Freescale Semiconductor Inc. Data Sheet: Technical Data Document Number: IMX6DQPIEC Rev. 1, 03/2016 MCIMX6DPxCxxxxA MCIMX6QPxCxxxxA i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products Package Information Case FCPBGA 21 x 21 mm, 0.8 mm pitch Ordering Information See Table 1 1 Introduction The i.MX 6DualPlus/6QuadPlus automotive and infotainment processors represent Freescale Semiconductor’s latest achievement in integrated multimedia applications processors.These processors offer the highest levels of graphics processing performance in the i.MX 6 series family and are ideally suited for graphics intensive applications. The i.MX 6DualPlus/6QuadPlus processors feature the Freescale advanced implementation of the quad ARM® Cortex®-A9 core, which operates at speeds up to 1 GHz. They include updated versions of the 2D and 3D graphics processors, 1080p video processing, and integrated power management. Each processor provides a 64-bit DDR3/DDR3L/LPDDR2 memory interface and a number of other interfaces for connecting peripherals, such as WLAN, Bluetooth®, GPS, hard drive, displays, and camera sensors. 1 2 3 4 5 6 7 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Signal Naming Convention . . . . . . . . . . . . . . . . . . . 7 Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Modules List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1 Special Signal Considerations. . . . . . . . . . . . . . . . 18 3.2 Recommended Connections for Unused Analog Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 Chip-Level Conditions . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Power Supplies Requirements and Restrictions . . 31 4.3 Integrated LDO Voltage Regulator Parameters . . . 32 4.4 PLL Electrical Characteristics . . . . . . . . . . . . . . . . 34 4.5 On-Chip Oscillators . . . . . . . . . . . . . . . . . . . . . . . . 35 4.6 I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 37 4.7 I/O AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 40 4.8 Output Buffer Impedance Parameters . . . . . . . . . . 45 4.9 System Modules Timing . . . . . . . . . . . . . . . . . . . . 48 4.10 General-Purpose Media Interface (GPMI) Timing. 64 4.11 External Peripheral Interface Parameters . . . . . . . 73 Boot Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . 134 5.1 Boot Mode Configuration Pins. . . . . . . . . . . . . . . 134 5.2 Boot Devices Interfaces Allocation . . . . . . . . . . . 135 Package Information and Contact Assignments . . . . . . 137 6.1 Signal Naming Convention . . . . . . . . . . . . . . . . . 137 6.2 21 x 21 mm Package Information . . . . . . . . . . . . 137 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2016 Freescale Semiconductor, Inc. All rights reserved. Introduction The i.MX 6DualPlus/6QuadPlus processors are specifically useful for applications such as the following: • Graphics rendering for Human Machine Interfaces (HMI) • Video processing and display The i.MX 6DualPlus/6QuadPlus processors offers numerous advanced features, such as: • Multilevel memory system—The multilevel memory system of each processor is based on the L1 instruction and data caches, L2 cache, and internal and external memory. The processors support many types of external memory devices, including DDR3, DDR3L, LPDDR2, NOR Flash, PSRAM, cellular RAM, NAND Flash (MLC and SLC), OneNAND™, and managed NAND, including eMMC up to rev 4.4/4.41. • Smart speed technology—The processors have power management throughout the device that enables the rich suite of multimedia features and peripherals to consume minimum power in both active and various low power modes. Smart speed technology enables the designer to deliver a feature-rich product, requiring levels of power far lower than industry expectations. • Dynamic voltage and frequency scaling—The processors improve the power efficiency of devices by scaling the voltage and frequency to optimize performance. • Multimedia powerhouse—The multimedia performance of each processor is enhanced by a multilevel cache system, Neon® MPE (Media Processor Engine) co-processor, a multi-standard hardware video codec, 2 autonomous and independent image processing units (IPU), and a programmable smart DMA (SDMA) controller. • Powerful graphics acceleration—Each processor provides three independent, integrated graphics processing units: an OpenGL® ES 3.0 3D graphics accelerator with four shaders (up to 198 MTri/s and OpenCL support), 2D graphics accelerator, and dedicated OpenVG™ 1.1 accelerator. • Interface flexibility—Each processor supports connections to a variety of interfaces: LCD controller for up to four displays (including parallel display, HDMI1.4, MIPI display, and LVDS display), dual CMOS sensor interface (parallel or through MIPI), high-speed USB on-the-go with PHY, high-speed USB host with PHY, multiple expansion card ports (high-speed MMC/SDIO host and other), 10/100/1000 Mbps Gigabit Ethernet controller, and a variety of other popular interfaces (such as UART, I2C, and I2S serial audio, SATA-II, and PCIe-II). • Advanced security—The processors deliver hardware-enabled security features that enable secure e-commerce, digital rights management (DRM), information encryption, secure boot, and secure software downloads. The security features are discussed in detail in the i.MX 6Dual/6Quad security reference manual (IMX6DQ6SDLSRM). • Integrated power management—The processors integrate linear regulators and internally generate voltage levels for different domains. This significantly simplifies system power management structure. 1.1 Ordering Information Table 1 shows examples of orderable part numbers covered by this data sheet. This table does not include all possible orderable part numbers. The latest part numbers are available on freescale.com/imx6series. If your desired part number is not listed in the table, or you have questions about available parts, see freescale.com/imx6series or contact your Freescale representative. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 2 Freescale Semiconductor Inc. Introduction Table 1. Example Orderable Part Numbers Part Number Quad/Dual CPU Options Speed1 Temperature Grade Package MCIMX6DP7CVT8AA i.MX 6DualPlus VPU, GPU 800 MHz Industrial 21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded) MCIMX6QP7CVT8AA i.MX 6QuadPlus VPU, GPU 800 MHz Industrial 21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded) 1 If a 24 MHz input clock is used (required for USB), the maximum speed is limited to 792 MHz. Figure 1 describes the part number nomenclature to identify the characteristics of the specific part number you have (for example, cores, frequency, temperature grade, fuse options, silicon revision). Figure 1 applies to the i.MX 6DualPlus/6QuadPlus. The two characteristics that identify which data sheet a specific part applies to are the part number series field and the temperature grade (junction) field: • The i.MX 6DualPlus/6QuadPlus Automotive Applications Processors data sheet (IMX6DQPAEC) covers parts listed for the “Plus” series and with “A” indicating automotive temperature. • The i.MX 6DualPlus/6QuadPlus Applications Processors for Consumer Products data sheet (IMX6DQPCEC) covers parts listed with “D (Commercial temp)” or “E (Extended Commercial temp)” • The i.MX 6DualPlus/6QuadPlus Applications Processors for Industrial Products data sheet (IMX6DQPIEC) covers parts listed with “C (Industrial temp)” Ensure that you have the right data sheet for your specific part by checking the fields: Part # Series (DP/QP), temperature grade (junction) (A), and Frequency (8). i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 3 Introduction MC IMX6 XX @ + VV $$ % A Qualification level MC Silicon revision A Prototype Samples PC Rev 1.0 A Mass Production MC Special SC Fusing % Real Codec off and no HDCP or DTCP A Part # series XX i.MX 6QuadPlus QP i.MX 6DualPlus DP Frequency Part differentiator @ Industrial with VPU, GPU, no MLB 7 Automotive with VPU, GPU 6 Consumer, with VPU, GPU 5 Automotive with GPU, no VPU 4 800 MHz1 (Industrial grade) 8 850 MHz (Automotive grade) 8 1 GHz2 1 Package type Temperature Tj + Extended commercial: -20 to + 105°C E Industrial: -40 to +105°C C Automotive: -40 to + 125°C A $$ RoHS FCPBGA 21x21 0.8mm (lidded) VT FCPBGA 21x21 0.8mm (non lidded) YM 1. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 792 MHz. 2. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 996 MHz. Figure 1. Part Number Nomenclature—i.MX 6DualPlus and i.MX 6QuadPlus 1.2 Features The i.MX 6DualPlus/6QuadPlus processors are based on ARM Cortex-A9 MPCore platform, which has the following features: • ARM Cortex-A9 MPCore 4xCPU processor (with TrustZone®) • The core configuration is symmetric, where each core includes: — 32 KByte L1 Instruction Cache — 32 KByte L1 Data Cache — Private Timer and Watchdog — Cortex-A9 NEON MPE (Media Processing Engine) Co-processor The ARM Cortex-A9 MPCore complex includes: • General Interrupt Controller (GIC) with 128 interrupt support • Global Timer • Snoop Control Unit (SCU) • 1 MB unified I/D L2 cache, shared by two/four cores • Two Master AXI (64-bit) bus interfaces output of L2 cache • Frequency of the core (including Neon and L1 cache) as per Table 6. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 4 Freescale Semiconductor Inc. Introduction • NEON MPE coprocessor — SIMD Media Processing Architecture — NEON register file with 32x64-bit general-purpose registers — NEON Integer execute pipeline (ALU, Shift, MAC) — NEON dual, single-precision floating point execute pipeline (FADD, FMUL) — NEON load/store and permute pipeline The SoC-level memory system consists of the following additional components: — Boot ROM, including HAB (96 KB) — Internal multimedia / shared, fast access RAM (OCRAM, 512 KB) — Secure/non-secure RAM (16 KB) • External memory interfaces: — 16-bit, 32-bit, and 64-bit DDR3-1066, DDR3L-1066, and 1/2 LPDDR2 channels, supporting DDR interleaving mode, for dual x32 LPDDR2 — 8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size, BA-NAND, PBA-NAND, LBA-NAND, OneNAND™ and others. BCH ECC up to 40 bit. — 16/32-bit NOR Flash. All EIMv2 pins are muxed on other interfaces. — 16/32-bit PSRAM, Cellular RAM Each i.MX 6DualPlus/6QuadPlus processor enables the following interfaces to external devices (some of them are muxed and not available simultaneously): • Hard Disk Drives—SATA II, 3.0 Gbps • Displays—Total five interfaces available. Total raw pixel rate of all interfaces is up to 450 Mpixels/sec, 24 bpp. Up to four interfaces may be active in parallel. — One Parallel 24-bit display port, up to 225 Mpixels/sec (for example, WUXGA at 60 Hz or dual HD1080 and WXGA at 60 Hz) — LVDS serial ports—One port up to 165 Mpixels/sec or two ports up to 85 MP/sec (for example, WUXGA at 60 Hz) each — HDMI 1.4 port — MIPI/DSI, two lanes at 1 Gbps • Camera sensors: — Parallel Camera port (up to 20 bit and up to 240 MHz peak) — MIPI CSI-2 serial camera port, supporting up to 1000 Mbps/lane in 1/2/3-lane mode and up to 800 Mbps/lane in 4-lane mode. The CSI-2 Receiver core can manage one clock lane and up to four data lanes. Each i.MX 6DualPlus/6QuadPlus processor has four lanes. • Expansion cards: — Four MMC/SD/SDIO card ports all supporting: – 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104 mode (104 MB/s max) – 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 5 Introduction • • • USB: — One High Speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB PHY — Three USB 2.0 (480 Mbps) hosts: – One HS host with integrated High Speed PHY – Two HS hosts with integrated HS-IC USB (High Speed Inter-Chip USB) PHY Expansion PCI Express port (PCIe) v2.0 one lane — PCI Express (Gen 2.0) dual mode complex, supporting Root complex operations and Endpoint operations. Uses x1 PHY configuration. Miscellaneous IPs and interfaces: — SSI block capable of supporting audio sample frequencies up to 192 kHz stereo inputs and outputs with I2S mode — ESAI is capable of supporting audio sample frequencies up to 260kHz in I2S mode with 7.1 multi channel outputs — Five UARTs, up to 5.0 Mbps each: – Providing RS232 interface – Supporting 9-bit RS485 multidrop mode – One of the five UARTs (UART1) supports 8-wire while others four supports 4-wire. This is due to the SoC IOMUX limitation, since all UART IPs are identical. — Five eCSPI (Enhanced CSPI) — Three I2C, supporting 400 kbps — Gigabit Ethernet Controller (IEEE1588 compliant), 10/100/10001 Mbps — Four Pulse Width Modulators (PWM) — System JTAG Controller (SJC) — GPIO with interrupt capabilities — 8x8 Key Pad Port (KPP) — Sony Philips Digital Interconnect Format (SPDIF), Rx and Tx — Two Controller Area Network (FlexCAN), 1 Mbps each — Two Watchdog timers (WDOG) — Audio MUX (AUDMUX) The i.MX 6DualPlus/6QuadPlus processors integrate advanced power management unit and controllers: • Provide PMU, including LDO supplies, for on-chip resources • Use Temperature Sensor for monitoring the die temperature • Support DVFS techniques for low power modes • Use Software State Retention and Power Gating for ARM and MPE • Support various levels of system power modes • Use flexible clock gating control scheme 1. The theoretical maximum performance of 1 Gbps ENET is limited to 470 Mbps (total for Tx and Rx) due to internal bus throughput limitations. The actual measured performance in optimized environment is up to 400 Mbps. For details, see the ERR004512 erratum in the i.MX 6Dual/6Quad errata document (IMX6DQCE). i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 6 Freescale Semiconductor Inc. Introduction The i.MX 6DualPlus/6QuadPlus processors use dedicated hardware accelerators to meet the targeted multimedia performance. The use of hardware accelerators is a key factor in obtaining high performance at low power consumption numbers, while having the CPU core relatively free for performing other tasks. The i.MX 6DualPlus/6QuadPlus processors incorporate the following hardware accelerators: • VPU—Video Processing Unit • IPUv3H—Image Processing Unit version 3H (2 IPUs) • GPU3Dv6—3D Graphics Processing Unit (OpenGL ES 3.0) version 6 • GPU2Dv3—2D Graphics Processing Unit (BitBlt) version 3 • GPUVG—OpenVG 1.1 Graphics Processing Unit • 4 x PRE—Prefetch and Resolve Engine • 2 x PRG—Prefetch and Resolve Gasket • ASRC—Asynchronous Sample Rate Converter Security functions are enabled and accelerated by the following hardware: • ARM TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.) • SJC—System JTAG Controller. Protecting JTAG from debug port attacks by regulating or blocking the access to the system debug features. • CAAM—Cryptographic Acceleration and Assurance Module, containing 16 KB secure RAM and True and Pseudo Random Number Generator (NIST certified) • SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock • CSU—Central Security Unit. Enhancement for the IC Identification Module (IIM). Will be configured during boot and by eFUSEs and will determine the security level operation mode as well as the TZ policy. • A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements: SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization. 1.3 Signal Naming Convention Throughout this document, the updated signal names are used except where referenced as a ball name (such as the Functional Contact Assignments table, Ball Map table, and so on). A master list of the signal name changes is in the document, IMX 6 Series Standardized Signal Name Map (EB792). This list can be used to map the signal names used in older documentation to the new standardized naming conventions. The signal names of the i.MX6 series of products are standardized to align the signal names within the family and across the documentation. Benefits of this standardization are as follows: • Signal names are unique within the scope of an SoC and within the series of products • Searches will return all occurrences of the named signal • Signal names are consistent between i.MX 6 series products implementing the same modules • The module instance is incorporated into the signal name This standardization applies only to signal names. The ball names are preserved to prevent the need to change schematics, BSDL models, IBIS models, and so on. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 7 Architectural Overview 2 Architectural Overview The following subsections provide an architectural overview of the i.MX 6DualPlus/6QuadPlus processor system. 2.1 Block Diagram Figure 2 shows the functional modules in the i.MX 6DualPlus/6QuadPlus processor system. Digital Audio LPDDR2 (400MHz) DDR3 (532MHz) NOR Flash PSRAM External Memory Interface GPMI MMDC Internal RAM (512KB) Smart DMA (SDMA) TPIU SJC Shared Peripherals eCSPI (5) 5xFast-UART ESAI SPDIF Rx/Tx ASRC Security CAAM (16KB Ram) L1 I/D Cache Timer, Wdog 1MB L2 cache SCU, Timer PTM’s CTI’s Video Proc. Unit (VPU + Cache) 3D Graphics Proc. Unit (GPU3D) CSU Fuse Box 2D Graphics Proc. Unit (GPU2D) GPS Timers/Control WDOG (2) OpenVG 1.1 Proc. Unit (GPUVG) GPT Audio, Power Mgmnt. PRE ARM Cortex A9 MPCore Platform 4x A9-Core SNVS (SRTC) Power Management Unit (PMU) LDOs HDMI 1/2 LCD Displays HDMI 1.4 Display EPIT (2) DSI/MIPI Clock and Reset PLL (8) CCM GPC Crystals & Clock sources XTALOSC OSC32K AP Peripherals OTG PHY1 Host PHY2 WLAN JTAG (IEEE1149.6) 2xHSIC PHY USB OTG (dev/host) MMC/SD eMMC/eSD uSDHC (4) AUDMUX I2C (3) MMC/SD SDXC PWM (4) OCOTP Modem IC IOMUXC KPP Keypad GPIO CAN (2) 1-Gbps ENET HSI/MIPI Temp Monitor Bluetooth MIPI Display SRC CTIs SSI (3) LDB PRG Debug DAP SPBA 1/2 LVDS (WUXGA+) ImageProcessing Subsystem 2x IPUv3H Boot ROM (96KB) 2xCAN Interface PCIe GPS Bus 4x Camera Parallel/MIPI Application Processor CSI2/MIPI Domain (AP) EIM SATA II 3.0Gbps Battery Ctrl Device AXI and AHB Switch Fabric Raw/ONFI 2.2 Nand-Flash Ethernet 10/100/1000 Mbps USB OTG + 3 HS Ports MLB/Most Network Figure 2. i.MX 6DualPlus/6QuadPlusIndustrial Grade System Block Diagram NOTE The numbers in brackets indicate number of module instances. For example, PWM (4) indicates four separate PWM peripherals. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 8 Freescale Semiconductor Inc. Modules List 3 Modules List The i.MX 6DualPlus/6QuadPlus processors contain a variety of digital and analog modules. Table 2 describes these modules in alphabetical order. Table 2. i.MX 6DualPlus/6QuadPlus Modules List Block Mnemonic Block Name Subsystem Brief Description 512 x 8 Fuse Electrical Fuse Array Security Box Electrical Fuse Array. Enables to setup Boot Modes, Security Levels, Security Keys, and many other system parameters. The i.MX 6DualPlus/6QuadPlus processors consist of 512x8-bit fuse box accessible through OCOTP_CTRL interface. APBH-DMA NAND Flash and BCH ECC DMA Controller System Control Peripherals DMA controller used for GPMI2 operation ARM ARM Platform ARM The ARM Cortex-A9 platform consists of 4x (four) Cortex-A9 cores version r2p10 and associated sub-blocks, including Level 2 Cache Controller, SCU (Snoop Control Unit), GIC (General Interrupt Controller), private timers, Watchdog, and CoreSight debug modules. ASRC Asynchronous Sample Rate Converter Multimedia Peripherals The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal associated to an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample rate conversion of up to 10 channels of about -120dB THD+N. The sample rate conversion of each channel is associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to three sampling rate pairs. AUDMUX Digital Audio Mux Multimedia Peripherals The AUDMUX is a programmable interconnect for voice, audio, and synchronous data routing between host serial interfaces (for example, SSI1, SSI2, and SSI3) and peripheral serial interfaces (audio and voice codecs). The AUDMUX has seven ports with identical functionality and programming models. A desired connectivity is achieved by configuring two or more AUDMUX ports. BCH40 Binary-BCH ECC Processor System Control Peripherals The BCH40 module provides up to 40-bit ECC error correction for NAND Flash controller (GPMI) CAAM Cryptographic Accelerator and Assurance Module Security CAAM is a cryptographic accelerator and assurance module. CAAM implements several encryption and hashing functions, a run-time integrity checker, and a Pseudo Random Number Generator (PRNG). The pseudo random number generator is certified by Cryptographic Algorithm Validation Program (CAVP) of National Institute of Standards and Technology (NIST). Its DRBG validation number is 94 and its SHS validation number is 1455. CAAM also implements a Secure Memory mechanism. In i.MX 6DualPlus/6QuadPlus processors, the security memory provided is 16 KB. CCM GPC SRC Clock Control Module, General Power Controller, System Reset Controller Clocks, These modules are responsible for clock and reset distribution in the Resets, and system, and also for the system power management. Power Control i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 9 Modules List Table 2. i.MX 6DualPlus/6QuadPlus Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description CSI MIPI CSI-2 Interface Multimedia Peripherals The CSI IP provides MIPI CSI-2 standard camera interface port. The CSI-2 interface supports up to 1 Gbps for up to 3 data lanes and up to 800 Mbps for 4 data lanes. CSU Central Security Unit Security The Central Security Unit (CSU) is responsible for setting comprehensive security policy within the i.MX 6DualPlus/6QuadPlus platform. The Security Control Registers (SCR) of the CSU are set during boot time by the HAB and are locked to prevent further writing. CTI-0 CTI-1 CTI-2 CTI-3 CTI-4 Cross Trigger Interfaces CTM Cross Trigger Matrix Debug / Trace Cross Trigger Matrix IP is used to route triggering events between CTIs. The CTM module is internal to the Cortex-A9 Core Platform. DAP Debug Access Port System Control Peripherals DCIC-0 DCIC-1 Display Content Integrity Checker Automotive IP The DCIC provides integrity check on portion(s) of the display. Each i.MX 6DualPlus/6QuadPlus processor has two such modules, one for each IPU. DSI MIPI DSI interface Multimedia Peripherals The MIPI DSI IP provides DSI standard display port interface. The DSI interface support 80 Mbps to 1 Gbps speed per data lane. eCSPI1-5 Configurable SPI Connectivity Peripherals Full-duplex enhanced Synchronous Serial Interface. It is configurable to support Master/Slave modes, four chip selects to support multiple peripherals. Ethernet Controller Connectivity Peripherals The Ethernet Media Access Controller (MAC) is designed to support 10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The i.MX 6DualPlus/6QuadPlus processors also consist of hardware assist for IEEE 1588 standard. For details, see the ENET chapter of the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM). ENET Debug / Trace Cross Trigger Interfaces allows cross-triggering based on inputs from masters attached to CTIs. The CTI module is internal to the Cortex-A9 Core Platform. The DAP provides real-time access for the debugger without halting the core to: • System memory and peripheral registers • All debug configuration registers The DAP also provides debugger access to JTAG scan chains. The DAP module is internal to the Cortex-A9 Core Platform. Note: The theoretical maximum performance of 1 Gbps ENET is limited to 470 Mbps (total for Tx and Rx) due to internal bus throughput limitations. The actual measured performance in optimized environment is up to 400 Mbps. For details, see the ERR004512 erratum in the i.MX 6Dual/6Quad errata document (IMX6DQCE). i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 10 Freescale Semiconductor Inc. Modules List Table 2. i.MX 6DualPlus/6QuadPlus Modules List (continued) Block Mnemonic EPIT-1 EPIT-2 ESAI FlexCAN-1 FlexCAN-2 GPIO-1 GPIO-2 GPIO-3 GPIO-4 GPIO-5 GPIO-6 GPIO-7 Block Name Subsystem Brief Description Enhanced Periodic Interrupt Timer Timer Peripherals Each EPIT is a 32-bit “set and forget” timer that starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention. It has a 12-bit prescaler for division of input clock frequency to get the required time setting for the interrupts to occur, and counter value can be programmed on the fly. Enhanced Serial Audio Interface Connectivity Peripherals The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. All serial transfers are synchronized to a clock. Additional synchronization signals are used to delineate the word frames. The normal mode of operation is used to transfer data at a periodic rate, one word per period. The network mode is also intended for periodic transfers; however, it supports up to 32 words (time slots) per period. This mode can be used to build time division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for non-periodic transfers of data and to transfer data serially at high speed when the data becomes available. The ESAI has 12 pins for data and clocking connection to external devices. Flexible Controller Area Network Connectivity Peripherals The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the Electromagnetic interference (EMI) environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the CAN protocol specification, Version 2.0 B, which supports both standard and extended message frames. General Purpose I/O System Modules Control Peripherals Used for general purpose input/output to external devices. Each GPIO module supports 32 bits of I/O. GPMI General Purpose Media Interface Connectivity Peripherals The GPMI module supports up to 8x NAND devices. 40-bit ECC error correction for NAND Flash controller (GPMI2). The GPMI supports separate DMA channels per NAND device. GPT General Purpose Timer Timer Peripherals Each GPT is a 32-bit “free-running” or “set and forget” mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in “set and forget” mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 11 Modules List Table 2. i.MX 6DualPlus/6QuadPlus Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description GPU2Dv3 Graphics Processing Multimedia Unit-2D, ver. 3 Peripherals The GPU2Dv3 provides hardware acceleration for 2D graphics algorithms, such as Bit BLT, stretch BLT, and many other 2D functions. GPU3Dv6 Graphics Processing Multimedia Unit-3D, ver. 6 Peripherals The GPU2Dv6 provides hardware acceleration for 3D graphics algorithms with sufficient processor power to run desktop quality interactive graphics applications on displays up to HD1080 resolution. The GPU3D provides OpenGL ES 3.0, including extensions, OpenGL ES 2.0, OpenGL ES 1.1, and OpenVG 1.1 GPUVGv2 Vector Graphics Processing Unit, ver. 2 Multimedia Peripherals OpenVG graphics accelerator provides OpenVG 1.1 support as well as other accelerations, including Real-time hardware curve tesselation of lines, quadratic and cubic Bezier curves, 16x Line Anti-aliasing, and various Vector Drawing functions. HDMI Tx HDMI Tx interface Multimedia Peripherals The HDMI module provides HDMI standard interface port to an HDMI 1.4 compliant display. HSI MIPI HSI interface Connectivity Peripherals The MIPI HSI provides a standard MIPI interface to the applications processor. I2C Interface Connectivity Peripherals I2C provide serial interface for external devices. Data rates of up to 400 kbps are supported. IOMUXC IOMUX Control System Control Peripherals This module enables flexible IO multiplexing. Each IO pad has default and several alternate functions. The alternate functions are software configurable. IPUv3H-1 IPUv3H-2 Image Processing Unit, ver. 3H Multimedia Peripherals IPUv3H enables connectivity to displays and video sources, relevant processing and synchronization and control capabilities, allowing autonomous operation. The IPUv3H supports concurrent output to two display ports and concurrent input from two camera ports, through the following interfaces: • Parallel Interfaces for both display and camera • Single/dual channel LVDS display interface • HDMI transmitter • MIPI/DSI transmitter • MIPI/CSI-2 receiver The processing includes: • Image conversions: resizing, rotation, inversion, and color space conversion • A high-quality de-interlacing filter • Video/graphics combining • Image enhancement: color adjustment and gamut mapping, gamma correction, and contrast enhancement • Support for display backlight reduction Key Pad Port Connectivity Peripherals KPP Supports 8 x 8 external key pad matrix. KPP features are: • Open drain design • Glitch suppression circuit design • Multiple keys detection • Standby key press detection I2C-1 I2C-2 I2C-3 KPP i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 12 Freescale Semiconductor Inc. Modules List Table 2. i.MX 6DualPlus/6QuadPlus Modules List (continued) Block Mnemonic LDB MMDC Block Name OSC 32 kHz PCIe Brief Description LVDS Display Bridge Connectivity Peripherals LVDS Display Bridge is used to connect the IPU (Image Processing Unit) to External LVDS Display Interface. LDB supports two channels; each channel has following signals: • One clock pair • Four data pairs Each signal pair contains LVDS special differential pad (PadP, PadM). Multi-Mode DDR Controller Connectivity Peripherals DDR Controller has the following features: • Supports 16/32/64-bit DDR3 / DDR3L or LPDDR2 • Supports both dual x32 for LPDDR2 and x64 DDR3 / LPDDR2 configurations (including 2x32 interleaved mode) • Supports LPDDR2 up to 400 MHz and DDR3 up to 532 MHz • Supports up to 4 GByte DDR memory space Security The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non-volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals, requiring permanent non-volatility. On-Chip Memory Controller Data Path The On-Chip Memory controller (OCRAM) module is designed as an interface between system’s AXI bus and internal (on-chip) SRAM memory module. In i.MX 6DualPlus/6QuadPlus processors, the OCRAM is used for controlling the 512 KB multimedia RAM through a 64-bit AXI bus. OSC 32 kHz Clocking Generates 32.768 kHz clock from an external crystal. PCI Express 2.0 Connectivity Peripherals The PCIe IP provides PCI Express Gen 2.0 functionality. OCOTP_CTRL OTP Controller OCRAM Subsystem i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 13 Modules List Table 2. i.MX 6DualPlus/6QuadPlus Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description PRE1 PRE2 PRE3 PRE4 Prefetch/Resolve Engine Multimedia Peripherals The PRE includes the Resolve engine, Prefetch engine, and Store engine 3 blocks.The PRE key features are: The Resolve engine supports: • GPU 32bpp 4x4 standard tile, 4x4 split tile, 4x4 super tile, 4x4 super split tile format. • GPU 16bpp 8x4 standard tile, 8x4 split tile, 8x4 super tile, 8x4 super split format. • 32/16x4 block mode and scan mode. The prefetch engine supports: • Transfer of non-interleaved YUV422(NI422), non-interleaved YUV420(NI420), partial interleaved YUV422(PI422), and partial interleaved YUV420(PI420), inputs to interleaved YUV422. • Vertical flip function both in block mode and scan mode. In block mode, vertical flip function should complete with TPR module enable. • 8bpp, 16bpp, 32bpp and 64bpp data format as generic data. • Transfer of non-interleaved YUV444(NI444), input to interleaved YUV444 output. The store Engine supports: 4/8/16 lines handshake modes with PRG. PRG1 PRG2 Prefetch/Resolve Gasket Multimedia Peripherals The PRG is a digital core function which works as a gasket interface between the fabric and the IPU system. The primary function is to re-map the ARADDR from a frame-based address to a band-based address depending on the different ARIDs. The PRG also implements the handshake logic with the Prefetch Resolve Engine (PRE). PMU Power-Management Data Path Functions Integrated power management unit. Used to provide power to various SoC domains. Pulse Width Modulation Connectivity Peripherals The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images and it can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound. RAM 16 KB Secure/non-secure RAM Secured Internal Memory Secure/non-secure Internal RAM, interfaced through the CAAM. RAM 512 KB Internal RAM Internal Memory Internal RAM, which is accessed through OCRAM memory controllers. ROM 96 KB Boot ROM Internal Memory Supports secure and regular Boot Modes. Includes read protection on 4K region for content protection SATA Serial ATA Connectivity Peripherals The SATA controller and PHY is a complete mixed-signal IP solution designed to implement SATA II, 3.0 Gbps HDD connectivity. PWM-1 PWM-2 PWM-3 PWM-4 i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 14 Freescale Semiconductor Inc. Modules List Table 2. i.MX 6DualPlus/6QuadPlus Modules List (continued) Block Mnemonic SDMA Block Name Subsystem Brief Description Smart Direct Memory System Access Control Peripherals The SDMA is multi-channel flexible DMA engine. It helps in maximizing system performance by off-loading the various cores in dynamic data routing. It has the following features: • Powered by a 16-bit Instruction-Set micro-RISC engine • Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels • 48 events with total flexibility to trigger any combination of channels • Memory accesses including linear, FIFO, and 2D addressing • Shared peripherals between ARM and SDMA • Very fast context-switching with 2-level priority based preemptive multi-tasking • DMA units with auto-flush and prefetch capability • Flexible address management for DMA transfers (increment, decrement, and no address changes on source and destination address) • DMA ports can handle unit-directional and bi-directional flows (copy mode) • Up to 8-word buffer for configurable burst transfers • Support of byte-swapping and CRC calculations • Library of Scripts and API is available System JTAG Controller System Control Peripherals The SJC provides JTAG interface, which complies with JTAG TAP standards, to internal logic. The i.MX 6DualPlus/6QuadPlus processors use JTAG port for production, testing, and system debugging. In addition, the SJC provides BSR (Boundary Scan Register) standard support, which complies with IEEE1149.1 and IEEE1149.6 standards. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX 6DualPlus/6QuadPlus SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration. SNVS Secure Non-Volatile Storage Security Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control, and Violation/Tamper Detection and reporting. SPDIF Sony Philips Digital Multimedia Interconnect Format Peripherals A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. It supports Transmitter and Receiver functionality. SSI-1 SSI-2 SSI-3 I2S/SSI/AC97 Interface The SSI is a full-duplex synchronous interface, which is used on the processor to provide connectivity with off-chip audio peripherals. The SSI supports a wide variety of protocols (SSI normal, SSI network, I2S, and AC-97), bit depths (up to 24 bits per word), and clock / frame sync options. The SSI has two pairs of 8x24 FIFOs and hardware support for an external DMA controller to minimize its impact on system performance. The second pair of FIFOs provides hardware interleaving of a second audio stream that reduces CPU overhead in use cases where two time slots are being used simultaneously. SJC Connectivity Peripherals i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 15 Modules List Table 2. i.MX 6DualPlus/6QuadPlus Modules List (continued) Block Mnemonic TEMPMON Block Name Subsystem Brief Description Temperature Monitor System Control Peripherals The temperature monitor/sensor IP module for detecting high temperature conditions. The temperature read out does not reflect case or ambient temperature. It reflects the temperature in proximity of the sensor location on the die. Temperature distribution may not be uniformly distributed; therefore, the read out value may not be the reflection of the temperature value for the entire die. TZASC Trust-Zone Address Space Controller Security The TZASC (TZC-380 by ARM) provides security address region control functions required for intended application. It is used on the path to the DRAM controller. UART-1 UART-2 UART-3 UART-4 UART-5 UART Interface Connectivity Peripherals Each of the UARTv2 modules support the following serial data transmit/receive protocols and configurations: • 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none) • Programmable baud rates up to 5 MHz • 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud • IrDA 1.0 support (up to SIR speed of 115200 bps) • Option to operate as 8-pins full UART, DCE, or DTE USB 2.0 High Speed Connectivity OTG and 3x HS Peripherals Hosts USBOH3 contains: • One high-speed OTG module with integrated HS USB PHY • One high-speed Host module with integrated HS USB PHY • Two identical high-speed Host modules connected to HSIC USB ports. USBOH3A i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 16 Freescale Semiconductor Inc. Modules List Table 2. i.MX 6DualPlus/6QuadPlus Modules List (continued) Block Mnemonic uSDHC-1 uSDHC-2 uSDHC-2 uSDHC-4 VDOA VPU WDOG-1 Block Name Subsystem Brief Description SD/MMC and SDXC Connectivity Enhanced Peripherals Multi-Media Card / Secure Digital Host Controller i.MX 6DualPlus/6QuadPlus specific SoC characteristics: All four MMC/SD/SDIO controller IPs are identical and are based on the uSDHC IP. They are: • Conforms to the SD Host Controller Standard Specification version 3.0 • Fully compliant with MMC command/response sets and Physical Layer as defined in the Multimedia Card System Specification, v4.2/4.3/4.4/4.41 including high-capacity (size > 2 GB) cards HC MMC. Hardware reset as specified for eMMC cards is supported at ports #3 and #4 only. • Fully compliant with SD command/response sets and Physical Layer as defined in the SD Memory Card Specifications, v3.0 including high-capacity SDHC cards up to 32 GB and SDXC cards up to 2TB. • Fully compliant with SDIO command/response sets and interrupt/read-wait mode as defined in the SDIO Card Specification, Part E1, v1.10 • Fully compliant with SD Card Specification, Part A2, SD Host Controller Standard Specification, v2.00 All four ports support: • 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR104 mode (104 MB/s max) • 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) However, the SoC-level integration and I/O muxing logic restrict the functionality to the following: • Instances #1 and #2 are primarily intended to serve as external slots or interfaces to on-board SDIO devices. These ports are equipped with “Card Detection” and “Write Protection” pads and do not support hardware reset. • Instances #3 and #4 are primarily intended to serve interfaces to embedded MMC memory or interfaces to on-board SDIO devices. These ports do not have “Card detection” and “Write Protection” pads and do support hardware reset. • All ports can work with 1.8 V and 3.3 V cards. There are two completely independent I/O power domains for Ports #1 and #2 in four bit configuration (SD interface). Port #3 is placed in his own independent power domain and port #4 shares power domain with some other interfaces. VDOA Multimedia Peripherals The Video Data Order Adapter (VDOA) is used to re-order video data from the “tiled” order used by the VPU to the conventional raster-scan order needed by the IPU. Video Processing Unit Multimedia Peripherals A high-performing video processing unit (VPU), which covers many SD-level and HD-level video decoders and SD-level encoders as a multi-standard video codec engine as well as several important video processing, such as rotation and mirroring. See the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM) for complete list of VPU’s decoding/encoding capabilities. Watchdog Timer Peripherals The Watchdog Timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the ARM core, and a second point evokes an external event on the WDOG line. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 17 Modules List Table 2. i.MX 6DualPlus/6QuadPlus Modules List (continued) Block Mnemonic WDOG-2 (TZ) EIM XTALOSC 3.1 Block Name Watchdog (TrustZone) Subsystem Timer Peripherals Brief Description The TrustZone Watchdog (TZ WDOG) timer module protects against TrustZone starvation by providing a method of escaping normal mode and forcing a switch to the TZ mode. TZ starvation is a situation where the normal OS prevents switching to the TZ mode. Such a situation is undesirable as it can compromise the system’s security. Once the TZ WDOG module is activated, it must be serviced by TZ software on a periodic basis. If servicing does not take place, the timer times out. Upon a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces switching to the TZ mode. If it is still not served, the TZ WDOG asserts a security violation signal to the CSU. The TZ WDOG module cannot be programmed or deactivated by a normal mode Software. NOR-Flash /PSRAM Connectivity interface Peripherals The EIM NOR-FLASH / PSRAM provides: • Support 16-bit (in muxed IO mode only) PSRAM memories (sync and async operating modes), at slow frequency • Support 16-bit (in muxed IO mode only) NOR-Flash memories, at slow frequency • Multiple chip selects Crystal Oscillator interface The XTALOSC module enables connectivity to external crystal oscillator device. In a typical application use-case, it is used for 24 MHz oscillator. — Special Signal Considerations The package contact assignments can be found in Section 6, “Package Information and Contact Assignments.” Signal descriptions are defined in the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM). Special signal consideration information is contained in the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG). 3.2 Recommended Connections for Unused Analog Interfaces The recommended connections for unused analog interfaces can be found in the section, “Unused analog interfaces,” of the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG). i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 18 Freescale Semiconductor Inc. Electrical Characteristics 4 Electrical Characteristics This section provides the device and module-level electrical characteristics for the i.MX 6DualPlus/6QuadPlus processors. 4.1 Chip-Level Conditions This section provides the device-level electrical characteristics for the SoC. See Table 3 for a quick reference to the individual tables and sections. Table 3. i.MX 6DualPlus/6QuadPlus Chip-Level Conditions For these characteristics, … 4.1.1 Topic appears … Absolute Maximum Ratings on page 19 FCPBGA Package Thermal Resistance on page 20 Operating Ranges on page 21 External Clock Sources on page 23 Maximum Supply Currents on page 25 Low Power Mode Supply Currents on page 26 USB PHY Current Consumption on page 28 SATA Typical Power Consumption on page 28 PCIe 2.0 Maximum Power Consumption on page 29 HDMI Maximum Power Consumption on page 30 Absolute Maximum Ratings CAUTION Stresses beyond those listed under Table 4 may affect reliability or cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the Operating Ranges or Parameters tables is not implied. Table 4. Absolute Maximum Ratings Parameter Description Core supply voltages Internal supply voltages GPIO supply voltage Symbol Min Max Unit VDD_ARM_IN VDD_ARM23_IN VDD_SOC_IN -0.3 1.5 V VDD_ARM_CAP VDD_ARM23_CAP VDD_SOC_CAP VDD_PU_CAP NVCC_PLL_OUT -0.3 1.3 V Supplies denoted as I/O supply -0.5 3.6 V i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 19 Electrical Characteristics Table 4. Absolute Maximum Ratings (continued) Parameter Description Symbol Min Max Unit DDR I/O supply voltage Supplies denoted as I/O supply -0.4 1.975 V LVDS I/O supply voltage Supplies denoted as I/O supply -0.3 2.8 V VDD_HIGH_IN -0.3 3.6 V USB_H1_VBUS/USB_OTG_VBUS — 5.25 V USB_DP/USB_DN -0.3 3.63 V Vin/Vout -0.5 OVDD1+0.3 V Vesd — — 2000 500 V TSTORAGE -40 150 oC VDD_HIGH_IN supply voltage USB VBUS Input voltage on USB_OTG_DP, USB_OTG_DN, USB_H1_DP, USB_H1_DN pins Input/output voltage range ESD damage immunity: • Human Body Model (HBM) • Charge Device Model (CDM) Storage temperature range 1 OVDD is the I/O supply voltage. 4.1.2 4.1.2.1 Thermal Resistance FCPBGA Package Thermal Resistance Table 5 provides the FCPBGA package thermal resistance data. Table 5. FCPBGA Package Thermal Resistance Data (Lidded) Thermal Parameter Junction to Ambient1 Test Conditions Symbol Value Unit RθJA 24 °C/W RθJA 15 °C/W RθJMA 17 °C/W RθJMA 12 °C/W — RθJB 5 °C/W — RθJCtop 1 °C/W Single-layer board (1s); natural convection2 Four-layer board (2s2p); natural Junction to Ambient1 convection2 Single-layer board (1s); air flow 200 ft/min3 4 Four-layer board (2s2p); air flow 200 ft/min Junction to Board1,4 Junction to Case (top) 1 2 3 4 5 1,5 Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per JEDEC JESD51-3 with the single layer board horizontal. Thermal test board meets JEDEC specification for the specified package. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 20 Freescale Semiconductor Inc. Electrical Characteristics 4.1.3 Operating Ranges Table 6 provides the operating ranges of the i.MX 6DualPlus/6QuadPlus processors. Table 6. Operating Ranges Parameter Description Symbol Min Typ Max1 Unit Comment2 VDD_ARM_IN VDD_ARM23_IN3 1.2754 — 1.5 V LDO Output Set Point (VDD_ARM_CAP5) of 1.150 V minimum for operation up to 792 MHz. 1.054 — 1.5 V LDO Output Set Point (VDD_ARM_CAP5) of 0.925 V minimum for operation up to 396 MHz. 1.3504 — 1.5 V 264 MHz < VPU ≤ 352 MHz; VDDSOC and VDDPU LDO outputs (VDD_SOC_CAP and VDD_PU_CAP) require 1.225 V minimum. 1.2754,7 — 1.5 V VPU ≤ 264 MHz; VDDSOC and VDDPU LDO outputs (VDD_SOC_CAP and VDD_PU_CAP) require 1.15 V minimum. VDD_ARM_IN VDD_ARM23_IN3 1.150 — 1.3 V LDO bypassed for operation up to 792 MHz. 0.925 — 1.3 V LDO bypassed for operation up to 396 MHz. VDD_SOC_IN6 1.225 — 1.3 V 264 MHz < VPU ≤ 352 MHz 1.15 — 1.3 V VPU ≤ 264 MHz VDD_ARM_IN VDD_ARM23_IN3 0.9 — 1.3 V See Table 9, "Stop Mode Current and Power Consumption," on page 26. VDD_SOC_IN 1.05 — 1.3 V VDD_HIGH internal regulator VDD_HIGH_IN9 2.7 — 3.6 V Must match the range of voltages that the rechargeable backup battery supports. Backup battery supply range VDD_SNVS_IN9 2.8 — 3.6 V Should be supplied from the same supply as VDD_HIGH_IN, if the system does not require keeping real time and other data on OFF state. USB supply voltages USB_OTG_VBUS 4.4 — 5.25 V — USB_H1_VBUS 4.4 — 5.25 V — NVCC_DRAM 1.14 1.2 1.3 V LPDDR2 1.425 1.5 1.575 V DDR3 1.283 1.35 1.45 V DDR3L 1.15 — 2.625 V • • • • Run mode: LDO enabled VDD_SOC_IN6 Run mode: LDO bypassed8 Standby/DSM mode DDR I/O supply Supply for RGMII I/O power group10 NVCC_RGMII 1.15 V – 1.30 V in HSIC 1.2 V mode 1.43 V – 1.58 V in RGMII 1.5 V mode 1.70 V – 1.90 V in RGMII 1.8 V mode 2.25 V – 2.625 V in RGMII 2.5 V mode i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 21 Electrical Characteristics Table 6. Operating Ranges (continued) Parameter Description GPIO supplies10 HDMI supply voltages PCIe supply voltages SATA Supply voltages Junction temperature 1 2 3 4 5 6 7 8 9 Symbol Min Typ Max1 NVCC_CSI, NVCC_EIM0, NVCC_EIM1, NVCC_EIM2, NVCC_ENET, NVCC_GPIO, NVCC_LCD, NVCC_NANDF, NVCC_SD1, NVCC_SD2, NVCC_SD3, NVCC_JTAG 1.65 1.8, 2.8, 3.3 3.6 NVCC_LVDS_2P511 NVCC_MIPI 2.25 2.5 2.75 V — HDMI_VP 0.99 1.1 1.3 V — HDMI_VPH 2.25 2.5 2.75 V — PCIE_VP 1.023 1.1 1.3 V — PCIE_VPH 2.325 2.5 2.75 V — PCIE_VPTX 1.023 1.1 1.3 V — SATA_VP 0.99 1.1 1.3 V — SATA_VPH 2.25 2.5 2.75 V — TJ -40 95 105 °C See i.MX 6Dual/6Quad Product Lifetime Usage Estimates Application Note, AN4724, for information on product lifetime (power-on years) for this processor. Unit V Comment2 Isolation between the NVCC_EIMx and NVCC_SDx different supplies allow them to operate at different voltages within the specified range. Example: NVCC_EIM1 can operate at 1.8 V while NVCC_EIM2 operates at 3.3 V. Applying the maximum voltage results in maximum power consumption and heat generation. Freescale recommends a voltage set point = (Vmin + the supply tolerance). This results in an optimized power/speed ratio. See the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG) for bypass capacitors requirements for each of the *_CAP supply outputs. For Quad core system, connect to VDD_ARM_IN. For Dual core system, may be shorted to GND together with VDD_ARM23_CAP to reduce leakage. VDD_ARM_IN and VDD_SOC_IN must be at least 125 mV higher than the LDO Output Set Point for correct voltage regulation. VDD_ARM_CAP must not exceed VDD_CACHE_CAP by more than +50 mV. VDD_CACHE_CAP must not exceed VDD_ARM_CAP by more than 200 mV. VDD_SOC_CAP and VDD_PU_CAP must be equal. In LDO enabled mode, the internal LDO output set points must be configured such that the: VDD_ARM LDO output set point does not exceed the VDD_SOC LDO output set point by more than 100 mV. VDD_SOC LDO output set point is equal to the VDD_PU LDO output set point. The VDD_ARM LDO output set point can be lower than the VDD_SOC LDO output set point, however, the minimum output set points shown in this table must be maintained. In LDO bypassed mode, the external power supply must ensure that VDD_ARM_IN does not exceed VDD_SOC_IN by more than 100 mV. The VDD_ARM_IN supply voltage can be lower than the VDD_SOC_IN supply voltage. The minimum voltages shown in this table must be maintained. To set VDD_SNVS_IN voltage with respect to Charging Currents and RTC, see the Hardware Development Guide for i.MX 6Dual, 6Quad, 6Solo, 6DualLite Families of Applications Processors (IMX6DQ6SDLHDG). i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 22 Freescale Semiconductor Inc. Electrical Characteristics 10 All digital I/O supplies (NVCC_xxxx) must be powered under normal conditions whether the associated I/O pins are in use or not, and associated I/O pins need to have a pull-up or pull-down resistor applied to limit any floating gate current. 11 This supply also powers the pre-drivers of the DDR I/O pins; therefore, it must always be provided, even when LVDS is not used. 4.1.4 External Clock Sources Each i.MX 6DualPlus/6QuadPlus processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency (XTALI). The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit, power-down real time clock operation, and slow system and watchdog counters. The clock input can be connected to either an external oscillator or a crystal using the internal oscillator amplifier. Additionally, there is an internal ring oscillator, that can be used instead of RTC_XTALI when accuracy is not important. The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input can be connected to either an external oscillator or a crystal using the internal oscillator amplifier. NOTE The internal RTC oscillator does not provide an accurate frequency and is affected by process, voltage and temperature variations. Freescale strongly recommends using an external crystal as the RTC_XTALI reference. If the internal oscillator is used instead, careful consideration should be given to the timing implications on all of the SoC modules dependent on this clock. Table 7 shows the interface frequency requirements. Table 7. External Input Clock Frequency Parameter Description Symbol Min Typ Max Unit RTC_XTALI Oscillator1,2 fckil — 32.7683/32.0 — kHz XTALI Oscillator4,2 fxtal — 24 — MHz 1 External oscillator or a crystal with internal oscillator amplifier. The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware Development Guide for i.MX 6Dual, 6Quad, 6Solo, 6DualLite Families of Applications Processors (IMX6DQ6SDLHDG). 3 Recommended nominal frequency 32.768 kHz. 4 External oscillator or a fundamental frequency crystal with internal oscillator amplifier. 2 The typical values shown in Table 7 are required for use with Freescale BSPs to ensure precise time keeping and USB operation. For RTC_XTALI operation, two clock sources are available: • On-chip 40 kHz ring oscillator: This clock source has the following characteristics: — Approximately 25 μA more Idd than crystal oscillator — Approximately ±50% tolerance — No external component required — Starts up quicker than 32 kHz crystal oscillator • External crystal oscillator with on-chip support circuit i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 23 Electrical Characteristics — At power up, an internal ring oscillator is used. After crystal oscillator is stable, the clock circuit switches over to the crystal oscillator automatically. — Higher accuracy than ring oscillator. — If no external crystal is present, then the ring oscillator is used. The decision to choose a clock source should be based on real-time clock use and precision timeout. 4.1.5 Maximum Supply Currents Power consumption is highly dependent on the application. Estimating the maximum supply currents required for power supply design is difficult because the use case that requires maximum supply current is not a realistic use case. To help illustrate the effect of the application on power consumption, data was collected while running industry standard benchmarks that are designed to be compute and graphic intensive. The results provided are intended to be used as guidelines for power supply design. Description of test conditions: • The Power Virus data shown in Table 8 represent a use case designed specifically to show the maximum current consumption possible for the ARM core complex. All cores are running at the defined maximum frequency and are limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited, if any, practical use case, and be limited to an extremely low duty cycle unless the intention was to specifically cause the worst case power consumption. • EEMBC CoreMark: Benchmark designed specifically for the purpose of measuring the performance of a CPU core. More information available at www.eembc.org/coremark. Note that this benchmark is designed as a core performance benchmark, not a power benchmark. This use case is provided as an example of power consumption that would be typical in a computationally-intensive application rather than the Power Virus. • 3DMark Mobile 2011: Suite of benchmarks designed for the purpose of measuring graphics and overall system performance. More information available at www.rightware.com/benchmarks. Note that this benchmark is designed as a graphics performance benchmark, not a power benchmark. This use case is provided as an example of power consumption that would be typical in a very graphics-intensive application. • Devices used for the tests were from the high current end of the expected process variation. The Freescale power management IC, MMPF0100xxxx, which is targeted for the i.MX 6 series processor family, supports the power consumption shown in Table 8, however a robust thermal design is required for the increased system power dissipation. See the i.MX 6Dual/6Quad Power Consumption Measurement Application Note (AN4509) for more details on typical power consumption under various use case definitions. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 24 Freescale Semiconductor Inc. Electrical Characteristics Table 8. Maximum Supply Currents Maximum Current Power Supply Conditions Unit Power Virus CoreMark i.MX 6QuadPlus: VDD_ARM_IN + VDD_ARM23_IN • ARM frequency = 792 MHz • ARM LDOs set to 1.3V • Tj = 105°C 3270 2090 mA i.MX 6DualPlus: VDD_ARM_IN1 • ARM frequency = 792 MHz • ARM LDOs set to 1.3V • Tj = 105°C 1960 1000 mA i.MX 6DualPlus: or i.MX 6QuadPlus: VDD_SOC_IN • • • • Running 3DMark GPU frequency = 720 MHz SOC LDO set to 1.3V Tj = 105°C 3700 mA VDD_HIGH_IN — 1252 mA VDD_SNVS_IN — 2753 μA USB_OTG_VBUS/ USB_H1_VBUS (LDO 3P0) — 254 mA Primary Interface (IO) Supplies NVCC_DRAM — (see note5) NVCC_ENET N=10 Use maximum IO equation6 NVCC_LCD N=29 Use maximum IO equation6 NVCC_GPIO N=24 Use maximum IO equation6 NVCC_CSI N=20 Use maximum IO equation6 NVCC_EIM0 N=19 Use maximum IO equation6 NVCC_EIM1 N=14 Use maximum IO equation6 NVCC_EIM2 N=20 Use maximum IO equation6 NVCC_JTAG N=6 Use maximum IO equation6 NVCC_RGMII N=6 Use maximum IO equation6 NVCC_SD1 N=6 Use maximum IO equation6 NVCC_SD2 N=6 Use maximum IO equation6 NVCC_SD3 N=11 Use maximum IO equation6 NVCC_NANDF N=26 Use maximum IO equation6 NVCC_MIPI — 25.5 NVCC_LVDS2P5 — NVCC_LVDS2P5 is connected to VDD_HIGH_CAP at the board level. VDD_HIGH_CAP is capable of handing the current required by NVCC_LVDS2P5. mA i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 25 Electrical Characteristics Table 8. Maximum Supply Currents (continued) Maximum Current Power Supply Conditions Unit Power Virus CoreMark MISC DRAM_VREF 1 2 3 4 5 6 — 1 mA i.MX 6DualPlus numbers assume VDD_ARM23_IN and VDD_ARM23_CAP are connected to ground. The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS_2P5, NVCC_MIPI, or HDMI, PCIe, and SATA VPH supplies). Under normal operating conditions, the maximum current on VDD_SNVS_IN is shown Table 8. The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA if the supply is capable of sourcing that current. If less than 1 mA is available, the VDD_SNVS_CAP charge time will increase. This is the maximum current per active USB physical interface. The DRAM power consumption is dependent on several factors such as external signal termination. DRAM power calculators are typically available from memory vendors which take into account factors such as signal termination. See the i.MX 6Dual/6Quad Power Consumption Measurement Application Note (AN4509) for examples of DRAM power consumption during specific use case scenarios. General equation for estimated, maximum power consumption of an IO power supply: Imax = N x C x V x (0.5 x F) Where: N—Number of IO pins supplied by the power line C—Equivalent external capacitive load V—IO voltage (0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F) In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz. 4.1.6 Low Power Mode Supply Currents Table 9 shows the current core consumption (not including I/O) of the i.MX 6DualPlus/6QuadPlus processors in selected low power modes. Table 9. Stop Mode Current and Power Consumption Mode Test Conditions WAIT STOP_ON • • • • • • ARM, SoC, and PU LDOs are set to 1.225 V HIGH LDO set to 2.5 V Clocks are gated DDR is in self refresh PLLs are active in bypass (24 MHz) Supply voltages remain ON • • • • • ARM LDO set to 0.9 V SoC and PU LDOs set to 1.225 V HIGH LDO set to 2.5 V PLLs disabled DDR is in self refresh Supply Typical1 Unit VDD_ARM_IN (1.4 V) 6 mA VDD_SOC_IN (1.4 V) 23 mA VDD_HIGH_IN (3.0 V) 3.7 mA Total 52 mW VDD_ARM_IN (1.4 V) 7.5 mA VDD_SOC_IN (1.4 V) 22 mA VDD_HIGH_IN (3.0 V) 3.7 mA Total 52 mW i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 26 Freescale Semiconductor Inc. Electrical Characteristics Table 9. Stop Mode Current and Power Consumption (continued) Mode Test Conditions STOP_OFF STANDBY Deep Sleep Mode (DSM) SNVS Only 1 • • • • • • ARM LDO set to 0.9 V SoC LDO set to 1.225 V PU LDO is power gated HIGH LDO set to 2.5 V PLLs disabled DDR is in self refresh • • • • • • • ARM and PU LDOs are power gated SoC LDO is in bypass HIGH LDO is set to 2.5 V PLLs are disabled Low voltage Well Bias ON Crystal oscillator is enabled • • • • • • • ARM and PU LDOs are power gated SoC LDO is in bypass HIGH LDO is set to 2.5 V PLLs are disabled Low voltage Well Bias ON Crystal oscillator and bandgap are disabled • VDD_SNVS_IN powered • All other supplies off • SRTC running Supply Typical1 Unit VDD_ARM_IN (1.4 V) 7.5 mA VDD_SOC_IN (1.4 V) 13.5 mA VDD_HIGH_IN (3.0 V) 3.7 mA Total 41 mW VDD_ARM_IN (0.9 V) 0.1 mA VDD_SOC_IN (1.05 V) 13 mA VDD_HIGH_IN (3.0 V) 3.7 mA Total 22 mW VDD_ARM_IN (0.9 V) 0.1 mA VDD_SOC_IN (1.05 V) 2 mA VDD_HIGH_IN (3.0 V) 0.5 mA Total 3.4 mW VDD_SNVS_IN (2.8V) 41 μA Total 115 μW The typical values shown here are for information only and are not guaranteed. These values are average values measured on a worst-case wafer at 25°C. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 27 Electrical Characteristics 4.1.7 4.1.7.1 USB PHY Current Consumption Power Down Mode In power down mode, everything is powered down, including the VBUS valid detectors, typ condition. Table 10 shows the USB interface current consumption in power down mode. Table 10. USB PHY Current Consumption in Power Down Mode Current VDD_USB_CAP (3.0 V) VDD_HIGH_CAP (2.5 V) NVCC_PLL_OUT (1.1 V) 5.1 μA 1.7 μA <0.5 μA NOTE The currents on the VDD_HIGH_CAP and VDD_USB_CAP were identified to be the voltage divider circuits in the USB-specific level shifters. 4.1.8 SATA Typical Power Consumption Table 11 provides SATA PHY currents for certain Tx operating modes. NOTE Tx power consumption values are provided for a single transceiver. If T = single transceiver power and C = Clock module power, the total power required for N lanes = N x T + C. Table 11. SATA PHY Current Drain Mode P0: Full-power state1 Test Conditions Supply Typical Current Unit Single Transceiver SATA_VP 11 mA SATA_VPH 13 SATA_VP 6.9 SATA_VPH 6.2 SATA_VP 11 SATA_VPH 11 SATA_VP 6.9 SATA_VPH 6.2 SATA_VP 9.4 SATA_VPH 2.9 SATA_VP 6.9 SATA_VPH 6.2 Clock Module P0: Mobile2 Single Transceiver Clock Module P0s: Transmitter idle Single Transceiver Clock Module mA mA i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 28 Freescale Semiconductor Inc. Electrical Characteristics Table 11. SATA PHY Current Drain (continued) Mode P1: Transmitter idle, Rx powered down, LOS disabled Test Conditions Supply Typical Current Unit Single Transceiver SATA_VP 0.67 mA SATA_VPH 0.23 SATA_VP 6.9 SATA_VPH 6.2 SATA_VP 0.53 SATA_VPH 0.11 SATA_VP 0.036 SATA_VPH 0.12 SATA_VP 0.13 SATA_VPH 0.012 SATA_VP 0.008 SATA_VPH 0.004 Clock Module P2: Powered-down state, only LOS and POR enabled Single Transceiver Clock Module PDDQ mode3 Single Transceiver Clock Module mA mA 1 Programmed for 1.0 V peak-to-peak Tx level. Programmed for 0.9 V peak-to-peak Tx level with no boost or attenuation. 