Download Datasheet

SPEAr1340
Dual-core Cortex A9 HMI embedded MPU
Datasheet − production data
Features
■
CPU subsystem:
– 2x ARM Cortex A9 cores, up to 600 MHz
– 32+32 KB L1 caches per core, with parity
check
– Shared 512 KB L2 cache
– Accelerator coherence port (ACP)
■
Network-on-chip bus matrix, up to 166 MHz
■
32 KB Boot ROM, 32+4 KB Static RAMs
■
Memory interfaces:
– DDR controller (DDR3-1066, DDR2-1066
@533MHz), 16-/32-bit, up to 2 GB address
space
– Serial NOR Flash controller
– Parallel NAND Flash/NOR Flash/SRAM
controller
■
Connectivity:
– 2 x USB 2.0 Host ports (integrated PHY)
– 1 x USB 2.0 OTG port (integrated PHY)
– 1 x Giga/Fast Ethernet port (external GMII/
RGMII/MII/RMII PHY)
– 1 x PCIe 2.0 RC/EP port (integrated PHY)
– 1 x 3Gb/s Serial ATA Host port (integrated
PHY)
– 1 x memory card interface: SD/SDIO/MMC,
CF/CF+, xD
– 2 x UART ports, with IrDA option
– 2 x I2C bus controllers, master/slave
– 1 x synchronous serial port,
SPI/Microwire/TI protocols, master/slave
– 2 x consumer electronic control (HDMI
CEC) ports
– 10-bit ADC: 8 ch. 1 Msps, with autoscan
– Programmable bidirectional GPIO signals
with interrupt capability
■
HMI support:
– LCD display controller, incl.support for Full
HD, 1920 x 1080, 60 Hz, 24 bpp
November 2012
PBGA (23 x 23 mm)
– High-perf. 2D/3D GPU, up to 1080p
– Hardware video decoder: multistandard up
to 1080p, JPEG
– Hardware video encoder: H.264 up to
1080p, JPEG
– Video input parallel port, with alternate
configuration for 4 x camera interfaces
– Digital audio ports: up to 7.1 multichannel
surround, I2S (8 in, 8 out) and S/PDIF
– 6 x 6 keyboard controller
– Resistive touchscreen interface
■
Security:
– C3 cryptographic accelerator
– Secure boot support
– JTAG disable option
■
Miscellaneous functions:
– Energy saving: power islands, clock gating,
dynamic frequency scaling
– 2 x DMA controllers (total 16 channels)
– 11 x general purpose timers, 2 x watchdogs,
1 x real-time clock
– 4 x PWM generators
– Embedded sensor for junction temperature
monitoring
– OTP (one-time programmable) bits
– Debug and trace interfaces: JTAG/PTM
Table 1.
Device summary
Order code
Temp.
range, °C
Package
Packing
SPEAr1340-2
-40 to 85
PBGA
(23x23mm,
pitch 0.8mm)
Tray
Doc ID 023063 Rev 5
1/200
www.st.com
1
Contents
SPEAr1340
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
Device functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2/200
2.1
CPU subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2
Multilayer interconnect matrix (BUSMATRIX) . . . . . . . . . . . . . . . . . . . . . . . 8
2.3
Internal memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1
BootROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2
Static RAMs (SRAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4
Multiport DDR controller (MPMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5
Serial NOR Flash controller (SMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6
Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7
USB 2.0 Host controllers (UHC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8
USB 2.0 OTG port (UOC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.9
Giga/Fast Ethernet port (GMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.10
PCI Express controller (PCIe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.11
Serial ATA controller (SATA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.12
SATA/PCIe physical interface (MiPHY) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.13
Memory card interfaces (MCIF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.14
UART ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.15
I2C bus controllers (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.16
Synchronous serial port (SSP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.17
A/D converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.18
HDMI CEC interfaces (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.19
General purpose I/O (GPIO/XGPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.20
LCD display controller (CLCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.21
Graphics processing unit (GPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.22
Video decoder (VDEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.23
Video encoder (VENC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.24
Camera input interfaces (CAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.25
Video input parallel port (VIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.26
I2S digital audio ports (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Doc ID 023063 Rev 5
SPEAr1340
3
Contents
2.27
S/PDIF digital audio port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.28
Keyboard controller (KBD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.29
Cryptographic co-processor (C3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.30
Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.31
DMA controllers (DMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.32
General purpose timers (GPT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.33
PWM generators (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.34
Clock and reset system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.35
Reset and clock generator (RCG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.36
Power control module (PCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.37
Temperature sensor (THSENS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.38
One-time programmable antifuse (OTP) . . . . . . . . . . . . . . . . . . . . . . . . . 38
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1
Pin map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2
Ball characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3
Power supply signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4
Multiplexed signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.5
3.6
4
3.4.1
MAC Ethernet port multiplexing scheme . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.2
KBD multiplexing scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.3
MCIF multiplexing scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.4
FSMC multiplexing scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.5.1
CPU subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.5.2
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.5.3
Clocks and resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.5.4
Debug interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.5.5
Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.5.6
Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.5.7
Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.5.8
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.5.9
Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Strapping options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Doc ID 023063 Rev 5
3/200
Contents
SPEAr1340
4.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.2
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.3
Clocking parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.4
5
Master clock (MCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.3.2
Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
I/O AC/DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.4.1
3V3/2V5/1V8 I/O buffers (IOTYPE1/IOTYPE2/IOTYPE3) . . . . . . . . . . 138
4.4.2
IOTYPE4 I/O buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.4.3
DDR2 and DDR3 mode I/O buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.5
Voltage regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.6
MiPHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.7
Required external components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.8
Power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.9
Power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.10
Reset release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.11
ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.1
Reset timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2
ADC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.3
Cortex-A9 JTAG/trace timing characteristics . . . . . . . . . . . . . . . . . . . . . 152
5.3.1
Cortex-A9 JTAG timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . 152
5.3.2
Cortex-A9 trace timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.4
CAM timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.5
CLCD timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.6
FSMC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.7
4/200
4.3.1
5.6.1
NAND Flash configuration timing characteristics . . . . . . . . . . . . . . . . . 157
5.6.2
NOR Flash configuration timing characteristics . . . . . . . . . . . . . . . . . . 159
5.6.3
SRAM configuration timing characteristics . . . . . . . . . . . . . . . . . . . . . 162
GMAC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.7.1
GMII transmit timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.7.2
GMII receive timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.7.3
MII transmit timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.7.4
MII receive timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Doc ID 023063 Rev 5
SPEAr1340
Contents
5.7.5
MAC Ethernet asynchronous signals timing characteristics (MAC_CRS
and MAC_COL) 167
5.7.6
MAC serial management channel timing characteristics (MDIO/MDC) 167
5.8
GPIO/XGPIO timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.9
I2C timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.10
I2S timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.11
MCIF timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.11.1
Synchronous mode (SD/SDIO/MMC) . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.11.2
CompactFlash true IDE PIO mode/UDMA mode . . . . . . . . . . . . . . . . . 174
5.12
MPMC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.13
PWM timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.14
SMI timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.15
SSP timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.16
5.15.1
SPI master mode timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.15.2
SPI slave mode timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
UART timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.16.1
5.17
6
IrDA timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
VIP timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Appendix A Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Appendix B Copyright statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Doc ID 023063 Rev 5
5/200
Description
1
SPEAr1340
Description
The SPEAr1340 device is a system-on-chip belonging to the SPEAr® (Structured Processor
Enhanced Architecture) family of embedded microprocessors. The product is suitable for
consumer and professional applications where an advanced human machine interface
(HMI) combined with high performance are required, such as low-cost tablets, thin clients,
media phones and industrial/printer smart panels.
The device is hardware-compliant to the support of both real-time (RTOS) and high-level
(HLOS) operating systems, such as Android, Linux and Windows Embedded Compact 7.
The architecture of SPEAr1340 is based on several internal components, communicating
through a multilayer interconnection matrix (BUSMATRIX). This switching structure enables
different data flows to be carried out concurrently, improving the overall platform efficiency.
In particular, high-performance master agents are directly interconnected with the DDR
memory controller in order to reduce access latency. The overall memory bandwidth
assigned to each master port can be programmed and optimized through an internal
weighted round-robin (WRR) arbitration scheme.
Figure 1.
SPEAr1340 architectural block diagram
JTAG
Trace
Memory
Highspeedconnectivity
Coresight
BootROM
SRAMs
MPCore
USB2.0HostCtrl
CPU0
DDR2/3Ctrl
CPU1
FPU
StaticMemoryCtrl
SerialMemoryI/F
USB2.0HostCtrl
PTM
FPU
CortexA9CPU
32KB
ICache
PTM
CortexA9CPU
32KB
DCache
32KB
ICache
32KB
DCache
USB2.0OTGCtrl
Giga/Fast
EthernetCtrl
PCIe Ctrl
PHY
MemorycardI/F
SCU
Graphics,video,audio
USB
PHYs
SATACtrl
Timer&
Watchdog
CPU0
Timer&
Watchdog
CPU1
Global
Timer
Interrupt
Controller
Lowspeedconnectivity
GPIO
2D/3DGPU
AXIBus
Master0
Snoop
Filtering
AXIBus
Master1
Cache
Transfers
XGPIO
VideoDecoder
VideoEncoder
ACP
I2C(2x)
SSP
DisplayCtrl
UART(2x)
512KBL2Cache
Reset&clockGenerator
KBD
CameraI/F(4x)
THSENS
OTP
PowerControl
CEC(2x)
VideoInput
I2SAudioI/F
(8in,8out)
S/PDIFAudioI/F
6/200
Configuration
registers
DMACtrl(2x)
Timers
Security
Coprocessor
ADC
PWM(4x)
BUSMATRIXInterconnect
Doc ID 023063 Rev 5
RTC
Opt.
Battery
SPEAr1340
Device functions
2
Device functions
2.1
CPU subsystem
The CPU subsystem is based on the ARM Cortex A9 processor, and has a dual-core
configuration.
Main features:
Each core has the following features:
●
ARM v7 CPU at 600 MHz
●
32 KB of L1 instruction CACHE with parity check
●
32 KB of L1 data CACHE with parity check
●
Embedded FPU for single and double data precision scalar floating-point operations
●
Memory management unit (MMU)
●
ARM, Thumb2 and Thumb2-EE instruction set support
●
Program Trace Macrocell (PTM) and CoreSight© component for software debug
●
32-bit timer with 8-bit prescaler
●
Internal watchdog (working also as timer)
The dual core configuration is completed by a common set of components:
●
Snoop control unit (SCU) to manage inter-process communication, cache-to-cache and
system memory transfer, cache coherency
●
Generic interrupt control (GIC) unit configured to support 128 independent interrupt
sources with software configurable priority and routing between the two cores
●
64-bit global timer with 8-bit prescaler
●
Accelerator coherence port (ACP)
●
Parity support to detect runtime failures for other internal memories
●
512 KB of unified 8-way set associative L2 cache with support for ECC
●
L2 Cache controller based on PL310 IP released by ARM
●
Dual asynchronous 64-bit AMBA 3 AXI interface with possible filtering on the second
one to use a single port for DDR memory access
●
JTAG interface and Trace port: debug and trace can be inhibited through OTP
Doc ID 023063 Rev 5
7/200
Device functions
2.2
SPEAr1340
Multilayer interconnect matrix (BUSMATRIX)
The multilayer interconnect matrix is the connectivity infrastructure that enables data
exchange between the various blocks of the device. The BUSMATRIX supports parallel
communications between master and slave components, and ensures the maximum level of
system throughput.
Main features:
●
2.3
Hierarchical structure to meet the requirements of different system blocks and
peripherals:
–
high performance low latency
–
high performance medium latency
–
medium performance medium/long latency
–
slow peripherals and configurations
●
Power awareness through the power down request/acknowledgement of the power
management module
●
Single interrupt for outband signaling
Internal memories
SPEAr1340 integrates two embedded memories:
2.3.1
●
32 KB Boot ROM (BootROM)
●
Static RAM areas (SRAM)
BootROM
BootROM refers to the on-chip 32 KB ROM as well as the booting firmware pre-stored in
such memory. The supported booting devices are:
●
Serial NOR Flash
●
Parallel NOR Flash
●
NAND Flash
●
USB OTG
●
UART
●
SD/MMC
The BootROM firmware selects the booting device after reset by reading the status of the
STRAP[3:0] pins.
2.3.2
Static RAMs (SRAM)
A part of these memory areas is used during the bootstrap phase by BootROM firmware.
After booting, all SRAM areas are fully available for general purpose applications.
Main features:
●
32 KB of system RAM (SYSRAM0, single port)
When all power islands are switched off, SYSRAM0 loses its data content.
●
4 KB of Always-on RAM (SYSRAM1, single port)
When all power islands are switched off, SYSRAM1 maintains its data content.
8/200
Doc ID 023063 Rev 5
SPEAr1340
2.4
Device functions
Multiport DDR controller (MPMC)
MPMC is a high-performance multichannel memory controller able to support DDR2 and
DDR3 memory devices. The multiport architecture ensures that memory is shared efficiently
among different high-bandwidth client modules.
Main features:
Note:
2.5
1
●
Supports both DDR3 and DDR2 devices; wide range of memory device cuts supported
up to 2 GB (Note: 1)
●
Two chip selects supported
●
Programmable memory data path size of full memory 32-bit data width or half memory
16-bit data width
●
Clock frequencies from 100 MHz to 533 MHz supported
●
6 AXI interfaces with a data interface width of 64 bits. Each port is configured with a
thread ID of 4 bits
●
Exclusive and locked accesses support
●
Weighted round-robin arbitration scheme support to ensure high memory bandwidth
utilization
●
DRAM command processing
●
Register port with an AHB interface with a data interface width of 32 bits
●
A programmable register interface to control memory device parameters and protocols
including auto pre-charge
●
Full initialization of memory on memory controller reset
●
Automatically maps user addresses to the DRAM memory in a contiguous block
addressing starts at user address 0 and ends at the highest available address
according to the size and number of DRAM devices present
●
Fully pipelined command, read and write data interfaces to the memory controller
●
Advanced bank look-ahead features for high memory throughput
When the 2GB address space is enabled, the ACP function is not available.
Serial NOR Flash controller (SMI)
The serial NOR Flash controller integrated in SPEAr1340 acts as an AHB slave interface
(32-, 16- or 8-bit) to SPI-compatible off-chip memories. SMI allows the CPU to use these
serial memories either as data storage or for code execution.
Main features:
●
Supports a group of SPI-compatible Flash and EEPROM devices
●
Acts always as an SPI master and up to 2 SPI slave memory devices are supported
(through as many chip select signals), with up to 16 MB address space each.
●
The SMI clock signal (smi_clk_o) is generated by SMI (and inputs to all slaves) using a
clock provided by the AHB bus
●
smi_clk_o can be controlled by a programmable 7-bit prescaler allowing 127 different
clock frequencies.
Doc ID 023063 Rev 5
9/200
Device functions
2.6
SPEAr1340
Flexible static memory controller (FSMC)
The flexible static memory controller enables to interface external parallel Flash memories
as well as static RAMs.
Main features:
●
●
●
10/200
Support for parallel NAND Flash:
–
8-bit or 16-bit data bus
–
2 chip select signals
–
no limitation on NAND capacity (number of pages)
–
hardware ECC (error correction code) support, correcting up to 8 errors per page
(512 bytes wide)
–
support for SLC (single-level cell) and MLC (multi-level cell) Flash devices, as far
as compatible with available ECC features
Support for parallel NOR Flash:
–
8-bit or 16-bit data bus
–
26-bit address bus
–
2 chip select (CS) signals
–
Maximum capacity is 64 MB for each CS, hence up to 128 MB with 2 external
Flash devices
Support for asynchronous static RAMs (SRAMs):
–
8-bit or 16-bit data bus
–
26-bit address bus
–
2 chip select (CS) signals
–
Maximum capacity is 64 MB for each CS, hence up to 128 MB with 2 external
SRAM devices
●
Support for multiplexed NOR and SRAM
●
Write FIFO: 16 words depth, each word is 32 bits wide
●
Independent read/write timings and protocol, allowing matching the widest variety of
memories and timings
●
Wait signal for timings handshake
Doc ID 023063 Rev 5
SPEAr1340
2.7
Device functions
USB 2.0 Host controllers (UHC)
The SPEAr1340 device integrates 2 USB Host interfaces. Each interface provides a highspeed Host controller (EHCI standard) and a full-speed/low-speed controller (OHCI
standard). The UHC has 2 physical ports (2 separate instances) that are fully compliant with
the Universal Serial Bus specification (version 2.0), and provides an interface to the
industry-standard AHB bus.
Main features:
2.8
●
A PHY interface implementing a USB 2.0 transceiver macro-cell interface plus (UTMI+)
fully compliant with UTMI+ specification (revision 1.0), to execute serialization and deserialization of transmissions over the USB line
●
Either 30 MHz clock for 16-bit interface or 60 MHz for 8-bit interface supported by the
UTMI + PHY interface
●
A USB 2.0 host controller (UHC) connected to the AHB bus that generates the
commands for the UTMI+PHY
●
Complies with both the enhanced host controller interface (EHCI) specification (version
1.0) and the open host controller interface (OHCI) specification (version 1.0a)
●
The UHC supports the 480 Mbps high-speed (HS) for USB 2.0 through an embedded
EHCI Host Controller, as well as the 12 Mbps full-speed (FS) and the 1.5 Mbps lowspeed (LS) for USB 1.1 through one integrated OHCI Host controller
●
All clock synchronization is handled within the UHC
●
An AHB slave for each controller (1 EHCI and 1 OHCI), acting as programming
interface to access to control and status registers
●
An AHB master for each controller (1 EHCI and 1 OHCI) for data transfer to system
memory, supporting 8-, 16-, and 32-bit wide data transactions on the AHB bus
●
32-bit AHB bus addressing
USB 2.0 OTG port (UOC)
Main features:
●
Complies with the On-The-Go supplement to the USB 2.0 specification (revision 1.3)
●
Supports the Session Request Protocol (SRP)
●
Supports the Host Negotiation Protocol (HNP)
●
A PHY interface implementing the USB 2.0 transceiver macrocell interface (UTMI+
specification, revision 1.0 (Level 3)) to execute serialization and de-serialization of
transmissions over the USB line
●
Unidirectional and bidirectional 16-bit UTMI data bus interfaces
●
Support for the following speeds:
●
–
High speed (HS): 480 Mbps
–
Full speed (FS): 12 Mbps
–
Low speed (LS): 1.5 Mbps (only in Host mode)
Both of the DMA and slave-only modes are supported
Doc ID 023063 Rev 5
11/200
Device functions
2.9
SPEAr1340
Giga/Fast Ethernet port (GMAC)
The GMAC IP provides the capability to transmit and receive data over Ethernet.
Main features:
●
Supports 10/100/1000 Mbps data transfer rates with the following PHY interfaces:
–
IEEE 802.3-compliant GMII/MII interface (default) to communicate with an external
Gigabit/Fast Ethernet PHY
–
RGMII interface to communicate with an external gigabit PHY
–
RMII interface (specification version 1.2 from RMII consortium) to communicate
with an external Fast Ethernet PHY (for 10/100 Mbps operations only)
●
Full-duplex operation:
–
IEEE 802.3x flow control automatic transmission of zero-quanta pause frame on
flow control input de-assertion
–
Optional forwarding of received pause control frames to the user application
●
Half-duplex operation:
–
CSMA/CD Protocol support
–
Flow control using back-pressure support
–
Frame bursting and frame extension in 1000 Mbps half-duplex operation
●
Automatic CRC and pad generation controllable on a per-frame basis
●
Provides options for automatic pad/CRC stripping on receive frames
●
Supports a variety of flexible address filtering modes, such as:
–
Up to 31 48-bit SA address comparison check with masks for each byte
–
64-bit hash filter for multicast and unicast (DA) addresses
–
Option to pass all multicast addressed frames
–
Promiscuous mode support to pass all frames without any filtering for network
monitoring
–
Passes all incoming packets (per filter) with a status report
●
Programmable frame length to support standard or jumbo Ethernet frames with up to
16 KB of size
●
Programmable interframe gap (IFG) (40-96 bit times in steps of 8)
●
Separate 32-bit status for transmit and receive packets
●
IEEE 802.1Q VLAN tag detection for reception frames
●
Self-managed DMA transfers with an internal DMA block
●
Separate transmission, reception, and control interfaces to the application
–
The host CPU uses a 32-bit AHB (AMBA 2.0) slave interface to access the GMAC
subsystem control and status registers (CSRs)
–
The GMAC transfers data to system memory through a 32-bit AXI (AMBA 3.0)
master interface
12/200
●
Support for network statistics with RMON/MIB counters (RFC2819/RFC2665)
●
A module for detection of LAN remote wake-up frames and AMD magic packet frames:
power management module (PMT)
●
A receive module for checksum off-load for received IPv4 and TCP packets
encapsulated by the Ethernet frame (Type 1)
●
An enhanced receive module for checking IPv4 header checksum and TCP, UDP, or
ICMP checksum encapsulated in IPv4 or IPv6 datagrams (Type 2)
Doc ID 023063 Rev 5
SPEAr1340
Device functions
●
An enhanced module to calculate and insert IPv4 header checksum and TCP, UDP, or
ICMP checksum in frames transmitted in store-and-forward mode.
●
A module to support Ethernet frame time stamping as described in IEEE 1588- 2002
and IEEE 1588-2008 (standard for precision networked clock synchronization). Sixtyfour-bit time stamps are given in the transmit or receive status of each frame.
●
MDIO master interface for PHY device configuration and management: station
management agent (SMA), MDIO module
●
Supports the standard IEEE P802.3az, version D2.0 for energy efficient Ethernet;
allows physical layers to operate in the low-power idle (LPI) mode
The MAC transaction level (MTL) block consists of two sets of FIFOs: a transmit FIFO
with programmable threshold capability, and a receive FIFO with a programmable threshold
(default of 64 bytes). The MTL block has the following features:
●
32-bit transaction layer block that provides a bridge between the application and the
GMAC
●
Single-channel transmit and receive engines
●
Synchronization for all clocks in the design (transmit, receive, and system clocks)
●
Optimization for packet-oriented transfers with frame delimiters
●
Four separate ports for system-side and GMAC side transmission and reception
●
FIFO instantiation outside the top-level module to facilitate memory testing/instantiation
●
4 KB receive FIFO size on reception
●
Supports receive status vectors insertion into the receive FIFO after the EOF transfer.
This enables multiple-frame storage in the receive FIFO without requiring another FIFO
to store those frames
●
Configurable receive FIFO threshold (default fixed at 64 bytes) in cut-through or
threshold mode
●
Provides an option to filter all error frames on reception and not forward them to the
application in store-and-forward mode.
●
Provides an option to forward under-sized good frames
●
Supports statistics by generating pulses for frames dropped or corrupted (due to
overflow) in the receive FIFO
●
2 KB FIFO size on transmission
●
Store and forward mechanism for transmission to the GMAC
●
Threshold control for transmit buffer management
●
Automatic retransmission of collision frames for transmission
●
Discards frames on late collision, excessive collisions, excessive deferral, and underrun conditions
●
Software control to flush TX FIFO
The DMA block exchanges data between the MTL block and host memory. The host can
use a set of registers (DMA CSR) to control the DMA operations. The DMA block supports
the following features:
●
32-bit data transfers
●
Single-channel transmit and receive engines
●
Fully synchronous design operating on a single system clock (except for CSR module,
when a separate CSR clock is configured)
●
Optimization for packet-oriented DMA transfers with frame delimiters
Doc ID 023063 Rev 5
13/200
Device functions
SPEAr1340
●
Byte-aligned addressing for data buffer support
●
Dual-buffer (ring) or linked-list (chained) descriptor chaining
●
Descriptor architecture that allows large blocks of data transfer with minimum CPU
intervention
●
Comprehensive status reporting for normal operation and transfers with errors
●
Individual programmable burst size for transmit and receive DMA engines for optimal
host bus utilization
●
Programmable interrupt options for different operational conditions
●
Complete per-frame transmit/receive interrupt control
●
Round-robin or fixed-priority arbitration between receive and transmit engines
●
Start/stop modes
●
Separate ports for host CSR access and host data interface
The GMAC audio video (AV) enables transmission of time-sensitive traffic over bridged
local area networks (LANs). The GMAC AV has the following features:
●
Compliant to IEEE 802.1-AS standard, version D6.0: specifies the protocol and
procedures used to ensure that the synchronization requirements are met for timesensitive applications
●
Compliant to IEEE 802.1-Qav standard, version D6.0: allows the bridges to provide
time-sensitive and loss-sensitive real-time audio video data transmission (AV traffic). It
specifies the priority regeneration and controlled bandwidth queue draining algorithms
that are used in bridges and AV traffic sources
●
Supports one additional channel (channel 1) on the transmit and receive paths for AV
traffic in 100 Mbps and 1000 Mbps modes. The channel 0 is available by default and
carries the legacy best-effort Ethernet traffic on the transmit side.
●
Supports IEEE 802.1-Qav specified credit-based shaper (CBS) algorithm for the
additional transmit channels
●
Provides separate DMA, TxFIFO, and RxFIFO MTL for the additional channel (to avoid
“head of line blocking” issues); the system-side interface remains the same.
The GMAC has the following additional features for monitoring, testing, and debugging:
14/200
●
Supports internal loopback on the GMII/MII for debugging
●
Provides DMA states (Tx and Rx) as status bits
●
Provides debug status register that gives status of FSMs in transmit and receive datapaths and FIFO fill-levels
●
Application abort status bits
●
MMC (RMON) module in the GMAC core
●
Current Tx/Rx buffer pointer as status registers
●
Current Tx/Rx descriptor pointer as status registers
●
Statistical counters that help in calculating the bandwidth served by each transmit
channel when AV support is enabled
Doc ID 023063 Rev 5
SPEAr1340
2.10
Device functions
PCI Express controller (PCIe)
The PCI Express core incorporates a dual-mode (DM) core which can implement a PCIe
interface for a PCIe Root Complex (RC) or Endpoint (EP). The dual-mode core can operate
in EP or RC port modes, depending on value written in a register during PCIe configuration.
PCIe is compliant with the PCI Express Base 2.0 specification, but it is also compliant with
the PCIe 1.1 specification.
The core features a proprietary user-configurable and high-performance application
interface for generating and receiving PCIe traffic. It is available with standard AMBA 3 AXI
interfaces.
Typical applications for a PCI Express device built with the DM core include:
●
Motherboard components for desktop and mobile computers
●
Graphics devices
●
Add-in cards for desktop and mobile computers
●
Components and add-in cards in server applications
●
Embedded applications
●
Data communications equipment
●
Telecommunications equipment
●
Storage devices
●
Wireless devices
●
Other applications
The DM core in EP mode supports PCI Express Legacy Endpoint devices. However, the
application must ensure that the device obeys the Legacy Endpoint device rules defined in
the PCI Express Base 2.0 specification.
Note:
The core is not intended for use in a root complex integrated endpoint.
Main features (common to both EP and RC mode of the DM cores):
●
Support for all non-optional features and some optional features defined in the PCI
Express Base 2.0 specification.
●
Ultra low transmit and receive latency
●
Support a max payload size of 256 bytes
●
4 KB maximum request size
●
Very high accessible bandwidth
●
Support for both Gen1 (at 125 MHz) and Gen2 (at 250 MHz) operation
●
2.5 Gbps (Gen1) or 5.0 Gbps (gen2) Lane (x1)
●
Automatic lane reversal as specified in the PCI Express 2.0 specification (transmit and
receive)
●
Polarity inversion on receive
●
Multiple virtual channels (VCs) (maximum of 2)
●
Multiple traffic classes (TCs)
●
ECRC generation and checking
●
PCI Express beacon and wake-up mechanism
Doc ID 023063 Rev 5
15/200
Device functions
SPEAr1340
●
PCI power management
●
PCI Express active state power management (ASPM)
●
PCI Express advanced error reporting
●
Vital product data (VPD)
●
PCIe messages for both transmit and receive.
●
External priority arbitration (in addition to the internally implemented transmit
arbitration)
●
Expansion ROM support
Additional features specific to RC mode
●
Type 1 configuration space
●
Application-initiated Lane reversal for situations where the core does not detect Lane 0
(for example, an x4 core connected to an x8 device that has its Lanes reversed)
Additional features specific to EP mode
2.11
●
Completion time-out ranges
●
Type 0 configuration space
●
MSI interrupt capability
Serial ATA controller (SATA)
The SATA AHCI Core implements the serial advanced technology attachment (SATA)
storage interface for physical storage devices.
Main features:
16/200
●
SATA 3.0 Gb/s Gen II
●
eSATA (external analog logic also needs to support eSATA)
●
Compliant with the following specifications:
–
Serial ATA 3.0 (except FIS-based switching)
–
AHCI Revision 1.3 (except FIS-based switching)
–
AMBA 3 AXI interfaces
●
User-defined PHY status and control ports
●
RX data buffer for recovered clock systems
●
Data alignment circuitry when RX data buffer is also included
●
OOB signaling detection and generation
●
8b/10b encoding/decoding
●
Asynchronous signal recovery, including retry polling
●
Digital support of device hot-plugging
●
Power management features including automatic partial-to-slumber transition
●
BIST loopback modes
●
Single SATA device
●
Internal DMA engine per port
●
Hardware-assisted native command queuing for up to 32 entries
Doc ID 023063 Rev 5
SPEAr1340
2.12
Device functions
●
Port Multiplier with command-based switching
●
Disabling RX and TX Data clocks during power down modes
●
Integrated SATA link layer and transport layer logic
●
Supports PIO, first party and legacy DMA modes
●
Supports legacy command queuing
●
Supports ATA and ATAPI master-only emulation mode (for instance, register and
command compatible with these standards)
●
Power-down mode
●
Data scrambling
●
CRC computation
●
Automatic data flow control
●
Far end loop-back re-timed
SATA/PCIe physical interface (MiPHY)
The MiPHY macrocell implements the lower (physical) layer protocols providing data
transmission and reception over a dual differential pair cable. The TX (transmit) and RX
(receive) serial channels operate plesiochronously (NRZ). The macrocell can be used in
Host or Device applications.
Main features:
●
Serial transceiver (PHYsical layer) serializer and deserializer
●
Direct support for 1.5/ 3.0 and 1.25/ 2.5/ 5.0 Gbit/s bit rates
●
20-bit parallel interface
●
Comma detect to provide word alignment of incoming serial stream
●
SSC modulation
●
Integrated impedance adaptation to transmission line characteristics
●
Out-of-band (OOB) signaling
●
Supported 1.2 V and 2.5 V power supply
●
High-performance PLL (input reference 100 MHz for PCIe and 100 or 25 MHz for
SATA)
●
Programmable TX buffer pre-emphasis, slew-rate and amplitude
●
Dedicated TX buffer regulator for:
–
Transmit buffer noise immunity
–
Buffer level stability
Doc ID 023063 Rev 5
17/200
Device functions
2.13
SPEAr1340
Memory card interfaces (MCIF)
MCIF is a hardware IP that interfaces with the most common memory cards on the market:
●
SD/SDIO 2.0
●
SDHC
●
CF/CF+ Rev 4.1
●
MMC 4.2/4.3
●
xD
The device interface multiplexes different memory cards on the same IOs; only one memory
card is accessible at a given time. At the board level, discrete elements are required to
handle host-swap management.
Main features:
SD/SDIO/MMC controller
●
●
–
SD Host controller standard specification version 2.0
–
SDIO card specification version 2.0
–
SD memory card specification draft version 2.0
–
SD memory card security specification version 1.01
–
MMC specification version 3.31, 4.2 and 4.3
–
AMBA specification AHB (version 2.0)
Data transfer with the system core through:
–
PIO mode on the Host AHB slave interface
–
DMA mode on the Host AHB master interface
●
Host clock rate variable from 0 to 50 MHz
●
Maximum data rate achievable:
●
18/200
Compliant with:
–
200 Mbps (sd4 bit mode)
–
400 Mbps (mmc8 bit mode)
Data transfer:
–
SD mode: 1 bit, 4 bit, and SPI mode
–
MMC mode: 1 bit, 4 bit, 8 bit, and SPI mode
●
Cyclic redundancy check for commands (CRC7) and for data integrity (CRC16)
●
Variable length data transfer
●
Read wait control and suspend/resume operations supported
●
Works with IO cards, read-only cards and read/write cards
●
Supports MMC Plus and MMC Mobile
●
Error correction code support for MMC 4.3 cards
●
Card detection (insertion/removal)
●
Card password protection
●
Two 4K FIFO to aid data transfer between the CPU and the controller
●
FIFO overrun and underrun handled by stopping the SD clock
Doc ID 023063 Rev 5
SPEAr1340
Device functions
CF/CF+ Host controller
●
CF Specification Revision 4.1 compliance (True IDE Mode only)
●
Multiword DMA to transfer data between the host and the CF/+ device
●
Ultra DMA mode for accessing the CF/+ card using the 16-bit data path
●
PIO timing mode0 through mode6
●
Multiword DMA timing mode0 through mode4
●
Ultra DMA timing mode0 through mode6
●
Data transfers up to 256 (512 byte) blocks
●
Variable-length data transfer in multiword DMA and Ultra DMA modes
●
Interrupt-driven data transfers in PIO mode
xD Host controller (Xtreme Digital)
2.14
●
Comfortable erase mechanism
●
Programmable access timing
●
Read, write, erase, read device ID, status and reset commands
●
ECC generation and checking
●
Multiblock programming and multiblock erase
●
1 Gbit, 2 Gbit support
UART ports
The SPEAr1340 device integrates 2 instances of an asynchronous serial port (UART) digital
block, identified as UART0 and UART1.
Asynchronous serial ports are responsible for performing the main tasks in serial
communications with computers. The device converts incoming parallel information into
serial data and incoming serial information into parallel data that can be sent on a
communication line connected to an external peripheral device.
The SPEAr1340 embedded MPU provides two independent UART controllers. One of the
typical uses of UART is connecting the SPEAr-based platforms to debugging consoles, the
communication with modems and the interfacing of Bluetooth, DECT or ZigBee chipsets.
The UART features inside SPEAr1340 offer similar functionality to the industry-standard
16C650 UART device.
UART ports usually do not directly generate or receive the external signals used between
different items of equipment. External interface devices are used to convert the logic level
signals of the UART to and from the external signaling levels. External signals may be of
many different forms, such as RS-232, infrared and wireless radio. In particular, the UART
interfaces inside SPEAr1340 directly support (by software selection) the IrDA-compliant
Serial InfraRed (SIR) protocol.
The UART supports standard asynchronous communication bits (start, stop, and parity),
which are added prior to transmission and removed on reception.
Doc ID 023063 Rev 5
19/200
Device functions
SPEAr1340
Main features:
UART0 and UART1:
●
Support baud rate up to UARTCLK/16
●
Programmable baud rate generation (integer and fractional parts)
●
Support three options on the UARTCLK clock frequency:
–
48 MHz: maximum baud rate of 3 Mbps (48/16)
–
24 MHz: maximum baud rate of 1.5 Mbps (24/16)
–
Programmable by software: up to 125 MHz with a maximum baud rate of 7.81
Mbps (125/16).
●
Separate 16x8 transmit and 16x12 receive first-in, first-out memory buffers (FIFOs)
●
Programmable FIFO disabling for 1-byte depth
●
FIFO trigger levels selectable between 1/8, 1/4, 1/2, 3/4 and 7/8
●
Independent masking of transmit FIFO, receive FIFO, receive time-out, and error
condition interrupts
●
Support for direct memory access (DMA)
●
False start bit detection
●
Line break generation and detection
●
Programmable usage of IrDA SIR encoder/decoder:
IrDA SIR ENDEC block provides:
●
–
Support of IrDA SIR ENDEC functions for data rates up to 115.2 Kbits/second
half-duplex
–
Support of normal 3/16 and low-power bit durations
–
Programmable internal clock generator enabling division of reference clock by 1 to
256 for low-power mode bit duration
Fully-programmable serial interface characteristics:
–
data can be 5, 6, 7, or 8 bits
–
even, odd, stick, or no-parity bit generation and detection
–
1 or 2 stop bit generation
UART0 only:
●
Programmable hardware flow control which uses the CTS input and the RTS output to
automatically control the serial data flow
●
Support modem status which uses:
●
20/200
–
Input signals: Clear To Send (CTS), Data Carrier Detect (DCD), Data Set Ready
(DSR), and Ring Indicator (RI)
–
Output modem control lines: Request To Send (RTS), and Data Terminal Ready
(DTR)
Independent masking of modem status
Doc ID 023063 Rev 5
SPEAr1340
2.15
Device functions
I2C bus controllers (I2C)
The SPEAr1340 device integrates 2 instances of an I2C controller, identified as I2C0 and
I2C1, which can be used to connect to the I2C bus peripheral.
Main features:
●
Compliant to the I2C-bus specification from Philips
●
Three different operating modes:
–
2.16
Standard-speed mode (data rates up to 100 Kb/s)
–
Fast-speed mode (data rates up to 400 Kb/s)
–
High-speed mode
●
Clock synchronization
●
Master or slave I2C operation mode
●
Multimaster operation mode (bus arbitration)
●
Support for direct memory access (DMA)
●
7-bit or 10-bit addressing
●
7-bit or 10-bit combined format transfers
●
Slave bulk transfer mode
●
Ignores CBUS addresses (an older ancestor of I2C that used to share the I2C bus)
●
Buffer transmission and reception
●
Interrupt or polled-mode operation
●
Handles bit and byte waiting at all bus speeds
●
Digital filter for the received SDA and SCL lines
Synchronous serial port (SSP)
The synchronous serial port block includes a master or slave interface to enable
synchronous serial communication with slave or master peripherals.
Main features:
●
Master or slave operation
●
Programmable clock bit rate and prescaler
●
Separate transmit and receive first-in, first-out memory buffers, 16-bit wide, 8 locations
deep
●
Programmable choice of interface operation, SPI, Microwire, or TI synchronous serial
●
Programmable data frame size from 4 to 16 bits
●
Independent masking of transmit FIFO, receive FIFO, and receive overrun interrupts
●
Internal loopback test mode available
●
Support for direct memory access (DMA)
Doc ID 023063 Rev 5
21/200
Device functions
2.17
SPEAr1340
A/D converter (ADC)
SPEAr1340 integrates an analog-to-digital converter.
Main features:
2.18
●
Successive approximation A/D conversion
●
10-bit resolution for the analog cell which can be extended up to 12 bits with embedded
oversampling techniques performed by the controller
●
1 MSPS
●
8 analog input channels (0 – 2.5 V)
●
INL ± 1 LSB
●
DNL ± 1 LSB
●
Programmable conversion speed – minimum conversion time 1 µs
●
Support for resistive touchscreen
HDMI CEC interfaces (CEC)
The SPEAr1340 device integrates 2 instances of a Consumer Electronics Control (CEC)
digital block, identified as CEC0 and CEC1.
