S i 8 7 1 x/2x 5 K V L E D E MU LAT OR I NPUT , L O G I C O UTPUT I SOLATORS Features High Speed: dc to 15 Mbps 2.5 to 5.5 V logic output Pin-compatible, drop-in upgrades for popular high-speed digital optocouplers Performance and reliability advantages vs. optocouplers Resistant to temperature, age and forward current effects 10x lower FIT rate for longer service life Higher common-mode transient immunity: >50 kV/µs typical Lower power and forward input diode current Wide range of product options Inverting and non-inverting Disable output high, low or tri-state 1 channel diode emulator input Propagation delay 30 ns Up to 5000 VRMS isolation 10 kV surge withstand capability AEC-Q100 qualified Wide operating temperature range – 40 to +125 °C RoHS-compliant packages SOIC-8 (Narrow body) DIP8 (Gull-wing) SDIP6 (Stretched SO-6) Industrial automation Isolated data acquisition Motor controls and drives Test and measurement equipment Isolated switch mode power supplies Safety Regulatory Approvals (Pending) Up to 5000 Vrms for 1 minute CSA component notice 5A approval IEC 60950-1, 61010-1, 60601-1 (reinforced insulation) VDE certification conformity IEC60747-5-2/VDE0884-10 (basic/reinforced insulation) 8 VDD 7 NC UVLO ANODE 2 e CATHODE 3 6 VO NC 4 5 GND SOIC-8, DIP8 Industry Standard Pinout 1 8 VDD ANODE 2 7 EN e CATHODE 3 6 VO NC 4 5 GND SOIC-8, DIP8 with Output Enable Industry Standard Pinout CQC certification approval GB4943.1 ANODE 1 NC 2 Description The Si871x/2x isolators are pin-compatible, single-channel, drop-in replacements for popular optocouplers with data rates up to 15 Mbps. These devices isolate high-speed digital signals and offer performance, reliability, and flexibility advantages not available with optocoupler solutions. The Si871x/2x series is based on Silicon Labs' proprietary CMOS isolation technology for low-power and high-speed operation and are resistant to the wear-out effects found in optocouplers that degrade performance with increasing temperature, forward current, and device age. As a result, the Si871x/2x series offer longer service life and dramatically higher reliability compared to optocouplers. Ordering options include logic output with and without output enable options. Rev. 1.0 8/14 1 UVLO UL 1577 recognized NC NC Applications Pin Assignments: See page 21 Copyright © 2014 by Silicon Laboratories 6 VDD 5 VO 4 GND UVLO e CATHODE 3 SDIP6 Industry Standard Pinout Patent pending Si871x/2x Si871x/2x Functional Block Diagram VDD Diode Emulator A1 REC XMIT IF Output Stage OUT (Logic Out) C1 GND 2 Rev. 1.0 Si871x/2x TABLE O F C ONTENTS Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3. Technical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 3.1. Device Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 3.2. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 3.3. Under Voltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1. Input Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2. Output Circuit Design and Power Supply Connections . . . . . . . . . . . . . . . . . . . . . . . 18 5. Pin Descriptions (SOIC-8, DIP8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6. Pin Descriptions (SOIC-8, DIP8) with Output Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7. Pin Descriptions (SDIP6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 9. Package Outline: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 10. Land Pattern: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 11. Package Outline: DIP8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 12. Land Pattern: DIP8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 13. Package Outline: SDIP6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 14. Land Pattern: SDIP6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 15. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 15.1. Top Marking (8-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 15.2. Top Marking Explanation (8-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . 31 15.3. Top Marking (DIP8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 15.4. Top Marking Explanation (DIP8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 15.5. Top Marking (SDIP6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 15.6. Top Marking Explanation (SDIP6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Rev. 1.0 3 Si871x/2x 1. Electrical Specifications Table 1. Recommended Operating Conditions Parameter Symbol Min Typ Max Unit VDD 2.5 — 5.5 V IF(ON) (See Figure 1) 6 — 30 mA TA –40 — 125 °C VDD Supply Voltage Input Current Operating Temperature (Ambient) Table 2. Electrical Characteristics VDD = 5 V; GND = 0 V; TA = –40 to +125 °C; typical specs at 25 °C Parameter Symbol Test Condition Min Typ Max Unit DC Parameters Supply Voltage VDD (VDD–GND) 2.5 — 5.5 V Supply Current IDD Output high or low (VDD = 2.5 to 5.5 V) — 1.5 — mA Input Current Threshold IF(TH) — — 3.6 mA Input Current Hysteresis IHYS — 0.34 — mA Input Forward Voltage (OFF) VF(OFF) Measured at ANODE with respect to CATHODE. — — 1 V Input Forward Voltage (ON) VF(ON) 1.4 — 2.8 V Measured at ANODE with respect to CATHODE. Input Capacitance CI f = 100 kHz, VF = 0 V, VF = 2 V — — 15 15 — — pF pF Logic Low Output Voltage VOL IOL = 4 mA — 0.2 0.4 V Logic High Output Voltage VOH IOH = –4 mA VDD - 0.4 VDD 0.2 — V Output Impedance ZO — 50 — Enable High Min VEH VDD - 0.4 — — V Enable Low Max VEL — — 0.4 V Enable High Current Draw IEH VDD = VEH = 5 V — 0 — µA Enable Low Current Draw IEL VDD =5 V, VEL = 0 V — –30 0 µA UVLO Threshold + VDDUV+ See Figure 8 on page 16. VDD rising — 2.2 2.35 V UVLO Threshold – VDDUV– See Figure 8 on page 16. VDD falling — 2 2.25 V UVLO lockout hysteresis VDDHYS 50 100 — mV 4 Rev. 1.0 Si871x/2x Table 2. Electrical Characteristics (Continued) VDD = 5 V; GND = 0 V; TA = –40 to +125 °C; typical specs at 25 °C Parameter Symbol Test Condition Min Typ Max Unit DC — 15 MBPS AC Switching Parameters (VDD =5 V, CL = 15 pF) Maximum Data Rate FDATA Minimum Pulse Width MPW 66 — — ns Propagation Delay (Low-to-High) tPLH CL = 15 pF 5 — 50 ns Propagation Delay (High-to-Low) tPHL CL = 15 pF 5 — 50 ns Pulse Width Distortion PWD | tPLH – tPHL | — — 25 ns — — 25 ns Propagation Delay Skew tPSK(p-p) tPSK(P-P) is the magnitude of the difference in prop delays between different units operating at same supply voltage, load, and ambient temp. Rise Time* tR CL = 15 pF — 2.5 4 ns Fall Time* tF CL = 15 pF — 2.5 4 ns — — 40 µs 35 50 — kV/µs Device Startup Time tSTART Common Mode Transient Immunity CMTI Output = low or high VCM =1500 V (See Figure 2) IF = 6 mA *Note: Guaranteed by design and/or characterization Rev. 1.0 5 Si871x/2x 10 Anode Anode ESD e 2.2 V 700 Cathode Cathode AnodetoCathodeVoltage[V] 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 5 10 15 20 25 DiodeEmulatorInputCurrent[mA] Figure 1. Diode Emulator Model and I-V Curve 6 Rev. 1.0 30 Si871x/2x Input Signal Switch 267 Si871x/2x Anode 5V Isolated Supply Isolated Ground 5V Supply VDD VO Cathode Oscilloscope GND Input High Voltage Differential Probe Output Vcm Surge Output High Voltage Surge Generator Figure 2. Common Mode Transient Immunity Characterization Circuit Rev. 1.0 7 Si871x/2x Table 3. Regulatory Information* CSA The Si871x/2x is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873. 