AN2798 Application note Complete DDR2/3 memory power supply controller based on the PM6670AS Introduction The PM6670AS device is a complete DDR2/3 power supply regulator for portable applications designed to meet JEDEC specifications. It integrates a constant on-time (COT) buck controller, a 2 A peak sink/source low dropout regulator and a 15 mA low-noise buffered reference. The COT architecture assures fast transient response supporting both polymeric and ceramic output capacitors. An embedded integrator control loop compensates the DC voltage error due to the output ripple. The 2 A peak sink/source linear regulator provides the memory termination voltage with fast load transient response. The device is fully compliant with system sleep states S3 and S4/S5, setting the LDO output to high impedance in suspend-to-RAM state and performing the tracking discharge of all outputs in suspend-to-disk state. Figure 1. November 2008 PM6670AS demonstration board Rev 1 1/38 www.st.com 38 Contents AN2798 Contents 1 2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1 Switching section (VDDQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Reference and termination voltages (VTTREF and VTT) . . . . . . . . . . . . . 5 Demonstration kit schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Component list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Component assembly and layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 I/O interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.1 5 Recommended equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1 JP3 fixed or adjustable output voltage (MODE pin) . . . . . . . . . . . . . . . . . 13 5.2 JP1 DDR2/DDR3 or power-saving mode (DDRSEL pin) . . . . . . . . . . . . . 13 5.3 JP2 output discharge (DSCG pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.4 JP5 compensation network (COMP pin) . . . . . . . . . . . . . . . . . . . . . . . . . 15 6 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 7 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 8 2/38 7.1 Power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7.2 Power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 PM6670AS evaluation tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8.1 VDDQ, VTT and VTTREF turn-on (soft-start) . . . . . . . . . . . . . . . . . . . . . 18 8.2 VDDQ working modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8.2.1 VDDQ forced PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8.2.2 VDDQ pulse-skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8.2.3 VDDQ non-audible pulse-skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 8.3 VDDQ, VTT and VTTREF load regulation . . . . . . . . . . . . . . . . . . . . . . . . 20 8.4 VDDQ and VTT load transient responses . . . . . . . . . . . . . . . . . . . . . . . . 22 8.5 VDDQ efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8.6 VDDQ gate drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 AN2798 9 Contents 8.7 VDDQ, VTT and VTTREF turnoff (soft-end) . . . . . . . . . . . . . . . . . . . . . . 24 8.8 UV, OV and thermal protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8.9 VDDQ current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8.10 VTT current limit (foldback) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 8.11 Switching frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8.12 Thermal behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3/38 List of figures AN2798 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. 