STA339BWS 2.1-channel 40-watt high-efficiency digital system Sound Terminal® Datasheet - production data Two independent DRCs configurable as a dual-band anticlipper (B2DRC) or as independent limiters/compressors EQ-DRC for DRC based on filtered signals Dedicated LFE processing for bass boosting Audio presets: – 15 preset crossover filters – 5 preset anticlipping modes – Preset nighttime listening mode PowerSSO-36 with exposed pad down (EPD) Individual channel soft/hard mute Independent channel volume and DSP bypass I2S input data interface Input and output channel mapping Features Automatic invalid input-detect mute Wide-range supply voltage, 4.5 V to 21.5 V Three power output configurations: – 2 channels of ternary PWM (2 x 20 W into 8 at 18 V) + PWM output – 2 channels of ternary PWM (2 x 20 W into 8 at 18 V) + ternary stereo line-out – 2.1 channels of binary PWM (left, right, LFE) (2 x 9 W into 4 +1 x 20 W into 8 at 18 V) Up to 8 user-programmable biquads/channel Three coefficient banks for storing EQ presets with fast recall via I2C interface Bass/treble tones and de-emphasis control Selectable high-pass filter for DC blocking Advanced AM interference frequency switching and noise suppression modes FFX with 100-dB SNR and dynamic range Selectable high- or low-bandwidth noise-shaping topologies Scalable FFX modulation index Selectable clock input ratio Selectable 32- to 192-kHz input sample rates 96-kHz internal processing sample rate I2C control with selectable device address Thermal overload and short-circuit protection technology Digital gain/attenuation +48 dB to -80 dB with 0.5-dB/step resolution Soft volume update with programmable ratio Individual channel and master gain/attenuation Video apps: 576 x fS input mode supported Pin and SW compatible with STA333BW, STA339BW, STA559BW and STA559BWS Table 1. Device summary Order code Package Packaging STA339BWS PowerSSO-36 EPD Tube STA339BWS13TR PowerSSO-36 EPD Tape and reel September 2014 This is information on a product in full production. DocID015276 Rev 8 1/79 www.st.com Contents STA339BWS Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 4 2.1 Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Electrical specifications for the digital section . . . . . . . . . . . . . . . . . . . . . 13 3.5 Electrical specifications for the power section . . . . . . . . . . . . . . . . . . . . . 14 3.6 Power on/off sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Serial audio interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.0.1 Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.0.2 Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.0.3 Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5 Processing data paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6 I2C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.1 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.1.1 Data transition or change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.1.2 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.1.3 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.1.4 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.2 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.3 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.4 6.3.1 Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.3.2 Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.4.1 2/79 Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DocID015276 Rev 8 STA339BWS 7 Contents 6.4.2 Current address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.4.3 Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.4.4 Random address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.1 7.2 7.3 Configuration registers (addr 0x00 to 0x05) . . . . . . . . . . . . . . . . . . . . . . . 25 7.1.1 Configuration register A (addr 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.1.2 Configuration register B (addr 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.1.3 Configuration register C (addr 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.1.4 Configuration register D (addr 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.1.5 Configuration register E (addr 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.1.6 Configuration register F (addr 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Volume control registers (addr 0x06 - 0x0A) . . . . . . . . . . . . . . . . . . . . . . 44 7.2.1 Mute/line output configuration register (addr 0x06) . . . . . . . . . . . . . . . . 45 7.2.2 Master volume register (addr 0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.2.3 Channel 1 volume (addr 0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.2.4 Channel 2 volume (addr 0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.2.5 Channel 3 / line output volume (addr 0x0A) . . . . . . . . . . . . . . . . . . . . . 46 Audio preset registers (addr 0x0B and 0x0C) . . . . . . . . . . . . . . . . . . . . . 47 7.3.1 Audio preset register 1 (addr 0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.3.2 Audio preset register 2 (addr 0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.4 Channel configuration registers (addr 0x0E - 0x10) . . . . . . . . . . . . . . . . . 49 7.5 Tone control register (addr 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.6 Dynamic control registers (addr 0x12 - 0x15) . . . . . . . . . . . . . . . . . . . . . 51 7.7 7.6.1 Limiter 1 attack/release rate (addr 0x12) . . . . . . . . . . . . . . . . . . . . . . . . 51 7.6.2 Limiter 1 attack/release threshold (addr 0x13) . . . . . . . . . . . . . . . . . . . 51 7.6.3 Limiter 2 attack/release rate (addr 0x14) . . . . . . . . . . . . . . . . . . . . . . . . 52 7.6.4 Limiter 2 attack/release threshold (addr 0x15) . . . . . . . . . . . . . . . . . . . 52 7.6.5 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.6.6 Limiter 1 extended attack threshold (addr 0x32) . . . . . . . . . . . . . . . . . . 56 7.6.7 Limiter 1 extended release threshold (addr 0x33) . . . . . . . . . . . . . . . . . 57 7.6.8 Limiter 2 extended attack threshold (addr 0x34) . . . . . . . . . . . . . . . . . . 57 7.6.9 Limiter 2 extended release threshold (addr 0x35) . . . . . . . . . . . . . . . . . 57 User-defined coefficient control registers (addr 0x16 - 0x26) . . . . . . . . . . 57 7.7.1 Coefficient address register (addr 0x16) . . . . . . . . . . . . . . . . . . . . . . . . 57 7.7.2 Coefficient b1 data register bits (addr 0x17 - 0x19) . . . . . . . . . . . . . . . . 57 DocID015276 Rev 8 3/79 79 Contents 8 STA339BWS 7.7.3 Coefficient b2 data register bits (addr 0x1A - 0x1C) . . . . . . . . . . . . . . . 58 7.7.4 Coefficient a1 data register bits (addr 0x1D - 0x1F) . . . . . . . . . . . . . . . 58 7.7.5 Coefficient a2 data register bits (addr 0x20 - 0x22) . . . . . . . . . . . . . . . . 58 7.7.6 Coefficient b0 data register bits (addr 0x23 - 0x25) . . . . . . . . . . . . . . . . 59 7.7.7 Coefficient read/write control register (addr 0x26) . . . . . . . . . . . . . . . . . 59 7.7.8 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.7.9 Thermal warning and overcurrent adjustment (TWOCL) . . . . . . . . . . . . 63 7.8 Variable max power correction registers (addr 0x27 - 0x28) . . . . . . . . . . 64 7.9 Distortion compensation registers (addr 0x29 - 0x2A) . . . . . . . . . . . . . . . 64 7.10 Fault detect recovery constant registers (addr 0x2B - 0x2C) . . . . . . . . . . 64 7.11 Device status register (addr 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 7.12 EQ coefficients and DRC configuration register (addr 0x31) . . . . . . . . . . 66 7.13 Extended configuration register (addr 0x36) . . . . . . . . . . . . . . . . . . . . . . 67 7.13.1 Dual-band DRC (B2DRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7.13.2 EQ DRC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 7.14 Soft volume configuration registers (addr 0x37 - 0x38) . . . . . . . . . . . . . . 70 7.15 DRC RMS filter coefficients (addr 0x39-0x3E) . . . . . . . . . . . . . . . . . . . . . 71 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 8.1 Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 8.2 PLL filter circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 8.3 Typical output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 9 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 10 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4/79 DocID015276 Rev 8 STA339BWS List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Recommended operating condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Electrical specifications - digital section (Tamb = 25 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Electrical specifications - power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Timing parameters for slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Input sampling rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Internal interpolation ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 IR bit settings as a function of input sample rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Serial audio input interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Support serial audio input formats for MSB-first (SAIFB = 0) . . . . . . . . . . . . . . . . . . . . . . . 28 Supported serial audio input formats for LSB-first (SAIFB = 1) . . . . . . . . . . . . . . . . . . . . . 28 Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 FFX power output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 FFX compensating pulse size bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Overcurrent warning bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 De-emphasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Postscale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Dynamic range compression/anticlipping bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Zero-detect mute enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Submix mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 AM mode enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Distortion compensation variable enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Output configuration engine selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Binary output mode clock loss detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 LRCK double trigger protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Auto EAPD on clock loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 DocID015276 Rev 8 5/79 79 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. 6/79 STA339BWS IC power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 External amplifier power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Line output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Master volume offset as a function of MVOL[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Channel volume as a function of CxVOL[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Audio preset gain compression/limiters selection for AMGC[3:2] = 00. . . . . . . . . . . . . . . . 47 AM interference frequency switching bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Audio preset AM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Bass management crossover frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Volume bypass register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Channel limiter mapping as a function of CxLS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Channel output mapping as a function of CxOM bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Tone control boost/cut as a function of BTC and TTC bits . . . . . . . . . . . . . . . . . . . . . . . . . 51 Limiter attack rate vs LxA bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Limiter release rate vs LxR bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Limiter attack threshold vs LxAT bits (AC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Limiter release threshold vs LxRT bits (AC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Limiter attack threshold vs LxAT bits (DRC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Limiter release threshold vs LxRT bits (DRC mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 RAM block for biquads, mixing, scaling, bass management. . . . . . . . . . . . . . . . . . . . . . . . 