AN4006 Application note Designing a high-efficiency (60 W on 4 pairs) PoE converter using the PM8803 and an external current booster Introduction Power over Ethernet (PoE) applications are covered by the IEEE 802.3 working group with specifications released in 2003 (IEEE 802.3af) and in 2009 (IEEE 802.3at). Power at the input of the powered device (PD) increased from 12.95 W (of the .af standard) to 25.5 W (made available by the .at standard). In both cases the power delivery was based on the “2-pair” system, where 4 wires of the Ethernet cable are used (Tx, Rx pairs or spare pairs). Applications requiring more power are constantly emerging and some solutions are already on the market even though there is no standard fully supporting these applications yet. Some of the alternatives are based on a 4-pair delivery system that allows doubling the power delivered along the Ethernet cable with respect to a 2-pair system. This document focuses on a reference design for a high-efficiency, high-power PD (up to 60 W input) power converter based on an active-clamp forward topology with self-driven synchronous rectification using the PM8803 as the main controller. The total power is delivered on the 4 pairs of a single Ethernet cable by a high-power injector. The PM8803 is a highly integrated device embedding an IEEE 802.3at compliant powered device (PD) interfaced with a PWM controller and support for auxiliary sources. To manage the higher input current (up to 1.4 A) of high-power applications, a simple current booster is introduced in parallel to the PM8803 internal hot-swap MOSFET. The proposed converter prototype is built from the PM8803 demonstration board, but several component changes have been introduced in order to manage the higher current on the input/output section of the converter. Schematics of the PoE converter are given in Section 2 while the bill of material is detailed in Section 3. In Section 4 efficiency measurements together with main waveforms of the PoE interface and power converter are shown. February 2012 Doc ID 022454 Rev 1 1/19 www.st.com Contents AN4006 Contents 1 High-power PoE converter electrical specifications . . . . . . . . . . . . . . . 4 2 High-power converter schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 2/19 4.1 Efficiency measurements with synchronous rectification . . . . . . . . . . . . . 10 4.2 Converter waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2.1 Startup sequence using PowerDsine 9501G injector . . . . . . . . . . . . . . 12 4.2.2 Primary-side MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2.3 Secondary-side MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2.4 Output ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2.5 Gloop measurement and load transient response . . . . . . . . . . . . . . . . . 17 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Doc ID 022454 Rev 1 AN4006 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. High-power converter schematic: detail of the input section including data transformers, bridges, protection and optional CM choke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 High-power converter: detail of the PoE converter based on active-clamp forward topology with self-driven synchronous rectification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Efficiency measurements at 48 V input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Efficiency of the different circuits on the converter input stage. . . . . . . . . . . . . . . . . . . . . . 