4/38 PM6670AS demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 PM6670AS demonstration board schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Topside component placement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Topside view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Layer 2 view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Layer 3 view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Bottomside view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Bottomside component placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 JP3 (MODE) setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 JP1 (DDRSEL) setting (change to “non-audible” in graphic) . . . . . . . . . . . . . . . . . . . . . . . 14 JP2 (DSCG) setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 JP5 (COMP) setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PM6670AS test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 VDDQ soft-start at 180 mW load, pulse-skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 VTT turn-on (S0), pulse-skip mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 VDDQ = 1.8 V, VIN = 24 V, IVDDQ = 0 A, forced PWM mode. . . . . . . . . . . . . . . . . . . . . . 19 VDDQ = 1.8 V, VIN = 24 V, IVDDQ = 0 A, pulse-skip mode . . . . . . . . . . . . . . . . . . . . . . . 19 VDDQ = 1.8 V, VIN = 24 V, no load, non-audible pulse-skip mode (33 kHz) . . . . . . . . . . . 20 VDDQ load regulation - VIN = 24 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 VTT load regulation - LDOIN = VDDQ (VDDQ in forced PWM mode) . . . . . . . . . . . . . . . . 21 VTTREF load regulation (VDDQ in forced PWM mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 VDDQ load transient (VIN = 24 V, LOAD = 0 A to 8 A at 2.5 A/µs) (pulse-skip mode). . . . 22 VTT load transient (VIN = 24 V, LOAD = – 2 A to 2 A at 2.5 A/µs) (pulse-skip mode) . . . . 22 Forced PWM (blue), non-audible pulse-skip (green), pulse-skip (red) VDDQ efficiency vs. . output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 External MOS gate signals (VIN = 24 V, LOAD = 0 A) (pulse-skip mode) . . . . . . . . . . . . . 23 External MOS gate signals (VIN = 24 V, LOAD = 8 A) (pulse-skip mode) . . . . . . . . . . . . . 24 VDDQ, VTTREF, VTT output voltages and LDO input current, tracking discharge, no load on any rail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 VDDQ, VTTREF and VTT, non-tracking discharge, no load on any output . . . . . . . . . . . . 25 UV protection, pulse-skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 OV protection, pulse-skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 VDDQ, VTT, VTTREF and inductor current, thermal shutdown, pulse-skip mode . . . . . . . 28 VDDQ current limit protection during a load transient (0 A to 10 A at 2.5 A/µs) . . . . . . . . . 29 VTT current limit during an output short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Switching frequency vs. input voltage, VDDQ = 1.8 V, IVDDQ = 4 A, forced PWM mode . 31 Forced PWM (blue), non-audible pulse-skip (green) and pulse-skip (red), switching frequency vs. output current, VDDQ = 1.8 V, VIN = 24 V . . . . . . . . . . . . . . . . . . . . . . . . . . 32 IVTT = 0 A, average IC temperature = 37.5 °C, max internal IC temperature = 40.1 °C . . 33 IVTT = 0.5 A, average IC temperature = 48.8 °C, max internal IC temperature = 54.3 °C. 34 IVTT = 1 A, average IC temperature = 60.5 °C, max internal IC temperature = 72.7 °C . . 