DATASHEET

HIP6005
Data Sheet
March 2000
Buck Pulse-Width Modulator (PWM)
Controller and Output Voltage Monitor
The HIP6005 provides complete control and protection for a
DC-DC converter optimized for high-performance
microprocessor applications. It is designed to drive an
N-Channel MOSFET in a standard buck topology. The
HIP6005 integrates all of the control, output adjustment,
monitoring and protection functions into a single package.
The output voltage of the converter is easily adjusted and
precisely regulated. The HIP6005 includes a 5-input digitalto-analog converter (DAC) that adjusts the output voltage
from 2.1VDC to 3.5VDC in 0.1V increments and from 1.3VDC
to 2.1VDC in 0.05V steps. The precision reference and
voltage-mode regulator hold the selected output voltage to
within ±1% over temperature and line voltage variations.
The HIP6005 provides simple, single feedback loop, voltagemode control with fast transient response. It includes a 200kHz
free-running triangle-wave oscillator that is adjustable from
below 50kHz to over 1MHz. The error amplifier features a
15MHz gain-bandwidth product and 6V/µs slew rate which
enables high converter bandwidth for fast transient
performance. The resulting PWM duty ratio ranges from 0% to
100%.
The HIP6005 monitors the output voltage with a window
comparator that tracks the DAC output and issues a Power
Good signal when the output is within ±10%. The HIP6005
protects against over-current conditions by inhibiting PWM
operation. Built-in over-voltage protection triggers an
external SCR to crowbar the input supply. The HIP6005
monitors the current by using the rDS(ON) of the upper
MOSFET which eliminates the need for a current sensing
resistor.
PART NUMBER
HIP6005CB
0 to 70
PACKAGE
20 Ld SOIC
Features
• Drives N-Channel MOSFET
• Operates from +5V or +12V Input
• Simple Single-Loop Control Design
- Voltage-Mode PWM Control
• Fast Transient Response
- High-Bandwidth Error Amplifier
- Full 0% to 100% Duty Ratio
• Excellent Output Voltage Regulation
- ±1% Over Line Voltage and Temperature
• 5-Bit Digital-to-Analog Output Voltage Selection
- Wide Range . . . . . . . . . . . . . . . . . . . 1.3VDC to 3.5VDC
- 0.1V Binary Steps . . . . . . . . . . . . . . . 2.1VDC to 3.5VDC
- 0.05V Binary Steps . . . . . . . . . . . . . . 1.3VDC to 2.1VDC
• Power-Good Output Voltage Monitor
• Over-Voltage and Over-Current Fault Monitors
- Does Not Require Extra Current Sensing Element,
Uses MOSFETs rDS(ON)
• Small Converter Size
- Constant Frequency Operation
- 200kHz Free-Running Oscillator Programmable from
50kHz to over 1MHz
Applications
• Power Supply for Pentium®, Pentium Pro, PowerPC™ and
Alpha™ Microprocessors
• High-Power 5V to 3.xV DC-DC Regulators
• Low-Voltage Distributed Power Supplies.
HIP6005
(SOIC)
TOP VIEW
PKG.
NO.
M20.3
Alpha™ is a trademark of Digital Equipment Corporation.
Pentium® is a registered trademark of Intel Corporation.
PowerPC™ is a trademark of IBM.
1
4276.2
Pinout
Ordering Information
TEMP.
RANGE (oC)
File Number
VSEN
1
OCSET
2
19 OVP
SS
3
18 VCC
VID0
4
17 NC
VID1
5
16 NC
VID2
6
15 BOOT
VID3
7
14 UGATE
VID4
8
13 PHASE
COMP
9
12 PGOOD
FB 10
20 RT
11 GND
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000
HIP6005
Typical Application
+12V
VIN = +5V OR +12V
VCC
PGOOD
OCSET
MONITOR AND
PROTECTION
SS
OVP
BOOT
RT
OSC
UGATE
VID0
VID1
VID2
VID3
VID4
PHASE
HIP6005
D/A
+VOUT
-
FB
+
+
-
COMP
GND
VSEN
Block Diagram
VCC
VSEN
POWER-ON
RESET (POR)
110%
+
-
PGOOD
90%
+
-
OVERVOLTAGE
115%
10µA
+
OVP
-
SOFTSTART
+
-
OCSET
REFERENCE
200µA
SS
OVERCURRENT
BOOT
UGATE
4V
PHASE
VID0
VID1
VID2
VID3
VID4
D/A
CONVERTER
(DAC)
PWM
COMPARATOR
DACOUT
+
-
+
-
ERROR
AMP
FB
INHIBIT
PWM
GATE
CONTROL
LOGIC
COMP
GND
OSCILLATOR
RT
2
HIP6005
Absolute Maximum Ratings
Thermal Information
Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +15V
Boot Voltage, VBOOT - VPHASE . . . . . . . . . . . . . . . . . . . . . . . . +15V
Input, Output or I/O Voltage . . . . . . . . . . . .GND -0.3V to VCC +0.3V
ESD Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class 2
Thermal Resistance (Typical, Note 1)
θJA (oC/W)
SOIC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
118
Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC
Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300oC
(SOIC - Lead Tips Only)
Operating Conditions
Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . +12V ±10%
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . 0oC to 70oC
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . 0oC to 125oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief 379 for details.