10 Booster current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Booster power dissipation vs. input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Startup with 0 A load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Startup with 10 A load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Primary-side power MOSFET waveforms at 0 A load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Primary-side power MOSFET waveforms at 16 A load . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Secondary-side power MOSFET waveforms at 0 A load . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Secondary-side power MOSFET waveforms at 16 A load . . . . . . . . . . . . . . . . . . . . . . . . . 14 Output ripple measurement at 0 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Output ripple measurement at 16 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Output ripple measurement at 16 A with infinite persistance . . . . . . . . . . . . . . . . . . . . . . . 16 Control loop of the converter at 48 V input and 18 A output . . . . . . . . . . . . . . . . . . . . . . . . 17 Response of the converter to a 8 A - 16 A load transient . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Doc ID 022454 Rev 1 3/19 High-power PoE converter electrical specifications 1 AN4006 High-power PoE converter electrical specifications Table 1. Specifications for 3.3 V output Parameter Description Min Input voltage range applied at J3 connector Operative input voltage Typ Max Unit 0 57 V 42 57 V 36 V Vin rising edge UVLO Vin falling edge Auxiliary input voltage range V 42 48 54 V 3.35 3.45 V 18 A 70 mVpp Output voltage (Vout) Vin= 42 V to 57 V, Iout 0 to Imax 3.25 Output current (Iout) Vin= 42 V to 57 V 0 Peak-to-peak output ripple 48Vin, Iout=Imax 50 Efficiency DC-DC only Vin=48 V, Iout=Imax 91 % Overall efficiency Vin=48 V, Iout=Imax 88 % 220 kHz Switching frequency 4/19 30 Doc ID 022454 Rev 1 !58 30 2 &ERRITE"EADOHM! 2 + 2 &ERRITE"EADOHM! !UXILIARYINPUTFRONTALOR!58) 6 * #HASSIS $!4! 0/7%2).054 * #HASSIS $ # . 3-# 344(3 3-! $ 3403(! 3-! $ 3-! 3403(! 3-! $ 3403(! $ 3403(! # N& 6 # N& 6 $.":8# 3/4 2 . 2 . $.":8# 3/4 2 2 2 2 1.- 2 . # N& 6 2 2 1.- 2 . 3/ .CH6 3/ 0CH6 #HASSIS # N& +6 # N& 6 2 2 1.- 2 . 1.- 2 . 3/ .CH6 3/ 0CH6 /PTION!CTIVE"RIDGE .OT-OUNTED $.":8# 3/4 2 . 2 . $.":8# 3/4 $ $ 3-! $ 3403(! 3-! $ 3-! 3403(! 3403(! 3-! 3403(! %4(,$ 4 %4(,$ 4 $.":8# 3/4 2 . 2 . $.":8# 3/4 1.- 2 . 1.- 2 . 3/ .CH6 3/ 0CH6 # N& 6 # N& 6 # .+6 1.- 2 . 1.- 2 . 3/ .CH6 3/ 0CH6 /PTION!CTIVE"RIDGE .OT-OUNTED $.":8# 3/4 2 . 2 . $.":8# 3/4 # N& 6 #HASSIS # N& 6 2 2 2 2 2 2 # U& 6 2 2 # N& 6 2 2 # N& 6 3-! .- $ .- .- # . 6 24. # . 6 # . 6 2 &ERRITE"EADOHM! 6/54 )NPUT#OMMON-ODE&ILTER #HASSIS #HASSIS &ERRITE"EADOHM! 2 4.- Doc ID 022454 Rev 1 * # N& 6 3-! # N& 6 24. 3-!*! $ # N& 6 633 0/%& $!4!