Si 5 3 4 7 - EVB Si5347 E VALUATION B OARD U SER ’ S G U I D E Description EVB Features The Si5347-EVB is used for evaluating the Si5347 Quad Any-Frequency Jitter Attenuating Clock Multiplier. The Si5347 contains 4 independent DSPLLs in a single IC with programmable jitter attenuation bandwidth on a per DSPLL basis. The Si5347-EVB supports 4 independent input clocks and 8 independent output clocks via on-board SMA connectors. The Si5347-EVB can be controlled and configured via a USB connection to a host PC running Silicon Labs’ next generation Clock Builder Pro (CBPro) software tool. Test points are provided on-board for external monitoring of supply voltages. Powered from USB port or external +5 V power supply via screw terminals. Onboard 48 MHz XTAL allows standalone or holdover mode of operation on the Si5347. CBPro GUI programmable VDD supply allows device supply voltages of 3.3, 2.5, or 1.8 V. CBPro GUI programmable VDDO supplies allow each of the 8 outputs to have its own supply voltage selectable from 3.3, 2.5, or 1.8 V. CBPro GUI allows control and measurement of voltage, current, and power of VDD and all 8 VDDO supplies. Status LEDs for power supplies and control/status signals of Si5347. SMA connectors for input clocks, output clocks and optional external timing reference clock. Figure 1. Si5347 Evaluation Board Rev. 1.1 5/15 Copyright © 2015 by Silicon Labs Si5347-EVB Si5347-EVB 1. Si5347-EVB Functional Block Diagram Below is a functional block diagram of the Si5347-EVB. This EVB can be connected to a PC via the main USB connector for programming, control, and monitoring. See section “3. Quick Start” for more information. Power Supply VDDMCU I2C/SPI Bus I2C/SPI Bus DSPLL_SEL1 DSPLL_SEL0 OE_0 OE_0 FINC FDEC C8051F380 MCU + Peripherals VDDO_0 VDDO_1 VDDO_2 VDDO_3 VDDO_4 VDDO_5 VDDO_6 VDDO_7 +5V_Ext VDDO_0 VDDO_1 VDDO_2 VDDO_3 VDDO_4 VDDO_5 VDDO_6 VDDO_7 Ext +5V Connector +5V_Aux VDD_3.3 Power only VDD_3.3 Aux USB Connector +5V_USB VDD_Core Power only VDD_Core Main USB Connector INTR Alarm_Status Optional External XAXB Ref Input Input Clock 0 Input Clock 1 Input Clock 2 Input Clock 3 { { { { { XAXB Crystal / Term XA XB Input Termination CLKIN_0 CLKIN_0B Input Termination CLKIN_1 Input Termination CLKIN_2 Input Termination CLKIN_3 Si5347 CLKIN_1B CLKIN_2B CLKOUT_0 CLKOUT_0B Output Termination CLKOUT_1 CLKOUT_1B Output Termination CLKOUT_2 CLKOUT_2B Output Termination CLKOUT_3 CLKOUT_3B Output Termination CLKOUT_4 CLKOUT_4B Output Termination CLKOUT_5 CLKOUT_5B Output Termination CLKOUT_6 CLKOUT_6B Output Termination CLKOUT_7 CLKOUT_7B Output Termination CLKIN_3B Figure 2. Si5347-EVB Functional Block Diagram 2 Rev. 1.1 } } } } } } } } Output Clock 0 Output Clock 1 Output Clock 2 Output Clock 3 Output Clock 4 Output Clock 5 Output Clock 6 Output Clock 7 Si5347-EVB 2. Si5347-EVB Support Documentation and ClockBuilderPro Software All Si5347 schematics, BOMs, User’s Guides, and software can be found online at the following link: http:www.silabs.com/products/clocksoscillators/pages/si538x-4x-evb.aspx 3. Quick Start 1. Install ClockBuilderPro desktop software from EVB support web page given in Section 2. 2. Connect USB cable from Si5347-EVB to PC with ClockBuilderPro software installed. 3. Leave the jumpers as installed from the factory, and launch the ClockBuilderPro software. 4. You can use ClockBuilderPro to create, download, and run a frequency plan on the Si5347-EVB. 5. For the Si5347 data sheet, go to http://www.silabs.com/timing. 