61010-1: Up to 600 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage. 60950-1: Up to 1000 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage. 60601-1: Up to 250 VRMS reinforced insulation working voltage; up to 500 VRMS basic insulation working voltage. VDE The Si871x/2x is certified according to IEC60747 and VDE0884. For more details, see File 5006301-4880-0001. 60747-5-2: Up to 1414 Vpeak for basic insulation working voltage. VDE0884-10: Up to 1414 Vpeak for reinforced insulation working voltage. UL The Si871x/2x is certified under UL1577 component recognition program. For more details, see File E257455. Rated up to 5000 VRMS isolation voltage for basic protection. CQC The Si871x/2x is certified under GB4943.1-2011. For more details, see File V2012CQC001041. Rated up to 1000 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage. *Note: Regulatory Certifications apply to 3.75 kVRMS rated devices which are production tested to 4.5 kVRMS for 1 sec. Regulatory Certifications apply to 5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec. For more information, see "8.Ordering Guide" on page 22. Table 4. Insulation and Safety-Related Specifications Parameter Symbol Test Condition Value SOIC-8 DIP8 SDIP6 Unit Nominal Air Gap (Clearance) L(IO1) 4.7 min 7.2 min 9.6 min mm Nominal External Tracking (Creepage) L(IO2) 3.9 min 7.0 min 8.3 min mm 0.016 0.016 0.016 mm 600 600 600 V 0.031 0.031 0.057 mm Minimum Internal Gap (Internal Clearance) Tracking Resistance (Proof Tracking Index) PTI Erosion Depth ED Resistance (Input-Output)* RIO Capacitance (Input-Output)* CIO IEC60112 10 f = 1 MHz 12 1 10 12 1 10 12 1 pF *Note: To determine resistance and capacitance, the Si871x/2x is converted into a 2-terminal device. Pins 1–4 (1–3, SDIP6) are shorted together to form the first terminal, and pins 5–8 (4–6, SDIP6) are shorted together to form the second terminal. The parameters are then measured between these two terminals. 8 Rev. 1.0 Si871x/2x Table 5. IEC 60664-1 (VDE 0884) Ratings Parameter Test Condition Specification SOIC-8 DIP8 SDIP6 I I I Basic Isolation Group Material Group Installation Classification Rated Mains Voltages < 150 VRMS I-IV I-IV I-IV Rated Mains Voltages < 300 VRMS I-IV I-IV I-IV Rated Mains Voltages < 450 VRMS I-III I-III I-IV Rated Mains Voltages < 600 VRMS I-III I-III I-IV Rated Mains Voltages < 1000 VRMS I-II I-II I-III Table 6. IEC 60747-5-2 (VDE 0884-10) Insulation Characteristics* Parameter Maximum Working Insulation Voltage Input to Output Test Voltage Transient Overvoltage Symbol Test Condition Unit SOIC-8 DIP8 SDIP6 630 891 1140 V peak 1181 1671 2138 V peak VPR Method b1 (VIORM x 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC) VIOTM t = 60 sec 6000 6000 8000 V peak 2 2 2 >109 >109 >109 VIORM Pollution Degree (DIN VDE 0110, Table 1) Insulation Resistance at TS, VIO = 500 V Characteristic RS *Note: This isolator is suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The Si871x/2x provides a climate classification of 40/125/21. Rev. 1.0 9 Si871x/2x Table 7. IEC Safety Limiting Values Parameter Symbol Case Temperature TS Input Current IS Output Power PS Test Condition JA = 110 °C/W (SOIC-8), 110 °C/W (DIP8), 105 °C/W (SDIP6), VF =2.8 V, TJ = 140 °C, TA = 25 °C Max DIP8 SDIP6 140 140 140 °C 370 370 390 mA 1 1 1 W Note: Maximum value allowed in the event of a failure; also see the thermal derating curve in Figures 3, 4,and 5. 