AN2815 Application note High-efficiency step-down controller with embedded 2 A LDO regulator Introduction The PM6675AS device consists of a single, high-efficiency step-down controller and an independent low dropout (LDO) linear regulator. The constant on-time (COT) architecture assures fast transient response supporting both electrolytic and ceramic output capacitors. An embedded integrator control loop compensates the DC voltage error due to the output ripple. Selectable low-consumption mode allows the highest efficiency over a wide range of load conditions. The low-noise mode sets the minimum switching frequency to 33 kHz for audiosensitive applications. The LDO linear regulator can sink and source up to 2 Apk. Two fixed current limits (±1 A and ±2 A) can be chosen. An active soft-end is independently performed on both the switching and the linear regulators outputs when disabled. Figure 1. PM6675AS demonstration board !-V August 2008 Rev 1 1/42 www.st.com Contents AN2815 Contents 1 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1 Switching section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 LDO section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Component assembly and layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 I/O interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 Recommended equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.1 JP3 fixed or adjustable output voltage (VSEL pin) . . . . . . . . . . . . . . . . . . 14 6.2 JP1 power-saving mode (NOSKIP pin) . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.3 JP2 LDO current limit (LILIM pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.4 JP5 compensation network (COMP pin) . . . . . . . . . . . . . . . . . . . . . . . . . 16 7 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 8 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 9 PM6675AS demonstration tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2/42 9.1 VOUT and LOUT turn-on (soft-start) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 9.2 VOUT working mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 9.3 VOUT and LOUT load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 9.4 VOUT and LOUT load transient responses . . . . . . . . . . . . . . . . . . . . . . . . . 26 9.5 VOUT efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.6 VOUT gate drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.7 VOUT and LOUT turn-off (soft-end) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 9.8 UV, OV and thermal protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 9.9 VOUT current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 9.10 LOUT current limit (foldback) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 AN2815 10 Contents 9.11 Switching frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.12 Thermal behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3/42 List of figures AN2815 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. 