/54054 AN4006 High-power converter schematic 2 High-power converter schematic Figure 1. High-power converter schematic: detail of the input section including data transformers, bridges, protection and optional CM choke !-V 5/19 Doc ID 022454 Rev 1 633 # .- 2 + 0/%& 3! 2 .- 2 - 2 + # .- 2 + 6$$ 6$$ $%4 30 #,3 $##, 3! $4 &23 40 5 2 .- # N& 6 3/ 633 24. # 6 N& 2 + 0- 343.& 1 '!4 6# '!4 24. #3 6" #4, !24. .- # %X0AD (433/0 2 + # . 0-CIRCUIT # CURRENT"OOSTER $ ":8# 3/4 6 N& + 2 2 K --"4,4 3/4 1 2 2 2 &ERRITE"EADOHM! 2 + 2 &ERRITE"EADOHM! 2 + 3-# 344(3 $ 2 + --"4! 3/4 !24. !24. # 2 .- # P& .- .6 !24. # U 6 2 + .- 1 2 # # U 6 !24. $ 3/$ "!4* ./4% 4HE!24.ISADEDICATEDPLANEOFSIGNALGROUNDTHATWILLBECONNECTEDTOTHE 24.POWERGROUNDPLANECLOSETOPINANDOF0- .- # 2 2 6 !58 24. + 2 # .6 X "!4* 3/$ $ 2 U( 24. , M( # U 6 3/$ $ 2 0OWERCIRCUIT 2 + 3/$ "!4* 2 3/$ 2 2 $ "!4* U& 6 # "!4* $ U& 6 U& 6 ,03-, $ ":8#24. 3/4 2 .- )NPUT&ILTER # # ./4%FOR#APACITORS 7HERENOTINDICATEDTHEBODYISANDTHEVOLTAGEIS6 ./4%FOR2ESISTORS 7HERENOTINDICATEDTHEBODYISANDTOLERANCE # .6 2 # U& 6 X 1 --"4,4 3/4 # U& 6 , -33-, 24. 4 # N& 3/ 3I$9 1 2 OHM 2 OHM .+6 #/),#2!&4-!!, # $ 2 3/$ 3/$ "!4* 2 3/ "!4* 3/$ $ 2 2 2 N& 2 1 )2&0B& 3/ # N& 6 # .- $ .- "!4* 2 2 2 2 .- !24. 2 2 24. # N& 3/ , 5 U( 3/ )2& 1 + + # $ N 3/$ $ 5 3/$ "!4* 2 5 # $ ATE $ O C U M E N T. U M B E R 3IZ E #USTOM 4ITLE &AIRCHILD&/$!3 # U& 6 X +8 U 6 # N& # 2 $ !58 2 $ ,/+ + 3 H EET K + 2 $ 2 + 2 K 2 K # N& !5802%3%.4 ,/+ 2 . 2 2 2 # U& 6 P& /UTPUT&ILTER # U& 6 X +8 &EEDBACKCIRCUIT 3/4 43!),4 2 + # N& U 6 # 5 &AIRCHILD&/$!3 # U 6 +6 "!4* 3%2-", &AIRCHILD&/$!3 )2& 2 1 2 .- 1 2 2 N& # 1 2 ./4%FOR*UMPERS*-AND*- -OVETHESHORTONBOTHJUMPERSATTHESAMETIME SHORTBETWEENPINANDWHENUSED!58INPUT SHORTBETWEENPINANDWHENUSED!58INPUT !CTIVE#LAMP 2 + )2& "!4* $ )2& 3/ # 6/19 * Figure 2. '2%%.,%$ * High-power converter schematic AN4006 High-power converter: detail of the PoE converter based on active-clamp forward topology with self-driven synchronous rectification !-V AN4006 3 Bill of material Bill of material The following table summarizes the bill of material for the high-power PoE converter based on the PM8803, configured in active-clamp forward topology with self-driven synchronous rectification. Table 2. Bill of material Reference Description Value EVALPM8803 FWD rev1 Board PCB C1,C2,C3,C4, C11C42,C50, C57 Ceramic capacitor 100 nF C5,C6,C7,C8 Ceramic capacitor 10 nF C10,C39,C41, C53C59 Ceramic capacitor 1 µF C12 Ceramic capacitor 2.2 nF C14,C16, C21 Ceramic capacitor 1 nF C18,C60 Ceramic capacitor C19,C38 Tol Voltage Body Vendor 50 V 603 Std 10% 100 V 603 TDK 20% 16 V 603 Std 2 kV 1812 TDK 100 V 603 TDK 47 nF 100 V 805 TDK Ceramic capacitor 22 nF 50 V 603 Std C23,C54 Ceramic capacitor 470 pF 50 V 603 Std C26 Aluminium capacitor 33 µF 20% 100 V 10x10.2 Std Low ESR C27,C33,C37 Ceramic capacitor 22 µF 20% 6.3 V 805 Std C28,C29,C30 Ceramic capacitor 2.2 µF 20% 100 V 1812 TDK C31,C37 Ceramic capacitor 1 nF 10% 100 V 805 Std C32 Ceramic capacitor 100 nF 10% 100 V 805 TDK C33,C35 Ceramic capacitor 10 µF 6.3 V 805 TDK C34,C36 Aluminium capacitor 330 µF 6.3 V 8x10.2 Std Low ESR C49, C56 Ceramic capacitor 22 nF 50 V 603 Std C51 Ceramic capacitor 100 nF 200 V 1210 Std C55 Ceramic capacitor 100 pF 50 