Electrical Specifications
Recommended Operating Conditions, Unless Otherwise Noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
UGATE Open
-
5
-
mA
Rising VCC Threshold
VOCSET = 4.5V
-
-
10.4
V
Falling VCC Threshold
VOCSET = 4.5V
8.2
-
-
V
-
1.26
-
V
VCC SUPPLY CURRENT
Nominal Supply
ICC
POWER-ON RESET
Rising VOCSET Threshold
OSCILLATOR
Free Running Frequency
RT = Open
185
200
215
kHz
Total Variation
6kΩ < RT to GND < 200kΩ
-15
-
+15
%
-
1.9
-
VP-P
-1.0
-
+1.0
%
-
88
-
dB
-
15
-
MHz
-
6
-
V/µs
350
500
-
mA
-
5.5
10
Ω
-
115
120
%
VOCSET = 4.5V
170
200
230
µA
VSEN = 5.5V; VOVP = 0V
60
-
-
mA
-
10
-
µA
∆VOSC
Ramp Amplitude
RT = Open
REFERENCE AND DAC
DACOUT Voltage Accuracy
ERROR AMPLIFIER
DC Gain
Gain-Bandwidth Product
GBW
Slew Rate
SR
COMP = 10pF
GATE DRIVER
Upper Gate Source
IUGATE
Upper Gate Sink
RUGATE
VBOOT - VPHASE = 12V, VUGATE = 6V
PROTECTION
Over-Voltage Trip (VSEN/DACOUT)
OCSET Current Source
IOCSET
OVP Sourcing Current
IOVP
Soft Start Current
ISS
POWER GOOD
Upper Threshold (VSEN / DACOUT)
VSEN Rising
106
-
111
%
Lower Threshold (VSEN / DACOUT)
VSEN Falling
89
-
94
%
Hysteresis (VSEN / DACOUT)
PGOOD Voltage Low
VPGOOD
3
Upper and Lower Threshold
-
2
-
%
IPGOOD = -5mA
-
0.5
-
V
HIP6005
Typical Performance Curves
40
35
CUGATE = 3300pF
30
RT PULLUP
TO +12V
25
ICC (mA)
RESISTANCE (kΩ)
1000
100
CUGATE = 1000pF
20
15
10
10
RT PULLDOWN TO VSS
10
100
SWITCHING FREQUENCY (kHz)
CUGATE = 10pF
5
1000
FIGURE 1. RT RESISTANCE vs FREQUENCY
Functional Pin Description
0
100
200
300
400
500
600
700
800
900
1000
SWITCHING FREQUENCY (kHz)
FIGURE 2. BIAS SUPPLY CURRENT vs FREQUENCY
VID0-4 (Pins 4-8)
VID0-4 are the input pins to the 5-bit DAC. The states of
these five pins program the internal voltage reference
(DACOUT). The level of DACOUT sets the converter output
voltage. It also sets the PGOOD and OVP thresholds. Table
1 specifies DACOUT for the 32 combinations of DAC inputs.
VSEN
1
OCSET
2
19 OVP
SS
3
18 VCC
VID0
4
17 NC
VID1
5
16 NC
COMP (Pin 9) and FB (Pin 10)
VID2
6
15 BOOT
VID3
7
14 UGATE
VID4
8
13 PHASE
COMP
9
12 PGOOD
COMP and FB are the available external pins of the error
amplifier. The FB pin is the inverting input of the error
amplifier and the COMP pin is the error amplifier output.
These pins are used to compensate the voltage-control
feedback loop of the converter.
20 RT
FB 10
11 GND
GND (Pin 11)
VSEN (Pin 1)
This pin is connected to the converters output voltage. The
PGOOD and OVP comparator circuits use this signal to
report output voltage status and for overvoltage protection.