4/42 PM6675AS demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 PM6675AS demonstration board schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Top side component placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Layer 2 view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Layer 3 view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Bottom view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Bottom side component placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 JP3 (VSEL) setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 JP1 (NOSKIP) setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 JP2 (LILIM) setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 JP5 (COMP) setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 PM6675AS demonstration board test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 VOUT soft-start at 150 mW load, pulse-skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 LOUT turn-on, VOUT in pulse-skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 VOUT = 1.5 V, VIN = 24 V, IVOUT = 0 A, forced-PWM mode . . . . . . . . . . . . . . . . . . . . . . . . 21 VOUT = 1.5 V, VIN = 24 V, IVOUT = 0 A, pulse-skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . 22 VOUT = 1.5 V, VIN = 24 V, no load, non-audible pulse-skip mode (33 kHz) . . . . . . . . . . . . 23 VOUT load regulation - VIN = 24 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 LOUT load regulation - LDOIN = VOUT , VOUT in forced PWM mode . . . . . . . . . . . . . . . . . 25 VOUT load transient (VIN=24 V, LOAD=0 A to 7 A at 2.5 A/µs), pulse-skip mode. . . . . . . . 26 VOUT load transient (VIN = 24 V, LOAD=0 A to 7 A at 2.5 A/µs), pulse-skip mode. . . . . . . 27 Forced PWM (blue), non-audible pulse-skip (green), pulse-skip (red), efficiency vs. output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 External MOSFET gate signals (VIN = 24 V, LOAD = 0), pulse-skip mode . . . . . . . . . . . . 29 External MOSFET gate signals (VIN = 24 V, LOAD = 7 A), pulse-skip mode . . . . . . . . . . 29 VOUT and LOUT output voltages, VOUT soft-end, LOUT powered by an auxiliary rail. . . . . . 30 VOUT and LOUT output voltages, LOUT soft-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 UV protection, pulse-skip mode, LOUT powered by an auxiliary rail . . . . . . . . . . . . . . . . . . 32 OV protection, pulse-skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 VOUT and LOUT rails, thermal shutdown, pulse-skip mode, LOUT powered by VOUT . . . . . 34 VOUT current limit protection during a load transient (0 A to 9 A at 2.5 A/µs . . . . . . . . . . . 35 LOUT current limit during an output short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Switching frequency vs. input voltage, VOUT = 1.5 V, IVOUT = 2 A, forced PWM mode . . . 37 Forced PWM (blue), non-audible pulse-skip (green) and pulse-skip (red), Switching frequency vs. output current, VOUT = 1.5 V, VIN = 24 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ILOUT = 0 A, average IC temperature = 31.0 °C, max internal IC temperature = 33.1 °C. . 39 ILOUT = 0.2 A, average IC temperature = 38.2°C, max internal IC temperature = 40.7 °C . 39 ILOUT = 0.5 A, average IC temperature = 38.2 °C, max internal IC temperature = 41.5 °C 40 ILOUT = 1.0 A, average IC temperature = 48°C, max internal IC temperature = 55.2 °C . . 40 AN2815 Main features 1 Main features 1.1 Switching section 1.2 ● 4.5 V to 36 V input voltage range ● 0.6 V, ±1% voltage reference ● 1.5 V fixed output voltage ● 0.6 V to 3.3 V adjustable output voltage ● 1.237 V ±1% reference voltage available ● Very fast load transient response constant on-time loop control ● No-RSENSE current sensing using low-side MOSFETs' RDS(on) ● Negative current limit ● Latched OVP, UVP and thermal shutdown ● Fixed 3 ms soft-start ● Selectable pulse-skipping at light load ● Selectable non-audible (33 kHz) pulse-skip mode ● All ceramic output capacitor applications supported ● Output voltage ripple compensation ● Output soft-end LDO section ● 0.6 V