V 603 Std C58 Ceramic capacitor 1 nF 50 V 603 Std C61 Ceramic capacitor 2.2 nF 2 kV 1812 TDK D1, D21 Std diode STTH302S 200 V SMC STMicroelectronics D32,D35 Zener diode BZX84C10 SOT23 Std D4,D7,D8,D9, D12D13,D14, D17 Schottky diode STPS2H100A SMA STMicroelectronics 10% Doc ID 022454 Rev 1 100 V 7/19 Bill of material Table 2. AN4006 Bill of material (continued) Reference Description Value D11 TVS diode SMAJ58A D28,D30,D31, D33,D37,D38, D39,D40,D41, D43 Schottky diode BAT46J D20,D26,D44 LED Green LED SMD J1,J2 Power jack SA, SP Std J3 RJ45 connector DATA & POWER INPUT Std J4 RJ45 connector DATA OUTPUT Std J5 Terminal block 2 way MOR-10X10.5-P5-2PIN L2 SMT inductor 1 mH LPS4018105ML Coilcraft L3 SMT inductor 2 µH SER2011202MBL Coilcraft L5 SMT inductor 10 µH MSS7341103ML Coilcraft Q6 Transistor, PNP MMBTA92 300 V SOT23 STMicroelectronics Q10, Q14 Transistor, NPN MMBT3904LT1 40 V SOT23 Std Q11,Q12,Q13, Q15 MOSFET, N-channel IRF8707 30 V SO8 IR Q17 MOSFET, N-channel Si4848DY 150 V SO8 VISHAY Q21 MOSFET, P-channel IRF6216PbF 150 V SO8 NM Q22 MOSFET, N-channel STS4NF100 100 V SO8 STMicroelectronics R1,R2,R5,R7 Chip resistor 0Ω 603 Std R9 Chip resistor 1 kΩ 603 Std R10,R11,R12, R13 Chip resistor 75 Ω 603 Std R17,R26,R37, R43,R49,R54 Ferrite Bead MPZ012101A 805 TDK R26,R37,R49, R54 Chip resistor 0Ω 805 Std R19,R20,R22, R25R39,R40, R41,R42 Chip resistor NM 603 NM R58,R72 Chip resistor 124 kΩ 603 Std R32,R51 Chip resistor 47 kΩ 805 Std R38,R65 Chip resistor 4.75 kΩ 603 Std 8/19 Tol Voltage Body Vendor SMA STMicroelectronics 100 V SOD323 STMicroelectronics 2.2 V PLCC-2 Std Std 1% 100 Ω, 4A 1% 1% Doc ID 022454 Rev 1 AN4006 Table 2. Bill of material Bill of material (continued) Reference Description Value R44,R52,R119 Chip resistor R45 Tol Body Vendor 1 kΩ 603 Std Chip resistor 47 kΩ 603 Std R53,R59 Chip resistor 10 Ω 805 Std R57 Chip resistor 5.6 Ω 805 Std R60 Chip resistor 2.2 Ω 805 Std R62 Chip resistor 200 Ω 603 Std R64,R98 Chip resistor 0Ω 603 Std R70 Chip resistor 39 kΩ 603 Std R106,R117 Chip resistor 10 kΩ 603 Std R88 Chip resistor 270 kΩ 805 Std R89 Chip resistor 2.7 kΩ 603 Std R90 Chip resistor 499 Ω 603 Std R91 Chip resistor 10 Ω 603 Std R92 Chip resistor 1Ω 603 Std R93 Chip resistor 820 Ω 1% 603 Std R94 Chip resistor 21 kΩ 1% 603 Std R95 Chip resistor 24.9 kΩ 1% 603 Std R96 Chip resistor 0Ω 603 Std R97 Chip resistor 30.9 Ω 1% 603 Std R102 Chip resistor 35.7 Ω 1% 805 Std R103 Chip resistor 510 Ω 603 Std R104 Chip resistor 4.75 kΩ 603 Std R107,R115,R1 21 Chip resistor 100 kΩ 603 Std R108,R109 Chip resistor 0.10 Ω 1206 Std low value R111 Chip resistor 12.4 kΩ 603 Std R120 Chip resistor 1 MΩ 603 Std T1,T2 POE+ Magnetics ETH1-230LD Coilcraft T6 Power transformer MA5509-AL Coilcraft U1 POE+ controller PM8803 U2,U3,U7 SMT optocoupler Fairchild FOD817AS 4PDIP Fairchild U4 Shunt regulator TS431AILT SOT23-5 STMicroelectronics 1% 1% 1% 1% Doc ID 022454 Rev 1 Voltage HTSSOP20 STMicroelectronics 9/19 Test results AN4006 4 Test results 4.1 Efficiency measurements with synchronous rectification Figure 3. Efficiency measurements at 48 V input %FFICIENCY #URRENT! DCDCHS OVERALLPAIRSWITHDIODEBRIDGES DIODEINPUTSTAGE ACTIVEBRIDGEINPUTSTAGEESTIM OVERALLPAIRSWITHACTIVEBRIDGEESTIM !