35 IVTT = 1.5 A, average IC temperature = 73.8 °C, max internal IC temperature = 95.6 °C. 36 AN2798 Main features 1 Main features 1.1 Switching section (VDDQ) 1.2 ■ 4.5 V to 36 V input voltage range ■ 0.9 V, ± 1 % voltage reference ■ 1.8 V (DDR2) or 1.5 V (DDR3) fixed output voltages ■ 0.9 V to 2.6 V adjustable output voltage ■ 1.237 V ± 1 % reference voltage available ■ Very fast load transient response constant on-time loop control ■ No-RSENSE current sensing using low-side MOSFETs' RDSON ■ Negative current limit ■ Latched OVP, UVP and thermal shutdown ■ Fixed 3 ms soft-start ■ Selectable pulse-skipping at light load ■ Selectable non-audible (33 kHz) pulse-skip mode ■ All ceramic output capacitor applications supported ■ Output voltage ripple compensation Reference and termination voltages (VTTREF and VTT) ■ 2 A peak LDO with foldback for VTT ■ Remote VTT output sensing ■ High-Z VTT output in S3 ■ All ceramic output capacitor applications supported ■ ±15 mA low-noise buffered reference for VTTREF 5/38 J11 1 0 0 C8 33n 10u 10 C6 0 DRSEL DDR JP1 10u 10 C7 0 2 C9 100n 10 C10 C19 10u 1 0 10u C20 1 2 1 2 0 R8 27 27k R9 18k 18 1 2 3 4 5 6 25 VTTGND VTTSNS DDR SEL DDRSEL VTTREF EF SGND AVCC THPD PD U1 0 R10 0 6670AS AS PM66 VCC LGATE PGND PG S3 S5 MODE JP3 C12 100n 18 17 16 15 14 13 2 R3 1k5 JP2 P2 DSCG VCC 1 0 C21 100p 100 C22 100p 1 0 2 R13 100k 10 2 100k 10 SW1 C14 00n 100 VCC R12 1 0 C13 100 00n 0 100k 10 2 0 R11 1 2 1 2 1 R2 18 18k 1 R17 R4 3R3 0 2 C17 0 Q2 0 C16 1 STS7NF60L 4 4 Q1 STS5NF60 60L 2 680 80p 0 D2 C1 10u C18 1n R16 4R7 R14 TP1 GND ND_TP INT_CER JP5 0 1 7.5k L1 0 2 1 47n 2 R15 6.8k C15 1u C2 10u R6 0 20u 220 C3 20u 220 C4 D3 1 1 1 1 PG J4 PGND J3 DDQ VDD J2 VIN J1 PM6670AS demonstration board schematic 1 1 1 0 D1 BAT41J BA 2 Figure 2. AGND J10 J8 J7 1 1 R7 3R9 R1 33 330k Demonstration kit schematic AGND TTREF EF VTT VTT LDOIN J6 J9 1 2 1 2 1 2 1 2 1 2 2 1 1 2 1 2 1 2 24 23 22 21 20 19 VTT LDOIN BOOT HGATE PHASE ASE CSNS VREF EF VOSC SC VSNS VS MODE COMP DSCG 7 8 9 10 11 12 CCGND VCC C5 1u 2 4 6 1 3 5 2 1 1 1 1 2 VCC 2 4 6 1 3 5 2 1 C11 10u 4 3 1 2 5 6 7 8 1 2 3 5 6 7 8 1 2 3 1 2 VCC 1 2 1 2 1 2 1 STPS PS1L 1L60A 1 2 J5 2 2 1 2 1 2 6/38 STPS PS1L 1L60A VCC Demonstration kit schematic AN2798 AM00655v1 AN2798 Demonstration kit schematic 2.1 Component list Table 1. PM6670AS demonstration board bill of materials Qty Component Description Package Part number MFR Value 2 C1, C2 Ceramic, 50 V, X5R, 20% SMD 1210 UMK325BJ106KM-T Taiyo Yuden 10 µ 2 C3, C4 POSCAP, 4 V, 15 m, 20% SMD 7343 (D) 4TPE220MF Sanyo 220 µ 1 C5 Ceramic, 6.3 V, X5R, 10% SMD 3216-12 Standard 1µ Taiyo Yuden 10 µ 3 C6, C7, C11 Ceramic, 6.3 V, X5R, 10% SMD 0805 JMK212BJ106KG-T 1 C8 Ceramic, 50 V,X7R, 20% SMD 0603 Standard 33 n 4 C9, C10, C13, C14 Ceramic, 50 V, X7R, 20% SMD 0603 Standard 100 n 1 C12 Ceramic, 50 V, X7R, 10% SMD 0805 Standard 100 n 1 C15 Ceramic, 50 V, X7R, 10% SMD 0603 Standard 6n8 1 C16 Ceramic, 50 V, X7R, 10% SMD 0603 Standard 680 p 1 C17 Ceramic, 20% SMD 0603 Standard N.M. 1 C18 Ceramic, 50 V, X7R, 10% SMD 0805 Standard 1n 2 C19, C20 Ceramic, 6.3 V, X5R, 10% SMD 0805 Taiyo Yuden N.M. 1 R1 Chip Resistor, 0.1 W, 1% SMD 0603 Standard 330 k 1 R2 Chip Resistor, 0.1 W, 1% SMD 0603 Standard 18 k 1 R3 Chip Resistor, 0.1 W, 1% SMD 0603 Standard 1.5 k 1 R4 Chip Resistor, 0.1 W, 1% SMD 0603 Standard 3R3 1 R6 Chip Resistor, 0.1 W, 1% SMD 0805 Standard 0 1 R7 Chip Resistor, 0.1 W, 1% SMD 0603 Standard 3R9 1 R8 Chip Resistor, 0.1 W, 1% SMD 0603 Standard 39 k 1 R9 Chip Resistor, 0.1 W, 1% SMD 0603 Standard 39 k 1 R10 Chip Resistor, 0.1 W, 1% SMD 0603 Standard 0 3 R11, R12, R13 Chip Resistor, 0.1 W, 1% SMD 0603 Standard 100 k 1 R14 Chip Resistor, 0.1 W, 1% SMD 0805 Standard 7k5 1 R15 Chip Resistor, 0.1 W, 1% SMD 0603 Standard 6k8 1 R16 Chip Resistor, 0.1 W, 1% SMD 0805 Standard 4R7 1 R17 Chip Resistor, 0.1 W, 1% SMD 0603 Standard 0 1 L1 SMT, 10.6 Arms, 4.36 mΩ 13.8 x 13.2 mm MLC1538-152ML Coilcraft 1.5 µ 1 Q1 N-Channel, 60 V SO-8 STS7NF60L ST 1 Q2 N-Channel, 60 V SO-8 STS7NF60L ST 1 D1 Schottky, 100 V, 0.2 A SOD-323 BAT41J ST 1 D2 Schottky, 60 V, 1 A DO214-AC STPS1L60A ST 1 D3 1 U1 JMK212BJ106KG-T N.M. Controller VFQFPN-24 PM6670AS ST 7/38 Demonstration kit schematic Table 1. PM6670AS demonstration board bill of materials (continued) Qty Component 11 J1, J2, J3, J4, J5, J6, J7, J8, J9, J10,J11 Header, single pin 3 JP1, JP2, JP3 Jumper, 2 x 3, 100 mils 1 JP5 PCB pads selector 1 TP6 Test point 1 SW1 Dip switch 2 8/38 AN2798 Description Package DIP-2 Part number MFR Standard Value AN2798 Component assembly and layout 3 Component assembly and layout Figure 3. Topside component placement Figure 4. Topside view 9/38 Component assembly and layout Figure 5. Layer 2 view Figure 6. Layer 3 view 10/38 AN2798 AN2798 Component assembly and layout Figure 7. Bottomside view Figure 8. Bottomside component placement 11/38 I/O interface 4 AN2798 I/O interface The PM6670AS demonstration board has the following test points as given in Table 2. Table 2. PM6670AS demonstration board input and output interface Test point VIN Battery input voltage positive terminal PGND Battery input and VDDQ output common return VDDQ VDDQ output LDOIN LDO linear regulator input VTT AGND VTTREF VCC VCCGND 4.1 Description VTT output (LDO) VTT and VTTREF outputs common return VTTREF output + 5 V supply, positive terminal Signal ground and VCC supply return PG VDDQ output Power Good signal TP1 Connection point between power and signal grounds Recommended equipment 4 V to 36 V, 30 W power supply Active loads Digital multimeters 200 MHz four-trace oscilloscope 12/38 AN2798 5 Configuration Configuration The PM6670AS board allows the user to choose the desired mode of operation using four jumpers (JP1, JP2, JP3 and JP5) and two resistors. Refer to the following configuration description. 5.1 JP3 fixed or adjustable output voltage (MODE pin) The JP3 jumper is used to choose between fixed output voltage (1.5 V or 1.8 V) and a userdefined output voltage in the range 0.9 V to 2.6 V. When connected in the lower position, the fixed output voltage is selected and the voltage depends on the setting of the DDRSEL pin (see Section 5.2). If JP3 is in the upper position, the output voltage is given by: VDDQ ADJ = 0.9 × Figure 9. R8 + R9 R8 JP3 (MODE) setting Adjustable Output Voltage Fixed Output Voltage (default position) Both the R8 and R9 resistors are set to 39 kΩ (1.8 V by default) and can be changed by the user. 5.2 JP1 DDR2/DDR3 or power-saving mode (DDRSEL pin) The JP1 jumper allows different options depending on the JP3 configuration. If the fixed output voltage is selected (JP3 in the lower position), the user can choose between 1.8 V (DDR2) or 1.5 V (DDR3), connecting JP1 as shown in Figure 10, and the pulse-skip mode is set by default. When the adjustable output voltage is selected (JP3 in the upper position), the same jumper allows choosing between forced PWM, pulse-skip and non-audible pulse-skip modes as shown in Figure 10 on page 14. 13/38 Configuration AN2798 Figure 10. JP1 (DDRSEL) setting Forced PWM (default position) 1.8 V output voltage (default position) 1.5 V output voltage Non Audible Pulse-Skip 1.5 V output voltage Pulse-Skip JP1 options when JP3 is in the lower position 5.3 JP1 options when JP3 is in the upper position JP2 output discharge (DSCG pin) The JP2 jumper is used to select the desired output discharge when both S3 and S5 signals are tied low. In the upper position the outputs are not discharged at all, while in the lower position the outputs are independently discharged using the internal MOSFETs (22 Ω for VDDQ and VTT, 1.5 kΩ for VTTREF). The tracking discharge is programmed by putting JP2 in the central position. This discharge mode relies on the connection of the LDOIN pin to the VDDQ output, see Section 6: Test setup on page 16 for details. If an external rail is used to supply the LDO, the tracking discharge cannot be used because the device can be damaged while attempting to sink 1 A from the LDO input. Figure 11. JP2 (DSCG) setting No Discharge (default position) Tracking Discharge Non-Tracking Discharge 14/38 AN2798 5.4 Configuration JP5 compensation network (COMP pin) The JP5 jumper is located on the bottom side of the PM6670AS board and allows connecting the integrator input (COMP pin) to the output through a simple capacitor (integrative compensation) or using the "virtual ESR" network for very low ESR output capacitor applications (e.g. all ceramic output capacitor applications). The integrative compensation is set by default. Refer to the PM6670AS datasheet for details about ceramic output capacitor applications and the virtual ESR design. Figure 12. JP5 (COMP) setting Integrative Compensation (default position) Virtual ESR Network 15/38 Test setup 6 AN2798 Test setup Figure 13 shows the suggested setup connections between the PM6670AS demonstration board, the loads and the external supply. The LDO input (LDOIN) is connected to VDDQ by default (R6 = 0 Ω). Figure 13. PM6670AS test setup 16/38 AN2798 7 Getting started Getting started The following step-by-step power-up and power-down sequences are provided in order to correctly evaluate the PM6670AS board performance. 7.1 Power-up sequence Working in an ESD-protected environment is highly recommended. Check all wrist straps and mat-earth connections before handling the PM6670AS board. 1. Connect power supplies as shown in the PM6670AS test setup (Figure 13) and insert the meters in order to perform the desired performance evaluation. Connect the scopeprobes as desired. 2. Set the JP1 through JP5 jumpers in order to properly configure the PM6670AS board. Set the S3-S5 switches to the on position (upper position). Do not change any of the jumper settings when the board is powered. 3. Set the VCC supply to 5 V ± 5 % and the current limit to 100 mA. 4. Set the VIN supply to a voltage in the range 4.5 V to 36 V. An initial test at 24 V and 3 A current limit is suggested. 5. Set all loads to 0 A. 6. Turn on the VIN supply. 7. Turn on the VCC supply. 8. Vary the VDDQ load from 0 A to 8 A. 9. Vary the VTT load from 0 A to 2 A to test source capability. To test sink capability use the dashed VTT load shown in Figure 13. 10. Vary the VTTREF load to test source capability. 11. Vary the VIN supply from 4.5 V to 36 V. 7.2 Power-down sequence 1. Decrease the VTTREF and VTT loads to 0 A. 2. Reduce the VDDQ load to 0. 3. Decrease the VCC supply from 5 V to 3.8 V in order to test the UVLO. 4. Increase the VCC supply from 3.8 V to 5 V to restart the device. 5. Use the S3-S5 switches to enter/exit the S0-S3-S5 states. 6. Turn off the VDDQ load. 7. Turn off the VCC supply. 8. Turn off the VIN supply. 17/38 PM6670AS evaluation tests 8 PM6670AS evaluation tests 8.1 VDDQ, VTT and VTTREF turn-on (soft-start) AN2798 The VDDQ soft-start is divided in 4 steps. In each step the current limit is increased by ¼ of the nominal value. This behavior is well understood by loading the rail, as performed in the test. VTT and VTTREF soft-starts are performed at their maximum available current. Figure 14. VDDQ soft-start at 180 mΩ load, pulse-skip mode Figure 15. VTT turn-on (S0), pulse-skip mode 18/38 AN2798 PM6670AS evaluation tests 8.2 VDDQ working modes 8.2.1 VDDQ forced PWM mode When the forced PWM working mode is selected (JP3 and JP1 in the upper position), the inductor current is allowed to become negative and the following waveform can be captured. Figure 16. VDDQ = 1.8 V, VIN = 24 V, IVDDQ = 0 A, forced PWM mode 8.2.2 VDDQ pulse-skip mode The default working mode is the pulse-skip algorithm, in which the low-side MOSFET is turned off when the inductor current becomes equal to zero. This behavior allows reaching maximum efficiency. Figure 17. VDDQ = 1.8 V, VIN = 24 V, IVDDQ = 0 A, pulse-skip mode 19/38 PM6670AS evaluation tests 8.2.3 AN2798 VDDQ non-audible pulse-skip mode In order to avoid an insufficient switching frequency, the non-audible pulse-skip mode can be selected (JP3 in the upper position and JP1 in the middle). So doing, the minimum switching frequency allowed is 33 kHz as depicted in the following picture. Figure 18. VDDQ = 1.8 V, VIN = 24 V, no load, non-audible pulse-skip mode (33 kHz) 8.3 VDDQ, VTT and VTTREF load regulation Figure 19 through 21 refer to VDDQ, VTT and VTTREF output voltage versus load current. The switching section works in pulse-skip mode and directly supplies VTT LDO. Figure 19. VDDQ load regulation - VIN = 24 V 1.840 Forced PWM Pulse Skip 1.830 Voltage [V] Non Audible PS 1.820 1.810 1.800 1.790 0.001 0.010 0.100 Current [A] 20/38 1.000 10.000 AN2798 PM6670AS evaluation tests Figure 20. VTT load regulation - LDOIN = VDDQ (VDDQ in forced PWM mode) 0.930 Voltage [V] 0.920 0.910 0.900 0.890 0.880 0.870 -2.000 -1.500 -1.000 -0.500 0.000 0.500 1.000 1.500 2.000 Current [A] Figure 21. VTTREF load regulation (VDDQ in forced PWM mode) 0.920 Voltage [V] 0.915 0.910 0.905 0.900 0.895 0.890 -30 -20 -10 0 10 20 30 Current [mA] 21/38 PM6670AS evaluation tests 8.4 AN2798 VDDQ and VTT load transient responses Load transient responses are evaluated by loading VDDQ and VTT output rails with a current slew rate of 2.5 A/µs. Figure 22. VDDQ load transient (VIN = 24 V, LOAD = 0 A to 8 A at 2.5 A/µs) (pulse-skip mode) Figure 23. VTT load transient (VIN = 24 V, LOAD = – 2 A to 2 A at 2.5 A/µs) (pulse-skip mode) 22/38 AN2798 8.5 PM6670AS evaluation tests VDDQ efficiency The three working modes lead to different power efficiency. The test setup is VIN = 24 V, FSW = 330 kHz, VDDQ = 1.8 V. The following graph summarizes the results. Figure 24. Forced PWM (blue), non-audible pulse-skip (green), pulse-skip (red) VDDQ efficiency vs. output current 100 90 Efficiency [%] 80 70 60 50 40 30 Forced PWM 20 Pulse Skip 10 0 0.001 Non Audible PS 0.010 0.100 1.000 10.000 Current [A] 8.6 VDDQ gate drivers The PM6670 internal MOS driver turns on and off the high-side and low-side external MOSFET, avoiding cross-conduction. In Figure 24 and 25 the gates signals are depicted without load and with load. Figure 25. External MOS gate signals (VIN = 24 V, LOAD = 0 A) (pulse-skip mode) 23/38 PM6670AS evaluation tests AN2798 Figure 26. External MOS gate signals (VIN = 24 V, LOAD = 8 A) (pulse-skip mode) 8.7 VDDQ, VTT and VTTREF turnoff (soft-end) Tracking discharge The jumper JP2, if placed in the middle, allows the output tracking discharge. When S3 and S5 are pulled down, VTT discharges VDDQ by sinking 1 A and, at the same time, tracks the VDDQ remaining half. When VDDQ reaches about 400 mV, the output discharge MOSFETs are all closed and each rail is finally discharged. Figure 27. VDDQ, VTTREF, VTT output voltages and LDO input current, tracking discharge, no load on any rail 24/38 AN2798 Table 3. PM6670AS evaluation tests Measured discharge resistance in soft-discharge mode VDDQ output VTTREF output VTT output 25 Ω 1.5 kΩ 23 Ω Measured N.T.D. discharge MOSFET’s RDSon Non-tracking discharge When the non-tracking discharge is programmed (JP2 in the lower position) and S3-S5 are both tied to GND, each output rail is discharged through its discharge MOSFET, as depicted in the following picture. Figure 28. VDDQ, VTTREF and VTT, non-tracking discharge, no load on any output 25/38 PM6670AS evaluation tests 8.8 AN2798 UV, OV and thermal protections Latched UV protection If the output voltage is lower than the 70 % nominal value, the undervoltage state is entered and the discharge MOSFETs are turned on (as in the non-tracking soft-end). Figure 29. UV protection, pulse-skip mode 26/38 AN2798 PM6670AS evaluation tests Latched OV protection If the output voltage is higher than the 115 % nominal value, the overvoltage state is entered and the low-side MOSFET is turned on. VTT and VTTREF are discharged through their discharge MOSFETs. Figure 30. OV protection, pulse-skip mode 27/38 PM6670AS evaluation tests AN2798 Latched thermal shutdown If the junction temperature rises up to 150 deg, the thermal protection circuit turns off the device and discharges the output rails by performing the non-tracking discharge soft-end. Figure 31. VDDQ, VTT, VTTREF and inductor current, thermal shutdown, pulse-skip mode 8.9 VDDQ current limit The valley current limit avoids any high side turning on if the inductor current is higher than the programmed value. This current limit can be designed with the following equation: I CL = 100µA x R ILIM R LS,DSon The current sensing is performed by comparing the voltage drop in the low-side MOSFET, during the TOFF period, with the voltage drop given by an injected current and the current limit resistor. 28/38 AN2798 PM6670AS evaluation tests Figure 32. VDDQ current limit protection during a load transient (0 A to 10 A at 2.5 A/µs) 29/38 PM6670AS evaluation tests 8.10 AN2798 VTT current limit (foldback) VTT LDO has a foldback protection feature which reduces the current limit to 1 A when the VTT output voltage is outside the ± 10 % Power Good window. The current limit is restored to 2 A when the output voltage re-enters the Power Good window. Figure 33. VTT current limit during an output short 30/38 AN2798 8.11 PM6670AS evaluation tests Switching frequency Switching frequency vs. input voltage The constant on-time controller leads to a quasi-constant switching frequency, slightly following the input voltage. Figure 34. Switching frequency vs. input voltage, VDDQ = 1.8 V, IVDDQ = 4 A, forced PWM mode 500 Frequency [kHz] 450 400 350 300 4 14 24 34 Voltage [V] 31/38 PM6670AS evaluation tests AN2798 Switching frequency vs. output current The switching frequency can decrease to very low values in pulse-skip mode instead in nonaudible pulse-skip there is a lower limit (about 33 kHz). With increasing load, however, the switching frequency increases a bit, as a consequence of conduction and switching losses. Figure 35. Forced PWM (blue), non-audible pulse-skip (green) and pulse-skip (red), switching frequency vs. output current, VDDQ = 1.8 V, VIN = 24 V 500 Frequency [kHz] 400 300 200 Forced PWM Pulse Skip Non Audible PS 100 0 0.001 0.010 0.100 Current [A] 32/38 1.000 10.000 AN2798 8.12 PM6670AS evaluation tests Thermal behavior The IC internal maximum and average temperature can be monitored by an IR camera. For the measurements in Figure 36 through 39 the test setup is: ● VIN = 24 V ● FSW = 360 kHz ● Pulse-skip mode ● IVDDQ = 4 A ● VTT rail powered by VDDQ ● TAMB = 25 °C By increasing the VTT current, the IC temperature changes as depicted in the following pictures. Figure 36. IVTT = 0 A, average IC temperature = 37.5 °C, max internal IC temperature = 40.1 °C 33/38 PM6670AS evaluation tests AN2798 Figure 37. IVTT = 0.5 A, average IC temperature = 48.8 °C, max internal IC temperature = 54.3 °C 34/38 AN2798 PM6670AS evaluation tests Figure 38. IVTT = 1 A, average IC temperature = 60.5 °C, max internal IC temperature = 72.7 °C 35/38 PM6670AS evaluation tests AN2798 Figure 39. IVTT = 1.5 A, average IC temperature = 73.8 °C, max internal IC temperature = 95.6 °C 36/38 AN2798 Revision history 9 Revision history Table 4. Document revision history Date Revision 04-Nov-2008 1 Changes Initial release. 37/38 AN2798 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 38/38