CEC is an asynchronous transfer mode adaptation layer (AAL) protocol that provides highlevel control functions among the various audiovisual products in a user’s environment. CEC
operates at low speeds, with minimal processing and memory overhead.
Main features:
22/200
●
AMBA 2.0 compatible
●
One touch play: Play a device and make it the active source with the press of a button
●
System standby: Set all devices to standby with the press of a button
●
Preset transfer: Auto-configures device presets to match those of the TV
●
One-touch record: Enables one-button recording
●
Timer programming: Any device can program a recording device’s timer
●
System information: Devices can auto-configure their language and country settings
●
Deck control: A device can control and interrogate a playback device
●
Tuner control: A device can control the tuner of another device
●
Vendor specific commands: Enables the use of vendor-defined commands
●
On-screen display (OSD): A device can display text on the TV screen
●
Device menu control: A device can control the menu of another device
●
Routing control: Enables CEC switch control, to stream a new source device
●
Remote control pass through: Enables the passing on of remote control commands to
other devices
●
Device OSD name transfer: System devices can request the preferred object-based
storage device (OSD) name of other system devices
Doc ID 023063 Rev 5
SPEAr1340
2.19
Device functions
General purpose I/O (GPIO/XGPIO)
SPEAr1340 handles generic input/outputs in 3 ways. First, the device integrates 2 instances
of a general purpose I/O (GPIO) digital block, identified as GPIOA and GPIOB. Second, an
extended GPIO (XGPIO) feature is provided. Finally, it is possible to use the KBD controller
in GPIO mode (this feature is documented in Section 2.28: Keyboard controller (KBD)).
The GPIO block provides 16 programmable inputs or outputs (8 for GPIOA and 8 for
GPIOB). Each input/output can be controlled by software.
GPIO main features:
●
16 individually programmable input/output pins (by default input at reset)
●
An APB slave acting as control interface in software mode
●
Programmable interrupt generation capability on any number of pins
●
Bit masking in both read and writes operation through address lines
The XGPIOs are individually programmable input/output pins (by default output) that can be
controlled through an AHB slave interface.
XGPIO main features:
●
234 individually programmable input/output pins: XGPIO0 to XGPIO7, and XGPIO24 to
XGPIO249 (by default output). There is just an exception for the bit XGPIO169 which is
always an output.
●
Programmable interrupt (rise or fall edge sensitive) generation on any number of pins
●
An AHB slave interface as control
Doc ID 023063 Rev 5
23/200
Device functions
2.20
SPEAr1340
LCD display controller (CLCD)
The TFT LCD controller provides all the necessary control signals to interface directly to a
variety of TFT LCD panels.
Main features:
●
Wide range of programmable LCD panel resolutions
●
Support for 1 port TFT LCD panel interfaces:
18-bit digital (6-bit/color)
–
24-bit digital (8-bit/color) CMOS
●
Support for 2 Port TFT LCD panel interfaces (2nd port available by programmable
signals)
●
Support for up to 2 overlay windows.
●
Programmable frame buffer bits-per-pixel (bpp) color depths:
–
1, 2, 4, 8 bpp mapped through the color palette to 18-bit LCD pixel
–
up to 18 bpp directly drive 18-bit LCD pixel
–
24 bpp directly drive 24-bit LCD pixel
●
Color Palette RAM to reduce Frame Buffer memory storage requirements bandwidth
●
Programmable output format support:
●
●
24/200
–
–
RGB 6:6:6 or 5:6:5 or 5:5:5 on 18-bit digital interface
–
RGB 8:8:8 on 24-bit digital interface
Programmable horizontal timing parameters:
–
horizontal front porch, back porch, sync width, pixels-per-line
–
horizontal sync polarity
Programmable vertical timing parameters:
–
vertical front porch, back porch, sync width, lines-per-panel
–
vertical sync polarity
●
Programmable pixel clock frequency up to 148MHz (1080p resolution)
●
Programmable data enable timing signal:
–
derived from horizontal and vertical timing parameters
–
display enable polarity
●
Power up and down sequencing support
●
Programmable endianness
●
Pulse width modulation for LCD panel LED backlight brightness control
Doc ID 023063 Rev 5
SPEAr1340
2.21
Device functions
Graphics processing unit (GPU)
The Mali GPU is a hardware accelerator for 2D and 3D graphics systems that forms the
basis of a high performance graphics processing solution. When implemented as part of a
system-on-chip (SoC) device, the GPU forms an integral part of the graphics solution. The
GPU comprises the following:
●
●
●
●
an ARM® Mali™200 pixel processor
a MaliGP2 geometry processor
a memory management unit (MMU)
associated software (programmed using OpenVG or OpenGL base layers)
Main features (pixel processor):
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
Programmable fragment shader
Access to framebuffer from fragment shaders
Alpha blending
Arbitrary memory reads and writes
Complete non-power-of-2 texture support
Cube mapping
Dynamic recursion
Fast dynamic branching
Fast trigonometric functions, including arctangent
Full floating-point arithmetic
Framebuffer blend with destination Alpha
High dynamic range (HDR) textures and framebuffers
Indexable texture samplers
Line, quad, triangle, and point sprites
Multiple render targets
No limit on program length
Perspective anisotropic filtering (AF)
Perspective correct texturing
Point sampling, bilinear, and trilinear filtering
Programmable mipmap level-of-detail biasing and replacement
Register indirect jumps
Stencil buffering, 8-bit
Two-sided stencil
Unlimited dependent texture reads
Virtualized texture samplers
4-level hierarchical Z and stencil operations
4 times and 16 times full scene anti-aliasing (FSAA)
4-bit per texel texture compression.
Geometry processor
●
Programmable vertex shader
●
Autonomous operation tile list generation
●
Flexible input and output formats
●
Indexed and non-indexed geometry input
●
Primitive constructions with points, lines, triangles and quads.
Doc ID 023063 Rev 5
25/200
Device functions
SPEAr1340
Software
●
Compatibility with the following graphics standards:
–
OpenGL ES 2.0
–
OpenGL ES 1.1
–
OpenVG 1.0
The geometry processor must be programmed using OpenVG or Open GL base layers.
2.22
Video decoder (VDEC)
Main features:
●
All algorithms in hardware - minimal CPU load
●
Minimal power consumption - functional level clock gating and synthesis time clock
gating (> 90% of registers under gating)
Supported video codecs:
●
●
H.264 profile and level
–
Baseline, main and high profiles
–
Decoding up to 1080p/30fps(1)
Scalable video coding (SVC):
–
●
–
●
Baseline and high profiles (base layer only)
MPEG-4 visual profile and level
Simple and advanced simple profiles, levels 0 –5(2)
H.263 profile and level
–
Profile 0, levels 10 –70 (image size up to 720x576)
●
Sorenson Spark
●
WMV9 / VC-1
–
●
Simple, main and advanced profiles, levels 0 -3
MPEG-1&2 main profile
–
Low, medium and high levels
●
RealVideo8/9/10
●
DivX®3/4/5/6 support
–
Home theater profile qualification
●
VP6, VP7 versions 0-3
●
VP8 version 2 (WebM)
●
AVS Jizhun Profile
●
JPEG, all common sampling formats
–
Baseline interleaved
1. Achievable resolution and frame rate depending on specific stream content and system load.
2. Global motion compensation (GMC) is not supported.
26/200
Doc ID 023063 Rev 5
SPEAr1340
Device functions
Supported post-processing features:
●
●
●
Input image source
–
Internal source (combined mode): G1decoder
–
External source (standalone mode): for example, a software decoder or camera
interface
Input image size
–
Combined mode: 48 x 48 to 8176 x 8176 (66.8 Mpixels)
–
Standalone mode: width from 48 to 8176, height from 48 to 8176 (maximum size
limited to 16.7 Mpixels)
Output image size
–
●
●
●
Image scaling
–
Bicubic polynomial interpolation for upscaling
–
Proprietary averaging filter for downscaling
–
Arbitrary, non-integer scaling ratio separately for both dimensions
YCbCr to RGB color conversion
–
BT.601-5 compliant
–
BT.709 compliant
–
User definable conversion coefficient
Dithering
–
●
2x2 ordered spatial dithering for 4-, 5- and 6-bit RGB channel precision
Alpha blending
–
●
16 x 16 to 1920 x 1088
Output image can be alpha blended with two rectangular areas
Deinterlacing
–
Conditional spatial deinterlace filtering; supports only YCbCr 4:2:0 input format
●
linear RGB image contrast, brightness and color saturation adjustment
●
Deblocking filter for MPEG-4 simple profile /H.263 / Sorenson
–
●
Using a modified H.264 in-loop filter as a postprocessing filter; filtering has to be
performed in combined mode.
Image cropping / digital zoom
–
User definable start position, height and width
–
Usable only for JPEG or stand-alone mode
●
Output image masking
●
Image rotation
–
Rotation 90, 180 or 270 degrees
–
Horizontal/vertical flip
Doc ID 023063 Rev 5
27/200
Device functions
2.23
SPEAr1340
Video encoder (VENC)
A multiformat video encoder is integrated in SPEAr1340 with 64-bit AXI master and 32-bit
AHB slave interfaces. It supports H.264 high profile video resolution up to 1080p and JPEG
still picture up to 64 Mpixel.
Main features:
●
H.264 profile and level
–
●
JPEG profile and level
–
Baseline (DCT sequential)
●
Video stabilization
●
I and P slices support
●
CAVLC baseline and CABAC main profile
●
Error resilience
●
–
Constrained intra prediction
–
Slices, multiple of macro blocks rows
Maximum motion vector length
–
Vertical ±14 pixels
–
Horizontal ±30pixels
●
12 intra prediction modes
●
Motion vector pixel accuracy
–
720p resolution ¼ pixels
–
1080p resolution ½ pixels
●
Macroblock and sub-macroblock partitions: 16x16, 8x16, 16x8, 8x8, 4x8, 8x4,4x4
●
Transforms 4x4 baseline, main and high profiles
●
1 reference frame support
●
Maximum 1 slice group support
●
Input data formats
–
●
●
●
28/200
Baseline, main and high profiles, levels 1- 4.0
Planar YCbCr 4:2:0, semiplanar YCbCr 4:2:0, interleaved YCbCr 4:2:2
Output data formats
–
H.264 (Byte and NAL unit stream)
–
JPEG( JFIF file format 1.02 and non progressive JPEG)
Supported image size
–
H.264: 96x96 to1920x1020
–
JPEG: 96x96 to 8192x8192
–
Step size 4 pixels
Pre-processing features
–
YCbCr 4:2:2 to YCbCr 4:2:0 color space conversion for all YCbCr input formats
–
Cropping from 8192 x 8192 to any supported encoding size
–
Rotation of 90 or 270 degrees
Doc ID 023063 Rev 5
SPEAr1340
2.24
Device functions
Camera input interfaces (CAM)
The SPEAr1340 device integrates 4 instances of a camera input (CAM) digital block,
identified as CAM1, CAM2, CAM3, CAM4.
Each CAM interface enables SPEAr1340 to interface with an external image sensor. An
incoming image is stored in CAMIF memory per a programmed mode, and then transferred
to external memory using system direct memory access.
Main features:
●
AMBA 2.0 compatible
●
Slave interface with connection to external system DMA
●
8-bit parallel data interface
●
YCbCr4:2:2, RGB888 packed, RGB888 un-packed, RGB565, JPEG mode
●
Video mode with all running frame
●
Compliant with ITU-R BT.601 (External synchronization) as well as ITU-R BT.656
(embedded synchronization)
●
Image cropping
●
Programmable polarity of pixel clock and external synchronization signals (HSYNCH,
VSYNCH)
Note:
For 1080p 30 Hz video maximum pixel clock frequency for CAM required is
(2x2200x1125x30)=148.5 MHz.
2.25
Video input parallel port (VIP)
The video input parallel port is used to interface with some external image sensors.
Incoming images are stored inside its internal FIFO as per some programmed mode and
then transferred to the external memory through the master interface.
Main features:
●
Supports HDMI, DVI, DP and CVBS
●
Supports output format RGB along with HSYNC, VSYNC and pixel clock
●
Clock polarity configuration provided (Positive edge/Negative edge)
●
HSYNC and VSYNC polarity configurable
●
Handling of data enable signal
●
Dual-port display in DVI mode for 16 bpp and 24 bpp supported
●
Input bit width 16 bpp, 24 bpp and 32 bpp supported
●
Only unpacked data format supported
Doc ID 023063 Rev 5
29/200
Device functions
2.26
SPEAr1340
I2S digital audio ports (I2S)
The I2S controller is a highly configurable IP for use in audio applications. It provides a
simple interface to standard audio components.
Main features:
2.27
●
Compliant to Philips I2S serial bus specifications
●
I2S master for output operations and I2S slave for input operations
●
Configurable number of stereo channels (up to 4) for both transmitter and receiver
●
Supports up to 7.1 audio Tx and Rx
●
Supports 12-/16-/20-/24-/32-bit audio data interface
●
Fully synchronous design with serial clock and system clock
●
Interrupt support for reporting FIFO and other conditions
●
Programmable FIFO thresholds
●
Supports data exchange to the system memory through DMA interface
●
Software controlled block resets and enables
●
Software controlled FIFO flush
S/PDIF digital audio port
The S/PDIF audio interface detects bi-phase encoded S/PDIF signals, and plays PCM audio
data or audio encoded bit streams stored in memory in the S/PDIF format.
Main features:
Input
●
Fully compliant with IEC-60958 for audio data
●
Supports typical audio sampling frequencies, such as 32, 44.1, 48, 96, and 192 kHz.
●
Programmable DMA trigger threshold
●
VUCP storage can optionally be disabled
●
Audio data can be stored in bit lengths of 16 to 24 bits
Output
2.28
●
Compliant with IEC-60958 for audio data and IEC-61937 for compressed audio data
●
Supports typical audio sampling frequencies such as 32, 44.1, 48, 96, and 192 kHz
●
Supports one-bit audio mode (HDMI)
●
Supports DTS-HD mode
●
Programmable system DMA trigger limit
●
Programmable VUCP insertion
●
Supports 16/0 or 16/16 audio data format in memory
Keyboard controller (KBD)
The GPIO keyboard controller integrated in SPEAr1340 offers a 3-mode input and output
port. It provides an12-bit GPIO, or 6x6 keyboard, or 2x2 keyboard plus 8-bit GPIO, and
offers an interface to the industry standard APB bus.
30/200
Doc ID 023063 Rev 5
SPEAr1340
Device functions
Main features:
2.29
●
AMBA APB interface
●
GPIO or keyboard functionality with selection of any one of the two keyboard matrices:
–
12-bit general purpose parallel port (GPIO) with input or output single pin
programmability
–
36 (6x6) keys keyboard
–
4 (2x2) key keyboard plus 8-bit GPIO with input or output single pin
programmability
Cryptographic co-processor (C3)
C3 is a multipurpose, instruction driven, programmable DMA-based co-processor. It is
configured to accelerate cryptographic and network security functions.
Main features:
●
AMBA AHB 2.0 master and slave interfaces
●
Scatter and gather DMA engine (implemented only by MPCM channel)
●
Instruction dispatchers
–
ID0 and ID1 available
–
ID2 and ID3 not available
●
Internal RAM: 4Kx32
●
Coupling/Chaining: 2 paths
The hardware accelerator crypto algorithms available in SPEAr1340 have the following
channels supported by mentioned operations:
●
●
●
Channel 0: Move channel
–
Supported operations: copy, AND, OR, XOR
–
Chained mode: either master or slave
–
Cascaded mode: both master and slave
–
Input FIFO: 8x32 bits
–
Output FIFO: 8x32 bits
Channel 1: Data encryption standard (DES and TripleDES)
–
ID: 0x00002001
–
Supported algorithms: DES (56-bit keys, ECB and CBC encryption/decryption, no
parity check) and TripleDES (168-bit keys, ECB and CBC encryption/decryption,
EncDecEnc)
–
Input FIFO: 16x32 bits
–
Output FIFO: 16x32 bits
Channel 2: MPCM for the advanced encryption standard (AES)
–
ID: 0x0000E000
–
Supported algorithms: AES (128-, 192-, 256-bit keys, ECB and CBC
encryption/decryption, with programmable operation modes to support almost all
possible modes, including Counter and XTS mode)
–
Memory for modes of operation: 512 words of 62 bits each
–
Input FIFO: 16x32 bits
Doc ID 023063 Rev 5
31/200
Device functions
●
●
●
●
●
2.30
SPEAr1340
–
Output FIFO: 16x32 bits
–
Read scatter/gather list: 4x32 bits
–
Write scatter/gather list: 4x32 bits
Channel 3: Unified hash with HMAC (UHH)
–
ID: 0x00004014
–
Supported algorithms: HMAC MD5 (hash with 128-bit digest), HMAC SHA1 (hash
with 160-bit digest) and HMAC SHA2 (SHA256 and SHA224 with 256- and 224-bit
digest respectively)
–
Input FIFO: 16x32 bits
–
Output FIFO: 8x32 bits
Channel 4: Unified hash 2 with HMAC (UHH2)
–
ID: 0x00011001
–
Supported algorithms: HMAC SHA384 (hash with 384-bit digest) and HMAC
SHA512 (hash with 512-bit digest)
–
Input FIFO: 16x32 bits
–
Output FIFO: 8x32 bits
Channel 5: Public key accelerator (PKA) v6
–
ID: 0x00006001
–
Supported algorithms: modular exponentiation for RSA and Diffie-Hellman (up to
2048 bits), scalar multiplication of elliptic curve points over prime fields for ECC
(up to 384 bits) and Montgomery’s parameter for finite field operations
–
Input FIFO: 8x32 bits
–
Output FIFO: 8x32 bits
Channel 6: Random number generator (RNG)
–
ID: 0x0000F000
–
Generates a sequence of true random numbers, based on a contiguous analog
oscillator; the sequence has a success ratio of more than 85 % for 20.000 bits,
according to FIPS 140-1 tests
–
Monitors the entropy of the generated sequence
–
Input FIFO: 2x32 bits
–
Output FIFO: 4x32 bits
Channel 7: empty
Real-time clock (RTC)
The RTC is a block that keeps track of the real time of day. It also functions as an alarm and
a calendar. The time is displayed in 24-hour format, and time/calendar values are stored in
binary-coded decimal format.
The time of day, alarm and calendar, status and control registers can all be accessed via a
standard 32 APB bus. All read/write operations last 2 cycles.
RTC provides a self-isolation mode that is activated during power down. This allows RTC to
continue its operation (except for the alarm interrupt feature that is not preserved) if power is
not supplied to the rest of the circuit. This feature is realized by supplying separate power
and clock connections.
32/200
Doc ID 023063 Rev 5
SPEAr1340
Device functions
A set of 16 general purpose registers (GP-Reg) are provided which can be used to save
data during the power down state. GP-Reg-set runs on 32 K oscillator clock and powered by
RTC battery. Each register is of 32 bits and addressed mapped on the 32-bit APB bus. A bit
in status register reflects the status of any pending write to GP-Reg-set. This means that
write operation to the GP-Reg-set should be sequential, so you should wait for this pending
status bit to be cleared before writing again to GP-Reg-set.
Main features:
2.31
●
Works on dedicated 32768 Hz external clock and power supply
●
9999- year calendar
●
Leap years support
●
Programmable alarm interrupt
●
Power management and self-isolation
●
Prescaler and timer registers bypass for TEST
●
Time and date update monitors
●
16 general purpose registers which can be used to save data during power down state
DMA controllers (DMAC)
The SPEAr1340 device integrates 2 instances of a DMA controller (DMAC) digital block,
identified as DMAC0 and DMAC .
The DMAC is an AHB-central DMA controller core that transfers data from a source
peripheral to a destination peripheral over two AHB buses. A wrapper is designed to
instantiate 2 DMAC cores (each with 2 AHB master interfaces), 2 ICMs (which arbitrate the
same master interface of each DMAC) and a MUX (which manages multiple peripheral
handshaking interfaces).
Main features:
●
AMBA 2.0-compliant
●
AHB slave interface – used to program the DMAC
●
8 channels, one per source and destination pair
●
Unidirectional channels – data transfers in one direction only
●
Programmable channel priority
●
2 independent AHB master interfaces
●
Data bus width configured to 64 bits for each AHB master interface
●
Configurable endianness for master interfaces
●
Support for memory-to-memory, memory-to-peripheral, peripheral-to-memory, and
peripheral-to-peripheral DMA transfers
●
Component ID parameters for configurable software driver support
●
Programmable source and destination addresses (on AHB bus)
●
Address increment, decrement or no change
●
Multiblock transfers achieved through linked lists (block chaining)
●
Independent source and destination selection of multiblock transfer type
●
Scatter/Gather
Doc ID 023063 Rev 5
33/200
Device functions
34/200
SPEAr1340
●
Single FIFO per channel for source and destination
●
FIFO depth configured to 16 bytes for the first 4 channels and to 128 bytes for the last 4
channels
●
D flip-flop-based FIFO
●
Automatic data packing or unpacking to fit FIFO width
●
Programmable source and destination for each channel
●
Programmable transfer type for each channel (memory-to-memory, memory-toperipheral, peripheral-to-memory, and peripheral-to-peripheral)
●
Programmable burst transaction size for each channel
●
Programmable enable and disable of DMA channel
●
Support for disabling channel without data loss
●
Support for suspension of DMA operation
●
Support for RETRY, SPLIT, and ERROR responses
●
Programmable maximum burst transfer size per channel
●
Maximum transaction size configured to 256 for all the channels
●
Maximum block size configured to 4095 for all the channels
●
Bus locking – can be programmed to be over the transaction, block, or DMA transfer
level
●
Channel locking – can be programmed to be over the transaction, block, or DMA
transfer level
●
16 handshaking interfaces for source and destination peripherals
●
Hardware and software handshaking interfaces
●
Peripheral interrupt handshaking interface
●
Handshaking interface supports single or burst DMA transactions
●
Polarity control for hardware handshaking interface
●
Enabling and disabling of individual DMA handshaking interface
●
Programmable flow control at block transfer level (source, destination or DMAC core)
●
Software control of source data pre-fetch when destination is flow controller
●
Combined and separate interrupt requests
●
Interrupt generation on DMA transfer (multiblock) completion, block transfer
completion, single and burst transaction completion and error condition
●
Support of interrupt enabling and masking.
Doc ID 023063 Rev 5
SPEAr1340
2.32
Device functions
General purpose timers (GPT)
The SPEAr1340 device integrates 4 instances of a general purpose timer (GPT) digital
block, identified as GPT0, GPT1, GPT2, GPT3. Each instance is a dual timer, for total 8
independent timers.
General purpose timers can be used for precise timing measurement and for measurement
of frequency of any input signal. They are essentially counters that increment based on the
clock cycle and the timer prescaler. An application can monitor these counters to determine
how much time has elapsed. GPT can have timer and capture mode capabilities.
Main features:
2.33
●
It is constituted by 2 channels; each one consists of a programmable 16-bit counter and
a dedicated 4-bit timer clock prescaler
●
The programmable 4-bit prescaler unit performs a clock division by 1, 2, 4, 8, 16, 32,
64, 128 and 256
●
Three interrupt sources (MATCH, REDG, and FEDG) are available for each timer
channel. They are mapped to a single interrupt line for each channel but may be
individually masked and acknowledged
●
Each timer has a separate register set to control, enable and run each channel
separately
●
Three modes of operations are available for each timer channel:
–
Auto-reload mode
–
Single-shot mode
–
Capture function
PWM generators (PWM)
The PWM is a pulse-width modulation (PWM) timer module with four independent channels
(PWM1, PWM2, PWM3, and PWM4). All four channels are functionally identical. Using a
16-bit counter, each PWM channel generates a rectangular output pulse with programmable
duty factor (0 to 100%) and frequency.
The four channels can work either synchronously or asynchronously.
Main features:
●
Four independent PWM channels
●
Synchronous and asynchronous working modes
●
Prescaler to define the input clock frequency for each timer
●
Programmable duty factor from 0 to 100%
●
Programmable pulse frequency
●
APB slave interface for programming registers
●
APB clock (PCLK ~ 83 MHz) as the prescaler source clock
Doc ID 023063 Rev 5
35/200
Device functions
2.34
SPEAr1340
Clock and reset system
This centralized structure provides system synchronization.
Main features:
●
2.35
Six PLLs. Four of them are fully programmable and offer an EMI reduction mode
(spread spectrum clock generation through dithering) that can replace all traditional
EMI reduction techniques.
–
PLL1 programmable dithered pll, dedicated for Core1 & 2 & AXI/AHB bus &
peripherals. Both core need to run at the same speed
–
PLL2 programmable dithered PLL, dedicated for the 125 MHz clock of the Gigabit
Ethernet MAC
–
PLL3 programmable dithered PLL, for specific embedded IP functions
–
PLL4 programmable dithered PLL, dedicated for the DDR memory controller
(Asynchronous access memory mode)
–
PLL5 low jitter, dedicated for the USB
–
PLL6 for the PCIe controllers
●
Several synthesizers provide different frequencies for different IPs
●
Fully programmable control of clock and reset signals for all slave blocks allowing
sophisticated power management.
Reset and clock generator (RCG)
The reset and clock generator (RCG) provides the system clocks and resets. It is highly
configurable through the miscellaneous registers.
Main features:
●
●
●
●
36/200
Three main clock sources:
–
osci1: 24 MHz clock coming from internal oscillator connected to external quartz
–
osci2: 32 kHz clock coming from internal oscillator used for RTC block (optional)
–
osci3: 25/100 MHz clock coming from MIPHY macro (optional)
Three programmable dithered PLLs (to reduce EMI):
–
PLL1: primarily used to generate the 1 GHz clock for the AMBA subsystem
–
PLL2, PLL3: primarily used to generate clocks for generic IPs
Seven configurable clock generators:
–
SSCG1-4: used by generic IPs
–
SSCG5: for CPU clock
–
SSCG6: for CLCD clock
–
SSCG7: for AHB, APB clocks
Three operating modes for AMBA clocks:
–
DOZE: the clock source is osci2 (osci1 after power on)
–
SLOW: the clock source is the osci1 or a divided version
–
NORMAL: the clock source is PLL1 (by default), PLL2, PLL3 or SSCG7
●
Configurable clock gating and software reset for most peripherals
●
Global software reset and watchdog reset
Doc ID 023063 Rev 5
SPEAr1340
2.36
Device functions
Power control module (PCM)
PCM is the core of the SPEAr1340 leakage power management system. Its role is to
properly manage the power supply shutoff of the switchable sections of the embedded MPU.
Main features:
2.37
●
Generation of supply switch control signals for SPEAr1340 power islands
●
Generation of isolation control signals for SPEAr1340 power islands
●
Generation of shutoff commands for external DDR 1V2 and 1V5/1V8 supply lines
●
Acknowledge generation for user requested power island configuration
●
Monitoring of voltage detector outputs for each power island
●
Wake-up source management
Temperature sensor (THSENS)
The THSENS block is an embedded sensor for junction temperature monitoring.
Main features:
●
Embeds a thermal sensor providing digital measurement of junction temperature
●
Generates a “high-temperature” interrupt when junction temperature exceeds a
software programmable higher bound threshold
●
Generates a “low-temperature” interrupt when junction temperature is lower than a
software programmable lower bound threshold
●
Supports operating conditions ranging from –40 to 125°C
●
Allows measurement of junction temperature starting at 20°C
●
Allows offset correction of digital measurement (typical correction value 10)
●
Software programmable power-down functionality for lower power consumption
●
Continuous (periodic) sensing of temperature when not powered down
Doc ID 023063 Rev 5
37/200
Device functions
2.38
SPEAr1340
One-time programmable antifuse (OTP)
The OTP block is an array of one-time programmable antifuse memory cells. All OTP banks
feature an embedded charge pump which provides internally the high voltage necessary for
antifuse programming sessions. Therefore, it is not necessary to use an additional high
voltage pad at the chip interface. OTP is software programmable, so no dedicated
programming interface is needed at chip level.
Main features:
OTP embeds three 255-bit banks, with these features:
38/200
●
BANK 1: 255-bit data bank with write-protect mechanism
●
BANK 2: 255-bit data bank with write-protect mechanism
●
BANK M: 255-bit bank, logically partitioned as follows:
–
32 bits (16 + redundancy) used for BANK1/BANK2 write protection
–
213 bits BootROM controlled
–
2 bits reserved
–
2 bits reserved for disabling TEST access to OTP
–
2 bits reserved for disabling JTAG access
–
4 bits BootROM controlled
Doc ID 023063 Rev 5
SPEAr1340
3
Pin description
Pin description
This chapter provides a full description of the ball characteristics and the signal multiplexing
of SPEAr1340 device.
●
Section 3.1 shows the pin map of SPEAr1340.
●
Section 3.2 shows the association between balls and pads providing a detailed
description of their terminal characteristics.
●
Section 3.3 describes the power supply pins.
●
Section 3.4 shows the multiplexing scheme for multiplexed IPs.
●
Section 3.5 describes the pinout for each IP, categorized by functionality.
●
Section 3.6 describes the strapping options configuration and the hardware Boot
selection.
The following table explains the table headers and abbreviations used in this chapter.
Note:
In this chapter “na” stands for “not applicable”.
Table 2.
Headers/abbreviations
Header
Description
Abbreviations
Ball
Ball number associated with each signal on
the package.
Pin name
Name of signals multiplexed on each ball.
Note that at reset and after reset release, all
I/O pads (except for USB) are in input. To
choose between the possible configurations,
–
you need to program each IP by software.
Please refer to Section 3.4: Multiplexed
signals description and SPEAr1340
reference manuals for more information.
Signal type
Signal information (direction, type)
–
I= Input
O= Output
IO= Input/output
S= Depending on strapping option
D= Open drain
PWR= Power supply
GND= Ground
Z= High-impedance
Doc ID 023063 Rev 5
39/200
Pin description
Table 2.
SPEAr1340
Headers/abbreviations (continued)
Header
Description
Abbreviations
ANA= Analog
OSC= Oscillator
SSTL= SSTL 1V5/1V8
IOTYPE1= 3V3
IOTYPE2= 3V3/1V8
IOTYPE3= 3V3/2V5
IOTYPE4= 3V3 TTL buffer
REG OUT= Voltage regulator output
ANA REF= Analog reference
DED GND= Dedicated ground
Pin type
Pad type information
PU/PD
Indicates the presence of an internal pull-up PU= Pull-up
or pull-down resistor.
PD= Pull-down
Pull-up and pull-down can be enabled or
Deact= Deactivated
disabled via software.
Drive
Drive current capability
–
Slew
Signal transition
FAST= Fast slew
NOM= Nominal slew
Direction
Indicates the direction of the pad.
I= Input
O= Output
IO= Input/output
Out value
Indicates the electrical value on the ball.
0= The buffer drives VOL
1= The buffer drives VOH
H= High-impedance with an active pull-up resistor
L= High-impedance with an active pull-down
resistor
Z= High-impedance
The voltage supply that powers the pad.
See Table 4: Power supply signals
description.
–
Supply name
Reset state
Indicates the state during reset
–
Reset rel. state Indicates the state after reset
–
Reset mode
IO voltage setting during reset
–
Reset rel.
mode
IO voltage setting after reset
–
Compensation cell for reducing the spread
of PVT (process, voltage and temperature)
Compensation
related parameters of the I/O pad. The
cell
compensation values are programmable in
the registers of the related cell.
40/200
CC1= IO_COMP1_3V3
CC2= IO_COMP2_3V3
CC3= IO_COMP1_1V8_3V3
CC4= IO_COMP2_1V8_3V3
CC5= IO_COMP_2V5_3V3
CC6= IO_COMP_DDR
Doc ID 023063 Rev 5
SPEAr1340
3.1
Pin description
Pin map
The following figures show the pin map of the device in four quadrants (A, B, C and D).
Figure 2.
SPEAr1340 pin map (quadrant A)
1
2
3
4
5
6
7
8
9
A
RTC_XO
AIN4
AIN3
AIN0
ADC_
VREFP
gnd
MCLK_XI
MCLK_XO
FSMC_IO7/
XGPIO238
B
RTC_XI
AIN5
AIN6
AIN1
ADC_
VREFN
gnd
MCLK_
AVDD1V2
MCLK_
AVDD3V3
FSMC_IO6/
XGPIO239
C
RTC_
VDD1V5
AIN7
AIN2
ADC_
AVDD2V5
ADC_AGND
FSMC_CE0n/
XGPIO249
FSMC_RWPR FSMC_ALE_A
T0n/
D17/
XGPIO246
XGPIO243
D
USB_UHC1_
DP
USB_UHC 1_
DM
USB_UHC1_
VDD3V3
PLL2_
VDD1V2
gnd
PLL1_
VDD1V2
E
USB_
ANALOG_
TEST
USB_UHC 1_
VDD1V2
USB_UHC1_
VDD2V5
PLL2_
AVDD2V5
gnd
PLL1_
AVDD2V5
USB_UOC_D USB_UOC_D
P
M
USB_UOC_V
BUS
USB_UOC_
ID
gnd
VREG2_
2V5_OUT
F
10
11
12
13
14
FSMC_RSTP
FSMC_IO13/K FSMC_IO8/
WDWN1/
USB_UOC_D
BD_ROW5/X KBD_ROW0/X
KBD_COL4/
RVVBUS
GPIO5
GPIO0
GPIO_A2
MCIF_
DATA2_SD/
XGPIO229
FSMC_IO2/
XGPIO233
FSMC_IO14/K FSMC_IO9/
USB_UHC0_
BD_COL0/XG KBD_ROW1/X
DRVVBUS
PIO6
GPIO1
MCIF_
DATA3_SD/
XGPIO230
FSMC_IO5/
XGPIO240
FSMC_IO1/
XGPIO234
FSMC_IO15/K FSMC_IO10/K
USB_UHC1_
BD_COL1/XG BD_ROW2/X
DRVVBUS
PIO7
GPIO2
MCIF_
DATA4/
XGPIO231
FSMC_RB0/X FSMC_REn/X
GPIO247
GPIO244
FSMC_IO4/
XGPIO241
FSMC_IO0/
XGPIO235
FSMC_CE1n/ FSMC_IO11/K
USB_UHC0_
KBD_COL2/G BD_ROW3/X
OVERCUR
GPIO3
PIO_A0
MCIF_
DATA5/
XGPIO232
FSMC_CLE_A
FSMC_WEn/
D16/
XGPIO245
XGPIO248
FSMC_IO3/
XGPIO242
FSMC_RST
PWDWN0/
XGPIO236
FSMC_
RWPRT1n/
KBD_COL3/
GPIO_A1
IO_
VDD1V8
_3V3
gnd
IO_
VDD1V8
_3V3_1
IO_
VDD1V8
_3V3_1
gnd
IO_
VDD3V3
gnd
IO_
VDD1V8_
3V3
FSMC_IO12/K
USB_UHC1_
BD_ROW4/
OVERCUR
XGPIO4
MCIF_
DATA0/
XGPIO237
G
USB_
TXRTUNE
USB_UOC _V
DD3V3
USB_UOC_V
DD2V5
gnd
gnd
gnd
H
USB_UHC0_
DP
USB_UHC 0_
DM
USB_
VSSAC
USB_UOC_
VDD1V2
gnd
VREG2
_3V3_IN
J
MIPHY 0_
VSSR
MIPHY 0_
VSSR
USB_UHC0_
VDD3V3
USB_UHC0_
VDD2V5
gnd
gnd
K
MIPHY 0_
RXn
MIPHY 0_
RXp
MIPHY 0_
VSSR
USB_UHC0_
VDD1V2
gnd
VREG1_
3V3_IN
gnd
IO_COMP_
GND1_
1V8_3V3
IO_COMP_
REXT1_
1V8_3V3
VDD1V2
IO_COMP_
GND2_
1V8_3V3
L
MIPHY 0_
VSSR
MIPHY 0_
VSSR
MIPHY 0_
VDDR1V2
gnd
gnd
gnd
VDD1V2
gnd
VDD1V2
gnd
VDD1V2
M
MIPHY 0_
TXn
MIPHY 0_
TXp
MIPHY 0_
VSSR
VDD1V2
gnd
VREG1_
2V5_OUT
gnd
VDD1V2
gnd
gnd
gnd
N
MIPHY 0_
VDDT1V2
MIPHY 0_
VDD
PLL1V2
MIPHY 0_
VSST
gnd
PLL3_
AVDD2V5
gnd
VDD1V2
gnd
VDD1V2
gnd
gnd
P
MIPHY 0_
XTAL2
MIPHY 0_
XTAL1
MIPHY 0_
VDD2
PLL2V5
MIPHY 0_
VSSPLL
gnd
PLL3_
VDD1V2
gnd
VDD1V2
gnd
gnd
gnd
Doc ID 023063 Rev 5
41/200
Pin description
Figure 3.