-V The difference between dc-dc and overall measurements is about 3-4% from 10 A to 18 A. Figure 4. Efficiency of the different circuits on the converter input stage %FFICIENCY #URRENT! 2*DATATX ACTIVEBRIDGE DIODEBRIDGE EFFSUMDIODEBRIDGE "OOSTERALONE EFFSUMACTIVEBRIDGE !-V 10/19 Doc ID 022454 Rev 1 AN4006 Test results Figure 4 shows the various contributions to the total losses of the PD interface section of the converter: ● RJ45 and data transformer value is small but not negligible at high input current/power ● Booster value is negligible ● Major contribution comes from the rectification bridge; an active bridge with MOSFETs for a total value of about 150 mΩ per leg ( about 100 mΩ for the P-channel MOSFET and 50 mΩ for the N-channel ) will assure a gain of about 1.6% on the total efficency over the full input current range. I out [ A ] Figure 5. Booster current characteristics 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 05 0.5 0.4 0.3 0.2 0.1 0.0 I tot I booster I hot swap Estimated Ibooster Estimated Ihotswap 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 I in [ A ] AM11001v1 The external MOSFET carries about 85% of the whole input current. The current ratio is inversely proportional to the Ron of the MOSFET used, in this case 65 mΩ for the external MOSFET while for the PM8803 internal hot-swap MOSFET 400 mΩ can be used, as confirmed by the estimations done. Figure 6. Booster power dissipation vs. input current 0DISSIPATED;7= 0DISSTOT 0DISSBOOSTER 0DISSHOTSWAP )IN;!= !-V The power dissipation of the MOSFET booster is about 6 times higher than the internal hotswap MOSFET. Doc ID 022454 Rev 1 11/19 Test results AN4006 4.2 Converter waveforms 4.2.1 Startup sequence using PowerDsine 9501G injector Figure 7. Startup with 0 A load Figure 8. Startup with 10 A load The current unbalance in the Ethernet cable at steady state (between Tx, Rx and spare pairs) is minimum even at high load: see pink and blue traces. For details on the injector please visit www.microsemi.com. 12/19 Doc ID 022454 Rev 1 AN4006 4.2.2 Test results Primary-side MOSFET Figure 9. Primary-side power MOSFET waveforms at 0 A load Figure 10. Primary-side power MOSFET waveforms at 16 A load Doc ID 022454 Rev 1 13/19 Test results 4.2.3 AN4006 Secondary-side MOSFET Figure 11. Secondary-side power MOSFET waveforms at 0 A load Figure 12. Secondary-side power MOSFET waveforms at 16 A load 14/19 Doc ID 022454 Rev 1 AN4006 4.2.4 Test results Output ripple Figure 13. Output ripple measurement at 0 A Figure 14. Output ripple measurement at 16 A Doc ID 022454 Rev 1 15/19 Test results AN4006 Figure 15. Output ripple measurement at 16 A with infinite persistance 16/19 Doc ID 022454 Rev 1 AN4006 4.2.5 Test results Gloop measurement and load transient response Figure 16. Control loop of the converter at 48 V input and 18 A output Figure 17. Response of the converter to a 8 A - 16 A load transient Doc ID 022454 Rev 1 17/19 Revision history 5 AN4006 Revision history Table 3. 18/19 Document revision history Date Revision 22-Feb-2012 1 Changes Initial release Doc ID 022454 Rev 1 AN4006 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 022454 Rev 1 19/19