3 LOW power non-functional. 2 4.1.9 PCIe 2.0 Maximum Power Consumption Table 12 provides PCIe PHY currents for certain operating modes. Table 12. PCIe PHY Current Drain Mode P0: Normal Operation Test Conditions Supply Max Current Unit 5G Operations PCIE_VP (1.1 V) 40 mA PCIE_VPTX (1.1 V) 20 PCIE_VPH (2.5 V) 21 PCIE_VP (1.1 V) 27 PCIE_VPTX (1.1 V) 20 PCIE_VPH (2.5 V) 20 PCIE_VP (1.1 V) 30 PCIE_VPTX (1.1 V) 2.4 PCIE_VPH (2.5 V) 18 PCIE_VP (1.1 V) 20 PCIE_VPTX (1.1 V) 2.4 PCIE_VPH (2.5 V) 18 2.5G Operations P0s: Low Recovery Time Latency, Power Saving State 5G Operations 2.5G Operations mA i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 29 Electrical Characteristics Table 12. PCIe PHY Current Drain (continued) Mode Test Conditions Supply Max Current Unit — PCIE_VP (1.1 V) 12 mA PCIE_VPTX (1.1 V) 2.4 PCIE_VPH (2.5 V) 12 PCIE_VP (1.1 V) 1.3 PCIE_VPTX (1.1 V) 0.18 PCIE_VPH (2.5 V) 0.36 P1: Longer Recovery Time Latency, Lower Power State Power Down 4.1.10 — mA HDMI Maximum Power Consumption Table 13 provides HDMI PHY currents for both Active 3D Tx with LFSR15 data pattern and Power-down modes. Table 13. HDMI PHY Current Drain Mode Test Conditions Supply Max Current Unit Active Bit rate 251.75 Mbps HDMI_VPH 14 mA HDMI_VP 4.1 mA HDMI_VPH 14 mA HDMI_VP 4.2 mA HDMI_VPH 17 mA HDMI_VP 7.5 mA HDMI_VPH 17 mA HDMI_VP 12 mA HDMI_VPH 16 mA HDMI_VP 17 mA HDMI_VPH 19 mA HDMI_VP 22 mA HDMI_VPH 49 μA HDMI_VP 1100 μA Bit rate 279.27 Mbps Bit rate 742.5 Mbps Bit rate 1.485 Gbps Bit rate 2.275 Gbps Bit rate 2.97 Gbps Power-down — i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 30 Freescale Semiconductor Inc. Electrical Characteristics 4.2 Power Supplies Requirements and Restrictions The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to ensure the reliable operation of the device. Any deviation from these sequences may result in the following situations: • Excessive current during power-up phase • Prevention of the device from booting • Irreversible damage to the processor 4.2.1 Power-Up Sequence For power-up sequence, the restrictions are as follows: • VDD_SNVS_IN supply must be turned ON before any other power supply. It may be connected (shorted) with VDD_HIGH_IN supply. • If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other supply is switched on. • If the external SRC_POR_B signal is used to control the processor POR, then SRC_POR_B must be immediately asserted at power-up and remain asserted until the VDD_ARM_CAP, VDD_SOC_CAP, and VDD_PU_CAP supplies are stable. VDD_ARM_IN and VDD_SOC_IN may be applied in either order with no restrictions. In the absence of an external reset feeding the SRC_POR_B input, the internal POR module takes control. See the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM) for further details and to ensure that all necessary requirements are being met. • If the external SRC_POR_B signal is not used (always held high or left unconnected), the processor defaults to the internal POR function (where the PMU controls generation of the POR based on the power supplies). If the internal POR function is used, the following power supply requirements must be met: — VDD_ARM_IN and VDD_SOC_IN may be supplied from the same source, or — VDD_SOC_IN can be supplied before VDD_ARM_IN with a maximum delay of 1 ms. NOTE Ensure that there is no back voltage (leakage) from any supply on the board towards the 3.3 V supply (for example, from the external components that use both the 1.8 V and 3.3 V supplies). NOTE USB_OTG_VBUS and USB_H1_VBUS are not part of the power supply sequence and can be powered at any time. 4.2.2 Power-Down Sequence No special restrictions for i.MX 6DualPlus/6QuadPlus SoC. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 31 Electrical Characteristics 4.2.3 • • • 4.3 Power Supplies Usage All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O power supply of each pin, see “Power Group” column of Table 91, "21 x 21 mm Functional Contact Assignments," on page 142. When the SATA interface is not used, the SATA_VP and SATA_VPH supplies should be grounded. The input and output supplies for rest of the ports (SATA_REXT, SATA_PHY_RX_N, SATA_PHY_RX_P, and SATA_PHY_TX_N) can be left floating. It is recommended not to turn OFF the SATA_VPH supply while the SATA_VP supply is ON, as it may lead to excessive power consumption. If boundary scan test is used, SATA_VP and SATA_VPH must remain powered. When the PCIE interface is not used, the PCIE_VP, PCIE_VPH, and PCIE_VPTX supplies should be grounded. The input and output supplies for rest of the ports (PCIE_REXT, PCIE_RX_N, PCIE_RX_P, PCIE_TX_N, and PCIE_TX_P) can be left floating. It is recommended not to turn the PCIE_VPH supply OFF while the PCIE_VP supply is ON, as it may lead to excessive power consumption. If boundary scan test is used, PCIE_VP, PCIE_VPH, and PCIE_VPTX must remain powered. Integrated LDO Voltage Regulator Parameters Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use only and should not be used to power any external circuitry. See the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM) for details on the power tree scheme recommended operation. NOTE The *_CAP signals should not be powered externally. These signals are intended for internal LDO or LDO bypass operation only. 4.3.1 Digital Regulators (LDO_ARM, LDO_PU, LDO_SOC) There are three digital LDO regulators (“Digital”, because of the logic loads that they drive, not because of their construction). The advantages of the regulators are to reduce the input supply variation because of their input supply ripple rejection and their on die trimming. This translates into more voltage for the die producing higher operating frequencies. These regulators have three basic modes. • Bypass. The regulation FET is switched fully on passing the external voltage, DCDC_LOW, to the load unaltered. The analog part of the regulator is powered down in this state, removing any loss other than the IR drop through the power grid and FET. • Power Gate. The regulation FET is switched fully off limiting the current draw from the supply. The analog part of the regulator is powered down here limiting the power consumption. • Analog regulation mode. The regulation FET is controlled such that the output voltage of the regulator equals the programmed target voltage. The target voltage is fully programmable in 25 mV steps. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 32 Freescale Semiconductor Inc. Electrical Characteristics Optionally LDO_SOC/VDD_SOC_CAP can be used to power the HDMI, PCIe, and SATA PHY's through external connections. For additional information, see the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM). 4.3.2 4.3.2.1 Regulators for Analog Modules LDO_1P1 / NVCC_PLL_OUT The LDO_1P1 regulator implements a programmable linear-regulator function from VDD_HIGH_IN (see Table 6 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0 V to 1.2 V with the nominal default setting as 1.1 V. The LDO_1P1 supplies the 24 MHz oscillator, PLLs, and USB PHY. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature. For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG). For additional information, see the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM). 4.3.2.2 LDO_2P5 / VDDHIGH_CAP The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see Table 6 for min and max input requirements). Typical Programming Operating Range is 2.25 V to 2.75 V with the nominal default setting as 2.5 V. The LDO_2P5 supplies the eFuses, PLLs, and USB PHY. Optionally it can be used to supply the HDMI, LVDS, MIPI, PCIe, and SATA PHY's through external connections. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature. An alternate self-biased low-precision weak-regulator is included that can be enabled for applications needing to keep the output voltage alive during low-power modes where the main regulator driver and its associated global bandgap reference module are disabled. The output of the weak-regulator is not programmable and is a function of the input supply as well as the load current. Typically, with a 3 V input supply the weak-regulator output is 2.525 V and its output impedance is approximately 40 Ω. For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG). For additional information, see the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM). i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 33 Electrical Characteristics 4.3.2.3 LDO_USB / VDD_VBUS_CAP The LDO_USB module implements a programmable linear-regulator function from the USB_OTG_VBUS and USB_H1_VBUS voltages (4.4 V–5.25 V) to produce a nominal 3.0 V output voltage. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. This regulator has a built in power-mux that allows the user to select to run the regulator from either VBUS supply, when both are present. If only one of the VBUS voltages is present, then the regulator automatically selects this supply. Current limit is also included to help the system meet in-rush current targets. If no VBUS voltage is present, then the VBUSVALID threshold setting will prevent the regulator from being enabled. For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG). For additional information, see the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM). 4.4 4.4.1 PLL Electrical Characteristics Audio/Video PLL Electrical Parameters Table 14. Audio/Video PLL Electrical Parameters 4.4.2 Parameter Value Clock output range 650 MHz ~1.3 GHz Reference clock 24 MHz Lock time <11250 reference cycles 528 MHz PLL Table 15. 528 MHz PLL Electrical Parameters Parameter Value Clock output range 528 MHz PLL output Reference clock 24 MHz Lock time <11250 reference cycles i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 34 Freescale Semiconductor Inc. Electrical Characteristics 4.4.3 Ethernet PLL Table 16. Ethernet PLL Electrical Parameters 4.4.4 Parameter Value Clock output range 500 MHz Reference clock 24 MHz Lock time <11250 reference cycles 480 MHz PLL Table 17. 480 MHz PLL Electrical Parameters 4.4.5 Parameter Value Clock output range 480 MHz PLL output Reference clock 24 MHz Lock time <383 reference cycles ARM PLL Table 18. ARM PLL Electrical Parameters 4.5 4.5.1 Parameter Value Clock output range 650 MHz~1.3 GHz Reference clock 24 MHz Lock time <2250 reference cycles On-Chip Oscillators OSC24M This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements an oscillator. The oscillator is powered from NVCC_PLL_OUT. The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight forward biased-inverter implementation is used. 4.5.2 OSC32K This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements a low power oscillator. It also implements a power mux such that it can be powered from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 35 Electrical Characteristics power from VDD_HIGH_IN when that supply is available and transitions to the back up battery when VDD_HIGH_IN is lost. In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 kHz clock will automatically switch to the internal ring oscillator. CAUTION The internal RTC oscillator does not provide an accurate frequency and is affected by process, voltage, and temperature variations. Freescale strongly recommends using an external crystal as the RTC_XTALI reference. If the internal oscillator is used instead, careful consideration must be given to the timing implications on all of the SoC modules dependent on this clock. The OSC32k runs from VDD_SNVS_CAP, which comes from the VDD_HIGH_IN/VDD_SNVS_IN power mux. The target battery is a ~3 V coin cell. Proper choice of coin cell type is necessary for chosen VDD_HIGH_IN range. Appropriate series resistor (Rs) must be used when connecting the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell. For example, for Panasonic ML621: • Average Discharge Voltage is 2.5 V • Maximum Charge Current is 0.6 mA For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k NOTE Always refer to the chosen coin cell manufacturer's data sheet for the latest information. Table 19. OSC32K Main Characteristics Parameter Min Typ Max Comments Fosc — 32.768 kHz — This frequency is nominal and determined mainly by the crystal selected. 32.0 K would work as well. Current consumption — 4 μA — The typical value shown is only for the oscillator, driven by an external crystal. If the internal ring oscillator is used instead of an external crystal, then approximately 25 μA should be added to this value. Bias resistor — 14 MΩ — This the integrated bias resistor that sets the amplifier into a high gain state. Any leakage through the ESD network, external board leakage, or even a scope probe that is significant relative to this value will debias the amplifier. The debiasing will result in low gain, and will impact the circuit's ability to start up and maintain oscillations. Target Crystal Properties Cload — 10 pF ESR — 50 kΩ — Usually crystals can be purchased tuned for different Cloads. This Cload value is typically 1/2 of the capacitances realized on the PCB on either side of the quartz. A higher Cload will decrease oscillation margin, but increases current oscillating through the crystal. 100 kΩ Equivalent series resistance of the crystal. Choosing a crystal with a higher value will decrease the oscillating margin. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 36 Freescale Semiconductor Inc. Electrical Characteristics 4.6 I/O DC Parameters This section includes the DC parameters of the following I/O types: • General Purpose I/O (GPIO) • Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes • LVDS I/O NOTE The term ‘OVDD’ in this section refers to the associated supply rail of an input or output. ovdd pmos (Rpu) 1 or 0 pdat Voh min Vol max pad Predriver nmos (Rpd) ovss Figure 3. Circuit for Parameters Voh and Vol for I/O Cells 4.6.1 XTALI and RTC_XTALI (Clock Inputs) DC Parameters Table 20 shows the DC parameters for the clock inputs. Table 20. XTALI and RTC_XTALI DC Parameters Parameter Symbol Test Conditions XTALI high-level DC input voltage Vih — XTALI low-level DC input voltage Vil — 0 — 0.2 V RTC_XTALI high-level DC input voltage Vih — 0.8 — 1.1 V RTC_XTALI low-level DC input voltage Vil — 0 — 0.2 V CIN Simulated data — 5 — pF — — 600 uA — — 2.5 uA Input capacitance IXTALI_STARTUP Power-on startup for 0.15msec with a driven 32KHz RTC clock @ 1.1V. This current draw is present even if an external clock source directly drives XTALI Startup current DC input current IXTALI_DC — Min Typ Max 0.8 x NVCC_PLL_OUT — NVCC_PLL_ OUT Unit V i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 37 Electrical Characteristics 4.6.2 General Purpose I/O (GPIO) DC Parameters Table 21 shows DC parameters for GPIO pads. The parameters in Table 21 are guaranteed per the operating ranges in Table 6, unless otherwise noted. Table 21. GPIO I/O DC Parameters Parameter Symbol Test Conditions Min Max Unit High-level output voltage1 Voh Ioh = -0.1 mA (DSE2 = 001, 010) Ioh = -1 mA (DSE = 011, 100, 101, 110, 111) OVDD – 0.15 — V Low-level output voltage1 Vol Iol = 0.1 mA (DSE2 = 001, 010) Iol = 1mA (DSE = 011, 100, 101, 110, 111) — 0.15 V High-Level DC input voltage1, 3 Vih — 0.7 × OVDD OVDD V Low-Level DC input voltage1, 3 Vil — 0 0.3 × OVDD V Input Hysteresis Vhys OVDD = 1.8 V OVDD = 3.3 V 0.25 — V Schmitt trigger VT+3, 4 VT+ — 0.5 × OVDD — V Schmitt trigger VT–3, 4 VT– — — 0.5 × OVDD V Input current (no pull-up/down) Iin Vin = OVDD or 0 -1 1 μA Input current (22 kΩ pull-up) Iin Vin = 0 V Vin = OVDD — 212 1 μA Input current (47 kΩ pull-up) Iin Vin = 0 V Vin = OVDD — 100 1 μA Input current (100 kΩ pull-up) Iin Vin = 0 V Vin= OVDD — 48 1 μA Input current (100 kΩ pull-down) Iin Vin = 0 V Vin = OVDD — 1 48 μA Rkeep Vin = 0.3 x OVDD Vin = 0.7 x OVDD 105 175 Keeper circuit resistance kΩ 1 Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device. 2 DSE is the Drive Strength Field setting in the associated IOMUX control register. 3 To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s. 4 Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled. 4.6.3 DDR I/O DC Parameters The DDR I/O pads support LPDDR2 and DDR3/DDR3L operational modes. To date LPDDR2 has not been fully validated or supported in the BSP. Full validation and BSP support will be completed during 2016. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 38 Freescale Semiconductor Inc. Electrical Characteristics 4.6.3.1 LPDDR2 Mode I/O DC Parameters The LPDDR2 interface mode fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The parameters in Table 22 are guaranteed per the operating ranges in Table 6, unless otherwise noted. Table 22. LPDDR2 I/O DC Electrical Parameters1 Parameters Symbol Test Conditions Min Max Unit High-level output voltage Voh Ioh = -0.1 mA 0.9 × OVDD — V Low-level output voltage Vol Iol = 0.1 mA — 0.1 × OVDD V Input reference voltage Vref — 0.49 × OVDD 0.51 × OVDD DC input High Voltage Vih(dc) — Vref+0.13V OVDD V DC input Low Voltage Vil(dc) — OVSS Vref-0.13V V Vih(diff) — 0.26 See Note 2 — -0.26 — Differential Input Logic High Differential Input Logic Low Vil(diff) — Iin Vin = 0 or OVDD -2.5 2.5 μA MMpupd — -15 +15 % Rres — — 10 Ω Rkeep — 110 175 kΩ Input current (no pull-up/down) Pull-up/pull-down impedance mismatch 240 Ω unit calibration resolution Keeper circuit resistance 1 2 See Note 2 Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document. The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot (see Table 27). 4.6.3.2 DDR3/DDR3L Mode I/O DC Parameters The DDR3/DDR3L interface mode fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008. The parameters in Table 23 are guaranteed per the operating ranges in Table 6, unless otherwise noted. Table 23. DDR3/DDR3L I/O DC Electrical Parameters Parameters Symbol High-level output voltage Test Conditions Ioh = -0.1 mA Voh (DSE = 001) Voh Ioh = -1 mA Voh (for all except DSE = 001) Low-level output voltage Min Max Unit 0.8 × OVDD1 — V — 0.2 × OVDD V Iol = 0.1 mA Vol (DSE = 001) Vol Iol = 1 mA Vol (for all except DSE = 001) Input reference voltage DC input Logic High Vref2 — 0.49 × OVDD 0.51 × OVDD Vih(dc) — Vref+0.1 OVDD V i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 39 Electrical Characteristics Table 23. DDR3/DDR3L I/O DC Electrical Parameters (continued) Parameters Symbol Test Conditions Min Max Unit DC input Logic Low Vil(dc) — OVSS Vref-0.1 V Differential input Logic High Vih(diff) — 0.2 See Note3 V 3 Vil(diff) — See Note -0.2 V Termination Voltage Vtt Vtt tracking OVDD/2 0.49 × OVDD 0.51 × OVDD V Input current (no pull-up/down) Iin Vin = 0 or OVDD -2.9 2.9 μA MMpupd — -10 10 % Rres — — 10 Ω Rkeep — 105 175 kΩ Differential input Logic Low Pull-up/pull-down impedance mismatch 240 Ω unit calibration resolution Keeper circuit resistance 1 OVDD – I/O power supply (1.425 V–1.575 V for DDR3 and 1.283 V–1.45 V for DDR3L). Vref – DDR3/DDR3L external reference voltage. 3 The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot (see Table 28). 2 4.6.4 LVDS I/O DC Parameters The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details. Table 24 shows the Low Voltage Differential Signalling (LVDS) I/O DC parameters. Table 24. LVDS I/O DC Parameters Parameter Symbol Test Conditions Min Max Unit Output Differential Voltage VOD Rload=100 Ω between padP and padN 250 450 mV Output High Voltage VOH IOH = 0 mA 1.25 1.6 Output Low Voltage VOL IOL = 0 mA 0.9 1.25 Offset Voltage VOS — 1.125 1.375 4.7 V I/O AC Parameters This section includes the AC parameters of the following I/O types: • General Purpose I/O (GPIO) • Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes • LVDS I/O The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and Figure 5. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 40 Freescale Semiconductor Inc. Electrical Characteristics From Output Under Test Test Point CL CL includes package, probe and fixture capacitance Figure 4. Load Circuit for Output OVDD 80% 80% Output (at pad) 20% 0V 20% tr tf Figure 5. Output Transition Time Waveform i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 41 Electrical Characteristics 4.7.1 General Purpose I/O AC Parameters The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 25 and Table 26, respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the IOMUXC control registers. Table 25. General Purpose I/O AC Parameters 1.8 V Mode Parameter Symbol Test Condition Min Typ Max Unit Output Pad Transition Times, rise/fall (Max Drive, ipp_dse=111) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate — — 2.72/2.79 1.51/1.54 Output Pad Transition Times, rise/fall (High Drive, ipp_dse=101) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate — — 3.20/3.36 1.96/2.07 Output Pad Transition Times, rise/fall (Medium Drive, ipp_dse=100) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate — — 3.64/3.88 2.27/2.53 Output Pad Transition Times, rise/fall (Low Drive. ipp_dse=011) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate — — 4.32/4.50 3.16/3.17 Input Transition Times1 trm — — — 25 ns Unit ns 1 Hysteresis mode is recommended for inputs with transition times greater than 25 ns. Table 26. General Purpose I/O AC Parameters 3.3 V Mode Parameter Symbol Test Condition Min Typ Max Output Pad Transition Times, rise/fall (Max Drive, ipp_dse=101) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate — — 1.70/1.79 1.06/1.15 Output Pad Transition Times, rise/fall (High Drive, ipp_dse=011) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate — — 2.35/2.43 1.74/1.77 Output Pad Transition Times, rise/fall (Medium Drive, ipp_dse=010) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate — — 3.13/3.29 2.46/2.60 Output Pad Transition Times, rise/fall (Low Drive. ipp_dse=001) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate — — 5.14/5.57 4.77/5.15 Input Transition Times1 trm — — — 25 1 ns ns Hysteresis mode is recommended for inputs with transition times greater than 25 ns. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 42 Freescale Semiconductor Inc. Electrical Characteristics 4.7.2 DDR I/O AC Parameters The LPDDR2 interface mode fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The DDR3/DDR3L interface mode fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008. Table 27 shows the AC parameters for DDR I/O operating in LPDDR2 mode. Table 27. DDR I/O LPDDR2 Mode AC Parameters1 Parameter Symbol Test Condition Min Typ Max Unit AC input logic high Vih(ac) — Vref + 0.22 — OVDD V AC input logic low Vil(ac) — 0 — Vref – 0.22 V AC differential input high voltage2 Vidh(ac) — 0.44 — — V AC differential input low voltage Vidl(ac) — — — 0.44 V Input AC differential cross point voltage3 Vix(ac) Relative to Vref -0.12 — 0.12 V Over/undershoot peak Vpeak — — — 0.35 V Over/undershoot area (above OVDD or below OVSS) Varea 400 MHz — — 0.2 V-ns tsr 50 Ω to Vref. 5 pF load. Drive impedance = 4 0 Ω ±30% 1.5 — 3.5 V/ns 50 Ω to Vref. 5pF load. Drive impedance = 60 Ω ±30% 1 — 2.5 clk = 400 MHz — — 0.1 Single output slew rate, measured between Vol(ac) and Voh(ac) Skew between pad rise/fall asymmetry + skew caused by SSN tSKD ns 1 Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document. Vid(ac) specifies the input differential voltage |Vtr – Vcp| required for switching, where Vtr is the “true” input signal and Vcp is the “complementary” input signal. The Minimum value is equal to Vih(ac) – Vil(ac). 3 The typical value of Vix(ac) is expected to be about 0.5 × OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross. 2 Table 28 shows the AC parameters for DDR I/O operating in DDR3/DDR3L mode. Table 28. DDR I/O DDR3/DDR3L Mode AC Parameters1 Parameter Symbol Test Condition Min Typ Max Unit Vih(ac) — Vref + 0.175 — OVDD V Vil(ac) — 0 — Vref – 0.175 V Vid(ac) — 0.35 — — V Input AC differential cross point voltage3 Vix(ac) Relative to Vref Vref – 0.15 — Vref + 0.15 V Over/undershoot peak Vpeak — — — 0.4 V Over/undershoot area (above OVDD or below OVSS) Varea 533 MHz — — 0.5 V-ns AC input logic high AC input logic low AC differential input voltage2 i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 43 Electrical Characteristics Table 28. DDR I/O DDR3/DDR3L Mode AC Parameters1 (continued) Parameter Single output slew rate, measured between Vol(ac) and Voh(ac) Skew between pad rise/fall asymmetry + skew caused by SSN Symbol Test Condition Min Typ Max Unit tsr Driver impedance = 34 Ω 2.5 — 5 V/ns tSKD clk = 533 MHz — — 0.1 ns 1 Note that the JEDEC JESD79_3C specification supersedes any specification in this document. Vid(ac) specifies the input differential voltage |Vtr-Vcp| required for switching, where Vtr is the “true” input signal and Vcp is the “complementary” input signal. The Minimum value is equal to Vih(ac) – Vil(ac). 3 The typical value of Vix(ac) is expected to be about 0.5 × OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross. 2 4.7.3 LVDS I/O AC Parameters The differential output transition time waveform is shown in Figure 6. padp VOH 0V 0V (Differential) padn VOL 80% 80% 0V 0V VDIFF 20% VDIFF = {padp} - {padn} 20% tTHL tTLH Figure 6. Differential LVDS Driver Transition Time Waveform Table 29 shows the AC parameters for LVDS I/O. Table 29. I/O AC Parameters of LVDS Pad Parameter Symbol Test Condition Differential pulse skew1 tSKD Transition Low to High Time2 tTLH Transition High to Low Time2 tTHL Operating Frequency Offset voltage imbalance Rload = 100 Ω, Cload = 2 pF Min Typ Max — — 0.25 — — 0.5 — — 0.5 Unit ns f — — 600 800 MHz Vos — — — 150 mV 1 tSKD = | tPHLD – tPLHD |, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel. 2 Measurement levels are 20–80% from output voltage. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 44 Freescale Semiconductor Inc. Electrical Characteristics 4.8 Output Buffer Impedance Parameters This section defines the I/O impedance parameters of the i.MX 6DualPlus/6QuadPlus processors for the following I/O types: • General Purpose I/O (GPIO) • Double Data Rate I/O (DDR) for LPDDR2, and DDR3 modes • LVDS I/O NOTE GPIO and DDR I/O output driver impedance is measured with “long” transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 7). i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 45 Electrical Characteristics OVDD PMOS (Rpu) Ztl Ω, L = 20 inches ipp_do pad predriver Cload = 1p NMOS (Rpd) OVSS U,(V) Vin (do) VDD t,(ns) 0 U,(V) Vout (pad) OVDD Vref2 Vref1 Vref t,(ns) 0 Vovdd – Vref1 Rpu = Vref1 Rpd = Vref2 × Ztl × Ztl Vovdd – Vref2 Figure 7. Impedance Matching Load for Measurement i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 46 Freescale Semiconductor Inc. Electrical Characteristics 4.8.1 GPIO Output Buffer Impedance Table 30 shows the GPIO output buffer impedance (OVDD 1.8 V). Table 30. GPIO Output Buffer Average Impedance (OVDD 1.8 V) Parameter Output Driver Impedance Symbol Drive Strength (ipp_dse) Typ Value Unit Rdrv 001 010 011 100 101 110 111 260 130 90 60 50 40 33 Ω Table 31 shows the GPIO output buffer impedance (OVDD 3.3 V). Table 31. GPIO Output Buffer Average Impedance (OVDD 3.3 V) Parameter Output Driver Impedance Symbol Drive Strength (ipp_dse) Typ Value Unit Rdrv 001 010 011 100 101 110 111 150 75 50 37 30 25 20 Ω i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 47 Electrical Characteristics 4.8.2 DDR I/O Output Buffer Impedance The LPDDR2 interface fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The DDR3 interface fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008. Table 32 shows DDR I/O output buffer impedance of i.MX 6DualPlus/6QuadPlus processors. Table 32. DDR I/O Output Buffer Impedance Typical Parameter Output Driver Impedance Symbol Test Conditions Rdrv Drive Strength (DSE) = 000 001 010 011 100 101 110 111 NVCC_DRAM=1.5 V (DDR3) DDR_SEL=11 NVCC_DRAM=1.2 V (LPDDR2) DDR_SEL=10 Hi-Z 240 120 80 60 48 40 34 Hi-Z 240 120 80 60 48 40 34 Unit Ω Note: 1. Output driver impedance is controlled across PVTs using ZQ calibration procedure. 2. Calibration is done against 240 W external reference resistor. 3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs. 4.8.3 LVDS I/O Output Buffer Impedance The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details. 4.9 System Modules Timing This section contains the timing and electrical parameters for the modules in each i.MX 6DualPlus/6QuadPlus processor. 4.9.1 Reset Timing Parameters Figure 8 shows the reset timing and Table 33 lists the timing parameters. SRC_POR_B (Input) CC1 Figure 8. Reset Timing Diagram i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 48 Freescale Semiconductor Inc. Electrical Characteristics Table 33. Reset Timing Parameters ID CC1 4.9.2 Parameter Duration of SRC_POR_B to be qualified as valid Min Max Unit 1 — XTALOSC_RTC_ XTALI cycle WDOG Reset Timing Parameters Figure 9 shows the WDOG reset timing and Table 34 lists the timing parameters. WDOG1_B (Output) CC3 Figure 9. WDOG1_B Timing Diagram Table 34. WDOG1_B Timing Parameters ID CC3 Parameter Duration of WDOG1_B Assertion Min Max Unit 1 — XTALOSC_RTC_ XTALI cycle NOTE XTALOSC_RTC_XTALI is approximately 32 kHz. XTALOSC_RTC_XTALI cycle is one period or approximately 30 μs. NOTE WDOG1_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUX manual for detailed information. 