to 3.3 V adjustable output voltage ● Selectable ±1 A or ±2 A current limit ● Dedicated Power Good signal ● Ceramic output capacitors supported ● Output soft-end 5/42 PGND LGND LPG LOUT LIN VCCGND J9 J11 J8 J7 J6 J10 1 1 1 R18 100k 1 1 1 VCC 0 0 R20 10k 10u C6 0 NOSKIP JP1 10u C7 0 R7 3R9 C10 2 C9 100n 1 0 N.M. C19 N.M. C20 0 R22 33k R21 100k 1 1 2 3 4 5 6 25 2 R10 0 1 C12 100n D1 BAT41J 0 R8 12k R9 13k VSEL JP3 LILIM JP2 18 VCC 17 LGND LGATE 16 LFB PGND 15 NOSKIP LPG PM6675AS SPG 14 LEN 13 SGND SWEN AVCC THPD U1 0 C11 10u VCC R3 1k5 2 0 VCC C21 100p 1 R2 18k 1 C22 100p C13 100n 2 0 0 0 1 100k 2 R17 R13 100k LEN-SWEN SW1 R12 100k 1 2 R11 1 2 R1 330k VCC 0 R4 3R3 1 2 C14 100n 0 2 1 2 1 2 R19 7.5k 0 C5 1u 1 2 1 2 1 2 1 2 2 1 1 2 1 2 1 2 24 23 22 21 20 19 LOUT LIN BOOT HGATE PHASE CSNS VREF VOSC VSNS VSEL COMP LILIM 7 8 9 10 11 12 C17 N.M. Q2 0 C16 1 S7NF60L 4 4 Q1 D2 2 1n 0 S7NF60L C1 10u 0 INT-VESR JP5 TP1 GND_TP C18 1n R16 4R7 R14 7k5 1 2 6n8 1 C15 R15 6k8 2 MLC1538-152ML L1 1.5u 0 C2 10u 2x UMK325BJ106KM-T 1 2 VCC 1 2 5 6 7 8 1 2 3 5 6 7 8 1 2 3 1 STPS1L60A 1 2 J5 2 4 6 1 3 5 1 2 1 2 R6 0 220u C3 220u C4 2x 4TPE220MF 1 2 VCC 4 3 1 2 2 4 6 1 3 5 1 2 1 2 1 2 6/42 1 2 J2 J1 VOUT VIN 1 1 J4 J3 SPG PGND STPS1L60A D3 1 1 Figure 2. 1 2 Main features AN2815 PM6675AS demonstration board schematic AM00963v1 AN2815 Bill of material 2 Bill of material Table 1. PM6675AS demonstration board bill of material Qty Component Description Package Part number Manufacturer Value 2 C1, C2 Ceramic, 50 V, X5R, 20% SMD 1210 UMK325BJ106KM-T Taiyo Yuden 10 µF 2 C3, C4 POSCAP, 4 V, 15 mΩ, 20% SMD D Case 4TPE220MF Sanyo 220 µF 1 C5 Ceramic, 6.3 V, X5R, 10% SMD 1206 Standard 1 µF 3 C6, C7, C11 Ceramic, 6.3 V, X5R, 10% SMD 0805 Taiyo Yuden 10 µF 4 C9, C10, C13, C14 Ceramic, 50 V, X7R, 20% SMD 0603 Standard 100 n 1 C12 Ceramic, 50 V, X7R, 10% SMD 0805 Standard 100 n 1 C15 Ceramic, 50 V, X7R, 10% SMD 0603 Standard 6n8 1 C16 Ceramic, 50 V, X7R, 10% SMD 0603 Standard 1n 1 C17 Ceramic, 20% SMD 0603 Standard N.M. 1 C18 Ceramic, 50 V, X7R, 10% SMD 0805 Standard 1n 2 C19, C20 Ceramic, 6.3 V, X5R, 10% SMD 0805 Taiyo Yuden N.M. 2 C21, C22 Ceramic, 50 V, X7R, 10% SMD 0603 Standard 100 p 1 R1 Chip resistor, 0.1W, 1% SMD 0603 Standard 330 kΩ 1 R2 Chip resistor, 0.1 W, 1% SMD 0603 Standard 18 kΩ 1 R3 Chip resistor, 0.1 W, 1% SMD 0603 Standard 1.5 kΩ 2 R4, R7 Chip resistor, 0.1 W, 1% SMD 0603 Standard 3R3 1 R6 Chip resistor, 0.1 W, 1% SMD 0805 Standard 0 1 R8 Chip resistor, 0.1 W, 1% SMD 0603 Standard 12 kΩ 1 R9 Chip resistor, 0.1 W, 1% SMD 0603 Standard 13 kΩ JMK212BJ106KG-T JMK212BJ106KG-T 7/42 Bill of material Table 1. AN2815 PM6675AS demonstration board bill of material (continued) Qty Component Description Package 3 R10, R17, R21 Chip resistor, 0.1 W, 1% 4 R11, R12, R13,R18 1 Manufacturer Value SMD 0603 Standard 0 Chip resistor, 0.1 W, 1% SMD 0603 Standard 100 kΩ R14 Chip resistor, 0.1 W, 1% SMD 0805 Standard 15 kΩ 1 R15 Chip resistor, 0.1 W, 1% SMD 0603 Standard 3k9 1 R16 Chip resistor, 0.1 W, 1% SMD 0805 Standard 4R7 1 R19 Chip resistor, 0.1 W, 1% SMD 0603 Standard 7k5 1 R20 Chip resistor, 0.1 W, 1% SMD 0603 Standard 10 kΩ 1 R22 Chip resistor, 0.1 W, 1% SMD 0603 Standard N.M. 1 L1 MLC1538-152ML Coilcraft 1.5 µH 2 Q1, Q2 N-Channel, 60 V SO-8 STS7NF60L STMicroelectronics 1 D1 Schottky, 100 V, 0.2 A SOD-323 BAT41J STMicroelectronics 1 D2 Schottky, 60 V, 1A DO214-AC STPS1L60A STMicroelectronics 1 D3 1 U1 Controller 11 J1, J2, J3, J4, J5, J6, J7, J8, J9, J10,J11 Header, single pin 3 JP1, JP2, JP3 