Intel® 41210 Serial to Parallel PCI Bridge Datasheet Product Features ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ PCI Express Specification, Revision 1.0a Support for single x8, single x4 or single x1 PCI Express operation. 64-bit addressing support 32-bit CRC (cyclic redundancy checking) covering all transmitted data packets. 16-bit CRC on all link message information. Raw bit-rate on the data pins of 2.5 Gbit/s, resulting in a raw bandwidth per pin of 250 MB/s. Maximum realized bandwidth on PCI Express interface is 2 GB/s (in x8 mode) in each direction simultaneously, for an aggregate of 4 GB/s. PCI Local Bus Specification, Revision 2.3. PCI-to-PCI Bridge Specification, Revision 1.1. PCI-X Addendum to the PCI Local Bus Specification, Revision 1.0b 64-bit 66 MHz, 3.3 V, NOT 5 V tolerant. On Die Termination (ODT) with 8.3KOhm pull-up to 3.3V for PCI signals. Six external REQ/GNT Pairs for internal arbiter on segment A and B respectively. Programmable bus parking on either the last agent or always on the 41210 Bridge ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 2-level programmable round-robin internal arbiter with Multi-Transaction Timer (MTT) External PCI clock-feed support for asynchronous primary and secondary domain operation. 64-bit addressing for upstream and downstream transactions Downstream LOCK# support. No upstream LOCK# support. PCI fast Back-to-Back capable as target. Up to four active and four pending upstream memory read transactions Up to two downstream delayed (memory read, I/O read/write and configuration read/ write) transaction. Tunable inbound read prefetch algorithm for PCI MRM/MRL commands Device hiding support for secondary PCI devices. Secondary bus Private Memory support via Opaque memory region Local initialization via SMBus Secondary side initialization via Type 0 configuration cycles. Full peer-to-peer read/write capability between the two secondary PCI segments. Order Number: 278875-005US May 2005 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Intel may make changes to specifications and product descriptions at any time, without notice. The Intel® 41210 Serial to Parallel PCI Bridge may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com. AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel Centrino, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, RemoteExpress, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside, TokenExpress, VoiceBrick, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2005, Intel Corporation 2 Contents Contents 1 Introduction.................................................................................................................................... 7 1.1 1.2 2 About This Document ........................................................................................................... 7 Product Overview ................................................................................................................. 7 Signal Description ......................................................................................................................... 8 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 On Die Termination (ODT).................................................................................................... 8 PCI Express Interface.........................................................................................................10 PCI Bus Interface (Two Instances) .....................................................................................10 PCI Bus Interface 64-Bit Extension (Two Interfaces) .........................................................12 PCI Bus Interface Clocks and, Reset and Power Management (Two Interfaces) ..............13 Interrupt Interface (Two Interfaces) ....................................................................................13 Reset Straps .......................................................................................................................13 SMBus Interface .................................................................................................................15 Miscellaneous Pins .............................................................................................................15 Electrical and Thermal Characteristics .....................................................................................17 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 DC Voltage and Current Specifications ..............................................................................17 AC Specifications................................................................................................................25 Voltage Filter Specifications ...............................................................................................27 VCC15 and VCC33 Voltage Requirements ........................................................................27 Timing Specifications ..........................................................................................................28 41210 Bridge Power Consumption .....................................................................................36 Power Delivery Guidelines..................................................................................................37 Reference and Compensation Pins ....................................................................................37 Thermal Specifications .......................................................................................................38 Package Specification and Ballout ............................................................................................40 4.1 4.2 4.3 4.4 Package Specification ........................................................................................................40 Ball Map ..............................................................................................................................42 Signal List, sorted by Ball Location.....................................................................................44 Signal List, sorted by Signal Name.....................................................................................48 Figures 1 2 3 4 5 6 7 8 9 10 Minimum Transmitter Timing and Voltage Output Compliance Specification.............................22 Compliance Test/Measurement Load.........................................................................................23 Minimum Receiver Eye Timing and Voltage Compliance Specification .....................................23 Voltage Requirements VCC33 versus VCC15 ...........................................................................27 PCI Output Timing ......................................................................................................................31 PCI Input Timing .........................................................................................................................31 PCI-X 3.3V Clock Waveform ......................................................................................................33 41210 Bridge Reference and Compensation Circuit Implementations .......................................38 41210 Bridge Package Dimensions (Top View) .........................................................................40 41210 Bridge Package Dimensions (Side View) ........................................................................41 3 Contents Tables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 4 ODT Signals ................................................................................................................................. 9 PCI Express Interface Pins......................................................................................................... 10 PCI Interface Pins....................................................................................................................... 11 PCI Interface Pins: 64-Bit Extensions......................................................................................... 12 PCI Clock and Reset Pins .......................................................................................................... 13 Interrupt Interface Pins ............................................................................................................... 13 Reset Strap Pins......................................................................................................................... 14 SMBus Interface Pins ................................................................................................................. 15 Miscellaneous Pins ..................................................................................................................... 15 Intel® 41210 Bridge DC Voltage Specifications ......................................................................... 17 DC Characteristics Input Signal Association .............................................................................. 18 DC Input Characteristics............................................................................................................. 18 DC Characteristic Output Signal Association ............................................................................. 18 DC Output Characteristic............................................................................................................ 19 Differential Transmitter (TX) DC Output Specifications .............................................................. 19 Differential Receiver (RX) DC Input Specifications .................................................................... 21 DC Specifications for PCI and PCI-X 3.3 V Signaling ................................................................ 24 DC Specification for Input Clock Signals .................................................................................... 25 DC Specification for Output Clock Signals ................................................................................. 25 Conventional PCI 3.3V AC Characteristics ................................................................................ 25 PCI-X 3.3V AC Characteristics ................................................................................................... 