61 Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 EQ RAM select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Anticlipping and DRC preset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Anticlipping selection for AMGC[3:2] = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Bit PS48DB description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Bit XAR1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Bit XAR2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Bit BQ5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Bit BQ6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Bit BQ7 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Bit SVUPE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Bit SVDWE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 PowerSSO-36 EPD dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 DocID015276 Rev 8 STA339BWS List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin connection PowerSSO-36 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power-on sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power-off sequence for pop-free turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Timing diagram for SAI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Left and right processing, section 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Left and right processing, section 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Read mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 OCFG = 00 (default value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 OCFG = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 OCFG = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 OCFG = 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Output mapping scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.0 channels (OCFG = 00) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.1 channels (OCFG = 01) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.1 channels (OCFG = 10) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Basic limiter and volume flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 B2DRC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 EQDRC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Application circuit for 2 or 2.1-channel configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Application circuit for mono BTL configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Output configuration for stereo BTL mode (RL = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 PowerSSO-36 power derating curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 PowerSSO-36 EPD outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 DocID015276 Rev 8 7/79 79 Description 1 STA339BWS Description The STA339BWS is an integrated solution of digital audio processing, digital amplifier controls and power output stage to create a high-power single-chip FFX digital amplifier with high quality and high efficiency. Three channels of FFX processing are provided. The FFX processor implements the ternary, binary and binary differential processing capabilities of the full FFX processor. The STA339BWS is part of the Sound Terminal® family that provides full digital audio streaming to the speakers and offers cost effectiveness, low power dissipation and sound enrichment. Also provided in the STA339BWS are a full assortment of digital processing features. This includes up to 8 programmable biquads (EQ) per channel. Available presets enable a timeto-market advantage by substantially reducing the amount of software development needed for functions such as audio preset volume loudness, preset volume curves and preset EQ settings. There are also new advanced AM radio interference reduction modes. Dual-band DRC dynamically equalizes the system to provide linear frequency speaker response regardless of output power level. This feature separates the audio frequency band into two sub-bands independently processed to provide better sound clarity and to avoid speaker saturation. The serial audio data input interface accepts all possible formats, including the popular I2S format. The high-quality conversion from PCM audio to FFX PWM switching provides over 100 dB of SNR and of dynamic range. Figure 1. Block diagram I2C Protection current/thermal I2S Channel 1A interface Volume control Power control Logic Channel 1B FFX Channel 2A Regulators Channel 2B PLL Bias Digital DSP 8/79 Power DocID015276 Rev 8 STA339BWS Description The power section consists of four independent half-bridges. These can be configured via digital control to operate in different modes. 2.1 channels can be provided by two half bridges and a single full bridge, supplying up to 2 x 9 W + 1 x 20 W of output power. Two channels can be provided by two full-bridges, supplying up to 2 x 20 W of output power. The IC can also be configured as 2.1 channels with 2 x 20 W supplied by the device plus a drive for an external FFX power amplifier, such as STA533WF or STA515W. One channel can be provided by parallel BTL to obtain 1 x 40 W of output power. In this configuration the CONFIG pin must be connected to VDD. DocID015276 Rev 8 9/79 79 Pin connections STA339BWS 2 Pin connections 2.1 Connection diagram Figure 2. Pin connection PowerSSO-36 (top view) 2.2 GND_SUB 1 36 VDD_DIG SA 2 35 GND_DIG TEST_MODE 3 34 SCL VSS 4 33 SDA VCC_REG 5 32 INT_LINE OUT2B 6 31 RESET GND2 7 30 SDI VCC2 8 29 LRCKI OUT2A 9 28 BICKI OUT1B 10 27 XTI VCC1 11 26 GND_PLL GND1 12 25 FILTER_PLL OUT1A 13 24 VDD_PLL GND_REG 14 23 PWRDN VDD 15 22 GND_DIG CONFIG 16 21 VDD_DIG OUT3B / FFX3B 17 20 TWARN / OUT4A OUT3A / FFX3A 18 19 EAPD / OUT4B EP, exposed pad (device ground) Pin description Table 2. Pin description Pin 10/79 Type Name Description 1 GND GND_SUB Substrate ground 2 I SA I2C select address (pull-down) 3 I TEST_MODE This pin must be connected to ground (pull-down) 4 I/O VSS Internal reference at VCC - 3.3 V 5 I/O VCC_REG Internal VCC reference 6 O OUT2B Output half-bridge channel 2B 7 GND GND2 Power negative supply 8 Power VCC2 Power positive supply 9 O OUT2A Output half-bridge channel 2A 10 O OUT1B Output half-bridge channel 1B DocID015276 Rev 8 STA339BWS Pin connections Table 2. Pin description (continued) Pin Type Name Description 11 Power VCC1 Power positive supply 12 GND GND1 Power negative supply 13 O OUT1A Output half-bridge channel 1A 14 GND GND_REG Internal ground reference 15 Power VDD Internal 3.3 V reference voltage 16 I CONFIG Parallel mode command 17 O OUT3B / FFX3B PWM out channel 3B / external bridge driver 18 O OUT3A / FFX3A PWM out channel 3A / external bridge driver 19 O EAPD / OUT4B Power down for external bridge / PWM out channel 4B 20 I/O TWARN / OUT4A Thermal warning from external bridge (pull-up when input) / PWM out channel 4A 21 Power VDD_DIG Digital supply voltage 22 GND GND_DIG Digital ground 23 I PWRDN Power down (pull-up) 24 Power VDD_PLL Positive supply for PLL 25 I FILTER_PLL Connection to PLL filter 26 GND GND_PLL Negative supply for PLL 27 I XTI PLL input clock 28 I BICKI I2S serial clock 29 I LRCKI I2S left/right clock 30 I SDI I2S serial data channels 1 and 2 31 I RESET Reset (pull-up) 32 O INT_LINE Fault interrupt 33 I/O SDA I2C serial data 34 I SCL I2C serial clock 35 GND GND_DIG Digital ground 36 Power VDD_DIG Digital supply voltage - - EP Exposed pad for PCB heatsink, to be connected to GND DocID015276 Rev 8 11/79 79 Electrical specifications STA339BWS 3 Electrical specifications 3.1 Absolute maximum ratings Table 3. Absolute maximum ratings Symbol Parameter Typ Max Unit VCC Power supply voltage (pins VCCx) -0.3 - 24 V VDD Digital supply voltage (pins VDD_DIG) -0.3 - 4.0 V VDD PLL supply voltage (pin VDD_PLL) -0.3 - 4.0 V Top Operating junction temperature -20 - 150 °C Tstg Storage temperature -40 - 150 °C Warning: 3.2 Min Stresses beyond those listed in Table 3 above may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “Recommended operating conditions” are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. In the real application, power supplies with nominal values rated within the recommended operating conditions, may experience some rising beyond the maximum operating conditions for a short time when no or very low current is sinked (amplifier in mute state). In this case the reliability of the device is guaranteed, provided that the absolute maximum ratings are not exceeded. Thermal data Table 4. Thermal data Parameter Min Max Unit Rth j-case Thermal resistance junction-case (thermal pad) - - 1.5 °C/W Tth_sdj Thermal shut-down junction temperature - 150 - °C Tth_warn Thermal warning temperature - 130 - °C Tth_sdh Thermal shut-down hysteresis - 20 - °C - 24 - °C/W Rth j-amb Thermal resistance junction-ambient (1) 1. See Chapter 9: Package thermal characteristics on page 75 for details. 12/79 Typ DocID015276 Rev 8 STA339BWS 3.3 Electrical specifications Recommended operating conditions Table 5. Recommended operating condition Symbol 3.4 Parameter Min Typ Max Unit VCC Power supply voltage (VCCxA, VCCxB) 4.5 - 21.5 V VDD_DIG Digital supply voltage 2.7 3.3 3.6 V VDD_PLL PLL supply voltage 2.7 3.3 3.6 V Tamb Ambient temperature -20 - 70 °C Electrical specifications for the digital section Table 6. Electrical specifications - digital section (Tamb = 25 °C) Symbol Parameter Conditions Min Typ Max Unit Iil Low level input current without pull-up/down device Vi = 0 V - - 1 μA Iih High level input current without pull-up/down device Vi = VDD_DIG = 3.6 V - - 1 μA Vil Low level input voltage - - - Vih High level input voltage - Vol Low level output voltage Iol = 2 mA Voh High level output voltage Ioh = 2 mA Rpu Equivalent pull-up/down resistance - DocID015276 Rev 8 0.8 * VDD_DIG - 0.8 * VDD_DIG - 0.2 * VDD_DIG 0.4 * VDD_DIG V V V - - V 50 - k 13/79 79 Electrical specifications 3.5 STA339BWS Electrical specifications for the power section The specifications given in this section are valid for the operating conditions: VCC = 18 V, f = 1 kHz, fsw = 384 kHz, Tamb = 25 °C and RL = 8 , unless otherwise specified. Table 7. Electrical specifications - power section Symbol Parameter Conditions Output power BTL Po Output power SE Min Typ Max THD = 1% - 16 - THD = 10% - 20 - THD = 1%,RL= 4 - 7 - THD = 10%,RL= 4 - 9 - Unit W W RdsON Power P-channel or N-channel MOSFET ld = 0.75 A - - 250 m gP Power P-channel RdsON matching ld = 0.75 A - 100 - % gN Power N-channel RdsON matching ld = 0.75 A - 100 - % Idss Power P-channel/N-channel leakage VCC = 20 V - - 1 A tr Rise time - - 10 ns tf Fall time Resistive load, see Figure 3 below - - 10 ns Supply current from VCC in power down PWRDN = 0 - 0.3 - A Supply current from VCC in operation PWRDN = 1 - 15 - mA IVDD Supply current FFX processing Internal clock = 49.152 MHz - 55 - mA ILIM Overcurrent limit (1) 2.5 3.0 - A ISCP Short -circuit protection RL = 0 3.0 3.6 - A VUVP Undervoltage protection - - - 4.3 V tmin Output minimum pulse width No load 20 40 60 ns DR Dynamic range - - 100 - dB Signal to noise ratio, ternary mode A-Weighted - 100 - dB Signal to noise ratio binary mode - - 90 - dB Total harmonic distortion + noise FFX stereo mode, Po = 1 W f = 1 kHz - 0.2 - % Crosstalk FFX stereo mode, <5 kHz One channel driven at 1 W, other channel measured 80 - dB Peak efficiency, FFX mode Po = 2 x 20 W into 8 - 90 - Peak efficiency, binary modes Po = 2 x 9 W into 4 + 1 x 20 W into 8 87 - IVCC SNR THD+N XTALK % 1. Limit the current if overcurrent warning detect adjustment bypass is enabled (register bit CONFC.OCRB on page 31). When disabled refer to the ISCP. 14/79 DocID015276 Rev 8 STA339BWS Electrical specifications Figure 3. Test circuit OUTxY VCC (0.9)*VCC ½VCC (0.1)*VCC t tr tf +Vcc Duty cycle = 50% OUTxY INxY Rload = 8 + - vdc = Vcc/2 gnd DocID015276 Rev 8 15/79 79 Electrical specifications 3.6 STA339BWS Power on/off sequence Figure 4. Power-on sequence Note: no specific VCC and VDD_DIG turn−on sequence is required TR = minimum time between XTI master clock stable and Reset removal: 1 ms TC = minimum time between Reset removal and I2C program, sequence start: 1ms Note: The definition of a stable clock is when fmax - fmin < 1 MHz. Section Serial audio input interface format on page 27 gives information on setting up the I2S interface. Figure 5. Power-off sequence for pop-free turn-off Note: no specific VCC and VDD_DIG turn−off sequence is required 16/79 DocID015276 Rev 8 STA339BWS 4 Serial audio interface Serial audio interface The STA339BWS audio serial input interface was designed to interface with standard digital audio components and to accept a number of serial data formats. The STA339BWS always acts as the slave when receiving audio input from standard digital audio components. Serial data for two channels is provided using three inputs: left/right clock LRCKI, serial clock BICKI, and serial data SDI12. The SAI bit and the SAIFB bit are used to specify the serial data format. The default serial data format is I2S, MSB-first. 4.0.1 Timings In the STA339BWS the BICKI and LRCKI pins are configured as inputs and they must be supplied by the external peripheral. Figure 6. Timing diagram for SAI interface Table 8. Timing parameters for slave mode Symbol 4.0.2 Parameter Min Typ Max Unit tBCy BICK cycle time 80 - - ns tBCH BICK pulse width high 40 - - ns tBCL BICK pulse width low 40 - - ns tLRSU LRCKI setup time to BICKI strobing edge 40 - - ns tLRH LRCKI hold time to BICKI strobing edge 40 - - ns tLRJT LRCKI Jitter Tolerance 40 ns Delay serial clock enable To tolerate anomalies in some I2S master devices, a PLL clock cycle delay can be added to the BICKI signal before the SAI interface. 