SPEAr1340
SPEAr1340 pin map (quadrant B)
15
A
MCIF_ADDR1
MCIF_LEDs/
_CLE_CLK/
XGPIO219
XGPIO225
17
18
MCIF_nCD_
xD/
XGPIO214
FSMC_AD4/M
CIF_nCD_
CF1/
XGPIO209
FSMC_AD0/
MCIF_
ADDR2/
XGPIO215
FSMC_AD5/
MCIF_nCD_
CF2/
XGPIO210
19
20
21
22
23
24
25
26
27
28
FSMC_AD9/ FSMC_AD14/ FSMC_AD21/
MCIF_nRES MCIF_nDMAC
MCIF_
ET_CF/
K_nWP/
DATA14/
XGPIO204
XGPIO199
XGPIO194
LCD_XB5/
ARM_
TRCDATA29/
XGPIO189
LCD_XB0/
ARM_
TRCDATA24/
XGPIO184
LCD_XG3/
ARM_
TRCDATA19/
XGPIO179
LCD_XG0/
ARM_
TRCDATA15/
XGPIO175
LCD_R3/
ARM_
TRCDATA11/
XGPIO171
LCD_R6/
ARM_
TRCDATA10/
XGPIO170
LCD_R7/
ARM_
TRCDATA5/
XGPIO165
FSMC_AD10/ FSMC_AD15/ FSMC_AD22/
MCIF_nCS0_
MCIF_
MCIF_
nCE/
DATA10/
DATA13/
XGPIO205
XGPIO200
XGPIO195
LCD_XB6/
ARM_
TRCDATA30/
XGPIO190
LCD_XB1/
ARM_
TRCDATA25/
XGPIO185
LCD_XG4/
ARM_
TRCDATA20/
XGPIO180
LCD_XG1/
ARM_
TRCDATA16/
XGPIO176
LCD_VSY NC/
LCD_R0/
ARM_
ARM_
TRCDATA12/ TRCDATA8/
XGPIO168
XGPIO172
LCD_PE/
ARM_
TRCDATA4/
XGPIO164
FSMC_AD1/
FSMC_AD6 FSMC_AD11/
FSMC_AD23/
FSMC_AD18/
MCIF_nCE_ /MCIF_DATA_ MCIF_CF_
MCIF_
MCIF_DATA9/
CF/
DIR/
INTR/
DATA12/
XGPIO201
XGPIO216
XGPIO211
XGPIO206
XGPIO196
LCD_XB7/
ARM_
TRCDATA31/
XGPIO191
LCD_XB2/
ARM_
TRCDATA26/
XGPIO186
LCD_XG5/
ARM_
TRCDATA21/
XGPIO181
LCD_XG2/
LCD_HSY NC
ARM_
/ARM_
TRCDATA17/ TRCDATA13/
XGPIO177
XGPIO173
LCD_R1/
ARM_
TRCDATA7/
XGPIO167
LCD_DE/
ARM_
TRCDATA3/
XGPIO163
FSMC_AD7/
FSMC_AD24/
FSMC_AD12/ FSMC_AD19/
MCIF_
MCIF_
FSMC_AD25/
MCIF_IORDY MCIF_DATA8/
DATA11/
XGPIO192
nIORD_nRE/
/XGPIO207
XGPIO202
XGPIO212
XGPIO197
LCD_XB3/
ARM_
TRCDATA27/
XGPIO187
LCD_XG6/
ARM_
TRCDATA22/
XGPIO182
LCD_LED_P
WM/ARM_
TRCDATA18/
XGPIO178
LCD_XR7/
ARM_
TRCDATA14/
XGPIO174
LCD_R4/
ARM_
TRCDATA6/
XGPIO166
LCD_R5/
ARM_
TRCDATA1/
XGPIO161
B
MCIF_
DATA7/
XGPIO224
MCIF_
DATA1/
XGPIO220
C
MCIF_nCD_
SD_MMC/
XGPIO226
MCIF_DATA2/
XGPIO221
D
MCIF_DMAR
MCIF_DATA3/
Q_RnB_WP/
XGPIO222
XGPIO227
FSMC_AD2/
MCIF_nCE_
xD/
XGPIO217
E
MCIF_DATA1
MCIF_DATA6/
_SD/
XGPIO223
XGPIO228
MCIF_SD_
CMD/
XGPIO218
MCIF_
ADDR0_ALE/
XGPIO213
FSMC_AD3/
MCIF_nCE_
SD_MMC/
XGPIO208
FSMC_AD8/
MCIF_nIO
WR_nWE/
XGPIO203
FSMC_AD13/
MCIF_nCS1/
XGPIO198
FSMC_AD20/
MCIF_
DATA15/
XGPIO193
LCD_XB4/
ARM_
TRCDATA28/
XGPIO188
LCD_XG7/
ARM_
TRCDATA23/
XGPIO183
LCD_G0/
ARM_
TRCDATA0/
XGPIO160
LCD_XR0/
ARM_
TRCCTL/
XGPIO159
LCD_XR3/
ARM_TRCCL
K/XGPIO158
LCD_G1/
XGPIO157
IO_VDD3V3
IO_VDD3V3
gnd
IO_VDD3V3
IO_VDD3V3
gnd
IO_VDD3V3
LCD_R2/
ARM_
TRCDATA2/
XGPIO162
LCD_G4/
XGPIO156
LCD_G6/
XGPIO155
LCD_XR1/
XGPIO154
LCD_XR4/
XGPIO153
G
IO_VDD3V3
LCD_G2/
XGPIO152
LCD_G5/
XGPIO151
LCD_G7/
XGPIO150
LCD_XR2/
XGPIO149
LCD_XR5/
XGPIO148
H
gnd
LCD_G3/
XGPIO147
LCD_B1/
XGPIO146
LCD_B0/
XGPIO145
LCD_B7/
XGPIO144
LCD_XR6/
XGPIO143
J
IO_VDD3V3
LCD_B6/
XGPIO138
LCD_B2/
XGPIO142
LCD_B3/
XGPIO141
LCD_B4/
XGPIO140
LCD_B5/
XGPIO139
gnd
CEC1/
XGPIO136
CEC0/
XGPIO135
SPDIF_OUT/X
GPIO137
I2C0_SDA/
XGPIO133
LCD_PCLK/
ARM_
TRCDATA9/
XGPIO169
IO_VDD2V5_ MAC_TXEN/X MAC_TXER/X MAC_CRS/XG
3V3
GPIO129
GPIO130
PIO131
SSP_SS3n/
XGPIO132
I2C0_SCL/
XGPIO134
F
42/200
16
IO_VDD3V3
gnd
K
IO_COMP_
REXT2_1V8_3
V3
gnd
VDD1V2
gnd
IO_COMP_
REXT2_3V3
L
gnd
VDD1V2
gnd
VDD1V2
IO_COMP_
GND2_3V3
M
gnd
gnd
VDD1V2
gnd
VDD1V2
N
gnd
gnd
gnd
VDD1V2
gnd
P
gnd
gnd
VDD1V2
gnd
IO_COMP_
REXT_2V5_
3V3
Doc ID 023063 Rev 5
gnd
MAC_RXD6/X MAC_RXD7/X
GPIO124
GPIO125
MAC_COL/
XGPIO126
MAC_RXDV/X MAC_RXER/X
GPIO127
GPIO128
IO_VDD2V5_ MAC_RXD3/X MAC_RXD4/X MAC_RXD5/X MAC_MDC/X MAC_MDIO/X
3V3
GPIO119
GPIO120
GPIO121
GPIO122
GPIO123
gnd
IO_VDD2V5_ MAC_RXD2/X MAC_TXD6/X MAC_TXD7/X
3V3
GPIO118
GPIO115
GPIO116
MAC_
RXCLK/
XGPIO117
SPEAr1340
Figure 4.
Pin description
SPEAr1340 pin map (quadrant C)
1
2
3
4
5
6
R
MIPHY 0_REF
gnd
MIPHY 0_
VSSR
gnd
MIPHY_
VREG_
3V3_IN
T
DDR_ADDR8
DDR_
RESETn
DDR_CKE
gnd
U
DDR_CS1n
DDR_ODT1
DDR_ADDR0 DDR_ADDR9
7
8
9
10
11
12
13
14
gnd
VDD1V2
gnd
VDD1V2
gnd
gnd
gnd
DDRIO_
VDD1V8_1V5
gnd
VDD1V2
gnd
gnd
gnd
DDRIO_
VDD1V8_1V5
gnd
DDRPHY _
VDD1V2
gnd
DDRPHY _
VDD1V2
gnd
gnd
V
DDR_ADDR7 DDR_ADDR2 DDR_ADDR3
DDR_
ADDR11
gnd
DDRIO_
VDD1V8_1V5
gnd
DDRPHY _
VDD1V2
gnd
DDRPHY _
VDD1V2
gnd
W
DDR_ADDR5 DDR_ADDR1
DDR_BA1
DDR_
ADDR14
DDRIO_
VDD1V8_1V5
gnd
DDRPHY _
VDD1V2
gnd
DDRPHY _
VDD1V2
gnd
VDD1V2
Y
DDR_
ADDR13
DDR_ADDR4
DDR_BA0
DDR_ADDR6
gnd
DDRIO_
VDD1V8_1V5
AA
DDR_BA2
DDR_
ADDR12
DDR_
ADDR10
DDR_WEn
DDRIO_
VDD1V8_1V5
gnd
AB
DDR_CLKP2
DDR_CLKM2
DDR_CS0n
gnd
gnd
DDRIO_
VDD1V8_1V5
AC
DDR_CLKP1
DDR_CLKM1
DDR_ODT0
DDRIO_VRE
F
DDR_PLL_
AVDD2V5
gnd
AD
DDR_CLKP0
DDR_CLKM0
DDR_RASn
DDR_CASn
AE
DDR_DQ4
DDR_DQ6
DDR_DQS0p
DDR_DQ7
DDR_DM0
AF
DDR_DQ2
DDR_DQ0
DDR_DQS0n
DDR_DQ1
AG
DDR_DQ11
DDR_DQ13
DDR_DM1
AH
DDR_DQ15
DDR_DQ9
DDR_DQ8
DDRIO_
VDD1V8_1V5
gnd
DDRIO_
VDD1V8_1V5
gnd
DDRIO_
VDD1V8_1V5
gnd
DDRIO_
VDD1V8_1V5
gnd
gnd
DDRIO_
VDD1V8_1V5
gnd
DDRIO_
VDD1V8_1V5
gnd
DDRIO_
VDD1V8_1V5
gnd
DDRIO_
VDD1V8_1V5
DDR_DQ5
DDR_DQ20
DDR_DQ16
DDR_DQS2p
DDR_DQ17
DDR_DQ19
TEST4
TEST3
TEST2
DDR_DQ3
DDR_DQ22
DDR_DQ18
DDR_DQS2n
DDR_DQ23
DDR_DM2
DDR_DQ21
TEST1
TEST0
DDR2n_DDR3
DDR_DQS1n
DDR_DQ12
DDR_DQ27
DDR_DQ31
DDR_DM3
DDR_DQS3n
DDR_DQ28
DDR_DQ26
Reserv ed
Reserv ed
Reserv ed
DDR_DQS1p
DDR_DQ14
DDR_DQ10
DDR_DQ29
DDR_DQ25
DDR_DQ24
DDR_DQS3p
DDR_DQ30
Reserv ed
Reserv ed
Reserv ed
DDRIO_
DDRIO_
COMP_REXT VDD1V8_1V5
Doc ID 023063 Rev 5
43/200
Pin description
Figure 5.
SPEAr1340
SPEAr1340 pin map (quadrant D)
15
16
17
18
19
R
gnd
gnd
gnd
VDD1V2
T
gnd
gnd
VDD1V2
U
gnd
gnd
V
VDD1V2
W
gnd
20
21
23
24
25
26
27
28
IO_COMP_G
ND_2V5_3V3
IO_VDD2V5_
3V3
MAC_
RXD1/
XGPIO114
MAC_
TXD4/
XGPIO110
MAC_
TXD5/
XGPIO111
MAC_
RXD0/
XGPIO112
MAC_
GTXCLK/
XGPIO113
gnd
VDD1V2
gnd
IO_VDD2V5_
3V3
MAC_
TXD3/
XGPIO109
MAC_
TXD1/
XGPIO106
MAC_
TXD2/
XGPIO107
MAC_GTXCL
K125/
XGPIO108
gnd
VDD1V2
OTP_
VDD2V5
IO_VDD3V3
I2S_OUT_WS
/
XGPIO98
I2S_OUT_
DATA3/
XGPIO100
I2S_OUT_
DATA1/
XGPIO101
MAC_
TXD0/
XGPIO105
MAC_
TXCLK/
XGPIO104
gnd
VDD1V2
gnd
VDD1V2
gnd
I2S_IN_WS/
XGPIO94
I2S_OUT_
DATA2/
XGPIO95
I2S_OUT_
DATA0/
XGPIO96
I2S_OUT_
REFCLK/
XGPIO102
I2S_OUT_OV
RSAMP_CLK/
XGPIO103
VDD1V2
gnd
VDD1V2
gnd
IO_VDD3V3
I2S_IN_
DATA2/
XGPIO91
I2S_IN_
DATA1/
XGPIO92
I2S_IN_
DATA0/
XGPIO93
I2S_OUT_
BITCLK/
XGPIO97
I2S_IN_
BITCLK/
XGPIO99
Y
gnd
UART0_
TXD/
XGPIO86
UART0_
RXD/
XGPIO87
UART1_
TXD/
XGPIO88
UART1_
RXD/
XGPIO89
I2S_IN_
DATA3/
XGPIO90
AA
IO_VDD3V3
SSP_MOSI/
XGPIO81
SSP_MISO/
XGPIO82
SSP_SCK/
XGPIO83
SMI_CS0n/
XGPIO84
TOUCH_XY _
SEL/
SSP_SS2n/
XGPIO85
AB
gnd
SMI_DATAOU
T/
XGPIO76
SMI_DATA
IN/
XGPIO77
SMI_CS1n/
XGPIO79
SSP_SS0n/
XGPIO80
SMI_CLK/
XGPIO78
VIP_G3/
CAM1_
VSY NC/
XGPIO73
VIP_HSY NC/
CAM1_
HSY NC/
XGPIO74
VIP_R12/
CAM1_
DATA5/
XGPIO75
VIP_G4/
VIP_R11/
CAM1_DATA3 CAM1_DATA1
/XGPIO72
/XGPIO71
IO_COMP_
GND1_3V3
IO_VDD3V3
VIP_B8/
VIP_B12/
CAM4_DATA0 CAM4_DATA7
/XGPIO31
/XGPIO27
VIP_B4/
XGPIO36
VIP_B5/
XGPIO41
VIP_G15/
VIP_B13/
CAM4_DATA1 CAM4_DATA6
/XGPIO32
/XGPIO28
VIP_B3/
XGPIO37
VIP_B2/
XGPIO42
ARM_TDO
UART0_RTSn UART0_CTSn GPT0_TMR_
VIP_G14/
VIP_B14/
/GPT0_
/GPT1_TMR_
CPT1/
CAM4_DATA2 CAM4_DATA5
GPIO_B5/
TMR_CLK1/
CPT2/
/XGPIO33
/XGPIO29
DDRPHY_VDD1
GPIO_B0
GPIO_A3
VIP_R4/
XGPIO38
VIP_R5/
XGPIO43
VIP_G6/
VIP_R9/
VIP_R8/
VIP_B0/
VIP_R6/
CAM3_DATA0 CAM3_DATA2 CAM2_DATA5 CAM2_DATA4 CAM2_DATA2
/XGPIO62
/XGPIO61
/XGPIO56
/XGPIO52
/XGPIO48
PWM4/
UART0_DCD
VIP_G13/
VIP_B9/
GPT0_TMR_
n/GPT1_
CLK2/ GPIO_B6/ CAM4_DATA3 CAM4_DATA4
TMR_CLK2/
DDRIO_VDD1V8
/XGPIO34
/XGPIO30
GPIO_A7
_1V5_OFF
VIP_G11/
XGPIO40
VIP_R2/
CAM3_
HSY NC/
XGPIO44
VIP_G8/
VIP_B7/
VIP_B1/
CAM3_DATA3 CAM3_DATA4 CAM2_DATA7
/XGPIO55
/XGPIO51
/XGPIO47
AC
IO_VDD3V3
gnd
IO_VDD3V3
gnd
IO_VDD3V3
AD
ARM_TDI
ARM_TCK
SPDIF_IN/
GPIO_B3
VIP_B15/
CAM4_
VSYNC/
GPIO_B4
VIP_B11/
CAM4_
HSY NC/
XGPIO26
AE
ARM_TRSTn
ARM_TMS
PWM2/
UART0_DTRn
KBD_COL5/
/GPT1_
GPIO_B1/
TMR_CPT1/ GPIO_WKUP_TR
GPIO_A6
IG
PWM1/
SSP_SS1n/
XGPIO24
AF
MRESETn
gnd
IO_COMP_
REXT1_3V3
22
VIP_PIXCLK/
VIP_R13/
VIP_G2/
VIP_G5/
VIP_R10/
CAM1_
CAM1_DATA6
CAM1_DATA4 CAM1_DATA2 CAM1_DATA0
PIXCLK/
/
/XGPIO68
/XGPIO67
/XGPIO66
XGPIO69
XGPIO70
VIP_R1/
CAM3_
VSY NC/
XGPIO49
VIP_G1/
VIP_R7/
CAM3_DATA1 CAM2_DATA1
/XGPIO63
/XGPIO53
VIP_VSY NC/
VIP_R14/
CAM2_
CAM1_DATA7
VSY NC/
/XGPIO65
XGPIO64
PWM3/
V2_OFF
44/200
AG
Reserv ed
Reserv ed
UART0_RIn/
GPT0_TMR_
CPT2/
GPIO_A4
AH
Reserv ed
Reserv ed
UART0_DSRn
/GPT1_
TMR_CLK1/
GPIO_A5
I2C1_SDA/
GPIO_B2
I2C1_SCL/
GPIO_B7
VIP_B10/
CAM4_PIXCL
K/XGPIO25
VIP_G12/
XGPIO35
VIP_R3/
CAM3_
PIXCLK/
XGPIO39
Doc ID 023063 Rev 5
VIP_DE/
CAM2_
HSY NC/
XGPIO59
VIP_R15/
CAM2_DATA6
/XGPIO60
VIP_G0/
VIP_G7/
VIP_R0/
VIP_G9/
VIP_B6/
VIP_G10/
CAM3_DATA7 CAM3_DATA5 CAM3_DATA6 CAM2_PIXCL CAM2_DATA3 CAM2_DATA0
/XGPIO58
/XGPIO57
K/XGPIO54
/XGPIO50
/XGPIO46
/XGPIO45
SPEAr1340
3.2
Pin description
Ball characteristics
Table 3 provides a detailed description of SPEAr1340 pads and their terminal
characteristics.
Two levels of multiplexing are available:
●
Pad-level multiplexing
●
IP-level multiplexing
Figure 6 shows an overview of SPEAr1340 multiplexing scheme.
Figure 6.
SPEAr1340 multiplexing scheme
Pad
GPIO/XGPIO
Shared IPs
Configure the PAD_FUNCTION_EN_x
miscellaneous registers to select between
GPIO/XGPIO or shared IPs.
Pad-level
multiplexing
GPIO/XGPIO selected
Shared IPs selected
Configure the PAD_SHARED_IP_1
miscellaneous register to select between
IP pin 1 or IP pin 2.
IP pin selected
In case of multiplexed IPs(1), configure the
IP-specific miscellaneous registers to
select which of the available modes to use.
IP-level
multiplexing
1. The multiplexed IPs are: GMAC, Keyboard, MCIF and FSMC. See Section 3.4: Multiplexed signals
description for more details.
Doc ID 023063 Rev 5
45/200
Compensation cell
Reset mode
Slew
Drive
PU/ PD
Out value
Direction
Reset/Reset rel. state
Supply name
Slew
Drive
PU/ PD
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Reset rel. mode
Ball characteristics
Doc ID 023063 Rev 5
DDR_ADDR0
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
W2
DDR_ADDR1
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
V2
DDR_ADDR2
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
V3
DDR_ADDR3
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
Y2
DDR_ADDR4
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
W1
DDR_ADDR5
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
Y4
DDR_ADDR6
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
V1
DDR_ADDR7
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
T1
DDR_ADDR8
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
U4
DDR_ADDR9
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AA3
DDR_ADDR10
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
V4
DDR_ADDR11
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
46/200
Pin description
U3
SPEAr1340
Table 3.
Compensation cell
Reset mode
Slew
Drive
PU/ PD
Out value
Direction
Reset/Reset rel. state
Supply name
Slew
Drive
PU/ PD
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Reset rel. mode
Ball characteristics (continued)
Doc ID 023063 Rev 5
DDR_ADDR12
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
Y1
DDR_ADDR13
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
W4
DDR_ADDR14
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AD3
DDR_RASn
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
1
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AD4
DDR_CASn
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
1
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AA4
DDR_WEn
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
1
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AB3
DDR_CS0n
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
1
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
U1
DDR_CS1n
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
1
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
Y3
DDR_BA0
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
W3
DDR_BA1
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AA1
DDR_BA2
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
T3
DDR_CKE
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AC3
DDR_ODT0
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
SPEAr1340
AA2
Pin description
47/200
Table 3.
Reset rel. mode
Reset mode
Slew
Drive
PU/ PD
Direction
Out value
Reset/Reset rel. state
Supply name
Slew
Drive
PU/ PD
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Doc ID 023063 Rev 5
DDR_ODT1
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AE5
DDR_DM0
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AG3
DDR_DM1
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AF10
DDR_DM2
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AG8
DDR_DM3
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AH16
RESERVED
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
na
na
na
na
na
na
na
na
AE3
DDR_DQS0p
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AF3
DDR_DQS0n
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AH4
DDR_DQS1p
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AG4
DDR_DQS1n
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AE9
DDR_DQS2p
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AF8
DDR_DQS2n
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AH10
DDR_DQS3p
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
Pin description
48/200
U2
SPEAr1340
Table 3.
Reset rel. mode
Reset mode
Slew
Drive
PU/ PD
Direction
Out value
Reset/Reset rel. state
Supply name
Slew
Drive
PU/ PD
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Doc ID 023063 Rev 5
DDR_DQS3n
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AG14
RESERVED
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
na
na
na
na
na
na
na
na
AH14
RESERVED
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
na
na
na
na
na
na
na
na
AF2
DDR_DQ0
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AF4
DDR_DQ1
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AF1
DDR_DQ2
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AF5
DDR_DQ3
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AE1
DDR_DQ4
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AE6
DDR_DQ5
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AE2
DDR_DQ6
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AE4
DDR_DQ7
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AH3
DDR_DQ8
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AH2
DDR_DQ9
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
SPEAr1340
AG9
Pin description
49/200
Table 3.
Compensation cell
Reset mode
Slew
Drive
PU/ PD
Direction
Out value
Reset/Reset rel. state
Supply name
Slew
Drive
PU/ PD
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Reset rel. mode
Ball characteristics (continued)
Doc ID 023063 Rev 5
DDR_DQ10
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AG1
DDR_DQ11
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AG5
DDR_DQ12
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AG2
DDR_DQ13
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AH5
DDR_DQ14
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AH1
DDR_DQ15
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AE8
DDR_DQ16
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AE10
DDR_DQ17
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AF7
DDR_DQ18
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AE11
DDR_DQ19
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AE7
DDR_DQ20
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AF11
DDR_DQ21
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AF6
DDR_DQ22
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
Pin description
50/200
AH6
SPEAr1340
Table 3.
Reset rel. mode
Reset mode
Slew
Drive
PU/ PD
Direction
Out value
Reset/Reset rel. state
Supply name
Slew
Drive
PU/ PD
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Doc ID 023063 Rev 5
DDR_DQ23
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AH9
DDR_DQ24
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AH8
DDR_DQ25
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AG11
DDR_DQ26
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AG6
DDR_DQ27
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AG10
DDR_DQ28
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AH7
DDR_DQ29
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AH11
DDR_DQ30
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AG7
DDR_DQ31
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
I
na
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AG13
RESERVED
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
na
na
na
na
na
na
na
na
AH13
RESERVED
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
na
na
na
na
na
na
na
na
AG16
RESERVED
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
na
na
na
na
na
na
na
na
AH12
RESERVED
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
na
na
na
na
na
na
na
na
SPEAr1340
AF9
Pin description
51/200
Table 3.
Reset rel. mode
Reset mode
Slew
Drive
PU/ PD
Direction
Out value
Reset/Reset rel. state
Supply name
Slew
Drive
PU/ PD
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Doc ID 023063 Rev 5
RESERVED
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
na
na
na
na
na
na
na
na
AG12
RESERVED
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
na
na
na
na
na
na
na
na
AH15
RESERVED
IO
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
na
na
na
na
na
na
na
na
T2
DDR_RESETn
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AD2
DDR_CLKM0
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
1
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AD1
DDR_CLKP0
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AC2
DDR_CLKM1
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
1
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AC1
DDR_CLKP1
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AB2
DDR_CLKM2
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
1
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
AB1
DDR_CLKP2
O
SSTL
na
na
na
DDRIO_VDD1
V8_1V5
O
0
na
na
na
DDR2n_DDR3
DDR2n_DDR3
CC6
A4
AIN0
I
ANA
na
na
na
ADC_AVDD2V
I
5
na
na
na
na
na
na
na
B4
AIN1
I
ANA
na
na
na
ADC_AVDD2V
I
5
na
na
na
na
na
na
na
C3
AIN2
I
ANA
na
na
na
ADC_AVDD2V
I
5
na
na
na
na
na
na
na
Pin description
52/200
AG15
SPEAr1340
Table 3.
Reset rel. mode
Reset mode
Slew
Drive
PU/ PD
Direction
Out value
Reset/Reset rel. state
Supply name
Slew
Drive
PU/ PD
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Doc ID 023063 Rev 5
AIN3
I
ANA
na
na
na
ADC_AVDD2V
I
5
na
na
na
na
na
na
na
A2
AIN4
I
ANA
na
na
na
ADC_AVDD2V
I
5
na
na
na
na
na
na
na
B2
AIN5
I
ANA
na
na
na
ADC_AVDD2V
I
5
na
na
na
na
na
na
na
B3
AIN6
I
ANA
na
na
na
ADC_AVDD2V
I
5
na
na
na
na
na
na
na
C2
AIN7
I
ANA
na
na
na
ADC_AVDD2V
I
5
na
na
na
na
na
na
na
AF15
MRESETn
I
IOTYPE1 PU
10ma
FAST
IO_VDD3V3
I
na
PU
10ma FAST
3V3
3V3
CC1
AF14
DDR2n_DDR3
I
IOTYPE1 PU
10ma
FAST
IO_VDD3V3
I
na
PU
10ma FAST
3V3
3V3
CC1
A1
RTC_XO
IO
OSC
na
na
na
RTC_VDD1V5 na
na
na
na
na
na
na
na
B1
RTC_XI
I
OSC
na
na
na
RTC_VDD1V5 na
na
na
na
na
na
na
na
D1
USB_UHC1_DP
IO
ANA
na
na
na
USB_UHC1_V
na
DD3V3
na
na
na
na
na
na
na
D2
USB_UHC1_DM
IO
ANA
na
na
na
USB_UHC1_V
na
DD3V3
na
na
na
na
na
na
na
H1
USB_UHC0_DP
IO
ANA
na
na
na
USB_UHC0_V
na
DD3V3
na
na
na
na
na
na
na
H2
USB_UHC0_DM
IO
ANA
na
na
na
USB_UHC0_V
na
DD3V3
na
na
na
na
na
na
na
F1
USB_UOC_DP
IO
ANA
na
na
na
USB_UOC_V
DD3V3
na
na
na
na
na
na
na
na
SPEAr1340
A3
Pin description
53/200
Table 3.
Reset rel. mode
Reset mode
Slew
Drive
PU/ PD
Direction
Out value
Reset/Reset rel. state
Supply name
Slew
Drive
PU/ PD
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Doc ID 023063 Rev 5
USB_UOC_DM
IO
ANA
na
na
na
USB_UOC_V
DD3V3
na
na
na
na
na
na
na
na
F4
USB_UOC_ID
I
ANA
na
na
na
USB_VDD2V5 na
na
na
na
na
na
na
na
F3
USB_UOC_VBUS
IO
ANA
na
na
na
5V
na
na
na
na
na
na
na
na
E1
USB_ANALOG_TEST
IO
ANA
na
na
na
USB_VDD2V5 na
na
na
na
na
na
na
na
A8
MCLK_XO
IO
OSC
na
na
na
MCLK_AVDD3
na
V3
na
na
na
na
na
na
na
A7
MCLK_XI
I
OSC
na
na
na
MCLK_AVDD3
na
V3
na
na
na
na
na
na
na
M2
MIPHY0_TXp
O
ANA
na
na
na
MIPHY0_VDD
T1V2
na
na
na
na
na
na
na
na
M1
MIPHY0_TXn
O
ANA
na
na
na
MIPHY0_VDD
T1V2
na
na
na
na
na
na
na
na
K2
MIPHY0_RXp
I
ANA
na
na
na
MIPHY0_VDD
R1V2
na
na
na
na
na
na
na
na
K1
MIPHY0_RXn
I
ANA
na
na
na
MIPHY0_VDD
R1V2
na
na
na
na
na
na
na
na
P2
MIPHY0_XTAL1
I
OSC
na
na
na
MIPHY0_VDD
PLL1V2
na
na
na
na
na
na
na
na
P1
MIPHY0_XTAL2
IO
OSC
na
na
na
MIPHY0_VDD
PLL1V2
na
na
na
na
na
na
na
na
AF13
TEST0
I
IOTYPE1 PD
10ma
FAST
IO_VDD3V3
I
L
PD
10ma FAST
3V3
3V3
CC1
AF12
TEST1
I
IOTYPE1 PD
10ma
FAST
IO_VDD3V3
I
L
PD
10ma FAST
3V3
3V3
CC1
AE14
TEST2
I
IOTYPE1 PD
10ma
FAST
IO_VDD3V3
I
L
PD
10ma FAST
3V3
3V3
CC1
AE13
TEST3
I
IOTYPE1 PD
10ma
FAST
IO_VDD3V3
I
L
PD
10ma FAST
3V3
3V3
CC1
Pin description
54/200
F2
SPEAr1340
Table 3.
Doc ID 023063 Rev 5
Reset rel. mode
Reset mode
PU/ PD
Out value
I
IOTYPE1 PD
10ma
FAST
IO_VDD3V3
I
L
PD
10ma FAST
3V3
3V3
CC1
AE15
BSD_TRSTn
ARM_TRSTn
I
IOTYPE1 PU
10ma
FAST
IO_VDD3V3
I
na
PU
10ma FAST
3V3
3V3
CC1
AD16
BSD_TCK
ARM_TCK
I
IOTYPE1 PU
10ma
FAST
IO_VDD3V3
I
na
PU
10ma FAST
3V3
3V3
CC1
AE16
BSD_TMS
ARM_TMS
I
IOTYPE1 PU
10ma
FAST
IO_VDD3V3
I
na
PU
10ma FAST
3V3
3V3
CC1
AD15
BSD_TDI
ARM_TDI
I
IOTYPE1 PU
10ma
FAST
IO_VDD3V3
I
na
PU
10ma FAST
3V3
3V3
CC1
AF16
BSD_TDO
ARM_TDO
IO
IOTYPE1
Dea
10ma
ct
FAST
IO_VDD3V3
I
na
Dea
ct
10ma FAST
3V3
3V3
CC1
A13
USB_UOC_DRVVBUS
O
IOTYPE1
Dea
10ma
ct
FAST
IO_VDD3V3
I
na
Dea
ct
10ma FAST
3V3
3V3
CC2
B13
USB_UHC0_DRVVBUS
O
IOTYPE1
Dea
10ma
ct
FAST
IO_VDD3V3
O
0
Dea
ct
10ma FAST
3V3
3V3
CC2
C13
USB_UHC1_DRVVBUS
O
IOTYPE1
Dea
10ma
ct
FAST
IO_VDD3V3
O
0
Dea
ct
10ma FAST
3V3
3V3
CC2
D13
USB_UHC0_OVERCUR
I
IOTYPE1 PU
10ma
FAST
IO_VDD3V3
I
na
PU
10ma FAST
3V3
3V3
CC2
E13
USB_UHC1_OVERCUR
I
IOTYPE1 PU
10ma
FAST
IO_VDD3V3
I
na
PU
10ma FAST
3V3
3V3
CC2
A12
FSMC_IO8
KBD_ROW0
XGPIO0
IO
IOD
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP5
CC4
B12
FSMC_IO9
KBD_ROW1
XGPIO1
IO
IOD
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP5
CC4
Slew
TEST4
Drive
AE12
SPEAr1340
Slew
Direction
Supply name
Reset/Reset rel. state
Drive
PU/ PD
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Pin description
55/200
Table 3.
PU/ PD
PU/ PD
Drive
Reset rel. mode
Compensation cell
C12
FSMC_IO10
KBD_ROW2
XGPIO2
IO
IOD
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP5
CC4
D12
FSMC_IO11
KBD_ROW3
XGPIO3
IO
IOD
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP5
CC4
E12
FSMC_IO12
KBD_ROW4
XGPIO4
IO
IOD
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP5
CC4
A11
FSMC_IO13
KBD_ROW5
XGPIO5
IO
IOD
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP5
CC4
B11
FSMC_IO14
KBD_COL0
XGPIO6
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP5
CC4
C11
FSMC_IO15
KBD_COL1
XGPIO7
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP5
CC4
D11
FSMC_CE1n
KBD_COL2
GPIO_A0
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP5
CC4
E11
FSMC_RWPRT1n
KBD_COL3
GPIO_A1
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP5
CC4
A10
FSMC_RSTPWDWN1
KBD_COL4
GPIO_A2
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP5
CC4
Reset mode
Slew
Out value
Direction
Reset/Reset rel. state
Supply name
Slew
Pin name
Drive
Ball
Signal type
Pad type and pad options
Doc ID 023063 Rev 5
56/200
Pin description
Pin type
Ball characteristics (continued)
SPEAr1340
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
O
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AG17
UART0_RIn
GPT0_TMR_CPT2
GPIO_A4
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AH17
UART0_DSRn
GPT1_TMR_CLK1
GPIO_A5
I
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AE17
UART0_DTRn
GPT1_TMR_CPT1
GPIO_A6
O
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AG18
UART0_DCDn
GPT1_TMR_CLK2
GPIO_A7
I
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AF18
UART0_CTSn
GPT0_TMR_CLK1
GPIO_B0
I
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AE18
PWM2
KBD_COL5
GPIO_B1
GPIO_WKUP_TRIG
O
IO
IO
I
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AH18
I2C1_SDA
GPIO_B2
IOD
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AD17
SPDIF_IN
GPIO_B3
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
Slew
UART0_RTSn
GPT1_TMR_CPT2
GPIO_A3
Drive
AF17
SPEAr1340
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Pin description
57/200
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AF19
PWM3
GPT0_TMR_CPT1
GPIO_B5
DDRPHY_VDD1V2_OFF
O
I
IO
O
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AG19
PWM4
GPT0_TMR_CLK2
GPIO_B6
DDRIO_VDD1V8_1V5_OFF
O
O
IO
O
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AH19
I2C1_SCL
GPIO_B7
IOD
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AE19
PWM1
SSP_SS1n
XGPIO24
STRAP0
O
O
IO
S
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AH20
VIP_B10
CAM4_PIXCLK
XGPIO25
STRAP1
I
I
IO
S
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AD19
VIP_B11
CAM4_HSYNC
XGPIO26
STRAP2
I
I
IO
S
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
Slew
VIP_B15
CAM4_VSYNC
GPIO_B4
Drive
AD18
58/200
Pin description
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
SPEAr1340
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AE20
VIP_B13
CAM4_DATA1
XGPIO28
STRAP4
I
I
IO
S
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AF20
VIP_B14
CAM4_DATA2
XGPIO29
STRAP5
I
I
IO
S
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AG20
VIP_B9
CAM4_DATA3
XGPIO30
STRAP6
I
I
IO
S
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AD21
VIP_B8
CAM4_DATA7
XGPIO31
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AE21
VIP_G15
CAM4_DATA6
XGPIO32
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AF21
VIP_G14
CAM4_DATA5
XGPIO33
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
Slew
I
I
IO
S
Drive
AD20
VIP_B12
CAM4_DATA0
XGPIO27
STRAP3
SPEAr1340
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Pin description
59/200
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AH21
VIP_G12
XGPIO35
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AD22
VIP_B4
XGPIO36
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AE22
VIP_B3
XGPIO37
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AF22
VIP_R4
XGPIO38
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AH22
VIP_R3
CAM3_PIXCLK
XGPIO39
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AG22
VIP_G11
XGPIO40
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AD23
VIP_B5
XGPIO41
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AE23
VIP_B2
XGPIO42
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AF23
VIP_R5
XGPIO43
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AG23
VIP_R2
CAM3_HSYNC
XGPIO44
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
Slew
VIP_G13
CAM4_DATA4
XGPIO34
Drive
AG21
Pin description
60/200
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
SPEAr1340
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AH24
VIP_B6
CAM3_DATA5
XGPIO46
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AG24
VIP_B1
CAM3_DATA3
XGPIO47
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AF24
VIP_R6
CAM3_DATA0
XGPIO48
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AE24
VIP_R1
CAM3_VSYNC
XGPIO49
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AH25
VIP_G9
CAM3_DATA6
XGPIO50
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AG25
VIP_B7
CAM3_DATA4
XGPIO51
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AF25
XGPIO52
VIP_B0
CAM3_DATA2
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AE25
VIP_R7
CAM3_DATA1
XGPIO53
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
Slew
VIP_G10
CAM3_DATA7
XGPIO45
Drive
AH23
SPEAr1340
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Pin description
61/200
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AG26
VIP_G8
CAM2_DATA7
XGPIO55
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AF26
VIP_R8
CAM2_DATA5
XGPIO56
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AH27
XGPIO57
VIP_G7
CAM2_DATA3
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AH28
VIP_G0
CAM2_DATA0
XGPIO58
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AG27
VIP_DE
CAM2_HSYNC
XGPIO59
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AG28
VIP_R15
CAM2_DATA6
XGPIO60
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AF27
VIP_R9
CAM2_DATA4
XGPIO61
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AF28
VIP_G6
CAM2_DATA2
XGPIO62
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
Slew
VIP_R0
CAM2_PIXCLK
XGPIO54
Drive
AH26
Pin description
62/200
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
SPEAr1340
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AE27
VIP_VSYNC
CAM2_VSYNC
XGPIO64
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AE28
VIP_R14
CAM1_DATA7
XGPIO65
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AD24
VIP_R10
CAM1_DATA4
XGPIO66
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AD25
VIP_G5
CAM1_DATA2
XGPIO67
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AD26
VIP_G2
CAM1_DATA0
XGPIO68
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AD28
VIP_PIXCLK
CAM1_PIXCLK
XGPIO69
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AD27
VIP_R13
CAM1_DATA6
XGPIO70
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AC24
VIP_R11
CAM1_DATA3
XGPIO71
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
Slew
VIP_G1
CAM2_DATA1
XGPIO63
Drive
AE26
SPEAr1340
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Pin description
63/200
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AC26
VIP_G3
CAM1_VSYNC
XGPIO73
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AC27
VIP_HSYNC
CAM1_HSYNC
XGPIO74
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AC28
VIP_R12
CAM1_DATA5
XGPIO75
I
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AB24
SMI_DATAOUT
XGPIO76
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AB25
SMI_DATAIN
XGPIO77
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AB28
SMI_CLK
XGPIO78
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AB26
SMI_CS1n
XGPIO79
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AB27
SSP_SS0n
XGPIO80
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AA24
SSP_MOSI
XGPIO81
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AA25
SSP_MISO
XGPIO82
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
Slew
VIP_G4
CAM1_DATA1
XGPIO72
Drive
AC25
Pin description
64/200
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
SPEAr1340
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AA27
SMI_CS0n
XGPIO84
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
AA28
TOUCH_XY_SEL
SSP_SS2n
XGPIO85
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
Y24
UART0_TXD
XGPIO86
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
Y25
UART0_RXD
XGPIO87
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
Y26
UART1_TXD
XGPIO88
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
Y27
UART1_RXD
XGPIO89
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
Y28
I2S_IN_DATA3
XGPIO90
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
W24
I2S_IN_DATA2
XGPIO91
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
W25
I2S_IN_DATA1
XGPIO92
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
W26
I2S_IN_DATA0
XGPIO93
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
V24
I2S_IN_WS
XGPIO94
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
Slew
SSP_SCK
XGPIO83
Drive
AA26
SPEAr1340
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Pin description
65/200
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
V26
I2S_OUT_DATA0
XGPIO96
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
W27
I2S_OUT_BITCLK
XGPIO97
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
U24
I2S_OUT_WS
XGPIO98
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
W28
I2S_IN_BITCLK
XGPIO99
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
U25
I2S_OUT_DATA3
XGPIO100
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
U26
I2S_OUT_DATA1
XGPIO101
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
V27
I2S_OUT_REFCLK(1)
XGPIO102
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
V28
I2S_OUT_OVRSAMP_CLK
XGPIO103
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC1
U28
MAC_TXCLK
XGPIO104
I
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
U27
MAC_TXD0
XGPIO105
O
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
T26
MAC_TXD1
XGPIO106
O
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
Slew
I2S_OUT_DATA2
XGPIO95
Drive
V25
66/200
Pin description
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
SPEAr1340
Table 3.