Jumper, 2x3, 100 mils 1 JP5 PCB pads selector 1 TP6 Test point 1 SW1 Dip switch 2 8/42 SMT, 10.6 13.8x13.2 mm Arms, 4.36 mΩ Part number N.M. VFQFPN-24 PM6675AS STMicroelectronics JP4 N.M. DIP-2 Standard AN2815 3 Component assembly and layout Component assembly and layout Figure 3. Top side component placement AM00964v1 Figure 4. Top view AM00965v1 9/42 Component assembly and layout Figure 5. AN2815 Layer 2 view AM00966v1 Figure 6. Layer 3 view AM00967v1 10/42 AN2815 Component assembly and layout Figure 7. Bottom view AM00968v1 Figure 8. Bottom side component placement AM00969v1 11/42 I/O interface 4 AN2815 I/O interface The PM6675AS demonstration board has the following test points as shown in Table 2. Table 2. 12/42 PM6675AS demonstration kit input and output interface Test point Description VIN Battery input voltage positive terminal VOUT Switching regulator output PGND Battery input and VOUT output common return LIN LDO linear regulator input LOUT LDO linear regulator output LGND LDO linear regulator output return LPG LDO linear regulator Power Good signal VCC +5 V supply, positive terminal VCCGND Signal ground and VCC supply return SPG VOUT SW regulator Power Good signal TP1 Connection point between power and signal grounds AN2815 5 Recommended equipment Recommended equipment ● 4 V to 36 V, 30 W power supply ● Active loads ● Digital mutimeters ● 200 MHz four-trace oscilloscope 13/42 Configuration 6 AN2815 Configuration The PM6675AS demonstration board allows the user to choose the desired mode of operation using four jumpers (JP1, JP2, JP3 and JP5) and two resistors. Refer to the following configuration description. 6.1 JP3 fixed or adjustable output voltage (VSEL pin) The JP3 jumper is used to choose between fixed output voltage (1.5 V) and a user-defined output voltage in the range 0.6 V to 3.3 V. When connected in the lower position, the fixed 1.5 V output voltage is selected (Figure 8). If JP3 is in the upper position, the output voltage is given by: Equation 1 VOUTADJ = 0.6 ⋅ Figure 9. R8 + R9 R8 JP3 (VSEL) setting !DJUSTABLEOUTPUTVOLTAGE 6 FIXEDOUTPUT VOLTAGE DEFAULTPOSITION !-V The R8 and R9 resistors are set to 12 kΩ and 13 kΩ respectively (1.25 V output voltage) and can be changed by the user. 6.2 JP1 power-saving mode (NOSKIP pin) The JP1 jumper allows choosing the mode of operation of the switching section. Three options (forced-PWM, pulse-skip and non-audible pulse-skip) can be selected by changing the JP1 setting as shown in Figure 9: 14/42 AN2815 Configuration Figure 10. JP1 (NOSKIP) setting Forced PWM (default position) No-audible pulse-skip Pulse-skip AM00971v1 6.3 JP2 LDO current limit (LILIM pin) The JP2 jumper is used to select the LDO current limit. In the upper position the LDO output current limit is set to 2 A, while in the lower position the current limit is set to 1 A. The middle position is not used. Figure 11. JP2 (LILIM) setting 2 A LDO current limit 1 A LDO current limit AM00972v1 15/42 Configuration 6.4 AN2815 JP5 compensation network (COMP pin) The JP5 jumper is located on the bottom side of the PM6675AS board and allows connecting the integrator input (COMP pin) to the output through a simple capacitor (integrative compensation) or using the "virtual ESR" network for very low ESR output capacitor applications (e.g. all ceramic output cap applications). The integrative compensation is set by default. Refer to the PM6675AS datasheet for details about the allceramic output capacitor applications and the virtual ESR design. Figure 12. JP5 (COMP) setting )NTEGRATIVECOMPENSATION DEFAULTPOSITION 6IRTUAL%32NETWORK !-V 16/42 AN2815 7 Test setup Test setup Figure 12 shows the suggested setup connections between the PM6675AS demonstration board, the loads and the external supply. The LDO input (LIN) is connected to VOUT by default (R6 = 0 Ω). Figure 13. PM6675AS demonstration board test setup AM00974v1 17/42 Getting started 8 AN2815 Getting started The following step-by-step power-up and power-down sequences are provided in order to correctly evaluate the PM6675AS demonstration board performance. ● Power-up sequence – Working in an ESD-protected environment is highly recommended. Check all wrist straps and ground mat connections before handling the PM6675AS demonstration board – Connect power supplies as shown in the PM6675AS demonstration board test setup (Figure 12) and insert the meters in order to perform the desired performance evaluation. Connect the scope-probes as desired – Set the JP1 through JP5 jumpers in order to properly configure the PM6675AS board (default position suggested). Set the SWEN-LEN switches to the on position (upper position); Do not change jumper settings when the board is powered – Set the VCC supply to 5 V±5% and the current limit to 100 mA – Set the VIN supply to a voltage in the range 4.5 V to 36 V. An initial test at 24 V and 2 A current limit is suggested – Set all the loads to 0 A – Turn-on the VIN supply – Turn-on the VCC supply – Vary the VOUT load from 0 A to 8 A – Vary the LOUT load from 0 A to 2 A to test source capability. If a different LDO input is desired, connect the external rail as dashed in Figure 12 and remove the R6 resistor. All changes must be done when the board is not powered – Vary VIN supply from 4.5 V to 36 V ● Power-down sequence – Decrease LOUT loads to 0 A – Reduce VOUT load to 0 A – Decrease VCC supply from 5 V to 3.8 V in order to test the UVLO – Increase VCC supply from 3.8 V to 5 V to restart the device – Use the SWEN-LEN switches to test soft-start and soft-end on both outputs – Turn-off the VOUT load – Turn-off the VCC supply – Turn-off the VIN supply 18/42 AN2815 PM6675AS demonstration tests 9 PM6675AS demonstration tests 9.1 VOUT and LOUT turn-on (soft-start) The VOUT soft-start is divided in 4 steps. In each step the current limit is increased by ¼ of the nominal value. This behavior is well understood by loading the rail, as performed in the test. LOUT soft-start is performed at its maximum available current. Figure 14. VOUT soft-start at 150 mΩ load, pulse-skip mode AM00975v1 19/42 PM6675AS demonstration tests AN2815 Figure 15. LOUT turn-on, VOUT in pulse-skip mode AM00976v1 9.2 VOUT working mode ● VOUT forced PWM mode When the forced PWM working mode is selected (JP1 in the upper position), the inductor current is allowed to become negative and the following waveform can be captured. 20/42 AN2815 PM6675AS demonstration tests Figure 16. VOUT = 1.5 V, VIN = 24 V, IVOUT = 0 A, forced-PWM mode AM00977v1 ● VOUT pulse-skip mode The default working mode is the pulse-skip algorithm, in which the low-side MOSFET is turned off when the inductor current becomes equal to zero. This behavior allows reaching the maximum efficiency. 21/42 PM6675AS demonstration tests AN2815 Figure 17. VOUT = 1.5 V, VIN = 24 V, IVOUT = 0 A, pulse-skip mode AM00978v1 22/42 AN2815 PM6675AS demonstration tests ● VOUT non-audible pulse-skip mode In order to avoid too low switching frequencies, the non-audible pulse-skip mode can be selected (JP1 in the middle). Doing so, the minimum switching frequency allowed is 33 kHz as depicted in Figure 18. Figure 18. VOUT = 1.5 V, VIN = 24 V, no load, non-audible pulse-skip mode (33 kHz) AM00979v1 23/42 PM6675AS demonstration tests 9.3 AN2815 VOUT and LOUT load regulation Figure 19 and 20 refer to VOUT and LOUT output voltage variations versus load current. The switching section directly supplies the linear LDO. Figure 19. VOUT load regulation - VIN = 24 V 6/54LOADREGULATION &ORCED070ULSESKIP .ONAUDIBLE03 6OLTAGE;6= #URRENT;!= !-V 24/42 AN2815 PM6675AS demonstration tests Figure 20. LOUT load regulation - LDOIN = VOUT , VOUT in forced PWM mode ,/54LOADREGULATION 6OLTAGE;6= #URRENT;!= !-V 25/42 PM6675AS demonstration tests 9.4 AN2815 VOUT and LOUT load transient responses Transient load responses are evaluated by loading VOUT and LOUT output rails with a current slew rate of 2.5A/µs. Figure 21. VOUT load transient (VIN=24 V, LOAD=0 A to 7 A at 2.5 A/µs), pulse-skip mode AM00982v1 26/42 AN2815 PM6675AS demonstration tests Figure 22. VOUT load transient (VIN = 24 V, LOAD=0 A to 7 A at 2.5 A/µs), pulse-skip mode AM00983v1 27/42 PM6675AS demonstration tests 9.5 AN2815 VOUT efficiency The three working modes lead to different power efficiency. The test setup is VIN=24 V, FSW = 330 kHz, VOUT = 1.5 V. Figure 23 summarizes the results. Figure 23. Forced PWM (blue), non-audible pulse-skip (green), pulse-skip (red), efficiency vs. output current 6/54%FFICIENCY %FFICIENCY;= )RUFHG3:0 3XOVH6NLS 1RQ$XGLEOH36 #URRENT;!= !-V 9.6 VOUT gate drivers The PM6675AS internal MOSFET driver turns on and off the high-side and low-side external MOSFET, avoiding cross-conduction. In the following two pictures the gates signals are shown in two different load conditions: without load (Figure 24) and with load (Figure 25). 28/42 AN2815 PM6675AS demonstration tests Figure 24. External MOSFET gate signals (VIN = 24 V, LOAD = 0), pulse-skip mode AM00985v1 Figure 25. External MOSFET gate signals (VIN = 24 V, LOAD = 7 A), pulse-skip mode AM00986v1 29/42 PM6675AS demonstration tests 9.7 AN2815 VOUT and LOUT turn-off (soft-end) ● VOUT soft-end When the SWEN pin is pulled down, the switching section performs the output capacitor discharge by turning on the discharge MOSFET. The external low-side MOSFET is turned on when the output voltage is lower than about 400 mV. Figure 26. VOUT and LOUT output voltages, VOUT soft-end, LOUT powered by an auxiliary rail AM00987v1 30/42 AN2815 PM6675AS demonstration tests ● LOUT soft-end By pulling down the LEN pin the linear regulator is forced to discharge its output capacitor, by turning on its discharge MOSFET. Doing so, the LOUT rail is turned off in a safe way, avoiding output voltage under ground spikes. Table 3. Typical discharge MOSFETs RDS(on) resistance Description VOUT output LOUT output Typical discharge MOSFETs RDS(on) 25 Ω 25 Ω Figure 27. VOUT and LOUT output voltages, LOUT soft-end AM00988v1 31/42 PM6675AS demonstration tests 9.8 AN2815 UV, OV and thermal protections ● Latched UV protection If the switching section output voltage is lower than the 70% nominal value, the undervoltage state is entered and the discharge MOSFET is turned on (as in the the soft-end state). Figure 28. UV protection, pulse-skip mode, LOUT powered by an auxiliary rail AM00989v1 32/42 AN2815 PM6675AS demonstration tests ● Latched OV protection If the switching section output voltage is higher than the 115% nominal value, the overvoltage state is entered and the low-side MOSFET is turned on in order to quickly discharge the output capacitor and avoid load damages. Figure 29. OV protection, pulse-skip mode AM00990v1 33/42 PM6675AS demonstration tests ● AN2815 Latched thermal shutdown If the junction temperature rises above 150 deg the thermal protection circuit turns off the device and discharges the switching section output capacitor by performing the soft-end. Figure 30. VOUT and LOUT rails, thermal shutdown, pulse-skip mode, LOUT powered by VOUT AM00991v1 34/42 AN2815 9.9 PM6675AS demonstration tests VOUT current limit The valley current limit avoids any high-side turn-on if the inductor current is higher than the programmed value. This current limit can be designed with the following equation: Equation 2 I CL = 100µA ⋅ RILIM RLS , DSon The current sensing is performed by comparing the voltage drop in the low-side MOSFET, during the TOFF period, with the voltage drop given by an injected current and the current limit resistor. Figure 31. VOUT current limit protection during a load transient (0 A to 9 A at 2.5 A/µs AM00992v1 35/42 PM6675AS demonstration tests 9.10 AN2815 LOUT current limit (foldback) The linear LDO regulator has a foldback protection feature which reduces the current limit to about 1 A when the output voltage is outside the ±10% Power Good window. The current limit is restored to about 2 A when the output voltage re-enters the Power Good window. Figure 32. LOUT current limit during an output short AM00993v1 36/42 AN2815 Switching frequency ● Switching frequency vs. input voltage The constant on-time controller leads to a quasi-constant switching frequency, slightly following the input voltage. Figure 33. Switching frequency vs. input voltage, VOUT = 1.5 V, IVOUT = 2 A, forced PWM mode 37FREQUENCYVSINPUTVOLTAGE &REQUENCY;K(Z= 9.11 PM6675AS demonstration tests 6OLTAGE;6= !-V 37/42 PM6675AS demonstration tests ● AN2815 Switching frequency vs. output current The switching frequency can decrease to very low values in pulse-skip mode but in nonaudible pulse-skip there is a lower limit (about 33kHz). By increasing the load, however, the switching frequency increases a bit, as a consequence of conduction and switching losses. Figure 34. Forced PWM (blue), non-audible pulse-skip (green) and pulse-skip (red), Switching frequency vs. output current, VOUT = 1.5 V, VIN = 24 V 37FREQUENCYVS6/54LOAD &REQUENCY;K(Z= &ORCED07- 0ULSESKIP .ONAUDIBLE03 #URRENT;!= !-V 9.12 Thermal behavior The IC internal maximum and average temperature can be monitored by an IR camera. For the following measures the test setup is: – VIN = 24 V – FSW = 330 kHz – Pulse-skip mode – VOUT = 1.5 V at IVOUT = 4 A – LOUT = 1.05 V, powered by VOUT – TAMB = 23 °C By increasing the LOUT current the IC temperature changes as depicted in Figure 35 through 38. 38/42 AN2815 PM6675AS demonstration tests Figure 35. ILOUT = 0 A, average IC temperature = 31.0 °C, max internal IC temperature = 33.1 °C AM00996v1 Figure 36. ILOUT = 0.2 A, average IC temperature = 38.2°C, max internal IC temperature = 40.7 °C AM00997v1 39/42 PM6675AS demonstration tests AN2815 Figure 37. ILOUT = 0.5 A, average IC temperature = 38.2 °C, max internal IC temperature = 41.5 °C AM00998v1 Figure 38. ILOUT = 1.0 A, average IC temperature = 48°C, max internal IC temperature = 55.2 °C AM00999v1 40/42 AN2815 10 Revision history Revision history Table 4. Document revision history Date Revision 20-Aug-2008 1 Changes Initial release 41/42 AN2815 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 42/42