4.0.3 Channel input mapping Each channel received via I2S can be mapped to any internal processing channel via the channel input mapping registers. This allows for flexibility in processing. The default settings of these registers map each I2S input channel to its corresponding processing channel. DocID015276 Rev 8 17/79 79 Processing data paths 5 STA339BWS Processing data paths Figure 7 and Figure 8 below show the data processing paths inside STA339BWS. The whole processing chain is composed of two consecutive sections. In the first one, dual-channel processing is implemented and in the second section each channel is fed into the post-mixing block either to generate a third channel (typically used in 2.1 output configuration and with crossover filters enabled) or to have the channels processed by the dual-band DRC block (2.0 output configuration with crossover filters used to define the cut-off frequency of the two bands). The first section, Figure 7, begins with a 2x oversampling FIR filter providing 2 * fS audio processing. Then a selectable high-pass filter removes the DC level (enabled if HPB = 0). The left and right channel processing paths can include up to 8 filters, depending on the selected configuration (bits BQL, BQ5, BQ6, BQ7 and XO[3:0]). By default, four user programmable, independent filters per channel are enabled, plus the preconfigured de-emphasis, bass and treble controls (BQL = 0, BQ5 = 0, BQ6 = 0, BQ7 = 0). If the coefficient sets for the two channels are linked (BQL = 1) it is possible to use the de-emphasis, bass and treble filters in a user defined configuration (provided the relevant BQx bits are set). In this case both channels use the same processing coefficients and can have up to seven filters each. If BQL = 0 the BQx bits are ignored and the fifth, sixth and seventh filters are configured as de-emphasis, bass and treble controls, respectively. Figure 7. Left and right processing, section 1 Moreover, the common 8th filter can be available on both channels provided the predefined crossover frequencies are not used, XO[3:0] = 0, and the dual-band DRC is not used. In the second section, Figure 8, mixing and crossover filters are available. If B2DRC is not enabled they are fully user-programmable and allow the generation of a third channel (2.1 outputs). Alternatively, in mode B2DRC, these blocks are used to split the sub-band and define the cut-off frequencies of the two bands. A prescaler and a final postscaler allow full control over the signal dynamics before and after the filtering stages. A mixer function is also available. 18/79 DocID015276 Rev 8 STA339BWS Processing data paths Figure 8. Left and right processing, section 2 Dual-band DRC enabled Dual-band DRC disabled #8 #8 DocID015276 Rev 8 19/79 79 I2C bus specification 6 STA339BWS I2C bus specification The STA339BWS supports the I2C protocol via the input ports SCL and SDA_IN (master to slave) and the output port SDA_OUT (slave to master). This protocol defines any device that sends data on to the bus as a transmitter and any device that reads the data as a receiver. The device that controls the data transfer is known as the master and the other as the slave. The master always starts the transfer and provides the serial clock for synchronization. The STA339BWS is always a slave device in all of its communications. It supports up to 400 kb/s (fast-mode bit rate). For correct operation of the I2C interface ensure that the master clock generated by the PLL has a frequency at least 10 times higher than the frequency of the applied SCL clock. 6.1 Communication protocol 6.1.1 Data transition or change Data changes on the SDA line must only occur when the clock SCL is low. A SDA transition while the clock is high is used to identify a START or STOP condition. 6.1.2 Start condition START is identified by a high to low transition of the data bus, SDA, while the clock, SCL, is stable in the high state. A START condition must precede any command for data transfer. 6.1.3 Stop condition STOP is identified by low to high transition of SDA while SCL is stable in the high state. A STOP condition terminates communication between STA339BWS and the bus master. 6.1.4 Data input During the data input the STA339BWS samples the SDA signal on the rising edge of SCL. For correct device operation the SDA signal must be stable during the rising edge of the clock and the data can change only when the SCL line is low. 6.2 Device addressing To start communication between the master and the STA339BWS, the master must initiate with a start condition. Following this, the master sends onto the SDA line 8-bits (MSB first) corresponding to the device select address and read or write mode bit. The seven most significant bits are the device address identifiers, corresponding to the I2C bus definition. In the STA339BWS the I2C interface has two device addresses depending on the SA pin configuration, 0x38 when SA = 0, and 0x3A when SA = 1. The eighth bit (LSB) identifies a read or write operation (R/W); this is set to 1 for read and to 0 for write. After a START condition the STA339BWS identifies the device address on the SDA bus and if a match is found, acknowledges the identification during the 9th bit time frame. The byte following the device identification is the address of a device register. 20/79 DocID015276 Rev 8 I2C bus specification STA339BWS 6.3 Write operation Following the START condition the master sends a device select code with the RW bit set to 0. The STA339BWS acknowledges this and then waits for the byte of internal address. After receiving the internal byte address the STA339BWS again responds with an acknowledgement. 6.3.1 Byte write In the byte write mode the master sends one data byte, this is acknowledged by the STA339BWS. The master then terminates the transfer by generating a STOP condition. 6.3.2 Multi-byte write The multi-byte write modes can start from any internal address. The master generating a STOP condition terminates the transfer. Figure 9. Write mode sequence ACK BYTE WRITE DEV-ADDR START ACK SUB-ADDR RW STOP ACK MULTIBYTE WRITE ACK DATA IN DEV-ADDR START ACK SUB-ADDR RW ACK DATA IN ACK DATA IN STOP 6.4 Read operation 6.4.1 Current address byte read Following the START condition the master sends a device select code with the RW bit set to 1. The STA339BWS acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition. 6.4.2 Current address multi-byte read The multi-byte read modes can start from any internal address. Sequential data bytes are read from sequential addresses within the STA339BWS. The master acknowledges each data byte read and then generates a STOP condition terminating the transfer. 6.4.3 Random address byte read Following the START condition the master sends a device select code with the RW bit set to 0. The STA339BWS acknowledges this and then the master writes the internal address byte. After receiving, the internal byte address the STA339BWS again responds with an acknowledgement. The master then initiates another START condition and sends the device select code with the RW bit set to 1. The STA339BWS acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition. DocID015276 Rev 8 21/79 79 I2C bus specification 6.4.4 STA339BWS Random address multi-byte read The multi-byte read modes could start from any internal address. Sequential data bytes are read from sequential addresses within the STA339BWS. The master acknowledges each data byte read and then generates a STOP condition terminating the transfer. Figure 10. Read mode sequence ACK CURRENT ADDRESS READ DEV-ADDR START NO ACK DATA RW STOP ACK ACK RANDOM ADDRESS READ DEV-ADDR START SEQUENTIAL CURRENT READ SUB-ADDR RW RW= ACK HIGH DEV-ADDR ACK DEV-ADDR START ACK DATA NO ACK DATA STOP RW ACK DATA NO ACK DATA START DEV-ADDR START 22/79 STOP ACK SEQUENTIAL RANDOM READ ACK SUB-ADDR RW ACK DEV-ADDR START ACK DATA RW DocID015276 Rev 8 ACK DATA NO ACK DATA STOP STA339BWS Register description 7 Register description Note: Addresses exceeding the maximum address number must not be written. Table 9. Register summary Addr Name D7 D6 D5 D4 D3 D2 D1 D0 0x00 CONFA FDRB TWAB TWRB IR1 IR0 MCS2 MCS1 MCS0 0x01 CONFB C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0 0x02 CONFC OCRB Reserved CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0 0x03 CONFD SME ZDE DRC BQL PSL DSPB DEMP HPB 0x04 CONFE SVE ZCE DCCV PWMS AME NSBW MPC MPCV 0x05 CONFF EAPD PWDN ECLE LDTE BCLE IDE OCFG1 OCFG0 0x06 MUTELOC LOC1 LOC0 Reserved Reserved C3M C2M C1M Reserved 0x07 MVOL MVOL[7:0] 0x08 C1VOL C1VOL[7:0] 0x09 C2VOL C2VOL[7:0] 0x0A C3VOL C3VOL[7:0] 0x0B AUTO1 Reserved Reserved Reserved Reserved Reserved Reserved 0x0C AUTO2 XO3 XO2 AMAM2 AMAM1 AMAM0 AMAME 0x0D AUTO3 0x0E C1CFG C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VBP C1EQBP C1TCB 0x0F C2CFG C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VBP C2EQBP C2TCB 0x10 C3CFG C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VBP Reserved Reserved 0x11 TONE TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0 0x12 L1AR L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0 0x13 L1ATRT L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0 0x14 L2AR L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0 0x15 L2ATRT L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0 0x16 CFADDR Reserved Reserved 0x17 B1CF1 C1B[23:16] 0x18 B1CF2 C1B[15:8] 0x19 B1CF3 C1B[7:0] 0x1A B2CF1 C2B[23:16] 0x1B B2CF2 C2B[15:8] 0x1C B2CF3 C2B[7:0] 0x1D A1CF1 C3B[23:16] 0x1E A1CF2 C3B[15:8] AMGC[1:0] XO1 XO0 Reserved CFA[5:0] DocID015276 Rev 8 23/79 79 Register description STA339BWS Table 9. Register summary (continued) Addr Name D7 D6 D5 D4 D3 D2 D1 D0 R1 WA W1 OCWARN TFAULT TWARN 0x1F A1CF3 C3B[7:0] 0x20 A2CF1 C4B[23:16] 0x21 A2CF2 C4B[15:8] 0x22 A2CF3 C4B[7:0] 0x23 B0CF1 C5B[23:16] 0x24 B0CF2 C5B[15:8] 0x25 B0CF3 C5B[7:0] 0x26 CFUD 0x27 MPCC1 MPCC[15:8] 0x28 MPCC2 MPCC[7:0] 0x29 DCC1 DCC[15:8] 0x2A DCC2 DCC[7:0] 0x2B FDRC1 FDRC[15:8] 0x2C FDRC2 FDRC[7:0] 0x2D STATUS 0x2E Reserved Reserved 0x2F Reserved Reserved 0x30 Reserved Reserved 0x31 EQCFG XOB 0x32 EATH1 EATHEN1 EATH1[6:0] 0x33 ERTH1 ERTHEN1 ERTH1[6:0] 0x34 EATH2 EATHEN2 EATH2[6:0] 0x35 ERTH2 ERTHEN2 ERTH2[6:0] 0x36 CONFX 0x37 SVCA Reserved Reserved SVUPE SVUP[4:0] 0x38 SVCB Reserved Reserved SVDWE SVDW[4:0] 0x39 RMS0A R_C0[23:16] 0x3A RMS0B R_C0[15:8] 0x3B RMS0C R_C0[7:0] 0x3C RMS1A R_C1[23:16] 0x3D RMS1B R_C1[15:8] 0x3E RMS1C R_C1[7:0] 24/79 Reserved PLLUL FAULT Reserved MDRC[1:0] UVFAULT Reserved PS48DB RA Reserved OCFAULT AMGC[3:2] XAR1 XAR2 DocID015276 Rev 8 Reserved BQ5 SEL[1:0] BQ6 BQ7 STA339BWS Register description 7.1 Configuration registers (addr 0x00 to 0x05) 7.1.1 Configuration register A (addr 0x00) D7 D6 D5 D4 D3 D2 D1 D0 FDRB TWAB TWRB IR1 IR0 MCS2 MCS1 MCS0 0 1 1 0 0 0 1 1 Master clock select Table 10. Master clock select Bit R/W RST Name 0 R/W 1 MCS0 1 R/W 1 MCS1 2 R/W 0 MCS2 Description Selects the ratio between the input I2S sample frequency and the input clock. The STA339BWS supports sample rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 176.4 kHz, and 192 kHz. Therefore the internal clock is: 32.768 MHz for 32 kHz 45.1584 MHz for 44.1 kHz, 88.2 kHz, and 176.4 kHz 49.152 MHz for 48 kHz, 96 kHz, and 192 kHz The external clock frequency provided to the XTI pin must be a multiple of the input sample frequency (fs). The relationship between the input clock and the input sample rate is determined by both the MCSx and the IR (input rate) register bits. The MCSx bits determine the PLL factor generating the internal clock and the IR bit determines the oversampling ratio used internally. Table 11. Input sampling rates Input sample rate fs (kHz) IR MCS[2:0] 101 100 011 010 001 000 32, 44.1, 48 00 576 * fs 128 * fs 256 * fs 384 * fs 512 * fs 768 * fs 88.2, 96 01 NA 64 * fs 128 * fs 192 * fs 256 * fs 384 * fs 176.4, 192 1X NA 32 * fs 64 * fs 96 * fs 128 * fs 192 * fs Interpolation ratio select Table 12. Internal interpolation ratio Bit 4:3 R/W R/W RST 00 Name IR [1:0] Description Selects internal interpolation ratio based on input I2S sample frequency DocID015276 Rev 8 25/79 79 Register description STA339BWS The STA339BWS has variable interpolation (oversampling) settings such that internal processing and FFX output rates remain consistent. The first processing block interpolates by either 2-times or 1-time (pass-through) or provides a 2-times downsample. The oversampling ratio of this interpolation is determined by the IR bits. Table 13. IR bit settings as a function of input sample rate Input sample rate fs (kHz) IR 1st stage interpolation ratio 32 00 2-times oversampling 44.1 00 2-times oversampling 48 00 2-times oversampling 88.2 01 Pass-through 96 01 Pass-through 176.4 10 2-times downsampling 192 