4.9.3 External Interface Module (EIM) The following subsections provide information on the EIM. Maximum operating frequency for EIM data transfer is 104 MHz. Timing parameters in this section that are given as a function of register settings or clock periods are valid for the entire range of allowed frequencies (0–104 MHz). i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 49 Electrical Characteristics 4.9.3.1 EIM Interface Pads Allocation EIM supports 32-bit, 16-bit and 8-bit devices operating in address/data separate or multiplexed modes. Table 35 provides EIM interface pads allocation in different modes. Table 35. EIM Internal Module Multiplexing1 Multiplexed Address/Data mode Non Multiplexed Address/Data Mode Setup 8 Bit 16 Bit 32 Bit 16 Bit 32 Bit MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 1, MUM = 1, DSZ = 100 DSZ = 101 DSZ = 110 DSZ = 111 DSZ = 001 DSZ = 010 DSZ = 011 DSZ = 001 DSZ = 011 EIM_ADDR EIM_AD EIM_AD EIM_AD EIM_AD EIM_AD EIM_AD EIM_AD EIM_AD EIM_AD [15:00] [15:00] [15:00] [15:00] [15:00] [15:00] [15:00] [15:00] [15:00] [15:00] EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_DATA [25:16] [25:16] [25:16] [25:16] [25:16] [25:16] [25:16] [25:16] [25:16] [09:00] EIM_DATA EIM_DATA — — — EIM_DATA — EIM_DATA EIM_AD EIM_AD [07:00], [07:00] [07:00] [07:00] [07:00] [07:00] EIM_EB0_B EIM_DATA — EIM_DATA — — EIM_DATA — EIM_DATA EIM_AD EIM_AD [15:08], [15:08] [15:08] [15:08] [15:08] [15:08] EIM_EB1_B — EIM_DATA EIM_DATA — — EIM_DATA — — EIM_DATA EIM_DATA [07:00] [23:16], [23:16] [23:16] [23:16] EIM_EB2_B EIM_DATA — — — EIM_DATA — EIM_DATA EIM_DATA — EIM_DATA [31:24], [31:24] [31:24] [31:24] [15:08] EIM_EB3_B 1 For more information on configuration ports mentioned in this table, see the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM). i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 50 Freescale Semiconductor Inc. Electrical Characteristics 4.9.3.2 General EIM Timing-Synchronous Mode Figure 10, Figure 11, and Table 36 specify the timings related to the EIM module. All EIM output control signals may be asserted and deasserted by an internal clock synchronized to the EIM_BCLK rising edge according to corresponding assertion/negation control fields. WE2 EIM_BCLK ... WE4 WE3 WE1 WE5 EIM_ADDRxx WE6 WE7 WE8 WE9 WE10 WE11 WE12 WE13 WE14 WE15 WE16 WE17 EIM_CSx_B EIM_WE_B EIM_OE_B EIM_EBx_B EIM_LBA_B Output Data Figure 10. EIM Output Timing Diagram EIM_BCLK WE18 Input Data WE19 WE20 EIM_WAIT_B WE21 Figure 11. EIM Input Timing Diagram 4.9.3.3 Examples of EIM Synchronous Accesses Table 36. EIM Bus Timing Parameters ID Parameter Min1 Max1 Unit t × (k+1) — ns WE1 EIM_BCLK cycle time2 WE2 EIM_BCLK high level width 0.4 × t × (k+1) — ns WE3 EIM_BCLK low level width 0.4 × t × (k+1) — ns i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 51 Electrical Characteristics Table 36. EIM Bus Timing Parameters (continued) ID 1 2 Parameter Min1 Max1 Unit WE4 Clock rise to address valid -0.5 × t × (k+1) - 1.25 -0.5 × t × (k+1) + 2.25 ns WE5 Clock rise to address invalid 0.5 × t × (k+1) - 1.25 0.5 × t × (k+1) + 2.25 ns WE6 Clock rise to EIM_CSx_B valid -0.5 × t × (k+1) - 1.25 -0.5 × t × (k+1) + 2.25 ns WE7 Clock rise to EIM_CSx_B invalid 0.5 × t × (k+1) - 1.25 0.5 × t × (k+1) + 2.25 ns WE8 Clock rise to EIM_WE_B valid -0.5 × t × (k+1) - 1.25 -0.5 × t × (k+1) + 2.25 ns WE9 Clock rise to EIM_WE_B invalid 0.5 × t × (k+1) - 1.25 0.5 × t × (k+1) + 2.25 ns WE10 Clock rise to EIM_OE_B valid -0.5 × t × (k+1) - 1.25 -0.5 × t × (k+1) + 2.25 ns WE11 Clock rise to EIM_OE_B invalid 0.5 × t × (k+1) - 1.25 0.5 × t × (k+1) + 2.25 ns WE12 Clock rise to EIM_EBx_B valid -0.5 × t × (k+1) - 1.25 -0.5 × t × (k+1) + 2.25 ns WE13 Clock rise to EIM_EBx_B invalid 0.5 × t × (k+1) - 1.25 0.5 × t × (k+1) + 2.25 ns WE14 Clock rise to EIM_LBA_B valid -0.5 × t × (k+1) - 1.25 -0.5 × t × (k+1) + 2.25 ns WE15 Clock rise to EIM_LBA_B invalid 0.5 × t × (k+1) - 1.25 0.5 × t × (k+1) + 2.25 ns WE16 Clock rise to output data valid -0.5 × t × (k+1) - 1.25 -0.5 × t × (k+1) + 2.25 ns WE17 Clock rise to output data invalid 0.5 × t × (k+1) - 1.25 0.5 × t × (k+1) + 2.25 ns WE18 Input data setup time to clock rise 2.3 — ns WE19 Input data hold time from clock rise 2 — ns WE20 EIM_WAIT_B setup time to clock rise 2 — ns WE21 EIM_WAIT_B hold time from clock rise 2 — ns k represents register setting BCD value. t is clock period (1/Freq). For 104 MHz, t = 9.165 ns. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 52 Freescale Semiconductor Inc. Electrical Characteristics Figure 12 to Figure 15 provide few examples of basic EIM accesses to external memory devices with the timing parameters mentioned previously for specific control parameters settings. EIM_BCLK EIM_ADDRxx WE5 WE4 Address v1 Last Valid Address WE6 WE6 WE7 EIM_CSx_B EIM_WE_B WE14 WE15 EIM_LBA_B WE10 WE11 WE12 WE13 EIM_OE_B EIM_EBx_B WE18 WE19 D(v1) EIM_DATAxx Figure 12. Synchronous Memory Read Access, WSC=1 EIM_BCLK WE4 EIM_ADDRxx Last Valid Address WE5 Address V1 WE6 WE7 WE8 WE9 EIM_CSx_B EIM_WE_B WE14 WE15 EIM_LBA_B EIM_OE_B WE13 WE12 EIM_EBx_B WE16 EIM_DATAxx WE17 D(V1) Figure 13. Synchronous Memory, Write Access, WSC=1, WBEA=0 and WADVN=0 i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 53 Electrical Characteristics EIM_BCLK EIM_ADDRxx/ EIM_ADxx Last Valid Address WE17 WE16 WE5 WE4 Write Data Address V1 WE6 WE7 WE8 WE9 EIM_CSx_B EIM_WE_B WE15 WE14 EIM_LBA_B EIM_OE_B WE10 WE11 EIM_EBx_B Figure 14. Muxed Address/Data (A/D) Mode, Synchronous Write Access, WSC=6,ADVA=0, ADVN=1, and ADH=1 NOTE In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the data bus. EIM_BCLK WE4 WE19 WE5 EIM_ADDRxx/ Last Valid Address Address V1 EIM_ADxx WE6 Data WE18 EIM_CSx_B WE7 EIM_WE_B WE14 EIM_LBA_B WE15 WE10 WE11 EIM_OE_B WE12 WE13 EIM_EBx_B Figure 15. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, OEA=0 i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 54 Freescale Semiconductor Inc. Electrical Characteristics 4.9.3.4 General EIM Timing-Asynchronous Mode Figure 16 through Figure 20 and Table 37 provide timing parameters relative to the chip select (CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing parameters mentioned above. Asynchronous read and write access length in cycles may vary from what is shown in Figure 16 through Figure 19 as RWSC, OEN & CSN is configured differently. See the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM) for the EIM programming model. end of access start of access INT_CLK MAXCSO EIM_CSx_B EIM_ADDRxx/ EIM_ADxx WE31 Last Valid Address WE32 Address V1 Next Address EIM_WE_B EIM_LBA_B WE39 WE40 WE35 WE36 WE37 WE38 EIM_OE_B EIM_EBx_B WE44 MAXCO EIM_DATA[07:00] D(V1) WE43 MAXDI Figure 16. Asynchronous Memory Read Access (RWSC = 5) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 55 Electrical Characteristics end of access start of access INT_CLK MAXCSO EIM_CSx_B MAXDI WE31 EIM_ADDRxx/ EIM_ADxx D(V1) Addr. V1 WE44 WE32A EIM_WE_B WE40A WE39 EIM_LBA_B WE35A WE36 EIM_OE_B WE37 WE38 EIM_EBx_B MAXCO Figure 17. Asynchronous A/D Muxed Read Access (RWSC = 5) EIM_CSx_B WE31 EIM_ADDRxx Last Valid Address WE32 Next Address Address V1 WE33 WE34 WE39 WE40 WE45 WE46 EIM_WE_B EIM_LBA_B EIM_OE_B EIM_EBx_B WE42 EIM_DATAxx D(V1) WE41 Figure 18. Asynchronous Memory Write Access i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 56 Freescale Semiconductor Inc. Electrical Characteristics EIM_CSx_B WE31 EIM_ADDRxx/ EIM_DATAxx WE41A D(V1) Addr. V1 WE42 WE32A WE33 WE34 EIM_WE_B WE40A WE39 EIM_LBA_B EIM_OE_B WE45 WE46 EIM_EBx_B Figure 19. Asynchronous A/D Muxed Write Access EIM_CSx_B EIM_ADDRxx WE31 Last Valid Address WE32 Next Address Address V1 EIM_WE_B WE39 WE40 WE35 WE36 WE37 WE38 EIM_LBA_B EIM_OE_B EIM_EBx_B WE44 D(V1) EIM_DATAxx[07:00] WE43 WE48 EIM_DTACK_B WE47 Figure 20. DTACK Mode Read Access (DAP=0) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 57 Electrical Characteristics EIM_CSx_B WE31 EIM_ADDRxx Last Valid Address WE32 Next Address Address V1 WE33 WE34 WE39 WE40 WE45 WE46 EIM_WE_B EIM_LBA_B EIM_OE_B EIM_EBx_B WE42 D(V1) EIM_DATAxx WE41 WE48 EIM_DTACK_B WE47 Figure 21. DTACK Mode Write Access (DAP=0) Table 37. EIM Asynchronous Timing Parameters Relative to Chip Select1, 2 Ref No. Parameter Determination by Synchronous measured parameters Min Max Unit WE31 EIM_CSx_B valid to Address Valid WE4-WE6-CSA×t -3.5-CSA×t 3.5-CSA×t ns WE32 Address Invalid to EIM_CSx_B Invalid WE7-WE5-CSN× t -3.5-CSN×t 3.5-CSN×t ns WE32A EIM_CSx_B valid to Address (muxed Invalid A/D) t+WE4-WE7+ (ADVN+ADVA+1-CSA)×t t - 3.5+(ADVN+A t + 3.5+(ADVN+ADVA+ DVA+1-CSA)×t 1-CSA)×t ns WE33 EIM_CSx_B Valid to EIM_WE_B Valid WE8-WE6+(WEA-WCSA)×t -3.5+(WEA-WCS A)×t 3.5+(WEA-WCSA)×t ns WE34 EIM_WE_B Invalid to EIM_CSx_B Invalid WE7-WE9+(WEN-WCSN)×t -3.5+(WEN-WCS N)×t 3.5+(WEN-WCSN)×t ns WE35 EIM_CSx_B Valid to EIM_OE_B Valid WE10- WE6+(OEA-RCSA)×t -3.5+(OEA-RCS A)×t 3.5+(OEA-RCSA)×t ns WE35A EIM_CSx_B Valid to EIM_OE_B (muxed Valid A/D) WE10-WE6+(OEA+RADVN+R -3.5+(OEA+RAD 3.5+(OEA+RADVN+RA ns ADVA+ADH+1-RCSA)×t VN+RADVA+ADH DVA+ADH+1-RCSA)×t +1-RCSA)×t WE7-WE11+(OEN-RCSN)×t EIM_OE_B Invalid to EIM_CSx_B Invalid WE37 EIM_CSx_B Valid to EIM_EBx_B Valid (Read access) WE12-WE6+(RBEA-RCSA)× t -3.5+(RBEA- RC 3.5+(RBEA - RCSA)×t SA)×t ns WE38 EIM_EBx_B Invalid to WE7-WE13+(RBEN-RCSN)×t -3.5+ 3.5+(RBEN-RCSN)×t EIM_CSx_B Invalid (Read access) (RBEN-RCSN)×t ns WE39 EIM_CSx_B Valid to EIM_LBA_B Valid ns WE14-WE6+(ADVA-CSA)×t -3.5+(OEN-RCS N)×t -3.5+ (ADVA-CSA)×t 3.5+(OEN-RCSN)×t ns WE36 3.5+(ADVA-CSA)×t i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 58 Freescale Semiconductor Inc. Electrical Characteristics Table 37. EIM Asynchronous Timing Parameters Relative to Chip Select1, 2 (continued) Ref No. WE40 Parameter EIM_LBA_B Invalid to EIM_CSx_B Invalid (ADVL is asserted) Determination by Synchronous measured parameters Min Max Unit WE7-WE15-CSN×t -3.5-CSN×t 3.5-CSN×t ns 3.5+(ADVN+ADVA +1-CSA)×t ns 3.5-WCSA×t ns WE40A EIM_CSx_B Valid to EIM_LBA_B WE14-WE6+(ADVN+ADVA+1- -3.5+(ADVN+AD (muxed Invalid CSA)×t VA+1-CSA)×t A/D) WE41 EIM_CSx_B Valid to Output Data Valid WE16-WE6-WCSA×t -3.5-WCSA×t WE41A EIM_CSx_B Valid to Output Data WE16-WE6+(WADVN+WADVA -3.5+(WADVN+ 3.5+(WADVN+WADVA (muxed Valid +ADH+1-WCSA)×t WADVA +ADH+1-WCSA)×t A/D) +ADH+1-WCSA) ×t WE42 Output Data Invalid to EIM_CSx_B Invalid MAXCO Output maximum delay from internal driving EIM_ADDRxx/control flip-flops to chip outputs. MAXCSO Output maximum delay from internal chip selects driving flip-flops to EIM_CSx_B out. MAXDI EIM_DATAxx MAXIMUM delay from chip input data to its internal flip-flop WE17-WE7-CSN×t -3.5-CSN×t 3.5-CSN×t ns 10 — 10 ns 10 — 10 ns 5 — 5 ns MAXCO-MAXCSO+MAXDI MAXCO-MAXCS O+MAXDI — ns 0 0 — ns WE43 Input Data Valid to EIM_CSx_B Invalid WE44 EIM_CSx_B Invalid to Input Data Invalid WE45 EIM_CSx_B Valid to EIM_EBx_B WE12-WE6+(WBEA-WCSA)×t -3.5+(WBEA-WC 3.5+(WBEA-WCSA)×t Valid (Write access) SA)×t ns WE46 EIM_EBx_B Invalid to WE7-WE13+(WBEN-WCSN)×t -3.5+(WBEN-WC 3.5+(WBEN-WCSN)×t SN)×t EIM_CSx_B Invalid (Write access) ns MAXDTI Maximum delay from EIM_DTACK_B input to its internal flip-flop + 2 cycles for synchronization 1 ns WE47 EIM_DTACK_B Active to EIM_CSx_B Invalid WE48 EIM_CSx_B Invalid to EIM_DTACK_B invalid 10 — 10 ns MAXCO-MAXCSO+MAXDTI MAXCO-MAXCS O+MAXDTI — ns 0 0 — ns For more information on configuration parameters mentioned in this table, see the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM). i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 59 Electrical Characteristics 2 In this table: • t means clock period from axi_clk frequency. • CSA means register setting for WCSA when in write operations or RCSA when in read operations. • CSN means register setting for WCSN when in write operations or RCSN when in read operations. • ADVN means register setting for WADVN when in write operations or RADVN when in read operations. • ADVA means register setting for WADVA when in write operations or RADVA when in read operations. 4.9.4 DDR SDRAM Specific Parameters (DDR3/DDR3L and LPDDR2) 4.9.4.1 DDR3/DDR3L Parameters Figure 22 shows the DDR3/DDR3L basic timing diagram. The timing parameters for this diagram appear in Table 38. DDR1 DRAM_SDCLKx_N DRAM_SDCLKx_P DDR2 DDR4 DRAM_CSx_B DDR5 DRAM_RAS_B DDR5 DDR4 DRAM_CAS_B DDR4 DDR5 DDR5 DRAM_SDWE_B DRAM_ODTx/ DRAM_SDCKEx DDR4 DDR6 DDR7 DRAM_ADDRxx ROW/BA COL/BA Figure 22. DDR3/DDR3L Command and Address Timing Diagram Table 38. DDR3/DDR3L Command and Address Timing Parameter ID Parameter1, 2 CK = 532 MHz Symbol Unit Min Max DDR1 DRAM_SDCLKx_P clock high-level width tCH 0.47 0.53 tCK DDR2 DRAM_SDCLKx_P clock low-level width tCL 0.47 0.53 tCK i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 60 Freescale Semiconductor Inc. Electrical Characteristics Table 38. DDR3/DDR3L Command and Address Timing Parameter (continued) 1 2 CK = 532 MHz Parameter1, 2 ID Symbol Unit Min Max DDR4 DRAM_CSx_B, DRAM_RAS_B, DRAM_CAS_B, DRAM_SDCKEx, DRAM_SDWE_B, DRAM_ODTx setup time tIS 500 — ps DDR5 DRAM_CSx_B, DRAM_RAS_B, DRAM_CAS_B, DRAM_SDCKEx, DRAM_SDWE_B, DRAM_ODTx hold time tIH 400 — ps DDR6 Address output setup time tIS 500 — ps DDR7 Address output hold time tIH 400 — ps All measurements are in reference to Vref level. Measurements were done using balanced load and 25 Ω resistor from outputs to DRAM_VREF. Figure 23 shows the DDR3/DDR3L write timing diagram. The timing parameters for this diagram appear in Table 39. DRAM_SDCLKx_P DRAM_SDCLKx_N DDR21 DDR22 DDR23 DRAM_SDQSx_P (output) DDR18 DRAM_DATAxx (output) DDR17 DRAM_DQMx (output) DDR17 DDR17 DDR18 Data Data Data Data Data Data Data Data DM DM DM DM DM DM DM DM DDR18 DDR17 DDR18 Figure 23. DDR3/DDR3L Write Cycle Table 39. DDR3/DDR3L Write Cycle Parameter1,2,3 ID DDR17 DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P (differential strobe) CK = 532 MHz Symbol tDS Unit Min Max 754 — ps — ps 4 tDH 100 DDR21 DRAM_SDQSx_P latching rising transitions to associated clock edges tDQSS -0.25 +0.25 tCK DDR22 DRAM_SDQSx_P high level width tDQSH 0.45 0.55 tCK DDR23 DRAM_SDQSx_P low level width tDQSL 0.45 0.55 tCK DDR18 DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P (differential strobe) 1 To receive the reported setup and hold values, write calibration should be performed to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window. 2 All measurements are in reference to Vref level. 3 Measurements were taken using balanced load and 25 Ω resistor from outputs to DRAM_VREF i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 61 Electrical Characteristics 4 Refer to JEDEC DDR3 SDRAM Standards for Data Setup (tDS), Hold (tDH) and Slew Rate Derating tables. Figure 24 shows the DDR3/DDR3L read timing diagram. The timing parameters for this diagram appear in Table 40. DRAM_SDCLKx_P DRAM_SDCLKx_N DRAM_SDQSx_P(input) DRAM_DATAxx (input) DATA DATA DATA DATA DATA DATA DATA DATA DDR26 Figure 24. DDR3/DDR3L Read Cycle Table 40. DDR3/DDR3L Read Cycle CK = 532 MHz Parameter1,2,3 ID DDR26 Symbol Minimum required DRAM_DATAxx valid window width. — Unit Min Max 450 — ps 1 To receive the reported setup and hold values, the read calibration must be performed to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window. 2 All measurements are in reference to Vref level. 3 Measurements were completed using balanced load and a 25 Ω resistor from outputs to DRAM_VREF. 4.9.4.2 LPDDR2 Parameters Figure 25 shows the LPDDR2 basic timing diagram. The timing parameters for this diagram appear in Table 41. DRAM_SDCLKx_P LP1 LP4 DRAM_CSx_B LP2 LP3 DRAM__SDCKEx LP3 LP3 LP4 DRAM_ADRxx LP3 LP4 Figure 25. LPDDR2 Command and Address Timing Diagram i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 62 Freescale Semiconductor Inc. Electrical Characteristics Table 41. LPDDR2 Command and Address Timing Parameters CK = 400 MHz Parameter1, 2 ID 1 2 Symbol Unit Min Max LP1 DRAM_SDCLKx_P clock high-level width tCH 0.45 0.55 tCK LP2 DRAM_SDCLKx_P clock low-level width tCL 0.45 0.55 tCK LP3 DRAM_CSx_B, DRAM_ADDRxx setup time tIS 390 — ps LP4 DRAM_CSx_B, DRAM_ADDRxx hold time tIH 390 — ps LP3 DRAM_ADDRxx setup time tIS 390 — ps LP4 DRAM_ADDRxx hold time tIH 390 — ps All measurements are in reference to Vref level. Measurements were completed using balanced load and a 25 Ω resistor from outputs to DRAM_VREF. Figure 26 shows the LPDDR2 write timing diagram. The timing parameters for this diagram appear in Table 42. DRAM_SDCLKx_P DRAM_SDCLKx_N LP21 LP22 LP23 DRAM_SDQSx_P (output) LP18 LP17 DRAM_DATAxx (output) DRAM_DQMx (output) LP17 LP17 LP18 Data Data Data Data Data Data Data Data DM DM DM DM DM DM DM DM LP18 LP17 LP18 Figure 26. LPDDR2 Write Cycle Table 42. LPDDR2 Write Cycle CK = 400 MHz Parameter1, 2,3 ID Symbol Unit Min Max LP17 DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P (differential strobe) tDS 370 — ps LP18 DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P (differential strobe) tDH 370 — ps LP21 DRAM_SDQSx_P latching rising transitions to associated clock edges tDQSS 0.75 1.25 tCK i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 63 Electrical Characteristics Table 42. LPDDR2 Write Cycle (continued) CK = 400 MHz Parameter1, 2,3 ID Symbol Unit Min Max LP22 DRAM_SDQSx_P high level width tDQSH 0.4 — tCK LP23 DRAM_SDQSx_P low level width tDQSL 0.4 — tCK 1 To receive the reported setup and hold values, the write calibration must be performed to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window. 2 All measurements are in reference to Vref level. 3 Measurements were completed using balanced load and a 25 Ω resistor from outputs to DRAM_VREF. Figure 27 shows the LPDDR2 read timing diagram. The timing parameters for this diagram appear in Table 43. DRAM_SDCLKx_P DRAM_SDCLKx_N DRAM_SDQSx_P (input) DRAM_DATAxx (input) DATA DATA DATA DATA DATA DATA DATA DATA LP26 Figure 27. LPDDR2 Read Cycle Table 43. LPDDR2 Read Cycle CK = 400 MHz ID LP26 Parameter1,2, 3 Minimum required DRAM_DATAxx valid window width for LPDDR2 Symbol — Unit Min Max 330 — ps 1 To receive the reported setup and hold values, read calibration must be performed to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window. 2 All measurements are in reference to Vref level. 3 Measurements were completed using balanced load and a 25 Ω resistor from outputs to DRAM_VREF. 4.10 General-Purpose Media Interface (GPMI) Timing The i.MX 6DualPlus/6QuadPlus GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 200 MB/s I/O speed and individual chip select. It supports Asynchronous timing mode, Source Synchronous timing mode, and Samsung Toggle timing mode separately described in the following subsections. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 64 Freescale Semiconductor Inc. Electrical Characteristics 4.10.1 Asynchronous Mode AC Timing (ONFI 1.0 Compatible) Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The Maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 28 through Figure 31 depict the relative timing between GPMI signals at the module level for different operations under Asynchronous mode. Table 44 describes the timing parameters (NF1–NF17) that are shown in the figures. .!.$?#,% .!.$?#%?" E&ϯ E&Ϯ E&ϭ .!.$?7%?" E&ϱ E&ϰ E&ϲ .!.$?!,% E&ϳ E&ϴ E&ϵ ŽŵŵĂŶĚ .!.$?$!4!XX Figure 28. Command Latch Cycle Timing Diagram E&ϭ .!.$?#,% .!.$?#%?" E&ϯ E&ϭϬ .!.$?7%?" E&ϱ .!.$?!,% E&ϭϭ E&ϴ EEͺddždž E&ϳ E&ϲ E&ϵ ĚĚƌĞƐƐ Figure 29. Address Latch Cycle Timing Diagram E&ϭ .!.$?#,% .!.$?#%?" E&ϯ E&ϭϬ .!.$?7%?" .!.$?!,% E&ϱ E&ϲ E&ϴ .!.$?$!4!XX E&ϭϭ E&ϳ E&ϵ ĂƚĂƚŽE& Figure 30. Write Data Latch Cycle Timing Diagram i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 65 Electrical Characteristics .!.$?#,% .!.$?#%?" E&ϭϰ .!.$?2%?" .!.$?2%!$9?" E&ϭϯ E&ϭϱ E&ϭϮ E&ϭϲ .!.$?$!4!XX E&ϭϳ ĂƚĂĨƌŽŵE& Figure 31. Read Data Latch Cycle Timing Diagram (Non-EDO Mode) .!.$?#,% .!.$?#%?" E&ϭϰ E&ϭϯ .!.$?2%?" .!.$?2%!$9?" E&ϭϱ E&ϭϮ E&ϭϳ E&ϭϲ EEͺddždž ĂƚĂĨƌŽŵE& Figure 32. Read Data Latch Cycle Timing Diagram (EDO Mode) Table 44. Asynchronous Mode Timing Parameters1 ID Parameter Timing T = GPMI Clock Cycle Symbol Min Unit Max NF1 NAND_CLE setup time tCLS (AS + DS) × T - 0.12 [see 2,3] ns NF2 NAND_CLE hold time tCLH DH × T - 0.72 [see 2] ns NF3 NAND_CEx_B setup time tCS (AS + DS + 1) × T [see 3,2] ns NF4 NAND_CEx_B hold time tCH (DH+1) × T - 1 [see 2] ns NF5 NAND_WE_B pulse width tWP DS × T [see 2] ns NF6 NAND_ALE setup time tALS (AS + DS) × T - 0.49 [see 3,2] ns NF7 NAND_ALE hold time tALH (DH × T - 0.42 [see 2] ns NF8 Data setup time tDS DS × T - 0.26 [see 2] ns NF9 Data hold time tDH DH × T - 1.37 [see 2] ns NF10 Write cycle time tWC (DS + DH) × T [see 2] ns NF11 NAND_WE_B hold time tWH DH × T [see 2] ns NF12 Ready to NAND_RE_B low tRR4 NF13 NAND_RE_B pulse width tRP DS × T [see 2] ns NF14 READ cycle time tRC (DS + DH) × T [see 2] ns NF15 NAND_RE_B high hold time tREH DH × T [see 2] ns (AS + 2) × T [see 3,2] — ns i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 66 Freescale Semiconductor Inc. Electrical Characteristics Table 44. Asynchronous Mode Timing Parameters1 (continued) ID 1 2 3 4 5 6 Parameter Timing T = GPMI Clock Cycle Symbol Unit Min Max NF16 Data setup on read tDSR — (DS × T -0.67)/18.38 [see 5,6] ns NF17 Data hold on read tDHR 0.82/11.83 [see 5,6] — ns The GPMI asynchronous mode output timing can be controlled by the module’s internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings. AS minimum value can be 0, while DS/DH minimum value is 1. T = GPMI clock period -0.075ns (half of maximum p-p jitter). NF12 is met automatically by the design. Non-EDO mode. EDO mode, GPMI clock ≈ 100 MHz (AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0). In EDO mode (Figure 32), NF16/NF17 are different from the definition in non-EDO mode (Figure 31). They are called tREA/tRHOH (NAND_RE_B access time/NAND_RE_B HIGH to output hold). The typical value for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM)). The typical value of this control register is 0x8 at 50 MT/s EDO mode. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 67 Electrical Characteristics 4.10.2 Source Synchronous Mode AC Timing (ONFI 2.x Compatible) Figure 33 shows the write and read timing of Source Synchronous mode. .!.$?#%?" 1) 1) 1) 1$1'B&/( 1) 1) 1) 1$1'B$/( 1) 1) 1$1'B:(5(B% 1) 1$1'B&/. 1$1'B'46 1$1'B'46 2XWSXWHQDEOH 1) 1) 1) 1) 1$1'B'$7$>@ &0' $'' 1$1'B'$7$>@ 2XWSXWHQDEOH Figure 33. Source Synchronous Mode Command and Address Timing Diagram i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 68 Freescale Semiconductor Inc. Electrical Characteristics .!.$?#%?" 1) 1) 1) .!.$?#,% 1) 1) 1) 1) 1) .!.$?!,% 1) 1) 1$1'B:(5(B% 1) .!.$?#,+ 1) 1) .!.$?$13 .!.$?$13 2XWSXWHQDEOH 1) 1) .!.$?$1;= 1) 1) .!.$?$1;= 2XWSXWHQDEOH Figure 34. Source Synchronous Mode Data Write Timing Diagram .!.$?#%?" 1) 1) 1) 1) .!.$?#,% 1) 1$1'B$/( .!.$?7%2% 1) 1) 1) 1) 1) 1) 1) 1) 1) .!.$?#,+ .!.$?$13 .!.$?$13 /UTPUTENABLE .!.$?$!4!;= .!.$?$!4!;= /UTPUTENABLE Figure 35. Source Synchronous Mode Data Read Timing Diagram i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 69 Electrical Characteristics .!.$?$13 E&ϯϬ .!.$?$!4!;= Ϭ E&ϯϬ ϭ E&ϯϭ Ϯ ϯ E&ϯϭ Figure 36. NAND_DQS/NAND_DQ Read Valid Window Table 45. Source Synchronous Mode Timing Parameters1 ID Parameter Symbol Timing T = GPMI Clock Cycle Min NF18 NAND_CEx_B access time NF19 NAND_CEx_B hold time tCE tCH Unit Max CE_DELAY × T - 0.79 [see 2] 0.5 × tCK - 0.63 [see 2] ns ns NF20 Command/address NAND_DATAxx setup time tCAS 0.5 × tCK - 0.05 ns NF21 Command/address NAND_DATAxx hold time tCAH 0.5 × tCK - 1.23 ns tCK — NF22 clock period NF23 preamble delay tPRE ns PRE_DELAY × T - 0.29 [see 2] POST_DELAY × T - 0.78 [see 2] ns NF24 postamble delay tPOST NF25 NAND_CLE and NAND_ALE setup time tCALS 0.5 × tCK - 0.86 ns NF26 NAND_CLE and NAND_ALE hold time tCALH 0.5 × tCK - 0.37 ns tDQSS 2] ns NF27 NAND_CLK to first NAND_DQS latching transition T - 0.41 [see ns NF28 Data write setup tDS 0.25 × tCK - 0.35 — NF29 Data write hold tDH 0.25 × tCK - 0.85 — NF30 NAND_DQS/NAND_DQ read setup skew tDQSQ — 2.06 — NF31 NAND_DQS/NAND_DQ read hold skew tQHS — 1.95 — 1 The GPMI source synchronous mode output timing can be controlled by the module’s internal registers GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings. 2 T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter). Figure 36 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. For Source Synchronous mode, the typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM)). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 70 Freescale Semiconductor Inc. Electrical Characteristics 4.10.3 4.10.3.1 Samsung Toggle Mode AC Timing Command and Address Timing Samsung Toggle mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing. See Section 4.10.1, “Asynchronous Mode AC Timing (ONFI 1.0 Compatible)” for details. 4.10.3.2 Read and Write Timing DEV?CLK .!.$?#%X?" .!.$?#,% .!.$?!,% .!.$?7%?" .!.$?2%?" .& .& .!.$?$13 .!.$?$!4!;= T#+ T#+ Figure 37. Samsung Toggle Mode Data Write Timing i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 71 Electrical Characteristics DEV?CLK .!.$?#%X?" .& .!.$?#,% .!.$?!,% .!.$?7%?" T#+ .& T#+ .& .!.$?2%?" T#+ T#+ T#+ .!.$?$13 .!.$?$!4!;= Figure 38. Samsung Toggle Mode Data Read Timing Table 46. Samsung Toggle Mode Timing Parameters1 ID Parameter Symbol Timing T = GPMI Clock Cycle Unit Min NF1 NF2 NF3 NF4 NF5 NF6 NF7 NF8 NF9 NAND_CLE setup time NAND_CLE hold time NAND_CEx_B setup time NAND_CEx_B hold time NAND_WE_B pulse width NAND_ALE setup time NAND_ALE hold time Command/address NAND_DATAxx setup time Command/address NAND_DATAxx hold time tCLS tCLH tCS DH × T - 0.72 [see — 2] (AS + DS) × T - 0.58 [see — 3,2] — 2 DH × T - 1 [see ] — 2 DS × T [see ] tWP — 3,2] tALS (AS + DS) × T - 0.49 [see tALH DH × T - 0.42 [see 2] — DS × T - 0.26 [see 2] — DH × T - 1.37 [see 2] — tCAS tCAH tCE NF22 clock period tCK NF24 postamble delay (AS + DS) × T - 0.12 [see tCH NF18 NAND_CEx_B access time NF23 preamble delay Max 2,3] tPRE tPOST CE_DELAY × T [see 4,2] — PRE_DELAY × T [see 5,2] POST_DELAY × T +0.43 [see 2] — — ns — ns — ns — ns i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 72 Freescale Semiconductor Inc. Electrical Characteristics Table 46. Samsung Toggle Mode Timing Parameters1 (continued) ID 1 2 3 4 5 6 7 Parameter Symbol Timing T = GPMI Clock Cycle Unit Min Max NF28 Data write setup 6 tDS 0.25 × tCK - 0.32 — ns NF29 Data write hold tDH6 0.25 × tCK - 0.79 — ns NF30 NAND_DQS/NAND_DQ read setup skew tDQSQ7 — 3.18 — NF31 NAND_DQS/NAND_DQ read hold skew tQHS7 — 3.27 — The GPMI toggle mode output timing can be controlled by the module’s internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings. AS minimum value can be 0, while DS/DH minimum value is 1. T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter). CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is met automatically by the design. Read/Write operation is started with enough time of ALE/CLE assertion to low level. PRE_DELAY+1) ≥ (AS+DS) Shown in Figure 34. Shown in Figure 35. Figure 36 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. For DDR Toggle mode, the typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal, which is provided by an internal DPLL. The delay value of this register can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM)). Generally, the typical delay value is equal to 0x7 which means 1/4 clock cycle delay expected. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay. 4.11 External Peripheral Interface Parameters The following subsections provide information on external peripheral interfaces. 4.11.1 AUDMUX Timing Parameters The AUDMUX provides a programmable interconnect logic for voice, audio, and data routing between internal serial interfaces (SSIs) and external serial interfaces (audio and voice codecs). The AC timing of AUDMUX external pins is governed by the SSI module. For more information, see the respective SSI electrical specifications found within this document. 4.11.2 ECSPI Timing Parameters This section describes the timing parameters of the ECSPI block. The ECSPI has separate timing parameters for master and slave modes. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 73 Electrical Characteristics 4.11.2.1 ECSPI Master Mode Timing Figure 39 depicts the timing of ECSPI in master mode and Table 47 lists the ECSPI master mode timing characteristics. ECSPIx_RDY_B CS10 ECSPIx_SS_B CS1 CS2 CS3 CS5 CS6 CS4 ECSPIx_SCLK CS7 CS2 CS3 ECSPIx_MOSI CS8 CS9 ECSPIx_MISO Note: ECSPIx_MOSI is always driven (not tri-stated) between actual data transmissions. This limits the ECSPI to be connected between a single master and a single slave. Figure 39. ECSPI Master Mode Timing Diagram Table 47. ECSPI Master Mode Timing Parameters ID CS1 CS2 Parameter ECSPIx_SCLK Cycle Time–Read • Slow group1 • Fast group2 ECSPIx_SCLK Cycle Time–Write tclk ECSPIx_SCLK High or Low Time–Read • Slow group1 • Fast group2 ECSPIx_SCLK High or Low Time–Write tSW CS3 ECSPIx_SCLK Rise or Fall3 CS4 ECSPIx_SSx pulse width CS5 CS6 CS7 CS8 CS9 CS10 Symbol Min Max Unit — ns — ns 55 40 15 26 20 7 tRISE/FALL — — ns tCSLH Half ECSPIx_SCLK period — ns ECSPIx_SSx Lead Time (CS setup time) tSCS Half ECSPIx_SCLK period - 4 — ns ECSPIx_SSx Lag Time (CS hold time) tHCS Half ECSPIx_SCLK period - 2 — ns ECSPIx_MOSI Propagation Delay (CLOAD = 20 pF) tPDmosi -1 ECSPIx_MISO Setup Time • Slow group1 • Fast group2 tSmiso ns ns 21.5 16 ECSPIx_MISO Hold Time ECSPIx_RDY to ECSPIx_SSx 1 — Time4 tHmiso 0 — ns tSDRY 5 — ns 1 ECSPI slow includes: ECSPI1/DISP0_DAT22, ECSPI1/KEY_COL1, ECSPI1/CSI0_DAT6, ECSPI2/EIM_OE, ECSPI2/ ECSPI2/CSI0_DAT10, ECSPI3/DISP0_DAT2 2 ECSPI fast includes: ECSPI1/EIM_D17, ECSPI4/EIM_D22, ECSPI5/SD2_DAT0, ECSPI5/SD1_DAT0 3 See specific I/O AC parameters Section 4.7, “I/O AC Parameters.” 