PU/ PD
PU/ PD
Drive
Reset rel. mode
Compensation cell
T27
MAC_TXD2
XGPIO107
O
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
T28
MAC_GTXCLK125
XGPIO108
I
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
T25
MAC_TXD3
XGPIO109
O
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
R25
MAC_TXD4
XGPIO110
O
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
R26
MAC_TXD5
XGPIO111
O
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
R27
MAC_RXD0
XGPIO112
I
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
R28
MAC_GTXCLK
XGPIO113
O
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
R24
MAC_RXD1
XGPIO114
I
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
P26
MAC_TXD6
XGPIO115
O
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
P27
MAC_TXD7
XGPIO116
O
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
P28
MAC_RXCLK
XGPIO117
I
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
P25
MAC_RXD2
XGPIO118
I
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
Reset mode
Slew
Out value
Direction
Reset/Reset rel. state
Supply name
Slew
Pin name
Drive
Ball
Signal type
Pad type and pad options
Doc ID 023063 Rev 5
SPEAr1340
Pin type
Ball characteristics (continued)
Pin description
67/200
Table 3.
PU/ PD
PU/ PD
Drive
Reset rel. mode
Compensation cell
N24
MAC_RXD3
XGPIO119
I
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
N25
MAC_RXD4
XGPIO120
I
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
N26
MAC_RXD5
XGPIO121
I
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
N27
MAC_MDC
XGPIO122
O
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
N28
MAC_MDIO
XGPIO123
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
M24
MAC_RXD6
XGPIO124
I
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
M25
MAC_RXD7
XGPIO125
I
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
M26
MAC_COL
XGPIO126
I
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
M27
MAC_RXDV
XGPIO127
I
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
M28
MAC_RXER
XGPIO128
I
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
L24
MAC_TXEN
XGPIO129
O
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
L25
MAC_TXER
XGPIO130
O
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
Reset mode
Slew
Out value
Direction
Reset/Reset rel. state
Supply name
Slew
Pin name
Drive
Ball
Signal type
Pad type and pad options
Doc ID 023063 Rev 5
68/200
Pin description
Pin type
Ball characteristics (continued)
SPEAr1340
Table 3.
PU/ PD
PU/ PD
Drive
Reset rel. mode
Compensation cell
L26
MAC_CRS
XGPIO131
I
IO
IOTYPE3
PU/
PD
4/6/8/ SLOW IO_VDD2V5_3
I
10mA /FAST V3
na
PU
6ma
FAST
2V5
STRAP6
CC5
L27
SSP_SS3n
XGPIO132
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
K27
I2C0_SDA
XGPIO133
IOD
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
L28
I2C0_SCL
XGPIO134
IOD
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
K25
CEC0
XGPIO135
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
K24
CEC1
XGPIO136
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
K26
SPDIF_OUT
XGPIO137
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
J24
LCD_B6
XGPIO138
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
J28
LCD_B5
XGPIO139
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
J27
LCD_B4
XGPIO140
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
J26
LCD_B3
XGPIO141
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
J25
LCD_B2
XGPIO142
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
Reset mode
Slew
Direction
Out value
Reset/Reset rel. state
Supply name
Slew
Pin name
Drive
Ball
Signal type
Pad type and pad options
Doc ID 023063 Rev 5
SPEAr1340
Pin type
Ball characteristics (continued)
Pin description
69/200
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
H27
LCD_B7
XGPIO144
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
H26
LCD_B0
XGPIO145
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
H25
LCD_B1
XGPIO146
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
H24
LCD_G3
XGPIO147
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
G28
LCD_XR5
XGPIO148
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
G27
LCD_XR2
XGPIO149
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
G26
LCD_G7
XGPIO150
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
G25
LCD_G5
XGPIO151
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
G24
LCD_G2
XGPIO152
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
F28
LCD_XR4
XGPIO153
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
F27
LCD_XR1
XGPIO154
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
Slew
LCD_XR6
XGPIO143
Drive
H28
70/200
Pin description
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
SPEAr1340
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
F25
LCD_G4
XGPIO156
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
E28
LCD_G1
XGPIO157
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
E27
LCD_XR3
ARM_TRCCLK
XGPIO158
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
E26
LCD_XR0
ARM_TRCCTL
XGPIO159
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
E25
LCD_G0
ARM_TRCDATA0
XGPIO160
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
D28
LCD_R5
ARM_TRCDATA1
XGPIO161
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
F24
LCD_R2
ARM_TRCDATA2
XGPIO162
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
C28
LCD_DE
ARM_TRCDATA3
XGPIO163
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
B28
LCD_PE
ARM_TRCDATA4
XGPIO164
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
Slew
LCD_G6
XGPIO155
Drive
F26
SPEAr1340
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Pin description
71/200
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
D27
LCD_R4
ARM_TRCDATA6
XGPIO166
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
C27
LCD_R1
ARM_TRCDATA7
XGPIO167
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
B27
LCD_VSYNC
ARM_TRCDATA8
XGPIO168
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
K28
LCD_PCLK
ARM_TRCDATA9
XGPIO169(2)
O
IOTYPE4
PU/
PD
8 mA
IO_VDD3V3
I
na
PU
8mA
na
3V3
3V3
CC2
A27
LCD_R6
ARM_TRCDATA10
XGPIO170
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
A26
LCD_R3
ARM_TRCDATA11
XGPIO171
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
B26
LCD_R0
ARM_TRCDATA12
XGPIO172
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
C26
LCD_HSYNC
ARM_TRCDATA13
XGPIO173
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
Slew
LCD_R7
ARM_TRCDATA5
XGPIO165
Drive
A28
na
Pin description
72/200
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
SPEAr1340
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
A25
LCD_XG0
ARM_TRCDATA15
XGPIO175
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
B25
LCD_XG1
ARM_TRCDATA16
XGPIO176
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
C25
LCD_XG2
ARM_TRCDATA17
XGPIO177
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
D25
LCD_LED_PWM
ARM_TRCDATA18
XGPIO178
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
A24
LCD_XG3
ARM_TRCDATA19
XGPIO179
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
B24
LCD_XG4
ARM_TRCDATA20
XGPIO180
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
C24
LCD_XG5
ARM_TRCDATA21
XGPIO181
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
D24
LCD_XG6
ARM_TRCDATA22
XGPIO182
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
Slew
LCD_XR7
ARM_TRCDATA14
XGPIO174
Drive
D26
SPEAr1340
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Pin description
73/200
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
A23
LCD_XB0
ARM_TRCDATA24
XGPIO184
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
B23
LCD_XB1
ARM_TRCDATA25
XGPIO185
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
C23
LCD_XB2
ARM_TRCDATA26
XGPIO186
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
D23
LCD_XB3
ARM_TRCDATA27
XGPIO187
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
E23
LCD_XB4
ARM_TRCDATA28
XGPIO188
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
A22
LCD_XB5
ARM_TRCDATA29
XGPIO189
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
B22
LCD_XB6
ARM_TRCDATA30
XGPIO190
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
C22
LCD_XB7
ARM_TRCDATA31
XGPIO191
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
Slew
LCD_XG7
ARM_TRCDATA23
XGPIO183
Drive
E24
Pin description
74/200
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
SPEAr1340
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
E22
FSMC_AD20
MCIF_DATA15
XGPIO193
O
IO
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
A21
FSMC_AD21
MCIF_DATA14
XGPIO194
O
IO
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
B21
FSMC_AD22
MCIF_DATA13
XGPIO195
O
IO
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
C21
FSMC_AD23
MCIF_DATA12
XGPIO196
O
IO
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
D21
FSMC_AD24
MCIF_DATA11
XGPIO197
O
IO
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
E21
FSMC_AD13
MCIF_nCS1
XGPIO198
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
A20
FSMC_AD14
MCIF_nDMACK_nWP
XGPIO199
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
B20
FSMC_AD15
MCIF_DATA10
XGPIO200
O
IO
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
Slew
FSMC_AD25
XGPIO192
Drive
D22
SPEAr1340
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Pin description
75/200
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
O
IO
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
D20
FSMC_AD19
MCIF_DATA8
XGPIO202
O
IO
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
E20
FSMC_AD8
MCIF_nIOWR_nWE
XGPIO203
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
A19
FSMC_AD9
MCIF_nRESET_CF
XGPIO204
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
B19
FSMC_AD10
MCIF_nCS0_nCE
XGPIO205
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
C19
FSMC_AD11
MCIF_CF_INTR
XGPIO206
O
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
D19
FSMC_AD12
MCIF_IORDY
XGPIO207
O
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
E19
FSMC_AD3
MCIF_nCE_SD_MMC
XGPIO208
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
A18
FSMC_AD4
MCIF_nCD_CF1
XGPIO209
O
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
Slew
FSMC_AD18
MCIF_DATA9
XGPIO201
Drive
C20
Pin description
76/200
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
SPEAr1340
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
O
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
C18
FSMC_AD6
MCIF_DATA_DIR
XGPIO211
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
D18
FSMC_AD7
MCIF_nIORD_nRE
XGPIO212
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
E18
MCIF_ADDR0_ALE
XGPIO213
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
A17
MCIF_nCD_xD
XGPIO214
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
B17
FSMC_AD0
MCIF_ADDR2
XGPIO215
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
C17
FSMC_AD1
MCIF_nCE_CF
XGPIO216
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
D17
FSMC_AD2
MCIF_nCE_xD
XGPIO217
O
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
E17
MCIF_SD_CMD
XGPIO218
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
A16
MCIF_LEDS
XGPIO219
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
Slew
FSMC_AD5
MCIF_nCD_CF2
XGPIO210
Drive
B18
SPEAr1340
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Pin description
77/200
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
C16
MCIF_DATA2
XGPIO221
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
D16
MCIF_DATA3
XGPIO222
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
E16
MCIF_DATA6
XGPIO223
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
B15
MCIF_DATA7
XGPIO224
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
A15
MCIF_ADDR1_CLE_CLK
XGPIO225
O
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
C15
MCIF_nCD_SD_MMC
XGPIO226
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
D15
MCIF_DMARQ_RnB_WP
XGPIO227
I
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
E15
MCIF_DATA1_SD
XGPIO228
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
A14
MCIF_DATA2_SD
XGPIO229
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
B14
MCIF_DATA3_SD
XGPIO230
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
C14
MCIF_DATA4
XGPIO231
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
Slew
MCIF_DATA1
XGPIO220
Drive
B16
78/200
Pin description
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
SPEAr1340
Table 3.
Reset rel. mode
Slew
Reset mode
Drive
Out value
Direction
Supply name
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
B10
FSMC_IO2
XGPIO233
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP4
CC3
C10
FSMC_IO1
XGPIO234
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP4
CC3
D10
FSMC_IO0
XGPIO235
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP4
CC3
E10
FSMC_RSTPWDWN0
XGPIO236
O
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP4
CC3
E14
MCIF_DATA0
XGPIO237
IO
IOTYPE1
PU/
PD
4/6/8/ SLOW
IO_VDD3V3
10mA /FAST
I
na
PU
6mA
FAST
3V3
3V3
CC2
A9
FSMC_IO7
XGPIO238
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP4
CC3
B9
FSMC_IO6
XGPIO239
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP4
CC3
C9
FSMC_IO5
XGPIO240
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP4
CC3
D9
FSMC_IO4
XGPIO241
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP4
CC3
E9
FSMC_IO3
XGPIO242
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP4
CC3
C8
FSMC_ALE_AD17
XGPIO243
O
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP4
CC3
Slew
MCIF_DATA5
XGPIO232
Drive
D14
SPEAr1340
PU/ PD
Doc ID 023063 Rev 5
PU/ PD
Pin name
Reset/Reset rel. state
Pin type
Ball
Signal type
Pad type and pad options
Compensation cell
Ball characteristics (continued)
Pin description
79/200
Table 3.
PU/ PD
PU/ PD
Drive
Reset rel. mode
Compensation cell
D8
FSMC_REn
XGPIO244
O
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP4
CC3
E8
FSMC_WEn
XGPIO245
O
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP4
CC3
C7
FSMC_RWPRT0n
XGPIO246
O
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP4
CC3
D7
FSMC_RB0
XGPIO247
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP4
CC3
E7
FSMC_CLE_AD16
XGPIO248
O
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP4
CC3
C6
FSMC_CE0n
XGPIO249
O
IO
IOTYPE2
PU/
PD
4/6/8/ SLOW IO_VDD1V8_3
I
10mA /FAST V3
na
PU
6ma
FAST
1V8
STRAP4
CC3
C1
RTC_VDD1V5
PWR
K13
K17
L10
L12
L14
L16
L18
M11
M17
M19
N10
N12
N18
P11
P17
VDD1V2
PWR
Reset mode
Slew
Out value
Direction
Reset/Reset rel. state
Supply name
Slew
Pin name
Drive
Ball
Signal type
Pad type and pad options
Doc ID 023063 Rev 5
80/200
Pin description
Pin type
Ball characteristics (continued)
SPEAr1340
Table 3.
Doc ID 023063 Rev 5
R10
R12
R18
T11
T17
T19
U18
V15
V17
V19
W14
W16
W18
M4
VDD1V2
PWR
U10
U12
V11
V13
W10
W12
DDRPHY_VDD1V2
PWR
Compensation cell
Reset mode
Slew
Drive
PU/ PD
Out value
Direction
Supply name
Slew
Drive
Reset/Reset rel. state
PWR
SPEAr1340
T6 U5
V6 W5
Y6 AA5
AB6
AC7
DDRIO_VDD1V8_1V5
AC9
AC11
AC13
AD6
AD8
AD10
PU/ PD
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Reset rel. mode
Ball characteristics (continued)
Pin description
81/200
Table 3.
Doc ID 023063 Rev 5
DDRIO_VDD1V8_1V5
PWR
C4
ADC_AVDD2V5
PWR
F14
F15
F17
F18
F20
F21
F23
G23
J23
W23
AA23
AC23
AC19
AC17
AC15
U23
IO_VDD3V3
PWR
F8 F9
IO_VDD1V8_3V3
PWR
F11
F12
IO_VDD1V8_3V3_1
PWR
L23
N23
R23
T24
P24
IO_VDD2V5_3V3
PWR
N2
MIPHY0_VDDPLL1V2
PWR
Compensation cell
Reset mode
Slew
Drive
PU/ PD
Out value
Direction
Supply name
Slew
Drive
Reset/Reset rel. state
Pin description
82/200
AD12
AD14
PU/ PD
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Reset rel. mode
Ball characteristics (continued)
SPEAr1340
Table 3.
Doc ID 023063 Rev 5
MIPHY0_VDD2PLL2V5
PWR
L3
MIPHY0_VDDR1V2
PWR
N1
MIPHY0_VDDT1V2
PWR
E6
PLL1_AVDD2V5
PWR
D6
PLL1_VDD1V2
PWR
E4
PLL2_AVDD2V5
PWR
D4
PLL2_VDD1V2
PWR
N5
PLL3_AVDD2V5
PWR
P6
PLL3_VDD1V2
PWR
AC5
DDR_PLL_AVDD2V5
PWR
U19
OTP_VDD2V5
PWR
B7
MCLK_AVDD1V2
PWR
B8
MCLK_AVDD3V3
PWR
K4
USB_UHC0_VDD1V2
PWR
Compensation cell
Reset mode
Slew
Drive
PU/ PD
Out value
Direction
Supply name
Slew
Drive
Reset/Reset rel. state
SPEAr1340
P3
PU/ PD
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Reset rel. mode
Ball characteristics (continued)
Pin description
83/200
Table 3.
Doc ID 023063 Rev 5
USB_UHC0_VDD2V5
PWR
J3
USB_UHC0_VDD3V3
PWR
E2
USB_UHC1_VDD1V2
PWR
E3
USB_UHC1_VDD2V5
PWR
D3
USB_UHC1_VDD3V3
PWR
H4
USB_UOC_VDD1V2
PWR
G3
USB_UOC_VDD2V5
PWR
G2
USB_UOC_VDD3V3
PWR
M6
VREG1_2V5_OUT
O
K6
VREG1_3V3_IN
PWR
F6
VREG2_2V5_OUT
O
H6
VREG2_3V3_IN
PWR
R5
MIPHY0_VREG_3V3_IN
PWR
Compensation cell
Reset mode
Slew
Drive
PU/ PD
Out value
Direction
Supply name
Slew
Drive
Reset/Reset rel. state
REG
OUT
REG
OUT
84/200
Pin description
J4
PU/ PD
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Reset rel. mode
Ball characteristics (continued)
SPEAr1340
Table 3.
Doc ID 023063 Rev 5
Compensation cell
Reset mode
Slew
Drive
PU/ PD
Out value
Direction
Supply name
Slew
Drive
PU/ PD
Reset/Reset rel. state
GND
SPEAr1340
A6 B6
D5 E5
F5 F7
F10
F13
F16
F19
F22 G4
G5 G6
H5 H23
J5 J6
K5 K10
K16
K18
K23
gnd
L4 L5
L6 L11
L13
L15
L17
M5
M10
M12
M13
M14
M15
M16
M18
M23
N4 N6
N11
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Reset rel. mode
Ball characteristics (continued)
Pin description
85/200
Table 3.
Doc ID 023063 Rev 5
Compensation cell
Reset mode
Slew
Drive
PU/ PD
Out value
Direction
Supply name
Slew
Drive
PU/ PD
Reset/Reset rel. state
GND
86/200
Pin description
N13
N14
N15
N16
N17
N19 R2
P5 P10
P12
P13
P14
P15
P16
P18
P23
R4 R6
gnd
R11
R13
R14
R15
R16
R17 T4
T5 T10
T12
T13
T14
T15
T16
T18 U6
U11
U13
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Reset rel. mode
Ball characteristics (continued)
SPEAr1340
Table 3.
Doc ID 023063 Rev 5
Compensation cell
Reset mode
Slew
Drive
PU/ PD
Out value
Direction
Supply name
Slew
Drive
PU/ PD
Reset/Reset rel. state
GND
SPEAr1340
U14
U15
U16
U17
T23 V5
V10
V12
V14
V16
V18
V23
W6
W11
W13
W15
gnd
W17
W19
Y5 Y23
AA6
AB4
AB5
AB23
AC6
AC8
AC10
AC12
AC14
AC16
AC18
AC20
AD7
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Reset rel. mode
Ball characteristics (continued)
Pin description
87/200
Table 3.
Doc ID 023063 Rev 5
gnd
GND
P4
MIPHY0_VSSPLL
GND
J1 J2
K3 L1
L2 M3
R3
MIPHY0_VSSR
GND
N3
MIPHY0_VSST
GND
H3
USB_VSSAC
GND
C5
ADC_AGND
GND
A5
ADC_VREFP
I
ANA
REF
B5
ADC_VREFN
I
ANA
REF
AC4
DDRIO_VREF
I
ANA
REF
AD5
DDRIO_COMP_REXT
IO
ANA
REF
AC21
IO_COMP_REXT1_3V3
IO
ANA
REF
AC22
IO_COMP_GND1_3V3
GND
DED
GND
Compensation cell
Reset mode
Slew
Drive
PU/ PD
Out value
Direction
Supply name
Slew
Drive
Reset/Reset rel. state
Pin description
88/200
AD9
AD11
AD13
PU/ PD
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Reset rel. mode
Ball characteristics (continued)
SPEAr1340
Table 3.
Doc ID 023063 Rev 5
K19
IO_COMP_REXT2_3V3
IO
ANA
REF
L19
IO_COMP_GND2_3V3
GND
DED
GND
K12
IO_COMP_REXT1_1V8_3V
3
IO
ANA
REF
K11
IO_COMP_GND1_1V8_3V3 GND
DED
GND
K15
IO_COMP_REXT2_1V8_3V
3
ANA
REF
K14
IO_COMP_GND2_1V8_3V3 GND
DED
GND
P19
IO_COMP_REXT_2V5_3V3
IO
ANA
REF
R19
IO_COMP_GND_2V5_3V3
GND
DED
GND
R1
MIPHY0_REF
IO
ANA
REF
G1
USB_TXRTUNE
IO
ANA
REF
IO
Compensation cell
Reset mode
Slew
Drive
PU/ PD
Out value
Direction
Reset/Reset rel. state
Supply name
Slew
Drive
PU/ PD
Pin name
Pin type
Ball
Signal type
Pad type and pad options
Reset rel. mode
Ball characteristics (continued)
Pin description
89/200
Table 3.
1. This is the input reference clock for I2S output functional block.
2. The XGPIO169 is the only XGPIO pin which is always an output. All the other XGPIO pins are IO.
SPEAr1340
Pin description
SPEAr1340
3.3
Power supply signals description
Table 4.
Power supply signals description
Pin name
Description
Ball
Signal type Pin type
ADC_AGND
ADC ground
C5
GND
ADC_AVDD2V5
ADC power supply
C4
PWR
ADC_VREFN
ADC negative voltage
reference
B5
I
ANA
REF
ADC_VREFP
ADC positive voltage reference A5
I
ANA
REF
DDR_PLL_AVDD2V5
DDR PLL power supply
AC5
PWR
DDRIO_COMP_REXT
DDR IO compensation cell
analog reference
AD5
IO
DDRIO_VDD1V8_1V5
DDR IO power supply
T6 U5 V6 W5 Y6 AA5
AB6 AC7 AC9 AC11
AC13 AD6 AD8 AD10
AD12 AD14
PWR
DDRIO_VREF
DDR IO voltage reference
AC4
I
DDRPHY_VDD1V2
DDR PHY power supply
U10 U12 V11 V13
W10 W12
PWR
IO_COMP_GND_2V5_3V3
IOTYPE3 IO compensation cell
P19
ground
GND
DED
GND
IO_COMP_GND1_1V8_3V3
IOTYPE2 IO compensation cell
K11
ground
GND
DED
GND
IO_COMP_GND1_3V3
IOTYPE1 & IOTYPE4 IO
compensation cell ground
GND
DED
GND
IO_COMP_GND2_1V8_3V3
IOTYPE2 IO compensation cell
K14
ground
GND
DED
GND
IO_COMP_GND2_3V3
IOTYPE1 & IOTYPE4 IO
compensation cell ground
GND
DED
GND
IO_COMP_REXT_2V5_3V3
IOTYPE3 IO compensation cell
R19
analog reference
IO
ANA
REF
IO_COMP_REXT1_1V8_3V3
IOTYPE2 IO compensation cell
K12
analog reference
IO
ANA
REF
IO_COMP_REXT1_3V3
IOTYPE1 & IOTYPE4 IO
compensation cell analog
reference
IO
ANA
REF
IO_COMP_REXT2_1V8_3V3
IOTYPE2 IO compensation cell
K15
analog reference
IO
ANA
REF
IO_COMP_REXT2_3V3
IOTYPE1 & IOTYPE4 IO
compensation cell analog
reference
IO
ANA
REF
90/200
AC22
L19
AC21
K19
Doc ID 023063 Rev 5
ANA
REF
ANA
REF
SPEAr1340
Table 4.
Pin description
Power supply signals description (continued)
Pin name
Description
Ball
Signal type Pin type
IO_VDD1V8_3V3
IOTYPE2 IO power supply
F8 F9
PWR
IO_VDD1V8_3V3_1
IOTYPE2 IO power supply
F11 F12
PWR
IO_VDD2V5_3V3
IOTYPE3 IO power supply
L23 N23 R23 T24 P24
PWR
IO_VDD3V3
F14 F15 F17 F18 F20
IOTYPE1 & IOTYPE4 IO power F21 F23 G23 J23 W23
PWR
supply
AA23 AC23 AC19
AC17 AC15 U23
MCLK_AVDD1V2
Master clock oscillator power
supply
B7
PWR
MCLK_AVDD3V3
Master clock oscillator power
supply
B8
PWR
MIPHY0_REF
MIPHY analog reference
R1
IO
MIPHY0_VDD2PLL2V5(1)
MIPHY single lane 0 voltage
regulator output
P3
0
MIPHY0_VDDPLL1V2
MIPHY PLL power supply
N2
PWR
MIPHY0_VDDR1V2
MIPHY receiver power supply
L3
PWR
MIPHY0_VDDT1V2
MIPHY transmitter power
supply
N1
PWR
MIPHY0_VREG_3V3_IN
MIPHY voltage regulator power
R5
supply
PWR
MIPHY0_VSSPLL
MIPHY PLL ground
P4
GND
MIPHY0_VSSR
MIPHY receiver ground
J1 J2 K3 L1 L2 M3 R3
GND
MIPHY0_VSST
MIPHY transmitter ground
N3
GND
OTP_VDD2V5
OTP antifuses power supply
U19
PWR
PLL1_AVDD2V5
PLL1 power supply
E6
PWR
PLL1_VDD1V2
PLL1 power supply
D6
PWR
PLL2_AVDD2V5
PLL2 power supply
E4
PWR
PLL2_VDD1V2
PLL2 power supply
D4
PWR
PLL3_AVDD2V5
PLL3 power supply
N5
PWR
PLL3_VDD1V2
PLL3 power supply
P6
PWR
Doc ID 023063 Rev 5
ANA
REF
91/200
Pin description
Table 4.
SPEAr1340
Power supply signals description (continued)
Pin name
Description
Ball
Signal type Pin type
RTC_VDD1V5
Real time clock power supply
C1
PWR
USB_TXRTUNE
USB PHY analog reference
G1
IO
USB_UHC0_VDD1V2
USB PHY Host 0 power supply K4
PWR
USB_UHC0_VDD2V5
USB PHY Host 0 power supply J4
PWR
USB_UHC0_VDD3V3
USB PHY Host 0 power supply J3
PWR
USB_UHC1_VDD1V2
USB PHY Host 1 power supply E2
PWR
USB_UHC1_VDD2V5
USB PHY Host 1 power supply E3
PWR
USB_UHC1_VDD3V3
USB PHY Host 1 power supply D3
PWR
USB_UOC_VDD1V2
USB PHY OTG power supply
H4
PWR
USB_UOC_VDD2V5
USB PHY OTG power supply
G3
PWR
USB_UOC_VDD3V3
USB PHY OTG power supply
G2
PWR
USB_VSSAC
USB PHY ground
H3
GND
VDD1V2
Core power supply
K13 K17 L10 L12 L14
L16 L18 M11 M17 M19
N10 N12 N18 P11 P17
PWR
R10 R12 R18 T11 T17
T19 U18 V15 V17 V19
W14 W16 W18 M4
VREG1_2V5_OUT
Voltage regulator 1 output
M6
O
VREG1_3V3_IN
Voltage regulator 1 power
supply
K6
PWR
VREG2_2V5_OUT
Voltage regulator 2 output
F6
O
92/200
Doc ID 023063 Rev 5
ANA
REF
REG
OUT
REG
OUT
SPEAr1340
Table 4.
Pin description
Power supply signals description (continued)
Pin name
VREG2_3V3_IN
gnd
Description
Ball
Signal type Pin type
Voltage regulator 2 power
supply
H6
Ground
A6 B6 D5 E5 F5 F7
F10 F13 F16 F19 F22
G4 G5 G6 H5 H23 J5
J6 K5 K10 K16 K18
K23 L4 L5 L6 L11 L13
L15 L17 M5 M10 M12
M13 M14 M15 M16
M18 M23 N4 N6 N11
N13 N14 N15 N16 N17
N19 R2 P5 P10 P12
P13 P14 P15 P16 P18
P23 R4 R6 R11 R13
GND
R14 R15 R16 R17 T4
T5 T10 T12 T13 T14
T15 T16 T18 U6 U11
U13 U14 U15 U16 U17
T23 V5 V10 V12 V14
V16 V18 V23 W6 W11
W13 W15 W17 W19
Y5 Y23 AA6 AB4 AB5
AB23 AC6 AC8 AC10
AC12 AC14 AC16
AC18 AC20 AD7 AD9
AD11 AD13
PWR
1. This is a voltage regulator output generated internally by the MIPHY0_VREG_3V3_IN. An external capacitor must be
connected to this ball. For more details see Table 54: Voltage regulators requirements. It must not be connected to the 2V5
power supply.
Doc ID 023063 Rev 5
93/200
Pin description
SPEAr1340
3.4
Multiplexed signals description
3.4.1
MAC Ethernet port multiplexing scheme
Table 5.
MAC Ethernet port multiplexing scheme
MAC
Ball
GMII
MII
RGMII
RMII
T28
MAC_GTXCLK125
I
-
-
MAC_GTXCLK125
I
MAC_GTXCLK125
I
R28
MAC_GTXCLK
O -
-
MAC_GTXCLK
O
MAC_GTXCLK
O
U28
-
-
I
-
-
-
-
U27
MAC_TXD0
O MAC_TXD0
O
MAC_TXD0
O
MAC_TXD0
O
T26
MAC_TXD1
O MAC_TXD1
O
MAC_TXD1
O
MAC_TXD1
O
T27
MAC_TXD2
O MAC_TXD2
O
MAC_TXD2
O
-
-
T25
MAC_TXD3
O MAC_TXD3
O
MAC_TXD3
O
-
-
R25
MAC_TXD4
O -
-
-
-
-
-
R26
MAC_TXD5
O -
-
-
-
-
-
P26
MAC_TXD6
O -
-
-
-
-
-
P27
MAC_TXD7
O -
-
-
-
-
-
L24
MAC_TXEN
O MAC_TXEN
O
MAC_TXEN
O
MAC_TXEN
O
L25
MAC_TXER
O MAC_TXER
O
-
-
-
-
P28
MAC_RXCLK
I
MAC_RXCLK
I
MAC_RXCLK
I
-
-
M27
MAC_RXDV
I
MAC_RXDV
I
MAC_RXDV
I
MAC_RXDV
I
M28
MAC_RXER
I
MAC_RXER
I
-
-
-
-
R27
MAC_RXD0
I
MAC_RXD0
I
MAC_RXD0
I
MAC_RXD0
I
R24
MAC_RXD1
I
MAC_RXD1
I
MAC_RXD1
I
MAC_RXD1
I
P25
MAC_RXD2
I
MAC_RXD2
I
MAC_RXD2
I
-
-
N24
MAC_RXD3
I
MAC_RXD3
I
MAC_RXD3
I
-
-
N25
MAC_RXD4
I
-
-
-
-
-
-
N26
MAC_RXD5
I
-
-
-
-
-
-
M24
MAC_RXD6
I
-
-
-
-
-
-
M25
MAC_RXD7
I
-
-
-
-
-
-
M26
MAC_COL
I
MAC_COL
I
-
-
-
-
L26
MAC_CRS
I
MAC_CRS
I
-
-
-
-
N27
MAC_MDC
O MAC_MDC
O
MAC_MDC
O
MAC_MDC
O
N28
MAC_MDIO
IO MAC_MDIO
IO MAC_MDIO
94/200
MAC_TXCLK
Doc ID 023063 Rev 5
IO MAC_MDIO
IO
SPEAr1340
Pin description
3.4.2
KBD multiplexing scheme
Table 6.
KBD multiplexing scheme
Ball
Signal name
GPIO
Keyboard 6x6
Keyboard 2x2
A11
KBD_ROW5
KBD_ROW5
Keyboard Output
(ROW5)
E12
KBD_ROW4
KBD_ROW4
Keyboard Output
(ROW4)
D12
KBD_ROW3
KBD_ROW3
Keyboard Output
(ROW3)
C12
KBD_ROW2
KBD_ROW2
Keyboard Output
(ROW2)
B12
KBD_ROW1
KBD_ROW1
Keyboard Output
(ROW1)
Keyboard Output
(ROW1)
A12
KBD_ROW0
KBD_ROW0
Keyboard Output
(ROW0)
Keyboard Output
(ROW0)
AE18
KBD_COL5
KBD_COL5
Keyboard Input (COL5)
A10
KBD_COL4
KBD_COL4
Keyboard Input (COL4)
E11
KBD_COL3
KBD_COL3
Keyboard Input (COL3)
D11
KBD_COL2
KBD_COL2
Keyboard Input (COL2)
C11
KBD_COL1
KBD_COL1
Keyboard Input (COL1)
Keyboard Input (COL1)
B11
KBD_COL0
KBD_COL0
Keyboard Input (COL0)
Keyboard Input (COL0)
3.4.3
MCIF multiplexing scheme
Table 7.
MCIF multiplexing scheme
Asynchronous card
Ball
Synchronous card
Signal name
Compact Flash
xD card
SD/SDIO/MMC
E14
MCIF_DATA0
MCIF_DATA0
IO MCIF_DATA0
IO MCIF_DATA0
IO
B16
MCIF_DATA1
MCIF_DATA1
IO MCIF_DATA1
IO -
-
C16
MCIF_DATA2
MCIF_DATA2
IO MCIF_DATA2
IO -
-
D16
MCIF_DATA3
MCIF_DATA3
IO MCIF_DATA3
IO -
-
C14
MCIF_DATA4
MCIF_DATA4
IO MCIF_DATA4
IO MCIF_DATA4
IO
D14
MCIF_DATA5
MCIF_DATA5
IO MCIF_DATA5
IO MCIF_DATA5
IO
E16
MCIF_DATA6
MCIF_DATA6
IO MCIF_DATA6
IO MCIF_DATA6
IO
B15
MCIF_DATA7
MCIF_DATA7
IO MCIF_DATA7
IO MCIF_DATA7
IO
E15
MCIF_DATA1_SD
-
-
-
-
MCIF_DATA1_SD
IO
A14
MCIF_DATA2_SD
-
-
-
-
MCIF_DATA2_SD
IO
B14
MCIF_DATA3_SD
-
-
-
-
MCIF_DATA3_SD
IO
Doc ID 023063 Rev 5
95/200
Pin description
Table 7.
SPEAr1340
MCIF multiplexing scheme (continued)
Asynchronous card
Ball
Synchronous card
Signal name
Compact Flash
xD card
SD/SDIO/MMC
D21
MCIF_DATA8
MCIF_DATA8
IO -
-
-
-
C21
MCIF_DATA9
MCIF_DATA9
IO -
-
-
-
B21
MCIF_DATA10
MCIF_DATA10
IO -
-
-
-
A21
MCIF_DATA11
MCIF_DATA11
IO -
-
-
-
E22
MCIF_DATA12
MCIF_DATA12
IO -
-
-
-
E15
MCIF_DATA13
MCIF_DATA13
IO -
-
-
-
A14
MCIF_DATA14
MCIF_DATA14
IO -
-
-
-
B14
MCIF_DATA15
MCIF_DATA15
IO -
-
-
-
E18
MCIF_ADDR0_ALE
MCIF_ADDR0_ALE
O
O
-
-
A15
MCIF_ADDR1_CLE_
CLK
MCIF_ADDR1_CLE_
O
CLK
MCIF_ADDR1_CLE_
O
CLK
MCIF_ADDR1_CLE_
O
CLK
B17
MCIF_ADDR2
MCIF_ADDR2
O
-
-
-
-
C17
MCIF_nCE_CF
MCIF_nCE_CF
O
-
-
-
-
D17
MCIF_nCE_xD
-
-
MCIF_nCE_xD
O
E19
MCIF_nCE_SD_MM
C
-
-
-
-
MCIF_nCE_SD_MM
C
O
A18
MCIF_nCD_CF1
MCIF_nCD_CF1
I
-
-
-
-
B18
MCIF_nCD_CF2
MCIF_nCD_CF2
I
-
-
-
-
A17
MCIF_nCD_xD
MCIF_nCD_xD
I
-
-
C15
MCIF_nCD_SD_MM
C
-
-
-
-
MCIF_nCD_SD_MM
C
I
C18
MCIF_DATA_DIR
MCIF_DATA_DIR
O
MCIF_DATA_DIR
O
MCIF_DATA_DIR
O
D15
MCIF_DMARQ_RnB_ MCIF_DMARQ_RnB
WP
_WP
I
MCIF_DMARQ_RnB
_WP
I
MCIF_DMARQ_RnB
_WP
I
D18
MCIF_nIORD_nRE
MCIF_nIORD_nRE
O
MCIF_nIORD_nRE
O
-
-
E20
MCIF_nIOWR_nWE
MCIF_nIOWR_nWE
O
MCIF_nIOWR_nWE
O
-
-
A19
MCIF_nRESET_CF
MCIF_nRESET_CF
O
-
-
-
B19
MCIF_nCS0_nCE
MCIF_nCS0_nCE
O
MCIF_nCS0_nCE
-
-
C19
MCIF_CF_INTR
MCIF_CF_INTR
I
-
-
-
D19
MCIF_IORDY
MCIF_IORDY
I
-
-
-
E21
MCIF_nCS1
MCIF_nCS1
O
-
-
-
-
A20
MCIF_nDMACK_nW
P
MCIF_nDMACK_nW
P
O
MCIF_nDMACK_nW
P
O
-
-
E17
MCIF_SD_CMD
-
-
-
-
MCIF_SD_CMD
IO
A16
MCIF_LEDS
MCIF_LEDS
O
MCIF_LEDS
O
MCIF_LEDS
O
96/200
MCIF_ADDR0_ALE
Doc ID 023063 Rev 5
O
-
SPEAr1340
Pin description
3.4.4
FSMC multiplexing scheme
Table 8.