10 2-times downsampling Thermal warning recovery bypass Table 14. Thermal warning recovery bypass Bit 5 R/W R/W RST 1 Name Description 0: thermal warning recovery enabled 1: thermal warning recovery disabled TWRB This bit sets the behavior of the IC after a thermal warning disappears. If TWRB is enabled the device automatically restores the normal gain and output limiting is no longer active. If it is disabled the device keeps the output limit active until a reset is asserted or until TWRB set to 0. This bit works in conjunction with TWAB Thermal warning adjustment bypass Table 15. Thermal warning adjustment bypass Bit 6 R/W R/W RST 1 Name TWAB Description 0: thermal warning adjustment enabled 1: thermal warning adjustment disabled Bit TWAB enables automatic output limiting when a power stage thermal warning condition persists for longer than 400ms. When the feature is active (TWAB = 0) the desired output limiting, set through bit TWOCL (-3 dB by default) at address 0x37 in the RAM coefficients bank, is applied. The way the limiting acts after the warning condition disappears is controlled by bit TWRB. 26/79 DocID015276 Rev 8 STA339BWS Register description Fault detect recovery bypass Table 16. Fault detect recovery bypass Bit R/W 7 R/W RST 0 Name Description 0: fault detect recovery enabled 1: fault detect recovery disabled FDRB The on-chip power block provides feedback to the digital controller which is used to indicate a fault condition (either overcurrent or thermal). When fault is asserted, the power control block attempts a recovery from the fault by asserting the 3-state output, holding it for period of time in the range of 0.1 ms to 1 second, as defined by the fault-detect recovery constant register (FDRC registers 0x2B-0x2C), then toggling it back to normal condition. This sequence is repeated as log as the fault indication exists. This feature is enabled by default but can be bypassed by setting the FDRB control bit to 1. The fault condition is also asserted by a low-state pulse of the normally high INT_LINE output pin. 7.1.2 Configuration register B (addr 0x01) D7 D6 D5 D4 D3 D2 D1 D0 C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0 1 0 0 0 0 0 0 0 Serial audio input interface format Table 17. Serial audio input interface Bit R/W RST Name 0 R/W 0 SAI0 1 R/W 0 SAI1 2 R/W 0 SAI2 3 R/W 0 SAI3 Description Determines the interface format of the input serial digital audio interface. Serial data interface The STA339BWS audio serial input interfaces with standard digital audio components and accepts a number of serial data formats. STA339BWS always acts as slave when receiving audio input from standard digital audio components. Serial data for two channels is provided using three inputs: left/right clock LRCKI, serial clock BICKI, and serial data SDI. Bits SAI and bit SAIFB are used to specify the serial data format. The default serial data format is I2S, MSB first. Available formats are shown in the tables and figure that follow. Serial data first bit Table 18. Serial data first bit SAIFB Format 0 MSB-first 1 LSB-first DocID015276 Rev 8 27/79 79 Register description STA339BWS Table 19. Support serial audio input formats for MSB-first (SAIFB = 0) BICKI 32 * fs 48 * fs 64 * fs SAI [3:0] SAIFB Interface format 0000 0 I2S 15-bit data 0001 0 Left/right-justified 16-bit data 0000 0 I2S 16 to 23-bit data 0001 0 Left-justified 16 to 24-bit data 0010 0 Right-justified 24-bit data 0110 0 Right-justified 20-bit data 1010 0 Right-justified 18-bit data 1110 0 Right-justified 16-bit data 0000 0 I2S 16 to 24-bit data 0001 0 Left-justified 16 to 24-bit data 0010 0 Right-justified 24-bit data 0110 0 Right-justified 20-bit data 1010 0 Right-justified 18-bit data 1110 0 Right-justified 16-bit data Table 20. Supported serial audio input formats for LSB-first (SAIFB = 1) BICKI 32 * fs 48 * fs 28/79 SAI [3:0] SAIFB Interface Format 2S 15-bit data 1100 1 I 1110 1 Left/right-justified 16-bit data 0100 1 I2S 23-bit data 0100 1 I2S 20-bit data 1000 1 I2S 18-bit data 1100 1 LSB first I2S 16-bit data 0001 1 Left-justified 24-bit data 0101 1 Left-justified 20-bit data 1001 1 Left-justified 18-bit data 1101 1 Left-justified 16-bit data 0010 1 Right-justified 24-bit data 0110 1 Right-justified 20-bit data 1010 1 Right-justified 18-bit data 1110 1 Right-justified 16-bit data DocID015276 Rev 8 STA339BWS Register description Table 20. Supported serial audio input formats for LSB-first (SAIFB = 1) (continued) BICKI SAI [3:0] 64 * fs SAIFB Interface Format 2 0000 1 I S 24-bit data 0100 1 I2S 20-bit data 1000 1 I2S 18-bit data 1100 1 LSB first I2S 16-bit data 0001 1 Left-justified 24-bit data 0101 1 Left-justified 20-bit data 1001 1 Left-justified 18-bit data 1101 1 Left-justified 16-bit data 0010 1 Right-justified 24-bit data 0110 1 Right-justified 20-bit data 1010 1 Right-justified 18-bit data 1110 1 Right-justified 16-bit data To make the STA339BWS work properly, the serial audio interface LRCKI clock must be synchronous to the PLL output clock. It means that: N-4< = (frequency of PLL clock) / (frequency of LRCKI) = < N+4 cycles, where N depends on the settings in Table 13 on page 26 the PLL must be locked. If these two conditions are not met, and IDE bit (register 0x05, bit 2) is set to 1, the STA339BWS immediately mutes the I2S PCM data out (provided to the processing block) and it freezes any active processing task. Clock desyncronization can happen during STA339BWS operation because of source switching or TV channel change. To avoid audio side effects, like click or pop noise, it is strongly recommended to complete the following actions: 1. soft volume change 2. I2C read /write instructions while the serial audio interface and the internal PLL are still synchronous. Delay serial clock enable Table 21. Delay serial clock enable Bit 5 R/W R/W RST 0 Name DSCKE Description 0: no serial clock delay 1: serial clock delay by 1 core clock cycle to tolerate anomalies in some I2S master devices DocID015276 Rev 8 29/79 79 Register description STA339BWS Channel input mapping Table 22. Channel input mapping Bit R/W RST Name Description 6 R/W 0 C1IM 0: processing channel 1 receives left I2S Input 1: processing channel 1 receives right I2S Input 7 R/W 1 C2IM 0: processing channel 2 receives left I2S Input 1: processing channel 2 receives right I2S Input Each channel received via I2S can be mapped to any internal processing channel via the Channel Input Mapping registers. This allows for flexibility in processing. The default settings of these registers maps each I2S input channel to its corresponding processing channel. 7.1.3 Configuration register C (addr 0x02) D7 D6 D5 D4 D3 D2 D1 D0 OCRB Reserved CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0 1 0 0 1 0 1 1 1 FFX power output mode The FFX power output mode selects how the FFX output timing is configured. Different power devices use different output modes. Table 23. FFX power output mode Bit R/W RST Name 0 R/W 1 OM0 1 R/W 1 OM1 Description Selects configuration of FFX output: 00: drop compensation 01: discrete output stage: tapered compensation 10: full-power mode 11: variable drop compensation (CSZx bits) FFX compensating pulse size register Table 24. FFX compensating pulse size bits Bit 30/79 R/W RST Name 2 R/W 1 CSZ0 3 R/W 1 CSZ1 4 R/W 1 CSZ2 5 R/W 0 CSZ3 Description When OM[1,0] = 11, this register determines the size of the FFX compensating pulse from 0 clock ticks to 15 clock periods. DocID015276 Rev 8 STA339BWS Register description Table 25. Compensating pulse size CSZ[3:0] Compensating pulse size 0000 0 ns (0 tick) compensating pulse size 0001 20 ns (1 tick) clock period compensating pulse size … … 1111 300 ns (15 tick) clock period compensating pulse size Overcurrent warning adjustment bypass Table 26. Overcurrent warning bypass Bit R/W 7 R/W RST 1 Name Description 0: overcurrent warning adjustment enabled 1: overcurrent warning adjustment disabled OCRB The OCRB is used to indicate how STA339BWS behaves when an overcurrent warning condition occurs. If OCRB = 0 and the overcurrent condition happens, the power control block forces an adjustment to the modulation limit (default is -3 dB) in an attempt to eliminate the overcurrent warning condition. Once the overcurrent warning clipping adjustment is applied, it remains in this state until reset is applied or OCRB is set to 1. The level of adjustment can be changed via the TWOCL (thermal warning/overcurrent limit) setting at address 0x37 of the user defined coefficient RAM (Section 7.7.7 on page 59). The OCRB can be enabled when the output bridge is already on. 7.1.4 Configuration register D (addr 0x03) D7 D6 D5 D4 D3 D2 D1 D0 SME ZDE DRC BQL PSL DSPB DEMP HPB 0 1 0 0 0 0 0 0 High-pass filter bypass Table 27. High-pass filter bypass Bit 0 R/W R/W RST 0 Name HPB Description 1: bypass internal AC coupling digital high-pass filter The STA339BWS features an internal digital high-pass filter for the purpose of AC coupling. The purpose of this filter is to prevent DC signals from passing through a FFX amplifier. DC signals can cause speaker damage. When HPB = 0, this filter is enabled. DocID015276 Rev 8 31/79 79 Register description STA339BWS De-emphasis Table 28. De-emphasis Bit 1 R/W R/W RST 0 Name Description 0: no de-emphasis 1: enable de-emphasis on all channels DEMP DSP bypass Table 29. DSP bypass Bit 2 R/W R/W RST 0 Name Description 0: normal operation 1: bypass of biquad and bass/treble functions DSPB Setting the DSPB bit bypasses the EQ function of the STA339BWS. Postscale link Table 30. Postscale link Bit 3 R/W R/W RST 0 Name Description 0: each channel uses individual postscale value 1: each channel uses channel 1 postscale value PSL Postscale functionality can be used for power-supply error correction. For multi-channel applications running off the same power-supply, the postscale values can be linked to the value of channel 1 for ease of use and update the values faster. Biquad coefficient link Table 31. Biquad coefficient link Bit 4 R/W R/W RST 0 Name Description 0: each channel uses coefficient values 1: each channel uses channel 1 coefficient values BQL For ease of use, all channels can use the biquad coefficients loaded into the Channel-1 coefficient RAM space by setting the BQL bit to 1. Therefore, any EQ updates only have to be performed once. Dynamic range compression/anticlipping bit Table 32. Dynamic range compression/anticlipping bit Bit 5 32/79 R/W R/W RST 0 Name DRC Description 0: limiters act in anticlipping mode 1: limiters act in dynamic range compression mode DocID015276 Rev 8 STA339BWS Register description Both limiters can be used in one of two ways, anticlipping or dynamic range compression. When used in anticlipping mode the limiter threshold values are constant and dependent on the limiter settings. In dynamic range compression mode the limiter threshold values vary with the volume settings allowing a nighttime listening mode that provides a reduction in the dynamic range regardless of the volume level. Zero-detect mute enable Table 33. Zero-detect mute enable Bit R/W 6 R/W RST 1 Name Description 0: automatic zero-detect mute disabled 1: automatic zero-detect mute enabled ZDE Setting the ZDE bit enables the zero-detect automatic mute. The zero-detect circuit looks at the data for each processing channel at the output of the crossover (bass management) filter. If any channel receives 2048 consecutive zero value samples (regardless of fs) then that individual channel is muted if this function is enabled. Submix mode enable Table 34. Submix mode enable Bit R/W 7 7.1.5 R/W RST 0 Name Description 0: submix into left/right disabled 1: submix into left/right enabled SME Configuration register E (addr 0x04) D7 D6 D5 D4 D3 D2 D1 D0 SVE ZCE DCCV PWMS AME NSBW MPC MPCV 1 1 0 0 0 0 1 0 Max power correction variable Table 35. Max power correction variable Bit 0 R/W R/W RST 0 Name Description 0: use standard MPC coefficient 1: use MPCC bits for MPC coefficient MPCV Max power correction Table 36. Max power correction Bit 1 R/W R/W RST 1 Name MPC Description 0: function disabled 1: enables power bridge correction for THD reduction near maximum power output. DocID015276 Rev 8 33/79 79 Register description STA339BWS Setting the MPC bit turns on special processing that corrects the STA339BWS power device at high power. This mode should lower the THD+N of a full FFX system at maximum power output and slightly below. If enabled, MPC is operational in all output modes except tapered (OM[1,0] = 01) and binary. When OCFG = 00, MPC has no effect on channels 3 and 4, the line-out channels. Noise-shaper bandwidth selection Table 37. Noise-shaper bandwidth selection Bit 2 R/W R/W RST 0 Name Description 1: third-order NS 0: fourth-order NS NSBW AM mode enable Table 38. AM mode enable Bit 3 R/W R/W RST 0 Name Description 0: normal FFX operation. 1: AM reduction mode FFX operation AME STA339BWS features a FFX processing mode that minimizes the amount of noise generated in frequency range of AM radio. This mode is intended for use when FFX is operating in a device with an AM tuner active. The SNR of the FFX processing is reduced to approximately 83 dB in this mode, which is still greater than the SNR of AM radio. PWM speed mode Table 39. PWM speed mode Bit 4 R/W R/W RST 0 Name Description 0: normal speed (384 kHz) all channels 1: odd speed (341.3 kHz) all channels PWMS Distortion compensation variable enable Table 40. Distortion compensation variable enable Bit 5 34/79 R/W R/W RST 0 Name DCCV Description 0: use preset DC coefficient 1: use DCC coefficient DocID015276 Rev 8 STA339BWS Register description Zero-crossing volume enable Table 41. Zero-crossing volume enable Bit R/W 6 R/W RST 1 Name Description 1: volume adjustments only occur at digital zerocrossings 0: volume adjustments occur immediately ZCE The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital zero-crossings no clicks are audible. Soft volume update enable Table 42. Soft volume update enable Bit R/W 7 7.1.6 R/W RST 1 Name Description 1: volume adjustments ramp according to SVUP/SVDW settings 0: volume adjustments occur immediately SVE Configuration register F (addr 0x05) D7 D6 D5 D4 D3 D2 D1 D0 EAPD PWDN ECLE LDTE BCLE IDE OCFG1 OCFG0 0 1 0 1 1 1 0 0 Output configuration Table 43. Output configuration Bit R/W RST Name 0 R/W 0 OCFG0 1 R/W 0 OCFG1 Description Selects the output configuration DocID015276 Rev 8 35/79 79 Register description STA339BWS Table 44. Output configuration engine selection OCFG[1:0] Note: Output configuration 00 2 channel (full-bridge) power, 2 channel data-out: 1A/1B 1A/1B 2A/2B 2A/2B LineOut1 3A/3B LineOut2 4A/4B Line Out Configuration determined by LOC register 0 01 2 (half-bridge), 1(full-bridge) on-board power: 1A 1A Binary 0 ° 2A 1B Binary 90° 3A/3B 2A/2B Binary 45° 1A/B 3A/B Binary 0° 2A/B 4A/B Binary 90° 0 10 2 channel (full-bridge) power, 1 channel FFX: 1A/1B 1A/1B 2A/2B 2A/2B 3A/3B 3A/3B EAPDEXT and TWARNEXT Active 0 11 1 channel mono-parallel: 3A 1A/1B w/ C3BO 45° 3B 2A/2B w/ C3BO 45° 1A/1B 3A/3B 2A/2B 4A/4B 1 To the left of the arrow is the processing channel. When using channel output mapping, any of the three processing channel outputs can be used for any of the three inputs. Figure 11. OCFG = 00 (default value) 36/79 Config pin DocID015276 Rev 8 STA339BWS Register description Figure 12. OCFG = 01 Figure 13. OCFG = 10 Figure 14. OCFG = 11 The STA339BWS can be configured to support different output configurations. For each PWM output channel a PWM slot is defined. A PWM slot is always 1 / (8 * fs) seconds length. The PWM slot define the maximum extension for PWM rise and fall edge, that is, rising edge as far as the falling edge cannot range outside PWM slot boundaries. DocID015276 Rev 8 37/79 79 Register description STA339BWS Figure 15. Output mapping scheme For each configuration the PWM signals from the digital driver are mapped in different ways to the power stage: 38/79 DocID015276 Rev 8 STA339BWS Register description 2.0 channels, two full-bridges (OCFG = 00) Mapping: FFX1A -> OUT1A FFX1B -> OUT1B FFX2A -> OUT2A FFX2B -> OUT2B FFX3A -> OUT3A FFX3B -> OUT3B FFX4A -> OUT4A FFX4B -> OUT4B Default modulation: FFX1A/1B configured as ternary FFX2A/2B configured as ternary FFX3A/3B configured as lineout ternary FFX4A/4B configured as lineout ternary On channel 3 line out (LOC bits = 00) the same data as channel 1 processing is sent. On channel 4 line out (LOC bits = 00) the same data as channel 2 processing is sent. In this configuration, volume control or EQ have no effect on channels 3 and 4. In this configuration the PWM slot phase is the following as shown in Figure 16. Figure 16. 2.0 channels (OCFG = 00) PWM slots DocID015276 Rev 8 39/79 79 Register description STA339BWS 2.1 channels, two half-bridges + one full-bridge (OCFG = 01) Mapping: FFX1A -> OUT1A FFX2A -> OUT1B FFX3A -> OUT2A FFX3B -> OUT2B FFX1A -> OUT3A FFX1B -> OUT3B FFX2A -> OUT4A FFX2B -> OUT4B Modulation: FFX1A/1B configured as binary FFX2A/2B configured as binary FFX3A/3B configured as binary FFX4A/4B configured as binary In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT3/OUT4 channels the channel 1 and channel 2 PWM are replicated. In this configuration the PWM slot phase is the following as shown in Figure 17. Figure 17. 2.1 channels (OCFG = 01) PWM slots 40/79 DocID015276 Rev 8 STA339BWS Register description 2.1 channels, two full-bridges + one external full-bridge (OCFG = 10) Mapping: FFX1A -> OUT1A FFX1B -> OUT1B FFX2A -> OUT2A FFX2B -> OUT2B FFX3A -> OUT3A FFX3B -> OUT3B EAPD -> OUT4A TWARN -> OUT4B Default modulation: FFX1A/1B configured as ternary FFX2A/2B configured as ternary FFX3A/3B configured as ternary FFX4A/4B is not used In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT4 channel the external bridge control signals are multiplexed. In this configuration the PWM slot phase is the following as shown in Figure 18. Figure 18. 2.1 channels (OCFG = 10) PWM slots DocID015276 Rev 8 41/79 79 Register description STA339BWS 1 channel mono-parallel (OCFG = 11) Mapping: FFX1A -> OUT3A FFX1B -> OUT3B FFX2A -> OUT4A FFX2B -> OUT4B FFX3A -> OUT1A/OUT1B FFX3B -> OUT2A/OUT2B In this configuration, the CONFIG pin must be connected to the VDD pin. 42/79 DocID015276 Rev 8 STA339BWS Register description Invalid input detect mute enable Table 45. Invalid input detect mute enable Bit 2 R/W R/W RST 1 Name Description 0: disables the automatic invalid input detect mute 1: enables the automatic invalid input detect mute IDE Setting the IDE bit enables this function, which looks at the input I2S data and automatically mutes if the signals are perceived as invalid. Binary output mode clock loss detection Table 46. Binary output mode clock loss detection Bit 3 R/W R/W RST 1 Name Description 0: binary output mode clock loss detection disabled 1: binary output mode clock loss detection enable BCLE Detects loss of input MCLK in binary mode and will output 50% duty cycle. LRCK double trigger protection Table 47. LRCK double trigger protection Bit 4 R/W R/W RST 1 Name Description 0: LRCLK double trigger protection disabled 1: LRCLK double trigger protection enabled LDTE LDTE, when enabled, prevents double trigger of LRCLK on instable I2S input. Auto EAPD on clock loss Table 48. Auto EAPD on clock loss Bit 5 R/W R/W RST 0 Name Description 0: auto EAPD on clock loss not enabled 1: auto EAPD on clock loss ECLE When active, issues a power device power down signal (EAPD) on clock loss detection. IC power down Table 49. IC power down Bit 6 R/W R/W RST 1 Name PWDN Description 0: IC power down low-power condition 1: IC normal operation DocID015276 Rev 8 43/79 79 Register description STA339BWS The PWDN register is used to place the IC in a low-power state. When PWDN is written as 0, the output begins a soft-mute. After the mute condition is reached, EAPD is asserted to power down the power-stage, then the master clock to all internal hardware expect the I2C block is gated. This places the IC in a very low power consumption state. External amplifier power down Table 50. External amplifier power down Bit 7 R/W R/W RST 0 Name EAPD Description 0: external power stage power down active 1: normal operation The EAPD register directly disables/enables the internal power circuitry. When EAPD = 0, the internal power section is placed in a low-power state (disabled). This register also controls the FFX4B/EAPD output pin when OCFG = 10. 7.2 Volume control registers (addr 0x06 - 0x0A) The volume structure of the STA339BWS consists of individual volume registers for each channel and a master volume register that provides an offset to each channels volume setting. The individual channel volumes are adjustable in 0.5 dB steps from +48 dB to -80 dB. As an example if C3VOL = 0x00 or +48 dB and MVOL = 0x18 or -12 dB, then the total gain for channel 3 = +36 dB. The channel mutes provide a “soft mute” with the volume ramping down to mute in 4096 samples from the maximum volume setting at the internal processing rate (approximately 96 kHz). All changes in volume take place at zero-crossings when ZCE = 1 (Configuration register E (addr 0x04)) on a per channel basis as this creates the smoothest possible volume transitions. When ZCE = 0, volume updates occur immediately. 44/79 DocID015276 Rev 8 STA339BWS 7.2.1 Register description Mute/line output configuration register (addr 0x06) D7 D6 D5 D4 D3 D2 D1 D0 LOC1 LOC0 Reserved Reserved C3M C2M C1M Reserved 0 0 0 1 0 0 0 0 Table 51. Line output configuration LOC[1:0] Line output configuration 00 Line output fixed - no volume, no EQ 01 Line output variable - channel 3 volume effects line output, no EQ 10 Line output variable with EQ - channel 3 volume effects line output Line output is only active when OCFG = 00. In this case LOC determines the line output configuration. The source of the line output is always the channel 1 and 2 inputs. 7.2.2 Master volume register (addr 0x07) D7 D6 D5 D4 D3 D2 D1 D0 MVOL7 MVOL6 MVOL5 MVOL4 MVOL3 MVOL2 MVOL1 MVOL0 1 1 1 1 1 1 1 1 Table 52. Master volume offset as a function of MVOL[7:0] MVOL[7:0] 7.2.3 7.2.4 Volume offset from channel value 00000000 (0x00) 0 dB 00000001 (0x01) -0.5 dB 00000010 (0x02) -1 dB … … 01001100 (0x4C) -38 dB … … 11111110 (0xFE) -127.5 dB 11111111 (0xFF) Default mute, not to be used during operation Channel 1 volume (addr 0x08) D7 D6 D5 D4 D3 D2 D1 D0 C1VOL7 C1VOL6 C1VOL5 C1VOL4 C1VOL3 C1VOL2 C1VOL1 C1VOL0 0 1 1 0 0 0 0 0 Channel 2 volume (addr 0x09) D7 D6 D5 D4 D3 D2 D1 D0 C2VOL7 C2VOL6 C2VOL5 C2VOL4 C2VOL3 C2VOL2 C2VOL1 C2VOL0 0 1 1 0 0 0 0 0 DocID015276 Rev 8 45/79 79 Register description 7.2.5 STA339BWS Channel 3 / line output volume (addr 0x0A) D7 D6 D5 D4 D3 D2 D1 D0 C3VOL7 C3VOL6 C3VOL5 C3VOL4 C3VOL3 C3VOL2 C3VOL1 C3VOL0 0 1 1 0 0 0 0 0 Table 53. Channel volume as a function of CxVOL[7:0] CxVOL[7:0] 46/79 Volume 00000000 (0x00) +48 dB 00000001 (0x01) +47.5 dB 00000010 (0x02) +47 dB … … 01011111 (0x5F) +0.5 dB 01100000 (0x60) 0 dB 01100001 (0x61) -0.5 dB … … 11010111 (0xD7) -59.5 dB 11011000 (0xD8) -60 dB 11011001 (0xD9) -61 dB 11011010 (0xDA) -62 dB … … 11101100 (0xEC) -80 dB 11101101 (0xED) Hard channel mute … … 11111111 (0xFF) Hard channel mute DocID015276 Rev 8 STA339BWS Register description 7.3 Audio preset registers (addr 0x0B and 0x0C) 7.3.1 Audio preset register 1 (addr 0x0B) D7 D6 D5 D4 D3 D2 D1 D0 Reserved Reserved AMGC[1] AMGC[0] Reserved Reserved Reserved Reserved 1 0 0 0 0 0 0 0 Using AMGC[3:0] bits, attack and release thresholds and rates are automatically configured to properly fit application specific configurations. AMGC[3:2] is defined in register EQ coefficients and DRC configuration register (addr 0x31) on page 66. The AMGC[1:0] bits behave in two different ways depending on the value of AMGC[3:2]. When this value is 00 then bits AMGC[1:0] are defined below in Table 54. Table 54. Audio preset gain compression/limiters selection for AMGC[3:2] = 00 AMGC[1:0] 7.3.2 Mode 00 User programmable GC 01 AC no clipping 2.1 10 AC limited clipping (10%) 2.1 11 DRC night-time listening mode 2.1 Audio preset register 2 (addr 0x0C) D7 D6 D5 D4 D3 D2 D1 D0 XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME 0 0 0 0 0 0 0 0 AM interference frequency switching Table 55. AM interference frequency switching bits Bit 0 R/W R/W RST 0 Name AMAME Description Audio preset AM enable 0: switching frequency determined by PWMS setting 1: switching frequency determined by AMAM settings Table 56. Audio preset AM switching frequency selection AMAM[2:0] 48 kHz/96 kHz input fs 44.1 kHz/88.2 kHz input fs 000 0.535 MHz - 0.720 MHz 0.535 MHz - 0.670 MHz 001 0.721 MHz - 0.900 MHz 0.671 MHz - 0.800 MHz 010 0.901 MHz - 1.100 MHz 0.801 MHz - 1.000 MHz 011 1.101 MHz - 1.300 MHz 1.001 MHz - 1.180 MHz 100 1.301 MHz - 1.480 MHz 1.181 MHz - 1.340 MHz DocID015276 Rev 8 47/79 79 Register description STA339BWS Table 56. Audio preset AM switching frequency selection (continued) AMAM[2:0] 48 kHz/96 kHz input fs 44.1 kHz/88.2 kHz input fs 101 1.481 MHz - 1.600 MHz 1.341 MHz - 1.500 MHz 110 1.601 MHz - 1.700 MHz 1.501 MHz - 1.700 MHz Bass management crossover Table 57. Bass management crossover Bit R/W RST Name 4 R/W 0 XO0 5 R/W 0 XO1 6 R/W 0 XO2 7 R/W 0 XO3 Description Selects the bass-management crossover frequency. A 1st-order hign-pass filter (channels 1 and 2) or a 2nd-order low-pass filter (channel 3) at the selected frequency is performed. Table 58. Bass management crossover frequency XO[3:0] 48/79 Crossover frequency 0000 User-defined (Section 7.7.8 on page 59) 0001 80 Hz 0010 100 Hz 0011 120 Hz 0100 140 Hz 0101 160 Hz 0110 180 Hz 0111 200 Hz 1000 220 Hz 1001 240 Hz 1010 260 Hz 1011 280 Hz 1100 300 Hz 1101 320 Hz 1110 340 Hz 1111 360 Hz DocID015276 Rev 8 STA339BWS 7.4 Register description Channel configuration registers (addr 0x0E - 0x10) D7 D6 D5 D4 D3 D2 D1 D0 C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VPB C1EQBP C1TCB 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VPB C2EQBP C2TCB 0 1 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VPB Reserved Reserved 1 0 0 0 0 0 0 0 Tone control bypass Tone control (bass/treble) can be bypassed on a per channel basis for channels 1 and 2. Table 59. Tone control bypass CxTCB Mode 0 Perform tone control on channel x - normal operation 1 Bypass tone control on channel x EQ bypass EQ control can be bypassed on a per channel basis for channels 1 and 2. If EQ control is bypassed on a given channel the prescale and all filters (high-pass, biquads, de-emphasis, bass, treble in any combination) are bypassed for that channel. Table 60. EQ bypass CxEQBP Mode 0 Perform EQ on channel x - normal operation 1 Bypass EQ on channel x Volume bypass Each channel contains an individual channel volume bypass. If a particular channel has volume bypassed via the CxVBP = 1 register then only the channel volume setting for that particular channel affects the volume setting, the master volume setting has no effect on that channel. Table 61. Volume bypass register CxVBP Mode 0 Normal volume operations 1 Volume is by-passed DocID015276 Rev 8 49/79 79 Register description STA339BWS Binary output enable registers Each individual channel output can be set to output a binary PWM stream. In this mode output A of a channel is considered the positive output and output B is negative inverse. Table 62. Binary output enable registers CxBO Mode 0 FFX output operation 1 Binary output Limiter select Limiter selection can be made on a per-channel basis according to the channel limiter select bits. CxLS bits are not considered when dual band DRC (Section 7.13.1 on page 67) or EQ DRC (Section 7.13.2) is used. . Table 63. Channel limiter mapping as a function of CxLS bits CxLS[1:0] Channel limiter mapping 00 Channel has limiting disabled 01 Channel is mapped to limiter #1 10 Channel is mapped to limiter #2 Output mapping Output mapping can be performed on a per channel basis according to the CxOM channel output mapping bits. Each input into the output configuration engine can receive data from any of the three processing channel outputs. . Table 64. Channel output mapping as a function of CxOM bits CxOM[1:0] 50/79 Channel x output source from 00 Channel1 01 Channel 2 10 Channel 3 DocID015276 Rev 8 STA339BWS 7.5 Register description Tone control register (addr 0x11) D7 D6 D5 D4 D3 D2 D1 D0 TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0 0 1 1 1 0 1 1 1 Tone control Table 65. Tone control boost/cut as a function of BTC and TTC bits BTC[3:0]/TTC[3:0] Boost/Cut 0000 -12 dB 0001 -12 dB 0010 -10 dB … … 0101 -4 dB 0110 -2 dB 0111 0 dB 1000 +2 dB 1001 +4 dB … … 1100 +10 dB 1101 +12 dB 1110 +12 dB 1111 +12 dB 7.6 Dynamic control registers (addr 0x12 - 0x15) 7.6.1 Limiter 1 attack/release rate (addr 0x12) 7.6.2 D7 D6 D5 D4 D3 D2 D1 D0 L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0 0 1 1 0 1 0 1 0 Limiter 1 attack/release threshold (addr 0x13) D7 D6 D5 D4 D3 D2 D1 D0 L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0 0 1 1 0 1 0 0 1 DocID015276 Rev 8 51/79 79 Register description 7.6.3 7.6.4 7.6.5 STA339BWS Limiter 2 attack/release rate (addr 0x14) D7 D6 D5 D4 D3 D2 D1 D0 L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0 0 1 1 0 1 0 1 0 Limiter 2 attack/release threshold (addr 0x15) D7 D6 D5 D4 D3 D2 D1 D0 L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0 0 1 1 0 1 0 0 1 Description The STA339BWS includes two independent limiter blocks. The purpose of the limiters is to automatically reduce the dynamic range of a recording to prevent the outputs from clipping in anticlipping mode or to actively reduce the dynamic range for a better listening environment such as a night-time listening mode which is often needed for DVDs. The two modes are selected via the DRC bit in Configuration register E (addr 0x04) on page 33. Each channel can be mapped to either limiter or not mapped, meaning that channel will clip when 0 dBFS is exceeded. Each limiter looks at the present value of each channel that is mapped to it, selects the maximum absolute value of all these channels, performs the limiting algorithm on that value, and then if needed adjusts the gain of the mapped channels in unison. Figure 19. Basic limiter and volume flow diagram The limiter attack thresholds are determined by the LxAT registers if EATHx[7] bits are set to 0 else the thresholds are determined by EATHx[6:0]. It is recommended in anticlipping mode to set this to 0 dBFS, which corresponds to the maximum unclipped output power of a FFX amplifier. Since gain can be added digitally within the STA339BWS it is possible to exceed 0 dBFS or any other LxAT setting, when this occurs, the limiter, when active, automatically starts reducing the gain. The rate at which the gain is reduced when the attack threshold is exceeded is dependent upon the attack rate register setting for that limiter. Gain reduction occurs on a peak-detect algorithm. Setting EATHx[7] bits to 1 selects the anticlipping mode. The limiter release thresholds are determined by the LxRT registers if ERTHx[7] bits are set to 0 else the thresholds are determined by ERTHx[6:0]. Settings to 1 ERTHx[7] bits the anticlipping mode is selected automatically. The release of limiter, when the gain is again increased, is dependent on a RMS-detect algorithm. The output of the volume/limiter block is passed through a RMS filter. The output of this filter is compared to the release threshold, determined by the Release Threshold register. When the RMS filter output falls below the 52/79 DocID015276 Rev 8 STA339BWS Register description release threshold, the gain is again increased at a rate dependent upon the Release Rate register. The gain can never be increased past its set value and, therefore, the release only occurs if the limiter has already reduced the gain. The release threshold value can be used to set what is effectively a minimum dynamic range, this is helpful as over limiting can reduce the dynamic range to virtually zero and cause program material to sound “lifeless”. In AC mode, the attack and release thresholds are set relative to full-scale. In DRC mode, the attack threshold is set relative to the maximum volume setting of the channels mapped to that limiter and the release threshold is set relative to the maximum volume setting plus the attack threshold. Table 66. Limiter attack rate vs LxA bits LxA[3:0] Attack Rate dB/ms 0000 3.1584 0001 2.7072 0010 2.2560 0011 1.8048 0100 1.3536 0101 0.9024 0110 0.4512 0111 0.2256 1000 0.1504 1001 0.1123 1010 0.0902 1011 0.0752 1100 0.0645 1101 0.0564 1110 0.0501 1111 0.0451 Fast Slow DocID015276 Rev 8 53/79 79 Register description STA339BWS Table 67. Limiter release rate vs LxR bits LxR[3:0] Release Rate dB/ms 0000 0.5116 0001 0.1370 0010 0.0744 0011 0.0499 0100 0.0360 0101 0.0299 0110 0.0264 0111 0.0208 1000 0.0198 1001 0.0172 1010 0.0147 1011 0.0137 1100 0.0134 1101 0.0117 1110 0.0110 1111 0.0104 Fast Slow Anticlipping mode Table 68. Limiter attack threshold vs LxAT bits (AC mode) LxAT[3:0] 54/79 AC (dB relative to fs) 0000 -12 0001 -10 0010 -8 0011 -6 0100 -4 0101 -2 0110 0 0111 +2 1000 +3 1001 +4 1010 +5 1011 +6 1100 +7 1101 +8 DocID015276 Rev 8 STA339BWS Register description Table 68. Limiter attack threshold vs LxAT bits (AC mode) (continued) LxAT[3:0] AC (dB relative to fs) 1110 +9 1111 +10 Table 69. Limiter release threshold vs LxRT bits (AC mode) LxRT[3:0] AC (dB relative to fs) 0000 - 0001 -29 0010 -20 0011 -16 0100 -14 0101 -12 0110 -10 0111 -8 1000 -7 1001 -6 1010 -5 1011 -4 1100 -3 1101 -2 1110 -1 1111 -0 Dynamic range compression mode Table 70. Limiter attack threshold vs LxAT bits (DRC mode) LxAT[3:0] DRC (dB relative to Volume) 0000 -31 0001 -29 0010 -27 0011 -25 0100 -23 0101 -21 0110 -19 0111 -17 1000 -16 DocID015276 Rev 8 55/79 79 Register description STA339BWS Table 70. Limiter attack threshold vs LxAT bits (DRC mode) (continued) LxAT[3:0] DRC (dB relative to Volume) 1001 -15 1010 -14 1011 -13 1100 -12 1101 -10 1110 -7 1111 -4 Table 71. Limiter release threshold vs LxRT bits (DRC mode) LxRT[3:0] 7.6.6 DRC (db relative to Volume + LxAT) 0000 - 0001 -38 0010 -36 0011 -33 0100 -31 0101 -30 0110 -28 0111 -26 1000 -24 1001 -22 1010 -20 1011 -18 1100 -15 1101 -12 1110 -9 1111 -6 Limiter 1 extended attack threshold (addr 0x32) D7 D6 D5 D4 D3 D2 D1 D0 EATHEN1 EATH1[6] EATH1[5] EATH1[4] EATH1[3] EATH1[2] EATH1[1] EATH1[0] 0 0 1 1 0 0 0 0 The extended attack threshold value is determined as follows: attack threshold = -12 + EATH1 / 4 56/79 DocID015276 Rev 8 STA339BWS 7.6.7 Register description Limiter 1 extended release threshold (addr 0x33) D7 D6 D5 D4 D3 D2 D1 D0 ERTHEN1 ERTH1[6] ERTH1[5] ERTH1[4] ERTH1[3] ERTH1[2] ERTH1[1] ERTH1[0] 0 0 1 1 0 0 0 0 The extended release threshold value is determined as follows: release threshold = -12 + ERTH1 / 4 7.6.8 Limiter 2 extended attack threshold (addr 0x34) D7 D6 D5 D4 D3 D2 D1 D0 EATHEN2 EATH2[6] EATH2[5] EATH2[4] EATH2[3] EATH2[2] EATH2[1] EATH2[0] 0 0 1 1 0 0 0 0 The extended attack threshold value is determined as follows: attack threshold = -12 + EATH2 / 4 7.6.9 Limiter 2 extended release threshold (addr 0x35) D7 D6 D5 D4 D3 D2 D1 D0 ERTHEN2 ERTH2[6] ERTH2[5] ERTH2[4] ERTH2[3] ERTH2[2] ERTH2[1] ERTH2[0] 0 0 1 1 0 0 0 0 The extended release threshold value is determined as follows: release threshold = -12 + ERTH2 / 4 Note: Attack/release threshold step is 0.125 dB in the range -12 dB and 0 dB. 7.7 User-defined coefficient control registers (addr 0x16 - 0x26) 7.7.1 Coefficient address register (addr 0x16) 7.7.2 D7 D6 D5 D4 D3 D2 D1 D0 Reserved Reserved CFA5 CFA4 CFA3 CFA2 CFA1 CFA0 0 0 0 0 0 0 0 0 Coefficient b1 data register bits (addr 0x17 - 0x19) D7 D6 D5 D4 D3 D2 D1 D0 C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8 0 0 0 0 0 0 0 0 DocID015276 Rev 8 57/79 79 Register description 7.7.3 7.7.4 7.7.5 58/79 STA339BWS D7 D6 D5 D4 D3 D2 D1 D0 C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0 0 0 0 0 0 0 0 0 Coefficient b2 data register bits (addr 0x1A - 0x1C) D7 D6 D5 D4 D3 D2 D1 D0 C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0 0 0 0 0 0 0 0 0 Coefficient a1 data register bits (addr 0x1D - 0x1F) D7 D6 D5 D4 D3 D2 D1 D0 C3B23 C3B22 C3B21 C3B20 C3B19 C3B18 C3B17 C3B16 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0 0 0 0 0 0 0 0 0 Coefficient a2 data register bits (addr 0x20 - 0x22) D7 D6 D5 D4 D3 D2 D1 D0 C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0 0 0 0 0 0 0 0 0 DocID015276 Rev 8 STA339BWS 7.7.6 7.7.7 Register description Coefficient b0 data register bits (addr 0x23 - 0x25) D7 D6 D5 D4 D3 D2 D1 D0 C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0 0 0 0 0 0 0 0 0 Coefficient read/write control register (addr 0x26) D7 7.7.8 D6 D3 D2 D1 D0 Reserved D5 D4 RA R1 WA W1 0 0 0 0 0 Description Coefficients for user-defined EQ, mixing, scaling, and bass management are handled internally in the STA339BWS via RAM. Access to this RAM is available to the user via an I2C register interface. A collection of I2C registers are dedicated to this function. One contains a coefficient base address, five sets of three store the values of the 24-bit coefficients to be written or that were read, and one contains bits used to control the write/read of the coefficient(s) to/from RAM. Three different RAM banks are embedded in STA339BWS. The three banks are managed in paging mode using EQCFG register bits. They can be used to store different EQ settings. For speaker frequency compensation, a sampling frequency independent EQ must be implemented. Computing three different coefficients set for 32 kHz, 44.1kHz, 48 kHz and downloading them into the three RAM banks, it is possible to select the suitable RAM block depending from the incoming frequency with a simple I2C write operation on register 0x31. For example, in case of different input sources (different sampling rates), the three different sets of coefficients can be downloaded once at the start up, and during the normal play it is possible to switch among the three RAM blocks allowing a faster operation, without any additional download from the microcontroller. To write the coefficients in a particular RAM bank, this bank must be selected first writing bit 0 and bit 1 in register 0x31. Then the write procedure below can be used. Note that as soon as a RAM bank is selected, the EQ settings are automatically switched to the coefficients stored in the active RAM block. Note: The read write operation on RAM coefficients works only if RLCKI (pin29) is switching and stable (ref. Table 8, tLRJT timing) and PLL must be locked (ref bit D7 reg 0x2D). DocID015276 Rev 8 59/79 79 Register description STA339BWS Reading a coefficient from RAM 1. 2. 3. 4. 5. 6. Select the RAM block with register 0x31 bit1, bit0. Write 6-bits of address to I2C register 0x16. Write 1 to R1 bit in I2C address 0x26. Read top 8-bits of coefficient in I2C address 0x17. Read middle 8-bits of coefficient in I2C address 0x18. Read bottom 8-bits of coefficient in I2C address 0x19. Reading a set of coefficients from RAM 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. Select the RAM block with register 0x31 bit1, bit0. Write 6-bits of address to I2C register 0x16. Write 1 to RA bit in I2C address 0x26. Read top 8-bits of coefficient in I2C address 0x17. Read middle 8-bits of coefficient in I2C address 0x18. Read bottom 8-bits of coefficient in I2C address 0x19. Read top 8-bits of coefficient b2 in I2C address 0x1A. Read middle 8-bits of coefficient b2 in I2C address 0x1B. Read bottom 8-bits of coefficient b2 in I2C address 0x1C. Read top 8-bits of coefficient a1 in I2C address 0x1D. Read middle 8-bits of coefficient a1 in I2C address 0x1E. Read bottom 8-bits of coefficient a1 in I2C address 0x1F. Read top 8-bits of coefficient a2 in I2C address 0x20. Read middle 8-bits of coefficient a2 in I2C address 0x21. Read bottom 8-bits of coefficient a2 in I2C address 0x22. Read top 8-bits of coefficient b0 in I2C address 0x23. Read middle 8-bits of coefficient b0 in I2C address 0x24. Read bottom 8-bits of coefficient b0 in I2C address 0x25. Writing a single coefficient to RAM 1. 2. 3. 4. 5. 6. 60/79 Select the RAM block with register 0x31 bit1, bit0. Write 6-bits of address to I2C register 0x16. Write top 8-bits of coefficient in I2C address 0x17. Write middle 8-bits of coefficient in I2C address 0x18. Write bottom 8-bits of coefficient in I2C address 0x19. Write 1 to W1 bit in I2C address 0x26. DocID015276 Rev 8 STA339BWS Register description Writing a set of coefficients to RAM 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. Select the RAM block with register 0x31 bit1, bit0. Write 6-bits of starting address to I2C register 0x16. Write top 8-bits of coefficient b1 in I2C address 0x17. Write middle 8-bits of coefficient b1 in I2C address 0x18. Write bottom 8-bits of coefficient b1 in I2C address 0x19. Write top 8-bits of coefficient b2 in I2C address 0x1A. Write middle 8-bits of coefficient b2 in I2C address 0x1B. Write bottom 8-bits of coefficient b2 in I2C address 0x1C. Write top 8-bits of coefficient a1 in I2C address 0x1D. Write middle 8-bits of coefficient a1 in I2C address 0x1E. Write bottom 8-bits of coefficient a1 in I2C address 0x1F. Write top 8-bits of coefficient a2 in I2C address 0x20. Write middle 8-bits of coefficient a2 in I2C address 0x21. Write bottom 8-bits of coefficient a2 in I2C address 0x22. Write top 8-bits of coefficient b0 in I2C address 0x23. Write middle 8-bits of coefficient b0 in I2C address 0x24. Write bottom 8-bits of coefficient b0 in I2C address 0x25. Write 1 to WA bit in I2C address 0x26. The mechanism for writing a set of coefficients to RAM provides a method of updating the five coefficients corresponding to a given biquad (filter) simultaneously to avoid possible unpleasant acoustic side-effects. When using this technique, the 6-bit address specifies the address of the biquad b1 coefficient (for example, 0, 5, 10, 20, 35 decimal), and the STA339BWS generates the RAM addresses as offsets from this base value to write the complete set of coefficient data. Table 72. RAM block for biquads, mixing, scaling, bass management Index (Decimal) Index (Hex) Description Coefficient Default 0 0x00 C1H10(b1/2) 0x000000 1 0x01 C1H11(b2) 0x000000 2 0x02 C1H12(a1/2) 0x000000 3 0x03 C1H13(a2) 0x000000 4 0x04 C1H14(b0/2) 0x400000 5 0x05 Channel 1 - Biquad 2 C1H20 0x000000 … … … … … 19 0x13 Channel 1 - Biquad 4 C1H44 0x400000 20 0x14 C2H10 0x000000 21 0x15 C2H11 0x000000 … … … … … 39 0x27 Channel 2 - Biquad 4 C2H44 0x400000 Channel 1 - Biquad 1 Channel 2 - Biquad 1 DocID015276 Rev 8 61/79 79 Register description STA339BWS Table 72. RAM block for biquads, mixing, scaling, bass management (continued) Index (Decimal) Index (Hex) 40 0x28 41 0x29 42 0x2A 43 0x2B 44 Description Coefficient Default C12H0(b1/2) 0x000000 C12H1(b2) 0x000000 C12H2(a1/2) 0x000000 C12H3(a2) 0x000000 0x2C C12H4(b0/2) 0x400000 45 0x2D C3H0(b1/2) 0x000000 46 0x2E C3H1(b2) 0x000000 47 0x2F C3H2(a1/2) 0x000000 48 0x30 C3H3(a2) 0x000000 49 0x31 C3H4(b0/2) 0x400000 50 0x32 Channel 1 - Prescale C1PreS 0x7FFFFF 51 0x33 Channel 2 - Prescale C2PreS 0x7FFFFF 52 0x34 Channel 1 - Postscale C1PstS 0x7FFFFF 53 0x35 Channel 2 - Postscale C2PstS 0x7FFFFF 54 0x36 Channel 3 - Postscale C3PstS 0x7FFFFF 55 0x37 TWARN/OC - Limit TWOCL 0x5A9DF7 56 0x38 Channel 1 - Mix 1 C1MX1 0x7FFFFF 57 0x39 Channel 1 - Mix 2 C1MX2 0x000000 58 0x3A Channel 2 - Mix 1 C2MX1 0x000000 59 0x3B Channel 2 - Mix 2 C2MX2 0x7FFFFF 60 0x3C Channel 3 - Mix 1 C3MX1 0x400000 61 0x3D Channel 3 - Mix 2 C3MX2 0x400000 62 0x3E Unused 63 0x3F Unused Channel 1/2 - Biquad 8 for XO = 000 High-pass 2nd order filter for XO 000 Channel 3 - Biquad for XO = 000 Low-pass 2nd order filter for XO 000 User-defined EQ The STA339BWS can be programmed for four EQ filters (biquads) per each of the two input channels. The biquads use the following equation: Y[n] = 2 * (b0 / 2) * X[n] + 2 * (b1 / 2) * X[n-1] + b2 * X[n-2] - 2 * (a1 / 2) * Y[n-1] - a2 * Y[n-2] = b0 * X[n] + b1 * X[n-1] + b2 * X[n-2] - a1 * Y[n-1] - a2 * Y[n-2] where Y[n] represents the output and X[n] represents the input. Multipliers are 24-bit signed fractional multipliers, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF (0.9999998808). 62/79 DocID015276 Rev 8 STA339BWS Register description Coefficients stored in the user defined coefficient RAM are referenced in the following manner: CxHy0 = b1 / 2 CxHy1 = b2 CxHy2 = -a1 / 2 CxHy3 = -a2 CxHy4 = b0 / 2 where x represents the channel and the y the biquad number. For example, C2H41 is the b2 coefficient in the fourth biquad for channel 2. Crossover and biquad #8 Additionally, the STA339BWS can be programmed for a high-pass filter (processing channels 1 and 2) and a low-pass filter (processing channel 3) to be used for bassmanagement crossover when the XO setting is 000 (user-defined). Both of these filters when defined by the user (rather than using the preset crossover filters) are second order filters that use the biquad equation given above. They are loaded into the C12H0-4 and C3Hy0-4 areas of RAM noted in Table 72, addresses 0x28 to 0x31. By default, all user-defined filters are pass-through where all coefficients are set to 0, except the b0/2 coefficient which is set to 0x400000 (representing 0.5) Prescale The STA339BWS provides a multiplication for each input channel for the purpose of scaling the input prior to EQ. This pre-EQ scaling is accomplished by using a 24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The scale factor for this multiply is loaded into RAM. All channels can use the channel-1 prescale factor by setting the Biquad link bit. By default, all prescale factors (RAM addresses 0x32 to 0x33) are set to 0x7FFFFF. Postscale The STA339BWS provides one additional multiplication after the last interpolation stage and the distortion compensation on each channel. This postscaling is accomplished by using a 24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The scale factor for this multiply is loaded into RAM. This postscale factor can be used in conjunction with an ADC equipped micro-controller to perform power-supply error correction. All channels can use the channel-1 postscale factor by setting the postscale link bit. By default, all postscale factors (RAM addresses 0x34 to 0x36) are set to 0x7FFFFF. When line output is being used, channel-3 postscale affects both channels 3 and 4. 7.7.9 Thermal warning and overcurrent adjustment (TWOCL) The STA339BWS provides a simple mechanism for reacting to overcurrent or thermal warning detection in the power block. When the warning occurs, the TWOCL value is used to provide output attenuation clipping on all channels. The amount of attenuation to be applied in this situation can be adjusted by modifying the overcurrent and thermal warning limiting value (RAM addr 0x37). By default, the overcurrent postscale adjustment factor is set to 0x5A9DF7 (that is, -3 dB). Once the limiting is applied, it remains until the device is reset or according to the TWRB and OCRB settings. DocID015276 Rev 8 63/79 79 Register description 7.8 STA339BWS Variable max power correction registers (addr 0x27 - 0x28) D7 D6 D5 D4 D3 D2 D1 D0 MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10 MPCC9 MPCC8 0 0 0 1 1 0 1 0 D7 D6 D5 D4 D3 D2 D1 D0 MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0 1 1 0 0 0 0 0 0 MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This coefficient is used in place of the default coefficient when MPCV = 1. 7.9 Distortion compensation registers (addr 0x29 - 0x2A) D7 D6 D5 D4 D3 D2 D1 D0 DCC15 DCC14 DCC13 DCC12 DCC11 DCC10 DCC9 DCC8 1 1 1 1 0 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0 DCC7 DCC6 DCC5 DCC4 DCC3 DCC2 DCC1 DCC0 0 0 1 1 0 0 1 1 DCC bits determine the 16 MSBs of the distortion compensation coefficient. This coefficient is used in place of the default coefficient when DCCV = 1. 7.10 Fault detect recovery constant registers (addr 0x2B - 0x2C) D7 D6 D5 D4 D3 D2 D1 D0 FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0 0 0 0 0 1 1 0 0 FDRC bits specify the 16-bit fault detect recovery time delay. When FAULT is asserted, the TRISTATE output is immediately asserted low and held low for the time period specified by this constant. A constant value of 0x0001 in this register is approximately 0.083 ms. The default value of 0x000C gives approximately 0.1 ms. Note: 64/79 0x0000 is a reserved value for these registers. DocID015276 Rev 8 STA339BWS 7.11 Register description Device status register (addr 0x2D) D7 D6 D5 D4 D3 D2 D1 D0 PLLUL FAULT UVFAULT Reserved OCFAULT OCWARN TFAULT TWARN This read-only register provides fault and thermal-warning status information from the power control block. Logic value 1 for faults or warning means normal state. Logic 0 means a fault or warning detected on power bridge. The PLLUL = 1 means that the PLL is not locked. Table 73. Status register bits Bit R/W RST Name Description 0: PLL locked 7 R - PLLUL 6 R - FAULT 0: fault detected on power bridge 1: normal operation 5 R - UVFAULT 0: VCCxX internally detected < undervoltage threshold 4 R - Reserved - 3 R - OCFAULT 0: overcurrent fault detected 2 R - OCWARN 0: overcurrent warning 1 R - TFAULT 0: thermal fault, junction temperature over limit 0 R - TWARN 0: thermal warning, junction temperature is close to the fault condition 1: PLL not locked DocID015276 Rev 8 65/79 79 Register description 7.12 STA339BWS EQ coefficients and DRC configuration register (addr 0x31) D7 D6 D5 D4 D3 D2 D1 D0 XOB Reserved Reserved AMGC[3] AMGC[2] Reserved SEL[1] SEL[0] 0 0 0 0 0 0 0 0 EQ RAM Table 74. EQ RAM select SEL[1:0] EQ RAM bank selected 00 / 11 Bank 0 activated 01 Bank 1 activated 10 Bank 2 activated DRC / Anticlipping Bits AMGC[3:2] change the behavior of the bits AMGC[1:0] as given in Table 75 below. Table 75. Anticlipping and DRC preset AMGC[3:2] Anticlipping and DRC preset selected 00 DRC / Anticlipping behavior is described in Table 54 on page 47 (default) 01 DRC / Anticlipping behavior is described Table 76 on page 66 10 / 11 Reserved Anticlipping when AMGC[3:2] = 01 Table 76. Anticlipping selection for AMGC[3:2] = 01 AMGC[1:0] Mode 00 AC0, stereo anticlipping 0 dB limiter 01 AC1, stereo anticlipping +1.25 dB limiter 10 AC2, stereo anticlipping +2 dB limiter 11 Reserved do not use AC0, AC1, AC2 settings are designed for the loudspeaker protection function, limiting at the minimum any audio artefacts introduced by typical anticlipping / DRC algorithms. More detailed information is available in the applications notes “Configurable output power rate using STA335BW” and “STA335BWS vs STA335BW”. XOB This bit can be used to bypass the crossover filters. Logic 1 means that the function is not active. In this case, high pass crossover filter works as a pass-through on the data path (b0 = 1, all the other coefficients at logic 0) while the low-pass filter is configured to have zero signal on channel-3 data processing (all the coefficients are at logic 0). 66/79 DocID015276 Rev 8 STA339BWS 7.13 Register description Extended configuration register (addr 0x36) D7 D6 D5 D4 D3 D2 D1 D0 MDRC[1] MDRC[0] PS48DB XAR1 XAR2 BQ5 BQ6 BQ7 0 0 0 0 0 0 0 0 Extended configuration register provides access to B2DRC and biquad 5, 6 and 7. 