26 Differential Transmitter (TX) AC Output Specifications .............................................................. 28 Differential Receiver (RX) AC Input Specifications..................................................................... 29 PCI Interface Timing................................................................................................................... 30 PCI-X 3.3V Signal Timing Parameters ....................................................................................... 31 PCI and PCI-X Clock Timings .................................................................................................... 33 41210 Bridge Clock Timings....................................................................................................... 35 41210 Bridge Maximum Voltage Plane Currents ....................................................................... 37 41210 Bridge Thermal Voltage Plane Currents .......................................................................... 37 41210 Bridge Thermal Specifications ......................................................................................... 39 Signal List, sorted by Ball Name................................................................................................. 44 Signal List, sorted by Signal Name............................................................................................. 48 Contents Revision History Date Revision Description May 2005 005 Revised Table 1, Table 9, and Section 3.8 April 2005 004 Revised Table 26 “PCI and PCI-X Clock Timings” on page 33 CLK Cycle Time parameters September 2004 003 Revised first page PCI Express operation description; updated information in Table 2. June 2004 002 Added Chapter 2. Removed original Sections 3.6 and 3.7. Updated VCC information to VCC15. September 2003 001 Initial release 5 Order Number: 278875-005US May 2005 Datasheet — 41210 Bridge Introduction 1.1 1 About This Document This document provides information on the Intel® 41210 Serial to Parallel PCI Bridge, including a functional overview, signal descriptions, mechanical data, package signal location and bus functional waveforms. 1.2 Product Overview The Intel® 41210 Serial to Parallel PCI Bridge (also called the 41210 Bridge) integrates two PCI Express-to-PCI/PCI-X bridges. Each bridge follows the PCI-to-PCI Bridge programming model. The PCI Express port is compatible with the PCI Express Specification, Revision 1.0a. The two PCI bus interfaces are compatible with the PCI Local Bus Specification, Revision 2.3 and PCI-X Addendum to the PCI Local Bus Specification, Revision 1.0b. 7 41210 Bridge — Datasheet Signal Description 2 The “#” symbol at the end of a signal name indicates that the active, or asserted state occurs when the signal is at a low voltage level. When “#” is not present after the signal name the signal is asserted when at the high voltage level. The following notations are used to describe the signal type: 2.1 I: Input pin O: Output pin OD: Open-drain Output pin I/O: Bidirectional Input/Output pin I/OD: Bidirectional Input/Open-drain Output pin On Die Termination (ODT) The 41210 Bridge incorporates on-die termination for most of the PCI interface signals. This eliminates the need for the system designer to incorporate external pull-up resistors in the design. The following signals have an on die termination of 8.33KOhm @40%: 8 Datasheet — 41210 Bridge Table 1. ODT Signals A_ACK64# B_ACK64# A_AD[63:32] B_AD[63:32] A_CBE#[7:4] B_CBE#[7:4] A_DEVSEL# B_DEVSEL# A_FRAME# B_FRAME# A_GNT#[5:0] B_GNT#[5:0] A_IRDY# B_IRDY# A_PAR B_PAR A_PAR64 B_PAR64 A_PERR# B_PERR# A_LOCK# B_LOCK# A_REQ#[5:0] B_REQ#[5:0] A_REQ64# B_REQ64# A_SERR# B_SERR# A_STOP# B_STOP# A_TRDY# B_TRDY# A_INTA# B_INTA# A_INTB# B_INTB# A_INTC# B_INTC# A_INTD# B_INTD# TCK TDI TDO TMS 9 41210 Bridge — Datasheet 2.2 PCI Express Interface Table 2. PCI Express Interface Pins Signal REFCLKp/ REFCLKn I/O I Description PCI Express Reference Clocks: 100 MHz differential clock pair. PCI Express Serial Data Transmit: PCI Express differential data transmit signals. PETp[7:0]/ PETn[7:0] O X8 Mode: All PETp[7:0]/ PETn[7:0] are used X4 Mode: Only PETp[3:0]/ PETn[3:0] are used x1 Mode: Either PETp[0]/ PETn[0] is used or PETp[7]/ PETn[7] is used PCI Express Serial Data Receive: PCI Express differential data receive signals. PERp[7:0]/ PERn[7:0] I X8 Mode: All PERp[7:0]/ PERn[7:0] are used X4 Mode: Only PERp[3:0]/ PERn[3:0] are used x1 Mode: Either PERp[0]/ PERn[0] is used or PERp[7]/ PERn[7] is used 2.3 PE_RCOMP[1:0] I Total 36 PCI Express Compensation Inputs: Analog signals. Connect to a 24.9Ω±1% pull-up resitor to 1.5V. A single resistor can be used for both signals. PCI Bus Interface (Two Instances) Each interface is marked by either the letter “A” or “B” to signify the interface. Therefore, A_AD refers to the AD bus on PCI bus A, and B_AD refers to the AD bus on PCI bus B. For pin names described in the following sections, an ‘X’ in the name indicates either A or B, for the PCI bus A and PCI bus B sides. For example, X_PAR signal would be called A_PAR on the PCI bus A and B_PAR on the PCI bus B. 10 Datasheet — 41210 Bridge Table 3. PCI Interface Pins (Sheet 1 of 2) Signal I/O A_AD[31:0] B_AD[31:0] I/O Description PCI Address/Data: These signals are a multiplexed address and data bus. During the address phase or phases of a transaction, the initiator drives a physical address on X_AD[31:0]. During the data phases of a transaction, the initiator drives write data, or the target drives read data. No External pull-up resistors are required on the system board for these signals. A_C/BE#[3:0] B_C/BE#[3:0] I/O Bus Command and Byte Enables: These signals are a multiplexed command field and byte enable field. During the address phase or phases of a transaction, the initiator drives the transaction type on C/BE#[3:0]. When there are two address phases, the first address phase carries the dual address command and the second address phase carries the transaction type. For both read and write transactions, the initiator drives byte enables on C/BE#[3:0] during the data phases. No External pull-up resistors are required on the system board for these signals. A_PAR B_PAR I/O Parity: Even parity calculated on 36 bits - AD[31:0] plus C/BE[3:0]#. It is calculated on all 36 bits regardless of the valid byte enables. It is generated for address and data phases. It is driven identically to the AD[31:0] lines, except it is delayed by exactly one PCI clock. It is an output during the address phase for all 41210 Bridge initiated transactions and all data phases when the 41210 Bridge is the initiator of a PCI write transaction, and when it is the target of a read transaction. 41210 Bridge checks parity when it is the initiator of PCI read transactions and when it is the target of PCI write transactions. No External pull-up resistors are required on the system board for these signals. A_DEVSEL# B_DEVSEL# I/O Device Select: The bridge asserts DEVSEL# to claim a PCI transaction. As a target, the 41210 Bridge asserts DEVSEL# when a PCI master peripheral attempts an access an address destined for PCI Express. As an initiator, DEVSEL# indicates the response to a 41210 Bridge initiated transaction on the PCI bus. DEVSEL# is tri-stated from the leading edge of PCIRST#. DEVSEL# remains tri-stated by the 41210 Bridge until driven as a target. No External pull-up resistors are required on the system board for these signals. A_FRAME# B_FRAME# I/O Frame: FRAME# is driven by the Initiator to indicate the beginning and duration of an access. While FRAME# is asserted data transfers continue. When FRAME# is negated the transaction is in the final data phase. No External pull-up resistors are required on the system board for these signals. A_IRDY# B_IRDY# I/O A_TRDY# B_TRDY# I/O Initiator Ready: IRDY# indicates the ability of the initiator to complete the current data phase of the transaction. A data phase is completed when both IRDY# and TRDY# are sampled asserted. No External pull-up resistors are required on the system board for these signals. Target Ready: Indicates the ability of the target to complete the current data phase of the transaction. A data phase is completed when both TRDY# and IRDY# are sampled asserted. TRDY# is tri-stated from the leading edge of RST#. TRDY# remains tri-stated by the 41210 Bridge until driven as a target. No External pull-up resistors are required on the system board for these signals. A_STOP# B_STOP# I/O A_PERR# B_PERR# I/O Stop: Indicates that the target is requesting an initiator to stop the current transaction. No External pull-up resistors are required on the system board for these signals. Parity Error: Driven by an external PCI device when it receives data that has a parity error. Driven by 41210 Bridge when, as a initiator it detects a parity error during a read transaction and as a target during write transactions. No External pull-up resistors are required on the system board for these signals. A_SERR# B_SERR# A_M66EN B_M66EN I System Error: The 41210 PCI Express. Bridge samples SERR# as an input and conditionally forwards it to the No External pull-up resistors are required on the system board for these signals. I/OD 66 MHz Enable: This input signal from the PCI Bus indicates the speed of the PCI Bus. If it is high then the Bus speed is 66 MHz and if it is low then the bus speed is 33 MHz. This signal will be used to generate appropriate clock (33 or 66 MHz) on the PCI Bus. Use an approximately 8.2KΩ resistor to pull to VCC33 or pull-down to ground. 11 41210 Bridge — Datasheet Table 3. PCI Interface Pins (Sheet 2 of 2) Signal I/O A_PCIXCAP B_PCIXCAP I A_LOCK# B_LOCK# O Description PCI-X Capable: Indicates whether all devices on the PCI bus are PCI-X devices, so that the 41210 Bridge can switch into PCI-X mode. Use an approximately 8.2KΩ resistor to pull to VCC33. PCI Lock: Indicates an exclusive bus operation and may require multiple transactions to complete. This signal is an output from the bridge when it is initiating exclusive transactions on PCI. LOCK# is ignored when PCI masters are granted the bus. Locked transaction do not propagate upstream. No External pull-up resistors are required on the system board for these signals. Total 118 2.4 PCI Bus Interface 64-Bit Extension (Two Interfaces) Table 4. PCI Interface Pins: 64-Bit Extensions Signal I/O A_AD[63:32] B_AD[63:32] I/O A_C/BE#[7:4] B_C/BE#[7:4] I/O Description PCI Address/Data: These signals are a multiplexed address and data bus. This bus provides an additional 32 bits to the PCI bus. During the data phases of a transaction, the initiator drives the upper 32 bits of 64-bit write data, or the target drives the upper 32 bits of 64-bit read data, when REQ64# and ACK64# are both asserted. Bus Command and Byte enables upper 4 bits: These signals are a multiplexed command field and byte enable field. For both reads and write transactions, the initiator will drive byte enables for the AD[63:32] data bits on C/BE7:4] during the data phases when REQ64# and ACK64# are both asserted. 12 A_PAR64 B_PAR64 I/O PCI interface upper 32 bits parity: This carries the even parity of the 36 bits of AD[63:32] and C/ BE#[7:4] for both address and data phases. A_REQ64# B_REQ64# I/O PCI interface request 64-bit transfer: This is asserted by the initiator to indicate that the initiator is requesting a 64-bit data transfer. It has the same timing as FRAME#. When the 41210 Bridge is the initiator, this signal is an output. When the 41210 Bridge is the target this signal is an input. A_ACK64# B_ACK64# I/O PCI interface acknowledge 64-bit transfer: This is asserted by the target only when REQ64# is asserted by the initiator, to indicate the target ability to transfer data using 64 bits. It has the same timing as DEVSEL#. Total 78 Datasheet — 41210 Bridge 2.5 PCI Bus Interface Clocks and, Reset and Power Management (Two Interfaces) Table 5. PCI Clock and Reset Pins Signal I/O A_CLKO[6:0] B_CLKO[6:0] Description PCI Clock Output: 33/66/100/133 MHz clock for a PCI device. X_CLK[6] must be connected to the respective X_CLKIN input. for feeding the PCI interface logic. Unused clock outputs may be disabled via the “Offset 43: PCLKC – PCI Clock Control” register and should be treated as no connects on the board. O Note: Registers are listed in the Intel® 41210 Serial to Parallel PCI Bridge Developer’s Manual. A_CLKIN B_CLKIN I PCI Clock In: This signal is PCI clock feedback input. This pin should be connected to the corresponding X_CLKO[6] through a 22Ω±1% series resistor. A_RST# B_RST# O PCI Reset: The bridge asserts RST# to reset devices that reside on the secondary PCI bus. I PCI Power Management Event: PCI bus power management event signal. This is a shared open drain input from all the PCI cards on the corresponding PCI bus segment. This is a level sensitive signal that will be converted to a PME event on PCI Express. A_PME# B_PME# This pin does not have on-die 8.3K pull-up. This pull-up must be provided externally. Total 2.6 20 Interrupt Interface (Two Interfaces) This section lists the interrupt interface signals. There are two sets of interrupt signals for the standard INTA:INTD pci signals. Table 6. Interrupt Interface Pins Signal I/O A_INTA# A_INTB# A_INTC# A_INTD# Total 2.7 Interrupt Request Bus: The interrupt lines from PCI interrupts INTA#:INTD# can be routed to these interrupt lines. I B_INTA# B_INTB# B_INTC# B_INTD# Description Refer to the Intel® 41210 Serial to Parallel PCI Bridge Design Guide for more information on device numbering. 8 Reset Straps The following signals are used for static configuration. These signals are all sampled on the rising edge of PERST#. 13 41210 Bridge — Datasheet Table 7. Reset Strap Pins Signal A_133EN B_133EN I/O Description I PCI-X 133 MHz Enable: This pin, when high, allows the PCI-X segment to run at 133 MHz when X_PCIXCAP is sampled high. When low, the PCI-X segment will only run at 100 MHz when X_PCIXCAP is sampled high. Use an approximately 8.2KΩ resistor to pull to VCC33 or pull-down to ground. Internal Test Modes: Straps 6, 2:0 should be pulled low and straps 5:3 must be pulled high for normal operation. X_STRAP A_STRAP[6:0 ] B_STRAP[6:0 ] 0 1 2 3 4 5 6 I Logic Level ‘0’ ‘0’ ‘0’ ‘1’ ‘1’ ‘1’ ‘0’ Use approximately an 8.2KΩ resistor to pull-up to VCC33 or pull-down to VSS A_TEST[2:1] B_TEST{2:1] CFGRETRY Internal Test Modes: These straps should be pulled high to VCC33. I Use approximately an 8.2KΩ resistor to pull-up to VCC33. Configuration Retry: This pin, when sampled high sets the Configuration Cycle Retry Bit (bit 3) in the Bridge Initialization Register at Offset FC. If no local initialization is needed, this pin should be pulled low to VSS. I Refer to the Intel® 41210 Serial to Parallel PCI Bridge Design Guide for more information. Total 14 19 Datasheet — 41210 Bridge 2.8 SMBus Interface Table 8. SMBus Interface Pins Signal I/O Description SMBCLK I/OD SMBus Clock: This signal should be pulled to 3.3V via an 8.2KOhm resistor. SMBDAT I/OD SMBus Data: This signal should be pulled to 3.3V via an 8.2KOhm resistor. SMBus Addressing Straps: These straps set the SMBus Address for 41210 Bridge. The address is determined as indicated below: Bit 7‘1’ Bit 6‘1’ SMBUS[5] SMBUS[3:1] Bit 5SMBUS[5] I Bit 4‘0’ Bit 3SMBUS[3] Bit 2SMBUS[2] Bit 1SMBUS[1] These signals (bits 5, 3:1) should be pulled up to 3.3V or down to ground. Sampled at the rising edge of PERST#. Total 6 2.9 Miscellaneous Pins Table 9. Miscellaneous Pins Signal CFGRST# I/O Description O Configuration Reset: This signal is asserted low when ever the bridge goes through a fundemental reset (PERST#, RSTIN#, or PCI Express Reset). This signal should be used to indicate when the local initialization methods should be executed. Refer to the Intel® 41210 Serial to Parallel PCI Bridge Design Guide for more information. PERST# I PCI Express Fundamental Reset: When low, asynchronously resets the internal logic (including sticky bits). RSTIN# I Reset In: When Asserted, this signal asynchronously resets the internal logic and asserts X_RST# output for both PCI interfaces. This signal should be pulled high for adapter card usage. TCK I TAP Clock In: This is the input clock to the JTAG TAP controller. Acceptable frequency is 0-16MHz If not utilizing JTAG, this signal can be left as a no connect. TDI I Test Data In: This is the serial data input to the JTAG BSCAN shift register chain and to the JTAG BSCAN control logic. This is latched in on the rising edge of TCK. If not utilizing JTAG, this signal can be left as a no connect. TDO O Test Data Output: This is the serial data output from the JTAG BSCAN logic If not utilizing JTAG, this signal can be left as a no connect. 15 41210 Bridge — Datasheet Signal I/O TMS I Test Mode Select: This signal controls the TAP controller state machine to move to different states and is sampled on the rising edge of TCK. If not utilizing JTAG, this signal can be left as a no connect. TRST# I Test Reset In: This signal is used to asynchronously reset the JTAG BSCAN logic. If not utilizing JTAG, connect this signal to ground through a 1KΩ pull-down resistor. RESERVED[8:1] I Reserved: (8 pins) These input pins should be pulled low Use an approximately 8.2KΩ resistor to pull-down to ground. NC[19:18], NC[16:1] A_NC[10:1] B_NC[10:1] O No Connect: (39 pins) These output pins should be left floating NC[17] O This signal requires an external pull-up, 8.2K ohm to 3.3V Total 16 Description 57 Datasheet — 41210 Bridge Electrical and Thermal Characteristics 3 3.1 DC Voltage and Current Specifications 3.1.1 41210 Bridge DC Specifications Table 10. Intel® 41210 Bridge DC Voltage Specifications Symbol Parameter Min Typ Max Unit VCC15 Intel® 41210 Bridge Core 1.425 1.5 1.575 V VCC15 PCI-X I/O Voltage 1.425 1.5 1.575 V VCCAPE Analog PCI Express Voltage 1.455 1.5 1.545 V VCCAPCI[2:0] Analog PCI Voltages 1.455 1.5 1.545 VCCBGPE Analog Bandgap Voltage 2.425 2.5 2.575 VCCPE PCI Express Interface Voltage 1.46 1.5 1.55 V VCC33 PCI Bus Interface Voltage 3.0 3.3 3.6 V PTDP Thermal Design Power 10.2 W Notes 1 2 1. Transient tolerance ±5 mV above 1 MHz at package pin under DC load conditions. 2. Transient tolerance ±10 mV above 1 MHz at package pin under DC load conditions. 17 41210 Bridge — Datasheet 3.1.2 Input Characteristic Signal Association Table 11. DC Characteristics Input Signal Association Symbol Signals Interrupt Signals: A_IRQ[15:0]#, B_IRQ[15:0]# VIH1/VIL1 PCI Signals: A_AD[63:0], B_AD[63:0], A_CBE[7:0]#, B_CBE[7:0]#, A_PAR, B_PAR, A_DEVSEL#, B_DEVSEL#, A_FRAME#, B_FRAME#, A_IRDY#, B_IRDY#, A_TRDY#, B_TRDY#, A_STOP#, B_STOP#, A_PERR#, B_PERR#, A_SERR#, B_SERR#, A_REQ[5:0]#, B_REQ[5:0]#, A_M66EN, B_M66EN, A_133EN, B_133EN, A_PCIXCAP, B_PCIXCAP, A_PAR64, B_PAR64, A_REQ64#, B_REQ64#, A_ACK64#, B_ACK64# Clock Signals (3.3 V Only): A_CLKI, B_CLKI Miscellaneous Signals: PERST# VIH2/VIL2 PCI Express Signals: REFCLK, REFCLK#, PETP[7:0], PETN[7:0], PE_RCOMP[1:0] VIH3/VIL3 SMB Signals: SMBDAT, SMBCLK 3.1.3 DC Input Characteristics Table 12. DC Input Characteristics 3.3 V Signal Symbol Parameter Unit Min Max VIL1 Input Low Voltage -0.5 0.35 VCC33 V VIH1 Input High Voltage 0.5 VCC33 VCC33 +0.5 V Symbol Parameter Max VIL2 Input Low Voltage N/A V VIH2 Input High Voltage N/A V VIL3 Input Low Voltage 0.6 V VIH3 Input High Voltage VCC33 + 0.5 V 3.1.4 DC Characteristic Output Signal Association Table 13. DC Characteristic Output Signal Association Symbol VOH1/VOL1 Signals PCI Signals: A_AD[63:0], B_AD[63:0], A_CBE[7:0]#, B_CBE[7:0]#, A_PAR, B_PAR, A_DEVSEL#, B_DEVSEL#, A_FRAME#, B_FRAME#, A_IRDY#, B_IRDY#, A_TRDY#, B_TRDY#, A_STOP#, B_STOP#, A_PERR#, B_PERR#, A_M66EN, B_M66EN, A_GNT[6:0]#, B_GNT[5:0]#, A_LOCK#, B_LOCK#, A_PAR64, B_PAR64, A_REQ64#, B_REQ64#, A_ACK64#, B_ACK64# PCI Clock Signals (3.3 V Only): A_CLKO[6:0], B_CLKO[6:0], A_RST#, B_RST# Miscellaneous Signals: RASERR# 18 VOH2/VOL2 PCI Express Signals: PERP[7:0], PERN[7:0] VOH3/VOL3 SMBus Signals: SMBDAT, SMBCLK Datasheet — 41210 Bridge 3.1.5 DC Output Characteristics Table 14. DC Output Characteristic 3.3 V Signal Symbol Parameter Unit Min VOL1 Output Low Voltage VOH1 Output High Voltage Symbol 0.1VCC33 0.9VCC33 Parameter Notes Max (5 V) Iout = 6 mA V (3.3 V) Iout = 1500 uA (5 V) Iout = -2 mA V Max (3.3 V) Iout = -500 uA Unit Notes VOL2 Output Low Voltage N/A V VOH2 Output High Voltage N/A V VOL3 Output Low Voltage 0.4 V IOL4=14 mA VOH3 Output High Voltage N/A V Open Drain 3.1.6 PCI Express Interface DC Specifications 3.1.6.1 Differential Transmitter (TX) DC Output Specifications Table 15 defines the DC specifications of parameters for the differential output at all transmitters (TXs). The parameters are specified at the component pins. Table 15. Differential Transmitter (TX) DC Output Specifications (Sheet 1 of 2) Symbol Parameter Min VTX-DIFFp-p Differential Peak to Peak Output Voltage 0.80 VTX-DE-RATIO De-Emphasized Differential Output Voltage (Ratio) -3.0 Nom -3.5 Max Units 1.2 V -4.0 dB Comments VTX-DIFFp-p = 2*|VTX-D+-VTX-D-| See Note 1. This is the ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by the VTX-DIFFp-p of the first bit after a transition See Note 1. VTX-CM-ACp VTX-CM-ACp = CM-DC AC Peak Common Mode Output Voltage 20 mV |VTX-D+ + vTX-D-| / 2 – vTX- vTX-CM-DC = DC(avg) of / 2 during L0 |VTX-D+ + VTX-D-| See Note 1. VTX-CM-DCACTIVE-IDLEDELTA Absolute Delta of DC Common Mode Voltage During L0 and Electrical Idle |VTX-CM-DC [during L0] – VTX-CM-IdleDC[during electrical idle]| <= 100mv 0 100 mV VTX-CM-DC = DC(avg) of |VTX-D+ + VTX-D-| / 2 [electrical idle] See Note 1. 19 41210 Bridge — Datasheet Table 15. Differential Transmitter (TX) DC Output Specifications (Sheet 2 of 2) |VTX-CM-DC-D+ [during L0] – VTX-CM-DC-D[During L0.]|<=25mV VTX-CM-DCLINE-DELTA Absolute Delta of DC Common Mode Voltage between D+ and D-. VTX-CM-DC-D+ = DC(avg) of |VTX-D+| 0 25 mV [during L0] VTX-CM-DC-D- = DC(avg) of |VTX-D-| [during L0] See Note 1. VTX-IDLEDIFFp VTX-RCVDETECT Electrical Idle Differential Peak Output Voltage 0 20 mV VTX-IDLE-DIFFp =|VTX-Idle-D+ -VTx-Idle-D|<=20mV See Note 1. The amount of voltage change allowed during Receiver Detection. 600 mV The total amount of voltage change that a transmitter can apply to sense whether a low impedance receiver is present. RLTX-DIFF Differential Return Loss 12 dB Measured over 50 MHz to 1.25 GHz See Note 2. RLTX-CM Common Mode Return Loss 6 dB Measured over 50 MHz to 1.25 GHz See Note 2. ZTX-DIFF-DC DC Differential TX Impedance 80 120 W TX DC Differential Mode Low impedance 5k 20k W TX DC High Impedance. IMP-DC Transmitter Common Mode High Impedance State (DC) CTX AC Coupling Capacitor 75 200 nF All transmitters shall be AC coupled. The AC coupling is required either within the media or within the transmitting component itself. ZTX-COMHigh- 100 1. Specified at the measurement point into a timing and voltage compliance test load as shown in Figure 2, “Compliance Test/Measurement Load” on page 23 and measured over any 250 consecutive TX UIs. (Also refer to the Transmitter Compliance Eye Diagram as shown in Minimum Transmitter Timing and Voltage Output Compliance Specification.) 2. The transmitter input impedance shall result in a differential return loss greater than or equal to 12 dB and a common mode return loss greater than or equal to 6 dB over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference impedance for return loss measurements is 50W to ground for both the D+ and D- line (i.e., as measured by a Vector Network Analyzer with 50W probes – see Figure 2). Note that the series capacitors CTX is optional for the return loss measurement. 20 Datasheet — 41210 Bridge 3.1.6.2 Differential Receiver (RX) DC Input Specifications Table 16 defines the DC specifications of parameters for all differential Receivers (RXs). The parameters are specified at the component pins. Table 16. Differential Receiver (RX) DC Input Specifications Symbol VRX-DIFFp-p VRX-CM-ACp Parameter Differential Input Peak to Peak Voltage Min Nom 0.17 5 Max Units 1.20 0 V Comments VRX-DIFFp-p = 2*|VRX-D+ - VRX-D-| See Note 1. VRX-CM-AC= |VRX-D+ + VRX-D-|/2– VRX-CM-DC AC Peak Common Mode Input Voltage 150 mV VRX-CM-DC = DC(avg) of |VRX-D++VRX-D-|/2 during L0 See Note 1. RLRX-DIFF Differential Return Loss 15 dB RLRX-CM Common Mode Return Loss 6 dB ZRX-DIFF-DC DC Differential Input Impedance 80 100 120 W ZRX-COM- DC Input Common Mode Input Impedance 40 50 60 W DC ZRX-COMINITIAL-DC ZRX-COMHIGH-IMP- DC VRX-IDLEDET-DIFFp- p Initial DC Input Common Mode Input Impedance Measured over 50 MHz to 1.25 GHz See Note 2. Measured over 50 MHz to 1.25 GHz See Note 2 RX DC Differential Mode impedance. See Note 3. RX DC Common Mode impedance 50 ?+/-20% tolerance. See Notes 1 and 3. 5 50 60 W RX DC Common Mode impedance allowed when the receiver terminations are first powered on. See Note 4. Powered Down DC Input Common Mode Input Impedance 200 k Electrical Idle Detect Threshold 65 W RX DC Common Mode impedance when the receiver terminations are not powered (i.e., no power). See Note 5. 175 mV VRX-IDLE-DET-DIFFp-p =2*|VRX-D+ - VRX-D-| Measured at the package pins of the Receiver. 1. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 2, “Compliance Test/Measurement Load” on page 23 should be used as the RX device when taking measurements (also refer to the Receiver Compliance Eye Diagram as shown in Figure 3, “Minimum Receiver Eye Timing and Voltage Compliance Specification” on page 23). If the clocks to the RX and TX are not derived from the same clock chip the TX UI must be used as a reference for the eye diagram. 2. The receiver input impedance shall result in a differential return loss greater than or equal to 15 dB and a common mode return loss greater than or equal to 6 dB over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference impedance for return loss measurements for is 50 Ω to ground for both the D+ and D- line (i.e., as measured by a Vector Network Analyzer with 50Ω probes - see Figure 2). Note: that the series capacitors CTX is optional for the return loss measurement. 3. Impedance during all operating conditions. 4. The Rx DC Common Mode Impedance that must be present when the receiver terminations are first enabled to ensure that the Receiver Detect occurs properly. Compensation of this impedance can start immediately and the (ZRX-COM-DC)RxDC Common Mode Impedance must be with in the specified range by the time Detect is entered. 5. The Rx DC Common Mode Impedance that exists when the receiver terminations are disabled or when no power is present. This helps ensure that the Receiver Detect circuit will not falsely assume a receiver is powered on when it is not. 21 41210 Bridge — Datasheet Figure 1. Minimum Transmitter Timing and Voltage Output Compliance Specification There are two eye diagrams that must be met for the transmitter. Both eye diagrams must be aligned in time using the jitter median to locate the center of the eye diagram. The different eye diagrams will differ in voltage depending whether it is a transition bit or a de-emphasized bit. The eye diagram must be valid for any 250 consecutive UIs. An appropriate average TX UI must be used as the interval for measuring the eye diagram. 3.1.6.3 Compliance Test and Measurement Load The AC timing and voltage parameters must be verified at the measurement point, as specified by the device vendor within 0.2 inches of the package pins, into a test/measurement load shown in Figure 2. Note: The allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/board routing may benefit from D+ and D- not being exactly matched in length at the package pin boundary. If the vendor does not explicitly state where the measurement point is located, the measurement point is assumed to be the D+ and D-package pins. 22 Datasheet — 41210 Bridge Figure 2. Compliance Test/Measurement Load The test load is shown at the transmitter package reference plane, but the same Test/Measurement load is applicable to the receiver package reference plane. CTX is an optional portion of the measurement test load. The measurement should be taken on the opposite side of the capacitor from the package, and the value of the CTX must be in the range of 75 nF to 200 nF. . Figure 3. Minimum Receiver Eye Timing and Voltage Compliance Specification The RX eye diagram must be aligned in time using the jitter median to locate the center of the eye diagram. The eye diagram must be valid for any 250 consecutive UIs. An appropriate average TX UI must be used as the interval for measuring the eye diagram. 23 41210 Bridge — Datasheet 3.1.6.4 PCI and PCI-X Interface DC Specifications Table 17 summarizes the DC specifications for 3.3V signaling. Table 17. DC Specifications for PCI and PCI-X 3.3 V Signaling Symbol Parameter Min Max Units Condition VCC33 Supply Voltage 3.0 3.6 V Vih Input High Voltage 0.5 VCC33 VCC33 +0.5 V Vil Input Low Voltage -0.5 0.3VCC33 V Vipu Input Pull-up Voltage 0.7VCC33 Iil Input Leakage Current ±10 µA 0 < Vin < VCC33 Voh Output High Voltage V Iout = -500 µA Vol Output Low Voltage V Iout = 1500 µA Cin Input Pin Capacitance Cclk X_CLKIN Pin Capacitance CIDSEL V 0.9VCC33 0.1VCC33 Notes 1 2 10 pF 8 pF IDSEL Pin Capacitance 8 pF 4 Lpin Pin Inductance 20 nH 5 IOff X_PME# input leakage 1 µA 5 - 3 Vo ≤ 3.6 VCC33 off or floating 6 1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Applications sensitive to static power utilization must assure that the input buffer is conducting minimum current at this input voltage. 2. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs. 3. Absolute maximum pin capacitance for a PCI/PCIX input except X_CLKIN and X_IDSEL. 4. For conventional PCI only, lower capacitance on this input-only pin allows for non-resistive coupling to X_AD[xx]. PCI-X configuration transactions drive the AD bus four clocks before X_FRAME# asserts (see Section 2.7.2.1, “Configuration Transaction Timing,” in the PCI-X Protocol Addendum to the PCI Local Bus Specification Revision 2.0a). 5. For conventional PCI, this is a recommendation, not an absolute requirement. For PCI-X, this is a requirement. 6. This input leakage is the maximum allowable leakage into the X_PME# open drain driver when power is removed from VCC33 of the component. This assumes that no event has occurred to cause the device to attempt to assert X_PME#. 24 Datasheet — 41210 Bridge 3.1.6.5 Input Clock DC Specifications Table 18. DC Specification for Input Clock Signals Symbol Parameter Min Max Units CLK100 Input Low Voltage -0.5 0.8 V CLK100 Input High Voltage 2.0 VCC3.3 + 0.5 V CLK133 Input Low Voltage -0.5 0.8 V CLK133 Input High Voltage 2.0 VCC3.3 + 0.5 V Units Condition 3.1.6.6 Output Clock DC Specifications Table 19. DC Specification for Output Clock Signals Symbol Parameter CLK33 Output Low Voltage CLK33 Output High Voltage CLK66 Output Low Voltage CLK66 Output High Voltage CLK100 Output Low Voltage CLK100 Output High Voltage CLK133 Output Low Voltage CLK133 Output High Voltage Min Max 0.4 2.4 0.4 2.4 0.4 2.4 0.4 2.4 3.2 AC Specifications 3.2.1 PCI and PCI-X AC Characteristics Table 20. Conventional PCI 3.3V AC Characteristics (Sheet 1 of 2) Sym Parameter Ioh(AC) Switching Current High Iol(AC) Switching Current Low Ich High Clamp Current Condition Min Vout = 0.7VCC33 Vout = 0.3VCC33 V Iol = 1 mA V Ioh= -1 mA V Iol = 1 mA V Ioh= -1 mA V Iol = 1 mA V Ioh= -1 mA V Iol = 1 mA V Ioh= -1 mA Max -32VCC33 -12VCC33 Vout = 0.18VCC33 Unit mA mA 38VCC33 Note 1 mA Vout = 0.6VCC33 16VCC33 mA VCC33 + 4 > Vin VCC33 + 1 25 + (Vin – VCC33 – 1) / 0.015 mA 1 25 41210 Bridge — Datasheet Table 20. Conventional PCI 3.3V AC Characteristics (Sheet 2 of 2) Icl Low Clamp Current -3 < Vin -1 -25 + (Vin + 1) / mA 0.015 slewr Output Rise Slew Rate 0.3VCC33 to 0.6VCC33 1 4 V/ns 2 slewf Output Fall Slew Rate 0.6VCC33 to 0.3VCC33 1 4 V/ns 2 1. In conventional PCI switching, current characteristics for X_REQ# and X_GNT# are permitted to be one half of that specified here; i.e., half size drivers may be used on these signals. This specification does not apply to CLK and RSTIN# which are system outputs. “Switching Current High” specifications are not relevant to X_SERR# which is an open drain output. 2. This parameter is to be interpreted as the cumulative edge rate across the specified range rather than the instantaneous rate at any point within the transition range. For more details on slew rate measurement conditions please refer to the PCI-X Electrical and Mechanical Addendum to the PCI Local Bus Specification, Revision 2.0a Table 21. PCI-X 3.3V AC Characteristics Sym Parameter Condition Min 0 < VCC33 – Vout 3.6V Ioh(AC) Switching Current High -74(VCC33 Vout) Icl Ich Switching Current Low Low Clamp Current Unit Note mA 0 < VCC33 – Vout 1.2V -32 (VCC33 – Vout) mA 1 1.2V < VCC33 – Vout 1.9V -11 (VCC33 Vout) – 25.2 mA 1 1.9V < VCC33 – Vout 3.6V -1.8 (VCC33 Vout) – 42.7 mA 1 0 Vout 3.6V Iol(AC) Max 100Vout mA 0 < Vout 1.3V 48Vout 1 1.3V < Vout 3.6V 5.7Vout + 55 1 -3V < Vin ≤ 0.8875V -40 + (Vin + 1) / 0.005 mA -0.8875V < Vin ≤ -0.625V -25 + (Vin + 1) / 0.015 mA 0.8875V < Vin – VCC33 ≤ -4V 40 + (Vin – VCC33 - 1) / 0.005 mA 0.625V < Vin – VCC33 ≤ 0.8875V 25 + (Vin – VCC33 - 1) / 0.015 mA High Clamp Current slewr Output Rise Slew Rate 0.3VCC33 to 0.6VCC33 1 4 V/ns 2 slewf Output Fall Slew Rate 0.6VCC33 to 0.3VCC33 1 4 V/ns 2 1. In conventional PCI switching, current characteristics for X_REQ# and X_GNT# are permitted to be one half of that specified here; i.e., half size drivers may be used on these signals. This specification does not apply to CLK and RST# which are system outputs. “Switching Current High” specifications are not relevant to X_SERR#, which is an open drain output. 26 Datasheet — 41210 Bridge 2. This parameter is to be interpreted as the cumulative edge rate across the specified range rather than the instantaneous rate at any point within the transition range. For more details on slew rate measurement conditions please refer to the PCI-X Electrical and Mechanical Addendum to the PCI Local Bus Specification, Revision 2.0a. 3.3 Voltage Filter Specifications The 41210 Bridge requires voltage filtering to reduce noise on critical voltage planes. There are two filter types necessary on the platform: • Analog Voltage Filter (PCI-Express and PCI) • Bandgap Filter Note: 3.4 For filter specifications, refer to the 41210 Serial to Parallel PCI Bridge Design Guide. VCC15 and VCC33 Voltage Requirements The 41210 Bridge requires that the VCC33 voltage rail be equal to or no less than 0.5V below VCC15 (absolute voltage value) at all times during 41210 Bridge operation, including during system power up and power down. In other words, the following must always be true: VCC33 ≥ (VCC15 –0.5V) Figure 4 graphically illustrates this requirement. This can be accomplished by placing a diode (with a voltage drop < 0.5V) between VCC15 and VCC33. Anode will be connected to VCC15 and cathode will be connected to VCC33. Figure 4. Voltage Requirements VCC33 versus VCC15 27 41210 Bridge — Datasheet 3.5 Timing Specifications 3.5.1 PCI Express Interface Timing 3.5.1.1 Differential Transmitter (TX) AC Output Specifications Table 22 defines the AC specifications of parameters for the differential output at all transmitters (TXs). The parameters are specified at the component pins. Table 22. Differential Transmitter (TX) AC Output Specifications Symbol UI Parameter Unit Interval Min 399.88 Nom 400 Max 400.12 Units ps Comments Each UI is 400 ps +/-300 ppm. UI does not account for SSC dictated variations. See Note 1. TTX-EYE Minimum TX Eye Width 0.70 UI The maximum transmitter jitter can be derived as TTX-MAX-JITTER = 1 - TTX-EYE = .3 UI See Notes 2 and 3. TTX-EYEMEDIAN-toMAX-JITTER Maximum time between the jitter median and maximum deviation for the median 0.15 UI Jitter is defined as the measurement variation of the crossing points (VTX-DIFFp-p = 0V) in relation to an appropriate average TX UI. See Notes 2 and 3. TTX-RISE, TTX-FALL D+/D- TX Output Rise/Fall Time 0.125 UI See Notes 2 and 4. TTX-IDLE- Minimum time spent in Electrical Idle 50 UI Minimum time a transmitter must be in electrical idle. MIN Maximum time to transition to a valid Electrical Idle after sending an Electrical Idle ordered-set 20 UI After sending an electrical idle ordered-set, the transmitter must meet all electrical idle specifications within this time. DETECTMAX Maximum time spent in Electrical Idle before initiating a receiver detect sequence. 100 ms Maximum time spent in Electrical Idle before initiating a receiver detect sequence. LTX-SKEW Lane-to-Lane Output Skew 500 ps Between any two Lanes within a single Transmitter. TTX-IDLESET- TO-IDLE TTX-IDLERCV- 1. No test load is necessarily associated with this value. 2. Specified at the measurement point into a timing and voltage compliance test load as shown in Figure 2, “Compliance Test/Measurement Load” on page 23 and measured over any 250 consecutive TX UIs. (Also refer to the Transmitter Compliance Eye Diagram as shown in Minimum Transmitter Timing and Voltage Output Compliance Specification.) 3. A TTX-EYE = 0.70 UI provides for a total sum of deterministic and random jitter budget of TTX-JITTER-MAX = 0.30 UI for the transmitter collected over any 250 consecutive TX UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total TX jitter budget collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. 28 Datasheet — 41210 Bridge 4. Measured between 20-80% at Transmitter package pins into a test load as shown in Figure 2 for both VTX-D+ and VTX-D-. 3.5.1.2 Differential Receiver (RX) AC Input Specifications Table 23 defines the AC specifications of parameters for all differential Receivers (RXs). The parameters are specified at the component pins. Table 23. Differential Receiver (RX) AC Input Specifications Symbol Parameter UI Unit Interval TRX-EYE Minimum Receiver Eye Width Min 399.88 Nom 400 Max 400.12 0.4 Units ps UI Comments The UI is 400 ps +/-300 ppm. UI does not account for SSC dictated variations. See Note 1. The maximum interconnect media and transmitter jitter that can be tolerated by the receiver can be derived asTRX-MAX-JITTER =1 -TRXEYE =0.6 UI See Notes 2 and 3. TRX-EYEMEDIAN-to- MAX-JITTER TRX-IDLE-DETDIFF- ENTERTIME LRX-SKEW Maximum time between the jitter median and maximum deviation from the median. Unexpected Electrical Idle Enter Detect Threshold Integration Time Total Skew 0.3 UI Jitter is defined as the measurement variation of the crossing points (VRX- DIFFp-p = 0 V) in relation to an appropriate average TX UI. See Notes 2 and 3. 10 20 ms An unexpected electrical idle (VRXmust be recognized no longer than TRXIDLE-DET- DIFF-ENTERTIME to signal an unexpected idle condition. ns Across all Lanes on a port. This includes variation in the length of a skip ordered-set (e.g., COM and 1 to 5 SKP symbols) at the RX as well as any delay differences arising from the interconnect itself. DIFFp-p <VRX-IDLE-DET- DIFFp-p) 1. No test load is necessarily associated with this value. 2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 2, “Compliance Test/Measurement Load” on page 23 should be used as the RX device when taking measurements (also refer to the Receiver Compliance Eye Diagram as shown in Figure 3, “Minimum Receiver Eye Timing and Voltage Compliance Specification” on page 23). If the clocks to the RX and TX are not derived from the same clock chip the TX UI must be used as a reference for the eye diagram. 3. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total .6 UI jitter budget collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the RX and TX are not derived from the same clock chip, the appropriate average TX UI must be used as the reference for the eye diagram. 29 41210 Bridge — Datasheet 3.5.2 PCI and PCI-X Interface Timing Table 24. PCI Interface Timing Functional Operating Range (VCC33 = 3.3 V + 5%, Tcase=0°C to 105°C) 66 MHz Symbol Parameter Min 33 MHz Max Min Max Units Notes Tval CLK to Signal Valid Delay; bused signals 2 6 2 11 ns 1, 2, 3 Tval(ptp) CLK to Signal Valid Delay; point-to-point signals 2 6 2 12 ns 1, 2, 3 Ton Float to Active Delay 2 ns 1, 7 Toff Active to Float Delay ns 1, 7 Tsu Input Setup Time to CLK; Bused signals 3 7 ns 3, 4, 8 Tsu(ptp) Input Setup Time to CLK; point-to-point 5 10,12 ns 3, 4 Th Input Hold Time from CLK 0 0 ns 4 Trst Reset Active Time after power stable 1 1 ms 5 Trst-clk Reset Active Time after CLK stable 100 100 µs 5 ns 5, 6 2 14 28 Trst-off Reset Active to output float delay Trrsu PxREQ64# to RSTIN# setup time 10 Trrh RSTIN# to PxREQ64# hold Time 0 Trhfa RSTIN# high to first configuration access 225 225 clocks Trhff RSTIN# high to first PxFRAME# Assertion 5 5 clocks Tpvrh Power Valid to RSTIN# High 100 100 ms 40 40 10 50 0 clocks 50 ns 9 1. It is important that all driven signal transitions drive to their Voh or Vol level within one Tcyc. 2. Minimum times are measured at the package pin (not the test point) with the load circuit shown in the PCI-X Electrical and Mechanical Addendum, Revision 2.0a. Maximum times are measured with the test point and load circuit shown in the PCI-X Electrical and Mechanical Addendum, Revision 2.0a. 3. X_REQ_[5:0]# and X_GNT_[5:0]# are point-to-point signals and have different input setup times than do bused signals. X_GNT_[5:0]# and X_REQ_[5:0]# have a setup of 5 ns at 66 MHz. All other signals are bused. 4. See Section 3.5, “Timing Specifications” on page 28 and the measurement conditions in the PCI-X Electrical and Mechanical Addendum, Revision 2.0a. 5. If X_M66EN is asserted, CLK is stable when it meets the requirements in the PCI Local Bus Specification Revision 2.3. RSTIN# is asserted and deasserted asynchronously with respect to CLK. 6. When X_M66EN is asserted, the minimum specification for Tval(min), Tval(ptp)(min), and Ton may be reduced to 1 ns if a mechanism is provided to guarantee a minimum value of 2 ns when X_M66EN is deasserted. 7. For purposes of active/float timing measurements, the Hi-Z or “off” state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification. 8. Setup time applies only when the device is not driving the pin. Devices cannot drive and receive signals at the same time. Refer to the PCI Local Bus Specification Revision 2.3 for more details. 9. Maximum value is also limited by delay to the first transaction (Trhff). 30 Datasheet — 41210 Bridge Figure 5. PCI Output Timing Figure 6. PCI Input Timing Table 25. PCI-X 3.3V Signal Timing Parameters (Sheet 1 of 2) Sym Parameter PCI-X 133 Min Tval CLK to Signal Valid Delay 0.7 Max 3.8 PCI-X 66 Min 0.7 Units Notes Max 3.8 ns 1, 2, 8 31 41210 Bridge — Datasheet Table 25. PCI-X 3.3V Signal Timing Parameters (Sheet 2 of 2) Ton Float to Active Delay Toff Active to Float Delay 0 0 ns 1, 6, 8 ns 1, 6, 8 Tsu Input Setup Time to CLK 1.2 1.7 ns 3, 7 Th Input Hold Time from CLK Trst Reset Active Time after power stable 0.5 0.5 ns 3 1 1 ms 4 Trst-clk Reset Active Time after CLK stable 100 100 µs 4 Trst-off Reset Active to output float delay ns 4 Trrsu PxREQ64# to RSTIN# setup time 10 Trrh RSTIN# to PxREQ64# hold Time 0 Trhfa RSTIN# high to first configuration access 226 226 clocks Trhff RSTIN# high to first PxFRAME# Assertion 5 5 clocks Tpvrh Power valid to RSTIN# high 100 100 ms Tprsu PCI-X initialization pattern to RSTIN# setup time 10 10 clocks Tprh RSTIN# to PCI-X initialization pattern hold time 0 Trlcx Delay from RSTIN# low to CLK frequency change 0 7 7 40 40 10 50 50 0 0 0 ns 50 50 ns ns 7 7 ns 1. See the timing measurement conditions in Section 3.5, “Timing Specifications” on page 28. 2. Minimum times are measured at the package pin (not the test point) with the load circuit shown in the PCI-X Electrical and Mechanical Addendum, Revision 2.0a. Maximum times are measured with the test point and load circuit shown in PCI-X Electrical and Mechanical Addendum, Revision 2.0a. 3. See the timing measurement conditions in Section 3.5, “Timing Specifications” on page 28 and the PCI-X Electrical and Mechanical Addendum, Revision 2.0a. 4. RST# is asserted and deasserted asynchronously with respect to CLK. 5. For purposes of Active/Float timing measurements, the Hi-Z or "off" state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification 6. Setup time applies only when the device is not driving the pin. Devices cannot drive and receive signals at the same time. 7. Maximum value is also limited by delay to the first transaction (Trhfa). The PCI-X initialization pattern control signals after the rising edge of RSTIN# must be deasserted no later than two clocks before the first PxFRAME# and must be floated no later than one clock before PxFRAME# is asserted. 8. Device must meet this specification independent of how many outputs switch simultaneously. 32 Datasheet — 41210 Bridge 3.5.3 PCI and PCI-X Clock Specification Clock measurement conditions are the same for PCI-X devices as for conventional PCI devices in a 3.3V signaling environment except for voltage levels specified in Table 26, “PCI and PCI-X Clock Timings” on page 33. The same spread-spectrum clocking techniques are allowed in PCI-X as for 66 MHz conventional PCI. If a device includes a PLL, that PLL must track the input variations of spread-spectrum clocking specified in Table 26. Figure 7. PCI-X 3.3V Clock Waveform Table 26. PCI and PCI-X Clock Timings PCI-X 133 Symbol T cyc PCI-X 66 PCI 66 PCI 33 Parameter CLK Cycle Time Min Max Min Max Min Max Min Max Units Notes Average 7.5 20 15 20 15 30 30 ∞ ns 1,3,4 Absolute Minimum 7.375 14.8 14.8 29.7 ns 1,3 Thigh CLK high time 3 6 6 11 ns Tlow CLK low time 3 6 6 11 ns Tjit CLK Period Jitter 125 -125 200 -200 200 -200 300 -300 ps 5 1.5 4 1 4 V/ns 2 Slew Rate — CLK slew rate 1.5 4 1.5 4 Spread Spectrum Requirements fmod Modulation frequency 30 33 30 33 30 33 kHz fsprea d Frequency spread -1 0 -1 0 -1 0 % 1. For clock frequencies above 33 MHz, the clock frequency may not change beyond the spread-spectrum and jitter limits except while RSTIN# is asserted. 2. This slew rate must be met across the minimum peak-to-peak portion of the clock waveform as shown in the PCI-X Electrical and Mechanical Addendum, Revision 2.0a. 3. The minimum clock period must not be violated for any single clock cycle (i.e. accounting for all system jitter). 4. Average Tcyc is measured over any 1 µs period of time and must include all sources of clock variation. 33 41210 Bridge — Datasheet 5. Period jitter is the deviation between any single period of the clock, Tcyc, and the average period of the clock, Tcyc(average). 34 Datasheet — 41210 Bridge 3.5.4 41210 Bridge Clock Timings Table 27. 41210 Bridge Clock Timings Symbol Parameter Min Max Units Notes Tperiod Average Period 10.0 10.2 ns 6 Trise Rise time across 600 mV 300 600 ps 7,8 Tfall Fall time across 600 mV 300 600 ps 7,8 — Rise/Fall Matching CLK100 — Cross point at 1 V Tccjitter Cycle to Cycle jitter — Duty Cycle — Maximum voltage allowed at input — Minimum voltage allowed at input — Rising edge ringback — Falling edge ring back 20% 0.51 45 7,9 0.76 V 200 ps 55 % 1.45 V -200 mV 0.85 V 0.35 V CLK133 Tperiod Average Period 7.5 7.65 ns 6 Trise Rise time across 600 mV 300 600 ps 7,8 Tfall Fall time across 600 mV 300 600 ps 7,8 — Rise/Fall Matching — Cross point at 1V Tccjitter 20% 0.51 Cycle to Cycle jitter 45 7,9 0.76 V 125 ps 55 % — Duty Cycle — Maximum voltage allowed at input 1.45 V — Minimum voltage allowed at input -200 mV — Rising edge ringback — Falling edge ring back 0.85 10 V 0.35 V CLK33 CLK period 30.0 N/A ns 1,2 Thigh CLK high time 12.0 N/A ns 3 Tlow CLK low time 12.0 N/A ns 4 — Rising edge rate 1.0 4.0 V/ns 5 — Falling edge rate 1.0 4.0 V/ns 5 Trise CLK rise time 0.5 2.0 ns 5 Tfall CLK fall time 0.5 2.0 ns 5 Tperiod 1. Period, jitter, offset and skew measured on rising edge @ 1.5V for 3.3V clocks. 35 41210 Bridge — Datasheet 2. 3. 4. 5. The average period over any 1 us period of time must be greater than the minimum specified period. Thigh is measured at 2.4V for non-host outputs. Tlow is measured at 0.4V for all outputs. For 3.3V clocks Trise and Tfall are measured as a transition through the threshold region Vol = 0.4V and Voh = 2.4V (1 mA) JEDEC Specification. 6. Measured at crossing point. 7. Measured from Vol = 0.2V to Voh = 0.8V. 8. Still simulating to determine [0.2–0.8 V] or [0.3–0.9 V]. 9. Determined as a fraction of 2*(Trise – Tfall) / (Trise + Tfall). 10.Period jitter is the deviation between any single period of the clock, Tcyc, and the average period of the clock, Tcyc(average). 3.5.4.1 Spread Spectrum Clocking Spread spectrum clocking can be used on the 41210 Bridge to reduce energy. Spread Spectrum clocking is a common technique used by system designers to meet FCC emissions, where the frequency is deliberately shifted around to spread the energy off of the peak. The following is to be observed when using Spread Spectrum clocking: • All device timings (including jitter, skew, min/max clock period, output rise/fall time) MUST meet the existing non-spread spectrum specifications • All non-spread Host and PCI functionality must be maintained in the spread spectrum mode (includes all power management functions.) • The minimum clock period cannot be violated. The preferred method is to adjust the spread technique to not allow for modulation above the nominal frequency. This technique is often called “down-spreading”. The modulation profile in a modulation period can be expressed as: Equations: (1 − δ ) f nom + 2 f m ⋅ δ ⋅ f nom ⋅ t f = (1 + δ ) f nom − 2 f m ⋅ δ ⋅ f nom ⋅ t 1 ; 2 fm 1 1 <t < , when fm 2 fm when 0 < t < where: fnom is the nominal frequency in the non-SSC mode fm is the modulation frequency fm is the modulation amount t is time. 3.6 41210 Bridge Power Consumption Table 28 provides details on the maximum draw from the power planes by the 41210 Bridge for use in voltage regulation. 36 Datasheet — 41210 Bridge Table 28. 41210 Bridge Maximum Voltage Plane Currents Power Plane Maximum Voltage Plane Current (Amps) Frequency (MHz) 133 100 66 Number of Slots 1 2 4 IVCC15 (core 1.5V) 1.68 1.61 1.55 IVCC15 (I/O 1.5V) 0.22 0.22 0.22 VCCBGPE 0.005 0.005 0.005 0.70 0.70 0.70 1.05 1.14 1.22 IVCCPE (PCI Express 1.5V) IVCC33 (PCI/PCI-X Mode 1 3.3V) 1. 1 Per PCI-X Bus segment Table 29 provides details on the maximum nominal draw from the power planes by the 41210 Bridge for use in thermal design. Table 29. 41210 Bridge Thermal Voltage Plane Currents Power Plane Thermal Voltage Plane Current (Amps) Frequency (MHz) 133 100 66 Number of Slots 1 2 4 IVCC15 (core 1.5V) 1.24 1.18 1.11 IVCC15 (I/O 1.5V) 0.22 0.22 0.22 VCCBGPE 0.005 0.005 0.005 0.69 0.69 0.69 0.99 1.04 1.10 IVCCPE (PCI Express 1.5V) IVCC33 (PCI/PCI-X Mode 1 3.3V) 1. 3.7 1 Per PCI-X Bus segment Power Delivery Guidelines Please refer to the Intel® 41210 Serial to Parallel PCI Bridge Design Guide. 3.8 Reference and Compensation Pins The 41210 Bridge has one reference pin and three compensation pins: • PE_RCOMP[1:0] are two separate pins that provide voltage compensation for the PCI Express interface on the 41210 Bridge. The nominal compensation voltage is 0.5V. An external 24.9 ±1% pull-up resistor should be used to connect to VCC15. A single pull-up resistor can be used to for both of these signals. 37 41210 Bridge — Datasheet • RCOMP is an analog PCI interface compensation pin to the 41210 Bridge. A 100 ±1% pulldown resistor should be used to connect the RCOMP pin to ground. All three of these implementations are shown in Figure 8. Figure 8. 41210 Bridge Reference and Compensation Circuit Implementations 3.9 Thermal Specifications 3.9.1 Power For TDP specifications, see 41210 Bridge Thermal Specifications for the 41210 Bridge component. FC-BGA packages have poor heat transfer capability into the board and have minimal thermal capability without thermal solutions. Intel recommends that system designers plan for a heatsink when using the 41210 Bridge component. 3.9.2 Die Temperature To ensure proper operation and reliability of the 41210 Bridge component, the die temperatures must be at or below the values specified in Table 30. System and/or component level thermal solutions are required to maintain die temperatures below the maximum temperature specifications. 38 Datasheet — 41210 Bridge Table 30. Note: 41210 Bridge Thermal Specifications Parameter Maxinum Tcase 105×C TDPMode#1/Mode#1 8.70W TDPMode#1/No Connect 8.30W TDPDDR/No Connect 8.10W Mode 1: PCI-X 66MHz, 64-bit, 4 slots/devices No Connect: Unused PCI segment (no slots/devices on PCI bus segment) 3.9.3 Thermal Solution Component Suppliers 3.9.3.1 Torsional Clip Heatsink Thermal Solution Part Intel Part Number Supplier (Part Number) Heatsink Assembly includes: Unidirectional Fin Heatsink Thermal Interface Material C76435-001 CCI/ACK C76434-001 CCI/ACK Torsional Clip Unidirectional Fin Heatsink (31.0 x 31.0 x 12.2mm) Thermal Interface (Chomerics T-710) A69230-001 Chomerics 69-12-22066-T710 Heatsink Attach Clip C17725-001 CCI/ACK Solder-Down Anchor A13494-005 Foxconn (HB96030-DW) Contact Information Harry Lin (USA) 714-739-5797 [email protected] Monica Chih (Taiwan) 866-2-29952666, x131 [email protected] Harry Lin (USA) 714-739-5797 [email protected] Monica Chih (Taiwan) 866-2-29952666, x131 [email protected] Todd Sousa (USA) 360-606-8171 [email protected] Harry Lin (USA) 714-739-5797 [email protected] Monica Chih (Taiwan) 866-2-29952666, x131 [email protected] Julia Jiang (USA) 408-919-6178 [email protected] Note: The enabled components may not be currently available from all suppliers. Contact the supplier directly to verify time of component availability. 39 41210 Bridge — Datasheet 4 Package Specification and Ballout 4.1 Package Specification The 41210 Bridge is in a 567-ball FCBGA package, 31mm X 31mm in size, with a 1.27mm ball pitch (see Figure 9 and Figure 10). Figure 9. 41210 Bridge Package Dimensions (Top View) Handling Exclusion Area 0.550 in. Die Area 21.00 mm 0.550 in. 17.00 mm 31.00 mm 17.00 mm 21.00 mm 31.00 mm Pkg_567-Ball_Top 40 Datasheet — 41210 Bridge Figure 10. 41210 Bridge Package Dimensions (Side View) Note: Primary datum -C- and seating plane are defined by the spherical crowns of the solder balls. Note: All dimensions and tolerances conform to ANSI Y14.5M-1982 41 41210 Bridge — Datasheet 4.2 Ball Map 24 AD 22 AC A_ A_ A_ REQ64# AD[0] AD[2] AB A_ ACK64# AA A_ A_ CBE2# AD[18] 21 20 19 A_ A_ AD[5] AD[7] A_ A_ AD[21] CBE3# A_ AD[16] V A_ IRDY# U T NC17 R A_ A_ AD[34] AD[35] A_ A_ AD[36] AD[37] 16 15 A_ A_ AD[26] RST# 14 13 A_ A_ AD[13] AD[14] A_ A_ AD[9] AD[11] A_ A_ CBE1# AD[15] A_ A_ A_ AD[29] AD[12] VCC33 PAR A_ A_ AD[31] GNT4# A_ A_ LOCK# AD[50] A_ AD[51] A_ A_ PERR# AD[52] A_ A_ AD[38] AD[39] A_ AD[53] A_ A_ A_ AD[54] REQ3# AD[55] A_ A_ A_ A_ AD[40] AD[41] NC15 VCC33 AD[56] AD[57] M L 17 A_ A_ A_ A_ AD[27] AD[28] VCC33 GNT2# GNT3# A_ A_ A_ A_ A_ A_ A_ CLKO AD[30] REQ1# REQ0# REQ5# GNT0# AD[25] [1] A_ A_ A_ A_ A_ A_ A_ CLKO CLKO FRAME# PME# 133EN REQ2# CLKO [2] [6] [0] A_ A_ A_ A_ A_ A_ A_ A_ CLKO CLKO DEV CLKO CLKIN GNT5# TRDY# [5] [3] SEL# STOP# [4] A_ A_ A_ A_ VCC33 AD[32] AD[33] VCC33 SERR# M66EN VCC33 W N A_ A_ A_ A_ AD[20] AD[3] AD[24] AD[8] A_ A_ A_ A_ VCC33 AD[17] AD[19] VCC33 AD[22] AD[23] 18 A_ A_ A_ A_ AD[4] AD[6] VCC33 CBE0# AD[10] Y P A_ A_ AD[42] REQ4# A_ AD[59] A_ AD[44] J A_ A_ GNT1# AD[46] H A_ A_ A_ A_ A_ VCC33 AD[48] AD[49] VCC33 CBE7# CBE6# VCC33 CBE4# VCCPE PETN [3] G PETP [3] E D C B A A_ AD[45] NC13 A_ A_ AD[43] AD[58] K F A_ A_ AD[47] PAR64 A_NC7 A_NC5 A_ A_ A_ AD[62] AD[61] AD[60] A_ A_ CBE5# AD[63] NC12 NC11 RES A_ A_NC4 A_NC9 ERVED STRAP6 NC1 4 PE_ PERP A_ A_ VCC33 A_NC8 NC10 NC6 PCIX RCOMP [0] CAP [0] RES A_ PETP PETN A_ A_NC3 A_NC6 ERVED STRAP5 STRAP1 [1] [1] 3 RES A_ A_ REF REF VCC33 ERVED STRAP3 STRAP0 CLKN CLKP VCCPE 1 A_ RES B_ VCC33 PE_ PETP A_NC1 STRAP2 RCOMP ERVED STRAP3 [2] [1] 2 PERP PERN B_ B_ A_NC2 NC3 STRAP4 [1] [1] STRAP0 24 42 23 A_ AD[1] 23 22 21 20 19 18 17 16 15 VCCPE PETP PETN [0] [0] PERN [0] PERP [2] PERN [2] PETN [2] VCCPE 14 13 B3552-01 Datasheet — 41210 Bridge 12 VSS 11 10 8 VSS B_AD B_AD [12] [10] B_ PAR B_AD [14] VSS B_ CBE1# VSS 7 VSS 6 5 B_AD B_AD [7] [6] 4 VSS B_AD B_AD [31] [28] VSS B_AD [24] B_ i3# B_AD B_AD [20] [3] VSS B_ B_AD B_AD B_AD B_AD B_AD GNT2# [30] VCC33 [27] [26] VCC15 [22] [21] B_ B_ B_AD GNT4# VCC33 CLKO[0] [29] 3 2 B_AD B_AD [2] [1] 1 VSS AD B_ B_AD VCC33 B_AD B_AD VCC15 B_AD B_ [0] REQ64# AC CBE0# [9] [4] [5] B_AD B_AD VCC33 B_AD B_ [13] [11] [8] REQ1# VSS B_ B_ REQ5# GNT3# VSS VSS 9 B_AD [15] B_ ACK64# AB B_AD B_AD VCC33 AA [19] [18] VSS B_AD B_ [17] CBE2# Y B_AD B_ B_ TRDY# LOCK# VCC33 [16] W B_ B_ B_ B_ B_ B_ VCC15 RCOMP VSS CLKO[1] CLKO[2] VSS CLKO[4] REQ4# VCC33 STOP# SERR# VSS V VSS B_AD B_AD [25] [23] VSS VSS B_ B_ B_ B_ STRAP3 CLKIN VCC33 CLKO[6] CLKO[5] VSS VSS VCC15 VSS VCC15 VCC15 VSS VCC15 VSS VSS VCC APC12 B_ B_ B_ B_ IRDY# FRAME# VSS PERR# M66EN U B_ B_ B_ B_ CLKO[3] REQ2# VCC33 NC10 DEVSEL# VSS REQ3# T B_ B_ AD[36] AD[35] R_ B_ B_ RST# AD[53] AD[52] VSS VCC15 VSS VCC15 NC14 B_ B_ AD[33] AD[32] VSS B_ VCC33 NC16 PME# B_ B_ VCC15 VSS VCC15 AD[51] AD[50] VSS VCC15 VSS VCC15 VSS VSS VSS VSS VSS VSS B_ B_ 133EN AD[34] P B_ B_ AD[35] AD[35] VSS B_ B_ AD[55] AD[54] VSS N B_ B_ AD[40] AD[39] M B_ B_ B_ B_ B_ B_ VCC15 VSS VCC15 VSS GNT5# AD[57] VCC33 AD[56] REQ0# VCC15 AD[42] AD[41] VSS VCC15 VSS VCC15 VSS VCCPE VSS VCCPE VSS VCC APC11 B_ B_ B_ B_ AD[59] AD[58] VSS AD[44] AD[43] R VSS B_ B_ B_ B_ B_ AD[61] AD[60] GNT0# VSS AD[46] AD[45] L B_ GNT1# K VSS J B_ PERP VCCPE VSS B_ B_ B_ B_ B_ B_ [3] CBE5# AD[63] PAR64 VSS AD[62] AD[47] VCC33 AD[49] AD[48] H PERN VSS [3] PERN B_ B_ B_ [7] CBE4# VSS CBE7# CBE6# VSS PERP VCCPE PETN [7] TRST# [7] B_ NC8 PERN PETP [6] [7] VSS VSS TDI PETP PETN [6] [6] SMB DAT VCCPE PERP PERN PERN [4] [4] [5] VSS PERP [6] VSS B_ NC8 B_ NC5 VSS B_ INTB# SMB CLK NC18 VSS NC4 B_ TEST1 VSS B_ INTD# RES B_ B_ PETP PETN VSS PERP CFG TCK NC19 B_ ERVED B_ [5] RETRY [4] STRAP6 6 STRAP1 NC1 NC7 [4] RES PETP PETN VSS B_ VCC33 TDO NC2 VSS ERVED STRAP5 [5] [5] 5 12 11 10 9 8 G B_ RES B_ B_ B_ NC7 ERVED NC10 INTC# INTA# VCC33 F 8 B_ B_ B_ B_ TMS STRAP4 VSS NC2 NC9 VSS NC4 E RES B_ B_ VCC33 ERVED B_ B_ B_ PCIX NC5 NC6 NC3 TEST2 D 7 CAP B_ NC9 7 6 5 4 3 2 1 C B A B3553-01 43 41210 Bridge — Datasheet 4.3 Signal List, sorted by Ball Location Table 31. Ball Signal List, sorted by Ball Name (Sheet 1 of 4) Signal Name A1 44 Ball Signal Name Ball Signal Name C1 B_INTD# E1 B_NC4 A2 B_STRAP5 C2 VSS E2 VSS A3 RESERVED5 C3 B_TEST1 E3 B_NC9 A4 VSS C4 NC4 E4 B_NC2 A5 NC2 C5 VSS E5 VSS A6 TDO C6 NC18 E6 B_STRAP4 A7 VCC33 C7 SMBCLK E7 TMS A8 VSS C8 VSS E8 VSS A9 PETN[5] C9 PERN[5] E9 TDI A10 PETP[5] C10 PERN[4] E10 VSS A11 C11 PERP[4] E11 PETP[7] A12 C12 VCCPE E12 PERN[6] A13 VSSBGPE C13 PERN[2] E13 VSS A14 VCCPE C14 VCCBGPE E14 PERN[0] A15 PERN[1] C15 VCCPE E15 PERP[0] A16 PERP[1] C16 REFCLKP E16 PE_RCOMP[0] A17 VSS C17 REFCLKN E17 A_PCIXCAP A18 SMBUS[3] C18 A_STRAP0 E18 CFGRST# A19 B_STRAP0 C19 A_STRAP3 E19 NC6 A20 VSS C20 VSS E20 VSS A21 A_STRAP4 C21 RESERVED1 E21 A_NC10 A22 NC3 C22 VCC33 E22 A_NC8 A23 A_NC2 C23 VSS E23 VSS A24 VSS C24 A_INTD# E24 VCC33 B1 B_NC7 D1 B_TEST2 F1 VCC33 B2 B_NC1 D2 B_NC3 F2 B_INTA# B3 B_STRAP1 D3 B_NC6 F3 B_INTC# B4 RESERVED6 D4 RESERVED7 F4 B_NC10 B5 B_STRAP6 D5 VCC33 F5 RESERVED8 B6 NC19 D6 NC5 F6 NC7 B7 TCK D7 B_PCIXCAP F7 NC9 B8 CFGRETRY D8 SMBDAT F8 NC8 B9 PERP[5] D9 PETN[6] F9 TRST# B10 VSS D10 PETP[6] F10 PERP[7] B11 PETN[4] D11 VSS F11 PETN[7] B12 PETP[4] D12 PERP[6] F12 VCCPE B13 VSS D13 PERP[2] F13 PETN[0] B14 PETN[2] D14 VSS F14 PETP[0] B15 PETP[2] D15 PETN[1] F15 VSS B16 VSS D16 PETP[1] F16 VSSAPE B17 PE_RCOMP[1] D17 VSS F17 PERST# B18 VCC33 D18 A_STRAP1 F18 NC1 B19 B_STRAP2 D19 A_STRAP5 F19 A_STRAP6 RESERVED4 B20 SMBUS[2] D20 SMBUS[5] F20 B21 RESERVED2 D21 RESERVED3 F21 A_NC9 B22 A_STRAP2 D22 A_NC6 F22 A_TEST1 B23 A_TEST2 D23 A_INTC# F23 A_NC4 B24 A_NC1 D24 A_NC3 F24 A_INTB# Datasheet — 41210 Bridge Table 31. Signal List, sorted by Ball Name (Sheet 2 of 4) Ball Signal Name Ball Signal Name Ball Signal Name G1 B_INTB# J1 VSS L1 B_AD[41] G2 VSS J2 B_AD[45] L2 B_AD[42] G3 B_NC5 J3 B_AD[46] L3 VCC15 G4 B_NC8 J4 VSS L4 B_REQ0# B_AD[56] G5 VSS J5 B_GNT0# L5 G6 B_CBE6# J6 B_AD[60] L6 VCC33 G7 B_CBE7# J7 B_AD[61] L7 B_AD[57] B_GNT5# G8 VSS J8 VCCAPCI1 L8 G9 B_CBE4# J9 VSS L9 VSS G10 PERN[7] J10 VCCPE L10 VCC15 G11 VSS J11 VSS L11 VSS G12 PERN[3] J12 VCCPE L12 VCC15 G13 PETP[3] J13 VSS L13 VSS G14 VSS J14 VCCPE L14 VCC15 G15 VCCAPE J15 VSS L15 VSS G16 SMBUS[1] J16 VCC15 L16 VCC15 G17 VSS J17 A_AD[63] L17 A_AD[59] G18 NC11 J18 A_CBE5# L18 VSS G19 NC12 J19 VSS L19 A_AD[58] G20 VSS J20 A_PAR64 L20 A_AD[43] G21 A_NC5 J21 A_AD[47] L21 VSS G22 A_NC7 J22 VSS L22 A_REQ4# G23 VSS J23 A_AD[46] L23 A_AD[42] G24 A_INTA# J24 A_GNT1# L24 VSS H1 B_AD[48] K1 B_GNT1# M1 H2 B_AD[49] K2 VSS M2 B_AD[39] H3 VCC33 K3 B_AD[43] M3 B_AD[40] H4 B_AD[47] K4 B_AD[44] M4 VSS H5 B_AD[62] K5 VSS M5 B_AD[54] H6 VSS K6 B_AD[58] M6 B_AD[55] H7 B_PAR64 K7 B_AD[59] M7 VSS H8 B_AD[63] K8 VSS M8 NC14 VCC15 H9 B_CBE5# K9 VCC15 M9 H10 VSS K10 VSS M10 VSS H11 VCCPE K11 VCC15 M11 VCC15 H12 PERP[3] K12 VSS M12 VSS H13 PETN[3] K13 VCC15 M13 VCC15 H14 VSS K14 VSS M14 VSS H15 VCCPE K15 VCC15 M15 VCC15 H16 RSTIN# K16 VSS M16 VSS H17 A_CBE4# K17 A_AD[61] M17 A_AD[57] H18 VCC33 K18 A_AD[60] M18 A_AD[56] H19 A_CBE6# K19 A_AD[62] M19 VCC33 H20 A_CBE7# K20 VSS M20 NC15 H21 VCC33 K21 NC13 M21 A_AD[41] H22 A_AD[49] K22 A_AD[45] M22 VCC15 H23 A_AD[48] K23 VSS M23 A_AD[40] H24 VCC33 K24 A_AD[44] M24 45 41210 Bridge — Datasheet Table 31. Ball Signal List, sorted by Ball Name (Sheet 3 of 4) Signal Name N1 Signal Name Ball R1 VSS U1 Signal Name B_M66EN B_PERR# N2 VSS R2 B_AD[32] U2 N3 B_AD[37] R3 B_AD[33] U3 VSS N4 B_AD[38] R4 VSS U4 B_FRAME# N5 VSS R5 B_PME# U5 B_IRDY# N6 B_AD[52] R6 NC16 U6 VSS N7 B_AD[53] R7 VCC33 U7 B_CLKO[5] N8 B_RST# R8 VCCAPCI2 U8 B_CLKO[6] N9 VSS R9 VSS U9 VCC33 N10 VCC15 R10 VCC15 U10 B_CLKIN B_STRAP3 N11 VSS R11 VSS U11 N12 VCC15 R12 VCC15 U12 VSS N13 VSS R13 VSS U13 A_CLKIN N14 VCC15 R14 VCC15 U14 A_CLKO[4] N15 VSS R15 VSS U15 VSS N16 VCC15 R16 VCC15 U16 A_CLKO[5] N17 A_AD[55] R17 VCCAPCI3 U17 A_CLKO[3] N18 A_REQ3# R18 A_AD[51] U18 VSS N19 A_AD[54] R19 VSS U19 A_STOP# N20 VSS R20 A_AD[50] U20 A_DEVSEL# N21 A_AD[39] R21 A_LOCK# U21 VSS N22 A_AD[38] R22 VSS U22 A_TRDY# N23 VSS R23 A_AD[35] U23 A_GNT5# R24 A_AD[34] U24 VSS N24 46 Ball P1 B_AD[34] T1 B_REQ3# V1 VSS P2 B_133EN T2 VSS V2 B_SERR# B_STOP# P3 VSS T3 B_DEVSEL# V3 P4 B_AD[35] T4 NC10 V4 VCC33 P5 B_AD[36] T5 VCC33 V5 B_REQ4# P6 VSS T6 B_REQ2# V6 B_CLKO[4] P7 B_AD[50] T7 B_CLKO[3] V7 VSS P8 B_AD[51] T8 VSS V8 B_CLKO[2] B_CLKO[1] P9 VCC15 T9 VCC15 V9 P10 VSS T10 VSS V10 VSS P11 VCC15 T11 VCC15 V11 RCOMP VCC15 P12 VSS T12 VSS V12 P13 VCC15 T13 VCC15 V13 VSS P14 VSS T14 VSS V14 A_CLKO[0] P15 VCC15 T15 VCC15 V15 A_CLKO[6] P16 VSS T16 VSS V16 VCC15 P17 A_AD[53] T17 VCC33 V17 A_CLKO[2] P18 VSS T18 A_M66EN V18 A_REQ2# P19 A_AD[52] T19 A_SERR# V19 VSS P20 A_PERR# T20 VCC33 V20 A_133EN P21 VSS T21 A_AD[33] V21 A_PME# P22 A_AD[37] T22 A_AD[32] V22 VSS P23 A_AD[36] T23 VCC33 V23 A_FRAME# P24 VSS T24 NC17 V24 A_IRDY# Datasheet — 41210 Bridge Table 31. Signal List, sorted by Ball Name (Sheet 4 of 4) Ball Signal Name Ball Signal Name Ball Signal Name W1 B_AD[16] AA1 VCC33 AC1 B_REQ64# W2 VCC33 AA2 B_AD[18] AC2 B_AD[0] W3 B_LOCK# AA3 B_AD[19] AC3 VCC15 W4 B_TRDY# AA4 VSS AC4 B_AD[4] W5 VSS AA5 B_CBE3# AC5 B_AD[5] W6 B_AD[23] AA6 B_AD[24] AC6 VCC33 W7 B_AD[25] AA7 VSS AC7 B_AD[9] W8 VSS AA8 B_AD[28] AC8 B_CBE0# W9 B_AD[29] AA9 B_AD[31] AC9 VSS W10 B_CLKO[0] AA10 VSS AC10 B_AD[14] B_PAR W11 VCC33 AA11 B_GNT3# AC11 W12 B_GNT4# AA12 B_REQ5# AC12 VSS W13 A_REQ5# AA13 VSS AC13 A_AD[15] W14 VSS AA14 A_GNT4# AC14 A_CBE1# W15 A_AD[30] AA15 A_AD[31] AC15 VSS W16 A_CLKO[1] AA16 VSS AC16 A_AD[11] W17 VSS AA17 A_RST# AC17 A_AD[9] W18 A_AD[25] AA18 A_AD[26] AC18 VSS W19 A_GNT0# AA19 VSS AC19 A_AD[7] A_AD[5] W20 VSS AA20 A_CBE3# AC20 W21 A_REQ0# AA21 A_AD[21] AC21 VSS W22 A_REQ1# AA22 VSS AC22 A_AD[2] W23 VSS AA23 A_AD[18] AC23 A_AD[0] W24 A_AD[16] AA24 A_CBE2# AC24 A_REQ64# Y1 B_CBE2# AB1 B_ACK64# AD1 VSS Y2 B_AD[17] AB2 VSS AD2 B_AD[1] Y3 VSS AB3 B_AD[20] AD3 B_AD[2] Y4 B_AD[21] AB4 B_AD[3] AD4 VSS Y5 B_AD[22] AB5 VSS AD5 B_AD[6] B_AD[7] Y6 VCC15 AB6 B_REQ1# AD6 Y7 B_AD[26] AB7 B_AD[8] AD7 VSS Y8 B_AD[27] AB8 VCC33 AD8 B_AD[10] B_AD[12] Y9 VCC33 AB9 B_AD[11] AD9 Y10 B_AD[30] AB10 B_AD[13] AD10 VSS Y11 B_GNT2# AB11 VSS AD11 B_AD[15] Y12 VSS AB12 B_CBE1# AD12 Y13 A_GNT3# AB13 A_PAR AD13 Y14 A_GNT2# AB14 VCC33 AD14 A_AD[14] Y15 VCC33 AB15 A_AD[12] AD15 A_AD[13] Y16 A_AD[28] AB16 A_AD[29] AD16 VSS Y17 A_AD[27] AB17 VSS AD17 A_AD[10] Y18 VSS AB18 A_AD[8] AD18 A_CBE0# Y19 A_AD[23] AB19 A_AD[24] AD19 VCC33 Y20 A_AD[22] AB20 VCC15 AD20 A_AD[6] A_AD[4] Y21 VCC33 AB21 A_AD[3] AD21 Y22 A_AD[19] AB22 A_AD[20] AD22 VSS Y23 A_AD[17] AB23 VSS AD23 A_AD[1] Y24 VCC33 AB24 A_ACK64# AD24 VSS 47 41210 Bridge — Datasheet 4.4 Signal List, sorted by Signal Name Table 32. Signal List, sorted by Signal Name (Sheet 1 of 4) 48 Ball Signal Name Ball Signal Name Ball V20 A_133EN J23 A_AD[46] A23 Signal Name A_NC2 AB24 A_ACK64# J21 A_AD[47] D24 A_NC3 AC23 AD23 A_AD[0] A_AD[1] H23 H22 A_AD[48] A_AD[49] F23 G21 A_NC4 A_NC5 AC22 A_AD[2] R20 A_AD[50] D22 A_NC6 AB21 A_AD[3] R18 A_AD[51] G22 A_NC7 AD21 A_AD[4] P19 A_AD[52] E22 A_NC8 AC20 A_AD[5] P17 A_AD[53] F21 A_NC9 AD20 A_AD[6] N19 A_AD[54] E21 A_NC10 AC19 AB18 A_AD[7] A_AD[8] N17 M18 A_AD[55] A_AD[56] R21 T18 A_LOCK# A_M66EN AC17 A_AD[9] M17 A_AD[57] AB13 A_PAR AD17 A_AD[10] L19 A_AD[58] J20 A_PAR64 AC16 A_AD[11] L17 A_AD[59] E17 A_PCIXCAP AB15 A_AD[12] K18 A_AD[60] P20 A_PERR# AD15 AD14 A_AD[13] A_AD[14] K17 K19 A_AD[61] A_AD[62] V21 W21 A_PME# A_REQ0# A_REQ1# AC13 A_AD[15] J17 A_AD[63] W22 W24 A_AD[16] AD18 A_CBE0# V18 A_REQ2# Y23 AA23 A_AD[17] A_AD[18] AC14 AA24 A_CBE1# A_CBE2# N18 L22 A_REQ3# A_REQ4# Y22 A_AD[19] AA20 A_CBE3# W13 A_REQ5# AB22 A_AD[20] H17 A_CBE4# AC24 A_REQ64# AA21 Y20 A_AD[21] A_AD[22] J18 H19 A_CBE5# A_CBE6# AA17 T19 A_RST# A_SERR# Y19 AB19 A_AD[23] A_AD[24] H20 U13 A_CBE7# A_CLKIN U19 C18 A_STOP# A_STRAP0 W18 AA18 A_AD[25] A_AD[26] V14 W16 A_CLKO[0] A_CLKO[1] D18 B22 A_STRAP1 A_STRAP2 Y17 Y16 A_AD[27] A_AD[28] V17 U17 A_CLKO[2] A_CLKO[3] C19 A21 A_STRAP3 A_STRAP4 AB16 W15 A_AD[29] A_AD[30] U14 U16 A_CLKO[4] A_CLKO[5] D19 F19 A_STRAP5 A_STRAP6 AA15 T22 A_AD[31] A_AD[32] V15 U20 A_CLKO[6] A_DEVSEL# F22 B23 A_TEST1 A_TEST2 T21 R24 A_AD[33] A_AD[34] V23 W19 A_FRAME# A_GNT0# U22 P2 A_TRDY# B_133EN R23 P23 A_AD[35] A_AD[36] J24 Y14 A_GNT1# A_GNT2# AB1 AC2 B_ACK64# B_AD[0] P22 N22 A_AD[37] A_AD[38] Y13 AA14 A_GNT3# A_GNT4# AD2 AD3 B_AD[1] B_AD[2] N21 M23 A_AD[39] A_AD[40] U23 V24 A_GNT5# A_IRDY# AB4 AC4 B_AD[3] B_AD[4] M21 L23 A_AD[41] A_AD[42] G24 F24 A_INTA# A_INTB# AC5 AD5 B_AD[5] B_AD[6] L20 K24 A_AD[43] A_AD[44] D23 C24 A_INTC# A_INTD# AD6 AB7 B_AD[7] B_AD[8] K22 A_AD[45] B24 A_NC1 AC7 B_AD[9] Datasheet — 41210 Bridge Table 32. Signal List, sorted by Signal Name (Sheet 2 of 4) Ball Signal Name Ball Signal Name Ball AD8 B_AD[10] K6 B_AD[58] H7 Signal Name B_PAR64 AB9 B_AD[11] K7 B_AD[59] D7 B_PCIXCAP AD9 AB10 B_AD[12] B_AD[13] J6 J7 B_AD[60] B_AD[61] U2 R5 B_PERR# B_PME# AC10 B_AD[14] H5 B_AD[62] L4 B_REQ0# AD11 B_AD[15] H8 B_AD[63] AB6 B_REQ1# W1 B_AD[16] AC8 B_CBE0# T6 B_REQ2# Y2 B_AD[17] AB12 B_CBE1# T1 B_REQ3# AA2 AA3 B_AD[18] B_AD[19] Y1 AA5 B_CBE2# B_CBE3# V5 AA12 B_REQ4# B_REQ5# AB3 B_AD[20] G9 B_CBE4# AC1 B_REQ64# Y4 Y5 B_AD[21] B_AD[22] H9 G6 B_CBE5# B_CBE6# N8 V2 B_RST# B_SERR# W6 B_AD[23] G7 B_CBE7# V3 B_STOP# AA6 B_AD[24] U10 B_CLKIN A19 B_STRAP0 W7 Y7 B_AD[25] B_AD[26] W10 V9 B_CLKO[0] B_CLKO[1] B3 B19 B_STRAP1 B_STRAP2 Y8 AA8 B_AD[27] B_AD[28] V8 T7 B_CLKO[2] B_CLKO[3] U11 E6 B_STRAP3 B_STRAP4 W9 Y10 B_AD[29] B_AD[30] V6 U7 B_CLKO[4] B_CLKO[5] A2 B5 B_STRAP5 B_STRAP6 AA9 B_AD[31] U8 B_CLKO[6] C3 B_TEST1 R2 B_AD[32] T3 B_DEVSEL# D1 B_TEST2 R3 P1 B_AD[33] B_AD[34] U4 J5 B_FRAME# B_GNT0# W4 B8 B_TRDY# CFGRETRY P4 B_AD[35] K1 B_GNT1# E18 CFGRST# P5 B_AD[36] Y11 B_GNT2# F18 NC1 N3 N4 B_AD[37] B_AD[38] AA11 W12 B_GNT3# B_GNT4# A5 A22 NC2 NC3 M2 M3 B_AD[39] B_AD[40] L8 U5 B_GNT5# B_IRDY# C4 D6 NC4 NC5 L1 L2 B_AD[41] B_AD[42] F2 G1 B_INTA# B_INTB# E19 F6 NC6 NC7 K3 K4 B_AD[43] B_AD[44] F3 C1 B_INTC# B_INTD# F8 F7 NC8 NC9 J2 J3 B_AD[45] B_AD[46] B2 E4 B_NC1 B_NC2 T4 G18 NC10 NC11 H4 H1 B_AD[47] B_AD[48] D2 E1 B_NC3 B_NC4 G19 K21 NC12 NC13 H2 P7 B_AD[49] B_AD[50] G3 D3 B_NC5 B_NC6 M8 M20 NC14 NC15 P8 N6 B_AD[51] B_AD[52] B1 G4 B_NC7 B_NC8 R6 T24 NC16 NC17 N7 M5 B_AD[53] B_AD[54] E3 F4 B_NC9 B_NC10 C6 B6 NC18 NC19 M6 L5 B_AD[55] B_AD[56] W3 U1 B_LOCK# B_M66EN E16 B17 PE_RCOMP[0] PE_RCOMP[1] L7 B_AD[57] AC11 B_PAR E14 PERN[0] 49 41210 Bridge — Datasheet Table 32. Signal List, sorted by Signal Name (Sheet 3 of 4) 50 Ball Signal Name Ball Signal Name Ball A15 PERN[1] A18 SMBUS[3] F1 Signal Name VCC33 C13 PERN[2] D20 SMBUS[5] H3 VCC33 G12 C10 PERN[3] PERN[4] B7 E9 TCK TDI H18 H21 VCC33 VCC33 C9 PERN[5] A6 TDO H24 VCC33 E12 PERN[6] E7 TMS L6 VCC33 G10 PERN[7] F9 TRST# M19 VCC33 E15 PERP[0] J16 VCC15 R7 VCC33 A16 D13 PERP[1] PERP[2] K9 K11 VCC15 VCC15 T5 T17 VCC33 VCC33 H12 PERP[3] K13 VCC15 T20 VCC33 C11 B9 PERP[4] PERP[5] K15 L3 VCC15 VCC15 T23 U9 VCC33 VCC33 D12 PERP[6] L10 VCC15 V4 VCC33 F10 PERP[7] L12 VCC15 W2 VCC33 F17 F13 PERST# PETN[0] L14 L16 VCC15 VCC15 W11 Y9 VCC33 VCC33 D15 B14 PETN[1] PETN[2] M9 M11 VCC15 VCC15 Y15 Y21 VCC33 VCC33 H13 B11 PETN[3] PETN[4] M13 M15 VCC15 VCC15 Y24 AA1 VCC33 VCC33 A9 PETN[5] M22 VCC15 AB8 VCC33 D9 PETN[6] N10 VCC15 AB14 VCC33 F11 F14 PETN[7] PETP[0] N12 N14 VCC15 VCC15 AC6 AD19 VCC33 VCC33 D16 PETP[1] N16 VCC15 J8 VCCAPCI1 B15 PETP[2] P9 VCC15 R8 VCCAPCI2 G13 B12 PETP[3] PETP[4] P11 P13 VCC15 VCC15 R17 G15 VCCAPCI3 VCCAPE A10 D10 PETP[5] PETP[6] P15 R10 VCC15 VCC15 C14 A14 VCCBGPE VCCPE E11 V11 PETP[7] RCOMP R12 R14 VCC15 VCC15 C12 C15 VCCPE VCCPE C17 C16 REFCLKN REFCLKP R16 T9 VCC15 VCC15 F12 H11 VCCPE VCCPE C21 B21 RESERVED1 RESERVED2 T11 T13 VCC15 VCC15 H15 J10 VCCPE VCCPE D21 F20 RESERVED3 RESERVED4 T15 V12 VCC15 VCC15 J12 J14 VCCPE VCCPE A3 B4 RESERVED5 RESERVED6 V16 Y6 VCC15 VCC15 A4 A8 VSS VSS D4 F5 RESERVED7 RESERVED8 AB20 AC3 VCC15 VCC15 A17 A20 VSS VSS H16 C7 RSTIN# SMBCLK A7 B18 VCC33 VCC33 A24 B10 VSS VSS D8 G16 SMBDAT SMBUS[1] C22 D5 VCC33 VCC33 B13 B16 VSS VSS B20 SMBUS[2] E24 VCC33 C2 VSS Datasheet — 41210 Bridge Table 32. Signal List, sorted by Signal Name (Sheet 4 of 4) Ball Signal Name Ball Signal Name Ball Signal Name C5 VSS L21 VSS V10 VSS C8 VSS L24 VSS V13 VSS C20 C23 VSS VSS M4 M7 VSS VSS V19 V22 VSS VSS VSS D11 VSS M10 VSS W5 D14 VSS M12 VSS W8 VSS D17 VSS M14 VSS W14 VSS E2 VSS M16 VSS W17 VSS E5 E8 VSS VSS N2 N5 VSS VSS W20 W23 VSS VSS E10 VSS N9 VSS Y3 VSS E13 VSS N11 VSS Y12 VSS E20 VSS N13 VSS Y18 VSS E23 F15 VSS VSS N15 N20 VSS VSS AA4 AA7 VSS VSS G2 VSS N23 VSS AA10 VSS G5 VSS P3 VSS AA13 VSS G8 VSS P6 VSS AA16 VSS G11 VSS P10 VSS AA19 VSS G14 VSS P12 VSS AA22 VSS G17 VSS P14 VSS AB2 VSS G20 G23 VSS VSS P16 P18 VSS VSS AB5 AB11 VSS VSS H6 H10 VSS VSS P21 P24 VSS VSS AB17 AB23 VSS VSS H14 J1 VSS VSS R1 R4 VSS VSS AC9 AC12 VSS VSS J4 J9 VSS VSS R9 R11 VSS VSS AC15 AC18 VSS VSS J11 J13 VSS VSS R13 R15 VSS VSS AC21 AD1 VSS VSS J15 J19 VSS VSS R19 R22 VSS VSS AD4 AD7 VSS VSS J22 K2 VSS VSS T2 T8 VSS VSS AD10 AD16 VSS VSS K5 K8 VSS VSS T10 T12 VSS VSS AD22 AD24 VSS VSS K10 K12 VSS VSS T14 T16 VSS VSS F16 A13 VSSAPE VSSBGPE K14 K16 VSS VSS U3 U6 VSS VSS A1 A11 K20 K23 VSS VSS U12 U15 VSS VSS A12 M1 L9 L11 VSS VSS U18 U21 VSS VSS M24 N1 L13 L15 VSS VSS U24 V1 VSS VSS N24 AD12 L18 VSS V7 VSS AD13 51 41210 Bridge — Datasheet This page intentionally left blank. §§ §§ 52