FSMC multiplexing scheme
Ball
Signal name
NAND
NOR
Asynchronous SRAM
D10
FSMC_IO0
FSMC_IO0
IO FSMC_IO0
IO
FSMC_IO0
IO
C10
FSMC_IO1
FSMC_IO1
IO FSMC_IO1
IO
FSMC_IO1
IO
B10
FSMC_IO2
FSMC_IO2
IO FSMC_IO2
IO
FSMC_IO2
IO
E9
FSMC_IO3
FSMC_IO3
IO FSMC_IO3
IO
FSMC_IO3
IO
D9
FSMC_IO4
FSMC_IO4
IO FSMC_IO4
IO
FSMC_IO4
IO
C9
FSMC_IO5
FSMC_IO5
IO FSMC_IO5
IO
FSMC_IO5
IO
B9
FSMC_IO6
FSMC_IO6
IO FSMC_IO6
IO
FSMC_IO6
IO
A9
FSMC_IO7
FSMC_IO7
IO FSMC_IO7
IO
FSMC_IO7
IO
A12
FSMC_IO8
FSMC_IO8
IO FSMC_IO8
IO
FSMC_IO8
IO
B12
FSMC_IO9
FSMC_IO9
IO FSMC_IO9
IO
FSMC_IO9
IO
C12
FSMC_IO10
FSMC_IO10
IO FSMC_IO10
IO
FSMC_IO10
IO
D12
FSMC_IO11
FSMC_IO11
IO FSMC_IO11
IO
FSMC_IO11
IO
E12
FSMC_IO12
FSMC_IO12
IO FSMC_IO12
IO
FSMC_IO12
IO
A11
FSMC_IO13
FSMC_IO13
IO FSMC_IO13
IO
FSMC_IO13
IO
B11
FSMC_IO14
FSMC_IO14
IO FSMC_IO14
IO
FSMC_IO14
IO
C11
FSMC_IO15
FSMC_IO15
IO FSMC_IO15
IO
FSMC_IO15
IO
C6
FSMC_CE0n
FSMC_CE0n
O
FSMC_CE0n
O
FSMC_CE0n
O
E8
FSMC_WEn
FSMC_WEn
O
FSMC_WEn
O
FSMC_WEn
O
D8
FSMC_REn
FSMC_REn
O
FSMC_REn
O
FSMC_REn
O
C8
FSMC_ALE_AD17
FSMC_ALE_AD17
O
FSMC_ALE_AD17
O
FSMC_ALE_AD17
O
E7
FSMC_CLE_AD16
FSMC_CLE_AD16
O
FSMC_CLE_AD16
O
FSMC_CLE_AD16
O
D7
FSMC_RB0
FSMC_RB0
I
FSMC_AV
O
FSMC_BL0n
O
C7
FSMC_RWPRT0n
FSMC_RWPRT0n
O
FSMC_RWPRT0n
O
FSMC_BL1n
O
B17
FSMC_AD0
FSMC_AD0
O
FSMC_AD0
O
C17
FSMC_AD1
FSMC_AD1
O
FSMC_AD1
O
D17
FSMC_AD2
FSMC_AD2
O
FSMC_AD2
O
E19
FSMC_AD3
FSMC_AD3
O
FSMC_AD3
O
A18
FSMC_AD4
FSMC_AD4
O
FSMC_AD4
O
B18
FSMC_AD5
FSMC_AD5
O
FSMC_AD5
O
C18
FSMC_AD6
FSMC_AD6
O
FSMC_AD6
O
D18
FSMC_AD7
FSMC_AD7
O
FSMC_AD7
O
E20
FSMC_AD8
FSMC_AD8
O
FSMC_AD8
O
A19
FSMC_AD9
FSMC_AD9
O
FSMC_AD9
O
Doc ID 023063 Rev 5
97/200
Pin description
Table 8.
Ball
SPEAr1340
FSMC multiplexing scheme (continued)
Signal name
NAND
NOR
Asynchronous SRAM
B19
FSMC_AD10
FSMC_AD10
O
FSMC_AD10
O
C19
FSMC_AD11
FSMC_AD11
O
FSMC_AD11
O
D19
FSMC_AD12
FSMC_AD12
O
FSMC_AD12
O
E21
FSMC_AD13
FSMC_AD13
O
FSMC_AD13
O
A20
FSMC_AD14
FSMC_AD14
O
FSMC_AD14
O
B20
FSMC_AD15
FSMC_AD15
O
FSMC_AD15
O
C20
FSMC_AD18
FSMC_AD18
O
FSMC_AD18
O
D20
FSMC_AD19
FSMC_AD19
O
FSMC_AD19
O
E22
FSMC_AD20
FSMC_AD20
O
FSMC_AD20
O
A21
FSMC_AD21
FSMC_AD21
O
FSMC_AD21
O
B21
FSMC_AD22
FSMC_AD22
O
FSMC_AD22
O
C21
FSMC_AD23
FSMC_AD23
O
FSMC_AD23
O
D21
FSMC_AD24
FSMC_AD24
O
FSMC_AD24
O
D22
FSMC_AD25
FSMC_AD25
O
FSMC_AD25
O
D11
FSMC_CE1n
FSMC_CE1n
O
FSMC_CE1n
O
FSMC_CE1n
O
E11
FSMC_RWPRT1n
FSMC_RWPRT1n
O
FSMC_RWPRT1n
O
E10
FSMC_RSTPWDN0
FSMC_RSTPWDN0
O
A10
FSMC_RSTPWDN1
FSMC_RSTPWDN1
O
98/200
FSMC_RB1
I
Doc ID 023063 Rev 5
SPEAr1340
Pin description
3.5
Signals description
3.5.1
CPU subsystem
Table 9.
CPU subsystem - A9SM signals description
Signal name
Description
Type
Ball
ARM_TRSTn
JTAG reset
I
AE15
ARM_TCK
JTAG clock
I
AD16
ARM_TMS
JTAG mode select
I
AE16
ARM_TDI
JTAG data input
I
AD15
ARM_TDO
JTAG data output
IO
AF16
ARM_TRCCLK
Trace clock
O
E27
ARM_TRCCTL
Trace control
O
E26
ARM_TRCDATA0
E25
ARM_TRCDATA1
D28
ARM_TRCDATA2
F24
ARM_TRCDATA3
C28
ARM_TRCDATA4
B28
ARM_TRCDATA5
A28
ARM_TRCDATA6
D27
ARM_TRCDATA7
C27
ARM_TRCDATA8
B27
ARM_TRCDATA9
K28
ARM_TRCDATA10
A27
ARM_TRCDATA11
A26
Trace data
O
ARM_TRCDATA12
B26
ARM_TRCDATA13
C26
ARM_TRCDATA14
D26
ARM_TRCDATA15
A25
ARM_TRCDATA16
B25
ARM_TRCDATA17
C25
ARM_TRCDATA18
D25
ARM_TRCDATA19
A24
ARM_TRCDATA20
B24
ARM_TRCDATA21
C24
ARM_TRCDATA22
D24
ARM_TRCDATA23
E24
Doc ID 023063 Rev 5
99/200
Pin description
Table 9.
SPEAr1340
CPU subsystem - A9SM signals description (continued)
Signal name
Description
Type
Ball
ARM_TRCDATA24
A23
ARM_TRCDATA25
B23
ARM_TRCDATA26
C23
ARM_TRCDATA27
D23
Trace data
O
ARM_TRCDATA28
E23
ARM_TRCDATA29
A22
ARM_TRCDATA30
B22
ARM_TRCDATA31
C22
3.5.2
Memories
Table 10.
Memories - MPMC signals description
Signal name
DDR2n_DDR3
Description
This pin is used to select the DDR2 or DDR3 operation mode for DDR2/3
buffers.
0 DDR2 selection
1 DDR3 selection
Type
I
Ball
AF14
DDR_ADDR0
U3
DDR_ADDR1
W2
DDR_ADDR2
V2
DDR_ADDR3
V3
DDR_ADDR4
Y2
DDR_ADDR5
W1
DDR_ADDR6
Y4
DDR_ADDR7
Memory address bus
O
V1
DDR_ADDR8
T1
DDR_ADDR9
U4
DDR_ADDR10
AA3
DDR_ADDR11
V4
DDR_ADDR12
AA2
DDR_ADDR13
Y1
DDR_ADDR14
W4
DDR_RASn
Memory row address select (active low)
O
AD3
DDR_CASn
Memory columns address select (active low)
O
AD4
DDR_WEn
Memory write transfer cycle (active low)
O
AA4
DDR_CS0n
Memory chip select 0 (active low)
O
AB3
100/200
Doc ID 023063 Rev 5
SPEAr1340
Table 10.
Pin description
Memories - MPMC signals description (continued)
Signal name
DDR_CS1n
Description
Memory chip select 1 (active low)
Type
O
DDR_BA0
DDR_BA1
U1
Y3
Memory bank address
O
DDR_BA2
DDR_CKE
Ball
W3
AA1
Memory clock enable (active high)
O
Memory ODT signal
O
DDR_ODT0
T3
AC3
DDR_ODT1
U2
DDR_DM0
AE5
DDR_DM1
AG3
Memory data mask (active high)
O
DDR_DM2
AF10
DDR_DM3
AG8
DDR_DQS0p
AE3
DDR_DQS1p
DDR_DQS2p
Differential memory data strobe active high; drove during write transaction
IO
and received from memory device during read during transfer
AH4
AE9
DDR_DQS3p
AH10
DDR_DQS0n
AF3
DDR_DQS1n
DDR_DQS2n
Differential memory data strobe active low; drove during write transaction
and received from memory device during read during transfer
AG4
IO
AF8
DDR_DQS3n
AG9
DDR_DQ0
AF2
DDR_DQ1
AF4
DDR_DQ2
AF1
DDR_DQ3
AF5
DDR_DQ4
AE1
DDR_DQ5
AE6
DDR_DQ6
AE2
Memory data bus
IO
DDR_DQ7
AE4
DDR_DQ8
AH3
DDR_DQ9
AH2
DDR_DQ10
AH6
DDR_DQ11
AG1
DDR_DQ12
AG5
DDR_DQ13
AG2
Doc ID 023063 Rev 5
101/200
Pin description
Table 10.
SPEAr1340
Memories - MPMC signals description (continued)
Signal name
Description
Type
Ball
DDR_DQ14
AH5
DDR_DQ15
AH1
DDR_DQ16
AE8
DDR_DQ17
AE10
DDR_DQ18
AF7
DDR_DQ19
AE11
DDR_DQ20
AE7
DDR_DQ21
AF11
DDR_DQ22
AF6
Memory data bus
IO
DDR_DQ23
AF9
DDR_DQ24
AH9
DDR_DQ25
AH8
DDR_DQ26
AG11
DDR_DQ27
AG6
DDR_DQ28
AG10
DDR_DQ29
AH7
DDR_DQ30
AH11
DDR_DQ31
AG7
DDR_RESETn
Memory reset (active low)
O
DDR_CLKM0
DDR_CLKM1
T2
AD2
Differential memory clock (active low)
O
AC2
DDR_CLKM2
AB2
DDR_CLKP0
AD
DDR_CLKP1
Differential memory clock (active high)
DDR_CLKP2
102/200
O
AC1
AB1
Doc ID 023063 Rev 5
SPEAr1340
Table 11.
Pin description
Memories - FSMC signals description
Signal name
Description
Type
Ball
FSMC_IO0
D10
FSMC_IO1
C10
FSMC_IO2
B10
FSMC_IO3
E9
FSMC_IO4
D9
FSMC_IO5
C9
FSMC_IO6
B9
FSMC_IO7
A9
Data bus
IO
FSMC_IO8
A12
FSMC_IO9
B12
FSMC_IO10
C12
FSMC_IO11
D12
FSMC_IO12
E12
FSMC_IO13
A11
FSMC_IO14
B11
FSMC_IO15
C11
FSMC_AD0
B17
FSMC_AD1
C17
FSMC_AD2
D17
FSMC_AD3
E19
FSMC_AD4
A18
FSMC_AD5
B18
FSMC_AD6
C18
FSMC_AD7
D18
FSMC_AD8
E20
FSMC_AD9
Address bus
O
A19
FSMC_AD10
B19
FSMC_AD11
C19
FSMC_AD12
D19
FSMC_AD13
E21
FSMC_AD14
A20
FSMC_AD15
B20
FSMC_AD18
C20
FSMC_AD19
D20
FSMC_AD20
E22
Doc ID 023063 Rev 5
103/200
Pin description
Table 11.
SPEAr1340
Memories - FSMC signals description (continued)
Signal name
Description
Type
Ball
FSMC_AD21
A21
FSMC_AD22
B21
FSMC_AD23
Address bus
O
C21
FSMC_AD24
D21
FSMC_AD25
D22
FSMC_CE0n(1)
C6
NAND/NOR/SRAM chip select (default NAND)
O
FSMC_CE1n
D11
FSMC_WEn
Write enable
O
E8
FSMC_REn
Read enable
O
D8
FSMC_ALE_AD17
Address latch enable /address pin #17
O
C8
FSMC_CLE_AD16
Command latch enable / address pin #16
O
E7
FSMC_RB0
NAND ready/busy[0] or NOR address valid or SRAM byte lane[0] (valid
only for 16-bit configuration)
IO
D7
IO
A10
FSMC_RSTPWDWN1 NAND ready/busy[1] or NOR reset power down[1]
FSMC_RWPRT0n
FSMC_RWPRT1n
NAND/NOR write protect [0] or SRAM byte lane[1] (valid only for 16-bit
configuration)
C7
O
NAND/NOR write protect [1]
E11
FSMC_RSTPWDWN0 NOR reset / Power down [0]
O
E10
1. FSMC_CE0n is used for booting from Parallel NOR or NAND Flash.
Table 12.
Memories - SMI signals description
Signal name
Description
Type
Ball
SMI_DATAIN
Data in from external serial Flash
I
AB25
SMI_DATAOUT
Data out to external serial Flash
O
AB24
SMI_CLK
Data out clock to external Flash
O
AB28
Chip selects (active low)
O
SMI_CS0n(1)
AA27
SMI_CS1n
AB26
1. SMI_CS0n is used for booting from Serial NOR.
104/200
Doc ID 023063 Rev 5
SPEAr1340
Pin description
3.5.3
Clocks and resets
Table 13.
Main clock and reset pins descriptions
Signal name
MCLK_XI
Description
Type
Master clock (MCLK) 24 MHz (typical) crystal in
Ball
A7
OSC
MCLK_XO
Master clock (MCLK) 24 MHz (typical) crystal out
RTC_XI
Real-time clock (RTC) 32 kHz crystal in
A8
B1
OSC
RTC_XO
Real-time clock (RTC) 32 kHz crystal out
MRESETn
Main reset
3.5.4
Debug interface
Table 14.
Debug pins description
Signal name
Description
A1
IOTYP
E1
AF15
Type
Ball
ARM_TRSTn
Test reset input
I
AE15
ARM_TCK
Test trace clock
I
AD16
ARM_TDI
Test trace data input
I
AD15
ARM_TMS
Test trace mode select
I
AE16
ARM_TDO
Test trace data output
IO
AF16
Note:
1
The ARM Trace ports are enabled via the miscellaneous registers.
2
For ARM JTAG mode, the TEST[4:0] pins should be set to “00001” at power-up. For
functional mode, the same pins should be set to “00000”.
3
When the 2V5 power supply is not present on the OTP supply ball, the JTAG debug features
are not available on the device.
Doc ID 023063 Rev 5
105/200
Pin description
SPEAr1340
3.5.5
Connectivity
Table 15.
Connectivity - MAC PHY interface signals description
Signal name
Description
Type
MAC_GTXCLK125
Auxiliary source of clock
MAC_GTXCLK
Transmission clock
This is the transmission clock provided by the external
PHY/oscillator/internal PLL for the RGMII,GMII, RMII. All the RGMII,GMII,
RMII transmission signals generated by the MAC are synchronous to this O
clock.
RMII: this clock is used also as receive clock, so all the receive signals are
synchronous to this clock.
R28
MAC_TXCLK
Transmission clock
This is the transmission clock (25/2.5 MHz in 100M/10Mbps) provided by I
the external PHY for the MII. All the MII transmission signals generated by
the MAC are synchronous to this clock.
U28
MAC_TXD0
MAC_TXD1
MAC_TXD2
MAC_TXD3
MAC_TXD4
MAC_TXD5
MAC_TXD6
MAC_TXD7
I
Ball
PHY transmit data
This is a bundle of eight transmit data signals driven by the MAC. It has
multiple functions depending on which PHY interface is selected, as given
below. Unused bits in the RGMII,RMII,MII interface configurations are tied
to low.
– GMII: All 8 bits provide the GMII transmit data byte. The validity of the
data is qualified with MAC_TXEN and MAC_TXER.
Note: Using 10/100 Mbps-only operation, MAC_TXD bus is only 4 bits
O
wide (MAC_TXD[3:0]).
– MII: Bits [3:0] provide the MII transmit data nibble. The validity of the
data is qualified with MAC_TXEN and MAC_TXER.
– RGMII: Bits [3:0] provide the RGMII transmit data. The data bus
changes with both rising and falling edges of the transmit clock. The
validity of the data is qualified with MAC_TXEN.
– RMII: Bits [1:0] provide the RMII transmit data. The validity of the data is
qualified with MAC_TXEN.
T28
U27
T26
T27
T25
R25
R26
P26
P27
MAC_TXEN
PHY transmit data enable
This signal is driven by the MAC and has multiple functions depending on
which PHY interface is selected, as given below.
– GMII/MII/RMII: When high, indicates that valid data is being transmitted
on the MAC_TXD bus.
– RGMII: This signal is the control signal for the transmit data, and is
driven on both edges of the clock.
O
L24
MAC_TXER
PHY transmit error
This signal is driven by the MAC and has multiple functions depending on
which PHY interface is selected, as given below.
– GMII/MII: When high, indicates a transmit error or carrier extension (in
GMII) on the MAC_TXD bus.
– RMII, RGMII: Not used. Tied low in some configurations; driven low in
others.
O
L25
106/200
Doc ID 023063 Rev 5
SPEAr1340
Table 15.
Pin description
Connectivity - MAC PHY interface signals description (continued)
Signal name
Description
Type
Ball
MAC_RXCLK
Reception clock (rmii_clk)
This is the reception clock (125/25/2.5 MHz in 1G/100M/10Mbps) provided I
by the external PHY for RGMII,GMII,MII. All the RGMII,GMII,MII receive
signals received by the MAC are synchronous to this clock.
P28
MAC_RXDV
PHY receive data valid
This signal is driven by PHY and has multiple functions depending on
which PHY interface is selected as given below.
– GMII/MII: When high, indicates that data on the MAC_RXD bus is valid.
It remains asserted continuously from the first recovered byte/nibble of
the frame through the final recovered byte/nibble.
I
– RGMII: This is the receive control signal used to qualify the data
received on MAC_RXD bus. This signal is sampled on both edges of the
clock.
– RMII: Contains the crs and data valid information of the receive
interface.
M27
MAC_RXER
PHY receive error
This signal is driven by the PHY and has multiple functions depending on
which PHY interface is selected as given below.
I
– GMII/MII: When high, indicates an error or carrier extension (in GMII) in
the received frame on the MAC_RXD bus.
– RGMII/RMII: Not used.
M28
MAC_RXD0
MAC_RXD1
MAC_RXD2
MAC_RXD3
MAC_RXD4
MAC_RXD5
MAC_RXD6
R27
PHY receive data
This is a bundle of eight data signals received from the PHY. It has multiple
functions depending on which PHY interface is selected, as given below.
– GMII: All 8 bits provide the GMII receive data byte. The validity of the
data is qualified with MAC_RXDV and MAC_RXER.
Note: Using 10/100 Mbps-only operation, MAC_RXD bus is only 4 bits
wide (MAC_RXD[3:0]).
I
– MII: Bits [3:0] provide the MII receive data nibble. The validity of the data
is qualified with MAC_RXDV and MAC_RXER.
– RGMII: Bits [3:0] provide the RGMII receive data. The data bus is
sampled with both rising and falling edges of the receive clock
(MAC_RXCLK). The validity of the data is qualified with MAC_RXDV.
– RMII: Bits [1:0] provide the RMII receive data. The validity of the data is
qualified with MAC_RXDV.
MAC_RXD7
R24
P25
N24
N25
N26
M24
M25
MAC_COL
PHY collision
This signal, valid only in GMII/MII mode, is asserted by the PHY when a
I
collision is detected on the medium. This signal is not synchronous to any
clock.(Active high)
M26
MAC_CRS
PHY CRS
This signal, valid only in GMII/MII mode, is asserted by the PHY when
either the transmit or receive medium is not idle. The PHY deasserts this
signal when both transmit and receive medium are idle. This signal is not
synchronous to any clock. (active high)
L26
Doc ID 023063 Rev 5
I
107/200
Pin description
Table 15.
SPEAr1340
Connectivity - MAC PHY interface signals description (continued)
Signal name
Description
Type
Ball
MAC_MDC
Management data clock
The MAC provides timing reference for the MAC_MDIO signal through this O
aperiodic clock. The maximum frequency of this clock is 2.5 MHz.This
clock is generated from the application clock (HCLK) via a clock divider.
N27
MAC_MDIO
Management data input/output.
N28
Table 16.
IO
Connectivity - PCIe/SATA physical interface (MIPHY) signals description (1)
Signal name
Description
Type
Ball
MIPHY single lane
MIPHY0_TXp
Positive TX output
O
M2
MIPHY0_TXn
Negative TX output
O
M1
MIPHY0_RXp
Positive RX input
I
K2
MIPHY0_RXn
Negative RX input
I
K1
I
P2
IO
P1
MIPHY0_XTAL1
Input of the crystal oscillator
MIPHY0_XTAL2
1. PCIe and SATA cannot be used simultaneously; one port in alternative to the other one. To select between PCIe or SATA
you have to configure the register PCIE_SATA_CFG[0], pcie_sata_sel.
Table 17.
Connectivity - USB 2.0 Host signals description
Signal name
Description
Type
Ball
USB_UHC0_DRVVBUS
USB Host 0 VBUS, port power switch
O
B13
USB_UHC1_DRVVBUS
USB Host 1 VBUS, port power switch
O
C13
I
D13
I
E13
USB_UHC0_OVERCUR
Port overcurrent indication from application
USB_UHC1_OVERCUR
Table 18.
Connectivity - USB 2.0 OTG signals description
Signal name
USB_UOC_DRVVBUS
108/200
Description
Power switch to 5 V charge pump
Doc ID 023063 Rev 5
Type
O
Ball
A13
SPEAr1340
Table 19.
Pin description
Connectivity - USB 2.0 PHY signals description
Signal name
Description
Type
Ball
USB_UHC0_DP
USB Host 0 D+
IO
H1
USB_UHC0_DM
USB Host 0 D-
IO
H2
USB_UHC1_DP
USB Host 1 D+
IO
D1
USB_UHC1_DM
USB Host 1 D-
IO
D2
USB_UOC_DP
USB OTG D+
IO
F1
USB_UOC_DM
USB OTG D-
IO
F2
USB_UOC_ID
USB OTG mini-receptacle identifier
I
F4
USB_UOC_VBUS
USB OTG power supply pin:
– When SPEAr is configured as USB Device, this is a VBUS detect
signal.
– When SPEAr is configured as USB Host, this is a power supply pin. IO
A charge pump external to the USB PHY must provide power to this
pin (and to pin1 of the Micro-USB connector). The nominal voltage
for this pin is 5 V. The voltage range is 0-5.25 V.
Table 20.
F3
Connectivity - UART signals description
Signal name
Description
Type
Ball
UART0
UART0_RXD
UART0 receive serial data input
IrDA input (SIRIN)
I
Y25
UART0_TXD
UART0 transmitted serial data output
IrDA output (SIROUT)
O
Y24
UART0_RTSn
UART0 request to send modem status output (active low)
O
AF17
UART0_CTSn
UART0 clear to send modem status input (active low)
I
AF18
UART0_DCDn
UART0 data carrier detect modem status input (active low)
I
AG18
UART0_DTRn
UART0 data terminal ready modem status output (active low)
O
AE17
UART0_DSRn
UART0 data set ready modem status input (active low)
I
AH17
UART0_RIn
UART0 Ring Indicator modem status input (active low)
I
AG17
UART1_RXD
UART1 receive serial data input
IrDA input (SIRIN)
I
Y27
UART1_TXD
UART1 transmitted serial data output
IrDA output (SIROUT)
O
Y26
UART1
Doc ID 023063 Rev 5
109/200
Pin description
Table 21.
SPEAr1340
Connectivity - SSP signals description
Signal name
Description
Type
Ball
SSP_SCK
SSP clock. It is used as output in master mode as input in slave mode
IO
AA26
SSP_MISO
Master input slave output
IO
AA25
SSP_MOSI
Master output slave input
IO
AA24
SSP_SS0n
SSP frame output (master mode), input (slave mode)
IO
AB27
SSP_SS1n
Slave select 1 (used only in master mode)
O
AE19
SSP_SS2n
Slave select 2 (used only in master mode)
O
AA28
SSP_SS3n
Slave select 3 (used only in master mode)
O
L27
Table 22.
Connectivity - I2C signals description
Signal name
Description
Type
Ball
I2C0
I2C0_SDA
I2C0 input/output data
IOD
K27
I2C0_SCL
I2C0 input/output clock
IOD
L28
I2C1_SDA
I2C1 input/output data
IOD
AH18
I2C1_SCL
I2C1 input/output clock
IOD
AH19
I2C1
Table 23.
Connectivity- MCIF signals description
Description(1)
Signal name
MCIF_DATA0
All modes
Data0 line
Type
Ball
IO
E14
IO
B16
IO
C16
MCIF_DATA3
IO
D16
MCIF_DATA4
IO
C14
IO
D14
IO
E16
IO
B15
MCIF_DATA1
MCIF_DATA2
MCIF_DATA5
MCIF_DATA6
Compact Flash (CF)/xD card:
Data lines (3 to 1)
MMC8/CF/xD card:
Data lines (7 to 4)
MCIF_DATA7
110/200
Doc ID 023063 Rev 5
SPEAr1340
Table 23.
Pin description
Connectivity- MCIF signals description (continued)
Description(1)
Signal name
Type
Ball
MCIF_DATA8
IO
D20
MCIF_DATA9
IO
C20
MCIF_DATA10
IO
B20
IO
D21
IO
C21
MCIF_DATA13
IO
B21
MCIF_DATA14
IO
A21
MCIF_DATA15
IO
E22
IO
E15
IO
A14
IO
B14
CF: A0
Address bit 0, used to select one of the eight registers in the task file
O
xD:
Address latch enable
E18
CF: A1
Address bit 1, used to select one of the eight registers in the task file
xD:
MCIF_ADDR1_CLE_CLK
O
Command latch enable
SD:
SD/SDIO/MMC clock
A15
MCIF_ADDR2
CF: A2
O
Address bit 2, used to select one of the eight registers in the task file
B17
MCIF_nCE_CF
CF:
Chip enable (active low)
O
C17
MCIF_nCE_xD
xD:
Chip enable (active low)
O
D17
MCIF_nCE_SD_MMC
SD:
Chip enable (active low)
O
E19
I
A18
I
B18
MCIF_nCD_xD
xD:
Card insert/remove pin:
0 - Card inserted
1 - Card removed
I
A17
MCIF_nCD_SD_MMC
SD:
Card detection for single slot, active low
I
C15
MCIF_DATA_DIR
All modes
Data direction on board
O
C18
MCIF_DATA11
MCIF_DATA12
Compact Flash (CF):
Data lines (15 to 8)
MCIF_DATA1_SD
MCIF_DATA2_SD
SD/SDIO/MMC:
Data lines (3 to 1)
MCIF_DATA3_SD
MCIF_ADDR0_ALE
MCIF_nCD_CF1
MCIF_nCD_CF2
CF: -CD1, -CD2
These card detect pins are connected to ground on the CF Storage
Card or CF+ Card. They are used by the host to determine that the
CF Storage Card or CF+ Card is fully inserted into its socket
Doc ID 023063 Rev 5
111/200
Pin description
Table 23.
SPEAr1340
Connectivity- MCIF signals description (continued)
Signal name
Description(1)
CF: DMARQ
A DMA request, asserted by the device when it is ready to transfer
data to or from the host.
For multiword DMA transfers, the direction of data transfer is
controlled by -IORD and -IOWR. The device waits until the host
asserts -DMACK before negating DMARQ, and then reasserts
DMARQ if there is more data to transfer.
MCIF_DMARQ_RnB_WP
DMARQ is not driven when the device is not selected.
While a DMA operation is in progress, -CS0 and –CS1 are held
negated.
xD:
Ready/Busy Output from xD Card.
SD:
Active high. SD card write protect
Type
I
Ball
D15
MCIF_nIORD_nRE
CF: -IORD, -HDMARDY, HSTROBE.
An IO read strobe (-IORD) generated by the host. This signal gates
IO data onto the bus from the CF storage card or CF+ card when the
card is configured to use the interface.
When in ultra DMA mode, DMA Read is active; this signal (HDMARDY) is asserted by the host to indicate that the host is read to
receive Ultra DMA data-in bursts. The host may negate -HDMARDY
to pause an ultra DMA transfer.
O
When ub ultra DMA mode, DMA Write is active; this signal is the data
out strobe (HSTROBE) generated by the host. Both the rising and
falling edge of HSTROBE cause data to be latched by the device.
The host may stop generating HSTROBE edges to pause an Ultra
DMA dataout burst.
xD:
Read enable
D18
MCIF_nIOWR_nWE
CF: -IOWR, STOP
The IO Write strobe (-IOWR) pulse is used to clock IO data on the
card data bus into the CF+ card controller registers when the CF+
card is configured to use the IO interface. The clocking occurs on the
negative to positive (trailing) edge of the signal.
While Ultra DMA mode protocol is active, the assertion of this signal O
(STOP) causes the termination of the Ultra DMA Burst.
This signal must be negated before entering ultra DMA mode
protocol.
xD
Write enable
E20
MCIF_nRESET_CF
CF: -RESET
Active low hardware reset from the Host
O
A19
MCIF_nCS0_nCE
CF: -CS0
-CS0 is the chip select for the task file registers. While -DMACK is
asserted, this signal is held negated.
xD:
Chip enable
O
B19
MCIF_CF_INTR
CF: INTRQ
Active high interrupt request from the device to the Host
I
C19
112/200
Doc ID 023063 Rev 5
SPEAr1340
Table 23.
Pin description
Connectivity- MCIF signals description (continued)
Description(1)
Signal name
Type
Ball
MCIF_IORDY
CF: IORDY, -DDMARDY, DSTROBE
Except in Ultra DMA mode, this input signal may be used as IORDY.
When in ultra DMA mode, DMA write is active; this signal (DDMARDY) is asserted by the device to indicate that the device is
read to receive Ultra DMA data-in bursts. The device may negate DDMARDY to pause an ultra DMA transfer.
I
When ultra DMA mode DMA read is active, this signal is the data out
strobe (DSTROBE) generated by the device. Both the rising and
falling edge of DSTROBE cause data to be latched by the host. The
device may stop generating DSTROBE edges to pause an ultra DMA
data-out burst
D19
MCIF_nCS1
CF: -CS1
-CS1 is used to select the alternate status register and the device
control register. While -DMACK is asserted, this signal is held
negated
O
E21
MCIF_nDMACK_nWP
CF: -DMACK
A DMA acknowledge signal that is asserted by the host in response
to DMARQ to initiate DMA transfers.
When DMA operations are not active, the card ignores the -DMACK
signal, including a floating condition.
xD:
Write protect
O
A20
MCIF_SD_CMD
SD:
Command /response line
IO
E17
MCIF_LEDS
All modes
Monitors bus activity when data transfer occurs.
Caution: do not remove the card while it is being accessed
O
A16
1. For more details on the use of each signal, please refer to Table 7: MCIF multiplexing scheme.
Table 24.
Connectivity - KBD signals description
Signal type
Description
Signal name
Ball
Keyboard
GPIO
Keyboard
GPIO
KBD_ROW5
OD
IO
Strobe 5, active low
A11
KBD_ROW4
OD
IO
Strobe 4, active low
E12
KBD_ROW3
OD
IO
Strobe 3, active low
D12
KBD_ROW2
OD
IO
Strobe 2, active low
C12
GPIO. Input/Output
KBD_ROW1
OD
IO
Strobe 1, active low
B12
KBD_ROW0
OD
IO
Strobe 0, active low
A12
KBD_COL5
I
IO
Pressed key5, active low
AE18
KBD_COL4
I
IO
Pressed key4, active low
A10
Doc ID 023063 Rev 5
113/200
Pin description
Table 24.
SPEAr1340
Connectivity - KBD signals description (continued)
Signal type
Description
Signal name
Ball
Keyboard
GPIO
Keyboard
KBD_COL3
I
IO
Pressed key3, active low
KBD_COL2
I
IO
Pressed key2, active low
GPIO
E11
D11
GPIO. Input/Output
KBD_COL1
I
IO
Pressed key1, active low
C11
KBD_COL0
I
IO
Pressed key0, active low
B11
Table 25.
Connectivity - CEC signals description
Signal name
Description
Type
Ball
CEC0
CEC0
CEC0 RX/TX data
IO
K25
CEC1 RX/TX data
IO
K24
CEC1
CEC1
3.5.6
Audio
Table 26.
Audio - I2S signals description
Signal name
Description
Type
Ball
I2SIN
I2S_IN_DATA3
I
Y28
I
W24
I2S_IN_DATA1
I
W25
I2S_IN_DATA0
I
W26
I2S_IN_DATA2
Data input for receive mode
I2S_IN_WS
Word select line for receive mode
I
V24
I2S_IN_BITCLK
Serial interface clock
I
W28
O
U25
O
V25
I2S_OUT_DATA1
O
U26
I2S_OUT_DATA0
O
V26
I2SOUT
I2S_OUT_DATA3
I2S_OUT_DATA2
Data output for transmit mode
I2S_OUT_WS
Word select line for transmit mode - (active high)
O
U24
I2S_OUT_BITCLK
Serial interface clock
O
W27
I2S_OUT_REFCLK
Input reference clock for I2S output functional block (audio crystal)
I
V27
O
V28
I2S_OUT_OVRSAMP_CLK Oversampling/reference clock for external audio devices
114/200
Doc ID 023063 Rev 5
SPEAr1340
Table 27.
Pin description
Audio - S/PDIF signals description
Signal name
Description
Type
Ball
SPDIF_IN
S/PDIF input
I
AD17
SPDIF_OUT
S/PDIF output
O
K26
3.5.7
Video
Table 28.
Video - LCD controller signals description
Signal name
Description
Type
Ball
LCD_R0
B26
LCD_R1
C27
LCD_R2
F24
LCD_R3
A26
Port 1 red data
O
LCD_R4
D27
LCD_R5
D28
LCD_R6
A27
LCD_R7
A28
LCD_G0
E25
LCD_G1
E28
LCD_G2
G24
LCD_G3
H24
Port 1 green data
O
LCD_G4
F25
LCD_G5
G25
LCD_G6
F26
LCD_G7
G26
LCD_B0
H26
LCD_B1
H25
LCD_B2
J25
LCD_B3
J26
Port 1 blue data
O
LCD_B4
J27
LCD_B5
J28
LCD_B6
J24
LCD_B7
H27
Doc ID 023063 Rev 5
115/200
Pin description
Table 28.
SPEAr1340
Video - LCD controller signals description (continued)
Signal name
Description
Type
Ball
LCD_XR0
E26
LCD_XR1
F27
LCD_XR2
G27
LCD_XR3
E27
Port 2 red data
O
LCD_XR4
F28
LCD_XR5
G28
LCD_XR6
H28
LCD_XR7
D26
LCD_XG0
A25
LCD_XG1
B25
LCD_XG2
C25
LCD_XG3
A24
Port 2 green data
O
LCD_XG4
B24
LCD_XG5
C24
LCD_XG6
D24
LCD_XG7
E24
LCD_XB0
A23
LCD_XB1
B23
LCD_XB2
C23
LCD_XB3
D23
Port 2 blue data
O
LCD_XB4
E23
LCD_XB5
A22
LCD_XB6
B22
LCD_XB7
C22
LCD_PCLK
Pixel clock to LCD panel
O
K28
LCD_HSYNC
Horizontal sync pulse
O
C26
LCD_VSYNC
Vertical sync pulse
O
B27
LCD_DE
Data enable
O
C28
LCD_LED_PWM
LCD LED pulse width modulation
O
D25
LCD_PE
Power enable
O
B28
116/200
Doc ID 023063 Rev 5
SPEAr1340
Table 29.
Pin description
Video - VIP signals description
Signal name
Description
Type
Ball
VIP_R0
AH26
VIP_R1
AE24
VIP_R2
AG23
VIP_R3
AH22
VIP_R4
AF22
Red data
I
VIP_R5
AF23
VIP_R6
AF24
VIP_R7
AE25
VIP_R8
AF26
VIP_R9
AF27
VIP_R10
AD24
VIP_R11
AC24
VIP_R12
AC28
Red data
I
VIP_R13
AD27
VIP_R14
AE28
VIP_R15
AG28
VIP_G0
AH28
VIP_G1
AE26
VIP_G2
AD26
VIP_G3
AC26
VIP_G4
AC25
VIP_G5
AD25
VIP_G6
AF28
VIP_G7
AH27
Green data
I
VIP_G8
AG26
VIP_G9
AH25
VIP_G10
AH23
VIP_G11
AG22
VIP_G12
AH21
VIP_G13
AG21
VIP_G14
AF21
VIP_G15
AE21
Doc ID 023063 Rev 5
117/200
Pin description
Table 29.
SPEAr1340
Video - VIP signals description (continued)
Signal name
Description
Type
Ball
VIP_B0
AF25
VIP_B1
AG24
VIP_B2
AE23
VIP_B3
AE22
VIP_B4
AD22
VIP_B5
AD23
Blue data
VIP_B6
I
AH24
VIP_B7
AG25
VIP_B8
AD21
VIP_B9
AG20
VIP_B10
AH20
VIP_B11
AD19
VIP_B12
AD20
VIP_B13
AE20
Blue data
VIP_B14
I
AF20
VIP_B15
AD18
VIP_PIXCLK
Pixel clock from VIP panel
I
AD28
VIP_HSYNC
Horizontal sync pulse
I
AC27
VIP_VSYNC
Vertical sync pulse
I
AE27
VIP_DE
Data enable
I
AG27
Table 30.
Video - CAM signals description
Signal name
Description
Type
Ball
CAM1
CAM1_DATA0
AD26
CAM1_DATA1
AC25
CAM1_DATA2
AD25
CAM1_DATA3
AC24
CAM1 data
I
CAM1_DATA4
AD24
CAM1_DATA5
AC28
CAM1_DATA6
AD27
CAM1_DATA7
AE28
CAM1_PIXCLK
Pixel clock from CAM1 panel
I
AD28
CAM1_VSYNC
CAM1 vertical sync pulse
I
AC26
118/200
Doc ID 023063 Rev 5
SPEAr1340
Table 30.