10 Rev. 1.0 Unit SOIC-8 Si871x/2x Table 8. Thermal Characteristics Parameter Symbol OutputPo owerͲ Ps,InputCurrentͲ Is IC Junction-to-Air Thermal Resistance Typ SOIC-8 DIP8 SDIP6 110 110 105 JA Unit ºC/W 1200 1000 Ps(mW) 800 600 Is(mA) 400 200 0 0 20 40 60 80 100 120 140 TsͲ CaseTemperature(°C) OutputPo owerͲ Ps,InputCurrentͲ Is Figure 3. (SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-2 and VDE0884-10 1200 1000 Ps(mW) 800 600 Is(mA) 400 200 0 0 20 40 60 80 100 120 140 TsͲ CaseTemperature(°C) Figure 4. (DIP8) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-2 and VDE0884-10 Rev. 1.0 11 OutputPo owerͲ Ps,InputCurrentͲ Is Si871x/2x 1200 1000 Ps(mW) 800 600 Is(mA) 400 200 0 0 20 40 60 80 100 120 140 TsͲ CaseTemperature(°C) Figure 5. (SDIP6) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-2 and VDE0884-10 12 Rev. 1.0 Si871x/2x Table 9. Absolute Maximum Ratings* Parameter Symbol Min Max Unit TSTG –65 +150 °C Operating Temperature TA –40 +125 °C Junction Temperature TJ — +140 °C IF(AVG) — 30 mA Peak Transient Input Current (< 1 µs pulse width, 300 pps) IFTR — 1 A Reverse Input Voltage VR — 0.3 V Supply Voltage VDD –0.5 7 V Output Voltage VOUT –0.5 VDD+0.5 V Enable Voltage VEOUT –0.5 VDD+0.5 V Output Source or Sink Current IO — 22 mA Input Power Dissipation PI — 90 mW Output Power Dissipation PO — 163 mW Total Power Dissipation PT — 253 mW Lead Solder Temperature (10 s) — 260 °C HBM Rating ESD 3 — kV 250 — V CDM 2 — kV Maximum Isolation Voltage (1 s) SOIC-8 — 4500 VRMS Maximum Isolation Voltage (1 s) DIP8 — 4500 VRMS Maximum Isolation Voltage (1 s) SDIP6 — 6500 VRMS Storage Temperature Average Forward Input Current Machine Model ESD *Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions specified in the operational sections of this data sheet. Rev. 1.0 13 Si871x/2x 2. Application Information 2.1. Theory of Operation The Si871x/2x are pin-compatible, single-channel, drop-in replacements for popular optocouplers with data rates up to 15 Mbps. The operation of an Si871x/2x channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified block diagram for the Si871x/2x is shown in Figure 6. Transmitter Receiver RF OSCILLATOR A LED Emulator MODULATOR VDD SemiconductorBased Isolation Barrier DEMODULATOR ~50 Gnd Figure 6. Simplified Channel Diagram 14 Rev. 1.0 B Si871x/2x 3. Technical Description 3.1. Device Behavior Truth tables for the Si871x/2x are summarized in Table 10. Table 10. Si871x/2x Truth Table Summary* Input Enable Output Si8715 (Non-inverting) OFF N/A LOW ON N/A HIGH Si8716 (Inverting) OFF HIGH HIGH ON HIGH LOW X LOW HIGH Si8717 (Non-inverting) OFF HIGH LOW ON HIGH HIGH X LOW HI-Z Si8718 (Inverting) OFF HIGH HIGH ON HIGH LOW X LOW HI-Z Si8719 (Inverting) OFF N/A HIGH ON N/A LOW Si8720 (Inverting) OFF HIGH HIGH ON HIGH LOW X LOW LOW *Note: This truth table assumes VDD is powered (VDD> UVLO). If VDD is below UVLO, see "3.3.Under Voltage Lockout (UVLO)" on page 16 for more information. When VDD < UVLO, the output state is not guaranteed. In this condition, the output level is determined by external circuity connected to the output. Rev. 1.0 15 Si871x/2x 3.2. Device Startup During startup-up, for the Si8716, Output VO is high until VDD rises above the UVLO+ threshold for a minimum time period of tSTART. Following this, the output is low when the current flowing from anode to cathode is > IF(ON). Device startup, normal operation, and shutdown behavior for the Si8716 is shown in Figure 7. Note that Figure 7 assumes that Enable is asserted and that the outputs are operating in their normal operating condition (inverting for the Si8716). See Table 10 for more details on the Enable function. UVLO+ VDDHYS UVLO- VDD IF(ON) IHYS IF tSTART tPLH tPHL Voltage level determined by external pull-up supply tSTART tPLH VO Figure 7. Si8716 Operating Behavior (IF > IF(MIN) when VF > VF(MIN)) 3.3. Under Voltage Lockout (UVLO) The UVLO circuit unconditionally drives VO to its default