4 ECSPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 74 Freescale Semiconductor Inc. Electrical Characteristics 4.11.2.2 ECSPI Slave Mode Timing Figure 40 depicts the timing of ECSPI in slave mode and Table 48 lists the ECSPI slave mode timing characteristics. ECSPIx_SS_B CS2 CS1 CS5 CS6 CS4 ECSPIx_SCLK CS2 CS9 ECSPIx_MISO CS7 CS8 ECSPIx_MOSI Note: ECSPIx_MISO is always driven (not tri-stated) between actual data transmissions. This limits the ECSPI to be connected between a single master and a single slave. Figure 40. ECSPI Slave Mode Timing Diagram Table 48. ECSPI Slave Mode Timing Parameters ID CS1 CS2 Parameter Symbol ECSPIx_SCLK Cycle Time–Read • Slow group1 • Fast group2 ECSPIx_SCLK Cycle Time–Write tclk ECSPIx_SCLK High or Low Time–Read • Slow group1 • Fast group2 ECSPIx_SCLK High or Low Time–Write tSW Min Max Unit — ns — ns 55 40 15 26 20 7 CS4 ECSPIx_SSx pulse width tCSLH Half ECSPIx_SCLK period — ns CS5 ECSPIx_SSx Lead Time (CS setup time) tSCS 5 — ns CS6 ECSPIx_SSx Lag Time (CS hold time) tHCS 5 — ns CS7 ECSPIx_MOSI Setup Time tSmosi 4 — ns CS8 ECSPIx_MOSI Hold Time tHmosi 4 — ns CS9 ECSPIx_MISO Propagation Delay (CLOAD = 20 pF) • Slow group1 • Fast group2 tPDmiso 4 ns 25 17 1 ECSPI slow includes: ECSPI1/DISP0_DAT22, ECSPI1/KEY_COL1, ECSPI1/CSI0_DAT6, ECSPI2/EIM_OE, ECSPI2/DISP0_DAT17, ECSPI2/CSI0_DAT10, ECSPI3/DISP0_DAT2 2 ECSPI fast includes: ECSPI1/EIM_D17, ECSPI4/EIM_D22, ECSPI5/SD2_DAT0, ECSPI5/SD1_DAT0 i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 75 Electrical Characteristics 4.11.3 Enhanced Serial Audio Interface (ESAI) Timing Parameters The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. Table 49 shows the interface timing values. The number field in the table refers to timing signals found in Figure 41 and Figure 42. Table 49. Enhanced Serial Audio Interface (ESAI) Timing Parameter1,2 ID Symbol Expression2 Min Max Condition3 Unit tSSICC 4 × Tc 4 × Tc 30.0 30.0 — — i ck i ck 62 Clock cycle4 63 Clock high period: • For internal clock • For external clock — — 2 × Tc − 9.0 2 × Tc 6 15 — — — — Clock low period: • For internal clock • For external clock — — 2 × Tc − 9.0 2 × Tc 6 15 — — — — 64 ns ns ns 65 ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) high — — — — — — 19.0 7.0 x ck i ck a ns 66 ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) low — — — — — — 19.0 7.0 x ck i ck a ns 67 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) high5 — — — — — — 19.0 9.0 x ck i ck a ns 68 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) low5 — — — — — — 19.0 9.0 x ck i ck a ns 69 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wl) high — — — — — — 19.0 6.0 x ck i ck a ns 70 ESAI_RX_CLK rising edge to ESAI_RX_FSout (wl) low — — — — — — 17.0 7.0 x ck i ck a ns 71 Data in setup time before ESAI_RX_CLK (serial clock in synchronous mode) falling edge — — — — 12.0 19.0 — — x ck i ck ns 72 Data in hold time after ESAI_RX_CLK falling edge — — — — 3.5 9.0 — — x ck i ck ns 73 ESAI_RX_FS input (bl, wr) high before ESAI_RX_CLK falling edge5 — — — — 2.0 19.0 — — x ck i ck a ns 74 ESAI_RX_FS input (wl) high before ESAI_RX_CLK falling edge — — — — 2.0 19.0 — — x ck i ck a ns 75 ESAI_RX_FS input hold time after ESAI_RX_CLK falling edge — — — — 2.5 8.5 — — x ck i ck a ns 78 ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) high — — — — — — 19.0 8.0 x ck i ck ns 79 ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) low — — — — — — 20.0 10.0 x ck i ck ns 80 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) high5 — — — — — — 20.0 10.0 x ck i ck ns i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 76 Freescale Semiconductor Inc. Electrical Characteristics Table 49. Enhanced Serial Audio Interface (ESAI) Timing (continued) 1 2 3 4 5 6 ID Parameter1,2 Symbol Expression2 Min Max Condition3 Unit 81 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) low5 — — — — — — 22.0 12.0 x ck i ck ns 82 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) high — — — — — — 19.0 9.0 x ck i ck ns 83 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) low — — — — — — 20.0 10.0 x ck i ck ns 84 ESAI_TX_CLK rising edge to data out enable from high impedance — — — — — — 22.0 17.0 x ck i ck ns 86 ESAI_TX_CLK rising edge to data out valid — — — — — — 19.0 13.0 x ck i ck ns 87 ESAI_TX_CLK rising edge to data out high impedance 67 — — — — — — 21.0 16.0 x ck i ck ns 89 ESAI_TX_FS input (bl, wr) setup time before ESAI_TX_CLK falling edge5 — — — — 2.0 18.0 — — x ck i ck ns 90 ESAI_TX_FS input (wl) setup time before ESAI_TX_CLK falling edge — — — — 2.0 18.0 — — x ck i ck ns 91 ESAI_TX_FS input hold time after ESAI_TX_CLK falling edge — — — — 4.0 5.0 — — x ck i ck ns 95 ESAI_RX_HF_CLK/ESAI_TX_HF_CLK clock cycle — 2 x TC 15 — — ns 96 ESAI_TX_HF_CLK input rising edge to ESAI_TX_CLK output — — — 18.0 — ns 97 ESAI_RX_HF_CLK input rising edge to ESAI_RX_CLK output — — — 18.0 — ns i ck = internal clock x ck = external clock i ck a = internal clock, asynchronous mode (asynchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are two different clocks) i ck s = internal clock, synchronous mode (synchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are the same clock) bl = bit length wl = word length wr = word length relative ESAI_TX_CLK(ESAI_TX_CLK pin) = transmit clock ESAI_RX_CLK(ESAI_RX_CLK pin) = receive clock ESAI_TX_FS(ESAI_TX_FS pin) = transmit frame sync ESAI_RX_FS(ESAI_RX_FS pin) = receive frame sync ESAI_TX_HF_CLK(ESAI_TX_HF_CLK pin) = transmit high frequency clock ESAI_RX_HF_CLK(ESAI_RX_HF_CLK pin) = receive high frequency clock For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register. The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the second-to-last bit clock of the first word in the frame. Periodically sampled and not 100% tested. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 77 Electrical Characteristics 62 63 64 ESAI_TX_CLK (Input/Output) 78 ESAI_TX_FS (Bit) Out 79 82 ESAI_TX_FS (Word) Out 83 86 86 84 87 First Bit Data Out Last Bit 89 ESAI_TX_FS (Bit) In 91 90 91 ESAI_TX_FS (Word) In Figure 41. ESAI Transmitter Timing i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 78 Freescale Semiconductor Inc. Electrical Characteristics 62 63 64 ESAI_RX_CLK (Input/Output) 65 ESAI_RX_FS (Bit) Out 66 69 70 ESAI_RX_FS (Word) Out 72 71 Data In First Bit Last Bit 75 73 ESAI_RX_FS (Bit) In 74 75 ESAI_RX_FS (Word) In Figure 42. ESAI Receiver Timing i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 79 Electrical Characteristics Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) 4.11.4 AC Timing This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single Data Rate) timing and eMMC4.4/4.1 (Dual Date Rate) timing. 4.11.4.1 SD/eMMC4.3 (Single Data Rate) AC Timing Figure 43 depicts the timing of SD/eMMC4.3, and Table 50 lists the SD/eMMC4.3 timing characteristics. SD4 SD2 SD1 SD5 SDx_CLK SD3 SD6 Output from uSDHC to card SDx_DATA[7:0] SD7 SD8 Input from card to uSDHC SDx_DATA[7:0] Figure 43. SD/eMMC4.3 Timing Table 50. SD/eMMC4.3 Interface Timing Specification ID Parameter Symbols Min Max Unit Clock Frequency (Low Speed) fPP1 0 400 kHz Clock Frequency (SD/SDIO Full Speed/High Speed) fPP2 0 25/50 MHz Clock Frequency (MMC Full Speed/High Speed) fPP3 0 20/52 MHz Clock Frequency (Identification Mode) fOD 100 400 kHz SD2 Clock Low Time tWL 7 — ns SD3 Clock High Time tWH 7 — ns SD4 Clock Rise Time tTLH — 3 ns SD5 Clock Fall Time tTHL — 3 ns 3.6 ns Card Input Clock SD1 eSDHC Output/Card Inputs SD_CMD, SD_DATAx (Reference to SDx_CLK) SD6 eSDHC Output Delay tOD –6.6 i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 80 Freescale Semiconductor Inc. Electrical Characteristics Table 50. SD/eMMC4.3 Interface Timing Specification (continued) ID Parameter Symbols Min Max Unit eSDHC Input/Card Outputs SD_CMD, SD_DATAx (Reference to SDx_CLK) SD7 eSDHC Input Setup Time SD8 4 eSDHC Input Hold Time tISU 2.5 — ns tIH 1.5 — ns 1 In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V. In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode, clock frequency can be any value between 0–50 MHz. 3 In normal (full) speed mode for MMC card, clock frequency can be any value between 0–20 MHz. In high-speed mode, clock frequency can be any value between 0–52 MHz. 4 To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns. 2 4.11.4.2 eMMC4.4/4.41 (Dual Data Rate) eSDHCv3 AC Timing Figure 44 depicts the timing of eMMC4.4/4.41. Table 51 lists the eMMC4.4/4.41 timing characteristics. Be aware that only SDx_DATAx is sampled on both edges of the clock (not applicable to SD_CMD). SD1 SDx_CLK SD2 SD2 Output from eSDHCv3 to card SDx_DATA[7:0] ...... SD3 SD4 Input from card to eSDHCv3 SDx_DATA[7:0] ...... Figure 44. eMMC4.4/4.41 Timing Table 51. eMMC4.4/4.41 Interface Timing Specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency (EMMC4.4 DDR) fPP 0 52 MHz SD1 Clock Frequency (SD3.0 DDR) fPP 0 50 MHz uSDHC Output / Card Inputs SD_CMD, SD_DATAx (Reference to SD_CLK) SD2 uSDHC Output Delay tOD 2.5 7.1 ns uSDHC Input / Card Outputs SD_CMD, SD_DATAx (Reference to SD_CLK) SD3 uSDHC Input Setup Time tISU 2.6 — ns SD4 uSDHC Input Hold Time tIH 1.5 — ns i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 81 Electrical Characteristics 4.11.4.3 SDR50/SDR104 AC Timing Figure 45 depicts the timing of SDR50/SDR104, and Table 52 lists the SDR50/SDR104 timing characteristics. 6' 6' 6' 6&. 6' 6' 2XWSXWIURPX6'+&WRFDUG 6' 6' ,QSXWIURPFDUGWRX6'+& 6' Figure 45. SDR50/SDR104 Timing Table 52. SDR50/SDR104 Interface Timing Specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency Period tCLK 4.8 — ns SD2 Clock Low Time tCL 0.3 × tCLK 0.7 × tCLK ns SD2 Clock High Time tCH 0.3 × tCLK 0.7 × tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK) SD4 uSDHC Output Delay tOD –3 1 ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK) SD5 uSDHC Output Delay tOD –1.6 1 ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK) SD6 uSDHC Input Setup Time tISU 2.5 — ns SD7 uSDHC Input Hold Time tIH 1.5 — ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK)1 SD8 1Data Card Output Data Window tODW 0.5 × tCLK — ns window in SDR100 mode is variable. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 82 Freescale Semiconductor Inc. Electrical Characteristics 4.11.4.4 Bus Operation Condition for 3.3 V and 1.8 V Signaling Signalling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signalling level of SDR104/SDR50 mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2, and NVCC_SD3 supplies are identical to those shown in Table 21, "GPIO I/O DC Parameters," on page 38. 4.11.5 Ethernet Controller (ENET) AC Electrical Specifications 4.11.5.1 ENET MII Mode Timing This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal timings. 4.11.5.1.1 MII Receive Signal Timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER, and ENET_RX_CLK) The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_RX_CLK frequency. Figure 46 shows MII receive signal timings. Table 53 describes the timing parameters (M1–M4) shown in the figure. M3 ENET_RX_CLK (input) M4 ENET_RX_DATA3,2,1,0 (inputs) ENET_RX_EN ENET_RX_ER M1 M2 Figure 46. MII Receive Signal Timing Diagram Table 53. MII Receive Signal Timing Characteristic1 ID Min Max Unit M1 ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to ENET_RX_CLK setup 5 — ns M2 ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER hold 5 — ns M3 ENET_RX_CLK pulse width high 35% 65% ENET_RX_CLK period M4 ENET_RX_CLK pulse width low 35% 65% ENET_RX_CLK period 1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 83 Electrical Characteristics 4.11.5.1.2 MII Transmit Signal Timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER, and ENET_TX_CLK) The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_TX_CLK frequency. Figure 47 shows MII transmit signal timings. Table 54 describes the timing parameters (M5–M8) shown in the figure. M7 ENET_TX_CLK (input) M5 M8 ENET_TX_DATA3,2,1,0 (outputs) ENET_TX_EN ENET_TX_ER M6 Figure 47. MII Transmit Signal Timing Diagram Table 54. MII Transmit Signal Timing Characteristic1 ID Min Max Unit M5 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER invalid 5 — ns M6 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER valid — 20 ns M7 ENET_TX_CLK pulse width high 35% 65% ENET_TX_CLK period M8 ENET_TX_CLK pulse width low 35% 65% ENET_TX_CLK period 1 ENET_TX_EN, 4.11.5.1.3 ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode. MII Asynchronous Inputs Signal Timing (ENET_CRS and ENET_COL) Figure 48 shows MII asynchronous input timings. Table 55 describes the timing parameter (M9) shown in the figure. ENET_CRS, ENET_COL M9 Figure 48. MII Async Inputs Timing Diagram i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 84 Freescale Semiconductor Inc. Electrical Characteristics Table 55. MII Asynchronous Inputs Signal Timing ID M91 1 Characteristic ENET_CRS to ENET_COL minimum pulse width Min Max Unit 1.5 — ENET_TX_CLK period ENET_COL has the same timing in 10-Mbit 7-wire interface mode. 4.11.5.1.4 MII Serial Management Channel Timing (ENET_MDIO and ENET_MDC) The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz. Figure 49 shows MII asynchronous input timings. Table 56 describes the timing parameters (M10–M15) shown in the figure. M14 M15 ENET_MDC (output) M10 ENET_MDIO (output) M11 ENET_MDIO (input) M12 M13 Figure 49. MII Serial Management Channel Timing Diagram Table 56. MII Serial Management Channel Timing ID Characteristic Min Max Unit M10 ENET_MDC falling edge to ENET_MDIO output invalid (minimum propagation delay) 0 — ns M11 ENET_MDC falling edge to ENET_MDIO output valid (maximum propagation delay) — 5 ns M12 ENET_MDIO (input) to ENET_MDC rising edge setup 18 — ns M13 ENET_MDIO (input) to ENET_MDC rising edge hold 0 — ns M14 ENET_MDC pulse width high 40% 60% ENET_MDC period M15 ENET_MDC pulse width low 40% 60% ENET_MDC period i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 85 Electrical Characteristics 4.11.5.2 RMII Mode Timing In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include ENET_TX_EN, ENET0_TXD[1:0], ENET_RXD[1:0] and ENET_RX_ER. Figure 50 shows RMII mode timings. Table 57 describes the timing parameters (M16–M21) shown in the figure. M16 M17 ENET_CLK (input) M18 ENET0_TXD[1:0] (output) ENET_TX_EN M19 ENET_RX_EN (input) ENET_RXD[1:0] ENET_RX_ER M20 M21 Figure 50. RMII Mode Signal Timing Diagram Table 57. RMII Signal Timing ID Characteristic Min Max Unit M16 ENET_CLK pulse width high 35% 65% ENET_CLK period M17 ENET_CLK pulse width low 35% 65% ENET_CLK period M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_EN invalid 4 — ns M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_EN valid — 13.5 ns M20 ENET_RXD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup 4 — ns M21 ENET_CLK to ENET_RXD[1:0], ENET_RX_EN, ENET_RX_ER hold 2 — ns i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 86 Freescale Semiconductor Inc. Electrical Characteristics 4.11.5.3 RGMII Signal Switching Specifications The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices. Table 58. RGMII Signal Switching Specifications1 Symbol Tcyc2 Description Clock cycle duration TskewT3 Data to clock output skew at transmitter TskewR3 Min Max Unit 7.2 8.8 ns -100 900 ps Data to clock input skew at receiver 1 2.6 ns 4 Duty cycle for Gigabit 45 55 % 4 Duty_T Duty cycle for 10/100T 40 60 % Tr/Tf Rise/fall time (20–80%) — 0.75 ns Duty_G 1 The timings assume the following configuration: DDR_SEL = (11)b DSE (drive-strength) = (111)b 2 For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively. 3 For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional delay of greater than 1.2 ns and less than 1.7 ns will be added to the associated clock signal. For 10/100, the max value is unspecified. 4 Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between. Figure 51. RGMII Transmit Signal Timing Diagram Original i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 87 Electrical Characteristics Figure 52. RGMII Receive Signal Timing Diagram Original Figure 53. RGMII Receive Signal Timing Diagram with Internal Delay 4.11.6 Flexible Controller Area Network (FlexCAN) AC Electrical Specifications The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing the CAN protocol according to the CAN 2.0B protocol specification.The processor has two CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM) to see which pins expose Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX, respectively. 4.11.7 4.11.7.1 HDMI Module Timing Parameters Latencies and Timing Information Power-up time (time between TX_PWRON assertion and TX_READY assertion) for the HDMI 3D Tx PHY while operating with the slowest input reference clock supported (13.5 MHz) is 3.35 ms. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 88 Freescale Semiconductor Inc. Electrical Characteristics Power-up time for the HDMI 3D Tx PHY while operating with the fastest input reference clock supported (340 MHz) is 133 μs. 4.11.7.2 Electrical Characteristics The table below provides electrical characteristics for the HDMI 3D Tx PHY. The following three figures illustrate various definitions and measurement conditions specified in the table below. Figure 54. Driver Measuring Conditions Figure 55. Driver Definitions Figure 56. Source Termination Table 59. Electrical Characteristics Symbol Parameter Condition Min Typ Max Unit 3.15 3.3 3.45 V Operating conditions for HDMI avddtmds Termination supply voltage — i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 89 Electrical Characteristics Table 59. Electrical Characteristics (continued) Symbol RT Parameter Termination resistance Condition Min Typ Max Unit — 45 50 55 Ω TMDS drivers DC specifications VOFF VSWING VH VL RTERM RT = 50 Ω For measurement conditions and Single-ended output swing voltage definitions, see the first two figures above. Compliance point TP1 as defined in the HDMI specification, version 1.3a, section 4.2.4. Single-ended standby voltage avddtmds ± 10 mV 400 — 600 mV Single-ended output high voltage For definition, see the second figure above. If attached sink supports TMDSCLK < or = 165 MHz If attached sink supports TMDSCLK > 165 MHz avddtmds – 200 mV — avddtmds + 10 mV mV Single-ended output low voltage For definition, see the second figure above. If attached sink supports TMDSCLK < or = 165 MHz avddtmds – 600 mV — avddtmds – 400mV mV If attached sink supports TMDSCLK > 165 MHz avddtmds – 700 mV — avddtmds – 400 mV mV — 50 — 200 Ω Differential source termination load (inside HDMI 3D Tx PHY) Although the HDMI 3D Tx PHY includes differential source termination, the user-defined value is set for each single line (for illustration, see the third figure above). Note: RTERM can also be configured to be open and not present on TMDS channels. avddtmds ± 10 mV mV mV Hot plug detect specifications HPDVH Hot plug detect high range — 2.0 — 5.3 V VHPD VL Hot plug detect low range — 0 — 0.8 V Z Hot plug detect input impedance — 10 — — kΩ Hot plug detect time delay — — — 100 µs HPD HPD t 4.11.8 Switching Characteristics Table 60 describes switching characteristics for the HDMI 3D Tx PHY. Figure 57 to Figure 61 illustrate various parameters specified in table. NOTE All dynamic parameters related to the TMDS line drivers’ performance imply the use of assembly guidelines. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 90 Freescale Semiconductor Inc. Electrical Characteristics PTMDSCLK 50% tCPL tCPH Figure 57. TMDS Clock Signal Definitions Figure 58. Eye Diagram Mask Definition for HDMI Driver Signal Specification at TP1 Figure 59. Intra-Pair Skew Definition i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 91 Electrical Characteristics Figure 60. Inter-Pair Skew Definition Figure 61. TMDS Output Signals Rise and Fall Time Definition Table 60. Switching Characteristics Symbol Parameter Conditions Min Typ Max Unit — — 3.4 Gbps 25 — 340 MHz 2.94 — 40 ns 40 50 60 % TMDS Drivers Specifications — F TMDSCLK P TMDSCLK t CDC t — TMDSCLK frequency On TMDSCLKP/N outputs TMDSCLK period RL = 50 Ω See Figure 57. TMDSCLK duty cycle t CDC =t CPH /P TMDSCLK RL = 50 Ω See Figure 57. TMDSCLK high time RL = 50 Ω See Figure 57. 4 5 6 UI CPL TMDSCLK low time RL = 50 Ω See Figure 57. 4 5 6 UI — TMDSCLK jitter1 RL = 50 Ω — — 0.25 UI SK(p) Intra-pair (pulse) skew RL = 50 Ω See Figure 59. — — 0.15 UI SK(pp) Inter-pair skew RL = 50 Ω See Figure 60. — — 1 UI Differential output signal rise time 20–80% RL = 50 Ω See Figure 61. 75 — 0.4 UI ps CPH t t t Maximum serial data rate tR i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 92 Freescale Semiconductor Inc. Electrical Characteristics Table 60. Switching Characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit 75 — 0.4 UI ps tF Differential output signal fall time 20–80% RL = 50 Ω See Figure 61. — Differential signal overshoot Referred to 2x VSWING — — 15 % — Differential signal undershoot Referred to 2x VSWING — — 25 % — — 3.35 ms Data and Control Interface Specifications tPower-up2 1 2 HDMI 3D Tx PHY power-up time From power-down to HSI_TX_READY assertion Relative to ideal recovery clock, as specified in the HDMI specification, version 1.4a, section 4.2.3. For information about latencies and associated timings, see Section 4.11.7.1, “Latencies and Timing Information.” 4.11.9 I2C Module Timing Parameters This section describes the timing parameters of the I2C module. Figure 62 depicts the timing of I2C module, and Table 61 lists the I2C module timing characteristics. I2Cx_SDA IC11 IC10 IC2 IC7 IC4 IC8 IC9 IC3 I2Cx_SCL START IC10 IC11 IC6 STOP START START IC5 IC1 Figure 62. I2C Bus Timing Table 61. I2C Module Timing Parameters Standard Mode ID Fast Mode Parameter Unit Min Max Min Max IC1 I2Cx_SCL cycle time 10 — 2.5 — µs IC2 Hold time (repeated) START condition 4.0 — 0.6 — µs IC3 Set-up time for STOP condition 4.0 — 0.6 — µs IC4 Data hold time 01 3.452 01 0.92 µs IC5 HIGH Period of I2Cx_SCL Clock 4.0 — 0.6 — µs IC6 LOW Period of the I2Cx_SCL Clock 4.7 — 1.3 — µs IC7 Set-up time for a repeated START condition 4.7 — 0.6 — µs — 1003 — ns IC8 Data set-up time 250 i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 93 Electrical Characteristics Table 61. I2C Module Timing Parameters (continued) Standard Mode ID IC9 Fast Mode Parameter Bus free time between a STOP and START condition Unit Min Max Min 4.7 — 1.3 Max — µs 4 300 ns IC10 Rise time of both I2Cx_SDA and I2Cx_SCL signals — 1000 20 + 0.1Cb IC11 Fall time of both I2Cx_SDA and I2Cx_SCL signals — 300 20 + 0.1Cb4 300 ns IC12 Capacitive load for each bus line (Cb) — 400 — 400 pF 1 A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal to bridge the undefined region of the falling edge of I2Cx_SCL. 2 The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal. 3 A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7) of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal. If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the I2Cx_SCL line is released. 4 C = total capacitance of one bus line in pF. b 4.11.10 Image Processing Unit (IPU) Module Parameters The purpose of the IPU is to provide comprehensive support for the flow of data from an image sensor and/or to a display device. This support covers all aspects of these activities: • Connectivity to relevant devices—cameras, displays, graphics accelerators, and TV encoders. • Related image processing and manipulation: sensor image signal processing, display processing, image conversions, and other related functions. • Synchronization and control capabilities, such as avoidance of tearing artifacts. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 94 Freescale Semiconductor Inc. Electrical Characteristics 4.11.10.1 IPU Sensor Interface Signal Mapping The IPU supports a number of sensor input formats. Table 62 defines the mapping of the Sensor Interface Pins used for various supported interface formats. Table 62. Camera Input Signal Cross Reference, Format, and Bits Per Cycle RGB565 8 bits 2 cycles RGB5652 8 bits 3 cycles RGB6663 8 bits 3 cycles RGB888 8 bits 3 cycles YCbCr4 8 bits 2 cycles RGB5655 16 bits 2 cycles YCbCr6 16 bits 1 cycle YCbCr7 16 bits 1 cycle YCbCr8 20 bits 1 cycle IPUx_CSIx_ DATA00 — — — — — — — 0 C[0] IPUx_CSIx_ DATA01 — — — — — — — 0 C[1] IPUx_CSIx_ DATA02 — — — — — — — C[0] C[2] IPUx_CSIx_ DATA03 — — — — — — — C[1] C[3] IPUx_CSIx_ DATA04 — — — — — B[0] C[0] C[2] C[4] IPU2_CSIx_ DATA_05 — — — — — B[1] C[1] C[3] C[5] IPUx_CSIx_ DATA06 — — — — — B[2] C[2] C[4] C[6] IPUx_CSIx_ DATA07 — — — — — B[3] C[3] C[5] C[7] IPUx_CSIx_ DATA08 — — — — — B[4] C[4] C[6] C[8] IPUx_CSIx_ DATA09 — — — — — G[0] C[5] C[7] C[9] IPUx_CSIx_ DATA10 — — — — — G[1] C[6] 0 Y[0] IPUx_CSIx_ DATA11 — — — — — G[2] C[7] 0 Y[1] IPUx_CSIx_ DATA12 B[0], G[3] R[2],G[4],B[2] R/G/B[4] R/G/B[0] Y/C[0] G[3] Y[0] Y[0] Y[2] IPUx_CSIx_ DATA13 B[1], G[4] R[3],G[5],B[3] R/G/B[5] R/G/B[1] Y/C[1] G[4] Y[1] Y[1] Y[3] IPUx_CSIx_ DATA14 B[2], G[5] R[4],G[0],B[4] R/G/B[0] R/G/B[2] Y/C[2] G[5] Y[2] Y[2] Y[4] IPUx_CSIx_ DATA15 B[3], R[0] R[0],G[1],B[0] R/G/B[1] R/G/B[3] Y/C[3] R[0] Y[3] Y[3] Y[5] IPUx_CSIx_ DATA16 B[4], R[1] R[1],G[2],B[1] R/G/B[2] R/G/B[4] Y/C[4] R[1] Y[4] Y[4] Y[6] IPUx_CSIx_ DATA17 G[0], R[2] R[2],G[3],B[2] R/G/B[3] R/G/B[5] Y/C[5] R[2] Y[5] Y[5] Y[7] IPUx_CSIx_ DATA18 G[1], R[3] R[3],G[4],B[3] R/G/B[4] R/G/B[6] Y/C[6] R[3] Y[6] Y[6] Y[8] IPUx_CSIx_ DATA19 G[2], R[4] R[4],G[5],B[4] R/G/B[5] R/G/B[7] Y/C[7] R[4] Y[7] Y[7] Y[9] Signal Name1 1 IPU2_CSIx stands for IPU2_CSI1 or IPU2_CSI2. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 95 Electrical Characteristics 2 3 4 5 6 7 8 The MSB bits are duplicated on LSB bits implementing color extension. The two MSB bits are duplicated on LSB bits implementing color extension. YCbCr, 8 bits—Supported within the BT.656 protocol (sync embedded within the data stream). RGB, 16 bits—Supported in two ways: (1) As a “generic data” input—with no on-the-fly processing; (2) With on-the-fly processing, but only under some restrictions on the control protocol. YCbCr, 16 bits—Supported as a “generic-data” input—with no on-the-fly processing. YCbCr, 16 bits—Supported as a sub-case of the YCbCr, 20 bits, under the same conditions (BT.1120 protocol). YCbCr, 20 bits—Supported only within the BT.1120 protocol (syncs embedded within the data stream). 4.11.10.2 Sensor Interface Timings There are three camera timing modes supported by the IPU. 4.11.10.2.1 BT.656 and BT.1120 Video Mode Smart camera sensors, which include imaging processing, usually support video mode transfer. They use an embedded timing syntax to replace the IPU2_CSIx_VSYNC and IPU2_CSIx_HSYNC signals. The timing syntax is defined by the BT.656/BT.1120 standards. This operation mode follows the recommendations of ITU BT.656/ ITU BT.1120 specifications. The only control signal used is IPU2_CSIx_PIX_CLK. Start-of-frame and active-line signals are embedded in the data stream. An active line starts with a SAV code and ends with a EAV code. In some cases, digital blanking is inserted in between EAV and SAV code. The CSI decodes and filters out the timing-coding from the data stream, thus recovering IPU2_CSIx_VSYNC and IPU2_CSIx_HSYNC signals for internal use. On BT.656 one component per cycle is received over the IPU2_CSIx_DATA_EN bus. On BT.1120 two components per cycle are received over the IPU2_CSIx_DATA_EN bus. 4.11.10.2.2 Gated Clock Mode The IPU2_CSIx_VSYNC, IPU2_CSIx_HSYNC, and IPU2_CSIx_PIX_CLK signals are used in this mode. See Figure 63. 4UBSUPG'SBNF OUIGSBNF OUIGSBNF "DUJWF-JOF *16Y@$4*Y@@74:/$ *16Y@$4*Y@@)4:/$ *16Y@$4*Y@@1*9@$-, *16Y@$4*Y@@%"5"YY JOWBMJE TUCZUF JOWBMJE TUCZUF Figure 63. Gated Clock Mode Timing Diagram A frame starts with a rising edge on IPU2_CSIx_VSYNC (all the timings correspond to straight polarity of the corresponding signals). Then IPU2_CSIx_HSYNC goes to high and hold for the entire line. Pixel clock is valid as long as IPU2_CSIx_HSYNC is high. Data is latched at the rising edge of the valid pixel clocks. IPU2_CSIx_HSYNC goes to low at the end of line. Pixel clocks then become invalid and the CSI i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 96 Freescale Semiconductor Inc. Electrical Characteristics stops receiving data from the stream. For the next line, the IPU2_CSIx_HSYNC timing repeats. For the next frame, the IPU2_CSIx_VSYNC timing repeats. 4.11.10.2.3 Non-Gated Clock Mode The timing is the same as the gated-clock mode (described in Section 4.11.10.2.2, “Gated Clock Mode,”) except for the IPU2_CSIx_HSYNC signal, which is not used (see Figure 64). All incoming pixel clocks are valid and cause data to be latched into the input FIFO. The IPU2_CSIx_PIX_CLK signal is inactive (states low) until valid data is going to be transmitted over the bus. Start of Frame nth frame n+1th frame IPU2_CSIx_VSYNC IPU2_CSIx_PIX_CLK IPU2_CSIx_DATA_EN[19:0] invalid invalid 1st byte 1st byte Figure 64. Non-Gated Clock Mode Timing Diagram The timing described in Figure 64 is that of a typical sensor. Some other sensors may have a slightly different timing. The CSI can be programmed to support rising/falling-edge triggered IPU2_CSIx_VSYNC; active-high/low IPU2_CSIx_HSYNC; and rising/falling-edge triggered IPU2_CSIx_PIX_CLK. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 97 Electrical Characteristics 4.11.10.3 Electrical Characteristics Figure 65 depicts the sensor interface timing. IPU2_CSIx_PIX_CLK signal described here is not generated by the IPU. Table 63 lists the sensor interface timing characteristics. IPUx_CSIx_PIX_CLK (Sensor Output) 1/IP1 IP2 IP3 IPUx_CSIx_DATA_EN, IPUx_CSIx_VSYNC, IPUx_CSIx_HSYNC Figure 65. Sensor Interface Timing Diagram Table 63. Sensor Interface Timing Characteristics ID Parameter Symbol Min Max Unit IP1 Sensor output (pixel) clock frequency Fpck 0.01 180 MHz IP2 Data and control setup time Tsu 2 — ns IP3 Data and control holdup time Thd 1 — ns — Vsync to Hsync Tv-h 1/Fpck — ns — Vsync and Hsync pulse width Tpulse 1/Fpck — ns — Vsync to first data Tv-d 1/Fpck — ns 4.11.10.4 IPU Display Interface Signal Mapping The IPU supports a number of display output video formats. Table 64 defines the mapping of the Display Interface Pins used during various supported video interface formats. Table 64. Video Signal Cross-Reference i.MX 6DualPlus/6QuadPlus LCD Port Name (x = 0, 1) RGB/TV Signal Allocation (Example) RGB, Signal 16-bit 18-bit 24 Bit 8-bit 16-bit 20-bit Name 3 (General) RGB RGB RGB YCrCb YCrCb YCrCb Comment1,2 IPUx_DISPx_DAT00 DAT[0] B[0] B[0] B[0] Y/C[0] C[0] C[0] — IPUx_DISPx_DAT01 DAT[1] B[1] B[1] B[1] Y/C[1] C[1] C[1] — IPUx_DISPx_DAT02 DAT[2] B[2] B[2] B[2] Y/C[2] C[2] C[2] — IPUx_DISPx_DAT03 DAT[3] B[3] B[3] B[3] Y/C[3] C[3] C[3] — IPUx_DISPx_DAT04 DAT[4] B[4] B[4] B[4] Y/C[4] C[4] C[4] — i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 98 Freescale Semiconductor Inc. Electrical Characteristics Table 64. Video Signal Cross-Reference (continued) i.MX 6DualPlus/6QuadPlus LCD Port Name (x = 0, 1) RGB/TV Signal Allocation (Example) RGB, Signal 16-bit 18-bit 24 Bit 8-bit 16-bit 20-bit Name 3 (General) RGB RGB RGB YCrCb YCrCb YCrCb Comment1,2 IPUx_DISPx_DAT05 DAT[5] G[0] B[5] B[5] Y/C[5] C[5] C[5] — IPUx_DISPx_DAT06 DAT[6] G[1] G[0] B[6] Y/C[6] C[6] C[6] — IPUx_DISPx_DAT07 DAT[7] G[2] G[1] B[7] Y/C[7] C[7] C[7] — IPUx_DISPx_DAT08 DAT[8] G[3] G[2] G[0] — Y[0] C[8] — IPUx_DISPx_DAT09 DAT[9] G[4] G[3] G[1] — Y[1] C[9] — IPUx_DISPx_DAT10 DAT[10] G[5] G[4] G[2] — Y[2] Y[0] — IPUx_DISPx_DAT11 DAT[11] R[0] G[5] G[3] — Y[3] Y[1] — IPUx_DISPx_DAT12 DAT[12] R[1] R[0] G[4] — Y[4] Y[2] — IPUx_DISPx_DAT13 DAT[13] R[2] R[1] G[5] — Y[5] Y[3] — IPUx_DISPx_DAT14 DAT[14] R[3] R[2] G[6] — Y[6] Y[4] — IPUx_DISPx_DAT15 DAT[15] R[4] R[3] G[7] — Y[7] Y[5] — IPUx_DISPx_DAT16 DAT[16] — R[4] R[0] — — Y[6] — IPUx_DISPx_DAT17 DAT[17] — R[5] R[1] — — Y[7] — IPUx_DISPx_DAT18 DAT[18] — — R[2] — — Y[8] — IPUx_DISPx_DAT19 DAT[19] — — R[3] — — Y[9] — IPUx_DISPx_DAT20 DAT[20] — — R[4] — — — — IPUx_DISPx_DAT21 DAT[21] — — R[5] — — — — IPUx_DISPx_DAT22 DAT[22] — — R[6] — — — — IPUx_DISPx_DAT23 DAT[23] — — R[7] — — — — IPUx_DIx_DISP_CLK PixCLK — IPUx_DIx_PIN01 — May be required for anti-tearing IPUx_DIx_PIN02 HSYNC — IPUx_DIx_PIN03 VSYNC VSYNC out i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 99 Electrical Characteristics Table 64. Video Signal Cross-Reference (continued) i.MX 6DualPlus/6QuadPlus LCD Comment1,2 Port Name (x = 0, 1) RGB/TV Signal Allocation (Example) RGB, Signal 16-bit 18-bit 24 Bit 8-bit 16-bit 20-bit Name 3 (General) RGB RGB RGB YCrCb YCrCb YCrCb IPUx_DIx_PIN04 — IPUx_DIx_PIN05 — Additional frame/row synchronous signals with programmable timing IPUx_DIx_PIN06 — IPUx_DIx_PIN07 — IPUx_DIx_PIN08 — IPUx_DIx_D0_CS — — IPUx_DIx_D1_CS — Alternate mode of PWM output for contrast or brightness control IPUx_DIx_PIN11 — — IPUx_DIx_PIN12 — — IPUx_DIx_PIN13 — Register select signal IPUx_DIx_PIN14 — Optional RS2 IPUx_DIx_PIN15 DRDY/DV IPUx_DIx_PIN16 — IPUx_DIx_PIN17 Q Data validation/blank, data enable Additional data synchronous signals with programmable features/timing 1 Signal mapping (both data and control/synchronization) is flexible. The table provides examples. Restrictions for ports IPUx_DISPx_DAT00 through IPUx_DISPx_DAT23 are as follows: • A maximum of three continuous groups of bits can be independently mapped to the external bus. Groups must not overlap. • The bit order is expressed in each of the bit groups, for example, B[0] = least significant blue pixel bit. 3 This mode works in compliance with recommendation ITU-R BT.656. The timing reference signals (frame start, frame end, line start, and line end) are embedded in the 8-bit data bus. Only video data is supported, transmission of non-video related data during blanking intervals is not supported. 