Pin description
Video - CAM signals description (continued)
Signal name
CAM1_HSYNC
Description
CAM1 horizontal sync pulse
Type
I
Ball
AC27
CAM2
CAM2_DATA0
AH28
CAM2_DATA1
AE26
CAM2_DATA2
AF28
CAM2_DATA3
AH27
CAM2 data
I
CAM2_DATA4
AF27
CAM2_DATA5
AF26
CAM2_DATA6
AG28
CAM2_DATA7
AG26
CAM2_PIXCLK
Pixel clock from CAM2 panel
I
AH26
CAM2_VSYNC
CAM2 vertical sync pulse
I
AE27
CAM2_HSYNC
CAM2 horizontal sync pulse
I
AG27
CAM3
CAM3_DATA0
CAM3_DATA1
AF24
CAM3 data
I
AE25
CAM3_DATA2
AF25
CAM3_DATA3
AG24
CAM3_DATA4
AG25
CAM3_DATA5
CAM3 data
AH24
CAM3_DATA6
AH25
CAM3_DATA7
AH23
CAM3_PIXCLK
Pixel clock from CAM3 panel
I
AH22
CAM3_VSYNC
CAM3 vertical sync pulse
I
AE24
CAM3_HSYNC
CAM3 horizontal sync pulse
I
AG23
CAM4
CAM4_DATA0
AD20
CAM4_DATA1
AE20
CAM4_DATA2
AF20
CAM4_DATA3
AG20
CAM4 data
I
CAM4_DATA4
AG21
CAM4_DATA5
AF21
CAM4_DATA6
AE21
CAM4_DATA7
AD21
Doc ID 023063 Rev 5
119/200
Pin description
Table 30.
SPEAr1340
Video - CAM signals description (continued)
Signal name
Description
Type
Ball
CAM4_PIXCLK
Pixel clock from CAM4 panel
I
AH20
CAM4_VSYNC
CAM4 vertical sync pulse
I
AD18
CAM4_HSYNC
CAM4 horizontal sync pulse
I
AD19
3.5.8
Timers
Table 31.
GPT signals description
Signal name
Description
Type
Ball
GPT0
GPT0_TMR_CPT1
Asynchronous signal provided for the measurement of timing signals in
I
Timer 1
AF19
GPT0_TMR_CLK1
This clock toggles each time the Timer 1 interrupt goes active.
AF18
GPT0_TMR_CPT2
Asynchronous signal provided for the measurement of timing signals in
I
Timer 2
AG17
GPT0_TMR_CLK2
This clock toggles each time the Timer 2 interrupt goes active.
AG19
O
O
GPT1
GPT1_TMR_CPT1
Asynchronous signal provided for the measurement of timing signals in
I
Timer 1
AE17
GPT1_TMR_CLK1
This clock toggles each time the Timer 1 interrupt goes active.
AH17
GPT1_TMR_CPT2
Asynchronous signal provided for the measurement of timing signals in
I
Timer 2
AF17
GPT1_TMR_CLK2
This clock toggles each time the Timer 2 interrupt goes active.
AG18
3.5.9
Miscellaneous
Table 32.
Miscellaneous - ADC signals description
Signal name
O
O
Description
Type
Ball
AIN0
I
A4
AIN1
I
B4
AIN2
I
C3
I
A3
AIN4
I
A2
AIN5
I
B2
AIN6
I
B3
AIN7
I
C2
O
AA28
AIN3
Analog inputs #(0..7)
TOUCH_XY_SEL
120/200
Touchscreen select
Doc ID 023063 Rev 5
SPEAr1340
Table 33.
Pin description
Miscellaneous - PWM signals description
Signal name
Description
Type
Ball
PWM1
Channel 1
O
AE19
PWM2
Channel 2
O
AE18
PWM3
Channel 3
O
AF19
PWM4
Channel 4
O
AG19
Table 34.
Miscellaneous - GPIO signals description
Signal name
Description
Type
Ball
GPIO_A0
IO
D11
GPIO_A1
IO
E11
GPIO_A2
IO
A10
GPIO_A3
IO
AF17
GPIO_A4
IO
AG17
GPIO_A5
IO
AH17
GPIO_A6
IO
AE17
IO
AG18
GPIO_B0
IO
AF18
GPIO_B1
IO
AE18
GPIO_B2
IO
AH18
GPIO_B3
IO
AD17
GPIO_B4
IO
AD18
GPIO_B5
IO
AF19
GPIO_B6
IO
AG19
GPIO_B7
IO
AH19
GPIO_A7
IO data
Table 35.
PCM signals description
Signal name
Description
Type
Ball
GPIO_WKUP_TRIG
Wake-up trigger from GPIO
I
AE18
DDRPHY_VDD1V2_OFF
Controls the (optional) external (i.e. board) power switch on the
DDRPHY 1V2 supply line.
O
AF19
DDRIO_VDD1V8_1V5_OFF
Controls the (optional) external (i.e. board) power switch on the
DDRPHY 1V5/1V8 supply line.
O
AG19
Doc ID 023063 Rev 5
121/200
Pin description
Table 36.
SPEAr1340
XGPIO signals description
Signal name
Description
Type
Ball
XGPIO0
IO
A12
XGPIO1
IO
B12
XGPIO2
IO
C12
IO
D12
XGPIO4
IO
E12
XGPIO5
IO
A11
XGPIO6
IO
B11
XGPIO7
IO
C11
XGPIO3
General purpose IO
122/200
Doc ID 023063 Rev 5
SPEAr1340
Table 36.
Pin description
XGPIO signals description (continued)
Signal name
Description
Type
Ball
XGPIO24
IO
AE19
XGPIO25
IO
AH20
XGPIO26
IO
AD19
XGPIO27
IO
AD20
XGPIO28
IO
AE20
XGPIO29
IO
AF20
XGPIO30
IO
AG20
XGPIO31
IO
AD21
XGPIO32
IO
AE21
XGPIO33
IO
AF21
XGPIO34
IO
AG21
XGPIO35
IO
AH21
XGPIO36
IO
AD22
XGPIO37
IO
AE22
XGPIO38
IO
AF22
XGPIO39
IO
AH22
XGPIO40
IO
AG22
IO
AD23
XGPIO42
IO
AE23
XGPIO43
IO
AF23
XGPIO44
IO
AG23
XGPIO45
IO
AH23
XGPIO46
IO
AH24
XGPIO47
IO
AG24
XGPIO48
IO
AF24
XGPIO49
IO
AE24
XGPIO50
IO
AH25
XGPIO51
IO
AG25
XGPIO52
IO
AF25
XGPIO53
IO
AE25
XGPIO54
IO
AH26
XGPIO55
IO
AG26
XGPIO56
IO
AF26
XGPIO57
IO
AH27
XGPIO58
IO
AH28
XGPIO41
General purpose IO
Doc ID 023063 Rev 5
123/200
Pin description
Table 36.
SPEAr1340
XGPIO signals description (continued)
Signal name
Description
Type
Ball
XGPIO59
IO
AG27
XGPIO60
IO
AG28
XGPIO61
IO
AF27
XGPIO62
IO
AF28
XGPIO63
IO
AE26
XGPIO64
IO
AE27
XGPIO65
IO
AE28
XGPIO66
IO
AD24
XGPIO67
IO
AD25
XGPIO68
IO
AD26
XGPIO69
IO
AD28
XGPIO70
IO
AD27
XGPIO71
IO
AC24
XGPIO72
IO
AC25
XGPIO73
IO
AC26
XGPIO74
IO
AC27
XGPIO75
IO
AC28
IO
AB24
XGPIO77
IO
AB25
XGPIO78
IO
AB28
XGPIO79
IO
AB26
XGPIO80
IO
AB27
XGPIO81
IO
AA24
XGPIO82
IO
AA25
XGPIO83
IO
AA26
XGPIO84
IO
AA27
XGPIO85
IO
AA28
XGPIO86
IO
Y24
XGPIO87
IO
Y25
XGPIO88
IO
Y26
XGPIO89
IO
Y27
XGPIO90
IO
Y28
XGPIO91
IO
W24
XGPIO92
IO
W25
XGPIO93
IO
W26
XGPIO76
124/200
General purpose IO
Doc ID 023063 Rev 5
SPEAr1340
Table 36.
Pin description
XGPIO signals description (continued)
Signal name
Description
Type
Ball
XGPIO94
IO
V24
XGPIO95
IO
V25
XGPIO96
IO
V26
XGPIO97
IO
W27
XGPIO98
IO
U24
XGPIO99
IO
W28
XGPIO100
IO
U25
XGPIO101
IO
U26
XGPIO102
IO
V27
XGPIO103
IO
V28
XGPIO104
IO
U28
XGPIO105
IO
U27
XGPIO106
IO
T26
XGPIO107
IO
T27
XGPIO108
IO
T28
XGPIO109
IO
T25
XGPIO110
IO
R25
IO
R26
XGPIO112
IO
R27
XGPIO113
IO
R28
XGPIO114
IO
R24
XGPIO115
IO
P26
XGPIO116
IO
P27
XGPIO117
IO
P28
XGPIO118
IO
P25
XGPIO119
IO
N24
XGPIO120
IO
N25
XGPIO121
IO
N26
XGPIO122
IO
N27
XGPIO123
IO
N28
XGPIO124
IO
M24
XGPIO125
IO
M25
XGPIO126
IO
M26
XGPIO127
IO
M27
XGPIO128
IO
M28
XGPIO111
General purpose IO
Doc ID 023063 Rev 5
125/200
Pin description
Table 36.
SPEAr1340
XGPIO signals description (continued)
Signal name
Description
Type
Ball
XGPIO129
IO
L24
XGPIO130
IO
L25
XGPIO131
IO
L26
XGPIO132
IO
L27
XGPIO133
IO
K27
XGPIO134
IO
L28
XGPIO135
IO
K25
XGPIO136
IO
K24
XGPIO137
IO
K26
XGPIO138
IO
J24
XGPIO139
IO
J28
XGPIO140
IO
J27
XGPIO141
IO
J26
XGPIO142
IO
J25
XGPIO143
IO
H28
XGPIO144
IO
H27
XGPIO145
IO
H26
IO
H25
XGPIO147
IO
H24
XGPIO148
IO
G28
XGPIO149
IO
G27
XGPIO150
IO
G26
XGPIO151
IO
G25
XGPIO152
IO
G24
XGPIO153
IO
F28
XGPIO154
IO
F27
XGPIO155
IO
F26
XGPIO156
IO
F25
XGPIO157
IO
E28
XGPIO158
IO
E27
XGPIO159
IO
E26
XGPIO160
IO
E25
XGPIO161
IO
D28
XGPIO162
IO
F24
XGPIO163
IO
C28
XGPIO146
126/200
General purpose IO
Doc ID 023063 Rev 5
SPEAr1340
Table 36.
Pin description
XGPIO signals description (continued)
Signal name
Description
Type
Ball
XGPIO164
IO
B28
XGPIO165
IO
A28
XGPIO166
IO
D27
XGPIO167
IO
C27
XGPIO168
IO
B27
XGPIO169
O
K28
XGPIO170
IO
A27
XGPIO171
IO
A26
XGPIO172
IO
B26
XGPIO173
IO
C26
XGPIO174
IO
D26
XGPIO175
IO
A25
XGPIO176
IO
B25
XGPIO177
IO
C25
XGPIO178
IO
D25
XGPIO179
IO
A24
XGPIO180
IO
B24
IO
C24
XGPIO182
IO
D24
XGPIO183
IO
E24
XGPIO184
IO
A23
XGPIO185
IO
B23
XGPIO186
IO
C23
XGPIO187
IO
D23
XGPIO188
IO
E23
XGPIO189
IO
A22
XGPIO190
IO
B22
XGPIO191
IO
C22
XGPIO192
IO
D22
XGPIO193
IO
E22
XGPIO194
IO
A21
XGPIO195
IO
B21
XGPIO196
IO
C21
XGPIO197
IO
D21
XGPIO198
IO
E21
XGPIO181
General purpose IO
Doc ID 023063 Rev 5
127/200
Pin description
Table 36.
SPEAr1340
XGPIO signals description (continued)
Signal name
Description
Type
Ball
XGPIO199
IO
A20
XGPIO200
IO
B20
XGPIO201
IO
C20
XGPIO202
IO
D20
XGPIO203
IO
E20
XGPIO204
IO
A19
XGPIO205
IO
B19
XGPIO206
IO
C19
XGPIO207
IO
D19
XGPIO208
IO
E19
XGPIO209
IO
A18
XGPIO210
IO
B18
XGPIO211
IO
C18
XGPIO212
IO
D18
XGPIO213
IO
E18
XGPIO214
IO
A17
XGPIO215
IO
B17
IO
C17
XGPIO217
IO
D17
XGPIO218
IO
E17
XGPIO219
IO
A16
XGPIO220
IO
B16
XGPIO221
IO
C16
XGPIO222
IO
D16
XGPIO223
IO
E16
XGPIO224
IO
B15
XGPIO225
IO
A15
XGPIO226
IO
C15
XGPIO227
IO
D15
XGPIO228
IO
E15
XGPIO229
IO
A14
XGPIO230
IO
B14
XGPIO231
IO
C14
XGPIO232
IO
D14
XGPIO233
IO
B10
XGPIO216
128/200
General purpose IO
Doc ID 023063 Rev 5
SPEAr1340
Table 36.
Pin description
XGPIO signals description (continued)
Signal name
Description
Type
Ball
XGPIO234
IO
C10
XGPIO235
IO
D10
XGPIO236
IO
E10
XGPIO237
IO
E14
XGPIO238
IO
A9
XGPIO239
IO
B9
XGPIO240
IO
C9
IO
D9
XGPIO242
IO
E9
XGPIO243
IO
C8
XGPIO244
IO
D8
XGPIO245
IO
E8
XGPIO246
IO
C7
XGPIO247
IO
D7
XGPIO248
IO
E7
XGPIO249
IO
C6
XGPIO241
General purpose IO
Doc ID 023063 Rev 5
129/200
Pin description
3.6
SPEAr1340
Strapping options
The following two tables show the strapping options available (STRAP[6:0]) on SPEAr1340.
STRAP[6:0] pins are sampled at reset release and they are reusable after the internal
latching for different purposes. When used as output pins, these pins require no special
conditions, but when used as input pins, the application must keep them in a non-driving (tristate) mode for at least 2 µs after MRESETn is released.
STRAP[6:0] pins are sampled by internal hardware logic during the power-on reset
sequence and latched on the BOOTSTRAP_CFG register in the MISC.
Table 37.
Strapping options
Signal name
Description
Type
STRAP0
Ball
S
AE19
S
AH20
S
AD19
S
AD20
STRAP4
Used to select the usage of NAND Flash 8-bit interface working as 3V3 or
1V8, along with CE0n:
STRAP4= 1 --> 3V3
STRAP4= 0 --> 1V8
S
AE20
STRAP5
Used to select the usage of NAND Flash extension to 16-bit interface
and/or second chip select CE1n working as 3V3 or 1V8:
STRAP5= 1 --> 3V3
STRAP5= 0 --> 1V8
S
AF20
STRAP6
Used to select the GMII/RGMII interface working at 3V3 or 2V5:
STRAP6= 1 --> 2V5
STRAP6= 0 --> 3V3
S
AG20
STRAP1
The BootROM firmware selects the booting device after reset release by
reading the status of the STRAP[3:0] pins.
STRAP2
STRAP3
Table 38.
Hardware boot selection (STRAP[0..3])
Backup source(1)
Primary source
STRAP3
STRAP2
STRAP1
STRAP0
Bypass
na
0
0
0
0
Serial NOR Flash(2)
USB OTG (Device)
0
0
0
1
USB OTG (Device)
0
0
1
0
USB OTG (Device)
0
0
1
1
USB OTG (Device)
0
1
0
0
na
0
1
0
1
na
0
1
1
0
rfu
na
0
1
1
1
USB OTG (Device)
na
1
0
0
0
Serial NOR Flash(2)
UART
1
0
0
1
UART
1
0
1
0
NAND
Flash(3)
Parallel NOR Flash (8-bit)
(3)
Parallel NOR Flash (16-bit)
UART
rfu
(4)
NAND Flash
130/200
(3)
(3)
Doc ID 023063 Rev 5
SPEAr1340
Table 38.
Pin description
Hardware boot selection (STRAP[0..3]) (continued)
Backup source(1)
Primary source
Parallel NOR Flash (8-bit)
(3)
STRAP3
STRAP2
STRAP1
STRAP0
UART
1
0
1
1
Parallel NOR Flash (16-bit)(3)
UART
1
1
0
0
MMC/SD memory card
na
1
1
0
1
rfu
na
1
1
1
0
rfu
na
1
1
1
1
1. The backup source will be used in case that the primary source is not available.
2. To boot from serial NOR Flash use SMI_CS0n.
3. To boot from NAND Flash or Parallel NOR Flash use FSMC_CE0n.
4. Reserved for future use.
Doc ID 023063 Rev 5
131/200
Electrical characteristics
4
SPEAr1340
Electrical characteristics
This chapter provides the electrical characteristics for SPEAr1340.
Please refer to AN3317, Application notes, PCB guidelines for SPEAr1340 for additional
details.
4.1
Absolute maximum ratings
SPEAr1340 contains devices to protect the inputs against damage due to high/low static
voltages. However, it is advisable to take normal precaution to avoid application of any
voltage higher/lower than the specified maximum/minimum rated voltages.
Caution:
Stresses above those listed in Table 39 and Table 40 may cause permanent damage to the
device. Exposure to maximum rating conditions for extended periods may affect device
reliability.
Table 39.
Voltage absolute maximum ratings
Symbol
Parameter
Min
Max
VDD 1V2
1V2 power supply
-0.3
1.44
VDD 2V5
2V5 power supply
-0.3
3
VDD 3V3
3V3 power supply
-0.3
3.9
VDD RTC
RTC 1V5 power supply
-0.3
2.16
DDR2 1V8 power supply
-0.3
2.16
DDR3 1V5 power supply
-0.3
2.16
Programmable 1V8 power supply
-0.3
3.9
Programmable 3V3 power supply
-0.3
3.9
Programmable 2V5 power supply
-0.3
3.9
Programmable 3V3 power supply
-0.3
3.9
Min
Max
VDD DDR
Unit
V
VDD 1V8/3V3
VDD 2V5/3V3
Table 40.
Symbol
132/200
Thermal absolute maximum ratings
Parameter
TSTG
Storage temperature range
-55
150
TJ
Junction temperature
-40
125
Unit
°C
Doc ID 023063 Rev 5
SPEAr1340
4.2
Electrical characteristics
Recommended operating conditions
To ensure proper operation of the device, it is highly recommended to follow the conditions
shown in Table 41.
Table 41.
Symbol
Recommended operating conditions
Parameter
Ball
Min
Typ
Max
Unit
1.14
1.2
1.3
V
VDD 1V2
1V2 power supply
K13 K17 L10 L12 L14 L16 L18
M11 M17 M19 N10 N12 N18
P11 P17 R10 R12 R18 T11 T17
T19 U18 V15 V17 V19 W14
W16 W18 M4 U10 U12 V11 V13
W10 W12 N2 L3 N1 D6 D4 P6
K4 E2 H4
VDD 2V5
2V5 power supply
C4, P3, E6, E4, N5, AC5, U19,
J4, E3, G3
2.25
2.5
2.75
V
VDD 3V3
3V3 power supply
F14 F15 F17 F18 F20 F21 F23
G23 J23 W23 AA23 AC23
AC19 AC17 AC15 U23 B8 J3
D3 G2 K6 H6 R5
3.0
3.3
3.6
V
VDD RTC
RTC 1V5 power supply
C1
1.3
1.5
1.8
V
DDR2 1V8 power supply
T6 U5 V6 W5 Y6 AA5 AB6 AC7
AC9 AC11 AC13 AD6 AD8
AD10 AD12 AD14
1.7
1.8
1.9
V
1.4
1.5
1.6
V
1.65
1.8
1.95
V
3.0
3.3
3.6
V
2.25
2.5
2.75
V
3.0
3.3
3.6
V
85
°C
VDD DDR
DDR3 1V5 power supply
Programmable 1V8 power supply
VDD 1V8/3V3
F8 F9 F11 F12
Programmable 3V3 power supply
Programmable 2V5 power supply
VDD 2V5/3V3
L23 N23 R23 T24 P24
Programmable 3V3 power supply
TC
Case temperature
–
Doc ID 023063 Rev 5
-40
133/200
Electrical characteristics
SPEAr1340
4.3
Clocking parameters
4.3.1
Master clock (MCLK)
External clock generated from a crystal oscillator
Table 42.
MCLK oscillator characteristics
Symbol
Parameter
Conditions
Min
fosc_in
Oscillator frequency
ESR
Equivalent series
resisistance
gm
Oscillator
transconductance
Startup
tSU
Startup time
Stabilized power on
MCLK_AVDD3V3
pin
19.8
Typ
Max
Unit
24(1)
33 (2)
MHz
50
Ω
28.5
mA/V
2 (3)
ms
1. A frequency of 24 MHz is mandatory to obtain the required frequencies for all clocks generated by the PLL
of the USB PHY.
2. At Max freq = 33 MHz the ESR value has to be less than 20 Ω.
3. Startup time simulated with a 30 MHz crystal.
Figure 7.
MCLK crystal connection
MCLK_XI
MCLK_XO
24 MHz
(1)
(1)
CL1
CL2
VDD3v3
1. CL1 and CL2 are the load capacitors.
The value of the capacitors depends on the type of the selected crystal. To calculate the
value of the load capacitance, use the formula given below.
For this example, Aker C2E-24.000-12-3030-X 24 MHz oscillator has been used.
Formula
C L1 × C L2
C L = ------------------------- + Cs
C L1 + C L2
Where CL1 and CL2 are the load capacitors and CS is the circuit stray capacitance.
In our application:
CL1 = CL2 = Cext
134/200
Doc ID 023063 Rev 5
SPEAr1340
Electrical characteristics
This implies:
Cext = (CL-CS)*2
Example:
For the Aker C2E-24.000-12-3030-X crystal, CL = 12 PF
With CS = 3 PF, we have: Cext = CL1 = CL2 = 18 PF
MCLK generated from an external clock source
Table 43.
MCLK external user clock source characteristics
Symbol
Parameter
fMCLK_XI
External clock
source frequency
Conditions
Min
Typ
Max
Unit
No limitation
24(1)
33
MHz
VMCLK_XIH
MCLK_XI input
pin high level
voltage
MCLK_AVDD3V3 0.3
MCLK_AVDD3V3
V
VMCLK_XIL
MCLK_XI input
pin low level
voltage
MCLK_GNDSUB
0.3
V
40
60
%
-5% of the clock
period
+5% of the clock
period
%
DuCy(MCLK_XI) Duty cycle(2)
tr(MCLK_XI)
tf(MCLK_XI)
MCLK_XI input
rise and fall time
CIN(MCLK_XI)
MCLK_XI input
capacitance
IL(MCLK_XI)
MCLK_XI input
leakage current
7
MCLK_GNDSUB ≤ VIN
≤ MCLK_AVDD3V3
pF
±1
µA
1. A frequency of 24 MHz is mandatory to obtain the required operating frequency for all clocks generated by the PLL from the
USB PHY.
2. An initial delay of 1 µs + 2048 fMCLK_XI cycles occurs for duty cycle detection and internal clock availability.
Doc ID 023063 Rev 5
135/200
Electrical characteristics
4.3.2
SPEAr1340
Real-time clock (RTC)
External clock generated from a crystal oscillator
Table 44.
RTC oscillator characteristics
Symbol
fOSC_IN
Parameter
Condition
Min
Oscillator frequency
Max
32.768
ESR
Equivalent series
resistance
gm
Oscillator
transconductance
Startup
tSU
Startup time
Stabilized power on
RTC_VDD1V5 pin
Figure 8.
Typ
12
Unit
kHz
6000
Ω
25
µA/V
1.5
fOSC_IN
cycles
RTC crystal connection
RTC_XI
RTC_XO
32.768 kHz
(1)
CL1(1)
CL2
GND
1. CL1 and CL2 are the load capacitors.
The value of the capacitors depends on the type of the selected crystal. To calculate the
value of the load capacitance, use the formula given below.
Formula
C L1 × C L2
- + Cs
C L = ------------------------C L1 + C L2
Where CL1 and CL2 are the load capacitors and CS is the circuit stray capacitance.
In our application:
CL1 = CL2 = Cext
This implies:
Cext = (CL-CS)*2
136/200
Doc ID 023063 Rev 5
SPEAr1340
Electrical characteristics
Example:
For this example, a Fox Electronics, NC26LF-327 32.768 kHz oscillator has been used.
For the Fox Electronics, NC26LF-327 crystal, CL = 12.5 pF
With CS = ~0.1 pF, we have: Cext = CL1 = CL2 = 24.8 pF=22 pF
RTC clock generated from an external clock source
Table 45.
Symbol
RTC external user clock source characteristics
Parameter
Condition
Min
Typ
Max
Unit
fRTC_XI
External clock source
frequency
VRTC_XIH
RTC_XI input pin high
level voltage
RTC_VDD1V5 0.2
RTC_VDD1V5
V
VRTC_XIL
RTC_XI input pin low
level voltage
RTC_GND
0.2
V
40
60
%
50
ns
32.768
DuCy(RTC_XI) Duty cycle
tr(RTC_XI)
tf(RTC_XI)
CIN(RTC_XI)
IL(RTC_XI)
RTC_XI input rise and
fall time
RTC_XI input
capacitance
RTC_XI input leakage
kHz
5
RTC_GND ≤ VIN
≤ RTC_VDD1V5
Doc ID 023063 Rev 5
pF
±1
µA
137/200
Electrical characteristics
4.4
SPEAr1340
I/O AC/DC characteristics
The following sections show the electrical AC/DC characteristics of the I/Os present in
SPEAr1340.
4.4.1
3V3/2V5/1V8 I/O buffers (IOTYPE1/IOTYPE2/IOTYPE3)
The 3V3/2V5/1V8 buffers are designed to operate at 3.3 V, 2.5 V, and 1.8 V supply level.
Even if they support switchable supplies, each I/O type has limited supply flexibility by
design:
IOTYPE1: only 3V3
IOTYPE2: 3V3/1V8
IOTYPE3: 3V3/2V5
Features
●
Switchable 1.8 V, 2.5 V, or 3.3 V supply
●
Input with hysteresis
●
Programmable drive and slew
●
Programmable pull-up/down functionality
DC characteristics
Table 46 shows the DC characteristics for 3V3/2V5/1V8 I/O buffers.
Table 46.
3V3/2V5/1V8 I/O DC characteristics
Symbol
VDDx
Parameter
Conditions
Min
Typ
Max
Unit
1V8 supply voltage
–
1.65
–
1.95
V
2V5 supply voltage
–
2.25
–
2.75
V
3V3 supply voltage
–
3.0
–
3.6
V
Receiver characteristics(1)
1V8 I/O operation
VIH
High level input voltage
–
0.65*VDD
x
–
VDDx+0.3
V
VIL
Low level input voltage
–
-0.3
–
0.35*VDD
x
V
Schmitt trigger hysteresis
–
50
–
-
mV
Vhyst
2V5 I/O operation
VIH
High level input voltage
–
1.7
–
VDDx+0.3
V
VIL
Low level input voltage
–
-0.3
–
0.7
V
Schmitt trigger hysteresis
–
50
–
–
2.0
–
Vhyst
mV
3V3 I/O operation
VIH
138/200
High level input voltage
Doc ID 023063 Rev 5
VDDx+0.3
V
SPEAr1340
Table 46.
Electrical characteristics
3V3/2V5/1V8 I/O DC characteristics (continued)
Symbol
VIL
Vhyst
Parameter
Conditions
Min
Typ
Max
Unit
Low level input voltage
–
-0.3
–
0.8
V
Schmitt trigger hysteresis
-
50
-
mV
Vi= 0V
50
-
KΩ
Vi= VDDx
50
-
Vi= 0V
50
-
Vi= VDDx
50
-
Vi= 0V
50
-
Vi= VDDx
50
-
-
KΩ
Pull-up and pull-down characteristics
1V8 I/O operation
RPU
Equivalent pull-up resistance
(50 KΩ)
RPD
Equivalent pull-down resistance
-
KΩ
2V5 I/O operation
RPU
Equivalent pull-up resistance
(50 KΩ)
RPD
Equivalent pull-down resistance
KΩ
-
KΩ
3V3 I/O operation
RPU
(50KΩ)
RPD
Equivalent pull-up resistance
Equivalent pull-down resistance
KΩ
Output characteristics
1V8 I/O operation
VOL
Low level output voltage
IOL(2)=4 /6 /8 /10 mA
-
-
0.4
V
VOH
High level output voltage
IOH= 4 /6 /8 /10 mA
VDDx-0.4
-
-
V
2V5 I/O operation
VOL
Low level output voltage
IOL= 4 /6 /8 /10 mA
-
-
0.4
V
VOH
High level output voltage
IOH= 4 /6 /8 /10 mA
VDDx-0.4
-
-
V
3V3 I/O operation
VOL
Low level output voltage
IOL= 4 /6 /8 /10 mA
-
-
0.4
V
VOH
High level output voltage
IOH= 4 /6 /8 /10 mA
VDDx-0.4
-
-
V
1. External drivers must be powered at the same voltage as the relative SPEAr input pad.
2. At VOL/VOH level, IOL/IOH is the minimum source/sink current drive, when the buffer is programmed at corresponding drive
level by core drive select pins.
Doc ID 023063 Rev 5
139/200
Electrical characteristics
SPEAr1340
AC characteristics
Table 47 and Table 48 show the AC input and output characteristics for 3V3/2V5/1V8 I/O
buffers.
Table 47.
3V3/2V5/1V8 I/O AC input characteristics
Max frequency
Max load
Comment
1V8 I/O operation
200 MHz
1 pF
This load is placed at ZI.
(see Figure 9 below)
1 pF
This load is placed at ZI.
2V5/3V3 I/O operation
200 MHz
Table 48.
3V3/2V5/1V8 I/O AC output characteristics
Fast slew
Nominal slew
Drive
Frequency (MHz)
Load (pF)
Frequency (MHz)
Load (pF)
20
20
8
20
40
6
16
6
30
20
12
20
60
6
24
6
40
20
16
20
80
6
32
6
50
20
20
20
100
6
40
6
30
20
12
20
60
6
24
6
45
20
18
20
90
6
36
6
60
20
24
20
120
6
48
6
70
20
28
20
140
6
56
6
1V8 I/O operation
4 mA
6 mA
8 mA
10 mA
2V5/3V3 I/O operation
4 mA
6 mA
8 mA
10 mA
140/200
Doc ID 023063 Rev 5
SPEAr1340
Electrical characteristics
Figure 9.
3V3/2V5/1V8 I/O input test setup
IO pad
ZI
CZ
Figure 10. 3V3/2V5/1V8 I/O output test setup
A
IO pad
Lp
CP
CL
Doc ID 023063 Rev 5
141/200
Electrical characteristics
4.4.2
SPEAr1340
IOTYPE4 I/O buffers
There is only one I/O pin of this type: XGPIO169 (ball K28).
Features
●
3.3 V signaling
●
Programmable pull-up/down functionality
DC characteristics
Table 49 shows the DC characteristics of IOTYPE4 buffers.
Table 49.
Symbol
VDD 3V3
IOTYPE4 DC characteristics
Parameter
Supply voltage
Conditions
Min
Typ
Max
Unit
-
3.0
-
3.6
V
Receiver characteristics(1)
VIH
High level input
voltage
-
2.0
-
VDD 3V3+0.5
V
VIL
Low level input
voltage
-
-0.5
-
0.8
V
VOH= VDD 3V3-0.2
8
-
-
mA
VOL= 0.2
8
-
-
mA
Vpad = 0
-
50
-
KΩ
Vpad = VDD 3V3
-
50
-
KΩ
Driver characteristics
IOH
Source current
IOL
Sink current
Pull-up and pull-down characteristics
RPU
Equivalent pull-up
resistance
RPD
Equivalent pull-down
resistance
1. External drivers must be powered at the same voltage as the relative SPEAr input pad.
142/200
Doc ID 023063 Rev 5
SPEAr1340
Electrical characteristics
AC characteristics
Table 50 shows the AC characteristics of IOTYPE4 buffers.
Table 50.
Input (I/O) pin capacitance
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Capacitive load at ZI
–
–
–
1
pF
Duty cycle at ZI
(1)
45
–
55
%
Receiver characteristics
Cz
Duty cycle
Driver characteristics
CL
Capacitive load at I/O
–
–
–
40
pF
Frequency
Operating frequency
(2)
–
–
100
MHz
Duty cycle at I/O
(3)
45
–
55
%
Duty cycle
1. With input duty cycle of 50% at I/O.
2. Output swing from 2.4V to 0.4 V is guaranteed for this operating frequency range.
3. With input duty cycle of 50% at A.
Figure 11. IOTYPE4 input test setup
ZI
IO pad
CZ
Figure 12. IOTYPE4 output test setup
IO pad
A
CL
1. Parasitic capacitance and inductance are not shown here, but taken into account with measurement setup.
For values of L and C, please refer to Table 49: IOTYPE4 DC characteristics.
Doc ID 023063 Rev 5
143/200
Electrical characteristics
4.4.3
SPEAr1340
DDR2 and DDR3 mode I/O buffers
This section is applicable to I/O pins of type SSTL (SSTL 1V5/1V8).
The DDR2/DDR3 buffers can work either with 1.8 V supply in DDR2 applications or 1.5 V in
DDR3 applications.
Features
●
1.5 V and 1.8 V signaling
●
Pseudo-differential input for data and fully-differential input for strobe.
●
On-die termination (ODT) functionality, in order to integrate the parallel resistor inside
the die and improve signal integrity.
AC/DC characteristics
Table 51 shows the AC/DC characteristics of DDR2 and DDR3 buffers.
Table 51.
Symbol
DDR2/DDR3 AC/DC driver characteristics
Parameter
Conditions
Min
Typ
Max
Unit
DDR2 1V8
supply
voltage
-
1.7
1.8
1.9
V
DDR3 1V5
supply
voltage
-
1.4
1.5
1.6
V
Output
impedance
Vpad= VDD DDR/2
REXT= 332
Mandatory
34.3-10% = 30.9
34.3
34.3 + 10% = 37.7
Ω
-
-
V
-
DDR2: VDD DDR/2-02
-
DDR3: VDD DDR/2- 0.175
-
-
-
DDR2: VDD DDR/2 - 0.125
-
DDR3: VDD DDR/2 - 0.1
VDD DDR
ZOUT
DDR2: VDD DDR/2 + 0.2
VOH (AC)
High level
output voltage
-
VOL (AC)
Low level
output voltage
-
VOH (DC)
High level
output voltage
-
VOL (DC)
Low level
output voltage
-
144/200
DDR3: VDD DDR/2 + 0.175
V
DDR2: VDD DDR/2 + 0.125
V
DDR3: VDD DDR/2 + 0.1
-
Doc ID 023063 Rev 5
V
SPEAr1340
Electrical characteristics
DDR2/DDR3 pseudo-differential receiver AC and DC characteristics
Table 52.
DDR2
Symbol
DDR3
Parameter
VDD
DDR
DDR2/DDR3 supply
voltage
VREF
Voltage reference
VIH(AC)
High level input
voltage
VIL(AC)
Low level input
voltage
Unit
Min
Typ
Max
Min
Typ
Max
1.7
1.8
1.9
1.4
1.5
1.6
V
0.49 *
VDD DDR
0.5 *
VDD DDR
0.51 *
VDD DDR
0.49 *
VDD DDR
0.5 *
VDD DDR
0.51 *
VDD DDR
V
VREF + 0.1
-
(1)
V
(1)
-
VREF - 0.1
V
(1)
(1)
VIH(DC)
High level input
voltage
-
0.8 *
VDD DDR
-
(1)
V
VIL(DC)
Low level input
voltage
-
(1)
-
0.2 *
VDD DDR
V
1. No data available in JEDEC update.
Table 53.
DDR2/DDR3 on-die termination (ODT) DC characteristics
Symbol
Parameter
Min
Typ
Max
Unit
RT1 (DDR2)
Lower effective impedance value for DDR2
60
75
90
Ω
RT2 (DDR2)
Higher effective impedance value for DDR2
120
150
180
Ω
RT1 (DDR3)
Lower effective impedance value for DDR3
53 (60-12%)
60
69 (60+15%)
Ω
RT2 (DDR3)
Higher effective impedance value for DDR3
106 (120-12%)
120
138 (120+15%)
Ω
DeltaVM
Deviation of VM with respect to VDD DDR/2
-5
-
1
%
To measure RT1 or RT2:
1.
Apply VIH(DC) and VIL(DC) to the IOPAD pin separately while the I/O is in input mode
with the ODT enabled.
2.
Measure the current I(VIH(DC)) and I(VIL(DC)) according to the following equation:
To measure DeltaVM:
V IH(DC) – V IL(DC)
R TX = -----------------------------------------------------------I(V IH(DC)) – I(V IL(DC))
1.
Measure voltage at the IOPAD pin while the I/O is in input mode with the ODT enabled.
2.
Calculate DeltaVM according to the following equation:
2 × V M – V DD DDR
DeltaV M = ⎛⎝ -------------------------------------------------⎞⎠ × 100
V DD DDR
Doc ID 023063 Rev 5
145/200
Electrical characteristics
4.5
SPEAr1340
Voltage regulator characteristics
SPEAr1340 has three internal voltage regulators:
●
MIPHY single-lane regulator: the voltage controlled by this regulator is internally
connected to the MIPHY supply, but it is also externally visible on
MIPHY0_VDD2PLL2V5. The regulator is always active; it is not possible to bypass it.
●
VREG1 regulator: used only for USB
●
VREG2 regulator: used for all PLLs (PLL1, PLL2, PLL3, DDR PLL), ADC and OTP.
Each regulator receives a 3V3 voltage supply as input and generates a 2V5 voltage supply
as output.
The following table shows the main requirements for the voltage regulators.
Table 54.
Voltage regulators requirements
Voltage regulator input
Voltage regulator output
Balls
connected
MIPHY0_VREG_3V3_IN
MIPHY0_VDD2PLL2V5
VREG1_3V3_IN
VREG1_2V5_OUT (ball M6) J4 E3 G3
VREG2_3V3_IN
VREG2_2V5_OUT (ball F6)
4.6
P3
E6 E4 N5
AC5 U19 C4
Input
voltage
Output
Max
External
voltage current capacitor
10 μF
3.3 V
2.5 V
100 mA
3.3 V
2.5 V
150 mA 2.2 μF
3.3 V
2.5 V
150 mA 2.2 μF
MiPHY characteristics
For SATA operation, the MIPHY0_XTAL1/MIPHY0_XTAL2 clock input can be implemented
by a 25 MHz crystal oscillator. For PCIe operation, a suitable clock driver such as ON
Semiconductor NB3N5573 or Silicon labs Si5330C_A000207 can be used.