4. Jumper Defaults Table 1. Si5347 EVB Jumper Defaults Location Type I = Installed 0 = Open Location Type I = Installed 0 = Open JP1 2 pin I JP23 2 pin O JP2 2 pin O JP24 2 pin O JP3 2 pin I JP25 2 pin O JP4 2 pin I JP26 2 pin O JP5 2 pin O JP27 2 pin O JP6 2 pin O JP28 2 pin O JP7 2 pin I JP29 2 pin O JP8 2 pin O JP30 2 pin O JP9 2 pin O JP31 2 pin O JP10 2 pin I JP32 2 pin O JP13 2 pin O JP33 2 pin O JP14 2 pin I JP34 2 pin O JP15 3 pin all open JP35 2 pin O JP16 3 pin 1 to 2 JP36 2 pin O JP17 2 pin O JP38 3 pin all open JP18 2 pin O JP39 2 pin O JP19 2 pin O JP40 2 pin I JP20 2 pin O JP41 2 pin I JP21 2 pin O JP22 2 pin O J36 5x2 Hdr All 5 installed Refer to the Si5347-EVB schematics for the functionality associated with each jumper. Rev. 1.1 3 Si5347-EVB 5. Status LEDs Table 2. Si5347-EVB Status LEDs Location Silkscreen Color Status Function Indication D27 5VUSBMAIN Blue Main USB +5 V present D22 3P3V Blue DUT +3.3 V is present D26 VDD DUT Blue DUT VDD Core voltage present D25 INTR Red MCU INTR (Interrupt) active D21 READY Green MCU Ready D24 BUSY Green MCU Busy D2 LOS_XAXB_B Blue Loss of Signal at XAXB input D5 LOL_AB Blue Loss of Lock - DSPLL A D6 LOL_BB Blue Loss of Lock - DSPLL B D8 LOL_CB Blue Loss of Lock _ DSPLL C D11 INTRB Blue Si5347 Interrupt Active D12 LOL_DB Blue Loss of Lock _ DSPLL D D27, D22, and D26 are illuminated when USB +5 V, Si5347 +3.3 V, and Si5347 Vcore supply voltages, respectively, are present. D25, D21, and D24 are status LEDs showing on-board MCU activity. D2 indicates loss of signal at XAXB input (either crystal osc or external reference). D5, D6, D8, D12 indicate loss of lock for one of 4 internal DSPLLs (A–D). D11 indicates Si5347 interrupt output is active (as configured by Si5347 register programming). LED locations are highlighted below with LED function name indicated on board silkscreen. 4 Rev. 1.1 Si5347-EVB Figure 3. Si5347-EVB LED Locations Rev. 1.1 5 Si5347-EVB 6. External Reference Input (XA/XB) An external timing reference (48 MHz XTAL) is used in combination with the internal oscillator to produce an ultra-low jitter reference clock for the DSPLL and for providing a stable reference for the free-run and holdover modes. The Si5347-EVB can also accommodate an external reference clock instead of a crystal. To evaluate the device with an external REFCLK, C111 and C113 must be populated and XTAL Y1 removed (see Figure 4 below). The REFCLK can then be applied to SMA connectors J39 and J40. Figure 4. External Reference Input Circuit 6 Rev. 1.1 Si5347-EVB 7. Clock Input Circuits (INx/INxB) The Si5347-EVB has eight SMA connectors (IN0-IN0B—IN3./IN3B) for receiving external clock signals. All input clocks are terminated as show in Figure 5 below. Note input clocks are AC coupled and 50 terminated. This represents 4 differential input clock pairs. Single-ended clocks can be used by appropriately driving one side of the differential pair with a single-ended clock. For details on how to configure inputs as single-ended, please refer to the Si5347 data sheet. Figure 5. Input Clock Termination Circuit 8. Clock Output Circuits (OUTx/OUTxB) Each of the sixteen output drivers (8 differential pairs, OUT0/OUT0B—OUT7/OUT7B) is ac coupled to its respective SMA connector. The output clock termination circuit is shown in Figure 6 below. The output signal will have no dc bias. If dc coupling is required, the ac coupling capacitors can be replaced with a resistor of appropriate value. The Si5347-EVB provides pads for optional output termination resistors and/or low frequency capacitors. Note that components with schematic “NI” designation are not normally populated on the Si5347-EVB and provide locations on the PCB for optional dc/ac terminations by the end user. Figure 6. Output Clock Termination Circuit Rev. 1.1 7 Si5347-EVB 9. Installing ClockBuilderPro (CBPro) Desktop Software To install the CBPro software on any Windows 7 (or above) PC: Go to http://www.silabs.com/CBPro and download ClockBuilderPro software. Installation instructions and User’s Guide for ClockBuilder can be found at the download link shown above. Please follow the instructions as indicated. 10. Using the Si5347 EVB 10.1. Connecting the EVB to Your Host PC Once ClockBuilderPro software is installed, connect to the EVB with a USB cable as shown below. Figure 7. EVB Connection Diagram 8 Rev. 1.1 Si5347-EVB 10.2. Additional Power Supplies The Si5347-EB comes pre-configured with jumpers installed at JP15 and JP16 (pins 1-2 in both cases) in order to select “USB”. These jumpers, together with the components installed, configure the evaluation board to obtain all +5 V power solely through the main USB connector at J37. This setup is the default configuration and should normally be sufficient. Figure 8 shows the correct installation of the jumper shunts at JP15 and JP16 for default or standard operation. Figure 8. JP15-JP16 Standard Jumper Shunt Installation Errata Note:Some early versions of the 64-pin Si534x-EVBs may have the silkscreen text at JP15-JP16 reversed regarding EXT and USB, i.e., USB EXT instead of EXT USB. Regardless, the correct installation of the jumper shunts for default or standard operation is on the right hand side as read and viewed in Figure 8. The general guidelines for single USB power supply operation are listed below: Use either a USB 3.0 or USB 2.0 port. These ports are specified to supply 900 mA and 500 mA respectively at +5 V. If you are working with a USB 2.0 port and you are current limited, turn off enough DUT output voltage regulators to drop the total DUT current ≤ 470 mA. (Note: USB 2.0 ports may supply > 500 mA. Provided the nominal +5 V drops gracefully by less than 10%, the EVB will still work.) If you are working with a USB 2.0 and you are current limited and need all output clock drivers enabled, re-configure the EVB to drive the DUT output voltage regulators from an external +5 V power supply as follows: Connect Move external +5 V power supply to terminal block J33 on the back side of the PCB. the jumper at JP15 from pins 1-2 USB to pins 2-3 EXT. Rev. 1.1 9 Si5347-EVB 10.3. Overview of ClockBuilderPro Applications The ClockBuilderPro installer will install two main applications: Figure 9. Application #1: ClockbuilderPro Wizard Use the CBPro Wizard to: Create a new design Review or edit an existing design Export: create in-system programming files Export: create in-system programming files Figure 10. Application #2: EVB GUI Use the EVB GUI to: Download configuration to EVB’s DUT (Si5347) Control the EVB’s regulators Monitor voltage, current, power on the EVB 10 Rev. 1.1 Si5347-EVB 10.4. Common ClockBuilderPro Work Flow Scenarios There are three common workflow scenarios when using CBPro and the Si5347 EVB. These workflow scenarios are: Workflow Scenario #1: Testing a Silicon Labs-Created Default Configuration Workflow Scenario #2: Modifying the Default Silicon Labs-Created Device Configuration Workflow Scenario #3: Testing a User-Created Device Configuration Each is described in more detail in the following sections. 10.5. Workflow Scenario #1: Testing a Silicon Labs-Created Default Configuration The flow for using the EVB GUI to initialize and control a device on the EVB is as follows. Once the PC and EVB are connected, launch ClockBuilder Pro by clicking on this icon on your PC’s desktop. Figure 11. ClockBuilderPro Desktop Icon If an EVB is detected, click on the “Open Default Plan” button on the Wizard’s main menu. CBPro automatically detects the EVB and device type. Figure 12. Open Default Plan Once you open the default plan (based on your EVB model number), a popup will appear. Figure 13. Write Design to EVB Dialog Select “Yes” to write the default plan to the Si5347 device mounted on your EVB. This ensures the device is completely reconfigured per the Silicon Labs default plan for the DUT type mounted on the EVB. Rev. 1.1 11 Si5347-EVB Figure 14. Writing Design Status After CBPro writes the default plan to the EVB, click on “Open EVB GUI” as shown below. Figure 15. Open EVB GUI The EVB GUI will appear. Note all power supplies will be set to the values defined in the device’s default CBPro project file created by Silicon Labs, as shown below. Figure 16. EVB GUI Window 12 Rev. 1.1 Si5347-EVB 10.5.1. Verify Free-Run Mode Operation Assuming no external clocks have been connected to the INPUT CLOCK differential SMA connectors (labeled “INx/INxB”) located around the perimeter of the EVB, the DUT should now be operating in free-run mode, as the DUT will be locked to the crystal in this case. You can run a quick check to determine if the device is powered up and generating output clocks (and consuming power) by clicking on the Read All button highlighted above and then reviewing the voltage, current and power readings for each VDDx supply. Note: Shutting “Off” then “On” of the VDD and VDDA supplies will power-down and reset the DUT. Every time you do this, to reload the Silicon Labs-created default plan into the DUT’s register space, you must go back to the Wizard’s main menu and select “Write Design to EVB”: Figure 17. Write Design to EVB Failure to do the step above will cause the device to read in a pre-programmed plan from its non-volatile memory (NVM). However, the plan loaded from the NVM may not be the latest plan recommended by Silicon Labs for evaluation. At this point, you should verify the presence and frequencies of the output clocks (running to free-run mode from the crystal) using appropriate external instrumentation connected to the output clock SMA connectors. To verify the output clocks are toggling at the correct frequency and signal format, click on View Design Report as highlighted below. Figure 18. View Design Report Rev. 1.1 13 Si5347-EVB Your configuration’s design report will appear in a new window, as shown below. Compare the observed output clocks to the frequencies and formats noted in your default project’s Design Report. Figure 19. Design Report Window 10.5.2. Verify Locked Mode Operation Assuming you connect the correct input clocks to the EVB (as noted in the Design Report shown above), the DUT on your EVB will be running in “locked” mode. 14 Rev. 1.1 Si5347-EVB 10.6. Workflow Scenario #2: Modifying the Default Silicon Labs-Created Device Configuration To modify the “default” configuration using the CBPro Wizard, click on Edit Configuration with Wizard: Figure 20. Edit Configuration with Wizard You will now be taken to the Wizard’s step-by-step menus to allow you to change any of the default plan’s operating configurations. Figure 21. Design ID and Notes Note you can click on the icon on the lower left hand corner of the menu to confirm if your frequency plan is valid. After making your desired changes, you can click on Write to EVB to update the DUT to reconfigure your device real-time. The Design Write status window will appear each time you make a change. Rev. 1.1 15 Si5347-EVB Figure 22. Writing Design Status 10.7. Workflow Scenario #3: Testing a User-Created Device Configuration To test a previously created user configuration, open the CBPro Wizard by clicking on the icon on your desktop and then selecting Open Design Project File. Figure 23. Open Design Project File 16 Rev. 1.1 Si5347-EVB Locate your CBPro design file (*.slabtimeproj or *.sitproj file) in the Windows file browser. Figure 24. Browse to Project File Select Yes when the WRITE DESIGN to EVB popup appears: Figure 25. Write Design to EVB Dialog