2 NOTE Table 64 provides information for both the DISP0 and DISP1 ports. However, DISP1 port has reduced pinout depending on IOMUXC configuration and therefore may not support all configurations. See the IOMUXC table for details. 4.11.10.5 IPU Display Interface Timing The IPU Display Interface supports two kinds of display accesses: synchronous and asynchronous. There are two groups of external interface pins to provide synchronous and asynchronous controls. 4.11.10.5.1 Synchronous Controls The synchronous control changes its value as a function of a system or of an external clock. This control has a permanent period and a permanent waveform. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 100 Freescale Semiconductor Inc. Electrical Characteristics There are special physical outputs to provide synchronous controls: • The ipp_disp_clk is a dedicated base synchronous signal that is used to generate a base display (component, pixel) clock for a display. • The ipp_pin_1– ipp_pin_7 are general purpose synchronous pins, that can be used to provide HSYNC, VSYNC, DRDY or any else independent signal to a display. The IPU has a system of internal binding counters for internal events (such as, HSYNC/VSYNC) calculation. The internal event (local start point) is synchronized with internal DI_CLK. A suitable control starts from the local start point with predefined UP and DOWN values to calculate control’s changing points with half DI_CLK resolution. A full description of the counter system can be found in the IPU chapter of the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM). 4.11.10.5.2 Asynchronous Controls The asynchronous control is a data-oriented signal that changes its value with an output data according to additional internal flags coming with the data. There are special physical outputs to provide asynchronous controls, as follows: • The ipp_d0_cs and ipp_d1_cs pins are dedicated to provide chip select signals to two displays. • The ipp_pin_11– ipp_pin_17 are general purpose asynchronous pins, that can be used to provide WR. RD, RS or any other data-oriented signal to display. NOTE The IPU has independent signal generators for asynchronous signals toggling. When a DI decides to put a new asynchronous data on the bus, a new internal start (local start point) is generated. The signal generators calculate predefined UP and DOWN values to change pins states with half DI_CLK resolution. 4.11.10.6 Synchronous Interfaces to Standard Active Matrix TFT LCD Panels 4.11.10.6.1 IPU Display Operating Signals The IPU uses four control signals and data to operate a standard synchronous interface: • IPP_DISP_CLK—Clock to display • HSYNC—Horizontal synchronization • VSYNC—Vertical synchronization • DRDY—Active data All synchronous display controls are generated on the base of an internally generated “local start point”. The synchronous display controls can be placed on time axis with DI’s offset, up and down parameters. The display access can be whole number of DI clock (Tdiclk) only. The IPP_DATA can not be moved relative to the local start point. The data bus of the synchronous interface is output direction only. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 101 Electrical Characteristics 4.11.10.6.2 LCD Interface Functional Description Figure 66 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure, signals are shown with negative polarity. The sequence of events for active matrix interface timing is: • DI_CLK internal DI clock is used for calculation of other controls. • IPP_DISP_CLK latches data into the panel on its negative edge (when positive polarity is selected). In active mode, IPP_DISP_CLK runs continuously. • HSYNC causes the panel to start a new line. (Usually IPUx_DIx_PIN02 is used as HSYNC.) • VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse. (Usually IPUx_DIx_PIN03 is used as VSYNC.) • DRDY acts like an output enable signal to the CRT display. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off. (DRDY can be used either synchronous or asynchronous generic purpose pin as well.) VSYNC HSYNC LINE 1 LINE 2 LINE 3 LINE 4 LINE n-1 LINE n HSYNC DRDY 1 2 3 m–1 m IPP_DISP_CLK IPP_DATA Figure 66. Interface Timing Diagram for TFT (Active Matrix) Panels 4.11.10.6.3 TFT Panel Sync Pulse Timing Diagrams Figure 67 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and the data. All the parameters shown in the figure are programmable. All controls are started by corresponding internal events—local start points. The timing diagrams correspond to inverse polarity of the IPP_DISP_CLK signal and active-low polarity of the HSYNC, VSYNC, and DRDY signals. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 102 Freescale Semiconductor Inc. Electrical Characteristics IP13o IP7 IP5o IP8o IP5 IP8 DI clock IPP_DISP_CLK VSYNC HSYNC DRDY IPP_DATA D0 local start point local start point Dn IP9o IP9 local start point D1 IP10 IP6 Figure 67. TFT Panels Timing Diagram—Horizontal Sync Pulse Figure 68 depicts the vertical timing (timing of one frame). All parameters shown in the figure are programmable. Start of frame End of frame IP13 VSYNC DRDY IP11 HSYNC IP15 IP14 IP12 Figure 68. TFT Panels Timing Diagram—Vertical Sync Pulse i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 103 Electrical Characteristics Table 65 shows timing characteristics of signals presented in Figure 67 and Figure 68. Table 65. Synchronous Display Interface Timing Characteristics (Pixel Level) ID Parameter Symbol Value IP5 Display interface clock period Tdicp (see1) IP6 Display pixel clock period Tdpcp IP7 Screen width time Tsw (SCREEN_WIDTH) × Tdicp IP8 HSYNC width time Thsw (HSYNC_WIDTH) IP9 Horizontal blank interval 1 Thbi1 BGXP × Tdicp IP10 Horizontal blank interval 2 Thbi2 IP12 Screen height IP13 Description Display interface clock IPP_DISP_CLK DISP_CLK_PER_PIXEL Time of translation of one pixel to display, × Tdicp DISP_CLK_PER_PIXEL—number of pixel components in one pixel (1.n). The DISP_CLK_PER_PIXEL is virtual parameter to define display pixel clock period. The DISP_CLK_PER_PIXEL is received by DC/DI one access division to n components. Unit ns ns SCREEN_WIDTH—screen width in, interface clocks. horizontal blanking included. The SCREEN_WIDTH should be built by suitable DI’s counter2. ns HSYNC_WIDTH—Hsync width in DI_CLK with 0.5 DI_CLK resolution. Defined by DI’s counter. ns BGXP—width of a horizontal blanking before a first active data in a line (in interface clocks). The BGXP should be built by suitable DI’s counter. ns (SCREEN_WIDTH – BGXP – FW) × Tdicp Width a horizontal blanking after a last active data in a line (in interface clocks) FW—with of active line in interface clocks. The FW should be built by suitable DI’s counter. ns Tsh (SCREEN_HEIGHT) × Tsw SCREEN_HEIGHT— screen height in lines with blanking. The SCREEN_HEIGHT is a distance between 2 VSYNCs. The SCREEN_HEIGHT should be built by suitable DI’s counter. ns VSYNC width Tvsw VSYNC_WIDTH VSYNC_WIDTH—Vsync width in DI_CLK with 0.5 DI_CLK resolution. Defined by DI’s counter. ns IP14 Vertical blank interval 1 Tvbi1 BGYP × Tsw BGYP—width of first Vertical blanking interval in line. The BGYP should be built by suitable DI’s counter. ns IP15 Vertical blank interval 2 Tvbi2 Width of second vertical blanking interval in line. The FH should be built by suitable DI’s counter. ns (SCREEN_HEIGHT – BGYP – FH) × Tsw i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 104 Freescale Semiconductor Inc. Electrical Characteristics Table 65. Synchronous Display Interface Timing Characteristics (Pixel Level) (continued) ID Symbol Value Todicp DISP_CLK_OFFSET × Tdiclk IP13o Offset of VSYNC Tovs IP8o Offset of HSYNC IP9o Offset of DRDY IP5o 1 Parameter Offset of IPP_DISP_CLK Description Unit DISP_CLK_OFFSET—offset of IPP_DISP_CLK edges from local start point, in DI_CLK×2 (0.5 DI_CLK Resolution). Defined by DISP_CLK counter. ns VSYNC_OFFSET × Tdiclk VSYNC_OFFSET—offset of Vsync edges from a local start point, when a Vsync should be active, in DI_CLK×2 (0.5 DI_CLK Resolution). The VSYNC_OFFSET should be built by suitable DI’s counter. ns Tohs HSYNC_OFFSET × Tdiclk HSYNC_OFFSET—offset of Hsync edges from a local start point, when a Hsync should be active, in DI_CLK×2 (0.5 DI_CLK Resolution). The HSYNC_OFFSET should be built by suitable DI’s counter. ns Todrdy DRDY_OFFSET × Tdiclk DRDY_OFFSET—offset of DRDY edges from a suitable local start point, when a corresponding data has been set on the bus, in DI_CLK×2 (0.5 DI_CLK Resolution). The DRDY_OFFSET should be built by suitable DI’s counter. ns Display interface clock period immediate value. DISP_CLK_PERIOD T diclk × ----------------------------------------------------, for integer DISP_CLK_PERIOD ---------------------------------------------------DI_CLK_PERIOD DI_CLK_PERIOD Tdicp = floor DISP_CLK_PERIOD T ---------------------------------------------------- + 0.5 ± 0.5 , for fractional DISP_CLK_PERIOD --------------------------------------------------- diclk DI_CLK_PERIOD DI_CLK_PERIOD DISP_CLK_PERIOD—number of DI_CLK per one Tdicp. Resolution 1/16 of DI_CLK. DI_CLK_PERIOD—relation of between programing clock frequency and current system clock frequency Display interface clock period average value. DISP_CLK_PERIOD Tdicp = T diclk × ---------------------------------------------------DI_CLK_PERIOD 2 DI’s counter can define offset, period and UP/DOWN characteristic of output signal according to programed parameters of the counter. Same of parameters in the table are not defined by DI’s registers directly (by name), but can be generated by corresponding DI’s counter. The SCREEN_WIDTH is an input value for DI’s HSYNC generation counter. The distance between HSYNCs is a SCREEN_WIDTH. The maximum accuracy of UP/DOWN edge of controls is: Accuracy = ( 0.5 × T diclk ) ± 0.62ns The maximum accuracy of UP/DOWN edge of IPP_DISP_DATA is: Accuracy = T diclk ± 0.62ns The DISP_CLK_PERIOD, DI_CLK_PERIOD parameters are register-controlled. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 105 Electrical Characteristics Figure 69 depicts the synchronous display interface timing for access level. The DISP_CLK_DOWN and DISP_CLK_UP parameters are register-controlled. Table 66 lists the synchronous display interface timing characteristics. IP20o IP20 VSYNC HSYNC DRDY other controls IPP_DISP_CLK Tdicu Tdicd IPP_DATA IP16 IP17 IP19 IP18 local start point Figure 69. Synchronous Display Interface Timing Diagram—Access Level Table 66. Synchronous Display Interface Timing Characteristics (Access Level) ID Parameter Symbol Typ1 Min Max Unit IP16 Display interface clock low Tckl time Tdicd-Tdicu-1.24 Tdicd2-Tdicu3 IP17 Display interface clock high time Tckh Tdicp-Tdicd+Tdicu-1.24 Tdicp-Tdicd+Tdicu Tdicp-Tdicd+Tdicu+1.2 ns IP18 Data setup time Tdsu Tdicd-1.24 Tdicu — ns IP19 Data holdup time Tdhd Tdicp-Tdicd-1.24 Tdicp-Tdicu — ns IP20o Control signals offset times (defined for each pin) Tocsu Tocsu-1.24 Tocsu IP20 Control signals setup time Tcsu to display interface clock (defined for each pin) Tdicd-1.24-Tocsu%Tdicp Tdicu Tdicd-Tdicu+1.24 Tocsu+1.24 — ns ns ns 1 The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display. These conditions may be chip specific. 2 Display interface clock down time 1 2 × DISP_CLK_DOWN Tdicd = --- T diclk × ceil ----------------------------------------------------------- DI_CLK_PERIOD 2 3 Display interface clock up time where CEIL(X) rounds the elements of X to the nearest integers towards infinity. 2 × DISP_CLK_UP Tdicu = 1--- T diclk × ceil ------------------------------------------------ 2 DI_CLK_PERIOD i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 106 Freescale Semiconductor Inc. Electrical Characteristics 4.11.11 LVDS Display Bridge (LDB) Module Parameters The LVDS interface complies with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD 644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits.” Table 67. LVDS Display Bridge (LDB) Electrical Specification Parameter Symbol Differential Voltage Output Voltage VOD Output Voltage High Test Condition Min Max Units 100 Ω Differential load 250 450 mV Voh 100 Ω differential load (0 V Diff—Output High Voltage static) 1.25 1.6 V Output Voltage Low Vol 100 Ω differential load (0 V Diff—Output Low Voltage static) 0.9 1.25 V Offset Static Voltage VOS Two 49.9 Ω resistors in series between N-P terminal, with output in either Zero or One state, the voltage measured between the 2 resistors. 1.15 1.375 V VOS Differential VOSDIFF Difference in VOS between a One and a Zero state -50 50 mV Output short-circuited to GND ISA ISB With the output common shorted to GND -24 24 mA VT Full Load Test VTLoad 100 Ω Differential load with a 3.74 kΩ load between GND and I/O supply voltage 247 454 mV 4.11.12 MIPI D-PHY Timing Parameters This section describes MIPI D-PHY electrical specifications, compliant with MIPI CSI-2 version 1.0, D-PHY specification Rev. 1.0 (for MIPI sensor port x4 lanes) and MIPI DSI Version 1.01, and D-PHY specification Rev. 1.0 (and also DPI version 2.0, DBI version 2.0, DSC version 1.0a at protocol layer) (for MIPI display port x2 lanes). 4.11.12.1 Electrical and Timing Information Table 68. Electrical and Timing Information Symbol Parameters Test Conditions Min Typ Max Unit Input DC Specifications—Apply to DSI_CLK_P/_N and DSI_DATA_P/_N Inputs VI Input signal voltage range Transient voltage range is limited from -300 mV to 1600 mV -50 — 1350 mV VLEAK Input leakage current VGNDSH(min) = VI = VGNDSH(max) + VOH(absmax) Lane module in LP Receive Mode -10 — 10 mA VGNDSH Ground Shift — -50 — 50 mV VOH(absmax) Maximum transient output voltage level — — — 1.45 V tvoh(absmax) Maximum transient time above VOH(absmax) — — — 20 ns i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 107 Electrical Characteristics Table 68. Electrical and Timing Information (continued) Symbol Parameters Test Conditions Min Typ Max Unit HS Line Drivers DC Specifications |VOD| HS Transmit Differential output voltage magnitude 80 Ω<= RL< = 125 Ω 140 200 270 mV Δ|VOD| Change in Differential output voltage magnitude between logic states 80 Ω<= RL< = 125 Ω — — 10 mV VCMTX Steady-state common-mode output voltage. 80 Ω<= RL< = 125 Ω 150 200 250 mV ΔVCMTX(1,0) Changes in steady-state common-mode output voltage between logic states 80 Ω<= RL< = 125 Ω — — 5 mV VOHHS HS output high voltage 80 Ω<= RL< = 125 Ω — — 360 mV ZOS Single-ended output impedance. — 40 50 62.5 Ω ΔZOS Single-ended output impedance mismatch. — — — 10 % 50 mV LP Line Drivers DC Specifications VOL Output low-level SE voltage — -50 VOH Output high-level SE voltage — 1.1 1.2 1.3 V ZOLP Single-ended output impedance. — 110 — — Ω ΔZOLP(01-10) Single-ended output impedance mismatch driving opposite level — — — 20 % ΔZOLP(0-11) Single-ended output impedance mismatch driving same level — — — 5 % HS Line Receiver DC Specifications VIDTH Differential input high voltage threshold — — — 70 mV VIDTL Differential input low voltage threshold — -70 — — mV VIHHS Single ended input high voltage — — — 460 mV VILHS Single ended input low voltage — -40 — — mV VCMRXDC Input common mode voltage — 70 — 330 mV ZID Differential input impedance — 80 — 125 Ω i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 108 Freescale Semiconductor Inc. Electrical Characteristics Table 68. Electrical and Timing Information (continued) Symbol Parameters Test Conditions Min Typ Max Unit LP Line Receiver DC Specifications VIL Input low voltage — — — 550 mV VIH Input high voltage — 920 — — mV VHYST Input hysteresis — 25 — — mV 200 — 450 mV Contention Line Receiver DC Specifications Input low fault threshold VILF — 4.11.12.2 D-PHY Signaling Levels The signal levels are different for differential HS mode and single-ended LP mode. Figure 70 shows both the HS and LP signal levels on the left and right sides, respectively. The HS signalling levels are below the LP low-level input threshold such that LP receiver always detects low on HS signals. LP VOL VOH,MAX VOH,MIN LP VIH VIH LP Threshold Region VIL Max VOD HS Vout Range VOHHS VCMTX,MAX HS Vcm Range Min VOD HS Differential Signaling LP VIL VGNDSH,MA VCMTX,MIN VOLHS LP VOL X GND VGNDSH,MIN LP Single-ended Signaling Figure 70. D-PHY Signaling Levels i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 109 Electrical Characteristics 4.11.12.3 HS Line Driver Characteristics Ideal Single-Ended High Speed Signals VDN VCMTX = (VDP + VDN)/2 VOD(0) VOD(1) VDP Ideal Differential High Speed Signals VOD(1) 0V (Differential) VOD(0) VOD = VDP - VDN Figure 71. Ideal Single-ended and Resulting Differential HS Signals 4.11.12.4 Possible ΔVCMTX and ΔVOD Distortions of the Single-ended HS Signals ΔVOD (SE HS Signals) VD N VCM TX VD P ΔVOD/2 V OD (1) VOD( 0) ΔV OD /2 Static ΔV CMT X (SE HS Signals) VD N VC MTX VOD( 0) V DP DynamicΔVCMTX (SE HS Signals) VDN VCM TX VD P Figure 72. Possible ΔVCMTX and ΔVOD Distortions of the Single-ended HS Signals 4.11.12.5 D-PHY Switching Characteristics Table 69. Electrical and Timing Information Symbol Parameters Test Conditions Min Typ Max Unit HS Line Drivers AC Specifications — Maximum serial data rate (forward direction) On DATAP/N outputs. 80 Ω <= RL <= 125 Ω 80 — 1000 Mbps FDDRCLK DDR CLK frequency On DATAP/N outputs. 40 — 500 MHz PDDRCLK DDR CLK period 80 Ω <= RL< = 125 Ω 2 — 25 ns i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 110 Freescale Semiconductor Inc. Electrical Characteristics Table 69. Electrical and Timing Information (continued) Symbol Parameters Test Conditions tCDC = tCPH / PDDRCLK Min Typ Max Unit — 50 — % tCDC DDR CLK duty cycle tCPH DDR CLK high time — — 1 — UI tCPL DDR CLK low time — — 1 — UI — DDR CLK / DATA Jitter — — 75 — ps pk-pk tSKEW[PN] Intra-Pair (Pulse) skew — — 0.075 — UI tSKEW[TX] Data to Clock Skew — 0.350 — 0.650 UI tr Differential output signal rise time 20% to 80%, RL = 50 Ω 150 — 0.3UI ps tf Differential output signal fall time 20% to 80%, RL = 50 Ω 150 — 0.3UI ps ΔVCMTX(HF) Common level variation above 450 MHz 80 Ω<= RL< = 125 Ω — — 15 mVrms ΔVCMTX(LF) Common level variation between 50 MHz and 450 MHz 80 Ω<= RL< = 125 Ω — — 25 mVp 15% to 85%, CL<70 pF — — 25 ns 30% to 85%, CL<70 pF — — 35 ns 15% to 85%, CL<70 pF — — 120 mV/ns 0 — 70 pF LP Line Drivers AC Specifications trlp,tflp Single ended output rise/fall time treo — δV/δtSR Signal slew rate CL Load capacitance — HS Line Receiver AC Specifications tSETUP[RX] Data to Clock Receiver Setup time — 0.15 — — UI tHOLD[RX] Clock to Data Receiver Hold time — 0.15 — — UI ΔVCMRX(HF) Common mode interference beyond 450 MHz — — — 200 mVpp ΔVCMRX(LF) Common mode interference between 50 MHz and 450 MHz — -50 — 50 mVpp CCM Common mode termination — — — 60 pF LP Line Receiver AC Specifications eSPIKE Input pulse rejection — — — 300 Vps TMIN Minimum pulse response — 50 — — ns VINT Pk-to-Pk interference voltage — — — 400 mV fINT Interference frequency — 450 — — MHz Model Parameters used for Driver Load switching performance evaluation CPAD Equivalent Single ended I/O PAD capacitance. — — — 1 pF CPIN Equivalent Single ended Package + PCB capacitance. — — — 2 pF i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 111 Electrical Characteristics Table 69. Electrical and Timing Information (continued) Symbol Parameters Test Conditions Min Typ Max Unit LS Equivalent wire bond series inductance — — — 1.5 nH RS Equivalent wire bond series resistance — — — 0.15 Ω RL Load Resistance — 80 100 125 Ω 4.11.12.6 High-Speed Clock Timing CLKp CLKn 1 Data Bit Time = 1UI 1 Data Bit Time = 1UI UIINST(1) UIINST(2) 1 DDR Clock Period = UIINST(1) + UIINST(2) Figure 73. DDR Clock Definition 4.11.12.7 Forward High-Speed Data Transmission Timing The timing relationship of the DDR Clock differential signal to the Data differential signal is shown in Figure 74: 2EFERENCE4IME 4 3%450 4 (/,$ #,+P #,+N 5) ).34 43+%7 5) ).34 4#,+P Figure 74. Data to Clock Timing Definitions 4.11.12.8 Reverse High-Speed Data Transmission Timing TTD NRZ Data CLKn CLKp Clock to Data Skew 2UI 2UI Figure 75. Reverse High-Speed Data Transmission Timing at Slave Side i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 112 Freescale Semiconductor Inc. Electrical Characteristics 4.11.12.9 Low-Power Receiver Timing 2*TLPX 2*TLPX eSPIKE VIH VIL Input TMIN-RX eSPIKE TMIN-RX Output Figure 76. Input Glitch Rejection of Low-Power Receivers 4.11.13 HSI Host Controller Timing Parameters This section describes the timing parameters of the HSI Host Controller which are compliant with High-Speed Synchronous Serial Interface (HSI) Physical Layer specification version 1.01. 4.11.13.1 Synchronous Data Flow First bit of frame t Last bit of frame First bit of frame Last bit of frame NomBit DATA FLAG N-bits Frame N-bits Frame READY Receiver has detected the start of the Frame Receiver has captured and stored a complete Frame Figure 77. Synchronized Data Flow READY Signal Timing (Frame and Stream Transmission) 4.11.13.2 Pipelined Data Flow First bit of frame t Last bit of frame First bit of frame Last bit of frame Last bit of frame D. Ready shall maintain zero of if receiver does not have free space E. Ready F. Ready G. Ready shall can change can change maintain its value NomBit DATA FLAG N-bits Frame N-bits Frame READY A Ready can change B Ready shall not change to zero C. Ready can change Figure 78. Pipelined Data Flow READY Signal Timing (Frame Transmission Mode) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 113 Electrical Characteristics 4.11.13.3 Receiver Real-Time Data Flow First bit of frame t Last bit of frame First bit of frame Last bit of frame NomBit DATA FLAG N-bits Frame N-bits Frame READY Receiver has detected the start of the Frame Receiver has captured a complete Frame Figure 79. Receiver Real-Time Data Flow READY Signal Timing 4.11.13.4 Synchronized Data Flow Transmission with Wake TX state A B C PHY Frame A D PHY Frame DATA FLAG 3. First bit received READY WAKE RX state 1. Transmitter has B data to transmit A A: Sleep state(non-operational) B: Wake-up state 6. Receiver can no longer receive date 5. Transmitter has no more data to transmit 4. Received frame stored 2. Receiver in active start state C C: Active state (full operational) D A D: Disable State(No communication ability) Figure 80. Synchronized Data Flow Transmission with WAKE 4.11.13.5 Stream Transmission Mode Frame Transfer Channel Description bits Payload Data Bits DATA FLAG Complete N-bits Frame Complete N-bits Frame READY Figure 81. Stream Transmission Mode Frame Transfer (Synchronized Data Flow) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 114 Freescale Semiconductor Inc. Electrical Characteristics 4.11.13.6 Frame Transmission Mode (Synchronized Data Flow) Frame start bit Channel Description bits Payload Data Bits DATA FLAG Complete N-bits Frame Complete N-bits Frame READY Figure 82. Frame Transmission Mode Transfer of Two Frames (Synchronized Data Flow) 4.11.13.7 Frame Transmission Mode (Pipelined Data Flow) Frame start bit Channel Description bits Payload Data Bits DATA FLAG Complete N-bits Frame Complete N-bits Frame READY Figure 83. Frame Transmission Mode Transfer of Two Frames (Pipelined Data Flow) 4.11.13.8 DATA and FLAG Signal Timing Requirement for a 15 pF Load Table 70. DATA and FLAG Timing Parameter tBit, nom Description Nominal bit time 1 Mbit/s 100 Mbit/s 1000 ns 10 ns 2 ns 2 ns Maximum skew between transmitter and receiver package pins 50 ns 0.5 ns tEageSepTx, min Minimum allowed separation of signal transitions at transmitter package pins, including all timing defects, for example, jitter and skew, inside the transmitter. 400 ns 4 ns tEageSepRx, min Minimum separation of signal transitions, measured at the receiver package pins, including all timing defects, for example, jitter and skew, inside the receiver. 350 ns 3.5 ns tRise, min and tFall, min Minimum allowed rise and fall time tTxToRxSkew, maxfq i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 115 Electrical Characteristics 4.11.13.9 DATA and FLAG Signal Timing t DATA (TX) 50% t 50% t 50% Note2 Rise 80% 80% 20% t Bit t DATA (RX) 80% 50% Note1 FLAG (TX) EdgeSepTx 20% 20% Fall t TxToRxSkew EdgeSepRx 80% 50% Note2 Note1 50% FLAG (RX) 20% Figure 84. DATA and FLAG Signal Timing 4.11.14 PCIe PHY Parameters The PCIe interface complies with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0 standard. 4.11.14.1 PCIE_REXT Reference Resistor Connection The impedance calibration process requires connection of reference resistor 200 Ω. 1% precision resistor on PCIE_REXT pads to ground. It is used for termination impedance calibration. 4.11.15 Pulse Width Modulator (PWM) Timing Parameters This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin. Figure 85 depicts the timing of the PWM, and Table 71 lists the PWM timing parameters. PWMn_OUT Figure 85. PWM Timing Table 71. PWM Output Timing Parameters ID Parameter Min Max Unit — PWM Module Clock Frequency 0 ipg_clk MHz P1 PWM output pulse width high 15 — ns P2 PWM output pulse width low 15 — ns i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 116 Freescale Semiconductor Inc. Electrical Characteristics 4.11.16 SATA PHY Parameters This section describes SATA PHY electrical specifications. 4.11.16.1 Transmitter and Receiver Characteristics The SATA PHY meets or exceeds the electrical compliance requirements defined in the SATA specifications. NOTE The tables in the following sections indicate any exceptions to the SATA specification or aspects of the SATA PHY that exceed the standard, as well as provide information about parameters not defined in the standard. The following subsections provide values obtained from a combination of simulations and silicon characterization. 4.11.16.1.1 SATA PHY Transmitter Characteristics Table 72 provides specifications for SATA PHY transmitter characteristics. Table 72. SATA PHY Transmitter Characteristics Parameters Transmit common mode voltage Transmitter pre-emphasis accuracy (measured change in de-emphasized bit) Symbol Min Typ Max Unit VCTM 0.4 — 0.6 V — –0.5 — 0.5 dB 4.11.16.1.2 SATA PHY Receiver Characteristics Table 73 provides specifications for SATA PHY receiver characteristics. Table 73. SATA PHY Receiver Characteristics Parameters Minimum Rx eye height (differential peak-to-peak) Tolerance Symbol Min Typ Max Unit VMIN_RX_EYE_HEIGHT 175 — — mV PPM –400 — 400 ppm 4.11.16.2 SATA_REXT Reference Resistor Connection The impedance calibration process requires connection of reference resistor 191 Ω. 1% precision resistor on SATA_REXT pad to ground. Resistor calibration consists of learning which state of the internal Resistor Calibration register causes an internal, digitally trimmed calibration resistor to best match the impedance applied to the SATA_REXT pin. The calibration register value is then supplied to all Tx and Rx termination resistors. During the calibration process (for a few tens of microseconds), up to 0.3 mW can be dissipated in the external SATA_REXT resistor. At other times, no power is dissipated by the SATA_REXT resistor. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 117 Electrical Characteristics 4.11.17 SCAN JTAG Controller (SJC) Timing Parameters Figure 86 depicts the SJC test clock input timing. Figure 87 depicts the SJC boundary scan timing. Figure 88 depicts the SJC test access port. Figure 89 depicts the JTAG_TRST_B timing. Signal parameters are listed in Table 74. SJ1 SJ2 JTAG_TCK (Input) SJ2 VM VIH VM VIL SJ3 SJ3 Figure 86. Test Clock Input Timing Diagram JTAG_TCK (Input) VIH VIL SJ4 Data Inputs SJ5 Input Data Valid SJ6 Data Outputs Output Data Valid SJ7 Data Outputs SJ6 Data Outputs Output Data Valid Figure 87. Boundary Scan (JTAG) Timing Diagram i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 118 Freescale Semiconductor Inc. Electrical Characteristics JTAG_TCK (Input) VIH VIL SJ8 JTAG_TDI JTAG_TMS (Input) SJ9 Input Data Valid SJ10 JTAG_TDO (Output) Output Data Valid SJ11 JTAG_TDO (Output) SJ10 JTAG_TDO (Output) Output Data Valid Figure 88. Test Access Port Timing Diagram JTAG_TCK (Input) JTAG_TRST_B (Input) SJ13 SJ12 Figure 89. JTAG_TRST_B Timing Diagram Table 74. JTAG Timing All Frequencies Parameter1,2 ID Unit SJ0 JTAG_TCK frequency of operation 1/(3xTDC)1 SJ1 JTAG_TCK cycle time in crystal mode 2 Min Max 0.001 22 MHz 45 — ns 22.5 — ns SJ2 JTAG_TCK clock pulse width measured at VM SJ3 JTAG_TCK rise and fall times — 3 ns SJ4 Boundary scan input data set-up time 5 — ns SJ5 Boundary scan input data hold time 24 — ns SJ6 JTAG_TCK low to output data valid — 40 ns SJ7 JTAG_TCK low to output high impedance — 40 ns SJ8 JTAG_TMS, JTAG_TDI data set-up time 5 — ns i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 119 Electrical Characteristics Table 74. JTAG Timing (continued) All Frequencies Parameter1,2 ID 1 2 Unit Min Max SJ9 JTAG_TMS, JTAG_TDI data hold time 25 — ns SJ10 JTAG_TCK low to JTAG_TDO data valid — 44 ns SJ11 JTAG_TCK low to JTAG_TDO high impedance — 44 ns SJ12 JTAG_TRST_B assert time 100 — ns SJ13 JTAG_TRST_B set-up time to JTAG_TCK low 40 — ns TDC = target frequency of SJC VM = mid-point voltage 4.11.18 SPDIF Timing Parameters The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal. Table 75 and Figure 90 and Figure 91 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode. Table 75. SPDIF Timing Parameters Timing Parameter Range Parameter Symbol Unit Min Max SPDIF_IN Skew: asynchronous inputs, no specs apply — — 0.7 ns SPDIF_OUT output (Load = 50pf) • Skew • Transition rising • Transition falling — — — — — — 1.5 24.2 31.3 ns SPDIF_OUT output (Load = 30pf) • Skew • Transition rising • Transition falling — — — — — — 1.5 13.6 18.0 ns Modulating Rx clock (SPDIF_SR_CLK) period srckp 40.0 — ns SPDIF_SR_CLK high period srckph 16.0 — ns SPDIF_SR_CLK low period srckpl 16.0 — ns Modulating Tx clock (SPDIF_ST_CLK) period stclkp 40.0 — ns SPDIF_ST_CLK high period stclkph 16.0 — ns SPDIF_ST_CLK low period stclkpl 16.0 — ns i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 120 Freescale Semiconductor Inc. Electrical Characteristics srckp srckpl SPDIF_SR_CLK srckph VM VM (Output) Figure 90. SPDIF_SR_CLK Timing Diagram stclkp stclkpl SPDIF_ST_CLK stclkph VM VM (Input) Figure 91. SPDIF_ST_CLK Timing Diagram 4.11.19 SSI Timing Parameters This section describes the timing parameters of the SSI module. The connectivity of the serial synchronous interfaces are summarized in Table 76. Table 76. AUDMUX Port Allocation Port Signal Nomenclature Type and Access AUDMUX port 1 SSI 1 Internal AUDMUX port 2 SSI 2 Internal AUDMUX port 3 AUD3 External – AUD3 I/O AUDMUX port 4 AUD4 External – EIM or CSPI1 I/O through IOMUXC AUDMUX port 5 AUD5 External – EIM or SD1 I/O through IOMUXC AUDMUX port 6 AUD6 External – EIM or DISP2 through IOMUXC AUDMUX port 7 SSI 3 Internal NOTE The terms WL and BL used in the timing diagrams and tables refer to Word Length (WL) and Bit Length (BL). i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 121 Electrical Characteristics 4.11.19.1 SSI Transmitter Timing with Internal Clock Figure 92 depicts the SSI transmitter internal clock timing and Table 77 lists the timing parameters for the SSI transmitter internal clock. . SS1 SS3 SS5 SS2 SS4 AUDx_TXC (Output) SS8 SS6 AUDx_TXFS (bl) (Output) SS10 SS12 SS14 AUDx_TXFS (wl) (Output) SS15 SS16 SS18 SS17 AUDx_TXD (Output) SS43 SS42 SS19 AUDx_RXD (Input) Note: AUDx_RXD input in synchronous mode only Figure 92. SSI Transmitter Internal Clock Timing Diagram Table 77. SSI Transmitter Timing with Internal Clock ID Parameter Min Max Unit Internal Clock Operation SS1 AUDx_TXC/AUDx_RXC clock period 81.4 — ns SS2 AUDx_TXC/AUDx_RXC clock high period 36.0 — ns SS4 AUDx_TXC/AUDx_RXC clock low period 36.0 — ns SS6 AUDx_TXC high to AUDx_TXFS (bl) high — 15.0 ns SS8 AUDx_TXC high to AUDx_TXFS (bl) low — 15.0 ns SS10 AUDx_TXC high to AUDx_TXFS (wl) high — 15.0 ns SS12 AUDx_TXC high to AUDx_TXFS (wl) low — 15.0 ns SS14 AUDx_TXC/AUDx_RXC Internal AUDx_TXFS rise time — 6.0 ns SS15 AUDx_TXC/AUDx_RXC Internal AUDx_TXFS fall time — 6.0 ns SS16 AUDx_TXC high to AUDx_TXD valid from high impedance — 15.0 ns SS17 AUDx_TXC high to AUDx_TXD high/low — 15.0 ns SS18 AUDx_TXC high to AUDx_TXD high impedance — 15.0 ns i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 122 Freescale Semiconductor Inc. Electrical Characteristics Table 77. SSI Transmitter Timing with Internal Clock (continued) ID Parameter Min Max Unit Synchronous Internal Clock Operation SS42 AUDx_RXD setup before AUDx_TXC falling 10.0 — ns SS43 AUDx_RXD hold after AUDx_TXC falling 0.0 — ns • • • • NOTE All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures. All timings are on Audiomux Pads when SSI is being used for data transfer. The terms, WL and BL, refer to Word Length(WL) and Bit Length(BL). For internal Frame Sync operation using external clock, the frame sync timing is the same as that of transmit data (for example, during AC97 mode of operation). i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 123 Electrical Characteristics 4.11.19.2 SSI Receiver Timing with Internal Clock Figure 93 depicts the SSI receiver internal clock timing and Table 78 lists the timing parameters for the receiver timing with the internal clock. SS1 SS3 SS5 SS2 SS4 AUDx_TXC (Output) SS9 SS7 AUDx_TXFS (bl) (Output) SS11 SS13 AUDx_TXFS (wl) (Output) SS20 SS21 AUDx_RXD (Input) SS47 SS48 SS51 SS49 SS50 AUDx_RXC (Output) Figure 93. SSI Receiver Internal Clock Timing Diagram Table 78. SSI Receiver Timing with Internal Clock ID Parameter Min Max Unit Internal Clock Operation SS1 AUDx_TXC/AUDx_RXC clock period 81.4 — ns SS2 AUDx_TXC/AUDx_RXC clock high period 36.0 — ns SS3 AUDx_TXC/AUDx_RXC clock rise time — 6.0 ns SS4 AUDx_TXC/AUDx_RXC clock low period 36.0 — ns SS5 AUDx_TXC/AUDx_RXC clock fall time — 6.0 ns SS7 AUDx_RXC high to AUDx_TXFS (bl) high — 15.0 ns SS9 AUDx_RXC high to AUDx_TXFS (bl) low — 15.0 ns SS11 AUDx_RXC high to AUDx_TXFS (wl) high — 15.0 ns SS13 AUDx_RXC high to AUDx_TXFS (wl) low — 15.0 ns SS20 AUDx_RXD setup time before AUDx_RXC low 10.0 — ns SS21 AUDx_RXD hold time after AUDx_RXC low 0.0 — ns i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 124 Freescale Semiconductor Inc. Electrical Characteristics Table 78. SSI Receiver Timing with Internal Clock (continued) ID Parameter Min Max Unit 15.04 — ns Oversampling Clock Operation SS47 Oversampling clock period SS48 Oversampling clock high period 6.0 — ns SS49 Oversampling clock rise time — 3.0 ns SS50 Oversampling clock low period 6.0 — ns SS51 Oversampling clock fall time — 3.0 ns • • • • • NOTE All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures. All timings are on Audiomux Pads when SSI is being used for data transfer. AUDx_TXC and AUDx_RXC refer to the Transmit and Receive sections of the SSI. The terms, WL and BL, refer to Word Length (WL) and Bit Length(BL). For internal Frame Sync operation using external clock, the frame sync timing is same as that of transmit data (for example, during AC97 mode of operation). i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 125 Electrical Characteristics 4.11.19.3 SSI Transmitter Timing with External Clock Figure 94 depicts the SSI transmitter external clock timing and Table 79 lists the timing parameters for the transmitter timing with the external clock. SS22 SS25 SS23 SS26 SS24 AUDx_TXC (Input) SS27 SS29 AUDx_TXFS (bl) (Input) SS33 SS31 AUDx_TXFS (wl) (Input) SS39 SS37 SS38 AUDx_TXD (Output) SS45 SS44 AUDx_RXD (Input) Note: AUDx_RXD Input in Synchronous mode only SS46 Figure 94. SSI Transmitter External Clock Timing Diagram Table 79. SSI Transmitter Timing with External Clock ID Parameter Min Max Unit External Clock Operation SS22 AUDx_TXC/AUDx_RXC clock period 81.4 — ns SS23 AUDx_TXC/AUDx_RXC clock high period 36.0 — ns SS24 AUDx_TXC/AUDx_RXC clock rise time — 6.0 ns SS25 AUDx_TXC/AUDx_RXC clock low period 36.0 — ns SS26 AUDx_TXC/AUDx_RXC clock fall time — 6.0 ns SS27 AUDx_TXC high to AUDx_TXFS (bl) high –10.0 15.0 ns SS29 AUDx_TXC high to AUDx_TXFS (bl) low 10.0 — ns SS31 AUDx_TXC high to AUDx_TXFS (wl) high –10.0 15.0 ns SS33 AUDx_TXC high to AUDx_TXFS (wl) low 10.0 — ns SS37 AUDx_TXC high to AUDx_TXD valid from high impedance — 15.0 ns SS38 AUDx_TXC high to AUDx_TXD high/low — 15.0 ns SS39 AUDx_TXC high to AUDx_TXD high impedance — 15.0 ns i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 126 Freescale Semiconductor Inc. Electrical Characteristics Table 79. SSI Transmitter Timing with External Clock (continued) ID Parameter Min Max Unit Synchronous External Clock Operation SS44 AUDx_RXD setup before AUDx_TXC falling 10.0 — ns SS45 AUDx_RXD hold after AUDx_TXC falling 2.0 — ns SS46 AUDx_RXD rise/fall time — 6.0 ns • • • • • NOTE All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures. All timings are on Audiomux Pads when SSI is being used for data transfer. AUDx_TXC and AUDx_RXC refer to the Transmit and Receive sections of the SSI. The terms WL and BL refer to Word Length (WL) and Bit Length (BL). For internal Frame Sync operation using external clock, the frame sync timing is same as that of transmit data (for example, during AC97 mode of operation). 4.11.19.4 SSI Receiver Timing with External Clock Figure 95 depicts the SSI receiver external clock timing and Table 80 lists the timing parameters for the receiver timing with the external clock. SS22 SS24 SS26 SS25 SS23 AUDx_TXC (Input) SS28 SS30 AUDx_TXFS (bl) (Input) SS32 AUDx_TXFS (wl) (Input) SS34 SS35 SS41 SS40 SS36 AUDx_RXD (Input) Figure 95. SSI Receiver External Clock Timing Diagram i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 127 Electrical Characteristics Table 80. SSI Receiver Timing with External Clock ID Parameter Min Max Unit 81.4 — ns External Clock Operation SS22 AUDx_TXC/AUDx_RXC clock period SS23 AUDx_TXC/AUDx_RXC clock high period 36 — ns SS24 AUDx_TXC/AUDx_RXC clock rise time — 6.0 ns SS25 AUDx_TXC/AUDx_RXC clock low period 36 — ns SS26 AUDx_TXC/AUDx_RXC clock fall time — 6.0 ns SS28 AUDx_RXC high to AUDx_TXFS (bl) high –10 15.0 ns SS30 AUDx_RXC high to AUDx_TXFS (bl) low 10 — ns SS32 AUDx_RXC high to AUDx_TXFS (wl) high –10 15.0 ns SS34 AUDx_RXC high to AUDx_TXFS (wl) low 10 — ns SS35 AUDx_TXC/AUDx_RXC External AUDx_TXFS rise time — 6.0 ns SS36 AUDx_TXC/AUDx_RXC External AUDx_TXFS fall time — 6.0 ns SS40 AUDx_RXD setup time before AUDx_RXC low 10 — ns SS41 AUDx_RXD hold time after AUDx_RXC low 2 — ns • • • • • NOTE All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures. All timings are on Audiomux Pads when SSI is being used for data transfer. AUDx_TXC and AUDx_RXC refer to the Transmit and Receive sections of the SSI. The terms, WL and BL, refer to Word Length (WL) and Bit Length(BL). For internal Frame Sync operation using external clock, the frame sync timing is same as that of transmit data (for example, during AC97 mode of operation). i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 128 Freescale Semiconductor Inc. Electrical Characteristics 4.11.20 UART I/O Configuration and Timing Parameters 4.11.20.1 UART RS-232 I/O Configuration in Different Modes The i.MX 6DualPlus/6QuadPlus UART interfaces can serve both as DTE or DCE device. This can be configured by the DCEDTE control bit (default 0 – DCE mode). Table 81 shows the UART I/O configuration based on the enabled mode. Table 81. UART I/O Configuration vs. Mode DTE Mode DCE Mode Port Direction Description Direction Description UARTx_RTS_B Output RTS from DTE to DCE Input RTS from DTE to DCE UARTx_CTS_B Input CTS from DCE to DTE Output CTS from DCE to DTE UARTx_DTR_B Output DTR from DTE to DCE Input DTR from DTE to DCE UARTx_DSR_B Input DSR from DCE to DTE Output DSR from DCE to DTE UARTx_DCD_B Input DCD from DCE to DTE Output DCD from DCE to DTE UARTx_RI_B Input RING from DCE to DTE Output RING from DCE to DTE UARTx_TX_DATA Input Serial data from DCE to DTE Output Serial data from DCE to DTE UARTx_RX_DATA Output Serial data from DTE to DCE Input Serial data from DTE to DCE i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 129 Electrical Characteristics 4.11.20.2 UART RS-232 Serial Mode Timing The following sections describe the electrical information of the UART module in the RS-232 mode. 4.11.20.2.1 UART Transmitter Figure 96 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit format. Table 82 lists the UART RS-232 serial mode transmit timing characteristics. UA1 UARTx_TX_DATA (output) Start Bit POSSIBLE PARITY BIT UA1 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT UA1 UA1 NEXT START BIT Figure 96. UART RS-232 Serial Mode Transmit Timing Diagram Table 82. RS-232 Serial Mode Transmit Timing Parameters ID Parameter UA1 1 2 Transmit Bit Time Symbol Min Max Unit tTbit 1/Fbaud_rate1 – Tref_clk2 1/Fbaud_rate + Tref_clk — Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider). 4.11.20.2.2 UART Receiver Figure 97 depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 83 lists serial mode receive timing characteristics. UA2 UARTx_RX_DATA (input) Start Bit POSSIBLE PARITY BIT UA2 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT UA2 UA2 NEXT START BIT Figure 97. UART RS-232 Serial Mode Receive Timing Diagram Table 83. RS-232 Serial Mode Receive Timing Parameters ID Parameter Symbol Min Max Unit UA2 Receive Bit Time1 tRbit 1/Fbaud_rate2 – 1/(16 × Fbaud_rate) 1/Fbaud_rate + 1/(16 × Fbaud_rate) — 1 The UART receiver can tolerate 1/(16 × Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 × Fbaud_rate). 2 F baud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 130 Freescale Semiconductor Inc. Electrical Characteristics 4.11.20.2.3 UART IrDA Mode Timing The following subsections give the UART transmit and receive timings in IrDA mode. UART IrDA Mode Transmitter Figure 98 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 84 lists the transmit timing characteristics. UA3 UA3 UA4 UA3 UA3 UARTx_TX_DATA (output) Start Bit Bit 0 Bit 1 Bit 3 Bit 2 Bit 4 Bit 5 Bit 6 Bit 7 POSSIBLE PARITY BIT STOP BIT Figure 98. UART IrDA Mode Transmit Timing Diagram Table 84. IrDA Mode Transmit Timing Parameters 1 2 ID Parameter Symbol Min Max Unit UA3 Transmit Bit Time in IrDA mode tTIRbit 1/Fbaud_rate1 – Tref_clk2 1/Fbaud_rate + Tref_clk — UA4 Transmit IR Pulse Duration tTIRpulse (3/16) × (1/Fbaud_rate) – Tref_clk (3/16) × (1/Fbaud_rate) + Tref_clk — Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider). UART IrDA Mode Receiver Figure 99 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 85 lists the receive timing characteristics. UA5 UA6 UA5 UA5 UA5 UARTx_RX_DATA (input) Start Bit Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 POSSIBLE PARITY BIT STOP BIT Figure 99. UART IrDA Mode Receive Timing Diagram Table 85. IrDA Mode Receive Timing Parameters ID Parameter Symbol Min Max Unit UA5 Receive Bit Time1 in IrDA mode tRIRbit 1/Fbaud_rate2 – 1/(16 × Fbaud_rate) 1/Fbaud_rate + 1/(16 × Fbaud_rate) — UA6 Receive IR Pulse Duration tRIRpulse 1.41 μs (5/16) × (1/Fbaud_rate) — 1 The UART receiver can tolerate 1/(16 × Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 × Fbaud_rate). 2 F baud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 131 Electrical Characteristics 4.11.21 USB HSIC Timings This section describes the electrical information of the USB HSIC port. NOTE HSIC is a DDR signal. The following timing specification is for both rising and falling edges. 4.11.21.1 Transmit Timing Tstrobe USB_H_STROBE Todelay Todelay USB_H_DATA Figure 100. USB HSIC Transmit Waveform Table 86. USB HSIC Transmit Parameters Name Parameter Min Max Unit Comment 4.166 4.167 ns — Measured at 50% point Tstrobe strobe period Todelay data output delay time 550 1350 ps strobe/data rising/falling time 0.7 2 V/ns Tslew Averaged from 30% – 70% points 4.11.21.2 Receive Timing Tstrobe USB_H_STROBE Thold USB_H_DATA Tsetup Figure 101. USB HSIC Receive Waveform Table 87. USB HSIC Receive Parameters1 Name 1 Parameter Min Max Unit Comment Tstrobe strobe period 4.166 4.167 ns — Thold data hold time 300 — ps Measured at 50% point Tsetup data setup time 365 — ps Measured at 50% point Tslew strobe/data rising/falling time 0.7 2 V/ns Averaged from 30% – 70% points The timings in the table are guaranteed when: —AC I/O voltage is between 0.9x to 1x of the I/O supply —DDR_SEL configuration bits of the I/O are set to (10)b i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 132 Freescale Semiconductor Inc. Electrical Characteristics 4.11.22 USB PHY Parameters This section describes the USB-OTG PHY and the USB Host port PHY parameters. The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to Host port). • USB ENGINEERING CHANGE NOTICE — Title: 5V Short Circuit Withstand Requirement Change — Applies to: Universal Serial Bus Specification, Revision 2.0 • Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000 • USB ENGINEERING CHANGE NOTICE — Title: Pull-up/Pull-down resistors — Applies to: Universal Serial Bus Specification, Revision 2.0 • USB ENGINEERING CHANGE NOTICE — Title: Suspend Current Limit Changes — Applies to: Universal Serial Bus Specification, Revision 2.0 • USB ENGINEERING CHANGE NOTICE — Title: USB 2.0 Phase Locked SOFs — Applies to: Universal Serial Bus Specification, Revision 2.0 • On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification — Revision 2.0 plus errata and ecn June 4, 2010 • Battery Charging Specification (available from USB-IF) — Revision 1.2, December 7, 2010 — Portable device only i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 133 Boot Mode Configuration 5 Boot Mode Configuration This section provides information on boot mode configuration pins allocation and boot devices interfaces allocation. 5.1 Boot Mode Configuration Pins Table 88 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an unblown fuse). For detailed boot mode options configured by the boot mode pins, see the System Boot chapter of the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM). Table 88. Fuses and Associated Pins Used for Boot Pin Direction at Reset eFuse Name Boot Mode Selection BOOT_MODE1 Input Boot Mode Selection BOOT_MODE0 Input Boot Mode Selection Boot Options1 EIM_DA0 Input BOOT_CFG1[0] EIM_DA1 Input BOOT_CFG1[1] EIM_DA2 Input BOOT_CFG1[2] EIM_DA3 Input BOOT_CFG1[3] EIM_DA4 Input BOOT_CFG1[4] EIM_DA5 Input BOOT_CFG1[5] EIM_DA6 Input BOOT_CFG1[6] EIM_DA7 Input BOOT_CFG1[7] EIM_DA8 Input BOOT_CFG2[0] EIM_DA9 Input BOOT_CFG2[1] EIM_DA10 Input BOOT_CFG2[2] EIM_DA11 Input BOOT_CFG2[3] EIM_DA12 Input BOOT_CFG2[4] EIM_DA13 Input BOOT_CFG2[5] EIM_DA14 Input BOOT_CFG2[6] EIM_DA15 Input BOOT_CFG2[7] EIM_A16 Input BOOT_CFG3[0] EIM_A17 Input BOOT_CFG3[1] EIM_A18 Input BOOT_CFG3[2] i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 134 Freescale Semiconductor Inc. Boot Mode Configuration Table 88. Fuses and Associated Pins Used for Boot (continued) 1 Pin Direction at Reset eFuse Name EIM_A19 Input BOOT_CFG3[3] EIM_A20 Input BOOT_CFG3[4] EIM_A21 Input BOOT_CFG3[5] EIM_A22 Input BOOT_CFG3[6] EIM_A23 Input BOOT_CFG3[7] EIM_A24 Input BOOT_CFG4[0] EIM_WAIT Input BOOT_CFG4[1] EIM_LBA Input BOOT_CFG4[2] EIM_EB0 Input BOOT_CFG4[3] EIM_EB1 Input BOOT_CFG4[4] EIM_RW Input BOOT_CFG4[5] EIM_EB2 Input BOOT_CFG4[6] EIM_EB3 Input BOOT_CFG4[7] Pin value overrides fuse settings for BT_FUSE_SEL = ‘0’. Signal Configuration as Fuse Override Input at Power Up. These are special I/O lines that control the boot up configuration during product development. In production, the boot configuration can be controlled by fuses. 5.2 Boot Devices Interfaces Allocation Table 89 lists the interfaces that can be used by the boot process in accordance with the specific boot mode configuration. The table also describes the interface’s specific modes and IOMUXC allocation, which are configured during boot when appropriate. Table 89. Interfaces Allocation During Boot Interface IP Instance Allocated Pads During Boot Comment SPI ECSPI-1 EIM_D17, EIM_D18, EIM_D16, EIM_EB2, EIM_D19, EIM_D24, EIM_D25 — SPI ECSPI-2 CSI0_DAT10, CSI0_DAT9, CSI0_DAT8, CSI0_DAT11, EIM_LBA, EIM_D24, EIM_D25 — SPI ECSPI-3 DISP0_DAT2, DISP0_DAT1, DISP0_DAT0, DISP0_DAT3, DISP0_DAT4, DISP0_DAT5, DISP0_DAT6 — SPI ECSPI-4 EIM_D22, EIM_D28, EIM_D21, EIM_D20, EIM_A25, EIM_D24, EIM_D25 — SPI ECSPI-5 SD1_DAT0, SD1_CMD, SD1_CLK, SD1_DAT1, SD1_DAT2, SD1_DAT3, SD2_DAT3 — EIM EIM EIM_DA[15:0], EIM_D[31:16], CSI0_DAT[19:4], CSI0_DATA_EN, CSI0_VSYNC Used for NOR, OneNAND boot Only CS0 is supported i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 135 Boot Mode Configuration Table 89. Interfaces Allocation During Boot (continued) Interface IP Instance Allocated Pads During Boot Comment NAND Flash GPMI NANDF_CLE, NANDF_ALE, NANDF_WP_B, SD4_CMD, SD4_CLK, NANDF_RB0, SD4_DAT0, NANDF_CS0, NANDF_CS1, NANDF_CS2, NANDF_CS3, NANDF_D[7:0] 8 bit Only CS0 is supported SD/MMC USDHC-1 SD1_CLK, SD1_CMD,SD1_DAT0, SD1_DAT1, SD1_DAT2, SD1_DAT3, NANDF_D0, NANDF_D1, NANDF_D2, NANDF_D3, KEY_COL1 1, 4, or 8 bit SD/MMC USDHC-2 SD2_CLK, SD2_CMD, SD2_DAT0, SD2_DAT1, SD2_DAT2, SD2_DAT3, NANDF_D4, NANDF_D5, NANDF_D6, NANDF_D7, KEY_ROW1 1, 4, or 8 bit SD/MMC USDHC-3 SD3_CLK, SD3_CMD, SD3_DAT0, SD3_DAT1, SD3_DAT2, SD3_DAT3, SD3_DAT4, SD3_DAT5, SD3_DAT6, SD3_DAT7, GPIO_18 1, 4, or 8 bit SD/MMC USDHC-4 SD4_CLK, SD4_CMD, SD4_DAT0, SD4_DAT1, SD4_DAT2, SD4_DAT3, SD4_DAT4, SD4_DAT5, SD4_DAT6, SD4_DAT7, NANDF_CS1 1, 4, or 8 bit I2C I2C-1 EIM_D28, EIM_D21 — I2C I2C-2 EIM_D16, EIM_EB2 — I2C I2C-3 EIM_D18, EIM_D17 — SATA SATA_PHY SATA_TXM, SATA_TXP, SATA_RXP, SATA_RXM, SATA_REXT — USB USB-OTG PHY USB_OTG_DP USB_OTG_DN USB_OTG_VBUS — i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 136 Freescale Semiconductor Inc. Package Information and Contact Assignments 6 Package Information and Contact Assignments This section includes the contact assignment information and mechanical package drawing. 6.1 Signal Naming Convention The signal names of the i.MX6 series of products are standardized to align the signal names within the family and across the documentation. Benefits of this standardization are as follows: • Signal names are unique within the scope of an SoC and within the series of products • Searches will return all occurrences of the named signal • Signal names are consistent between i.MX 6 series products implementing the same modules • The module instance is incorporated into the signal name This standardization applies only to signal names. The ball names are preserved to prevent the need to change schematics, BSDL models, IBIS models, and so on. Throughout this document, the signal names are used except where referenced as a ball name (such as the Functional Contact Assignments table, Ball Map table, and so on). A master list of signal names is in the document, IMX 6 Series Standardized Signal Name Map (EB792). This list can be used to map the signal names used in older documentation to the standardized naming conventions. 6.2 6.2.1 21 x 21 mm Package Information Case FCPBGA, 21 x 21 mm, 0.8 mm Pitch, 25 x 25 Ball Matrix i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 137 Package Information and Contact Assignments 6.2.1.1 21 x 21 mm Lidded Package Figure 102 and Figure 103 show the top, bottom, and side views of the 21 × 21 mm lidded package. Figure 102. 21 x 21 mm Lidded Package Top, Bottom, and Side Views (Sheet 1 of 2) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 138 Freescale Semiconductor Inc. Package Information and Contact Assignments Figure 103. 21 x 21 mm Lidded Package Top, Bottom, and Side Views (Sheet 2 of 2) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 139 Package Information and Contact Assignments 6.2.2 21 x 21 mm Ground, Power, Sense, and Reference Contact Assignments Table 90 shows the device connection list for ground, power, sense, and reference contact signals. Table 90. 21 x 21 mm Supplies Contact Assignment Supply Rail Name Ball(s) Position(s) Remark CSI_REXT D4 — DRAM_VREF AC2 — DSI_REXT G4 — FA_ANA A5 — GND A13, A25, A4, A8, AA10, AA13, AA16, AA19, AA22, AD4, D3, F8, J15, L10, M15, P15, T15, U8, W17, AA7, AD7, D6, G10, J18, L12, M18, P18, T17, V19, W18, AB24, AE1, D8, G19, J2, L15, M8, P8, T19, V8, W19, AB3, AE25, E5, G3, J8, L18, N10, R12, T8, W10, W3, AD10, B4, E6, H12, K10, L2, N15, R15, U11, W11, W7, AD13, C1, E7, H15, K12, L5, N18, R17, U12, W12, W8, AD16, C10, F5, H18, K15, L8, N8, R8, U15, W13, W9, AD19, C4, F6, H8, K18, M10, P10, T11, U17, W15, Y24, AD22, C6, F7, J12, K8, M12, P12, T12, U19, W16, Y5 — GPANAIO C8 — HDMI_DDCCEC K2 HDMI_REF J1 — HDMI_VP L7 — HDMI_VPH M7 — NVCC_CSI N7 Supply of the camera sensor interface NVCC_DRAM R18, T18, U18, V10, V11, V12, V13, V14, V15, V16, V17, V18, V9 Supply of the DDR interface NVCC_EIM0 K19 Supply of the EIM interface NVCC_EIM1 L19 Supply of the EIM interface NVCC_EIM2 M19 Supply of the EIM interface NVCC_ENET R19 Supply of the ENET interface NVCC_GPIO P7 Supply of the GPIO interface NVCC_JTAG J7 Supply of the JTAG tap controller interface NVCC_LCD P19 Supply of the LCD interface NVCC_LVDS2P5 V7 Supply of the LVDS display interface and DDR pre-drivers. Even if the LVDS interface is not used, this supply must remain powered. NVCC_MIPI K7 Supply of the MIPI interface Analog ground reference for the Hot Plug detect signal i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 140 Freescale Semiconductor Inc. Package Information and Contact Assignments Table 90. 21 x 21 mm Supplies Contact Assignment (continued) Supply Rail Name Ball(s) Position(s) Remark NVCC_NANDF G15 NVCC_PLL_OUT E8 NVCC_RGMII G18 Supply of the ENET interface NVCC_SD1 G16 Supply of the SD card interface NVCC_SD2 G17 Supply of the SD card interface NVCC_SD3 G14 Supply of the SD card interface PCIE_VP H7 — PCIE_REXT A2 — PCIE_VPH G7 PCI PHY supply PCIE_VPTX G8 PCI PHY supply SATA_REXT C14 — SATA_VP G13 — SATA_VPH G12 — USB_H1_VBUS D10 — USB_OTG_VBUS E9 — VDD_CACHE_CAP N12 Cache supply input. This input should be connected to (driven by) VDD_SOC_CAP. The external capacitor used for VDD_SOC_CAP is sufficient for this supply. VDD_FA B5 — VDD_SNVS_CAP G9 Secondary supply for the SNVS (internal regulator output—requires capacitor if internal regulator is used) VDD_SNVS_IN G11 Primary supply for the SNVS regulator VDDARM_CAP H13, J13, K13, L13, M13, N13, P13, R13 Secondary supply for the ARM0 and ARM1 cores (internal regulator output—requires capacitor if internal regulator is used) VDDARM_IN H14, J14, K14, L14, M14, N14, P14, R14 Primary supply for the ARM0 and ARM1 core regulator VDDARM23_CAP H11, J11, K11, L11, M11, N11, P11, R11 Secondary supply for the ARM2 and ARM3 cores (internal regulator output—requires capacitor if internal regulator is used) VDDARM23_IN K9, L9, M9, N9, P9, R9, T9, U9 Supply of the RAW NAND Flash Memories interface — Primary supply for the ARM2 and ARM3 core regulator i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 141 Package Information and Contact Assignments Table 90. 21 x 21 mm Supplies Contact Assignment (continued) Supply Rail Name Ball(s) Position(s) Remark VDDHIGH_CAP H10, J10 Secondary supply for the 2.5 V domain (internal regulator output—requires capacitor if internal regulator is used) VDDHIGH_IN H9, J9 Primary supply for the 2.5 V regulator VDDPU_CAP H17, J17, K17, L17, M17, N17, P17 Secondary supply for the VPU and GPU (internal regulator output— requires capacitor if internal regulator is used) VDDSOC_CAP R10, T10, T13, T14, U10, U13, U14 Secondary supply for the SoC and PU (internal regulator output—requires capacitor if internal regulator is used) VDDSOC_IN H16, J16, K16, L16, M16, N16, P16, R16, T16, U16 VDDUSB_CAP F9 Secondary supply for the 3 V domain (internal regulator output—requires capacitor if internal regulator is used) ZQPAD AE17 — Primary supply for the SoC and PU regulators Table 91 displays an alpha-sorted list of the signal assignments including power rails. The table also includes out of reset pad state. Table 91. 21 x 21 mm Functional Contact Assignments Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function (Signal Name) Input/Output Value2 BOOT_MODE0 C12 VDD_SNVS_IN GPIO ALT0 SRC_BOOT_MODE0 Input PD (100K) BOOT_MODE1 F12 VDD_SNVS_IN GPIO ALT0 SRC_BOOT_MODE1 Input PD (100K) CLK1_N C7 VDD_HIGH_CAP — — CLK1_N — — CLK1_P D7 VDD_HIGH_CAP — — CLK1_P — — CLK2_N C5 VDD_HIGH_CAP — — CLK2_N — — CLK2_P D5 VDD_HIGH_CAP — — CLK2_P — — CSI_CLK0M F4 NVCC_MIPI — — CSI_CLK_N — — CSI_CLK0P F3 NVCC_MIPI — — CSI_CLK_P — — CSI_D0M E4 NVCC_MIPI — — CSI_DATA0_N — — CSI_D0P E3 NVCC_MIPI — — CSI_DATA0_P — — CSI_D1M D1 NVCC_MIPI — — CSI_DATA1_N — — CSI_D1P D2 NVCC_MIPI — — CSI_DATA1_P — — CSI_D2M E1 NVCC_MIPI — — CSI_DATA2_N — — CSI_D2P E2 NVCC_MIPI — — CSI_DATA2_P — — CSI_D3M F2 NVCC_MIPI — — CSI_DATA3_N — — i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 142 Freescale Semiconductor Inc. Package Information and Contact Assignments Table 91. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function (Signal Name) Input/Output Value2 CSI_D3P F1 NVCC_MIPI — — CSI_DATA3_P — — CSI0_DAT10 M1 NVCC_CSI GPIO ALT5 GPIO5_IO28 Input PU (100K) CSI0_DAT11 M3 NVCC_CSI GPIO ALT5 GPIO5_IO29 Input PU (100K) CSI0_DAT12 M2 NVCC_CSI GPIO ALT5 GPIO5_IO30 Input PU (100K) CSI0_DAT13 L1 NVCC_CSI GPIO ALT5 GPIO5_IO31 Input PU (100K) CSI0_DAT14 M4 NVCC_CSI GPIO ALT5 GPIO6_IO00 Input PU (100K) CSI0_DAT15 M5 NVCC_CSI GPIO ALT5 GPIO6_IO01 Input PU (100K) CSI0_DAT16 L4 NVCC_CSI GPIO ALT5 GPIO6_IO02 Input PU (100K) CSI0_DAT17 L3 NVCC_CSI GPIO ALT5 GPIO6_IO03 Input PU (100K) CSI0_DAT18 M6 NVCC_CSI GPIO ALT5 GPIO6_IO04 Input PU (100K) CSI0_DAT19 L6 NVCC_CSI GPIO ALT5 GPIO6_IO05 Input PU (100K) CSI0_DAT4 N1 NVCC_CSI GPIO ALT5 GPIO5_IO22 Input PU (100K) CSI0_DAT5 P2 NVCC_CSI GPIO ALT5 GPIO5_IO23 Input PU (100K) CSI0_DAT6 N4 NVCC_CSI GPIO ALT5 GPIO5_IO24 Input PU (100K) CSI0_DAT7 N3 NVCC_CSI GPIO ALT5 GPIO5_IO25 Input PU (100K) CSI0_DAT8 N6 NVCC_CSI GPIO ALT5 GPIO5_IO26 Input PU (100K) CSI0_DAT9 N5 NVCC_CSI GPIO ALT5 GPIO5_IO27 Input PU (100K) CSI0_DATA_EN P3 NVCC_CSI GPIO ALT5 GPIO5_IO20 Input PU (100K) CSI0_MCLK P4 NVCC_CSI GPIO ALT5 GPIO5_IO19 Input PU (100K) CSI0_PIXCLK P1 NVCC_CSI GPIO ALT5 GPIO5_IO18 Input PU (100K) CSI0_VSYNC N2 NVCC_CSI GPIO ALT5 GPIO5_IO21 Input PU (100K) DI0_DISP_CLK N19 NVCC_LCD GPIO ALT5 GPIO4_IO16 Input PU (100K) DI0_PIN15 N21 NVCC_LCD GPIO ALT5 GPIO4_IO17 Input PU (100K) DI0_PIN2 N25 NVCC_LCD GPIO ALT5 GPIO4_IO18 Input PU (100K) DI0_PIN3 N20 NVCC_LCD GPIO ALT5 GPIO4_IO19 Input PU (100K) DI0_PIN4 P25 NVCC_LCD GPIO ALT5 GPIO4_IO20 Input PU (100K) DISP0_DAT0 P24 NVCC_LCD GPIO ALT5 GPIO4_IO21 Input PU (100K) DISP0_DAT1 P22 NVCC_LCD GPIO ALT5 GPIO4_IO22 Input PU (100K) DISP0_DAT10 R21 NVCC_LCD GPIO ALT5 GPIO4_IO31 Input PU (100K) DISP0_DAT11 T23 NVCC_LCD GPIO ALT5 GPIO5_IO05 Input PU (100K) DISP0_DAT12 T24 NVCC_LCD GPIO ALT5 GPIO5_IO06 Input PU (100K) DISP0_DAT13 R20 NVCC_LCD GPIO ALT5 GPIO5_IO07 Input PU (100K) DISP0_DAT14 U25 NVCC_LCD GPIO ALT5 GPIO5_IO08 Input PU (100K) DISP0_DAT15 T22 NVCC_LCD GPIO ALT5 GPIO5_IO09 Input PU (100K) DISP0_DAT16 T21 NVCC_LCD GPIO ALT5 GPIO5_IO10 Input PU (100K) DISP0_DAT17 U24 NVCC_LCD GPIO ALT5 GPIO5_IO11 Input PU (100K) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 143 Package Information and Contact Assignments Table 91. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function (Signal Name) Input/Output Value2 DISP0_DAT18 V25 NVCC_LCD GPIO ALT5 GPIO5_IO12 Input PU (100K) DISP0_DAT19 U23 NVCC_LCD GPIO ALT5 GPIO5_IO13 Input PU (100K) DISP0_DAT2 P23 NVCC_LCD GPIO ALT5 GPIO4_IO23 Input PU (100K) DISP0_DAT20 U22 NVCC_LCD GPIO ALT5 GPIO5_IO14 Input PU (100K) DISP0_DAT21 T20 NVCC_LCD GPIO ALT5 GPIO5_IO15 Input PU (100K) DISP0_DAT22 V24 NVCC_LCD GPIO ALT5 GPIO5_IO16 Input PU (100K) DISP0_DAT23 W24 NVCC_LCD GPIO ALT5 GPIO5_IO17 Input PU (100K) DISP0_DAT3 P21 NVCC_LCD GPIO ALT5 GPIO4_IO24 Input PU (100K) DISP0_DAT4 P20 NVCC_LCD GPIO ALT5 GPIO4_IO25 Input PU (100K) DISP0_DAT5 R25 NVCC_LCD GPIO ALT5 GPIO4_IO26 Input PU (100K) DISP0_DAT6 R23 NVCC_LCD GPIO ALT5 GPIO4_IO27 Input PU (100K) DISP0_DAT7 R24 NVCC_LCD GPIO ALT5 GPIO4_IO28 Input PU (100K) DISP0_DAT8 R22 NVCC_LCD GPIO ALT5 GPIO4_IO29 Input PU (100K) DISP0_DAT9 T25 NVCC_LCD GPIO ALT5 GPIO4_IO30 Input PU (100K) DRAM_A0 AC14 NVCC_DRAM DDR ALT0 DRAM_ADDR00 Output 0 DRAM_A1 AB14 NVCC_DRAM DDR ALT0 DRAM_ADDR01 Output 0 DRAM_A10 AA15 NVCC_DRAM DDR ALT0 DRAM_ADDR10 Output 0 DRAM_A11 AC12 NVCC_DRAM DDR ALT0 DRAM_ADDR11 Output 0 DRAM_A12 AD12 NVCC_DRAM DDR ALT0 DRAM_ADDR12 Output 0 DRAM_A13 AC17 NVCC_DRAM DDR ALT0 DRAM_ADDR13 Output 0 DRAM_A14 AA12 NVCC_DRAM DDR ALT0 DRAM_ADDR14 Output 0 DRAM_A15 Y12 NVCC_DRAM DDR ALT0 DRAM_ADDR15 Output 0 DRAM_A2 AA14 NVCC_DRAM DDR ALT0 DRAM_ADDR02 Output 0 DRAM_A3 Y14 NVCC_DRAM DDR ALT0 DRAM_ADDR03 Output 0 DRAM_A4 W14 NVCC_DRAM DDR ALT0 DRAM_ADDR04 Output 0 DRAM_A5 AE13 NVCC_DRAM DDR ALT0 DRAM_ADDR05 Output 0 DRAM_A6 AC13 NVCC_DRAM DDR ALT0 DRAM_ADDR06 Output 0 DRAM_A7 Y13 NVCC_DRAM DDR ALT0 DRAM_ADDR07 Output 0 DRAM_A8 AB13 NVCC_DRAM DDR ALT0 DRAM_ADDR08 Output 0 DRAM_A9 AE12 NVCC_DRAM DDR ALT0 DRAM_ADDR09 Output 0 DRAM_CAS AE16 NVCC_DRAM DDR ALT0 DRAM_CAS_B Output 0 DRAM_CS0 Y16 NVCC_DRAM DDR ALT0 DRAM_CS0_B Output 0 DRAM_CS1 AD17 NVCC_DRAM DDR ALT0 DRAM_CS1_B Output 0 DRAM_D0 AD2 NVCC_DRAM DDR ALT0 DRAM_DATA00 Input PU (100K) DRAM_D1 AE2 NVCC_DRAM DDR ALT0 DRAM_DATA01 Input PU (100K) DRAM_D10 AA6 NVCC_DRAM DDR ALT0 DRAM_DATA10 Input PU (100K) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 144 Freescale Semiconductor Inc. Package Information and Contact Assignments Table 91. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function (Signal Name) Input/Output Value2 DRAM_D11 AE7 NVCC_DRAM DDR ALT0 DRAM_DATA11 Input PU (100K) DRAM_D12 AB5 NVCC_DRAM DDR ALT0 DRAM_DATA12 Input PU (100K) DRAM_D13 AC5 NVCC_DRAM DDR ALT0 DRAM_DATA13 Input PU (100K) DRAM_D14 AB6 NVCC_DRAM DDR ALT0 DRAM_DATA14 Input PU (100K) DRAM_D15 AC7 NVCC_DRAM DDR ALT0 DRAM_DATA15 Input PU (100K) DRAM_D16 AB7 NVCC_DRAM DDR ALT0 DRAM_DATA16 Input PU (100K) DRAM_D17 AA8 NVCC_DRAM DDR ALT0 DRAM_DATA17 Input PU (100K) DRAM_D18 AB9 NVCC_DRAM DDR ALT0 DRAM_DATA18 Input PU (100K) DRAM_D19 Y9 NVCC_DRAM DDR ALT0 DRAM_DATA19 Input PU (100K) DRAM_D2 AC4 NVCC_DRAM DDR ALT0 DRAM_DATA02 Input PU (100K) DRAM_D20 Y7 NVCC_DRAM DDR ALT0 DRAM_DATA20 Input PU (100K) DRAM_D21 Y8 NVCC_DRAM DDR ALT0 DRAM_DATA21 Input PU (100K) DRAM_D22 AC8 NVCC_DRAM DDR ALT0 DRAM_DATA22 Input PU (100K) DRAM_D23 AA9 NVCC_DRAM DDR ALT0 DRAM_DATA23 Input PU (100K) DRAM_D24 AE9 NVCC_DRAM DDR ALT0 DRAM_DATA24 Input PU (100K) DRAM_D25 Y10 NVCC_DRAM DDR ALT0 DRAM_DATA25 Input PU (100K) DRAM_D26 AE11 NVCC_DRAM DDR ALT0 DRAM_DATA26 Input PU (100K) DRAM_D27 AB11 NVCC_DRAM DDR ALT0 DRAM_DATA27 Input PU (100K) DRAM_D28 AC9 NVCC_DRAM DDR ALT0 DRAM_DATA28 Input PU (100K) DRAM_D29 AD9 NVCC_DRAM DDR ALT0 DRAM_DATA29 Input PU (100K) DRAM_D3 AA5 NVCC_DRAM DDR ALT0 DRAM_DATA03 Input PU (100K) DRAM_D30 AD11 NVCC_DRAM DDR ALT0 DRAM_DATA30 Input PU (100K) DRAM_D31 AC11 NVCC_DRAM DDR ALT0 DRAM_DATA31 Input PU (100K) DRAM_D32 AA17 NVCC_DRAM DDR ALT0 DRAM_DATA32 Input PU (100K) DRAM_D33 AA18 NVCC_DRAM DDR ALT0 DRAM_DATA33 Input PU (100K) DRAM_D34 AC18 NVCC_DRAM DDR ALT0 DRAM_DATA34 Input PU (100K) DRAM_D35 AE19 NVCC_DRAM DDR ALT0 DRAM_DATA35 Input PU (100K) DRAM_D36 Y17 NVCC_DRAM DDR ALT0 DRAM_DATA36 Input PU (100K) DRAM_D37 Y18 NVCC_DRAM DDR ALT0 DRAM_DATA37 Input PU (100K) DRAM_D38 AB19 NVCC_DRAM DDR ALT0 DRAM_DATA38 Input PU (100K) DRAM_D39 AC19 NVCC_DRAM DDR ALT0 DRAM_DATA39 Input PU (100K) DRAM_D4 AC1 NVCC_DRAM DDR ALT0 DRAM_DATA04 Input PU (100K) DRAM_D40 Y19 NVCC_DRAM DDR ALT0 DRAM_DATA40 Input PU (100K) DRAM_D41 AB20 NVCC_DRAM DDR ALT0 DRAM_DATA41 Input PU (100K) DRAM_D42 AB21 NVCC_DRAM DDR ALT0 DRAM_DATA42 Input PU (100K) DRAM_D43 AD21 NVCC_DRAM DDR ALT0 DRAM_DATA43 Input PU (100K) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 145 Package Information and Contact Assignments Table 91. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function (Signal Name) Input/Output Value2 DRAM_D44 Y20 NVCC_DRAM DDR ALT0 DRAM_DATA44 Input PU (100K) DRAM_D45 AA20 NVCC_DRAM DDR ALT0 DRAM_DATA45 Input PU (100K) DRAM_D46 AE21 NVCC_DRAM DDR ALT0 DRAM_DATA46 Input PU (100K) DRAM_D47 AC21 NVCC_DRAM DDR ALT0 DRAM_DATA47 Input PU (100K) DRAM_D48 AC22 NVCC_DRAM DDR ALT0 DRAM_DATA48 Input PU (100K) DRAM_D49 AE22 NVCC_DRAM DDR ALT0 DRAM_DATA49 Input PU (100K) DRAM_D5 AD1 NVCC_DRAM DDR ALT0 DRAM_DATA05 Input PU (100K) DRAM_D50 AE24 NVCC_DRAM DDR ALT0 DRAM_DATA50 Input PU (100K) DRAM_D51 AC24 NVCC_DRAM DDR ALT0 DRAM_DATA51 Input PU (100K) DRAM_D52 AB22 NVCC_DRAM DDR ALT0 DRAM_DATA52 Input PU (100K) DRAM_D53 AC23 NVCC_DRAM DDR ALT0 DRAM_DATA53 Input PU (100K) DRAM_D54 AD25 NVCC_DRAM DDR ALT0 DRAM_DATA54 Input PU (100K) DRAM_D55 AC25 NVCC_DRAM DDR ALT0 DRAM_DATA55 Input PU (100K) DRAM_D56 AB25 NVCC_DRAM DDR ALT0 DRAM_DATA56 Input PU (100K) DRAM_D57 AA21 NVCC_DRAM DDR ALT0 DRAM_DATA57 Input PU (100K) DRAM_D58 Y25 NVCC_DRAM DDR ALT0 DRAM_DATA58 Input PU (100K) DRAM_D59 Y22 NVCC_DRAM DDR ALT0 DRAM_DATA59 Input PU (100K) DRAM_D6 AB4 NVCC_DRAM DDR ALT0 DRAM_DATA06 Input PU (100K) DRAM_D60 AB23 NVCC_DRAM DDR ALT0 DRAM_DATA60 Input PU (100K) DRAM_D61 AA23 NVCC_DRAM DDR ALT0 DRAM_DATA61 Input PU (100K) DRAM_D62 Y23 NVCC_DRAM DDR ALT0 DRAM_DATA62 Input PU (100K) DRAM_D63 W25 NVCC_DRAM DDR ALT0 DRAM_DATA63 Input PU (100K) DRAM_D7 AE4 NVCC_DRAM DDR ALT0 DRAM_DATA07 Input PU (100K) DRAM_D8 AD5 NVCC_DRAM DDR ALT0 DRAM_DATA08 Input PU (100K) DRAM_D9 AE5 NVCC_DRAM DDR ALT0 DRAM_DATA09 Input PU (100K) DRAM_DQM0 AC3 NVCC_DRAM DDR ALT0 DRAM_DQM0 Output 0 DRAM_DQM1 AC6 NVCC_DRAM DDR ALT0 DRAM_DQM1 Output 0 DRAM_DQM2 AB8 NVCC_DRAM DDR ALT0 DRAM_DQM2 Output 0 DRAM_DQM3 AE10 NVCC_DRAM DDR ALT0 DRAM_DQM3 Output 0 DRAM_DQM4 AB18 NVCC_DRAM DDR ALT0 DRAM_DQM4 Output 0 DRAM_DQM5 AC20 NVCC_DRAM DDR ALT0 DRAM_DQM5 Output 0 DRAM_DQM6 AD24 NVCC_DRAM DDR ALT0 DRAM_DQM6 Output 0 DRAM_DQM7 Y21 NVCC_DRAM DDR ALT0 DRAM_DQM7 Output 0 DRAM_RAS AB15 NVCC_DRAM DDR ALT0 DRAM_RAS_B Output 0 DRAM_RESET Y6 NVCC_DRAM DDR ALT0 DRAM_RESET Output 0 DRAM_SDBA0 AC15 NVCC_DRAM DDR ALT0 DRAM_SDBA0 Output 0 i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 146 Freescale Semiconductor Inc. Package Information and Contact Assignments Table 91. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function (Signal Name) Input/Output Value2 DRAM_SDBA1 Y15 NVCC_DRAM DDR ALT0 DRAM_SDBA1 Output 0 DRAM_SDBA2 AB12 NVCC_DRAM DDR ALT0 DRAM_SDBA2 Output 0 DRAM_SDCKE0 Y11 NVCC_DRAM DDR ALT0 DRAM_SDCKE0 Output 0 DRAM_SDCKE1 AA11 NVCC_DRAM DDR ALT0 DRAM_SDCKE1 Output 0 DRAM_SDCLK_0 AD15 NVCC_DRAM DDRCLK ALT0 DRAM_SDCLK0_P Input Hi-Z DRAM_SDCLK_0_B AE15 NVCC_DRAM DDRCLK — DRAM_SDCLK0_N — — NVCC_DRAM DDRCLK ALT0 DRAM_SDCLK1_P Input Hi-Z DRAM_SDCLK_1 AD14 DRAM_SDCLK_1_B AE14 NVCC_DRAM DDRCLK — DRAM_SDCLK1_N — — DRAM_SDODT0 AC16 NVCC_DRAM DDR ALT0 DRAM_ODT0 Output 0 DRAM_SDODT1 AB17 NVCC_DRAM DDR ALT0 DRAM_ODT1 Output 0 DRAM_SDQS0 AE3 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS0_P Input Hi-Z DRAM_SDQS0_B AD3 NVCC_DRAM DDRCLK — DRAM_SDQS0_N — — DRAM_SDQS1 AD6 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS1_P Input Hi-Z DRAM_SDQS1_B AE6 NVCC_DRAM DDRCLK — DRAM_SDQS1_N — — DRAM_SDQS2 AD8 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS2_P Input Hi-Z DRAM_SDQS2_B AE8 NVCC_DRAM DDRCLK — DRAM_SDQS2_N — — DRAM_SDQS3 AC10 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS3_P Input Hi-Z DRAM_SDQS3_B AB10 NVCC_DRAM DDRCLK — DRAM_SDQS3_N — — DRAM_SDQS4 AD18 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS4_P Input Hi-Z DRAM_SDQS4_B AE18 NVCC_DRAM DDRCLK — DRAM_SDQS4_N — — DRAM_SDQS5 AD20 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS5_P Input Hi-Z DRAM_SDQS5_B AE20 NVCC_DRAM DDRCLK — DRAM_SDQS5_N — — DRAM_SDQS6 AD23 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS6_P Input Hi-Z DRAM_SDQS6_B AE23 NVCC_DRAM DDRCLK — DRAM_SDQS6_N — — DRAM_SDQS7 AA25 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS7_P Input Hi-Z DRAM_SDQS7_B AA24 NVCC_DRAM DDRCLK — DRAM_SDQS7_N — — DRAM_SDWE AB16 NVCC_DRAM DDR ALT0 DRAM_SDWE_B Output 0 DSI_CLK0M H3 NVCC_MIPI — — DSI_CLK_N — — DSI_CLK0P H4 NVCC_MIPI — — DSI_CLK_P — — DSI_D0M G2 NVCC_MIPI — — DSI_DATA0_N — — DSI_D0P G1 NVCC_MIPI — — DSI_DATA0_P — — DSI_D1M H2 NVCC_MIPI — — DSI_DATA1_N — — DSI_D1P H1 NVCC_MIPI — — DSI_DATA1_P — — EIM_A16 H25 NVCC_EIM1 GPIO ALT0 EIM_ADDR16 Output 0 EIM_A17 G24 NVCC_EIM1 GPIO ALT0 EIM_ADDR17 Output 0 EIM_A18 J22 NVCC_EIM1 GPIO ALT0 EIM_ADDR18 Output 0 i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 147 Package Information and Contact Assignments Table 91. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function (Signal Name) Input/Output Value2 EIM_A19 G25 NVCC_EIM1 GPIO ALT0 EIM_ADDR19 Output 0 EIM_A20 H22 NVCC_EIM1 GPIO ALT0 EIM_ADDR20 Output 0 EIM_A21 H23 NVCC_EIM1 GPIO ALT0 EIM_ADDR21 Output 0 EIM_A22 F24 NVCC_EIM1 GPIO ALT0 EIM_ADDR22 Output 0 EIM_A23 J21 NVCC_EIM1 GPIO ALT0 EIM_ADDR23 Output 0 EIM_A24 F25 NVCC_EIM1 GPIO ALT0 EIM_ADDR24 Output 0 EIM_A25 H19 NVCC_EIM0 GPIO ALT0 EIM_ADDR25 Output 0 EIM_BCLK N22 NVCC_EIM2 GPIO ALT0 EIM_BCLK Output 0 EIM_CS0 H24 NVCC_EIM1 GPIO ALT0 EIM_CS0_B Output 1 EIM_CS1 J23 NVCC_EIM1 GPIO ALT0 EIM_CS1_B Output 1 EIM_D16 C25 NVCC_EIM0 GPIO ALT5 GPIO3_IO16 Input PU (100K) EIM_D17 F21 NVCC_EIM0 GPIO ALT5 GPIO3_IO17 Input PU (100K) EIM_D18 D24 NVCC_EIM0 GPIO ALT5 GPIO3_IO18 Input PU (100K) EIM_D19 G21 NVCC_EIM0 GPIO ALT5 GPIO3_IO19 Input PU (100K) EIM_D20 G20 NVCC_EIM0 GPIO ALT5 GPIO3_IO20 Input PU (100K) EIM_D21 H20 NVCC_EIM0 GPIO ALT5 GPIO3_IO21 Input PU (100K) EIM_D22 E23 NVCC_EIM0 GPIO ALT5 GPIO3_IO22 Input PD (100K) EIM_D23 D25 NVCC_EIM0 GPIO ALT5 GPIO3_IO23 Input PU (100K) EIM_D24 F22 NVCC_EIM0 GPIO ALT5 GPIO3_IO24 Input PU (100K) EIM_D25 G22 NVCC_EIM0 GPIO ALT5 GPIO3_IO25 Input PU (100K) EIM_D26 E24 NVCC_EIM0 GPIO ALT5 GPIO3_IO26 Input PU (100K) EIM_D27 E25 NVCC_EIM0 GPIO ALT5 GPIO3_IO27 Input PU (100K) EIM_D28 G23 NVCC_EIM0 GPIO ALT5 GPIO3_IO28 Input PU (100K) EIM_D29 J19 NVCC_EIM0 GPIO ALT5 GPIO3_IO29 Input PU (100K) EIM_D30 J20 NVCC_EIM0 GPIO ALT5 GPIO3_IO30 Input PU (100K) EIM_D31 H21 NVCC_EIM0 GPIO ALT5 GPIO3_IO31 Input PD (100K) EIM_DA0 L20 NVCC_EIM2 GPIO ALT0 EIM_AD00 Input PU (100K) EIM_DA1 J25 NVCC_EIM2 GPIO ALT0 EIM_AD01 Input PU (100K) EIM_DA2 L21 NVCC_EIM2 GPIO ALT0 EIM_AD02 Input PU (100K) EIM_DA3 K24 NVCC_EIM2 GPIO ALT0 EIM_AD03 Input PU (100K) EIM_DA4 L22 NVCC_EIM2 GPIO ALT0 EIM_AD04 Input PU (100K) EIM_DA5 L23 NVCC_EIM2 GPIO ALT0 EIM_AD05 Input PU (100K) EIM_DA6 K25 NVCC_EIM2 GPIO ALT0 EIM_AD06 Input PU (100K) EIM_DA7 L25 NVCC_EIM2 GPIO ALT0 EIM_AD07 Input PU (100K) EIM_DA8 L24 NVCC_EIM2 GPIO ALT0 EIM_AD08 Input PU (100K) EIM_DA9 M21 NVCC_EIM2 GPIO ALT0 EIM_AD09 Input PU (100K) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 148 Freescale Semiconductor Inc. Package Information and Contact Assignments Table 91. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function (Signal Name) Input/Output Value2 EIM_DA10 M22 NVCC_EIM2 GPIO ALT0 EIM_AD10 Input PU (100K) EIM_DA11 M20 NVCC_EIM2 GPIO ALT0 EIM_AD11 Input PU (100K) EIM_DA12 M24 NVCC_EIM2 GPIO ALT0 EIM_AD12 Input PU (100K) EIM_DA13 M23 NVCC_EIM2 GPIO ALT0 EIM_AD13 Input PU (100K) EIM_DA14 N23 NVCC_EIM2 GPIO ALT0 EIM_AD14 Input PU (100K) EIM_DA15 N24 NVCC_EIM2 GPIO ALT0 EIM_AD15 Input PU (100K) EIM_EB0 K21 NVCC_EIM2 GPIO ALT0 EIM_EB0_B Output 1 EIM_EB1 K23 NVCC_EIM2 GPIO ALT0 EIM_EB1_B Output 1 EIM_EB2 E22 NVCC_EIM0 GPIO ALT5 GPIO2_IO30 Input PU (100K) EIM_EB3 F23 NVCC_EIM0 GPIO ALT5 GPIO2_IO31 Input PU (100K) EIM_LBA K22 NVCC_EIM1 GPIO ALT0 EIM_LBA_B Output 1 EIM_OE J24 NVCC_EIM1 GPIO ALT0 EIM_OE Output 1 EIM_RW K20 NVCC_EIM1 GPIO ALT0 EIM_RW Output 1 EIM_WAIT M25 NVCC_EIM2 GPIO ALT0 EIM_WAIT Input PU (100K) ENET_CRS_DV U21 NVCC_ENET GPIO ALT5 GPIO1_IO25 Input PU (100K) ENET_MDC V20 NVCC_ENET GPIO ALT5 GPIO1_IO31 Input PU (100K) ENET_MDIO V23 NVCC_ENET GPIO ALT5 GPIO1_IO22 Input PU (100K) V22 NVCC_ENET GPIO ALT5 GPIO1_IO23 Input PU (100K) ENET_RX_ER W23 NVCC_ENET GPIO ALT5 GPIO1_IO24 Input PU (100K) ENET_RXD0 W21 NVCC_ENET GPIO ALT5 GPIO1_IO27 Input PU (100K) ENET_RXD1 W22 NVCC_ENET GPIO ALT5 GPIO1_IO26 Input PU (100K) ENET_TX_EN V21 NVCC_ENET GPIO ALT5 GPIO1_IO28 Input PU (100K) ENET_TXD0 U20 NVCC_ENET GPIO ALT5 GPIO1_IO30 Input PU (100K) ENET_TXD1 W20 NVCC_ENET GPIO ALT5 GPIO1_IO29 Input PU (100K) GPIO_0 T5 NVCC_GPIO GPIO ALT5 GPIO1_IO00 Input PD (100K) GPIO_1 T4 NVCC_GPIO GPIO ALT5 GPIO1_IO01 Input PU (100K) GPIO_16 R2 NVCC_GPIO GPIO ALT5 GPIO7_IO11 Input PU (100K) GPIO_17 R1 NVCC_GPIO GPIO ALT5 GPIO7_IO12 Input PU (100K) GPIO_18 P6 NVCC_GPIO GPIO ALT5 GPIO7_IO13 Input PU (100K) GPIO_19 P5 NVCC_GPIO GPIO ALT5 GPIO4_IO05 Input PU (100K) GPIO_2 T1 NVCC_GPIO GPIO ALT5 GPIO1_IO02 Input PU (100K) GPIO_3 R7 NVCC_GPIO GPIO ALT5 GPIO1_IO03 Input PU (100K) GPIO_4 R6 NVCC_GPIO GPIO ALT5 GPIO1_IO04 Input PU (100K) GPIO_5 R4 NVCC_GPIO GPIO ALT5 GPIO1_IO05 Input PU (100K) GPIO_6 T3 NVCC_GPIO GPIO ALT5 GPIO1_IO06 Input PU (100K) GPIO_7 R3 NVCC_GPIO GPIO ALT5 GPIO1_IO07 Input PU (100K) ENET_REF_CLK 3 i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 149 Package Information and Contact Assignments Table 91. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function (Signal Name) Input/Output Value2 GPIO_8 R5 NVCC_GPIO GPIO ALT5 GPIO1_IO08 Input PU (100K) GPIO_9 T2 NVCC_GPIO GPIO ALT5 GPIO1_IO09 Input PU (100K) HDMI_CLKM J5 HDMI_VPH — — HDMI_TX_CLK_N — — HDMI_CLKP J6 HDMI_VPH — — HDMI_TX_CLK_P — — HDMI_D0M K5 HDMI_VPH — — HDMI_TX_DATA0_N — — HDMI_D0P K6 HDMI_VPH — — HDMI_TX_DATA0_P — — HDMI_D1M J3 HDMI_VPH — — HDMI_TX_DATA1_N — — HDMI_D1P J4 HDMI_VPH — — HDMI_TX_DATA1_P — — HDMI_D2M K3 HDMI_VPH — — HDMI_TX_DATA2_N — — HDMI_D2P K4 HDMI_VPH — — HDMI_TX_DATA2_P — — HDMI_HPD K1 HDMI_VPH — — HDMI_TX_HPD — — JTAG_MOD H6 NVCC_JTAG GPIO ALT0 JTAG_MODE Input PU (100K) JTAG_TCK H5 NVCC_JTAG GPIO ALT0 JTAG_TCK Input PU (47K) JTAG_TDI G5 NVCC_JTAG GPIO ALT0 JTAG_TDI Input PU (47K) JTAG_TDO G6 NVCC_JTAG GPIO ALT0 JTAG_TDO Output Keeper JTAG_TMS C3 NVCC_JTAG GPIO ALT0 JTAG_TMS Input PU (47K) JTAG_TRSTB C2 NVCC_JTAG GPIO ALT0 JTAG_TRST_B Input PU (47K) KEY_COL0 W5 NVCC_GPIO GPIO ALT5 GPIO4_IO06 Input PU (100K) KEY_COL1 U7 NVCC_GPIO GPIO ALT5 GPIO4_IO08 Input PU (100K) KEY_COL2 W6 NVCC_GPIO GPIO ALT5 GPIO4_IO10 Input PU (100K) KEY_COL3 U5 NVCC_GPIO GPIO ALT5 GPIO4_IO12 Input PU (100K) KEY_COL4 T6 NVCC_GPIO GPIO ALT5 GPIO4_IO14 Input PU (100K) KEY_ROW0 V6 NVCC_GPIO GPIO ALT5 GPIO4_IO07 Input PU (100K) KEY_ROW1 U6 NVCC_GPIO GPIO ALT5 GPIO4_IO09 Input PU (100K) KEY_ROW2 W4 NVCC_GPIO GPIO ALT5 GPIO4_IO11 Input PU (100K) KEY_ROW3 T7 NVCC_GPIO GPIO ALT5 GPIO4_IO13 Input PU (100K) KEY_ROW4 V5 NVCC_GPIO GPIO ALT5 GPIO4_IO15 Input PD (100K) LVDS0_CLK_N V4 NVCC_LVDS_2P5 LVDS — LVDS0_CLK_N — — LVDS0_CLK_P V3 NVCC_LVDS_2P5 LVDS ALT0 LVDS0_CLK_P Input Keeper LVDS0_TX0_N U2 NVCC_LVDS_2P5 LVDS — LVDS0_TX0_N — — LVDS0_TX0_P U1 NVCC_LVDS_2P5 LVDS ALT0 LVDS0_TX0_P Input Keeper LVDS0_TX1_N U4 NVCC_LVDS_2P5 LVDS — LVDS0_TX1_N — — LVDS0_TX1_P U3 NVCC_LVDS_2P5 LVDS ALT0 LVDS0_TX1_P Input Keeper LVDS0_TX2_N V2 NVCC_LVDS_2P5 LVDS — LVDS0_TX2_N — — LVDS0_TX2_P V1 NVCC_LVDS_2P5 LVDS ALT0 LVDS0_TX2_P Input Keeper LVDS0_TX3_N W2 NVCC_LVDS_2P5 LVDS — LVDS0_TX3_N — — i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 150 Freescale Semiconductor Inc. Package Information and Contact Assignments Table 91. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function (Signal Name) Input/Output Value2 LVDS0_TX3_P W1 NVCC_LVDS_2P5 LVDS ALT0 LVDS0_TX3_P Input Keeper LVDS1_CLK_N Y3 NVCC_LVDS_2P5 LVDS — LVDS1_CLK_N — — LVDS1_CLK_P Y4 NVCC_LVDS_2P5 LVDS ALT0 LVDS1_CLK_P Input Keeper LVDS1_TX0_N Y1 NVCC_LVDS_2P5 LVDS — LVDS1_TX0_N — — LVDS1_TX0_P Y2 NVCC_LVDS_2P5 LVDS ALT0 LVDS1_TX0_P Input Keeper LVDS1_TX1_N AA2 NVCC_LVDS_2P5 LVDS — LVDS1_TX1_N — — LVDS1_TX1_P AA1 NVCC_LVDS_2P5 LVDS ALT0 LVDS1_TX1_P Input Keeper LVDS1_TX2_N AB1 NVCC_LVDS_2P5 LVDS — LVDS1_TX2_N — — LVDS1_TX2_P AB2 NVCC_LVDS_2P5 LVDS ALT0 LVDS1_TX2_P Input Keeper LVDS1_TX3_N AA3 NVCC_LVDS_2P5 LVDS — LVDS1_TX3_N — — LVDS1_TX3_P AA4 NVCC_LVDS_2P5 LVDS ALT0 LVDS1_TX3_P Input Keeper NANDF_ALE A16 NVCC_NANDF GPIO ALT5 GPIO6_IO08 Input PU (100K) NANDF_CLE C15 NVCC_NANDF GPIO ALT5 GPIO6_IO07 Input PU (100K) NANDF_CS0 F15 NVCC_NANDF GPIO ALT5 GPIO6_IO11 Input PU (100K) NANDF_CS1 C16 NVCC_NANDF GPIO ALT5 GPIO6_IO14 Input PU (100K) NANDF_CS2 A17 NVCC_NANDF GPIO ALT5 GPIO6_IO15 Input PU (100K) NANDF_CS3 D16 NVCC_NANDF GPIO ALT5 GPIO6_IO16 Input PU (100K) NANDF_D0 A18 NVCC_NANDF GPIO ALT5 GPIO2_IO00 Input PU (100K) NANDF_D1 C17 NVCC_NANDF GPIO ALT5 GPIO2_IO01 Input PU (100K) NANDF_D2 F16 NVCC_NANDF GPIO ALT5 GPIO2_IO02 Input PU (100K) NANDF_D3 D17 NVCC_NANDF GPIO ALT5 GPIO2_IO03 Input PU (100K) NANDF_D4 A19 NVCC_NANDF GPIO ALT5 GPIO2_IO04 Input PU (100K) NANDF_D5 B18 NVCC_NANDF GPIO ALT5 GPIO2_IO05 Input PU (100K) NANDF_D6 E17 NVCC_NANDF GPIO ALT5 GPIO2_IO06 Input PU (100K) NANDF_D7 C18 NVCC_NANDF GPIO ALT5 GPIO2_IO07 Input PU (100K) NANDF_RB0 B16 NVCC_NANDF GPIO ALT5 GPIO6_IO10 Input PU (100K) NANDF_WP_B E15 NVCC_NANDF GPIO ALT5 GPIO6_IO09 Input PU (100K) ONOFF D12 VDD_SNVS_IN GPIO — SRC_ONOFF Input PU (100K) PCIE_RXM B1 PCIE_VPH — — PCIE_RX_N — — PCIE_RXP B2 PCIE_VPH — — PCIE_RX_P — — PCIE_TXM A3 PCIE_VPH — — PCIE_TX_N — — PCIE_TXP B3 PCIE_VPH — — PCIE_TX_P — — PMIC_ON_REQ D11 VDD_SNVS_IN GPIO ALT0 SNVS_PMIC_ON_REQ Output Open Drain with PU (100K) PMIC_STBY_REQ F11 VDD_SNVS_IN GPIO ALT0 CCM_PMIC_STBY_REQ Output 0 POR_B C11 VDD_SNVS_IN GPIO ALT0 SRC_POR_B Input PU (100K) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 151 Package Information and Contact Assignments Table 91. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function (Signal Name) Input/Output Value2 RGMII_RD0 C24 NVCC_RGMII DDR ALT5 GPIO6_IO25 Input PU (100K) RGMII_RD1 B23 NVCC_RGMII DDR ALT5 GPIO6_IO27 Input PU (100K) RGMII_RD2 B24 NVCC_RGMII DDR ALT5 GPIO6_IO28 Input PU (100K) RGMII_RD3 D23 NVCC_RGMII DDR ALT5 GPIO6_IO29 Input PU (100K) RGMII_RX_CTL D22 NVCC_RGMII DDR ALT5 GPIO6_IO24 Input PD (100K) RGMII_RXC B25 NVCC_RGMII DDR ALT5 GPIO6_IO30 Input PD (100K) RGMII_TD0 C22 NVCC_RGMII DDR ALT5 GPIO6_IO20 Input PU (100K) RGMII_TD1 F20 NVCC_RGMII DDR ALT5 GPIO6_IO21 Input PU (100K) RGMII_TD2 E21 NVCC_RGMII DDR ALT5 GPIO6_IO22 Input PU (100K) RGMII_TD3 A24 NVCC_RGMII DDR ALT5 GPIO6_IO23 Input PU (100K) RGMII_TX_CTL C23 NVCC_RGMII DDR ALT5 GPIO6_IO26 Input PD (100K) RGMII_TXC D21 NVCC_RGMII DDR ALT5 GPIO6_IO19 Input PD (100K) RTC_XTALI D9 VDD_SNVS_CAP — — RTC_XTALI — — RTC_XTALO C9 VDD_SNVS_CAP — — RTC_XTALO — — SATA_RXM A14 SATA_VPH — — SATA_PHY_RX_N — — SATA_RXP B14 SATA_VPH — — SATA_PHY_RX_P — — SATA_TXM B12 SATA_VPH — — SATA_PHY_TX_N — — SATA_TXP A12 SATA_VPH — — SATA_PHY_TX_P — — SD1_CLK D20 NVCC_SD1 GPIO ALT5 GPIO1_IO20 Input PU (100K) SD1_CMD B21 NVCC_SD1 GPIO ALT5 GPIO1_IO18 Input PU (100K) SD1_DAT0 A21 NVCC_SD1 GPIO ALT5 GPIO1_IO16 Input PU (100K) SD1_DAT1 C20 NVCC_SD1 GPIO ALT5 GPIO1_IO17 Input PU (100K) SD1_DAT2 E19 NVCC_SD1 GPIO ALT5 GPIO1_IO19 Input PU (100K) SD1_DAT3 F18 NVCC_SD1 GPIO ALT5 GPIO1_IO21 Input PU (100K) SD2_CLK C21 NVCC_SD2 GPIO ALT5 GPIO1_IO10 Input PU (100K) SD2_CMD F19 NVCC_SD2 GPIO ALT5 GPIO1_IO11 Input PU (100K) SD2_DAT0 A22 NVCC_SD2 GPIO ALT5 GPIO1_IO15 Input PU (100K) SD2_DAT1 E20 NVCC_SD2 GPIO ALT5 GPIO1_IO14 Input PU (100K) SD2_DAT2 A23 NVCC_SD2 GPIO ALT5 GPIO1_IO13 Input PU (100K) SD2_DAT3 B22 NVCC_SD2 GPIO ALT5 GPIO1_IO12 Input PU (100K) SD3_CLK D14 NVCC_SD3 GPIO ALT5 GPIO7_IO03 Input PU (100K) SD3_CMD B13 NVCC_SD3 GPIO ALT5 GPIO7_IO02 Input PU (100K) SD3_DAT0 E14 NVCC_SD3 GPIO ALT5 GPIO7_IO04 Input PU (100K) SD3_DAT1 F14 NVCC_SD3 GPIO ALT5 GPIO7_IO05 Input PU (100K) SD3_DAT2 A15 NVCC_SD3 GPIO ALT5 GPIO7_IO06 Input PU (100K) SD3_DAT3 B15 NVCC_SD3 GPIO ALT5 GPIO7_IO07 Input PU (100K) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 152 Freescale Semiconductor Inc. Package Information and Contact Assignments Table 91. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function (Signal Name) Input/Output Value2 SD3_DAT4 D13 NVCC_SD3 GPIO ALT5 GPIO7_IO01 Input PU (100K) SD3_DAT5 C13 NVCC_SD3 GPIO ALT5 GPIO7_IO00 Input PU (100K) SD3_DAT6 E13 NVCC_SD3 GPIO ALT5 GPIO6_IO18 Input PU (100K) SD3_DAT7 F13 NVCC_SD3 GPIO ALT5 GPIO6_IO17 Input PU (100K) SD3_RST D15 NVCC_SD3 GPIO ALT5 GPIO7_IO08 Input PU (100K) SD4_CLK E16 NVCC_NANDF GPIO ALT5 GPIO7_IO10 Input PU (100K) SD4_CMD B17 NVCC_NANDF GPIO ALT5 GPIO7_IO09 Input PU (100K) SD4_DAT0 D18 NVCC_NANDF GPIO ALT5 GPIO2_IO08 Input PU (100K) SD4_DAT1 B19 NVCC_NANDF GPIO ALT5 GPIO2_IO09 Input PU (100K) SD4_DAT2 F17 NVCC_NANDF GPIO ALT5 GPIO2_IO10 Input PU (100K) SD4_DAT3 A20 NVCC_NANDF GPIO ALT5 GPIO2_IO11 Input PU (100K) SD4_DAT4 E18 NVCC_NANDF GPIO ALT5 GPIO2_IO12 Input PU (100K) SD4_DAT5 C19 NVCC_NANDF GPIO ALT5 GPIO2_IO13 Input PU (100K) SD4_DAT6 B20 NVCC_NANDF GPIO ALT5 GPIO2_IO14 Input PU (100K) SD4_DAT7 D19 NVCC_NANDF GPIO ALT5 GPIO2_IO15 Input PU (100K) TAMPER E11 VDD_SNVS_IN GPIO ALT0 SNVS_TAMPER Input PD (100K) TEST_MODE E12 VDD_SNVS_IN — — TCU_TEST_MODE Input PD (100K) USB_H1_DN F10 VDD_USB_CAP — — USB_H1_DN — — USB_H1_DP E10 VDD_USB_CAP — — USB_H1_DP — — USB_OTG_CHD_B B8 VDD_USB_CAP — — USB_OTG_CHD_B — — USB_OTG_DN B6 VDD_USB_CAP — — USB_OTG_DN — — USB_OTG_DP A6 VDD_USB_CAP — — USB_OTG_DP — — XTALI A7 NVCC_PLL — — XTALI — — XTALO B7 NVCC_PLL — — XTALO — — 1 The state immediately after reset and before ROM firmware or software has executed. Variance of the pull-up and pull-down strengths are shown in the tables as follows: • Table 21, "GPIO I/O DC Parameters," on page 38. • Table 22, "LPDDR2 I/O DC Electrical Parameters," on page 39. • Table 23, "DDR3/DDR3L I/O DC Electrical Parameters," on page 39. 3 ENET_REF_CLK is used as a clock source for MII and RGMII modes only. RMII mode uses either GPIO_16 or RGMII_TX_CTL as a clock source. For more information on these clocks, see your specific device reference manual and the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG). 2 For most of the signals, the state during reset is same as the state after reset, given in Out of Reset Condition column of Table 91. However, there are few signals for which the state during reset is different from the state after reset. These signals along with their state during reset are given in Table 92. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 153 Package Information and Contact Assignments Table 92. Signals with Differing Before Reset and After Reset States Before Reset State Ball Name Input/Output Value EIM_A16 Input PD (100K) EIM_A17 Input PD (100K) EIM_A18 Input PD (100K) EIM_A19 Input PD (100K) EIM_A20 Input PD (100K) EIM_A21 Input PD (100K) EIM_A22 Input PD (100K) EIM_A23 Input PD (100K) EIM_A24 Input PD (100K) EIM_A25 Input PD (100K) EIM_DA0 Input PD (100K) EIM_DA1 Input PD (100K) EIM_DA2 Input PD (100K) EIM_DA3 Input PD (100K) EIM_DA4 Input PD (100K) EIM_DA5 Input PD (100K) EIM_DA6 Input PD (100K) EIM_DA7 Input PD (100K) EIM_DA8 Input PD (100K) EIM_DA9 Input PD (100K) EIM_DA10 Input PD (100K) EIM_DA11 Input PD (100K) EIM_DA12 Input PD (100K) EIM_DA13 Input PD (100K) EIM_DA14 Input PD (100K) EIM_DA15 Input PD (100K) EIM_EB0 Input PD (100K) EIM_EB1 Input PD (100K) EIM_EB2 Input PD (100K) EIM_EB3 Input PD (100K) EIM_LBA Input PD (100K) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 154 Freescale Semiconductor Inc. Package Information and Contact Assignments Table 92. Signals with Differing Before Reset and After Reset States (continued) Before Reset State Ball Name Input/Output Value EIM_RW Input PD (100K) EIM_WAIT Input PD (100K) GPIO_17 Output Drive state unknown (x) GPIO_19 Output Drive state unknown (x) KEY_COL0 Output Drive state unknown (x) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 155 156 NANDF_D2 SD4_DAT2 SD1_DAT3 SD2_CMD NVCC_SD1 NVCC_SD2 NVCC_RGMII GND EIM_A24 NANDF_CS0 NVCC_NANDF EIM_A19 SD3_DAT1 NVCC_SD3 EIM_A22 SD3_DAT7 SATA_VP EIM_A17 BOOT_MODE1 SATA_VPH EIM_EB3 PMIC_STBY_REQ VDD_SNVS_IN EIM_D28 USB_H1_DN GND EIM_D24 VDDUSB_CAP VDD_SNVS_CAP EIM_D25 GND PCIE_VPTX EIM_D17 GND PCIE_VPH EIM_D19 GND JTAG_TDO RGMII_TD1 GND JTAG_TDI EIM_D20 CSI_CLK0M DSI_REXT CSI_D3M DSI_D0M CSI_CLK0P CSI_D3P DSI_D0P EIM_D27 EIM_D26 EIM_D22 EIM_EB2 RGMII_TD2 SD2_DAT1 SD1_DAT2 SD4_DAT4 NANDF_D6 SD4_CLK NANDF_WP_B SD3_DAT0 SD3_DAT6 TEST_MODE TAMPER USB_H1_DP USB_OTG_VBUS NVCC_PLL_OUT GND GND GND CSI_D0M CSI_D0P CSI_D2P CSI_D2M E EIM_D23 EIM_D18 RGMII_RD3 RGMII_RX_CTL RGMII_TXC SD1_CLK SD4_DAT7 SD4_DAT0 NANDF_D3 NANDF_CS3 SD3_RST SD3_CLK SD3_DAT4 ONOFF PMIC_ON_REQ USB_H1_VBUS RTC_XTALI GND CLK1_P GND CLK2_P CSI_REXT GND CSI_D1P CSI_D1M D EIM_D16 RGMII_RD0 RGMII_TX_CTL RGMII_TD0 SD2_CLK SD1_DAT1 SD4_DAT5 NANDF_D7 NANDF_D1 NANDF_CS1 NANDF_CLE SATA_REXT SD3_DAT5 BOOT_MODE0 POR_B GND RTC_XTALO GPANAIO CLK1_N GND CLK2_N GND JTAG_TMS JTAG_TRSTB GND C NC1 NC1 NC1 NC1 RGMII_RXC RGMII_RD2 RGMII_RD1 SD2_DAT3 SD1_CMD SD4_DAT6 SD4_DAT1 NANDF_D5 SD4_CMD NANDF_RB0 SD3_DAT3 SATA_RXP SD3_CMD 15 14 13 12 11 10 9 8 7 GND RGMII_TD3 SD2_DAT2 SD2_DAT0 SD1_DAT0 SD4_DAT3 NANDF_D4 NANDF_D0 25 24 23 22 21 20 19 18 NANDF_CS2 17 NANDF_ALE 16 SD3_DAT2 SATA_RXM GND SATA_TXP NC1 NC1 XTALI GND SATA_TXM 5 4 3 2 1 USB_OTG_DP 6 FA_ANA GND PCIE_TXM PCIE_REXT A USB_OTG_CHD_B XTALO USB_OTG_DN VDD_FA GND PCIE_TXP PCIE_RXP PCIE_RXM B 6.2.3 GND F G Package Information and Contact Assignments 21 x 21 mm, 0.8 mm Pitch Ball Map Table 93 shows the FCPBGA 21 x 21 mm, 0.8 mm pitch ball map. Table 93. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. Freescale Semiconductor Inc. CSI0_DAT9 CSI0_DAT8 NVCC_CSI GND VDDARM23_IN GND GPIO_19 GPIO_18 NVCC_GPIO GND VDDARM23_IN GND GND VDDARM23_IN GND HDMI_VPH CSI0_DAT18 CSI0_DAT15 CSI0_DAT14 CSI0_DAT11 CSI0_DAT12 CSI0_DAT10 M GND VDDARM23_IN GND HDMI_VP CSI0_DAT19 GND CSI0_DAT16 CSI0_DAT17 GND CSI0_DAT13 L GND VDDARM23_IN GND NVCC_MIPI HDMI_D0P HDMI_D0M HDMI_D2P HDMI_D2M HDMI_DDCCEC HDMI_HPD K VDDHIGH_CAP VDDHIGH_IN GND NVCC_JTAG HDMI_CLKP HDMI_CLKM HDMI_D1P HDMI_D1M GND HDMI_REF J 9 8 7 6 5 4 3 2 1 VDDHIGH_CAP 10 VDDHIGH_IN GND PCIE_VP JTAG_MOD JTAG_TCK DSI_CLK0P DSI_CLK0M DSI_D1M DSI_D1P H VDD_CACHE_CAP VDDARM_CAP VDDARM_IN GND VDDSOC_IN VDDPU_CAP GND DI0_DISP_CLK DI0_PIN3 DI0_PIN15 EIM_BCLK EIM_DA14 EIM_DA15 DI0_PIN2 GND VDDARM_CAP VDDARM_IN GND VDDSOC_IN VDDPU_CAP GND NVCC_LCD DISP0_DAT4 DISP0_DAT3 DISP0_DAT1 DISP0_DAT2 DISP0_DAT0 DI0_PIN4 EIM_WAIT EIM_DA12 EIM_DA13 EIM_DA10 EIM_DA9 EIM_DA11 NVCC_EIM2 GND VDDPU_CAP VDDSOC_IN GND VDDARM_IN VDDARM_CAP GND EIM_DA7 EIM_DA8 EIM_DA5 EIM_DA4 EIM_DA2 EIM_DA0 NVCC_EIM1 GND VDDPU_CAP VDDSOC_IN GND VDDARM_IN VDDARM_CAP GND EIM_DA6 EIM_DA3 EIM_EB1 EIM_LBA EIM_EB0 EIM_RW NVCC_EIM0 GND VDDPU_CAP VDDSOC_IN GND VDDARM_IN VDDARM_CAP GND EIM_DA1 EIM_OE EIM_CS1 EIM_A18 EIM_A23 EIM_D30 EIM_D29 GND VDDPU_CAP VDDSOC_IN GND VDDARM_IN VDDARM_CAP GND EIM_A16 EIM_CS0 EIM_A21 EIM_A20 EIM_D31 EIM_D21 EIM_A25 GND VDDPU_CAP VDDSOC_IN GND VDDARM_IN VDDARM_CAP GND 25 24 23 22 21 20 19 18 17 16 15 14 13 12 VDDARM23_CAP VDDARM23_CAP VDDARM23_CAP VDDARM23_CAP VDDARM23_CAP VDDARM23_CAP VDDARM23_CAP 11 CSI0_DAT6 CSI0_MCLK CSI0_VSYNC CSI0_DAT5 CSI0_DAT7 CSI0_DAT4 CSI0_PIXCLK CSI0_DATA_EN N P Package Information and Contact Assignments Table 93. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 157 158 DRAM_D10 GND DRAM_D17 DRAM_D23 GND DRAM_D14 DRAM_D16 DRAM_DQM2 DRAM_D18 DRAM_SDQS3_B DRAM_D61 DRAM_SDQS7_B DRAM_SDQS7 GND DRAM_D56 GND DRAM_D38 DRAM_D60 DRAM_D33 DRAM_DQM4 GND DRAM_D32 DRAM_SDODT1 DRAM_D52 GND DRAM_SDWE DRAM_D57 DRAM_A10 DRAM_RAS DRAM_D42 DRAM_A2 DRAM_A1 DRAM_D45 GND DRAM_A8 DRAM_D41 DRAM_A14 DRAM_SDBA2 W DRAM_D25 DRAM_D19 DRAM_D21 DRAM_D20 DRAM_RESET GND LVDS1_CLK_P LVDS1_CLK_N DRAM_D58 GND DRAM_D62 DRAM_D59 DRAM_DQM7 DRAM_D44 DRAM_D40 DRAM_D37 DRAM_D36 DRAM_CS0 DRAM_SDBA1 DRAM_A3 DRAM_A7 DRAM_A15 ENET_TX_EN ENET_MDC GND NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM GND NVCC_LVDS2P5 KEY_ROW0 KEY_ROW4 LVDS0_CLK_N LVDS0_CLK_P LVDS0_TX2_N LVDS0_TX2_P V DRAM_D63 DISP0_DAT23 ENET_RX_ER DISP0_DAT18 DISP0_DAT22 ENET_MDIO GND KEY_ROW3 KEY_COL4 GPIO_0 GPIO_1 GPIO_6 GPIO_9 GPIO_2 T GND GND DISP0_DAT21 GND NVCC_DRAM GND VDDSOC_IN GND DISP0_DAT14 DISP0_DAT17 DISP0_DAT19 DISP0_DAT9 DISP0_DAT12 DISP0_DAT11 DISP0_DAT15 ENET_CRS_DV DISP0_DAT16 ENET_TXD0 GND NVCC_DRAM GND VDDSOC_IN GND VDDSOC_CAP VDDSOC_CAP VDDSOC_CAP VDDSOC_CAP GND GND VDDSOC_CAP VDDSOC_CAP VDDARM23_IN VDDARM23_IN GND KEY_COL1 KEY_ROW1 KEY_COL3 LVDS0_TX1_N LVDS0_TX1_P LVDS0_TX0_N LVDS0_TX0_P U ENET_RXD1 ENET_REF_CLK DISP0_DAT20 ENET_RXD0 ENET_TXD1 GND GND GND GND GND DRAM_A4 GND GND GND GND GND GND GND KEY_COL2 KEY_COL0 KEY_ROW2 GND LVDS1_TX0_P LVDS0_TX3_N LVDS1_TX0_N LVDS0_TX3_P Y DRAM_SDCKE1 DRAM_SDCKE0 DRAM_D3 DRAM_D12 DRAM_D27 LVDS1_TX3_P DRAM_D6 LVDS1_TX1_N LVDS1_TX2_P LVDS1_TX3_N LVDS1_TX1_P LVDS1_TX2_N GND AA AB 10 9 8 7 6 5 4 3 2 1 DISP0_DAT5 DISP0_DAT7 DISP0_DAT6 DISP0_DAT8 DISP0_DAT10 DISP0_DAT13 NVCC_ENET NVCC_DRAM GND VDDSOC_IN GND VDDARM_IN VDDARM_CAP GND 25 24 23 22 21 20 19 18 17 16 15 14 13 12 VDDARM23_CAP 11 VDDSOC_CAP VDDARM23_IN GND GPIO_3 GPIO_4 GPIO_8 GPIO_5 GPIO_7 GPIO_16 GPIO_17 R Package Information and Contact Assignments Table 93. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued) i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 Freescale Semiconductor Inc. 1 Freescale Semiconductor Inc. DRAM_D8 DRAM_SDQS1 GND DRAM_SDQS2 DRAM_D29 GND DRAM_D30 DRAM_A12 GND DRAM_D9 DRAM_SDQS1_B DRAM_D11 DRAM_SDQS2_B DRAM_D24 DRAM_DQM3 DRAM_D26 DRAM_A9 DRAM_A5 9 8 7 6 5 4 3 2 1 DRAM_A0 DRAM_A6 DRAM_A11 DRAM_D31 14 13 12 11 DRAM_SDQS3 10 DRAM_D28 DRAM_D22 DRAM_D15 DRAM_DQM1 DRAM_D13 DRAM_D2 DRAM_DQM0 DRAM_VREF DRAM_D4 AC GND DRAM_CS1 DRAM_SDQS4 GND DRAM_SDQS5 DRAM_D43 GND DRAM_SDQS6 DRAM_DQM6 DRAM_D54 DRAM_CAS ZQPAD DRAM_SDQS4_B DRAM_D35 DRAM_SDQS5_B DRAM_D46 DRAM_D49 DRAM_SDQS6_B DRAM_D50 GND DRAM_D55 DRAM_D51 DRAM_D53 DRAM_D48 DRAM_D47 DRAM_DQM5 DRAM_D39 DRAM_D34 DRAM_A13 25 24 23 22 21 20 19 18 17 DRAM_SDODT0 16 DRAM_SDCLK_0_B DRAM_SDCLK_0 DRAM_SDBA0 15 DRAM_SDCLK_1_B DRAM_SDCLK_1 GND DRAM_D7 DRAM_D0 DRAM_D1 DRAM_SDQS0_B DRAM_D5 GND DRAM_SDQS0 AD AE Package Information and Contact Assignments Table 93. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued) MLB is only supported in automotive and consumer graded parts. These balls are not connected in industrial graded parts. i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 159 Revision History 7 Revision History Table 94 provides a revision history for this data sheet. Table 94. Data Sheet Document Revision History Rev. Number Date Substantive Change(s) 1 3/2016 Revision 1 changes are within Table 8, "Maximum Supply Currents," on page 25 Changed: • VDD-ARM_IN with condition 792 MHz, CoreMark maximum current value from 1250 to 1000 • Added footnote regarding values are assumed when VDD_ARM23_IN and VDD_ARM23_CAP are connected to ground. 0 02/2016 • Initial release i.MX 6DualPlus/6QuadPlus Applications Processors Industrial Products, Rev. 1, 03/2016 160 Freescale Semiconductor Inc. How to Reach Us: Information in this document is provided solely to enable system and software Home Page: freescale.com implementers to use Freescale products. There are no express or implied copyright Web Support: freescale.com/support information in this document. licenses granted hereunder to design or fabricate any integrated circuits based on the Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM, Cortex, TrustZone, and NEON are registered trademarksof ARM Limited (or its subsidiaries) in the EU and/or elsewhere. © 2016 Freescale Semiconductor, Inc. All rights reserved. Document Number: IMX6DQPIEC Rev. 1 03/2016