7.13.1 Dual-band DRC (B2DRC) STA339BWS device provide a dual-band DRC (B2DRC) on the left and right channels data path, as depicted in Figure 20. Dual-band DRC is activated by setting MDRC[1:0] = 1x. Figure 20. B2DRC scheme The low frequency information (LFE) is extracted from left and right channels, removing the high frequencies using a programmable biquad filter, and then computing the difference with the original signal. Limiter 1 (DRC1) is then used to control left/right high frequency components amplitude while limiter 2 (DRC2) is used to control the low frequency components (see Chapter 7.6). The cut-off frequency of the high pass filters can be user defined, XO[3:0] = 0, or selected from the predefined values. DRC1 and DRC2 are then used to independently limit L/R high frequencies and LFE channels amplitude (see Chapter 7.6) as well as their volume control. To be noted that, in this configuration, the dedicated channel 3 volume control can be actually acted as a bass boost enhancer as well (0.5 dB/step resolution). The processed LFE channel is then recombined with the L and R channels in order to reconstruct the 2.0 output signal. Sub-band decomposition The sub-band decomposition for B2DRC can be configured specifying the cutoff frequency. The cut off frequency can be programmed in two ways, using XO bits in register 0x0C, or using “user programmable” mode (coefficients stored in RAM addresses 0x28 to 0x31). DocID015276 Rev 8 67/79 79 Register description STA339BWS For the user programmable mode, use the formulae below to compute the high pass filters: b0 = (1 + alpha) / 2 a0 = 1 b1 = -(1 + alpha) / 2 a1 = -alpha b2 = 0 a2 = 0 where alpha = (1-sin(0)) / cos(0), and 0 is the cut-off frequency. A first-order filter is suggested to guarantee that for every 0 the corresponding low-pass filter obtained as difference (as shown in Figure 20) has a symmetric (relative to HP filter) frequency response, and the corresponding recombination after the DRC has low ripple. Second-order filters can be used as well, but in this case the filter shape must be carefully chosen to provide good low pass response and minimum ripple recombination. For secondorder is not possible to give a closed formula to get the best coefficients, but empirical adjustment should be done. DRC settings The DRC blocks used by B2DRC are the same as those described in Chapter 7.6. B2DRC configure automatically the DRC blocks in anticlipping mode. Attack and release thresholds can be selected using registers 0x32, 0x33, 0x34, 0x35, while attack and release rates are configured by registers 0x12 and 0x14. Band downmixing The low-frequency band is down-mixed to the left and right channels at the B2DRC output. Channel volume can be used to weight the bands recombination to fine tune the overall frequency response. 7.13.2 EQ DRC mode Setting MDRC = 01, it is possible to add a programmable biquad (the XO biquad at RAM addresses 0x28 to 0x2C is used for this purpose) to the Limiter/compressor measure path (side chain). Using EQDRC the peak detector input can be shaped in frequency using the programmable biquad. For example, if a bass boost of 2 dB is applied (using a low-shelf filter, for example), the effect is that the EQDRC out will limit bass frequencies to 2 dB below the selected attack threshold. Generally speaking, if the biquad boosts frequency f with an amount of X dB, the level of a compressed sine wave at the output is TH - X, where TH is the selected attack threshold. Note: 68/79 EQDRC works only if the biquad frequency response magnitude is >= 0 dB for every frequency. DocID015276 Rev 8 STA339BWS Register description Figure 21. EQDRC scheme Extended postscale range Table 77. Bit PS48DB description PS48DB Mode 0 Postscale value is applied as defined in coefficient RAM 1 Postscale value is applied with offset of +48 dB with respect to the coefficient RAM value Postscale is an attenuation by default. When PS48DB is set to 1, an offset of 48 dB is applied to the configured word, so postscale can act as a gain too. Extended attack rate The attack rate shown in Table 66 can be extended to provide up to 8 dB/ms attack rate on both limiters. Table 78. Bit XAR1 description XAR1 Mode 0 Limiter1 attack rate is configured using Table 66 1 Limiter1 attack rate is 8 dB/ms Table 79. Bit XAR2 description XAR2 Mode 0 Limiter2 attack rate is configured using Table 66 1 Limiter2 attack rate is 8 dB/ms Extended biquad selector De-emphasis filter as well as bass and treble controls can be configured as user defined filters when equalization coefficients link is activated (BQL = 1) and the corresponding BQx bit is set to 1. DocID015276 Rev 8 69/79 79 Register description STA339BWS Table 80. Bit BQ5 description BQ5 Mode 0 Preset de-emphasis filter selected 1 User defined biquad 5 coefficients are selected Table 81. Bit BQ6 description BQ6 Mode 0 Preset bass filter selected as per Table 65 1 User defined biquad 6 coefficients are selected Table 82. Bit BQ7 description BQ7 Mode 0 Preset treble filter selected as per Table 65 1 User defined biquad 7 coefficients are selected When filters from 5th to 7th are configured as user-programmable, the corresponding coefficients are stored respectively in addresses 0x14-0x18 (BQ5), 0x19-0x1D (BQ6) and 0x1E-0x22 (BQ7) as in Table 72 on page 61. Note: BQx bits are ignored if BQL = 0 or if DEMP = 1 (relevant for BQ5) or CxTCB = 1 (relevant for BQ6 and BQ7). 7.14 Soft volume configuration registers (addr 0x37 - 0x38) D7 D6 D5 D4 D3 D2 D1 D0 Reserved Reserved SVUPE SVUP[4] SVUP[3] SVUP[2] SVUP[1] SVUP[0] 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 Reserved Reserved SVDWE SVDW4] SVDW[3] SVDW[2] SVDW[1] SVDW[0] 0 0 0 0 0 0 0 0 Soft volume update has a fixed rate by default. Using register 0x37 and 0x38 it is possible to override the default behavior allowing different volume change rates. It is also possible to independently define the fade-in (volume is increased) and fade-out (volume is decreased) rates according to the desired behavior. Table 83. Bit SVUPE description SVUPE 70/79 Mode 0 When volume is increased, use the default rate 1 When volume is increased, use the rates defined by SVUP[4:0] DocID015276 Rev 8 STA339BWS Register description When SVUPE = 1 the fade-in rate is defined by the SVUP[4:0] bits according to the following formula: Fade-in rate = 48 / (N + 1) dB/ms where N is the SVUP[4:0] value. Table 84. Bit SVDWE description SVDWE Mode 0 When volume is decreased, use the default rate 1 When volume is decreased, use the rates defined by SVDW[4:0] When SVDWE = 1 the fade-out rate is defined by the SVDW[4:0] bits according to the following formula: Fade-in rate = 48 / (N + 1) dB/ms where N is the SVDW[4:0] value. Note: For fade-out rates greater than 6 dB/ms it is suggested to disable bit ZCE (Section 7.1.5 on page 33) in order to avoid any audible pop noise. 7.15 DRC RMS filter coefficients (addr 0x39-0x3E) D7 D6 D5 D4 D3 D2 D1 D0 R_C0[23] R_C0[22] R_C0[21] R_C0[20] R_C0[19] R_C0[18] R_C0[17] R_C0[16] 0 0 0 0 0 0 0 1 D7 D6 D5 D4 D3 D2 D1 D0 R_C0[15] R_C0[14] R_C0[13] R_C0[12] R_C0[11] R_C0[10] R_C0[9] R_C0[8] 1 1 1 0 1 1 1 0 D7 D6 D5 D4 D3 D2 D1 D0 R_C0[7] R_C0[6] R_C0[5] R_C0[4] R_C0[3] R_C0[2] R_C0[1] R_C0[0] 1 1 1 1 1 1 1 1 D7 D6 D5 D4 D3 D2 D1 D0 R_C1[23] R_C1[22] R_C1[21] R_C1[20] R_C1[19] R_C1[18] R_C1[17] R_C1[16] 0 1 1 1 1 1 1 0 D7 D6 D5 D4 D3 D2 D1 D0 R_C1[15] R_C1[14] R_C1[13] R_C1[12] R_C1[11] R_C1[10] R_C1[9] R_C1[8] 1 1 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 R_C1[7] R_C1[6] R_C1[5] R_C1[4] R_C1[3] R_C1[2] R_C1[1] R_C1[0] 0 0 1 0 0 1 1 0 Signal level detection in DRC algorithm is computed using the following formula: y(t) = c0 * abs(x(t)) + c1 * y(t-1) where x(t) represents the audio signal applied to the limiter, and y(t) the measured level. DocID015276 Rev 8 71/79 79 Applications 8.1 Application schematics STA339BWS 8 Figure 22 and Figure 23 show the typical application schematics for stereo and mono configuration, respectively. Special attention has to be paid to the layout of the PCB. All the decoupling capacitors have to be placed as close as possible to the device to limit spikes on the supplies. Figure 22. Application circuit for 2 or 2.1-channel configuration DocID015276 Rev 8 Applications 72/79 STA339BWS Figure 23. Application circuit for mono BTL configuration DocID015276 Rev 8 Applications 73/79 Applications 8.2 STA339BWS PLL filter circuit It is recommended to use the applications circuit and values for the PLL loop filter to achieve the best performance from the device in general applications. Note that the ground of this filter circuit has to be connected to the ground of the PLL without any resistive path. Concerning the component values, it must be taken into account that the greater the filter bandwidth, the less is the lock time but the higher is the PLL output jitter. 8.3 Typical output configuration Figure 24 shows the typical output configuration used for BTL stereo mode. Please contact STMicroelectronics for other recommended output configurations. Figure 24. Output configuration for stereo BTL mode (RL = 8 22 μH OUT1A 100 nF 100 nF 22R 6R2 470 nF Left 100 nF 330 pF 6R2 100 nF 22 μH OUT1B 22 μH OUT2A 100 nF 100 nF 22R 6R2 100 nF 330 pF 6R2 100 nF 22 μH OUT2B 74/79 470 nF DocID015276 Rev 8 Right STA339BWS 9 Package thermal characteristics Package thermal characteristics Using a double-layer PCB the thermal resistance, junction to ambient, with 2 copper ground areas of 3 x 3 cm2 and with 16 via holes is 24 °C/W in natural air convection. The dissipated power within the device depends primarily on the supply voltage, load impedance and output modulation level. Thus, the maximum estimated dissipated power for the STA339BWS is: 2 x 20 W @ 8, 18 V Pd max is approximately 4 W 2 x 9 W + 1 x 20 W @ 4 , 8 ,18 V Pd max is approximately 5 W Figure 25 shows the power derating curve for the PowerSSO-36 package on PCBs with copper areas of 2 x 2 cm2 and 3 x 3 cm2. Figure 25. PowerSSO-36 power derating curve STA339BWS PowerSSO- DocID015276 Rev 8 75/79 79 Package mechanical data 10 STA339BWS Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 26 shows the package outline and Table 85 gives the dimensions. Table 85. PowerSSO-36 EPD dimensions Dimensions in mm Dimensions in inches Symbol Min 76/79 Typ Max Min Typ Max A 2.15 - 2.47 0.085 - 0.097 A2 2.15 - 2.40 0.085 - 0.094 a1 0.00 - 0.10 0.00 - 0.004 b 0.18 - 0.36 0.007 - 0.014 c 0.23 - 0.32 0.009 - 0.013 D 10.10 - 10.50 0.398 - 0.413 E 7.40 - 7.60 0.291 - 0.299 e - 0.5 - - 0.020 - e3 - 8.5 - - 0.335 - F - 2.3 - - 0.091 - G - - 0.10 - - 0.004 H 10.10 - 10.50 0.398 - 0.413 h - - 0.40 - - 0.016 k 0 - 8 degrees 0 - 8 degrees L 0.60 - 1.00 0.024 - 0.039 M - 4.30 - - 0.169 - N - - 10 degrees - - 10 degrees O - 1.20 - - 0.047 - Q - 0.80 - - 0.031 - S - 2.90 - - 0.114 - T - 3.65 - - 0.144 - U - 1.00 - - 0.039 - X 4.10 - 4.70 0.161 - 0.185 Y 6.50 - 7.10 0.256 - 0.280 DocID015276 Rev 8 h x 45° STA339BWS Figure 26. PowerSSO-36 EPD outline drawing DocID015276 Rev 8 Package mechanical data 77/79 Revision history 11 STA339BWS Revision history Table 86. Document revision history Date Revision 10-Dec-2008 1 Initial release. 2 Updated names/descriptions for pins 17-20 in Chapter 2 on page 10 Added cross reference to I2S interface setup in Section 3.6: Power on/off sequence on page 18 Added Figure 4: Power-off sequence for pop-free turn-off on page 18 Updated text and Figure 22: Application diagram on page 71 Updated Section 7.2: PLL filter on page 71 3 Updated presentation Removed master mute from Section 7.2.5 on page 46 Added Rth j-amb typical value to Table 4 on page 12 Updated Biquad # in Figure 8 on page 19 Updated section Fault detect recovery bypass on page 27 Updated SV naming in Table 42 on page 35 Updated CxBO description in Table 62 on page 50 Updated Biquad # for C12Hx in Table 72 on page 61 Updated text in sections Crossover and biquad #8, Prescale and Postscale on page 63. 17-Dec-2010 4 “Sound Terminal” now has registered trademark status Updated test circuit in Figure 3 on page 15 Removed text concerning hard mute in Section 7.2 on page 44 Updated coefficient register addresses towards end of Section 7.13.2 on page 68 Updated applications circuit in Figure 24 on page 74 22-Nov-2011 5 Updated bit D4 to “1” in Section 7.2.1: Mute/line output configuration register (addr 0x06) on page 45 20-Sep-2012 6 Added Section 4 on page 17 Modified Note:: The read write operation on RAM coefficients works only if RLCKI (pin29) is switching and stable (ref. Table 8, tLRJT timing) and PLL must be locked (ref bit D7 reg 0x2D). Updated Company information appearing on last page of document 24-Oct-2013 7 Modified ILIM and ISCP min. values in Table 7 on page 14 8 Updated power section paragraph in Section 1: Description Added 1 channel mono-parallel (OCFG = 11) in Section 7.1.6: Configuration register F (addr 0x05) Updated Figure 22: Application circuit for 2 or 2.1-channel configuration and added Figure 23: Application circuit for mono BTL configuration 16-Feb-2009 01-Mar-2010 22-Sep-2014 78/79 Changes DocID015276 Rev 8 STA339BWS IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2014 STMicroelectronics – All rights reserved DocID015276 Rev 8 79/79 79