state when VDD is below the lockout threshold. Referring to Figure 8, upon power up, the Si871x/2x is maintained in UVLO until VDD rises above VDDUV+. During power down, the Si871x/2x enters UVLO when VDD falls below the UVLO threshold plus hysteresis (i.e., VDD < VDDUV+ – VDDHYS). Output Voltage (VO) VDDUV+ (Typ) 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 Supply Voltage (VDD - GND) (V) Figure 8. Si871x/2x UVLO Response 16 Rev. 1.0 2.5 Si871x/2x 4. Applications The following sections detail the input and output circuits necessary for proper operation of the Si871x/2x family. 4.1. Input Circuit Design Opto coupler manufacturers typically recommend the circuits shown in Figures 9 and 10. These circuits are specifically designed to improve opto-coupler input common-mode rejection and increase noise immunity. Si871x/2x Vdd 1 N/C R1 2 ANODE Control Input 3 CATHODE Open Drain or Collector 4 N/C Figure 9. Si871x/2x Input Circuit Vdd Si871x/2x 1 N/C Control Input Q1 2 ANODE 3 CATHODE R1 4 N/C Figure 10. High CMR Si871x/2x Input Circuit The optically-coupled circuit of Figure 9 turns the LED on when the control input is high. However, internal capacitive coupling from the LED to the power and ground conductors can momentarily force the LED into its off state when the anode and cathode inputs are subjected to a high common-mode transient. The circuit shown in Figure 10 addresses this issue by using a value of R1 sufficiently low to overdrive the LED, ensuring it remains on during an input common-mode transient. Q1 shorts the LED off in the low output state, again increasing commonmode transient immunity. Some opto coupler applications recommend reverse-biasing the LED when the control input is off to prevent coupled noise from energizing the LED. The Si871x/2x input circuit requires less current and has twice the off-state noise margin compared to opto couplers. However, high CMR opto coupler designs that overdrive the LED (see Figure 10) may require increasing the value of R1 to limit input current IF to its maximum rating when using the Si871x/2x. In addition, there is no benefit in driving the Si871x/2x input diode into reverse bias when in the off state. Consequently, opto coupler circuits using this technique should either leave the negative bias circuitry unpopulated or modify the circuitry (e.g., add a clamp diode or current limiting resistor) to ensure that the anode pin of the Si871x/2x is no more than –0.3 V with respect to the cathode when reverse-biased. Rev. 1.0 17 Si871x/2x New designs should consider the input circuit configurations of Figure 11, which are more efficient than those of Figures 9 and 10. As shown, S1 and S2 represent any suitable switch, such as a BJT or MOSFET, analog transmission gate, processor I/O, etc. Also, note that the Si871x/2x input can be driven from the I/O port of any MCU or FPGA capable of sourcing a minimum of 6 mA (see Figure 11B). Additionally, note that the Si871x/2x propagation delay and output drive do not significantly change for values of IF between IF(MIN) and IF(MAX). Control Input Si871x/2x Si871x/2x +5V S1 R1 S2 1 N/C 2 ANODE 3 4 1 N/C 2 ANODE CATHODE 3 CATHODE N/C 4 N/C MCU I/O Port pin R1 A B Figure 11. Si871x/2x Other Input Circuit Configurations 4.2. Output Circuit Design and Power Supply Connections GND can be biased at, above, or below ground as long as the voltage on VDD with respect to GND is a maximum of 5.5 V. VDD decoupling capacitors should be placed as close to the package pins as possible. The optimum values for these capacitors depend on load current and the distance between the chip and its power source. It is recommended that 0.1 and 1 µF bypass capacitors be used to reduce high-frequency noise and maximize performance. Opto replacement applications should limit their supply voltages to 5.5 V or less. 18 Rev. 1.0 Si871x/2x 5. Pin Descriptions (SOIC-8, DIP8) NC 1 8 VDD 7 NC UVLO ANODE 2 e CATHODE 3 6 VO NC 4 5 GND SOIC-8, DIP8 Industry Standard Pinout Figure 12. Pin Configuration Table 11. Pin Descriptions (SOIC-8, DIP8) Pin Name 1 NC* 2 ANODE 3 Description No connect. Anode of LED emulator. VO follows the signal applied to this input with respect to the CATHODE input. CATHODE Cathode of LED emulator. VO follows the signal applied to ANODE with respect to this input. 4 NC* No connect. 5 GND Ground reference for VDD. This terminal is typically connected to ground but may be tied to a negative or positive voltage. 6 VO Output signal. 7 NC* No connect. 8 VDD Output-side power supply input referenced to GND (5.5 V max). *Note: No Connect. These pins are not internally connected. To maximize CMTI performance, these pins should be connected to the ground plane. Rev. 1.0 19 Si871x/2x 6. Pin Descriptions (SOIC-8, DIP8) with Output Enable NC 1 8 VDD 7 EN UVLO ANODE 2 e CATHODE 3 6 VO NC 4 5 GND SOIC-8, DIP8 with Output Enable Industry Standard Pinout Figure 13. Pin Configuration Table 12. Pin Descriptions (SOIC-8, DIP8) with Output Enable Pin Name 1 NC* 2 ANODE 3 Description No connect. Anode of LED emulator. VO follows the signal applied to this input with respect to the CATHODE input. CATHODE Cathode of LED emulator. VO follows the signal applied to ANODE with respect to this input. 4 NC* No connect. 5 GND Ground reference for VDD. This terminal is typically connected to ground but may be tied to a negative or positive voltage. 6 VO Output signal. 7 EN Output enable. Tied to VDD to enable output. 8 VDD Output-side power supply input referenced to GND (5.5 V max). *Note: No Connect. These pins are not internally connected. To maximize CMTI performance, these pins should be connected to the ground plane. 20 Rev. 1.0 Si871x/2x 7. Pin Descriptions (SDIP6) ANODE 1 NC 2 6 VDD 5 VO 4 GND UVLO e CATHODE 3 SDIP6 Industry Standard Pinout Figure 14. Pin Configuration Table 13. Pin Descriptions (SDIP6) Pin Name 1 ANODE 2 NC* 3 Description Anode of LED emulator. VO follows the signal applied to this input with respect to the CATHODE input. No connect. CATHODE Cathode of LED emulator. VO follows the signal applied to ANODE with respect to this input. Ground reference for VDD. This terminal is typically connected to ground but may be tied to a negative or positive voltage. 4 GND 5 VO Output signal. 6 VDD Output-side power supply input referenced to GND (5.5 V max). *Note: No Connect. These pins are not internally connected. To maximize CMTI performance, these pins should be connected to the ground plane. Rev. 1.0 21 Si871x/2x 8. Ordering Guide Table 14. Si871x/2x Ordering Guide1,2,3 Ordering Part Number (OPN) Ordering Options Input/Output Configuration Data Rate Cross Reference Insulation Rating Enable Pin/ Output State when Active Pkg Type Logic Output (Available in SOIC-8, DIP8, and SDIP6) Si8715BC-A-IS High CMTI Non-inverting Output 15 Mbps 3.75 kVrms No, N/A SOIC-8 Si8716BC-A-IS High CMTI Inverting Output 15 Mbps ACPL-061L, HCPL-0600, HCPL-0601, HCPL-0611 3.75 kVrms Yes, High SOIC-8 Si8717BC-A-IS High CMTI Non-inverting Output 15 Mbps 3.75 kVrms Yes, Hi-z SOIC-8 Si8718BC-A-IS High CMTI Inverting Output 15 Mbps ACPL-C61L, ACPL-W70L 3.75 kVrms Yes, Hi-z SOIC-8 Si8719BC-A-IS High CMTI Inverting Output 15 Mbps 3.75 kVrms No, N/A SOIC-8 Si8720BC-A-IS High CMTI Inverting Output 15 Mbps 3.75 kVrms Yes, Low SOIC-8 Si8715BC-A-IP High CMTI Non-inverting Output 15 Mbps ACPL-4800, HCPL-2202, HCPL-2212 3.75 kVrms No, N/A DIP8/GW Si8716BC-A-IP High CMTI Inverting Output 15 Mbps 6N137, HCPL-2601, HCPL-2611 3.75 kVrms Yes, High DIP8/GW Si8717BC-A-IP High CMTI Non-inverting Output 15 Mbps 3.75 kVrms Yes, Hi-z DIP8/GW Si8718BC-A-IP High CMTI Inverting Output 15 Mbps 3.75 kVrms Yes, Hi-z DIP8/GW Si8719BC-A-IP High CMTI Inverting Output 15 Mbps 3.75 kVrms No, N/A DIP8/GW Si8720BC-A-IP High CMTI Inverting Output 15 Mbps 3.75 kVrms Yes, Low DIP8/GW Notes: 1. All packages are RoHS-compliant with peak solder reflow temperatures of 260 °C according to the JEDEC industry standard classifications. 2. “Si” and “SI” are used interchangeably. 3. AEC-Q100 qualified. 22 Rev. 1.0 Si871x/2x Table 14. Si871x/2x Ordering Guide1,2,3 (Continued) Ordering Part Number (OPN) Ordering Options Input/Output Configuration Data Rate Cross Reference Insulation Rating Enable Pin/ Output State when Active Pkg Type Si8715BD-A-IS High CMTI Non-inverting Output 15 Mbps ACPL-W21L, PS9303L2 5.0 kVrms No, N/A SDIP6 Si8719BD-A-IS High CMTI Inverting Output 15 Mbps ACPL-W61L, ACPL-W481, ACPL-W70L, TLP2766F 5.0 kVrms No, N/A SDIP6 Notes: 1. All packages are RoHS-compliant with peak solder reflow temperatures of 260 °C according to the JEDEC industry standard classifications. 2. “Si” and “SI” are used interchangeably. 3. AEC-Q100 qualified. Rev. 1.0 23 Si871x/2x 9. Package Outline: 8-Pin Narrow Body SOIC Figure 15 illustrates the package details for the Si871x/2x in an 8-pin narrow-body SOIC package. Table 15 lists the values for the dimensions shown in the illustration. Figure 15. 8-Pin Narrow Body SOIC Package Table 15. 8-Pin Narrow Body SOIC Package Diagram Dimensions Symbol Millimeters Min Max A 1.35 1.75 A1 0.10 0.25 A2 1.40 REF 1.55 REF B 0.33 0.51 C 0.19 0.25 D 4.80 5.00 E 3.80 4.00 e 24 1.27 BSC H 5.80 6.20 h 0.25 0.50 L 0.40 1.27 0 8 Rev. 1.0 Si871x/2x 10. Land Pattern: 8-Pin Narrow Body SOIC Figure 16 illustrates the recommended land pattern details for the Si871x/2x in an 8-pin narrow-body SOIC. Table 16 lists the values for the dimensions shown in the illustration. Figure 16. 8-Pin Narrow Body SOIC Land Pattern Table 16. 8-Pin Narrow Body SOIC Land Pattern Dimensions Dimension Feature (mm) C1 Pad Column Spacing 5.40 E Pad Row Pitch 1.27 X1 Pad Width 0.60 Y1 Pad Length 1.55 Notes: 1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for Density Level B (Median Land Protrusion). 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. Rev. 1.0 25 Si871x/2x 11. Package Outline: DIP8 Figure 17 illustrates the package details for the Si871x/2x in a DIP8 package. Table 17 lists the values for the dimensions shown in the illustration. Figure 17. DIP8 Package Table 17. DIP8 Package Diagram Dimensions Dimension Min Max A — 4.19 A1 0.55 0.75 A2 3.17 3.43 b 0.35 0.55 b2 1.14 1.78 b3 0.76 1.14 c 0.20 0.33 D 9.40 9.90 E 7.37 7.87 E1 6.10 6.60 E2 9.40 9.90 e 2.54 BSC. L 0.38 0.89 aaa — 0.25 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 26 Rev. 1.0 Si871x/2x 12. Land Pattern: DIP8 Figure 18 illustrates the recommended land pattern details for the Si871x/2x in a DIP8 package. Table 18 lists the values for the dimensions shown in the illustration. Figure 18. DIP8 Land Pattern Table 18. DIP8 Land Pattern Dimensions* Dimension Min Max C 8.85 8.90 E 2.54 BSC X 0.60 0.65 Y 1.65 1.70 *Note: This Land Pattern Design is based on the IPC-7351 specification. Rev. 1.0 27 Si871x/2x 13. Package Outline: SDIP6 Figure 19 illustrates the package details for the Si871x/2x in an SDIP6 package. Table 19 lists the values for the dimensions shown in the illustration. Figure 19. SDIP6 Package Table 19. SDIP6 Package Diagram Dimensions