The progress bar will be launched. Once the new design project file has been written to the device, verify the presence and frequencies of your output clocks and other operating configurations using external instrumentation. Rev. 1.1 17 Si5347-EVB 10.8. Exporting the Register Map File for Device Programming by a Host Processor You can also export your configuration to a file format suitable for in-system programming by selecting Export as shown below: Figure 26. Export Register Map File You can now write your device’s complete configuration to file formats suitable for in-system programming. Figure 27. Export Settings 18 Rev. 1.1 Si5347-EVB 11. Writing a New Frequency Plan or Device Configuration to Non-Volatile Memory (OTP) Note: Writing to the device non-volatile memory (OTP is NOT the same as writing a configuration into the Si5347 using ClockBuilderPRo on the Si5347 EVB. Writing a configuration into the EVB from ClockBuilderPro is done using Si5347 RAM space and can be done virtually unlimited numbers of times. Writing to OTP is limited as described below. Refer to the Si534x/8x Family Reference Manuals and device data sheets for information on how to write a configuration to the EVB DUT’s non-volatile memory (OTP). The OTP can be programmed a maximum of two times only. Care must be taken to ensure the configuration desired is valid when choosing to write to OTP. 12. Serial Device Communications 12.1. On-Board SPI Support The MCU on-board the Si5347-EVB communicates with the Si5347 device through a 4-wire SPI (Serial Peripheral Interface) link. The MCU is the SPI master and the Si5347 device is the SPI slave. The Si5347 device can also support a 2-wire I2C serial interface, although the Si5347-EVB does NOT support the I2C mode of operation. SPI mode was chosen for the EVB because of the relatively higher speed transfers supported by SPI vs. I2C. 12.2. External I2C Support I2C can be supported if driven from an external I2C controller. The serial interface signals between the MCU and Si5347 pass through shunts loaded on header J36. These jumper shunts must be installed in J36 for normal EVB operation using SPI with CBPro. If testing of I2C operation via external controller is desired, the shunts in J36 can be removed thereby isolating the on-board MCU from the Si5347 device. The shunt at J4 (I2C_SEL) must also be removed to select I2C as Si5347 interface type. An external I2C controller connected to the Si5347 side of J36 can then communicate to the Si5347 device. For more information on I2C signal protocol, refer to the Si5347 data sheet. Figure 28 illustrates the J36 header schematic. J36 even numbered pins (2, 4, 6, etc.) connect to the Si5347 device, and the odd numbered pins (1, 3, 5, etc.) connect to the MCU. Once the jumper shunts have been removed from J36 and J4, I2C operation should use J36 pin 4 (DUT_SDA_SDIO) as the I2C SDA and J36 pin 8 (DUT_SCLK) as the I2C SCLK. Note that the external I2C controller will need to supply its own I2C signal pull-up resistors. Figure 28. Serial Communications Header J36 Rev. 1.1 19 Si5347-EVB 13. Si5347-EVB Schematic and Bill of Materials (BOM) The Si5347 EVB Schematic and Bill of Materials (BOM) can be found online at: http://www.silabs.com/products/clocksoscillators/pages/si538x-4x-evb.aspx Note: Please be aware that the Si5347-EVB schematic is in OrCad Capture hierarchical format and not in a typical “flat” schematic format. 20 Rev. 1.1 ClockBuilder Pro One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and iOS (CBGo only). www.silabs.com/CBPro Timing Portfolio www.silabs.com/timing SW/HW Quality Support and Community www.silabs.com/CBPro www.silabs.com/quality community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com