IRFP048R, SiHFP048R www.vishay.com Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Dynamic dV/dt rating 60 RDS(on) () VGS = 10 V • Isolated central mounting hole 0.018 Qg max. (nC) 110 • 175 °C operating temperature Qgs (nC) 29 • Ease of paralleling Qgd (nC) 38 • Simple drive requirements Configuration Single • Material categorization: for definitions of compliance please see www.vishay.com/doc?99912 D DESCRIPTION TO-247AC Third generation power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-247AC package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220AB devices. The TO-247AC is similar but superior to the earlier TO-218 package because its isolated mounting hole. It also provides greater creepage distances between pins to meet the requirements of most safety specifications. G S D G S N-Channel MOSFET ORDERING INFORMATION Package TO-247AC Lead (Pb)-free IRFP048RPbF ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted) PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 60 Gate-Source Voltage VGS ± 20 Continuous Drain Current e Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Current a ID Maximum Power Dissipation TC = 25 °C Peak Diode Recovery dV/dt c Operating Junction and Storage Temperature Range Soldering Recommendations (Peak temperature) d Mounting Torque for 10 s 6-32 or M3 screw V 70 52 A IDM 290 1.3 W/°C EAS 200 mJ PD 190 W dV/dt 4.5 V/ns TJ, Tstg -55 to +175 Linear Derating Factor Single Pulse Avalanche Energy b UNIT 300 °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = 25 V, starting TJ = 25 °C, L = 43 μH, Rg = 25 , IAS = 73 A (see fig. 12). c. ISD 72 A, dI/dt 200 A/μs, VDD VDS, TJ 175 °C. d. 1.6 mm from case. e. Current limited by the package (die current = 73 A) S16-0015-Rev. C, 18-Jan-16 Document Number: 91199 1 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFP048R, SiHFP048R www.vishay.com Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 40 Case-to-Sink, Flat, Greased Surface RthCS 0.24 - Maximum Junction-to-Case (Drain) RthJC - 0.80 UNIT °C/W SPECIFICATIONS (TJ = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 μA 60 - - V VDS/TJ Reference to 25 °C, ID = 1 mA - 0.060 - V/°C VGS(th) VDS = VGS, ID = 250 μA 2.0 - 4.0 V Gate-Source Leakage IGSS VGS = ± 20 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 60 V, VGS = 0 V - - 25 VDS = 48 V, VGS = 0 V, TJ = 150 °C - - 250 μA - - 0.018 gfs VDS = 25 V, ID = 44 A b 20 - - S Input Capacitance Ciss 2400 - Coss - 1300 - Reverse Transfer Capacitance Crss VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 - Output Capacitance - 190 - - - 110 - - 29 Drain-Source On-State Resistance Forward Transconductance RDS(on) ID = 44 A b VGS = 10 V Dynamic Total Gate Charge Qg Gate-Source Charge Qgs Gate-Drain Charge Qgd - - 38 Turn-On Delay Time td(on) - 8.1 - Rise Time Turn-Off Delay Time Fall Time tr td(off) VGS = 10 V ID = 72 A, VDS = 48 V see fig. 6 and 13 b VDD = 30 V, ID = 72 A, Rg = 9.1 , RD = 0.34, see fig. 10 b tf Internal Drain Inductance LD Internal Source Inductance LS Between lead, 6 mm (0.25") from package and center of die contact - 250 - - 210 - - 250 - - 5.0 - - 13 - - - 70c - - 290 pF nC ns D nH G S Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Current a Body Diode Voltage IS ISM VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G TJ = 25 °C, IS = 73 A, VGS = 0 V S b TJ = 25 °C, IF = 72 A, dI/dt = 100 A/μs b - - 2.0 V - 120 180 ns - 0.50 0.80 μC Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width 300 μs; duty cycle 2 %. c. Current limited by the package (die current = 73 A). S16-0015-Rev. C, 18-Jan-16 Document Number: 91199 2 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFP048R, SiHFP048R www.vishay.com Vishay Siliconix TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) Fig. 1 - Typical Output Characteristics, TC = 25 °C Fig. 3 - Typical Transfer Characteristics Fig. 2 - Typical Output Characteristics, TC = 175 °C Fig. 4 - Normalized On-Resistance vs. Temperature S16-0015-Rev. C, 18-Jan-16 Document Number: 91199 3 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFP048R, SiHFP048R www.vishay.com Vishay Siliconix Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 7 - Typical Source-Drain Diode Forward Voltage Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage Fig. 8 - Maximum Safe Operating Area S16-0015-Rev. C, 18-Jan-16 Document Number: 91199 4 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFP048R, SiHFP048R www.vishay.com Vishay Siliconix RD VDS VGS D.U.T. RG + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % Fig. 10a - Switching Time Test Circuit VDS 90 % 10 % VGS td(on) td(off) tf tr Fig. 10b - Switching Time Waveforms Fig. 9 - Maximum Drain Current vs. Case Temperature Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case L Vary tp to obtain required IAS VDS VDS tp VDD D.U.T. RG + - IAS V DD A VDS 10 V tp 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit S16-0015-Rev. C, 18-Jan-16 IAS Fig. 12b - Unclamped Inductive Waveforms Document Number: 91199 5 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFP048R, SiHFP048R www.vishay.com Vishay Siliconix Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG 10 V 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform S16-0015-Rev. C, 18-Jan-16 Fig. 13b - Gate Charge Test Circuit Document Number: 91199 6 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFP048R, SiHFP048R www.vishay.com Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - Rg • • • • dV/dt controlled by Rg Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91199. S16-0015-Rev. C, 18-Jan-16 Document Number: 91199 7 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information www.vishay.com Vishay Siliconix TO-247AC (High Voltage) A A 4 E B 3 R/2 E/2 7 ØP Ø k M DBM A2 S (Datum B) ØP1 A D2 Q 4 4 2xR (2) D1 D 1 2 4 D 3 Thermal pad 5 L1 C L A See view B 2 x b2 3xb 0.10 M C A M 4 E1 0.01 M D B M View A - A C 2x e A1 b4 Planting Lead Assignments 1. Gate 2. Drain 3. Source 4. Drain D DE (b1, b3, b5) Base metal E C (c) C c1 (b, b2, b4) (4) Section C - C, D - D, E - E View B MILLIMETERS DIM. MIN. MAX. A 4.58 5.31 A1 2.21 2.59 A2 1.17 2.49 b 0.99 1.40 b1 0.99 1.35 b2 1.53 2.39 b3 1.65 2.37 b4 2.42 3.43 b5 2.59 3.38 c 0.38 0.86 c1 0.38 0.76 D 19.71 20.82 D1 13.08 ECN: X13-0103-Rev. D, 01-Jul-13 DWG: 5971 INCHES MIN. MAX. 0.180 0.209 0.087 0.102 0.046 0.098 0.039 0.055 0.039 0.053 0.060 0.094 0.065 0.093 0.095 0.135 0.102 0.133 0.015 0.034 0.015 0.030 0.776 0.820 0.515 - DIM. D2 E E1 e Øk L L1 N ØP Ø P1 Q R S MILLIMETERS MIN. MAX. 0.51 1.30 15.29 15.87 13.72 5.46 BSC 0.254 14.20 16.25 3.71 4.29 7.62 BSC 3.51 3.66 7.39 5.31 5.69 4.52 5.49 5.51 BSC INCHES MIN. MAX. 0.020 0.051 0.602 0.625 0.540 0.215 BSC 0.010 0.559 0.640 0.146 0.169 0.300 BSC 0.138 0.144 0.291 0.209 0.224 0.178 0.216 0.217 BSC Notes 1. Dimensioning and tolerancing per ASME Y14.5M-1994. 2. Contour of slot optional. 3. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body. 4. Thermal pad contour optional with dimensions D1 and E1. 5. Lead finish uncontrolled in L1. 6. Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154"). 7. Outline conforms to JEDEC outline TO-247 with exception of dimension c. 8. Xian and Mingxin actually photo. Revision: 01-Jul-13 Document Number: 91360 1 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Material Category Policy Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards. Revision: 02-Oct-12 1 Document Number: 91000