Dimension Min Max A — 2.65 A1 0.10 0.30 A2 2.05 — b 0.31 0.51 c 0.20 0.33 D 4.58 BSC E 11.50 BSC E1 7.50 BSC e 1.27 BSC L 0.40 1.27 h 0.25 0.75 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 28 Rev. 1.0 Si871x/2x Table 19. SDIP6 Package Diagram Dimensions (Continued) Dimension Min Max θ 0° 8° aaa — 0.10 bbb — 0.33 ccc — 0.10 ddd — 0.25 eee — 0.10 fff — 0.20 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. Rev. 1.0 29 Si871x/2x 14. Land Pattern: SDIP6 Figure 20 illustrates the recommended land pattern details for the Si871x/2x in an SDIP6 package. Table 20 lists the values for the dimensions shown in the illustration. Figure 20. SDIP6 Land Pattern Table 20. SDIP6 Land Pattern Dimensions* Dimension Min Max C 10.45 10.50 E 1.27 BSC X 0.55 0.60 Y 2.00 2.05 *Note: This Land Pattern Design is based on the IPC-7351 specification. 30 Rev. 1.0 Si871x/2x 15. Top Markings 15.1. Top Marking (8-Pin Narrow Body SOIC) 15.2. Top Marking Explanation (8-Pin Narrow Body SOIC) Line 1 Marking: Customer Part Number Si87 = Base name of product series W = Isolator product series (1 or 2) X = Output configuration 5/9 = no enable 6 = enable, output high when active 7/8 = enable, output Hi-z when active 0 = enable, output low when active S = Performance Grade: A = 15 Mbps, 20 kV/s minimum CMTI B = 15 Mbps, 35 kV/s minimum CMTI V = Insulation rating C = 3.75 kV Line 2 Marking: RTTTTT = Mfg Code Manufacturing Code from the Assembly Purchase Order form. “R” indicates revision. Line 3 Marking: Circle = 43 mils Diameter Left-Justified “e4” Pb-Free Symbol YY = Year WW = Work Week Assigned by the Assembly House. Corresponds to the year and work week of the mold date. Rev. 1.0 31 Si871x/2x 15.3. Top Marking (DIP8) 15.4. Top Marking Explanation (DIP8) Line 1 Marking: Customer Part Number Si87 = Base name of product series W = Isolator product series (1 or 2) X = Output configuration 5/9 = no enable 6 = enable, output high when active 7/8 = enable, output Hi-z when active 0 = enable, output low when active S = Performance Grade: A = 15 Mbps, 20 kV/s minimum CMTI B = 15 Mbps, 35 kV/s minimum CMTI V = Insulation rating C = 3.75 kV Line 2 Marking: YY = Year WW = Work Week Assigned by the Assembly House. Corresponds to the year and work week of the mold date. RTTTTT = Mfg Code Manufacturing Code from the Assembly Purchase Order form. “R” indicates revision. Circle = 51 mils Diameter Center-Justified “e4” Pb-Free Symbol Country of Origin (Iso-Code Abbreviation) CC Line 3 Marking: 32 Rev. 1.0 Si871x/2x 15.5. Top Marking (SDIP6) 15.6. Top Marking Explanation (SDIP6) Line 1 Marking: Device 87 = Base name of product series W = Isolator product series (1 or 2) X = Output configuration 5/9 = no enable 6 = enable, output high when active 7/8 = enable, output Hi-z when active 0 = enable, output low when active S = Performance Grade: A = 15 Mbps, 20 kV/s minimum CMTI B = 15 Mbps, 35 kV/s minimum CMTI V = Insulation rating C = 3.75 kV; D = 5.0 kV Line 2 Marking: RTTTTT = Mfg Code Manufacturing Code from the Assembly Purchase Order form. “R” indicates revision. Line 3 Marking: YY = Year WW = Work Week Assigned by the Assembly House. Corresponds to the year and work week of the mold date. Line 4 Marking: Country of Origin (Iso-Code Abbreviation) CC Rev. 1.0 33 Si871x/2x DOCUMENT CHANGE LIST Revision 0.9 to Revision 1.0 Updated Table 2 on page 4. Updated Table 5 on page 9. Updated Table 6 on page 9. Updated Table 9 on page 13. Updated Figure 8 on page 16. 34 Rev. 1.0 Smart. Connected. Energy-Friendly Products Quality www.silabs.com/products www.silabs.com/quality Support and Community community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com