OCSET (Pin 2)
Connect a resistor (ROCSET) from this pin to the drain of the
upper MOSFET. ROCSET, an internal 200µA current source
(IOCS), and the upper MOSFET on-resistance (rDS(ON)) set
the converter over-current (OC) trip point according to the
following equation:
Signal ground for the IC. All voltage levels are measured with
respect to this pin.
PGOOD (Pin 12)
PGOOD is an open collector output used to indicate the
status of the converter output voltage. This pin is pulled low
when the converter output is not within ±10% of the
DACOUT reference voltage.
PHASE (Pin 13)
I OCS • R OCSET
I PEAK = -------------------------------------------r DS ( ON )
Connect the PHASE pin to the upper MOSFET source. This
pin is used to monitor the voltage drop across the MOSFET
for over-current protection. This pin also provides the return
path for the upper gate drive.
An over-current trip cycles the soft-start function.
UGATE (Pin 14)
SS (Pin 3)
Connect UGATE to the upper MOSFET gate. This pin
provides the gate drive for the upper MOSFET.
Connect a capacitor from this pin to ground. This capacitor,
along with an internal 10µA current source, sets the softstart interval of the converter.
4
HIP6005
BOOT (Pin 15)
This pin provides bias voltage to the upper MOSFET driver.
A bootstrap circuit may be used to create a BOOT voltage
suitable to drive a standard N-Channel MOSFET.
NC (Pin 16)
No connection.
NC (Pin 17)
No connection.
VCC (Pin 18)
Provide a 12V bias supply for the chip to this pin.
OVP (Pin 19)
oscillator’s triangle wave. The oscillator’s triangular
waveform is compared to the ramping error amplifier voltage.
This generates PHASE pulses of increasing width that
charge the output capacitor(s). This interval of increasing
pulse width continues to t2. With sufficient output voltage,
the clamp on the reference input controls the output voltage.
This is the interval between t2 and t3 in Figure 3. At t3 the SS
voltage exceeds the DACOUT voltage and the output
voltage is in regulation. This method provides a rapid and
controlled output voltage rise. The PGOOD signal toggles
‘high’ when the output voltage (VSEN pin) is within ±5% of
DACOUT. The 2% hysteresis built into the power good
comparators prevents PGOOD oscillation due to nominal
output voltage ripple.
The OVP pin can be used to drive an external SCR in the
event of an overvoltage condition.
PGOOD
(2V/DIV.)
RT (Pin 20)
This pin provides oscillator switching frequency adjustment.
By placing a resistor (RT) from this pin to GND, the nominal
200kHz switching frequency is increased according to the
following equation:
0V
SOFT-START
(1V/DIV.)
6
5 • 10
Fs ≈ 200kHz + --------------------R T ( kΩ )
OUTPUT
VOLTAGE
(1V/DIV.)
(RT to GND)
Conversely, connecting a pull-up resistor (RT) from this pin
to VCC reduces the switching frequency according to the
following equation:
0V
0V
t1
7
(RT to 12V)
t3
Initialization
The HIP6005 automatically initializes upon receipt of power.
Special sequencing of the input supplies is not necessary.
The Power-On Reset (POR) function continually monitors
the input supply voltages. The POR monitors the bias
voltage at the VCC pin and the input voltage (VIN) on the
OCSET pin. The level on OCSET is equal to VIN less a fixed
voltage drop (see over-current protection). The POR function
initiates soft start operation after both input supply voltages
exceed their POR thresholds. For operation with a single
+12V power source, VIN and VCC are equivalent and the
+12V power source must exceed the rising VCC threshold
before POR initiates operation.
Soft Start
The POR function initiates the soft start sequence. An
internal 10µA current source charges an external capacitor
(CSS) on the SS pin to 4V. Soft start clamps the error
amplifier output (COMP pin) and reference input (+ terminal
of error amp) to the SS pin voltage. Figure 3 shows the soft
start interval with CSS = 0.1µF. Initially the clamp on the error
amplifier (COMP pin) controls the converter’s output voltage.
At t1 in Figure 3, the SS voltage reaches the valley of the
5
Over-Current Protection
The over-current function protects the converter from a
shorted output by using the upper MOSFETs on-resistance,
rDS(ON) to monitor the current. This method enhances the
converter’s efficiency and reduces cost by eliminating a
current sensing resistor.
SOFT-START
Functional Description
FIGURE 3. SOFT START INTERVAL
4V
2V
0V
OUTPUT INDUCTOR
4 • 10
Fs ≈ 200kHz – --------------------R T ( kΩ )
t2
TIME (5ms/DIV.)
15A
10A
5A
0A
TIME (20ms/DIV.)
FIGURE 4. OVER-CURRENT OPERATION
HIP6005
The over-current function cycles the soft-start function in a
hiccup mode to provide fault protection. A resistor (ROCSET)
programs the over-current trip level. An internal 200µA current
sink develops a voltage across ROCSET that is referenced to
VIN . When the voltage across the upper MOSFET (also
referenced to VIN) exceeds the voltage across ROCSET, the
over-current function initiates a soft-start sequence. The softstart function discharges CSS with a 10µA current sink and
inhibits PWM operation. The soft-start function recharges CSS,
and PWM operation resumes with the error amplifier clamped
to the SS voltage. Should an overload occur while recharging
CSS, the soft start function inhibits PWM operation while fully
charging CSS to 4V to complete its cycle. Figure 4 shows this
operation with an overload condition. Note that the inductor
current increases to over 15A during the CSS charging interval
and causes an over-current trip. The converter dissipates very
little power with this method. The measured input power for the
conditions of Figure 4 is 2.5W.
The over-current function will trip at a peak inductor current
(IPEAK) determined by:
I OCSET • R OCSET
I PEAK = --------------------------------------------------r DS ( ON )
where IOCSET is the internal OCSET current source (200µA
typical). The OC trip point varies mainly due to the
MOSFETs rDS(ON) variations. To avoid over-current tripping
in the normal operating load range, find the ROCSET resistor
from the equation above with:
1. The maximum rDS(ON) at the highest junction
temperature.
2. The minimum IOCSET from the specification table.
Determine IPEAK for ,
I PEAK > I OUT ( MAX ) + ( ∆I ) ⁄ 2
where ∆I is the output inductor ripple current.
TABLE 1. OUTPUT VOLTAGE PROGRAM
PIN NAME
VID4
VID3
VID2
VID1
VID0
NOMINAL
OUTPUT
VOLTAGE
DACOUT
PIN NAME
VID4
VID3
VID2
VID1
VID0
NOMINAL
OUTPUT
VOLTAGE
DACOUT
0
1
1
1
1
1.30
1
1
1
1
1
2.0
0
1
1
1
0
1.35
1
1
1
1
0
2.1
0
1
1
0
1
1.40
1
1
1
0
1
2.2
0
1
1
0
0
1.45
1
1
1
0
0
2.3
0
1
0
1
1
1.50
1
1
0
1
1
2.4
0
1
0
1
0
1.55
1
1
0
1
0
2.5
0
1
0
0
1
1.60
1
1
0
0
1
2.6
0
1
0
0
0
1.65
1
1
0
0
0
2.7
0
0
1
1
1
1.70
1
0
1
1
1
2.8
0
0
1
1
0
1.75
1
0
1
1
0
2.9
0
0
1
0
1
1.80
1
0
1
0
1
3.0
0
0
1
0
0
1.85
1
0
1
0
0
3.1
0
0
0
1
1
1.90
1
0
0
1
1
3.2
0
0
0
1
0
1.95
1
0
0
1
0
3.3
0
0
0
0
1
2.00
1
0
0
0
1
3.4
0
0
0
0
0
2.05
1
0
0
0
0
3.5
NOTE: 0 = connected to GND or VSS, 1 = OPEN.
For an equation for the ripple current see the section under
component guidelines titled “Output Inductor Selection.”
A small ceramic capacitor should be placed in parallel with
ROCSET to smooth the voltage across ROCSET in the
presence of switching noise on the input voltage.
Output Voltage Program
The output voltage of a HIP6005 converter is programmed to
discrete levels between 1.3VDC and 3.5VDC . The voltage
6
identification (VID) pins program an internal voltage
reference (DACOUT) with a 5-bit digital-to-analog converter
(DAC). The level of DACOUT also sets the PGOOD and
OVP thresholds. Table 1 specifies the DACOUT voltage for
the 32 combinations of open or short connections on the VID
pins. The output voltage should not be adjusted while the
converter is delivering power. Remove input power before
changing the output voltage. Adjusting the output voltage
HIP6005
BAND GAP
REFERENCE
1.26V
12kΩ
12kΩ
3.6kΩ
VID4
2.7kΩ
VID3
ERROR
AMPLIFIER
DACOUT
+
-
+
COMP
-
5.4kΩ
Figure 6 shows the critical power components of the
converter. To minimize the voltage overshoot the
interconnecting wires indicated by heavy lines should be part
of ground or power plane in a printed circuit board. The
components shown in Figure 6 should be located as close
together as possible. Please note that the capacitors CIN and
CO each represent numerous physical capacitors. Locate the
HIP6005 within 3 inches of the MOSFET, Q1. The circuit
traces for the MOSFETs gate and source connections from
the HIP6005 must be sized to handle up to 1A peak current.
1.7kΩ
VID2
10.7kΩ
VID1
+VIN
VID0
BOOT
DAC
FB
D1
Q1
CBOOT
2.9kΩ
HIP6005
during operation could toggle the PGOOD signal and
exercise the overvoltage protection.
VOUT
PHASE
VCC
SS
FIGURE 5. DAC FUNCTION SCHEMATIC
LO
+12V
D2
CO
LOAD
21.5kΩ
CVCC
CSS
GND
The DAC function is a precision non-inverting summation
amplifier shown in Figure 5. The resistor values shown are
only approximations of the actual precision values used.
Grounding any combination of the VID pins increases the
DACOUT voltage. The ‘open’ circuit voltage on the VID pins
is the band gap reference voltage, 1.26V.
Application Guidelines
Layout Considerations
As in any high frequency switching converter, layout is very
important. Switching current from one power device to another
can generate voltage transients across the impedances of the
interconnecting bond wires and circuit traces. These
interconnecting impedances should be minimized by using
wide, short printed circuit traces. The critical components
should be located as close together as possible using ground
plane construction or single point grounding.
VIN
HIP6005
Q1
LO
PHASE
CIN
D2
VOUT
CO
LOAD
UGATE
FIGURE 7. PRINTED CIRCUIT BOARD SMALL SIGNAL
LAYOUT GUIDELINES
Figure 7 shows the circuit traces that require additional
layout consideration. Use single point and ground plane
construction for the circuits shown. Minimize any leakage
current paths on the SS PIN and locate the capacitor, Css
close to the SS pin because the internal current source is
only 10µA. Provide local VCC decoupling between VCC and
GND pins. Locate the capacitor, CBOOT as close as practical
to the BOOT and PHASE pins.
Feedback Compensation
Figure 8 highlights the voltage-mode control loop for a buck
converter. The output voltage (VOUT) is regulated to the
Reference voltage level. The error amplifier (Error Amp)
output (VE/A) is compared with the oscillator (OSC)
triangular wave to provide a pulse-width modulated (PWM)
wave with an amplitude of VIN at the PHASE node. The
PWM wave is smoothed by the output filter (LO and CO).
The modulator transfer function is the small-signal transfer
function of VOUT/VE/A. This function is dominated by a DC
Gain and the output filter (LO and CO), with a double pole
break frequency at FLC and a zero at FESR . The DC Gain of
the modulator is simply the input voltage (VIN) divided by the
peak-to-peak oscillator voltage ∆VOSC .
Modulator Break Frequency Equations
RETURN
FIGURE 6. PRINTED CIRCUIT BOARD POWER AND
GROUND PLANES OR ISLANDS
7
1
F LC = --------------------------------------2π • L O • C O
1
F ESR = --------------------------------------------2π • ( ESR • C O )
HIP6005
VIN
OSC
PWM
COMPARATOR
LO
FP1
FP2
VOUT
+
CO
ESR
(PARASITIC)
ZFB
VE/A
40
20
20LOG
(R2/R1)
20LOG
(VIN/∆VOSC)
0
ZIN
+
OPEN LOOP
ERROR AMP GAIN
60
PHASE
COMPENSATION
GAIN
MODULATOR
GAIN
-20
REFERENCE
ERROR
AMP
FZ1 FZ2
80
GAIN (dB)
∆VOSC
100
DRIVER
CLOSED LOOP
GAIN
-40
FLC
DETAILED COMPENSATION COMPONENTS
ZFB
C2
VOUT
ZIN
C1
R2
C3
R3
R1
COMP
-
FB
+
HIP6005
DACOUT
FIGURE 8. VOLTAGE-MODE BUCK CONVERTER COMPENSATION DESIGN
The compensation network consists of the error amplifier
(internal to the HIP6005) and the impedance networks ZIN
and ZFB . The goal of the compensation network is to
provide a closed loop transfer function with the highest 0dB
crossing frequency (f0dB) and adequate phase margin.
Phase margin is the difference between the closed loop
phase at f0dB and 180 degrees. The equations below relate
the compensation network’s poles, zeros and gain to the
components (R1, R2, R3, C1, C2, and C3) in Figure 8. Use
these guidelines for locating the poles and zeros of the
compensation network:
1. Pick Gain (R2/R1) for desired converter bandwidth
2. Place 1ST Zero Below Filter’s Double Pole (~75% FLC)
3. Place 2ND Zero at Filter’s Double Pole
4. Place 1ST Pole at the ESR Zero
5. Place 2ND Pole at Half the Switching Frequency
6. Check Gain against Error Amplifier’s Open-Loop Gain
7. Estimate Phase Margin - Repeat if Necessary
Compensation Break Frequency Equations
1
F Z1 = ---------------------------------2π • R2 • C1
1
F P1 = ------------------------------------------------------C1 • C2
2π • R2 •  ----------------------
 C1 + C2
1
F Z2 = -----------------------------------------------------2π • ( R1 + R3 ) • C3
1
F P2 = ---------------------------------2π • R3 • C3
8
-60
10
100
1K
FESR
10K
100K
1M
10M
FREQUENCY (Hz)
FIGURE 9. ASYMPTOTIC BODE PLOT OF CONVERTER GAIN
Figure 9 shows an asymptotic plot of the DC-DC converter’s
gain vs. frequency. The actual Modulator Gain has a high gain
peak due to the high Q factor of the output filter and is not
shown in Figure 9. Using the above guidelines should give a
Compensation Gain similar to the curve plotted. The open
loop error amplifier gain bounds the compensation gain.
Check the compensation gain at FP2 with the capabilities of
the error amplifier. The Closed Loop Gain is constructed on
the log-log graph of Figure 9 by adding the Modulator Gain (in
dB) to the Compensation Gain (in dB). This is equivalent to
multiplying the modulator transfer function to the
compensation transfer function and plotting the gain.
The compensation gain uses external impedance networks
ZFB and ZIN to provide a stable, high bandwidth (BW) overall
loop. A stable control loop has a gain crossing with
-20dB/decade slope and a phase margin greater than 45
degrees. Include worst case component variations when
determining phase margin.
Component Selection Guidelines
Output Capacitor Selection
An output capacitor is required to filter the output and supply
the load transient current. The filtering requirements are a
function of the switching frequency and the ripple current.
The load transient requirements are a function of the slew
rate (di/dt) and the magnitude of the transient load current.
These requirements are generally met with a mix of
capacitors and careful layout.
Modern microprocessors produce transient load rates above
1A/ns. High frequency capacitors initially supply the transient
and slow the current load rate seen by the bulk capacitors.
The bulk filter capacitor values are generally determined by
the ESR (effective series resistance) and voltage rating
requirements rather than actual capacitance requirements.
High frequency decoupling capacitors should be placed as
close to the power pins of the load as physically possible. Be
HIP6005
careful not to add inductance in the circuit board wiring that
could cancel the usefulness of these low inductance
components. Consult with the manufacturer of the load on
specific decoupling requirements. For example, Intel
recommends that the high frequency decoupling for the
Pentium Pro be composed of at least forty (40) 1µF ceramic
capacitors in the 1206 surface-mount package.
Use only specialized low-ESR capacitors intended for
switching-regulator applications for the bulk capacitors. The
bulk capacitor’s ESR will determine the output ripple voltage
and the initial voltage drop after a high slew-rate transient.
An aluminum electrolytic capacitor's ESR value is related to
the case size with lower ESR available in larger case sizes.
However, the equivalent series inductance (ESL) of these
capacitors increases with case size and can reduce the
usefulness of the capacitor to high slew-rate transient
loading. Unfortunately, ESL is not a specified parameter.
Work with your capacitor supplier and measure the
capacitor’s impedance with frequency to select a suitable
component. In most cases, multiple electrolytic capacitors of
small case size perform better than a single large case
capacitor.
Output Inductor Selection
The output inductor is selected to meet the output voltage
ripple requirements and minimize the converter’s response
time to the load transient. The inductor value determines the
converter’s ripple current and the ripple voltage is a function
of the ripple current. The ripple voltage and current are
approximated by the following equations:
V IN – V OUT V OUT
∆I = -------------------------------- • ---------------V IN
FS • L
∆V OUT = ∆I • ESR
Increasing the value of inductance reduces the ripple current
and voltage. However, the large inductance values reduce
the converter’s response time to a load transient.
One of the parameters limiting the converter’s response to a
load transient is the time required to change the inductor
current. Given a sufficiently fast control loop design, the
HIP6005 will provide either 0% or 100% duty cycle in
response to a load transient. The response time is the time
required to slew the inductor current from an initial current
value to the transient current level. During this interval the
difference between the inductor current and the transient
current level must be supplied by the output capacitor.
Minimizing the response time can minimize the output
capacitance required.
The response time to a transient is different for the
application of load and the removal of load. The following
equations give the approximate response time interval for
application and removal of a transient load:
L • I TRAN
t RISE = -------------------------------V IN – V OUT
L • I TRAN
t FALL = -------------------------V OUT
9
where: ITRAN is the transient load current step, tRISE is the
response time to the application of load, and tFALL is the
response time to the removal of load. With a +5V input
source, the worst case response time can be either at the
application or removal of load and dependent upon the
DACOUT setting. Be sure to check both of these equations
at the minimum and maximum output levels for the worst
case response time. With a +12V input, and output voltage
level equal to DACOUT, tFALL is the longest response time.
Input Capacitor Selection
Use a mix of input bypass capacitors to control the voltage
overshoot across the MOSFETs. Use small ceramic
capacitors for high frequency decoupling and bulk
capacitors to supply the current needed each time Q1 turns
on. Place the small ceramic capacitors physically close to
the MOSFETs and between the drain of Q1 and the anode
of Schottky diode D2 .
The important parameters for the bulk input capacitor are
the voltage rating and the RMS current rating. For reliable
operation, select the bulk capacitor with voltage and
current ratings above the maximum input voltage and
largest RMS current required by the circuit. The capacitor
voltage rating should be at least 1.25 times greater than the
maximum input voltage and a voltage rating of 1.5 times is
a conservative guideline. The RMS current rating
requirement for the input capacitor of a buck regulator is
approximately 1/2 the DC load current.
For a through hole design, several electrolytic capacitors
(Panasonic HFQ series or Nichicon PL series or Sanyo MVGX or equivalent) may be needed. For surface mount designs,
solid tantalum capacitors can be used, but caution must be
exercised with regard to the capacitor surge current rating.
These capacitors must be capable of handling the surgecurrent at power-up. The TPS series available from AVX, and
the 593D series from Sprague are both surge current tested.
MOSFET Selection/Considerations
The HIP6005 requires an N-Channel power MOSFET. It
should be selected based upon rDS(ON) , gate supply
requirements, and thermal management requirements.
In high-current applications, the MOSFET power
dissipation, package selection and heatsink are the
dominant design factors. The power dissipation includes
two loss components; conduction loss and switching loss.
The conduction losses are the largest component of power
dissipation for the MOSFET. Switching losses also
contribute to the overall MOSFET power loss (see the
equations below). These equations assume linear voltagecurrent transitions and are approximations. The gatecharge losses are dissipated by the HIP6005 and do not
heat the MOSFET. However, large gate-charge increases
the switching interval, tSW, which increases the upper
MOSFET switching losses. Ensure that the MOSFET is
within its maximum junction temperature at high ambient
HIP6005
temperature by calculating the temperature rise according
to package thermal-resistance specifications. A separate
heatsink may be necessary depending upon MOSFET
power, package type, ambient temperature and air flow.
PCOND = IO2 • rDS(ON) • D
PSW = 1/2 IO • VIN • tSW • FS
Figure 11 shows the upper gate drive supplied by a direct
connection to VCC . This option should only be used in
converter systems where the main input voltage is +5VDC
or less. The peak upper gate-to-source voltage is
approximately VCC less the input supply. For +5V main
power and +12VDC for the bias, the gate-to-source voltage
of Q1 is 7V. A logic-level MOSFET is a good choice for Q1
under these conditions.
Where: D is the duty cycle = VOUT / VIN ,
tSW is the switching interval, and
FS is the switching frequency.
+12V
+5V OR LESS
VCC
Standard-gate MOSFETs are normally recommended for
use with the HIP6005. However, logic-level gate MOSFETs
can be used under special circumstances. The input voltage,
upper gate drive level, and the MOSFETs absolute
gate-to-source voltage rating determine whether logic-level
MOSFETs are appropriate.
