complete device name for any family member. For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your TI sales representative. For additional description of the device nomenclature markings on the die, see the TMS320F28379D, TMS320F28377D, TMS320F28376D, TMS320F28375D, TMS320F28374D Dual-Core Delfino Microcontrollers Silicon Errata. Device and Documentation Support Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 201 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 TMS 320 F www.ti.com 28379D PTP T PREFIX TMX = experimental device TMP = prototype device TMS = qualified device DEVICE FAMILY 320 = TMS320 MCU Family TEMPERATURE RANGE T = −40°C to 105°C (TJ) S = −40°C to 125°C (TJ) Q = −40°C to 125°C (TA) (Q refers to Q100 qualification for automotive applications.) PACKAGE TYPE 337-Ball ZWT New Fine Pitch Ball Grid Array (nFBGA) 176-Pin PTP PowerPAD Thermally Enhanced Low-Profile Quad Flatpack (HLQFP) 100-Pin PZP PowerPAD Thermally Enhanced Thin Quad Flatpack (HTQFP) TECHNOLOGY F = Flash DEVICE 28379D 28377D 28376D 28375D 28374D Figure 8-1. Device Nomenclature 8.2 Tools and Software TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. To view all available tools and software for C2000™ real-time control MCUs, visit the C2000 MCU Tools and Software page. Development Tools F28379D controlCARD for C2000 Real time control development kits The Delfino F28379D controlCARD from Texas Instruments is Position Manager-ready and an ideal product for initial software development and short run builds for system prototypes, test stands, and many other projects that require easy access to high-performance controllers. All C2000 controlCARDs are complete board-level modules that utilize a HSEC180 or DIMM100 form factor to provide a low-profile single-board controller solution. The host system needs to provide only a single 5V power rail to the controlCARD for it to be fully functional. F28379D Delfino Experimenter Kit C2000™ MCU Experimenter Kits provide a robust hardware prototyping platform for real-time, closed loop control development with Texas Instruments C2000 32-bit microcontroller family. This platform is a great tool to customize and prove-out solutions for many common power electronics applications, including motor control, digital power supplies, solar inverters, digital LED lighting, precision sensing, and more. Software Tools controlSUITE™ Software Suite controlSUITE™ for C2000 microcontrollers is a cohesive set of software infrastructure and software tools designed to minimize software development time. Code Composer Studio (CCS) Integrated Development Environment (IDE) Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and Embedded Processors portfolio. CCS comprises a suite of tools used to develop and debug embedded applications. CCS includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. Pin Mux Tool The Pin Mux Utility is a software tool which provides a Graphical User Interface for configuring pin multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs. 202 Device and Documentation Support Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com SPRS880G – DECEMBER 2013 – REVISED MAY 2016 F021 Flash Application Programming Interface (API) The F021 Flash Application Programming Interface (API) provides a software library of functions to program, erase, and verify F021 on-chip Flash memory. Training C2000 Multi-Day Workshop The C2000™ Microcontroller 3-Day Workshop will decrease the learning curve from months to days, reduce development time, and accelerate product time to market! The workshop is perfect for both the beginner and advanced users. Based on TI’s latest F28x7x devices, this workshop combines many of the common features and peripherals found on the Piccolo™ and Delfino™ families, making it ideal for anyone interested in learning about the C2000 MCU family of devices. F2837xD Workshop The F2837xD workshop is a hands-on technical course facilitated by qualified Texas Instruments' instructors. Device and Documentation Support Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 203 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 8.3 www.ti.com Documentation Support To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (TMS320F28379D, TMS320F28377D, TMS320F28376D, TMS320F28375D, TMS320F28374D). In the upper right-hand corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document. The current documentation that describes the processor, related peripherals, and other technical collateral is listed below. Errata TMS320F28379D, TMS320F28377D, TMS320F28376D, TMS320F28375D, TMS320F28374D Dual-Core Delfino Microcontrollers Silicon Errata describes known advisories on silicon and provides workarounds. Technical Reference Manual TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual details the integration, the environment, the functional description, and the programming models for each peripheral and subsystem in the 2837xD microcontrollers. CPU User's Guides TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This Reference Guide also describes emulation features available on these DSPs. TMS320C28x Extended Instruction Sets Technical Reference Manual describes the architecture, pipeline, and instruction set of the TMU, VCU-II, and FPU accelerators. Peripheral Guides C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x DSPs. Tools Guides TMS320C28x Assembly Language Tools v15.12.0.LTS User's Guide describes the assembly language tools (assembler and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C28x device. TMS320C28x Optimizing C/C++ Compiler v15.12.0.LTS User's Guide describes the TMS320C28x C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly language source code for the TMS320C28x device. TMS320C28x Instruction Set Simulator Technical Overview describes the simulator, available within the Code Composer Studio for TMS320C2000 IDE, that simulates the instruction set of the C28x core. Application Reports Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor devices for shipment to end users. Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement. Getting Started With TMS320C28x Digital Signal Controllers provides tips on getting started with TMS320C28x DSP software and hardware development to aid in initial design and debug efforts. 204 Device and Documentation Support Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D www.ti.com 8.4 SPRS880G – DECEMBER 2013 – REVISED MAY 2016 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 8-1. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY TMS320F28379D Click here Click here Click here Click here Click here TMS320F28377D Click here Click here Click here Click here Click here TMS320F28376D Click here Click here Click here Click here Click here TMS320F28375D Click here Click here Click here Click here Click here TMS320F28374D Click here Click here Click here Click here Click here 8.5 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 8.6 Trademarks PowerPAD, Delfino, TMS320C2000, C2000, Piccolo, controlSUITE, Code Composer Studio, TMS320, E2E are trademarks of Texas Instruments. Bosch is a registered trademark of Robert Bosch GmbH Corporation. All other trademarks are the property of their respective owners. 8.7 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 8.8 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. Device and Documentation Support Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D Copyright © 2013–2016, Texas Instruments Incorporated 205 TMS320F28379D, TMS320F28377D TMS320F28376D, TMS320F28375D, TMS320F28374D SPRS880G – DECEMBER 2013 – REVISED MAY 2016 www.ti.com 9 Mechanical Packaging and Orderable Information 9.1 Packaging Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. For packages with a thermal pad, the MECHANICAL DATA figure shows a generic thermal pad without dimensions. For the actual thermal pad dimensions that are applicable to this device, see the THERMAL PAD MECHANICAL DATA figure. 206 Mechanical Packaging and Orderable Information Copyright © 2013–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D PACKAGE OPTION ADDENDUM www.ti.com 24-Jun-2016 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TMS320F28374DPTPS ACTIVE HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 TMS320 F28374DPTPS TMS320F28374DPTPT ACTIVE HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 TMS320 F28374DPTPT TMS320F28374DZWTS ACTIVE NFBGA ZWT 337 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 125 TMS320 F28374DZWTS TMS320F28374DZWTT ACTIVE NFBGA ZWT 337 90 TBD Call TI Call TI -40 to 105 TMS320F28375DPTPS ACTIVE HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 TMS320 F28375DPTPS TMS320F28375DPTPT ACTIVE HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 TMS320 F28375DPTPT TMS320F28375DPZPS ACTIVE HTQFP PZP 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 TMS320 F28375DPZPS TMS320F28375DZWTS ACTIVE NFBGA ZWT 337 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 125 TMS320 F28375DZWTS TMS320F28375DZWTT ACTIVE NFBGA ZWT 337 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 TMS320 F28375DZWTT TMS320F28376DPTPS ACTIVE HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 TMS320 F28376DPTPS TMS320F28376DPTPT ACTIVE HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 TMS320 F28376DPTPT TMS320F28376DZWTS ACTIVE NFBGA ZWT 337 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 125 TMS320 F28376DZWTS TMS320F28376DZWTT ACTIVE NFBGA ZWT 337 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 TMS320 F28376DZWTT TMS320F28377DPTPQ PREVIEW HLQFP PTP 176 TBD Call TI Call TI -40 to 125 TMS320F28377DPTPS ACTIVE HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 TMS320 F28377DPTPS TMS320F28377DPTPT ACTIVE HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 TMS320 F28377DPTPT TMS320F28377DZWTQ PREVIEW NFBGA ZWT 337 90 TBD Call TI Call TI -40 to 125 TMS320F28377DZWTQR PREVIEW NFBGA ZWT 337 1000 TBD Call TI Call TI -40 to 125 Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 24-Jun-2016 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TMS320F28377DZWTS ACTIVE NFBGA ZWT 337 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 125 TMS320 F28377DZWTS TMS320F28377DZWTT ACTIVE NFBGA ZWT 337 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 TMS320 F28377DZWTT TMS320F28379DPTPS ACTIVE HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 TMS320 F28379DPTPS TMS320F28379DPTPT ACTIVE HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 105 TMS320 F28379DPTPT TMS320F28379DZWTS ACTIVE NFBGA ZWT 337 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 125 TMS320 F28379DZWTS TMS320F28379DZWTT ACTIVE NFBGA ZWT 337 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 TMS320 F28379DZWTT (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com 24-Jun-2016 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 3 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated