AN4214 Application note High power factor flyback converter using the L6564 Harjeet Singh Introduction This application note describes the example of single stage high power factor (HPF) flyback topology using ST’s L6564 PFC controller. The L6564 is a current mode PFC controller operating in transition mode (TM). The highly linear multiplier, along with a special correction circuit that reduces crossover distortion of the mains current, allows wide range mains operation with an extremely low THD, even over a large load range. The main drawback of such flyback topology with HPF is that it has significant magnitude of twice the mains frequency ripple at output DC voltage because there is no electrolytic capacitor after bridge rectification. But there are some applications like lighting for LED driving, battery chargers, where ripple voltage is not a big concern, since in these applications the loads are mostly constant-current driven with acceptable ripple or any kind of load which is powered through followed DC-DC downstream converters connected to output of HPF flyback. The output voltage is controlled by means of a voltage mode error amplifier and an accurate (1% at Tj = 25 °C) internal voltage reference. The loop stability is optimized by the voltage feedforward function (1/V2 correction), which in this IC uses a proprietary technique that considerably improves line transient response as well in case of both drops and surges (“bidirectional”) of the mains. In addition to overvoltage protection being capable of controlling the output voltage in the PFC stage during transient conditions, the IC also provides protection against feedback loop failures or erroneous settings. The feature is quite useful in case of flyback operation to detect output voltage for any primary auxiliary winding and trigger the protection to shutdown the converter in case output voltage exceeds the nominal value. Other on-board protection functions allow brownout conditions and magnetic saturation to be safely handled. The brownout is sensed through the MULT pin to shut down the converter in case the input mains supply drops below the minimum operating voltage level. The L6564 main features are: Fast “bidirectional” input voltage feedforward (1/V2 correction) Accurate adjustable output overvoltage protection Protection against feedback loop disconnection (latched shutdown) Inductor saturation protection AC brownout detection Low (100 µA) start-up current 6 A max. operating bias current 1% (at TJ = 25 °C) internal reference voltage -600/+800 mA totem pole gate driver with active pull-down during UVLO SSOP10 package January 2015 DocID023991 Rev 1 1/37 www.st.com 37 Contents AN4214 Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 SMPS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 PFC_OK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 PFC_OK function in PFC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 PFC_OK function in flyback operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 VFF pin and brownout function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Basic specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 Transformer construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.1 Mains voltage and input current waveforms . . . . . . . . . . . . . . . . . . . . . . . 14 6.2 Output load current waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.3 Steady state switching waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7 Short-circuit test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8 No load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 9 Harmonics measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 10 Schematic of SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 11 Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 12 CVCC controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 13 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 14 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2/37 DocID023991 Rev 1 AN4214 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Basic specifications of SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Transformer specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Winding details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 DocID023991 Rev 1 3/37 37 List of figures AN4214 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. 4/37 Block diagram of L6564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Output voltage setting, OVP and FFP functions: internal block diagram . . . . . . . . . . . . . . . 7 Input OVP protection network to bias PFC_OK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Voltage feedforward: squarer-divider (1/V2) block diagram and transfer characteristic . . . . 9 L6562A and L6564 comparison (package and features) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Transformer construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Current THD vs. mains voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Power factor vs. mains voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Full load efficiency vs. mains voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Ch: 4-input voltage; Ch: 2-input current waveforms at 140 Vac . . . . . . . . . . . . . . . . . . . . . 14 Ch: 4-input voltage; Ch: 2-input current waveforms at 190 Vac . . . . . . . . . . . . . . . . . . . . . 15 Ch: 4-input voltage; Ch: 2-input current waveforms at 220 Vac . . . . . . . . . . . . . . . . . . . . . 15 Ch: 4-input voltage; Ch: 2-input current waveforms at 265 Vac . . . . . . . . . . . . . . . . . . . . . 16 Ch: 2-output load current waveform at 220 Vac pk-pk current ripple = 112 mA . . . . . . . . . 17 Ch: 4-drain-source voltage; Ch: 1-drain current; Ch: 2-COMP at 140 Vac . . . . . . . . . . . . . 18 Ch: 4-drain-source voltage; Ch: 1-drain current; Ch: 2-COMP at 140 Vac (zoom view) . . . 18 Ch: 4-drain-source voltage; Ch: 1-drain current; Ch: 2-COMP at 230 Vac . . . . . . . . . . . . . 19 Ch: 4-drain-source voltage; Ch: 1-drain current; Ch: 2-COMP at 230 Vac (zoom view) . . . 19 Ch: 4-drain-source voltage; Ch: 1-drain current; Ch: 2-COMP at 265 Vac . . . . . . . . . . . . 20 Ch: 4-drain-source voltage; Ch: 1-drain current; Ch: 2- COMP at 265 Vac (zoom view) . . 20 Output short-circuit at 140 Vac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Output short-circuit at 140 Vac (zoom view 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Output short-circuit at 140 Vac (zoom view 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Output short-circuit at 230 Vac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Output short-circuit at 230 Vac (zoom view 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Output short-circuit at 230 Vac (zoom view 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Output short-circuit at 265 Vac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Output short-circuit at 265 Vac (zoom view 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Output short-circuit at 265 Vac (zoom view 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 No load waveforms at 140 Vac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 No load waveforms at 265 Vac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Current THD at 150 Vac mains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Current THD at 190 Vac mains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Current THD at 230 Vac mains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Current THD at 265 Vac mains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Schematic of SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SEA05 internal circuit and its application in flyback topology . . . . . . . . . . . . . . . . . . . . . . . 34 SEA05 package and pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 DocID023991 Rev 1 08/7 ,19 &203 ,GHDOUHFWLILHU 9 9 9 9 212))&RQWURO DocID023991 Rev 1 3)&B2. 9 9 9 9 9)) 9 9 /B293 (UURU$PSOLILHU 293 'LVDEOH 9 4 /(% ,QWHUQDO6XSSO\%XV 9ROWDJH UHIHUHQFHV 08/7,3/,(5 =HUR&XUUHQW 'HWHFWRU 4 6WDUWHU 2)) 9 293 212))&RQWURO 'LVDEOH 67$57(5 5 6 92/7$*( 5(*8/$725 0$,16'523 '(7(&725 « ',6$%/( 89/2 89/2 'LVDEOH 4 '5,9(5 &/$03 5 6 89/2 /B293 9FF &6 *1' *' 1 =&' AN4214 Block diagram Block diagram Figure 1. Block diagram of L6564 $0Y 5/37 37 SMPS description 2 AN4214 SMPS description The main feature of this converter is that the input current is almost in phase with the mains voltage, therefore the power factor is close to unity and hence the low current harmonics. This is achieved using the L6564 TM PFC controller, which shapes the input current as a sine wave in phase with the mains voltage. The power supply utilizes a typical flyback converter topology, using a transformer to provide the required insulation between the primary and secondary side. The converter is connected after the mains rectifier and the capacitor filter, which in this case is quite small to prevent damage to the shape of the input current. The flyback switch is represented by the power MOSFET M1, and driven by the L6564. At startup, the L6564 is powered by the VCC capacitor (C16), which is charged via resistors R4 and R8. As the capacitor C16 charges to the turn-on threshold of the L6564 (typically at 12 V), the transformer T1 auxiliary winding (pins 5-6) generates the VCC voltage, rectified by D8 and R13, that powers the L6564 during normal operation. R12 is also connected to the auxiliary winding to provide the transformer demagnetization signal to the L6564 ZCD pin, turning on the MOSFET at any switching cycle. The MOSFET used is the STP7N80K5, a ST's K5 high voltage MOSFET series device housed in a TO-220 package, and needing only a small heat sink. The transformer is layer type, using a standard ferrite size ER28. The flyback reflected voltage is close to 180 V, providing enough room for the leakage inductance voltage spike still within the reliability margin of the MOSFET even at 300 Vac input. The RCD snubber circuit using R5, C5 and D6 clamps the peak of the leakage inductance voltage spike at MOSFET turn-off. Resistor R3 is usually inserted in series with subbing capacitor C5 to kill the spike and reduces further the EMI generated due to leakage spikes. The resistors R33 and R34 sense the current flowing into the transformer primary side. Once the signal at the current sense pin has reached the level programmed by the internal multiplier of the L6564, the MOSFET turns off. The divider R11, R14 and R18 provides the L6564 multiplier pin with instantaneous voltage information which is used to modulate the current flowing into the transformer primary side. C17 is a small noise suppression capacitor, of course the purpose of this capacitor is to prevent disturbance to the actual sinusoidal mains information. The output regulation is done by means of an isolated voltage loop by the optocoupler U2, and using an inexpensive TL431 to drive the optocoupler. For an LED driving application, additional constant current drive circuitry using the SEA05 can be implemented as described in the schematic, whereas the current signal is detected by sensing resistors R9, R10. The opto-transistor modulates the input voltage of the L6564 internal amplifier, thus closing the voltage loop. The output rectifier is a fast recovery type, selected according to its maximum reverse voltage, forward voltage drop and power dissipation. A small LC filter is added on the output, filtering the high frequency ripple. Compared to the L6562A (8-pin TM PFC controller), the L6564 has some additional features and hence there is additional circuitry incorporated in the schematic for utilizing the features of the L6564. The L6564 also has two additional pins: VFF and PFC_OK. The functions of these pins are described in the following paragraphs. 6/37 DocID023991 Rev 1 AN4214 SMPS description 2.1 PFC_OK 2.1.1 PFC_OK function in PFC operation PFC pre-regulator output voltage monitoring/disable function: This pin senses the output voltage of the PFC pre-regulator through a resistor divider and is used for protection purposes. If the voltage on the pin exceeds 2.5 V the IC stops switching and restarts as the voltage on the pin falls below 2.4 V. However, if the voltage of the INV pin falls 40 mV below that of the pin PFC_OK, a feedback failure is assumed. In this case the device is latched off due to feedback failure protection (FFP). Normal operation can be resumed only by cycling VCC, bringing its value lower than 6 V before moving up to the turn-on threshold. If the voltage on this pin is brought below 0.23 V, the IC is shut down. To restart the IC the voltage on the pin must go above 0.27 V. This can also be used as a remote on/off control input. Referring to the circuit portion below, R3 and R4 composes the network to activate PFC output overvoltage shutdown. Figure 2. Output voltage setting, OVP and FFP functions: internal block diagram 9RXW 5D 5 5E 'LVDEOH 9 9 3)&B2. 5D 9 9 293 /B293 5 9 5E )UHTXHQF\ &203 FRPSHQVDWLRQ ,19 5 9 (UURU$PSOLILHU 5 $0Y 2.1.2 PFC_OK function in flyback operation The same pin can be also be used in case of flyback converter to shut down the converter in case of either input overvoltage or output overvoltage. For input overvoltage protection, one can bias the pin using resistor divider network at rectified DC voltage to activate input overvoltage protection at the required mains OVP level. Referring to the circuit portion below, R3, R4 composes the network to activate mains overvoltage shutdown, where the small capacitor C2 is used to average the DC value of sensing voltage at the PFC_OK pin. In the schematic, the biasing components R2, R6, R7 and R22 comprise the input OVP detection circuit. The divider ratio is selected to provide 2.5 V at required mains OVP level. If output overvoltage protection is preferred instead of mains OVP, we can utilize the auxiliary winding output used to provide the operating voltage to the controller as well as demagnetization input to ZCD. Since we get the reflection of output voltage at auxiliary output supply, we can simply tap the signal for PFC_OK which is programmed to 2.5 V using DocID023991 Rev 1 7/37 37 SMPS description AN4214 the resistor divider network at the desired output OVP. This is achieved using resistor divider network R5 and R4 at auxiliary output supply. In the schematic (see Figure 36 on page 30) we have implemented an input OVP protection network to bias PFC_OK. Figure 3. Input OVP protection network to bias PFC_OK 2.1.3 VFF pin and brownout function This is second input to the multiplier block for 1/V² function. A capacitor and a parallel resistor must be connected from this pin to GND. They complete the internal peak-holding circuit that derives the information on the RMS mains voltage. The voltage at this pin, a DC level equal to the peak voltage on the pin MULT (3), compensates the control loop gain dependence on the mains voltage. The variation of internal current reference signal VCSX versus the mains voltage level detected at MULT input (VFF = VMULT) is shown in the graph in Figure 4. This is the last signal which is compared with the error signal to output the required gate signal ON time. Never connect the pin directly to GND, but with a resistor ranging from 100 kΩ (minimum) to 2 MΩ (maximum). This pin is internally connected to a comparator in order to provide the brownout (AC mains under voltage) protection. A voltage below 0.8 V shuts down (not latched) the IC and brings its consumption to a considerably lower level. The IC restarts as the voltage at this pin goes above 0.88 V. Note: 8/37 This is one of the important features of the L6564 where we can manage the overload condition and prevent excessive current from flowing through the input section at worst low mains operating condition. So as the mains voltage drops below a programmed level, the IC stops as the VFF pin detects the brownout level. DocID023991 Rev 1 AN4214 SMPS description Figure 4. Voltage feedforward: squarer-divider (1/V2) block diagram and transfer characteristic 5HFWLILHGPDLQV FXUUHQW UHIHUHQFH 9FV[ ($RXWSXW 9 &203 9FV[ /+ / 08/7,3/,(5 9 &203 9 LGHDOGLRGH 9 $FWXDO ,GHDO 9 08/7 0$,16'523 '(7(&725 9)) & )) 5 )) 9)) 908/7 $0Y Figure 5. L6562A and L6564 comparison (package and features) $0Y The L6564 is the same as the L6562A, but with the followings additional features: Brownout protection: prevents bridge inductor and MOSFET damage Inductor saturation protection: prevents MOSFET damage Feedback disconnection protection: prevents bulk capacitor burn Improved noise immunity: easier PCB layout Voltage feedforward: high line/load transient rejection Remote ON/OFF control: to easy communicate with PWM stage DocID023991 Rev 1 9/37 37 Basic specifications 3 AN4214 Basic specifications Table 1. Basic specifications of SMPS Parameters Limits Rated input voltage range 190 - 265 Vac Minimum voltage operation (in case of line sag) 140 Vac Input overvoltage shutdown > 275 Vac Input supply frequency (fL) 47 - 63 Hz Input / output isolation Yes, > 2.7 kV Power factor correction Yes, > 0.95 THD < 20% Nominal output voltage 75 V ± 1.5 V Load current 0.7 A No load input power at 230 Vac (1) < 0.75 W Total output power 55 W Efficiency (full load for wide mains variations) > 85% Output voltage pk-pk ripple(2.fL) < 20% Topology Single stage HPF flyback Maximum ambient temperature 50 C 1. The no load power consumption is measured after removing the resistors used for input OVP (R2, R6, R7). Table 2. Transformer specification 10/37 Parameters Limits Max. output power Max. 55 W Primary inductance 0.62 ± 0.01 mH at 50 KHz Primary side leakage inductance < 10 µH at 50 KHz Peak primary current 2.8 A Average primary current 0.9 A Saturation current 3.5 A Operating switching frequency 50 KHz min. to 125 KHz max. Core size ER28/17/11 Ferrite material N87, EPCOS Bobbin 12 pins, horizontal Dielectric strength > 2.7 kV Approx air gap (central limb) 0.8 mm DocID023991 Rev 1 AN4214 Transformer construction Table 3. Winding details Winding name 4 Start Stop No. of turns Wire gauge Order of windings Np1 3 2 35 4 x 0.25 mm Bottom Naux1 5 6 8 0.15 mm Above Np1 Nsec 12 10 30 7 x 0.2 5 mm Above Naux Naux2 8 7 7 0.15 mm Above Nsec Np2 2 1 35 4 x 0.25 mm Topmost Transformer construction Figure 6. Transformer construction DocID023991 Rev 1 11/37 37 Test results 5 AN4214 Test results The converter is tested at full load conditions from 140 Vac to 265 Vac and following are the test results as shown in Table 4. Table 4. Test results % efficiency Ior (mA)(1) 55.00 85.84 122 0.72 54.86 86.91 120 76.1 0.71 54.26 88.51 116 60.23 75.9 0.72 54.27 90.10 112 59.57 75.5 0.71 53.76 90.24 112 %ITHD Pin (W) Vinac (Vrms) Arms PF Vo (Vdc) Io (Adc) Po (W) 140 0.449 0.999 5.16 64.08 76.4 0.72 150 0.417 0.999 5.52 63.13 76.2 190 0.321 0.996 9.78 61.30 230 0.263 0.991 13.3 265 0.231 0.973 15.9 1. Ior = load current peak-peak ripple. &XUUHQW7+' Figure 7. Current THD vs. mains voltage ,7+' 9LQDF9UPV *,3*07 12/37 DocID023991 Rev 1 AN4214 Test results Figure 8. Power factor vs. mains voltage 3) 3) 9LQDF9UPV *,3*07 Figure 9. Full load efficiency vs. mains voltage (IILFLHQF\ (IILFLHQF\ 9LQDF9UPV *,3*07 DocID023991 Rev 1 13/37 37 Waveforms AN4214 6 Waveforms 6.1 Mains voltage and input current waveforms The converter is loaded at full load at input mains current is captured at different line conditions: 140 Vac, 190 Vac, 220 Vac and 265 Vac as shown from Figure 10 to 14. Figure 10. Ch: 4-input voltage; Ch: 2-input current waveforms at 140 Vac 14/37 DocID023991 Rev 1 AN4214 Waveforms Figure 11. Ch: 4-input voltage; Ch: 2-input current waveforms at 190 Vac Figure 12. Ch: 4-input voltage; Ch: 2-input current waveforms at 220 Vac DocID023991 Rev 1 15/37 37 Waveforms AN4214 Figure 13. Ch: 4-input voltage; Ch: 2-input current waveforms at 265 Vac 16/37 DocID023991 Rev 1 AN4214 6.2 Waveforms Output load current waveform The full load current waveform is captured at 220 Vac. The current pattern shows 100 Hz line ripple reflected at output. The typical peak to peak ripple is 15% of rated load current. Figure 14. Ch: 2-output load current waveform at 220 Vac pk-pk current ripple = 112 mA DocID023991 Rev 1 17/37 37 Waveforms 6.3 AN4214 Steady state switching waveforms The converter is powered at full load conditions and typical switching waveforms are captured as shown from Figure 15 to 20. Figure 15. Ch: 4-drain-source voltage; Ch: 1-drain current; Ch: 2-COMP at 140 Vac Figure 16. Ch: 4-drain-source voltage; Ch: 1-drain current; Ch: 2-COMP at 140 Vac (zoom view) 18/37 DocID023991 Rev 1 AN4214 Waveforms Figure 17. Ch: 4-drain-source voltage; Ch: 1-drain current; Ch: 2-COMP at 230 Vac Figure 18. Ch: 4-drain-source voltage; Ch: 1-drain current; Ch: 2-COMP at 230 Vac (zoom view) DocID023991 Rev 1 19/37 37 Waveforms AN4214 Figure 19. Ch: 4-drain-source voltage; Ch: 1-drain current; Ch: 2-COMP at 265 Vac Figure 20. Ch: 4-drain-source voltage; Ch: 1-drain current; Ch: 2- COMP at 265 Vac (zoom view) 20/37 DocID023991 Rev 1 AN4214 7 Short-circuit test Short-circuit test The short-circuit of output terminals of the converter is performed to analyze the safe operation of the converter in case of overload and short-circuit. The test is performed at 140 Vac, 230 Vac and 265 Vac in order to observe for any malfunction or failure. In particular the waveforms of drain switching voltage, drain current and Vcc of the device is observed when attempting the short-circuit. Looking into figures from 21 to 23, we can notice that there is no stress condition observed in power as well as control stage. The L6564 enters into protection mode with very low switching frequency of switching burst and MOSFET is well protected. Figure 21. Output short-circuit at 140 Vac &K'UDLQVRXUFHYROWDJH&K'UDLQFXUUHQW&K&203&K9FF DocID023991 Rev 1 21/37 37 Short-circuit test AN4214 Figure 22. Output short-circuit at 140 Vac (zoom view 1) &K'UDLQVRXUFHYROWDJH&K'UDLQFXUUHQW&K&203&K9FF *,3 Figure 23. Output short-circuit at 140 Vac (zoom view 2) &K'UDLQVRXUFHYROWDJH&K'UDLQFXUUHQW&K&203&K9FF 22/37 DocID023991 Rev 1 AN4214 Short-circuit test Figure 24. Output short-circuit at 230 Vac &K'UDLQVRXUFHYROWDJH&K'UDLQFXUUHQW&K&203&K9FF * Figure 25. Output short-circuit at 230 Vac (zoom view 1) &K'UDLQVRXUFHYROWDJH&K'UDLQFXUUHQW&K&203&K9FF DocID023991 Rev 1 23/37 37 Short-circuit test AN4214 Figure 26. Output short-circuit at 230 Vac (zoom view 2) &K'UDLQVRXUFHYROWDJH&K'UDLQFXUUHQW&K&203&K9FF * Figure 27. Output short-circuit at 265 Vac &K'UDLQVRXUFHYROWDJH&K'UDLQFXUUHQW&K&203&K9FF 24/37 DocID023991 Rev 1 AN4214 Short-circuit test Figure 28. Output short-circuit at 265 Vac (zoom view 1) &K'UDLQVRXUFHYROWDJH&K'UDLQFXUUHQW&K&203&K9FF Figure 29. Output short-circuit at 265 Vac (zoom view 2) &K'UDLQVRXUFHYROWDJH&K'UDLQFXUUHQW&K&203&K9FF DocID023991 Rev 1 25/37 37 No load 8 AN4214 No load In Figure 30 and Figure 31, some no load waveforms of the circuit are captured. When the control voltage on the COMP pin decreases below the Burst mode threshold of the L6564 (2.4 V typ.), IC gate driver output is inhibited and its consumption reduced. Figure 30. No load waveforms at 140 Vac &K'UDLQVRXUFHYROWDJH&K'UDLQFXUUHQW&K9FF&K&203 Figure 31. No load waveforms at 265 Vac &K'UDLQVRXUFHYROWDJH&K'UDLQFXUUHQW&K9FF&K&203 26/37 DocID023991 Rev 1 AN4214 9 Harmonics measurements Harmonics measurements At different mains voltage levels, the harmonic contents in mains current and its total harmonic distortion (THD) are noted to compare with the IEC61000-3-2 mainly for Class-C equipment. Figure 32. Current THD at 150 Vac mains DocID023991 Rev 1 27/37 37 Harmonics measurements AN4214 Figure 33. Current THD at 190 Vac mains Figure 34. Current THD at 230 Vac mains 28/37 DocID023991 Rev 1 AN4214 Harmonics measurements Figure 35. Current THD at 265 Vac mains DocID023991 Rev 1 29/37 37 30/37 47 ; DocID023991 Rev 1 # # + '// ",! ' !" # ( # ( ( # ( # 5 ' 5' # " # # # "!'" ( # ( ( ( # # ( " " # ( ' " # # 68' $ 5 *'-/ " ( ( 5' $%% # ( 5 *'-/ # ( ;' 0-:9152 + ( # ( ( # $%" ( ( # $ ' &% & ; ' ( # '( 7' ( 4 5' ;' 5 ' 5 * '-/ 5 ' # ( # ( 5 * '-/ 5') " # 5') " &"# % ( # + # # ( '( ' 5' '/:83 '// /:83 !&% $ 90590 & .36/267:165-3 ; ' ( 5 ' # ( # ( ;' $%"$ " & ; ' & $ $%%#$ % %! # 5' 5 ' ( # ( # ( # ' ' 5' ( # # # ; ' = 10 '-/< Schematic of SMPS AN4214 Schematic of SMPS Figure 36. Schematic of SMPS AN4214 11 Bill of material Bill of material Table 5. Bill of material Sr. no. Part reference Part description Qty. Package 1 R2, R8, R7, R11, R14 Resistor 1 M 5 SMD 1206 2 R4, R8 Resistor 220 K 2 SMD 1206 3 R3 Resistor CFR, 47 /0.5 W 1 TH 4 R5 Resistor 100 K/2 W 1 TH, axial 5 R13 Resistor 47 1 SMD 0805 6 R21 Resistor 1 M 1 SMD 0805 7 R31 Resistor 240 1 SMD 0805 8 R25, R17 Resistor 0 2 SMD 0805 9 R28 Resistor 100 1 SMD 0805 10 R22 Resistor 19 K 1 SMD 0805 11 R16 Resistor 47 K 1 SMD 0805 12 R29 Resistor 10 K 1 SMD 0805 13 R33, R34 Resistor 0.47 2 SMD 1206/TH 14 R18 Resistor 15 K, 1% 1 SMD 0805 15 R12 Resistor 68 K 1 SMD 0805 16 R26 Resistor 2.2 K 1 SMD 0805 17 R19 Resistor 5.6 K 1 SMD 0805 18 R9, R10 Resistor 0.14 , 1% 2 SMD 1206 19 R24 Resistor 1 K 1 SMD 0805 20 R27 Resistor 22 K 1 SMD 0805 21 R30 Resistor 15 1 SMD 0805 22 R36 Resistor 18 K 1 SMD 0805 23 R32 Resistor 120 K, 1% 1 SMD 0805 24 R35 Resistor 8.2 K, 1% 1 SMD 0805 25 R37 Resistor 4.3 K, 1% 1 SMD 0805 26 R1 Resistor, DNL 1 SMD 0805 27 R15 Resistor, DNL 1 SMD 0805 28 R23 Resistor, DNL 1 SMD 0805 29 C6 Capacitor X2 type, 220 nF/275 Vac 1 TH 30 C3 Capacitor X2 type, 100 nF/275 Vac 1 TH DocID023991 Rev 1 Manufacturer 31/37 37 Bill of material AN4214 Table 5. Bill of material (continued) Sr. no. Part reference Part description Qty. Package 31 C2,C10, C23, C26 Capacitor Y2 type, 2.2 nF/250 Vac 4 TH 32 C4 Capacitor polyester type 220 nF/630 Vdc 1 TH 33 C13, C17, C21 Capacitor ceramic 2.2nF/50V 3 SMD 0805 34 C18 Capacitor ceramic 1 F/25 V 1 SMD 0805 35 C22 Capacitor ceramic 22 pF/50 V 1 SMD 0805 36 C14,C19, C20, C15 Capacitor ceramic 100 nF/50 V 4 SMD 0805 37 C5 Capacitor film type 1 nF/400 Vdc or 1 KV disc 1 TH 38 C1 Capacitor film type - DNL 1 TH 39 C11 Capacitor ceramic 100 nF/100 V 1 SMD 1206 40 C24 Capacitor ceramic 1 nF/50 V 1 SMD 0805 41 C25 Capacitor ceramic 470 nF/25 V 1 SMD 0805 42 C16 Capacitor electrolytic 47 F/50 V 1 TH 43 C7, C8 Capacitor electrolytic 220 F/100 V 2 TH 44 C12 Capacitor electrolytic 10 F/35 V 1 TH 45 F1 Fuse 3 A glass 1 Axial 46 L1 Line inductor 470 H 1 TH, drum type dia. = 6 mm 47 L3 Common mode inductor 20 mH, EF20 type 1 TH, 8 pins horizontal 48 L2 DC filter inductor, 10 H/3 Amp 1 TH, drum type dia. = 6 mm 49 T1 Transformer ER28/17/11 1 TH, 12 pins horizontal 50 D2, D3, D4, D5 Diode 1N5408 4 CASE 267-05, axial lead ON Semiconductor 51 D9 Diode 1N4148 1 SOD27; DO-35 NXP Semiconductors 52 D8 Diode BAV21 1 SOD27; DO-35 NXP Semiconductors 53 D6 Diode STTH1L06A 1 SMD - SMA package STMicroelectronics 54 DZ2 Zener diode 18 V/0.5 W 1 TH 55 DZ2 Zener diode 12 V/0.5 W 1 TH 56 D1 Fast rectifier STTH3R04S 1 SMD - SMC package 32/37 DocID023991 Rev 1 Manufacturer STMicroelectronics AN4214 Bill of material Table 5. Bill of material (continued) Sr. no. Part reference Part description Qty. Package Manufacturer 57 D7 Fast rectifier STPS1150 1 SMD - SMA package STMicroelectronics 58 U1 PFC controller, L6564D 1 SMD - SSO-10 package STMicroelectronics 59 U2 Optocoupler PC817A 1 SMD - SO-4 60 U3 SEA05 1 SMD- SOT23-6L STMicroelectronics 61 M1 MOSFET STP7N80K5 1 TO-220 STMicroelectronics DocID023991 Rev 1 33/37 37 CVCC controller 12 AN4214 CVCC controller The SEA05 is ST’s advanced constant voltage, constant current driver designed for secondary side control for SMPS, battery charging and LED driving applications. One can implement the secondary side CVCC control using the SEA05 to achieve good stability in terms of temperature variations and better efficiency. The SEA05 is a highly integrated solution for SMPS applications requiring a dual control loop to perform CV (constant voltage) and CC (constant current) regulation. The device integrates a voltage reference, two op-amps (with OR-ed open-drain outputs), and a low side current sensing circuit. The voltage reference, along with one op-amp, is the core of the voltage control loop; the current sensing circuit and the other op-amp make up the current control loop. The external components needed to complete the two control loops are: a resistor divider that senses the output of the power supply and fixes the voltage regulation set-point at the specified value; a sense resistor that feeds the current sensing circuit with a voltage proportional to the DC output current (this resistor determines the current regulation set-point and must be adequately rated in terms of power dissipation), and the frequency compensation components (R-C networks) for both loops. The device, housed in one of the smallest available packages, is ideal for space-limited applications such as adapters and chargers. Some of the features of this device are as follows: Constant voltage and constant current control Wide operating VCC range: 3.5 - 36 V Low quiescent consumption: 200 µA Voltage reference: 2.5 V Voltage control loop accuracy: ± 0.5% Current sense threshold: 50 mV Open-drain output stage Low external component count SOT23-6L micro package The pin diagram, typical application schematic and package are show in figures 37 and 38. Figure 37. SEA05 internal circuit and its application in flyback topology $0Y 34/37 DocID023991 Rev 1 AN4214 CVCC controller Figure 38. SEA05 package and pinout $0Y DocID023991 Rev 1 35/37 37 References 13 14 AN4214 References AN1059: Design equations of high-power-factor flyback converters based on the L6561 AN2838: 35 W wide-range high power factor flyback converter evaluation board using the L6562A L6564 datasheet SEA05 datasheet Revision history Table 6. Document revision history Date Revision 02-Dec-2014 1 Initial release. 2 Updated Section 2: SMPS description on page 6 (updated device and package name). Updated Table 1: Basic specifications of SMPS on page 10 (updated parameters and limits, added note 1.). Updated Figure 36: Schematic of SMPS on page 30 (replaced by new figure). Updated Table 5: Bill of material on page 31 (replaced by new table). Minor modifications throughout document. 12-Jan-2015 36/37 Changes DocID023991 Rev 1 AN4214 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID023991 Rev 1 37/37 37