HIP6005
BOOT
UGATE
Q1
PHASE
NOTE:
VG-S ≈ VCC -5V
-
+
D2
GND
+12V
DBOOT
+5V OR +12
VCC
HIP6005
IGURE 11. UPPER GATE DRIVE - DIRECT VCC DRIVE OPTION
+ VD BOOT
CBOOT
UGATE
Schottky Selection
Q1
(NOTE)
PHASE
D2
+
Rectifier D2 conducts when the upper MOSFET Q1 is off. The
diode should be a Schottky type for low power losses. The
power dissipation in the schottky rectifier is approximated by:
PCOND = I0 x Vf x (1 - D)
Where: D is the duty cycle = VOUT / VIN , and
Vf is the Schottky forward voltage drop
GND
NOTE: VG-S ≈ VCC - VD.
FIGURE 10. UPPER GATE DRIVE - BOOTSTRAP OPTION
Figure 10 shows the upper gate drive (BOOT pin) supplied
by a bootstrap circuit from VCC . The boot capacitor, CBOOT,
develops a floating supply voltage referenced to the PHASE
pin. This supply is refreshed each cycle to a voltage of VCC
less the boot diode drop (VD) when the schottky diode, D2,
conducts. Logic-level MOSFETs can only be used if the
MOSFETs absolute gate-to-source voltage rating exceeds
the maximum voltage applied to VCC .
10
In addition to power dissipation, package selection and
heatsink requirements are the main design trade-offs in
choosing the schottky rectifier. Since the three factors are
interrelated, the selection process is an iterative procedure.
The maximum junction temperature of the rectifier must
remain below the manufacturer’s specified value, typically
125oC. By using the package thermal resistance specification
and the schottky power dissipation equation (shown above),
the junction temperature of the rectifier can be estimated. Be
sure to use the available airflow and ambient temperature to
determine the junction temperature rise.
HIP6005
HIP6005 DC-DC Converter Application Circuit
Materials and circuit board description, can be found in
application note AN9706.
Figure 12 shows an application circuit of a DC-DC Converter
for an Intel Pentium Pro microprocessor. Detailed
information on the circuit, including a complete Bill-of-
VIN =
+5V
OR
+12V
L1 - 1µH
F1
C1
5x 1000µF
2N6394
2x 1µF
+12V
2K
D1
0.1µF
VSEN 1
RT 20
4
5
6
7
8
VID0
VID1
VID2
VID3
VID4
FB
OVP
18
19
2 OCSET
MONITOR
AND
PROTECTION
SS 3
0.1µF
1000pF
VCC
1.1K
12 PGOOD
15 BOOT
OSC
14 UGATE
HIP6005
0.1µF
Q1
13 PHASE
L2
7µH
D/A
-
+
+
10
D2
-
9
C0
9x 1000µF
11
COMP
2.2nF
+VO
GND
20K
8.2nF
0.082µF
1K
20
Component Selection Notes;
C0 - C9 Each 1000µF 6.3WVDC, Sanyo MV-GX or Equivalent
C1 - C5 Each 330µF 25WVDC, Sanyo MV-GX or Equivalent
L2 - Core: Micrometals T60-52; Each Winding: 14 Turns of 17AWG
L1 - Core: Micrometals T50-52; Winding: 6 Turns of 18AWG
D1 - 1N4148 or Equivalent
D2 - 25A, 35V Schottky, Motorola MBR2535CTL or Equivalent
Q1 - Intersil MOSFET; RFP70N03
FIGURE 12. PENTIUM PRO DC-DC CONVERTER
11
HIP6005
Small Outline Plastic Packages (SOIC)
M20.3 (JEDEC MS-013-AC ISSUE C)
20 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE
N
INDEX
AREA
H
0.25(0.010) M
B M
INCHES
E
-B1
2
3
L
SEATING PLANE
-A-
h x 45o
A
D
-C-
e
A1
B
0.25(0.010) M
C
0.10(0.004)
C A M
SYMBOL
MIN
MAX
MIN
MAX
NOTES
A
0.0926
0.1043
2.35
2.65
-
A1
0.0040
0.0118
0.10
0.30
-
B
0.013
0.0200
0.33
0.51
9
C
0.0091
0.0125
0.23
0.32
-
D
0.4961
0.5118
12.60
13.00
3
E
0.2914
0.2992
7.40
7.60
4
e
α
B S
0.050 BSC
1.27 BSC
-
H
0.394
0.419
10.00
10.65
-
h
0.010
0.029
0.25
0.75
5
L
0.016
0.050
0.40
1.27
6
N
NOTES:
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of
Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006
inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater
above the seating plane, shall not exceed a maximum value of
0.61mm (0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions
are not necessarily exact.
MILLIMETERS
α
20
0o
20
8o
0o
7
8o
Rev. 0 12/93
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240
12
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029