Table 55.
MiPHY characteristics
Symbol
Parameter
Min
MIPHY0_XTAL1/MIPHY0_XTAL2 clock
input frequency for SATA configuration
fOSC
146/200
Typ
Max
Unit
25
MHz
MIPHY0_XTAL1/MIPHY0_XTAL2 clock
input frequency for PCIe configuration
VIH
MIPHY0_RXp/MIPHY0_RXn differential
input HIGH voltage
VIL
MIPHY0_RXp/MIPHY0_RXn differential
input LOW voltage
VIN(OSC)
MIPHY0_XTAL1/MIPHY0_XTAL2 clock
input voltage
ZIN(OSC)
MIPHY0_XTAL1/MIPHY0_XTAL2 clock
input impedance
Doc ID 023063 Rev 5
100
+150
mV
-0.3
50
-150
mV
1.15
V
Ω
SPEAr1340
4.7
Electrical characteristics
Required external components
Some pads require the use of an external resistor. Table 56 lists these pads and the value of
the resistors to be used.
Table 56.
List of required resistors
Pad name
Value
Ball
MIPHY0_REF
487 Ω (± 1%)
R1
USB_TXRTUNE
43.2 Ω (± 1%)
G1
DDRIO_COMP_REXT
332 Ω (± 1%)
AD5
IO_COMP_REXT1_3V3
121 KΩ (± 1%)
AC21
IO_COMP_REXT2_3V3
121 KΩ (± 1%)
K19
IO_COMP_REXT1_1V8_3V3
121 KΩ (± 1%)
K12
IO_COMP_REXT2_1V8_3V3
121 KΩ (± 1%)
K15
IO_COMP_REXT_2V5_3V3
121 KΩ (± 1%)
R19
Doc ID 023063 Rev 5
147/200
Electrical characteristics
4.8
SPEAr1340
Power-up sequence
It is recommended to power up the power supplies in the order shown in Figure 13.
VDD 1V2 is brought up first, followed by VDD 1V5/1V8, and then VDD 3V3. The minimum
time (Δt) between each power up is >0 µs.
Note:
The 2V5 power supply is generated by internal voltage regulators, just after the 3V3. Make
sure that different 2V5 input power rails are driven by SPEAr internal regulators.
Figure 13. Power-up sequence
Power-up sequence
VDD 1V2
VDD1V5/1V8
t
t
VDD 3V3
t
4.9
Power-down sequence
All power supplies can be shut down at the same time.
148/200
Doc ID 023063 Rev 5
SPEAr1340
4.10
Electrical characteristics
Reset release
The master reset (MRESETn) must be released after all the power supplies are stable and
for a time interval of 2 ms, which is the start-up time of the main oscillator, and must be
asserted low for at least 1 µs for warm reset.
Figure 14. Cold reset release
VDD 1V2
VDD1V5/1V8
VDD 3V3
tRP(cold)= 2 ms
MRESETn
Figure 15. Warm reset release
tRP(warm)= 500 ns
MRESETn
Note:
See also: Section 5.1: Reset timing characteristics on page 151.
4.11
ADC electrical characteristics
Table 57.
ADC characteristics
Symbol
Parameters
Min
Typ
Max
Unit
fADC_CLK
ADC_CLK frequency
2.5
14
20
MHz
AVDD
ADC supply voltage
2.25
2.5
2.75
V
VREFP
Positive reference voltage
1
2.5
2.75
V
VREFN
Negative reference voltage
0
0
0.7
V
VIREF
Internal reference voltage
1.95
2
2.05
V
tSTARTUP
Startup time
VAIN
CAIN
50
µs
Input range (absolute)
AGND - 0.3
AVDD - 0.3
V
Conversion range
VREFN
VREFP
V
Input capacitance
5
8
pF
Doc ID 023063 Rev 5
6.4
149/200
Electrical characteristics
Table 57.
ADC characteristics (continued)
Symbol
Parameters
Min
Typ
Max
Unit
RAIN
Input mux resistance (total
equivalent sampling resistance)
1.5
2
2.5
KΩ
tCONV
150/200
SPEAr1340
Conversion time
(fADC_CLK=14 MHz)
1
µs
Conversion time
14
ADC_CLK
cycles
INL
Integral linearity error
±1
LSB
DNL
Differential linearity error
±0.8
LSB
Doc ID 023063 Rev 5
SPEAr1340
5
Timing characteristics
Timing characteristics
This chapter provides the timing characteristics for the synchronous and asynchronous IPs
present in SPEAr1340.
The timings have been calculated under the following operating conditions:
●
In worst case: V= 0.90 V, T = 125 °C
●
In best case: V= 1.10 V, T = 40 °C
In Table 58 you will find an explanation of the symbols used in this chapter to describe timing
parameters.
Table 58.
Symbol definition
Symbol
5.1
TCLK
Clock period: the time for a complete clock cycle.
TCLKhigh
High-pulse width: the minimum amount of time for the high pulse of the clock.
TCLKlow
Low-pulse width: the minimum amount of time for the low pulse of the clock.
Tsetup (Ts)
Setup time: the minimum amount of time the data signal should be held steady
before the clock event so that the data is reliably sampled.
Thold (Th)
Hold time: the minimum amount of time the data signal should be held steady
after the clock event so that the data is reliably sampled.
TD
Clock-to-output delay: the maximum time required to obtain a valid output after
the clock edge.
Reset timing characteristics
Table 59.
Note:
Definition
Reset timing characteristics
Symbol
Description
Min
Unit
tRP(cold)
MRESETn pin active low state duration for cold
reset (startup time from all supplies up and
stable).
See Figure 14: Cold reset release on page 149)
2
ms
tRP(warm)
MRESETn pin active low state duration for warm
reset (minimum pulse width able to reset the
device).
See Figure 15: Warm reset release on
page 149)
500
µs
Warm reset can be triggered by software by writing any value to the miscellaneous register
SYS_SW_RES.
Doc ID 023063 Rev 5
151/200
Timing characteristics
5.2
SPEAr1340
ADC timing characteristics
This section describes the timing characteristics of the TOUCH_XY_SEL signal of the A/C
converter.
The TOUCH_XY_SEL signal allows the switching of the X and Y axes. It is generated in
both cases of 2 and 4 channels (depending on single or dual touchscreen configuration).
This signal is high when converting the X values, while low when converting the Y ones.
Figure 16 shows the TOUCH_XY_SEL behavior during the ADC conversion phase. In this
example, the dual touchscreen configuration is used: channels 1 and 3 convert the X values,
while channels 6 and 7 convert the Y values.
Figure 16. Touchscreen signal waveform
ADC_CLK
ADC_EN
ADC_SEL
0
1
3
6
7
TOUCH_XY_SEL
5.3
Cortex-A9 JTAG/trace timing characteristics
This section describes the timing characteristics of Cortex-A9 JTAG and Cortex-A9 trace.
5.3.1
Cortex-A9 JTAG timing characteristics
This section describes the timing characteristics for the Cortex-A9 JTAG.
The timing characterization is performed assuming an output load capacitance of 20 pF on
ARM_TDO output and an input transition of 2 ns on all the inputs.
Figure 17. JTAG timing waveforms
TCLKhigh
ARM_TCK (input)
TCLKlow
ARM_TDO (output)
Old data valid
New data valid
TDmin
TDmax
ARM_TDI, ARM_TMS,
ARM_TRSTn (input)
Ts
152/200
Doc ID 023063 Rev 5
Th
SPEAr1340
Timing characteristics
Table 60.
JTAG timing characteristics
Symbol
TCLK
Description
Min
ARM_TCK clock period
33.3
TCLKhigh ARM_TCK pulse high
5.3.2
Max
Unit
ns
10
–
ns
TCLKlow
ARM_TCK pulse low
10
–
ns
TD
ARM_TCK to ARM_TDO output delay
4
17
ns
Tsdata
Setup time for ARM_TDI and ARM_TMS data
6
ns
Thdata
Hold time for ARM_TDI and ARM_TMS data
1
ns
Tsreset
Setup time for ARM_TRSTn reset
15
ns
Threset
Hold time for ARM_TRSTn reset
1
ns
Cortex-A9 trace timing characteristics
This section describes the timing characteristics for the ARM trace which works on both
rising edge and falling edge of the ARM_TRCCLK clock.
The timing characterization is performed assuming an output load capacitance of 20 pF on
the outputs and using PLL1 as the clock source for the timing extractions.
Figure 18. ARM trace timing waveform
ARM_TRCCLK
ARM_TRCDATA
ARM_TRCCTL
td
Table 61.
Symbol
TCLK
td
ARM trace timing characteristics
Description
ARM_TRCCLK clock period
Min
Max
8
Unit
ns
TCLKhigh ARM_TRCCLK pulse high
2.9
–
ns
TCLKlow
ARM_TRCCLK pulse low
2.9
–
ns
TDrise
ARM_TRCCLK to ARM_TRCDATA0..ARM_TRCDATA31,
ARM_TRCCTL output delay
-3.7
4
ns
TDfall
ARM_TRCCLK to ARM_TRCDATA0..ARM_TRCDATA31,
ARM_TRCCTL output delay
-4
3.7
ns
Doc ID 023063 Rev 5
153/200
Timing characteristics
5.4
SPEAr1340
CAM timing characteristics
This section describes the timing characteristics of the four camera input interfaces which
can work on the clock rising edge or on the clock falling edge.
The timing characterization is performed assuming an input transition of 2 ns on all the
inputs and CAMx_PIXCLK and using PLL1 as the clock source for the timing extractions.
Figure 19. CAM timing waveform
TCLKhigh
CAMx_PIXCLK
(input)
TCLKlow
CAMx_DATA[0..7],
CAMx_VSYNC,
CAMx_HSYNC (1)
(with polarity configured as
rising edge)
Tspos
Thpos
CAMx_DATA[0..7],
CAMx_VSYNC,
CAMx_HSYNC (1)
(with polarity configured as
falling edge)
Tsneg
Thneg
1. x = 1..4.
Table 62.
Symbol
CAMx timing characteristics
Description
Min
Max
Unit
TCLK
CAMx_PIXCLK clock period
6.5
–
ns
TCLKhigh
CAMx_PIXCLK pulse high
2.9
–
ns
TCLKlow
CAMx_PIXCLK pulse low
2.9
–
ns
Tspos
Setup time for CAM1 data respect to clock rising edge
5.4
–
ns
Thpos
Hold time for CAM1 data respect to clock rising edge
-0.7
–
ns
Tsneg
Setup time for CAM1 data respect to clock falling edge
5.6
–
ns
Thneg
Hold time for CAM1 data respect to clock falling edge
-0.8
–
ns
Tspos
Setup time for CAM2 data respect to clock rising edge
5.7
–
ns
Thpos
Hold time for CAM2 data respect to clock rising edge
-0.3
–
ns
Tsneg
Setup time for CAM2 data respect to clock falling edge
5.9
–
ns
Thneg
Hold time for CAM2 data respect to clock falling edge
-0.4
–
ns
CAM1
CAM2
154/200
Doc ID 023063 Rev 5
SPEAr1340
Timing characteristics
Table 62.
Symbol
CAMx timing characteristics (continued)
Description
Min
Max
Unit
Tspos
Setup time for CAM3 data respect to clock rising edge
5.5
–
ns
Thpos
Hold time for CAM3 data respect to clock rising edge
-0.7
–
ns
Tsneg
Setup time for CAM3 data respect to clock falling edge
5.6
–
ns
Thneg
Hold time for CAM3 data respect to clock falling edge
-0.7
–
ns
Tspos
Setup time for CAM4 data respect to clock rising edge
5.5
–
ns
Thpos
Hold time for CAM4 data respect to clock rising edge
-0.8
–
ns
Tsneg
Setup time for CAM4 data respect to clock falling edge
5.6
–
ns
Thneg
Hold time for CAM4 data respect to clock falling edge
-0.9
–
ns
CAM3
CAM4
Doc ID 023063 Rev 5
155/200
Timing characteristics
5.5
SPEAr1340
CLCD timing characteristics
This section describes the timing characteristics for the LCD display controller which can
work on the clock rising edge or on the clock falling edge.
The timing characterization is performed assuming an output load capacitance of 10 pF on
all outputs and using PLL3 as the clock source for the timing extractions.
Figure 20. CLCD timing waveform
tCLKhigh
LCD_PCLK
(output)
tCLKlow
(1)
LCD_DATA
LCD_VSYNC
LCD_HSYNC
LCD_DE
(with polarity
configured as
rising edge)
td1
LCD_DATA(1)
LCD_VSYNC
LCD_HSYNC
LCD_DE
(with polarity
configured as
falling edge)
td2
1. LCD_DATA = LCD_R[0-7], LCD_XR[0-7], LCD_B[0-7], LCD_XB[0-7], LCD_G[0-7], LCD_XG[0-7].
Table 63.
Symbol
156/200
CLCD timing characteristics
Description
Min
Max
Unit
6.5
–
ns
TCLK
LCD_PCLK clock period
TCLKhigh
LCD_PCLK pulse high
3
–
ns
TCLKlow
LCD_PCLK pulse low
3
–
ns
TD1
LCD_PCLK rising edge to LCD_DATA,
LCD_VSYNC, LCD_HSYNC LCD_DE output data
delay
0.9
5.6
ns
TD2
LCD_PCLK falling edge to LCD_DATA,
LCD_VSYNC, LCD_HSYNC LCD_DE output data
delay
1
5.8
ns
Doc ID 023063 Rev 5
SPEAr1340
5.6
Timing characteristics
FSMC timing characteristics
This section describes the timing characteristics of the flexible static memory controller. The
FSMC can interface NAND Flash, NOR and SRAM. All the possible scenarios are described
below.
The timing characterization is performed assuming an output load capacitance of 10 pF on
all outputs.
5.6.1
NAND Flash configuration timing characteristics
Figure 21. NAND Flash configuration timing waveform
FSMC_CExn
tHCLK - tALE
FSMC_ALE_AD17
tHCLK - tCLE
FSMC_CLE_AD16
tSET + tW
tWAIT
tHOLD + tW
FSMC_WEn
tHIZ + tD
tHCLK - tD
FSMC_IO (ouT)
DATAOUT
tSET + tR
TWAIT
tHOLD + tR
FSMC_REn
tMEM
tMEM
DATAIN
FSMC_IO (in)
TALE, TCLE, TW, TR and TD are fixed values: they depend only on the internal timings of
SPEAr.
TSET, THOLD, TWAIT and THIZ are programmable timings defined by FSMC registers. They
can be calculated as:
TSET = (Set + 1) * THCLK (min value for Set is 0)
TWAIT = (Wait + 1) * THCLK (min value for Wait is 1)
THOLD = (Hold + 1) * THCLK (min value for Hold is 1)
THIZ = Hiz * THCLK (min value for Hiz is 0)
THCLK = 6 ns (period of the AHB clock, the FSMC input clock)
TMEM is the output delay of the NAND Flash.
When writing a data, since the NAND Flash strobes it on the rising edge of FSMC_WEn, the
user should choose the correct values of Set, Wait, Hold and Hiz in order to satisfy the
following constraints:
TSET + TW + TWAIT - THIZ - TD ≥ TSETUP (NAND_FLASH)
THOLD + TW - THCLK + TD ≥ THOLD (NAND_FLASH)
Doc ID 023063 Rev 5
157/200
Timing characteristics
SPEAr1340
When reading a data, since the FSMC strobes it 1 HCLK cycle before the rising edge of
FSMC_REn, the user should choose the correct value of Data_ST in order to satisfy the
following setup constraint:
TWAIT - TMEM - TDEL ≥ TSETUP (FSMC_FFs)
TDEL is the sum of 2 internal delays of SPEAr:
●
From the FSMC flops to the FSMC_REn pad;
●
From the FSMC_IO pads to the FSMC flops.
Table 64.
Timings for 8-/16-bit NAND Flash configuration on FSMC_CE0n
Symbol
Min
Max
TALE
-1.47
2.44
TCLE
-1.77
1.83
TD (8-bit)
-2.76
6.48
TD (16-bit)
-2.82
6.48
TW
-1.56
2.21
TR
-1.29
2.50
Table 65.
ns
Timings for 8-/16-bit NAND Flash configuration on FSMC_CE1n
Symbol
Min
Max
TALE
-1.44
2.41
TCLE
-1.76
1.80
TD (8-bit)
-2.75
6.45
TD (16-bit)
-2.81
6.45
TW
-1.50
2.18
TR
-1.23
2.47
Table 66.
Unit
ns
Internal delays for 8-/16-bit NAND Flash configuration
Symbol
158/200
Unit
Min
Max
TDEL (8-bit)
3.82
16.34
TDEL (16-bit)
3.82
16.63
TSETUP (FSMC_FFs)
0.06
0.49
Doc ID 023063 Rev 5
Unit
ns
SPEAr1340
5.6.2
Timing characteristics
NOR Flash configuration timing characteristics
Figure 22. NOR configuration timing waveform (Extended_Mode = 0)
FSMC_CExn
tAD
ADDRESS
FSMC_AD[25:0]
tAV
tADDR_ST
FSMC_RB0
tADDR_ST + tW
tDATA_ST
tSTROBE
FSMC_WEn
tADDR_ST - tHCLK+ tD
tD
FSMC_IO (out)
DATAOUT
tR
tADDR_ST
tD
FSMC_REn
Strobe
tMEM
FSMC_IO (in)
tMEM
tMEM
DATAIN
DATAIN
Figure 23. NOR configuration timing waveform (Extended_Mode = 1)
FSMC_CExn
tAD
ADDRESS
FSMC_AD [25:0]
tAV
tADDR_ST
FSMC_RB0
tADDR_ST + tW
tHOLD_ADDR
tDATA_ST
tSTROBE
FSMC_WEn
tADDR_ST - tHCLK+ tD
FSMC_IO (out)
tD
DATAOUT
tADDR_ST + tR
tHOLD_ADDR
tDATA_ST
tR
FSMC_REn
tOPEN_DLY
tMEM
FSMC_IO (in)
tMEM
DATAIN
Doc ID 023063 Rev 5
159/200
Timing characteristics
SPEAr1340
TAD, TAV, TD, TW, TR and TSTROBE are fixed values: they depend only on the internal timings
of SPEAr.
TADDR_ST, THOLD_ADDR, TDATA_ST and TOEN_DLY are programmable timings defined by
FSMC registers. They can be calculated as:
TADDR_ST = (Addr_ST + 1) * THCLK (min value for Addr_ST is 0)
THOLD_ADDR = (Hold_addr + 1) * THCLK (min value for Hold_addr is 0)
TDATA_ST = Data_ST * THCLK (min value for Data_ST is 0 for Read and 1 for Write)
TOEN_DLY = OEn_delay * THCLK (when 1, the output enable rises 1 HCLK cycle before
the chip select)
Since the data strobe always happens 1 HCLK cycle before the rising edge of the chip
select, TSTROBE can be calculated as:
TSTROBE = THCLK - TW
THCLK = 6 ns (period of the AHB clock, the FSMC input clock)
TMEM is the output delay of the NOR Flash.
The FSCM_REn signal can toggle either after the de-assertion of the chip select
(Extended_Mode = 0) or after the Addr_ST phase (Extended_Mode = 1).
In the 1st case the programmable timings for Read and Write are unique while in the 2nd
case they can be different from each other.
When writing a data, since the NOR strobes it on the rising edge of FSMC_WEn, the user
should choose the correct values of Data_ST (and eventually Hold_addr) in order to satisfy
the setup constraint:
THCLK + TW (+ THOLD_ADDR) + TDATA_ST - TD ≥ TSETUP (NOR_FLASH)
The hold constraint, vice versa, is fixed:
THCLK - TW + TD ≥ THOLD (NOR_FLASH)
When reading a data, since the FSMC strobes it 1 HCLK cycle before the rising edge of
FSMC_REn, the user should choose the correct value of Data_ST in order to satisfy the
following setup constraint:
TDATA_ST - TMEM - TDEL ≥ TSETUP (FSMC_FFs)
TDEL is the sum of 2 internal delays of SPEAr:
160/200
●
From the FSMC flops to the FSMC_REn pad;
●
From the FSMC_IO pads to the FSMC flops.
Doc ID 023063 Rev 5
SPEAr1340
Timing characteristics
Table 67.
Timings for 8-/16-bit NOR Flash configuration on FSMC_CE0n
Symbol
Min
Max
TAD
-2.19
4.33
TAV
-2.79
4.61
TD (8-bit)
-2.78
6.40
TD (16-bit)
-3.02
6.40
TW
-1.66
1.99
TR
-1.41
2.27
Table 68.
Unit
ns
Timings for 8-/16-bit NOR Flash configuration on FSMC_CE1n
Symbol
Min
Max
TAD
-1.82
4.60
TAV
-2.43
4.88
TD (8-bit)
-2.41
6.67
TD (16-bit)
-2.65
6.67
TW
-1.30
2.27
TR
-1.08
2.55
Table 69.
Unit
ns
Internal delays for 8-/16-bit NOR Flash configuration
Symbol
Min
Max
TDEL (8-bit)
4.03
16.25
TDEL (16-bit)
4.01
16.54
TSETUP (FSMC_FFs)
0.05
0.46
Doc ID 023063 Rev 5
Unit
ns
161/200
Timing characteristics
5.6.3
SPEAr1340
SRAM configuration timing characteristics
Figure 24. SRAM configuration timing waveform
FSMC_CExn
tAD
ADDRESS
FSMC_AD [25:0]
tBL
tBL
FSMC_BL0n_AV
FSMC_BL1n
tADDR_ST + tW
tDATA_ST
tSTROBE
FSMC_WEn
tADDR_ST - tHCLK+ tD
tD
FSMC_IO (out)
DATAOUT
tR
tDATA_ST
tR
FSMC_REn
tMEM
FSMC_IO (in)
tMEM
DATAIN
tMEM
DATAIN
TAD, TBL, TD, TW, TR and TSTROBE are fixed values: they depend only on the internal timings
of SPEAr.
TADDR_ST and TDATA_ST are programmable timings defined by FSMC registers. They can be
calculated as:
TADDR_ST = (Addr_ST + 1) * THCLK (min value for Addr_ST is 0)
TDATA_ST = Data_ST * THCLK (min value for Data_ST is 0 for Read and 1 for Write)
Since the data strobe always happens 1 HCLK cycle before the rising edge of the chip
select, TSTROBE can be calculated as:
TSTROBE = THCLK - TW
THCLK = 6 ns (period of the AHB clock, the FSMC input clock)
TMEM is the output delay of the Static RAM.
The FSCM_REn signal can toggle either after the de-assertion of the chip select
(Extended_Mode = 0) or after the Addr_ST phase (Extended_Mode = 1).
In the 1st case the programmable timings for Read and Write are unique while in the 2nd
case they can be different from each other.
When writing a data, since the SRAM strobes it on the rising edge of FSMC_WEn, the user
should choose the correct values of Data_ST in order to satisfy the setup constraint:
THCLK + TW + TDATA_ST - TD ≥ TSETUP (SRAM)
162/200
Doc ID 023063 Rev 5
SPEAr1340
Timing characteristics
The hold constraint, vice versa, is fixed:
THCLK - TW + TD ≥ THOLD (SRAM)
When reading a data, since the FSMC strobes it 1 HCLK cycle before the rising edge of
FSMC_REn, the user should choose the correct value of Data_ST in order to satisfy the
following setup constraint:
TDATA_ST - TMEM - TDEL ≥ TSETUP (FSMC_FFs)
TDEL is the sum of 2 internal delays of SPEAr:
●
From the FSMC flops to the FSMC_REn pad;
●
From the FSMC_IO pads to the FSMC flops.
Table 70.
Timings for 8-/16-bit SRAM configuration on FSMC_CE0n
Symbol
Min
Max
TAD
-2.19
4.33
TBL (16-bit)
-2.79
4.80
TD (8-bit)
-2.78
6.40
TD (16-bit)
-3.02
6.40
TW
-1.66
1.99
TR
-1.41
2.27
Table 71.
ns
Timings for 8-/16-bit SRAM configuration on FSMC_CE1n
Symbol
Min
Max
TAD
-1.82
4.60
TBL (16-bit)
-2.43
5.08
TD (8-bit)
-2.41
6.67
TD (16-bit)
-2.65
6.67
TW
-1.30
2.27
TR
-1.08
2.55
Table 72.
Unit
Unit
ns
Internal delays for 8-/16-bit SRAM configuration
Symbol
Min
Max
TDEL (8-bit)
4.03
16.25
TDEL (16-bit)
4.01
16.54
TSETUP (FSMC_FFs)
0.05
0.46
Doc ID 023063 Rev 5
Unit
ns
163/200
Timing characteristics
5.7
SPEAr1340
GMAC timing characteristics
This section describes the AC timing characteristics for the Giga/Fast Ethernet port. The
GMAC is designed to support 10, 100 and 1000 Mbps Ethernet/IEEE 802.3 networks. It
supports GMII, RMII and MII interfaces.
Note:
For the pin list of the supported interfaces, see Table 5: MAC Ethernet port multiplexing
scheme and Table 15: Connectivity - MAC PHY interface signals description.
5.7.1
GMII transmit timing characteristics
The timing characterization is performed assuming an output load capacitance of 10 pF on
the output pads and using PLL2 as internal clock source or MAC_GTXCLK125 as external
clock source for GMII TX interface timings extraction.
These timings are valid for 10, 100 and 1000 Mbps operation.
Figure 25. GMII TX timing waveform
TCLKhigh
MAC_GTXCLK
(output)
TCLKlow
TD
MAC_TXD0 - MAC_TXD7,
MAC_TXEN, MAC_TXER
Table 73.
Parameter
GMII TX timing characteristics
Description
TCLK
MAC_GTXCLK clock period
TCLKhigh
MAC_GTXCLK pulse high
TCLKlow
MAC_GTXCLK pulse low
TCLKhigh
MAC_GTXCLK pulse high
TCLKlow
MAC_GTXCLK pulse low
TCLKhigh
MAC_GTXCLK pulse high
TCLKlow
TD
Conditions(1)
Min
Unit
8
ns
1.5
ns
1.0
ns
2.1
ns
1.4
ns
2.2
ns
MAC_GTXCLK pulse low
1.2
ns
MAC_GTXCLK to GMII output
data
0.4
Clock source=
MAC_GTXCLK125@125 MHz
(50% ideal duty cycle)
Clock source=
MAC_GTXCLK125@250 MHz
internally divided by 2
Clock source= PLL2
1. Characterizations based on external clock sources are performed assuming an ideal 50% duty cycle clock.
164/200
Max
Doc ID 023063 Rev 5
5.6
ns
SPEAr1340
5.7.2
Timing characteristics
GMII receive timing characteristics
The timing characterization is performed assuming an input transition of 2 ns on all the
inputs and using MAC_RXCLK as source of clock for GMII RX interface timings extraction.
Figure 26. GMII RX timing waveform
TCLKhigh
MAC_RXCLK
(input)
TCLKlow
MAC_RXD0 – MAC_RXD7,
MAC_RXER, MAC_RXDV
Ts
Table 74.
Th
GMII RX timing characteristics
Description(1)
Parameter
Min
Max
Unit
8
–
ns
TCLK
MAC_RXCLK clock period
TCLKhigh
MAC_RXCLK pulse high
2.5
–
ns
TCLKlow
MAC_RXCLK pulse low
2.5
–
ns
tsetup (Ts)
Setup time for GMII receive data
4
ns
thold (Th)
Hold time for GMII receive data
0.5
ns
1. Characterizations based on external clock sources are performed assuming an ideal 50% duty cycle clock.
5.7.3
MII transmit timing characteristics
The timing characterization is performed assuming an output load capacitance of 10 pF on
the output pads and using a 2 ns transition on MAC_TXCLK for interface timings extraction.
These timings are valid for 10 and 100 Mbps operation.
Figure 27. MII TX timing waveform
TCLKhigh
MAC_TXCLK
(input)
TCLKlow
TD
MAC_TXD0 - MAC_TXD3,
MAC_TXEN, MAC_TXER
Doc ID 023063 Rev 5
165/200
Timing characteristics
Table 75.
SPEAr1340
MII TX timing characteristics
Symbol
5.7.4
Description
Min
Max
Unit
TCLK
MAC_TXCLK clock period
40
–
ns
TCLKhigh
MAC_TXCLK pulse high
12
–
ns
TCLKlow
MAC_TXCLK pulse low
12
–
ns
TD
MAC_TXCLK to MII output data
5.1
18
ns
MII receive timing characteristics
The timing characterization is performed assuming an input transition of 2 ns on all the
inputs.
These timings are valid for 10 and 100 Mbps operation.
Figure 28. MII RX timing waveform
TCLKhigh
MAC_RXCLK
(input)
TCLKlow
MAC_RXD0-MAC_RXD3,
MAC_RXER, MAC_RXDV
Ts
Table 76.
Symbol
TCLK
MII RX timing characteristics
Description
MAC_RXCLK clock period
TCLKhigh MAC_RXCLK pulse high
166/200
Th
Min
Max
Unit
40
–
ns
12
–
ns
–
ns
TCLKlow
MAC_RXCLK pulse low
12
Ts
Setup time for MII receive data
3.8
Th
Hold time for MII receive data
0
ns
Doc ID 023063 Rev 5
SPEAr1340
5.7.5
Timing characteristics
MAC Ethernet asynchronous signals timing characteristics (MAC_CRS
and MAC_COL)
MAC_CRS and MAC_COL signals are used only by the GMII and MII interfaces.
Figure 29. MAC asynchronous input signals timing waveform
TD
MAC_CRS, MAC_COL
Table 77.
MAC asynchronous input signals timing characteristics
Symbol
TD
5.7.6
Description
MAC_CRS to MAC_COL minimum pulse width
Min
Max
Unit
3
-
ns
MAC serial management channel timing characteristics (MDIO/MDC)
The MAC_MDIO and MAC_MDC signals are used to perform serial management channel
timing.
The MDC frequency should be equal to or less than 2.5 MHz to be compliant with the IEEE
802.3 MII specification. However, MAC can function correctly with a maximum MDC
frequency of 15 MHz.
Figure 30. MAC_MDC/MAC_MDIO timing waveform
TCLKhigh
MAC_MDC
(output)
TCLKlow
MAC_MDIO (output)
TD
MAC_MDIO (input)
Ts
Table 78.
Symbol
Th
MAC_MDC/MAC_MDIO timing characteristics
Description
Min
Max
Unit
TCLK
MAC_MDC clock period
200
–
ns
TD
Falling edge of MDC to MDIO output delay(1)
10
20
ns
TCLKhigh
MAC_MDC pulse width high
60
Doc ID 023063 Rev 5
ns
167/200
Timing characteristics
Table 78.
SPEAr1340
MAC_MDC/MAC_MDIO timing characteristics (continued)
Symbol
Description
Min
Max
Unit
TCLKlow
MAC_MDC pulse width low
60
ns
Ts
Setup time for MDIO input
30
ns
Th
Hold time for MDIO input
0
ns
1. When MDIO is used as output, the data is launched on the falling edge of the clock as shown in Figure 30.
5.8
GPIO/XGPIO timing characteristics
For edge-sensitive signals, the interrupt line is sampled by flip flops clocked by PCLK for
GPIOs and HCLK for XGPIOs, the APB and AHB clocks, normally running at 83 MHz and
166 MHz respectively.
The minimum pulse width required for interrupt detection on signal edge is:
3*TPCLK (36 ns at 83 MHz) for GPIO
3*THCLK (18 ns at 166 MHz) for XGPIO
5.9
I2C timing characteristics
The timing of high and low level of SCL (TSCLHigh and TSCLLow) are programmable.
Figure 31. I2C timing waveform
tSCLHigh
tSCLLow
I2Cx_SCL
tSU-STO
tHD-STA
tSU-STA
tSU-DAT
I2Cx_SDA
168/200
Doc ID 023063 Rev 5
tHD-STO
SPEAr1340
Timing characteristics
Table 79.
Timing characteristics for I2C in High-Speed mode
Min(1)
Parameter
TSU-STA
(HS_SCL_HCNT+7)*THCLK
THD-STA
(HS_SCL_LCNT+2)*THCLK
TSU-DAT
TSCLLow - THD-DATmax
THD-DAT
(IC_SDA_HOLD)* THCLK
TSU-STO
(FS_SCL_HCNT+7)*THCLK
THD-STO
685*THCLK
1. HS_SCL_HCNT = 10, HS_SCL_LCNT = 33, FS_SCL_HCNT = 183, FS_SCL_LCNT = 233,
IC_SDA_HOLD=1
THCLK is the clock period of the HCLK internal clock. The frequency is programmable, for
details refer to the RCG section of RM0078, Reference manual, SPEAr1340 architecture
and functionality.
Table 80.
Time characteristics for I2C in Fast-Speed mode
Min(1)
Parameter
TSU-STA
(SCL_HCNT+7)*THCLK
THD-STA
(SCL_HCNT+3)*THCLK
TSU-DAT
TSCLLow - THD-DATmax
THD-DAT
(IC_SDA_HOLD)* THCLK
TSU-STO
(SCL_HCNT+7)*THCLK
THD-STO
685*THCLK
1. SCL_HCNT = 183, SCL_LCNT = 233 IC_SDA_HOLD=1
Table 81.
Timing characteristics for I2C in Standard-Speed mode
Min(1)
Parameter
TSU-STA
(SCL_LCNT+7)*THCLK
THD-STA
(SCL_HCNT+3)*THCLK
TSU-DAT
TSCLLow - THD-DATmax
THD-DAT
(IC_SDA_HOLD)* THCLK
TSU-STO
(SCL_HCNT+7)*THCLK
THD-STO
685*THCLK
1. SCL_HCNT = 664, SCL_LCNT = 780 IC_SDA_HOLD=1
For the I2C working as SLAVE, the only significant parameters are TSU-DAT and THD-DAT.
Doc ID 023063 Rev 5
169/200
Timing characteristics
5.10
SPEAr1340
I2S timing characteristics
This section describes the timing characteristics for the two I2S digital audio ports (I2S_IN
and I2S_OUT).
The timing characterization is performed assuming an input transition of 2 ns on all the
inputs, an output load capacitance of 10 pF on all outputs and using PLL1 as source of I2S
OUT_BITCLK with a nominal period of 40 ns.
I2S transmit timing characteristics
Figure 32. I2S transmit timing waveform
I2S_OUT_OVRSAMP_CLK
TCLKhigh
I2S_OUT_BITCLK
TCLKlow
TD
I2S_OUT_DATA3 –
I2S_OUT_DATA0,
I2S_OUT_WS
Table 82.
I2S transmit timing characteristics
Symbol
Description
Min
Max
Unit
TCLK
I2S_OUT_BITCLK clock period
40
–
ns
TCLKhigh
I2S_OUT_BITCLK pulse high
15
–
ns
TCLKlow
I2S_OUT_BITCLK pulse low
15
–
ns
fOVRCLK
I2S_OUT_OVERSAMP_CLK frequency
TOVRCLKhigh
I2S_OUT_OVERSAMP_CLK pulse high
7.5
–
ns
TOVRCLKCLKlo
I2S_OUT_OVERSAMP_CLK pulse low
7.5
–
ns
I2S_OUT_BITCLK to I2S_OUT data delay
13
30
ns
fI2S_OUT_BITCLK/2
w
TD
170/200
Doc ID 023063 Rev 5
SPEAr1340
Timing characteristics
I2S receive timing characteristics
Figure 33. I2S receive timing waveform
TCLKhigh
I2S_IN_BITCLK
TCLKlow
I2S_IN_DATA3 – I2S_DATA0,
I2S_IN_WS
Ts
Th
Table 83.
Symbol
I2S receive timing characteristics
Description
Min
Max
Unit
TCLK
I2S_IN_BITCLK clock period
40
–
ns
TCLKhigh
I2S_IN_BITCLK pulse high
15
–
ns
TCLKlow
I2S_IN_BITCLK pulse low
15
–
ns
Ts
I2S_IN_DATA, I2S_IN_WS Setup time
6
ns
Th
I2S_IN_DATA, I2S_IN_WS hold time
0
ns
Doc ID 023063 Rev 5
171/200
Timing characteristics
SPEAr1340
5.11
MCIF timing characteristics
5.11.1
Synchronous mode (SD/SDIO/MMC)
This section describes the timing characteristics for MCIF when interfacing SD/SDIO/MMC
synchronous memories.
The tables below show the timings for the high-speed and full-speed modes.
The timing characterization is performed assuming an output load capacitance of 10 pF on
all the outputs, an input transition of 2ns on all the inputs and using PLL1 as source of the
clock used for the timings extraction.
The MCI_ADDR_CLE_CLK signal is programmable via the MCIF registers. Refer to
RM0089, Reference manual, SPEAr1340 address map and registers
Figure 34. MCIF - SD/SDIO/MMC mode timing waveform
tCLKhigh
MCIF_ADDR1_CLE_CLK
(output)
td
tCLKlow
MCIF_OUT (output) (1)
MCIF_IN (input) (1)
tsu
th
1. MCIF_OUT/MCIF_IN synchronous signals: MCIF_DATA0, MCIF_DATA[7..4], MCIF_DATAx_SD (x= 1..3),
MCIF_SD_CMD
Table 84.
Symbol
Description
Min
Max
Unit
20
–
ns
tCLK
MCIF_ADDR1_CLE_CLK clock period
tCLKhigh
MCIF_ADDR1_CLE_CLK pulse high
tCLK/2-1
–
ns
tCLKlow
MCIF_ADDR1_CLE_CLK pulse low
tCLK/2-1
–
ns
tD
MCIF_ADDR1_CLE_CLK to MCIF_OUT output delay
0.2
6.1
ns
ts
Setup time for MCIF_IN data
14
ns
th
Hold time for MCIF_IN data
1.3
ns
Table 85.
Symbol
172/200
MCIF - SD/SDIO High speed mode timing characteristics
MCIF - SD/SDIO Full speed mode timing characteristics
Description
tCLK
MCIF_ADDR1_CLE_CLK clock period
tCLKhigh
MCIF_ADDR1_CLE_CLK pulse high
Doc ID 023063 Rev 5
Min
Max
Unit
40
–
ns
tCLK/2-1
–
ns
SPEAr1340
Timing characteristics
Table 85.
Symbol
MCIF - SD/SDIO Full speed mode timing characteristics (continued)
Description
Min
Max
Unit
tCLK/2-1
–
ns
20.1
25.9
ns
tCLKlow
MCIF_ADDR1_CLE_CLK pulse low
tD
MCIF_ADDR1_CLE_CLK to MCIF_OUT output delay
ts
Setup time for MCIF_IN data
14
ns
th
Hold time for MCIF_IN data
0
ns
Table 86.
Symbol
MCIF - MMC High speed mode timing characteristics
Description
Min
Max
Unit
20
–
ns
tCLK
MCIF_ADDR1_CLE_CLK clock period
tCLKhigh
MCIF_ADDR1_CLE_CLK pulse high
tCLK/2-1
–
ns
tCLKlow
MCIF_ADDR1_CLE_CLK pulse low
tCLK/2-1
–
ns
tD
MCIF_ADDR1_CLE_CLK to MCIF_OUT output delay
0.2
6.1
ns
ts
Setup time for MCIF_IN data
14
ns
th
Hold time for MCIF_IN data
1.3
ns
Table 87.
Symbol
MCIF - MMC Full speed mode timing characteristics
Description
Min
Max
Unit
40
–
ns
tCLK
MCIF_ADDR1_CLE_CLK clock period
tCLKhigh
MCIF_ADDR1_CLE_CLK pulse high
tCLK/2-1
–
ns
tCLKlow
MCIF_ADDR1_CLE_CLK pulse low
tCLK/2-1
–
ns
tD
MCIF_ADDR1_CLE_CLK to MCIF_OUT output delay
20.1
25.9
ns
ts
Setup time for MCIF_IN data
14
ns
th
Hold time for MCIF_IN data
0
ns
Doc ID 023063 Rev 5
173/200
Timing characteristics
5.11.2
SPEAr1340
CompactFlash true IDE PIO mode/UDMA mode
This section describes the timing characteristics for MCIF when interfacing CompactFlash in
true IDE mode PIO mode and UDMA mode.
The data in Table 88 has been measured in the following configuration:
– True IDE PIO mode = Mode 6
– HCLK period = 6 ns
– CF/XD (clk_xin) base clock period obtained by programming the MISC register
MCIF_CFXD_CLK_SYNT.
– Tclk_xin = T
– t0 is the minimum total cycle time. t0 must satisfy the following constraint
t0 ≥ t2 + t2i
t2 is the minimum command active time.
t2i is the minimum command active recovery time or command inactive time.
Figure 35. MCIF - CF true IDE PIO mode waveform
t0
MCIF_Addr2,
MCIF_Addr1_CLE_CLK
MCIF_Addr0_ALE
MCIF_nCS0_nCE
MCIF_nCS1
t2
t2
t1
i
MCIF_nIOWR_nWE
MCIF_nIORD_nRE
t3
t4
DATAOUT
MCIF_Data[15:0]
t5
MCIF_Data[15:0]
Table 88.
t6
DATAIN
MCIF - CF true IDE PIO mode timing characteristics
Symbol
Description
Min
Max
Unit
t0
Cycle time
18*T
ns
t1
Address Valid to IORD/IOWR setup
2*T
ns
t2
IORD/-IOWR
10*T
ns
t2i
IORD/-IOWR recovery time
8*T
ns
t3
IOWR data setup
9.5*T
ns
t4
IOWR data hold
T - 3.2
ns
IORD data setup
5(1)
ns
(1)
ns
t5
t6
IORD data hold
4
1. t5 and t6 are the minimum timing requirements the external card has to respect in order to ensure
correct Read Data sampling inside SPEAr1340.
174/200
Doc ID 023063 Rev 5
SPEAr1340
Timing characteristics
Figure 36. MCIF - CF true IDE UDMA mode waveform
t2CYC
tCYC
tCYC
MCIF_nIORD_nRE
(STROBE)
tDH
tDS
tDH
tDS
tDH
MCIF_DATA[15:0]
Table 89.
Symbol
tDH
tDS
tCYC
TrueIDE Ultra DMA timing characteristics
Item
Data hold time (from STROBE
edge until data become invalid)
Data setup time ( the time from data
valid until STROBE edge)
Cycle time (the time from STROBE
edge to STROBE edge)
Min
Max
Unit
T
2*T
>tDH+tDS=3*T
ns
Two cycle times (the time from
t2CYC
5.12
rising edge to next rising edge or
from falling edge to next falling
edge of STROBE)
2*tCYC>6*T
MPMC timing characteristics
This section describes the timing characteristics for the multiport DDR controller. The DDR
interface is designed to support the following standards:
Note:
●
DDR3-800 and DDR3-1066 standards, as defined in the JESD79-3E JEDEC standard.
●
All DDR2 standards: DDR2-1066, DDR2-800, DDR2-667, DDR2-533, DDR2-400.
For more information on JEDEC standards, refer to JEDEC Website: www.jedec.org.
This section provides the timing specifications for DDR3 and for DDR2.
For DDR3 the timing values reported below can been obtained only upon successfully
completing the procedure of leveling. Leveling is mandatory for the fly-by topology used for
SDRAM cuts on the PCB. The fly-by topology for the commands, addresses, control signals,
and clocks allows better signal integrity.
For DDR2 you have to use a T branch topology and you have to calibrate the board without
the support of the leveling.
The DDR PHY is an 8-clock sampling-based architecture. The eight clocks are equally
delayed across a clock period equal to the PHY’s core clock. The clocks are generated from
dedicated internal DLLs (dll_clocks).
Doc ID 023063 Rev 5
175/200
Timing characteristics
SPEAr1340
The timings have been calculated in best and worst case, without considering the pads
contribution. These are the operating conditions used for the characterization:
●
In worst case: V=1.10 V, T=125 ° C
●
In best case: V=1.30 V, T= -40 ° C
ADDR/CTRL timing characteristics
The memory clock (mem_clk) is derived from a fixed dedicated PLL output. Address and
control signals (mem_ctl) are launched on the negative edge of the mem_clk
(+/- 1/8 * Tmem_clk) in order to have the control signals centered on the rising edge of the
clock at memory side (assuming the same board flight-time delay for mem_clk and
mem_ctl).
The address and control signals have the same output stage, but they present a skew of
about 114 ps due to the physical implementation.
For a frequency of 533.3 MHz, the period of the clock is TCLK = 1.875 ns.
Table 90.
ADDR/CTRL timing characteristics
Symbol
Description
Unit
1.875
ns
TCLK
Mem_clk period
Ts
Setup time for ADDR/CTRL receive data
589
ps
Th
Hold time for ADDR/CTRL receive data
824
ps
The setup time is calculated considering:
●
maximum error = 235 ps
●
maximum data skew = 114 ps
Ts calculation formula
Ts= Tclk/2–data_skew –max_error= 938 ps – 114 ps – 235 ps= 589 ps
The hold time, instead, is calculated considering:
●
maximum error = 0 ps
●
maximum data skew = 114 ps
Th calculation formula
Th= Tclk/2–data_skew + max_error= 938 ps – 114 ps + 0 ps= 824 ps
176/200
Value
Doc ID 023063 Rev 5
SPEAr1340
Timing characteristics
Figure 37. ADDR/CTRLsignals timing waveform
mem_clk
max
error
max
error
ADDR/CTRL
Ts
skew
Th
skew
Write DQS timing characteristics
The DDR3 SDRAM supports a write-leveling feature to allow the controller to compensate
the skew between the mem_clk and the data strobe (DQS) at each memory cut. During the
write leveling phase, the controller uses the feedback from the DDR3 SDRAM to adjust the
DQS to mem_clk relationship. The DQS delay established through this procedure helps to
ensure tDQSS specifications in systems using a fly-by topology by deskewing the trace
length mismatch. Based on the 8-phase PHY architecture, the DQS signal is derived from
one of the eight dll_clocks, so it is adjustable with a minimum step of 1/8 of the clock period
(max_error). The sampled value coming from the memory is processed so that the tDQSS
value can vary from 0 to 1/8 Tclk (see Figure 38).
For the DDR2 you have to find the right alignment without the write-leveling support.
Figure 38. DQS strobe timing waveform
mem_clk
tDQSS
DQS
Write DQ/DM timing characteristics
Similar to the creation of the write DQS signal, the write DQ/DM signals are created through
a clock derived from one of the eight dll_clocks.
The clock generating DQ/DM signals should always be set two phases before the clock
generating DQS. This would ensure a 90-degree phase difference between DQ and DQS.
Due to the path delay difference between DQ and DQS, the maximum error respect to the
ideal case is one phase off, so the max error is 1/8 Tclk.
The maximum skew among the DQ/DM signals in a single data slice is about 30 ps.
For a frequency of 533.3 MHz, the period of the clock is TCLK= 1.875 ns.
Doc ID 023063 Rev 5
177/200
Timing characteristics
Table 91.
SPEAr1340
DQ/DM signals timing characteristics
Symbol
Description
Value
Unit
1.875
ns
TCLK
Mem_clk period
Ts
Setup time for DQ/DM receive data
204
ps
Th
Hold time for DQ/DM receive data
439
ps
The setup time is calculated considering:
●
maximum error = 235 ps
●
maximum data skew = 30 ps
Ts calculation formula
Ts= Tclk/4–data_skew –max_error= 469 ps – 30 ps – 235 ps= 204 ps
The hold time, instead, is calculated considering:
●
maximum error = 0 ps
●
maximum data skew = 30 ps
Th calculation formula
Th= Tclk/4–data_skew + max_error= 469 ps – 30 ps + 0 ps= 439 ps
Figure 39. DQS strobe and DQ/DM signals timing waveform
Ideal position
Ts
DQS
Th
max
error
DQ/DM
data skew
Read DQS and DQ timing characteristics
The DDR PHY is a sampling-based architecture; this means that the incoming DQS and DQ
signals are sampled by each of the eight dll_clocks. DM signals are not used for reading.
For DQS strobe, a pattern of “000111” is used to detect a rising edge and a pattern of
“111000” is used to detect a falling edge. The maximum error to detect these edges is 1/8
Tclk.
The incoming DQ data is sampled, then the sampled data is analyzed in a window of 4
sampled bits relative to detected DQS edges. The maximum skew, without the contribution
of the pads, between the DQ signals in a single data slice is about 20 ps.
For a frequency of 533.3 MHz, the period of the clock is TCLK= 1.875 ns.
178/200
Doc ID 023063 Rev 5
SPEAr1340
Timing characteristics
Table 92.
DQS and DQ signals timing characteristics
Symbol
Description
Value
Unit
1.875
ns
TCLK
Mem_clk period
Ts
Setup time for DQS/DQ receive data
214
ps
Th
Hold time DQS/DQ receive data
449
ps
The setup time is calculated considering:
●
maximum error = 235 ps
●
maximum data skew = 20 ps
Ts calculation formula
Ts= Tclk/4–data_skew –max_error= 469 ps – 20 ps – 235 ps = 214 ps
The hold time, instead, is calculated considering:
●
maximum error = 0 ps
●
maximum data skew = 20 ps
Th calculation formula
Th= Tclk/4-data_skew + max_error= 469 ps – 20 ps + 0 ps = 449 ps
Figure 40. DQS and DQ signals timing waveform
Signals at memory interface
DQS
D0
DQ
Signals at PHY interface
D1
D2
D3
D1
D2
D3
DQS edge
detection
0 0 0 1 1 1
DQS sampled pattern
0 0 0 1 1 1
max
error
DQS
Th
Ts
D0
DQ
data skew
1 1 1 1
DQ sampled pattern
Nominal center
of DQ window
Doc ID 023063 Rev 5
179/200
Timing characteristics
5.13
SPEAr1340
PWM timing characteristics
This section describes the timing characteristics of the four PWM generators.
The timing characterization is performed assuming an output load capacitance of 2 to 10 pF
on the four outputs.
Table 93.
PWM timing characteristics
Symbol
tw
5.14
Parameter
Pulse width (T= programmed pulse width)
Min
Max
Unit
T− 2.2
T+ 2.2
ns
SMI timing characteristics
This section describes the timing characteristics of the serial NOR Flash controller.
The timing characterization is performed assuming an output load capacitance of 10 pF on
all outputs, an input transition of 2ns on all the inputs and using PLL1 as source of the clock
for the timing extraction.
Figure 41. SMI timing waveform
TCLKhigh
SMI_CLK
(output)
TCLKlow
TD
SMI_DATAOUT
SMI_DATAIN
Ts
Th
SMI_CS0n,SMI_CS1n
TCSf
Table 94.
Symbol
SMI timing characteristics
Min
Max
Unit
24
–
ns
TCLKhigh SMI_CLK output pulse high
T/2 - 1
–
ns
TCLKlow SMI_CLK output pulse low
T/2 - 1
–
ns
TCLK
180/200
TCSr
Description
SMI_CLK clock period
TD
SMI_CLK out to SMI_DATAOUT output delay
0.81
9.65
ns
Ts
Setup time for SMI_DATAIN data
3.72
–
ns
Th
Hold time for SMI_DATAIN data
-6.46
–
ns
Doc ID 023063 Rev 5
SPEAr1340
Timing characteristics
Table 94.
SMI timing characteristics (continued)
Symbol
Description
TCSf
Min and max delay of falling edge of SMI_CLK to
falling edge of SMI_CS0n and SMI_CS1n
TCSr
Min and max delay of rising edge of SMI_CLK to
rising edge of SMI_CS0n and SMI_CS1n (1)
Min
Max
Unit
0.75
9.60
ns
0.75+THCLK 9.60+THCLK
ns
1. THCLK is the period of the programmable HCLK clock
5.15
SSP timing characteristics
This section describes the timing characteristics of the synchronous serial port.
The timing characterization is performed assuming an input transition of 2 ns on all the
inputs and an output load capacitance of 10 pF on all outputs and using PLL1 as the clock
source for the timing extraction.
Note:
The characterization of the SSP has been done using the SPI protocol.
Figure 42. SSP_SCK waveform
TSSP_SCK
TSSP_SCK(H)
SSP_SCK
(SPO=0)
TSSP_SCK(L)
SSP_SCK
(SPO=1)
The clock polarity parameter (SPO) indicates the state of the clock signal when it is idle.
This can be programmed in the SSPCR0 register (refer to RM0089, Reference
manual, SPEAr1340 address map and registers).
SPO= 0
The clock idle state is low.
SPO= 1
The clock idle state is high.
Doc ID 023063 Rev 5
181/200
Timing characteristics
5.15.1
SPEAr1340
SPI master mode timings
SSP_SCK is the SPI output clock. The SSP_SCK frequency is programmable and derived
from PCLK, for details refer to the SSP section of the RM0078, Reference manual,
SPEAr1340 architecture and functionality.
Table 95.
Symbol
SPI master mode timing characteristics of SSP_SCK
Parameters
Min
Max
Unit
TSSP_SCK
SSP_SCK clock period
48
TSSP_SCK(H)
SSP_SCK clock high
pulse width
(TSSP_SCK/2) - 1
(TSSP_SCK/2) + 1
TSSP_SCK(L)
SSP_SCK clock low
pulse width
(TSSP_SCK/2) - 1
(TSSP_SCK/2) + 1
Programmable
ns
Figure 43. SPI master mode external timing waveform (SPH= 0, SPO =0 )
SSP_SS#n
TD3
TD1
SSP_SCK
(SPO=0)
TSU
SSP_MISO
(input)
TH
MSB IN
DATA
LSB IN
TD2
SSP_MOSI
(output)
Table 96.
Symbol
MSB OUT
DATA
LSB OUT
SPI master mode timing characteristics (SPH = 0, SPO=0)
Parameters
Min
Max
TSU
Setup time, MISO (input) valid before
SSP_SCK (output) rising edge
17
TH
Hold time, MISO (input) valid after SSP_SCK
(output) rising edge
0
TD1
Delay time, SSP_SS#n (output) falling edge to
first SSP_SCK (output) rising edge
TSSP_SCK-8
TSSP_SCK-2
TD2
Delay time, SSP_SCK (output) falling edge to
MOSI (output) transition
-4.64
12.4
TD3
Delay time, SSP_SCK (output) rising edge to
SSP_SS#n (output) rising edge
Unit
ns
ns
ns
182/200
Doc ID 023063 Rev 5
TSSP_SCK + 2 TSSP_SCK +8
SPEAr1340
Timing characteristics
Figure 44. SPI master mode external timing waveform (SPH= 0, SPO =1 )
SSP_SS#n
TD3
TD1
SSP_SCK
(SPO=1)
TSU
SSP_MISO
(input)
TH
MSB IN
DATA
LSB IN
TD2
SSP_MOSI
(output)
Table 97.
MSB OUT
DATA
LSB OUT
SPI master mode timing characteristics (bit SPH = 0, SPO=1)
Symbol
Parameters
Min
Max
TSU
Setup time, MISO (input) valid before
SSP_SCK (output) falling edge
TH
Hold time, MISO (input) valid after SSP_SCK
(output) falling edge
0
TD1
Delay time, SSP_SS#n (output) falling edge to
first SSP_SCK (output) falling edge
TSSP_SCK-8
TSSP_SCK-2
TD2
Delay time, SSP_SCK (output) rising edge to
MOSI (output) transition
-3.8
12.5
TD3
Delay time, SSP_SCK (output) falling edge to
SSP_SS#n (output) rising edge
Unit
17.8
ns
ns
ns
TSSP_SCK + 2 TSSP_SCK +8
Figure 45. SPI master mode external timing waveform (SPH = 1, SPO = 0)
TD3
SSP_SS#n
TD1
SSP_SCK
(SPO=0)
TSU
SSP_MISO
(input)
TH
MSB IN
DATA
LSB IN
TD2
SSP_MOSI
(output)
MSB OUT
Doc ID 023063 Rev 5
DATA
LSB OUT
183/200
Timing characteristics
Table 98.
SPEAr1340
SPI master mode timing characteristics (clock phase bit SPH = 1, SPO=0)
Symbol
Parameters
Min
Max
Unit
TSU
Setup time, MISO (input) valid before
SSP_SCK (output) falling edge
TH
Hold time, MISO (input) valid after SSP_SCK
(output) falling edge
0
TD1
Delay time, SSP_SS#n (output) falling edge to
first SSP_SCK (output) falling edge
TSSP_SCK-8
TSSP_SCK-2
TD2
Delay time, SSP_SCK (output) rising edge to
MOSI (output) transition
-3.8
12.5
TD3
Delay time, SSP_SCK (output) falling edge to
SSP_SS#n (output) rising edge
17.8
ns
ns
ns
TSSP_SCK + 2 TSSP_SCK +8
Figure 46. SPI master mode external timing waveform (SPH = 1, SPO = 1)
TD3
SSP_SS#n
TD1
SSP_SCK
(SPO=1)
TSU
SSP_MISO
(input)
TH
MSB IN
DATA
LSB IN
TD2
SSP_MOSI
(output)
Table 99.
Symbol
MSB OUT
DATA
LSB OUT
SPI master mode timing characteristics (clock phase bit SPH = 1, SPO=1)
Parameters
Min
Max
TSU
Setup time, MISO (input) valid before
SSP_SCK (output) rising edge
TH
Hold time, MISO (input) valid after SSP_SCK
(output) rising edge
0
TD1
Delay time, SSP_SS#n (output) falling edge to
first SSP_SCK (output) rising edge
TSSP_SCK-8
TSSP_SCK-2
TD2
Delay time, SSP_SCK (output) falling edge to
MOSI (output) transition
-4.64
12.4
TD3
Delay time, SSP_SCK (output) rising edge to
SSP_SS#n (output) rising edge
Unit
17
ns
ns
ns
5.15.2
184/200
SPI slave mode timings
Doc ID 023063 Rev 5
TSSP_SCK + 2 TSSP_SCK +8
SPEAr1340
Timing characteristics
Table 100. SSP timing characteristics (slave mode)
Symbol
Parameters
Min
Max
254 * 256 * TPCLK
TSSP_SCK
SSP_CLK_IN input clock period
12 * TPCLK
TSSP_SCK(H)
SSP_SCK clock high pulse width
(TSSP_SCK - TPCLK)/2
TSSP_SCK(L)
SSP_SCK clock low pulse width
(TSSP_SCK - TPCLK)/2
TSU
Data input setup time
4 * TSSP_SCK
TH
Data input hold time
0
TD
Data output delay
3 * TSSP_SCK
Doc ID 023063 Rev 5
Unit
ns
4 * TSSP_SCK
185/200
Timing characteristics
5.16
SPEAr1340
UART timing characteristics
tUARTCLK = 1/fUARTCLK with fUARTCLK in MHz
fBAUDRATE = the programmed baud rate frequency
For information related to baud rate generation, refer to:
●
Section 2.14: UART ports.
●
RM0078, Reference manual, SPEAr1340 architecture and functionality
Figure 47. UART transmit and receive waveform
UARTTXD
UARTRXD
Start bit
B0
tBIT
B2- - - B7
B1
Pbit
tBIT
Stop Bit
tBIT
tBIT
Table 101. UART transmit timing characteristics
Symbol
tBIT
Parameters
UART duration of transmit data bit (B0..B7),
Parity bit (Pbit), Start bit, Stop bits
Min
Max
Unit
1/fbaudrate tUARTCLK -1
1/fbaudrate +
tUARTCLK +1
ns
Table 102. UART receive timing characteristics
Symbol
Parameter
tBIT
Pulse duration of receive data bit
(B0 ..B7), Parity bit (Pbit), Start
bit, Stop bits(1)
Conditions
Min
Max
Unit
Baudrate = 6
Mbps
1/fbaudrate (tUARTCLK/2)
1/fbaudrate +
(tUARTCLK/2)
ns
1/fbaudrate -1/
(16*fbaudrate)
1/fbaudrate +
(16*fbaudrate)
ns
1. The time margin is with respect to a single bit accumulation and not with respect to the whole UART frame.
The start bit is sampled after the 8th baud cycle after a low is detected at input, Subsequently, each bit is
sampled at consecutive 16 baud cycles.
Note:
186/200
The above min. and max. values allow a deviation of ±1 baud cycle in a single bit time. The
accumulated deviation of a UART character frame must not exceed 3/(16*fbaudrate).
Doc ID 023063 Rev 5
SPEAr1340
5.16.1
Timing characteristics
IrDA timing characteristics
Figure 48 and Figure 49 show timing waveforms based on 1 start bit, 5 data bits and 1 stop
bit.
fBAUDRATE = the programmed baud rate frequency
tUARTCLK = 1/fUARTCLK
Figure 48. IrDA transmit timing waveform
tTXPW
UART_TXD
(SIROUT)
0
Start bit
1
0
0
0
0
tTXBIT
1
Stop bit
Table 103. IrDA transmit timing characteristics
Symbol
Parameter
tTXBIT
IrDA transmit mode bit duration
tTXPW
IrDA transmit mode pulse width, start bit
data bit value 0 (high pulse)
Min
Max
Unit
1/fbaudrate tUARTCLK -1
1/fbaudrate +
tUARTCLK +1
(3/16)*1/fbaudrate tUARTCLK -1
(3/16)*1/fbaudrate
+ tUARTCLK +1
ns
Figure 49. IrDA receive timing waveform
UART_RXD
(SIRIN)
0
0
1
0
0
0
Stop bit
tRXPW
Start bit
1
tRXBIT
Table 104. IrDA receive timing characteristics
Symbol
Parameter
tRXBIT
IrDA receive mode bit duration
tRXPW
IrDA receive mode pulse width, start
bit data bit value 0 (low pulse)
Min
Max
1/fbaudrate tUARTCLK -1
1/fbaudrate +
tUARTCLK +1
Unit
ns
(3/16)*1/fbaudrate
Doc ID 023063 Rev 5
187/200
Timing characteristics
5.17
SPEAr1340
VIP timing characteristics
This section describes the timing characteristics of the video input parallel block.
The timing characterization is performed assuming an input transition of 2 ns on all the
inputs and using VIP_PIXCLK as source of the clock for the timings extraction.
Figure 50. VIP timing waveform
TCLKhigh
VIP_PIXCLK
(input)
TCLKlow
VIP_R[0..15], VIP_G[0..15],
VIP_B[0..15], VIP_VSYNC,
VIP_DE
Ts
Th
Table 105. VIP timing characteristics
Symbol
188/200
Description
Min
Max
Unit
TCLK
VIP_PIXCLK clock period
6.5
–
ns
TCLKhigh
VIP_PIXCLK pulse high
2.9
–
ns
TCLKlow
VIP_PIXCLK pulse low
2.9
–
ns
Ts
Setup time for VIP data
6
ns
Th
Hold time for VIP data
-0.71
ns
Doc ID 023063 Rev 5
SPEAr1340
6
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Table 106. PGBA (23 x 23 mm, 0.8 mm pitch) package mechanical data
Dimensions
Databook (mm)
Drawing (mm)
Ref.
Min
Typ
A
A1
Max
Min
Typ
Max
2.06
1.80
1.93
2.06
0.30
0.40
0.50
0.24
A2
0.56
0.56
A4
0.97
0.97
b
0.40
0.50
0.60
0.40
0.50
0.60
D
22.80
23.00
23.20
22.80
23.00
23.20
D1
21.60
21.60
D2
20.00
20.00
E
22.80
23.00
23.20
22.80
23.00
E1
21.60
21.60
E2
20.00
20.00
e
0.8
0.8
F
0.7
0.7
23.20
ddd
0.20
0.20
eee
0.25
0.25
fff
0.10
0.10
Doc ID 023063 Rev 5
189/200
Package information
SPEAr1340
Figure 51. PGBA package - top view
190/200
Doc ID 023063 Rev 5
SPEAr1340
Package information
Figure 52. PGBA package - bottom view
Table 107. PGBA (23 x 23 mm, 0.8 mm pitch) package thermal characteristics
Symbol
ΘJA
ΘJB
ΘJC
(1)
ΨJC
Parameter
Thermal resistance junction-to-ambient
Value
Unit
16.5
Thermal resistance junction-to-board
9
Thermal resistance junction-to-case
5
°C/W
Junction-to-case thermal characterisation parameter
0.23
1. Measured on JESD51 2s2p test board.
Doc ID 023063 Rev 5
191/200
Acronyms
SPEAr1340
Appendix A
Acronyms
Table 108. List of acronyms
192/200
Acronym
Definition
ACP
Accelerator coherence port
ADC
Analog-to-digital converter
AES
Advanced encryption standard
AHB
AMBA high speed bus
AMBA
Advanced microcontroller bus architecture
AMP
Asymmetric multiprocessing
APB
Advanced peripheral bus
BIST
Built-In self test
CBC
Cipher block chaining
CF
Compact flash
CMOS
Complimentary metal-oxide semiconductor
CPU
Central processing unit
CRC
Cyclic redundancy check
DDR
Double data rate
DES
Data encryption standard
DLL
Delay locked loop (when applied to DDR memories)
DMA
Direct memory access
EMI
External memory interface
EP
Endpoint
ETM
Embedded trace macrocell
FIFO
First-in-first-out
FIQ
Fast interrupt request
FPGA
Field programmable gate array
FSMC
Flexible static memory controller
GB
Giga bytes
GMII
Gigabit media independent interface
GPIO
General purpose input / output
GPU
Graphics processing unit
HLOS
High-level operating system
HMI
Human machine interface
HW
Hardware
IrDA
Infrared data association
Doc ID 023063 Rev 5
SPEAr1340
Acronyms
Table 108. List of acronyms (continued)
Acronym
Definition
IRQ
Interrupt request
JPEG
Joint photographic experts group
JTAG
Joint test action group
KB
Kilo bytes
LCD
Liquid color display
LSB
Least significant bit
MAC
Media access control
MB
Mega bytes
MCU
Microcontroller unit
MD5
Message digest 5
MII
Media independent interface
MMC
Multimedia card
MMU
Memory management unit
MSB
Most significant bit
ODT
On-die termination
OTG
On-the-go (USB)
PCIe
PCI express
PHY
Physical (device, transceiver, layer)
PLL
Real-time operating system
PTM
Program trace macrocell
PWM
Pulse width modulation
RAM
Random access memory
RAS
Reconfigurable array subsystem
RC
Root complex
RF
Radio frequency
RFU
Reserved for future use
RGMII
Reduced gigabit media independent interface
RISC
Reduced instruction set computing
RMII
Reduced media independent interface
ROM
Read only memory
RTC
Real-time clock
RTOS
Real-time operating system
RX
Receive
SATA
Serial ATA
SHA-1
Secure hash algorithm
Doc ID 023063 Rev 5
193/200
Acronyms
SPEAr1340
Table 108. List of acronyms (continued)
194/200
Acronym
Definition
SIR
Serial InfraRed
SMI
Serial memory interface
SMP
Symmetric multiprocessing
SoC
System-on-chip
SPI
Serial peripheral interface
SPP
Standard parallel port
SRAM
Static RAM
SSP
Synchronous serial port
SSTL
Stub series terminated logic
SW
Software
TCM
Tightly coupled memory
TFT
Thin film transistor, a display technology
TTL
Transistor-transistor logic
TX
Transmit
UART
Universal asynchronous receiver transmitter
USB
Universal serial bus
VIC
Vectored interrupt controller
WDT
Watchdog timer
xD
Extreme digital (card standard)
Doc ID 023063 Rev 5
SPEAr1340
Copyright statement
Appendix B
Copyright statement
The recipient acknowledges that the use or further commercialization of the ST products by the recipient, its customers,
subcontractors or end users, may be subject to Essential Technology IPRs. The recipient commits to inform its
subcontractors and its customers of the above. The recipient expressly agrees that ST shall under no circumstances be
responsible for obtaining and maintaining any licenses to any Essential Technology IPRs necessary for the full or partial
exploitation of the ST products. "Essential Technology IPRs" shall mean any technology and intellectual property thereof
which includes but it is not limited to H.264 codec, MPEG-4 / H.263 / Sorenson Spark decoder, MPEG-2 / MPEG-1 decoder,
JPEG codec, VC-1 decoder, RV decoder, VP6 decoder, VP7/VP8 decoder, AVS decoder, DivX decoder.
Doc ID 023063 Rev 5
195/200
Revision history
7
SPEAr1340
Revision history
Table 109. Document revision history
Date
Revision
05-Apr-2012
1
Changes
Initial release.
Features
– Added SD interface to bullet “1x memory card interface”.
– Changed the bullet related to LCD from “LCD display controller, up
to 1920 x 1200,60 Hz, 24 bpp” to “LCD display controller,
incl.support for Full HD, 1920 x 1080, 60 Hz, 24 bpp”.
– Added new sub-bullets “Secure boot support” and “JTAG disable
option” under “Security” security.
Chapter 6: Package information
Updated Table 107: PGBA (23 x 23 mm, 0.8 mm pitch) package
thermal characteristics:
– Changed ΘJB value from 8.2 to 9 °C/W.
– Added ΘJA and ΨJC values.
– Added footnote.
– Changed table title.
03-Aug-2012
196/200
2
Chapter 2: Device functions
Section 2.14: UART ports:
– Deleted bullet “Support baud rate up to UARTCLK_max_freq/16”.
– Changed bullet “Programmable by software” to “Programmable by
software: up to 125 MHz with a maximum baud rate of 7.81 Mbps
(125/16).”
Section 2.17: A/D converter (ADC): Changed bullet : ”10-bit
resolution” to “10-bit resolution for the analog cell which can be
extended up to 17 bits with embedded oversampling techniques
performed by the controller”.
Section 2.24: Camera input interfaces (CAM): Changed the
numbering of CAMx from “CAM0, CAM1, CAM2 and CAM3” into
“CAM1, CAM2, CAM3 and CAM4”.
Section 2.23: Video encoder (VENC): updated the features.
Section 2.19: General purpose I/O (GPIO/XGPIO): Added
information about XGPIO169 in the first bullet of “XGPIO main
features” section.
Section 2.37: Temperature sensor (THSENS):
– Moved ‘offset-related’ bullet closer to ‘measurement range’ bullet
as they are related.
– Removed reference to “calibration” from the ‘offset-related’ bullet.
Section 2.2: Multilayer interconnect matrix (BUSMATRIX): Corrected
a typo error in “Single interrupt for outband signaling” bullet.
Section 2.3.1: BootROM: added SD/MMC to the list of booting
devices.
Section 2.1: CPU subsystem:
Doc ID 023063 Rev 5
SPEAr1340
Revision history
Table 109. Document revision history (continued)
Date
03-Aug-2012
Revision
2 (cont’d)
Changes
Replaced “Parity support to detect internal memory failures during
runtime” by “Parity support to detect runtime failures for other internal
memories”.
Section 2.34: Clock and reset system: corrected a typo error in bullet
“PLL2 programmable dithered PLL, dedicated for the 125 MHz clock
of the Gigabit Ethernet MACs”
Section 2.4: Multiport DDR controller (MPMC): Split bullet “Exclusive
and locked accesses support weighted round-robin arbitration
scheme support to ensure high memory bandwidth utilization” into 2
separate ones.
Section 2.9: Giga/Fast Ethernet port (GMAC): Deleted the phrase:
“note that this timing information is shared between the two Giga
Ethernet controllers to provide highest precision in “bridging”
operations”, since only one Giga Ethernet controller is available.
Section 2.10: PCI Express controller (PCIe): updated the
introduction.
Section 2.26: I2S digital audio ports (I2S): removed bullet “External
SCLK gating and enable signal”, as SCLK is an internal signal.
Section 2.27: S/PDIF digital audio port: removed bullet “Can detect
IEC-61937 compressed data” and related footnote from the ‘input’
features group.
Section 2.20: LCD display controller (CLCD): replaced bullet
“Programmable pixel clock frequency up to bus clock frequency” by
“Programmable pixel clock frequency up to 148MHz (1080p
resolution)”.
Section 2.22: Video decoder (VDEC):
– Updated the bullet “H.263 profile and level” as follows:
- added the image size limitation to Profile 0
- deleted sub-bullet “Sorenson Spark” and added it as a separate
bullet
– Split bullet “VP6, VP7 and VP8, versions 0-3” into two bullets:
- VP6 and VP7, versions 0-3
- VP8 version 2 (WebM)
– Added sub-bullet “Baseline interleaved” to bullet “JPEG, all
common sampling formats”.
– Bullet “Input image size”: added limitation to standalone mode.
– Bullet “Image cropping / digital zoom”: added limitation “Usable
only for JPEG or stand-alone mode”.
Section 2.29: Cryptographic co-processor (C3):
– Removed numerical IDs (such as ID: 0x00001020).
– Removed Channel 7: empty bullet.
Section 2.32: General purpose timers (GPT): corrected “8-bit timer
clock prescaler” to “4-bit timer clock prescaler” in the first two bullets.
Section 2.19: General purpose I/O (GPIO/XGPIO): updated the first
paragraph of introduction.
Section 2.22: Video decoder (VDEC):
– Changed “Supported video profiles” to “Supported video codecs”.
– Updated bullet “H.264 profile and level”.
Doc ID 023063 Rev 5
197/200
Revision history
SPEAr1340
Table 109. Document revision history (continued)
Date
Revision
Changes
Section 2.38: One-time programmable antifuse (OTP): updated Bank
M description.
Updated Section 2.6: Flexible static memory controller (FSMC).
Section 2.4: Multiport DDR controller (MPMC): added a note at the
first bullet referring to a limitation of maximum memory address
space usage.
Section 2.24: Camera input interfaces (CAM): added a note about
feature capability.
Section 2.37: Temperature sensor (THSENS):
– Changed measurement of junction temperature starting value from
0 to 20 ° C.
– Added typical correction value.
03-Aug-2012
2 (cont’d)
Chapter 3: Pin description
Updated the introduction.
Table 3: Ball characteristics:
– Modified the power supply for USB_UOC_ID from
“USB_UOC_VDD3V3” to “USB_VDD2V5”.
– Modified the power supply for USB_UOC_VBUS from
“USB_UOC_VDD3V3” to “5V”.
– Added a footnote about XGPIO169
Inserted description for SPDIF_IN and SPDIF_OUT in Table 27:
Audio - S/PDIF signals description.
Updated footnote under Figure 6: SPEAr1340 multiplexing scheme.
Added a footnote to Table 16: Connectivity - PCIe/SATA physical
interface (MIPHY) signals description.
Updated STRAP5 description in Table 37: Strapping options.
Added a footnote related to chip selection and booting in Table 11:
Memories - FSMC signals description, Table 12: Memories - SMI
signals description and Table 38: Hardware boot selection
(STRAP[0..3])
Table 19: Connectivity - USB 2.0 PHY signals description: updated
the description of USB_UOC_VBUS adding the phrase “The voltage
range is 0-5.25 V”.
Chapter 4: Electrical characteristics
Added a reference to AN3317 Application note at the beginning of
the chapter.
Section 4.3: Clocking parameters:
– Added Table 42: MCLK oscillator characteristics and new Section :
MCLK generated from an external clock source.
– Added Table 44: RTC oscillator characteristics and new Section :
RTC clock generated from an external clock source.
Changed I/O types from TTL1, TTL2, TTL3 and PCI/3V3 TTL to
IOTYPE1, IOTYPE2, IOTYPE3 and IOTYPE4 (throughout
document).
198/200
Doc ID 023063 Rev 5
SPEAr1340
Revision history
Table 109. Document revision history (continued)
Date
03-Aug-2012
Revision
2 (cont’d)
Changes
Updated Section 4.4.1: 3V3/2V5/1V8 I/O buffers
(IOTYPE1/IOTYPE2/IOTYPE3) and Section 4.4.2: IOTYPE4 I/O
buffers.
Updated Section 4.5: Voltage regulator characteristics.
Inserted Section 4.7: Required external components (moved from
Pin description chapter).
Added Section 4.6: MiPHY characteristics
Updated Section 4.10: Reset release:
– Updated the introduction.
– Renamed and updated Figure 14: Cold reset release.
– Added new Figure 15: Warm reset release.
Chapter 5: Timing characteristics
– Added new Section 5.1: Reset timing characteristics.
– Updated the entire chapter (timing waveforms and tables for each
IP) with new timing information.
– Removed RGMII information (see SPEAr1340 Errata sheet for
more information).
11-Oct-2012
3
Updated Section 2.29: Cryptographic co-processor (C3)
Added infomation on compensation cells Table 2:
Headers/abbreviations
Added I/O compensation cell column to table Table 3: Ball
characteristics
Updated Table 59: Reset timing characteristics
Updated Section 5.7: GMAC timing characteristics
Corrected Figure 34: MCIF - SD/SDIO/MMC mode timing waveform
Updated t2i in Table 88: MCIF - CF true IDE PIO mode timing
characteristics
Updated SSP Figure 42, Table 100 added Table 95
Updated TD3 in Figure 43 and Figure 44
Updated notes below tables in Section 5.9: I2C timing characteristics
Corrected Table 41: SMI timing waveform
Updated Section 5.16: UART timing characteristics
26-10-2012
4
Updated Figure 15: Warm reset release on page 149
Updated Table 100: SSP timing characteristics (slave mode)
16-Nov-2012
5
Changed description of ball P3 MIPHY0_VDD2PLL2V5 from power
to voltage regulator output in Table 4: Power supply signals
description.
Doc ID 023063 Rev 5
199/200
SPEAr1340
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
200/200
Doc ID 023063 Rev 5