Download Datasheet

STA339BWS
2.1-channel 40-watt high-efficiency digital system
Sound Terminal®
Datasheet - production data
 Two independent DRCs configurable as a
dual-band anticlipper (B2DRC) or as
independent limiters/compressors
 EQ-DRC for DRC based on filtered signals
 Dedicated LFE processing for bass boosting
 Audio presets:
– 15 preset crossover filters
– 5 preset anticlipping modes
– Preset nighttime listening mode
PowerSSO-36
with exposed pad down (EPD)
 Individual channel soft/hard mute
 Independent channel volume and DSP bypass
 I2S input data interface
 Input and output channel mapping
Features
 Automatic invalid input-detect mute
 Wide-range supply voltage, 4.5 V to 21.5 V
 Three power output configurations:
– 2 channels of ternary PWM (2 x 20 W into
8  at 18 V) + PWM output
– 2 channels of ternary PWM (2 x 20 W into
8  at 18 V) + ternary stereo line-out
– 2.1 channels of binary PWM (left, right,
LFE) (2 x 9 W into 4 +1 x 20 W into 8 
at 18 V)
 Up to 8 user-programmable biquads/channel
 Three coefficient banks for storing EQ presets
with fast recall via I2C interface
 Bass/treble tones and de-emphasis control
 Selectable high-pass filter for DC blocking
 Advanced AM interference frequency
switching and noise suppression modes
 FFX with 100-dB SNR and dynamic range
 Selectable high- or low-bandwidth
noise-shaping topologies
 Scalable FFX modulation index
 Selectable clock input ratio
 Selectable 32- to 192-kHz input sample rates
 96-kHz internal processing sample rate
 I2C control with selectable device address
 Thermal overload and short-circuit protection
technology
 Digital gain/attenuation +48 dB to -80 dB with
0.5-dB/step resolution
 Soft volume update with programmable ratio
 Individual channel and master gain/attenuation
 Video apps: 576 x fS input mode supported
 Pin and SW compatible with STA333BW,
STA339BW, STA559BW and STA559BWS
Table 1. Device summary
Order code
Package
Packaging
STA339BWS
PowerSSO-36 EPD
Tube
STA339BWS13TR
PowerSSO-36 EPD
Tape and reel
September 2014
This is information on a product in full production.
DocID015276 Rev 8
1/79
www.st.com
Contents
STA339BWS
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
4
2.1
Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4
Electrical specifications for the digital section . . . . . . . . . . . . . . . . . . . . . 13
3.5
Electrical specifications for the power section . . . . . . . . . . . . . . . . . . . . . 14
3.6
Power on/off sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Serial audio interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.0.1
Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.0.2
Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.0.3
Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5
Processing data paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6
I2C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1
Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1.1
Data transition or change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1.2
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1.3
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1.4
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3
Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4
6.3.1
Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3.2
Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4.1
2/79
Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DocID015276 Rev 8
STA339BWS
7
Contents
6.4.2
Current address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4.3
Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4.4
Random address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.1
7.2
7.3
Configuration registers (addr 0x00 to 0x05) . . . . . . . . . . . . . . . . . . . . . . . 25
7.1.1
Configuration register A (addr 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.1.2
Configuration register B (addr 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.1.3
Configuration register C (addr 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.4
Configuration register D (addr 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1.5
Configuration register E (addr 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1.6
Configuration register F (addr 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Volume control registers (addr 0x06 - 0x0A) . . . . . . . . . . . . . . . . . . . . . . 44
7.2.1
Mute/line output configuration register (addr 0x06) . . . . . . . . . . . . . . . . 45
7.2.2
Master volume register (addr 0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.3
Channel 1 volume (addr 0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.4
Channel 2 volume (addr 0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.5
Channel 3 / line output volume (addr 0x0A) . . . . . . . . . . . . . . . . . . . . . 46
Audio preset registers (addr 0x0B and 0x0C) . . . . . . . . . . . . . . . . . . . . . 47
7.3.1
Audio preset register 1 (addr 0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3.2
Audio preset register 2 (addr 0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.4
Channel configuration registers (addr 0x0E - 0x10) . . . . . . . . . . . . . . . . . 49
7.5
Tone control register (addr 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.6
Dynamic control registers (addr 0x12 - 0x15) . . . . . . . . . . . . . . . . . . . . . 51
7.7
7.6.1
Limiter 1 attack/release rate (addr 0x12) . . . . . . . . . . . . . . . . . . . . . . . . 51
7.6.2
Limiter 1 attack/release threshold (addr 0x13) . . . . . . . . . . . . . . . . . . . 51
7.6.3
Limiter 2 attack/release rate (addr 0x14) . . . . . . . . . . . . . . . . . . . . . . . . 52
7.6.4
Limiter 2 attack/release threshold (addr 0x15) . . . . . . . . . . . . . . . . . . . 52
7.6.5
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.6.6
Limiter 1 extended attack threshold (addr 0x32) . . . . . . . . . . . . . . . . . . 56
7.6.7
Limiter 1 extended release threshold (addr 0x33) . . . . . . . . . . . . . . . . . 57
7.6.8
Limiter 2 extended attack threshold (addr 0x34) . . . . . . . . . . . . . . . . . . 57
7.6.9
Limiter 2 extended release threshold (addr 0x35) . . . . . . . . . . . . . . . . . 57
User-defined coefficient control registers (addr 0x16 - 0x26) . . . . . . . . . . 57
7.7.1
Coefficient address register (addr 0x16) . . . . . . . . . . . . . . . . . . . . . . . . 57
7.7.2
Coefficient b1 data register bits (addr 0x17 - 0x19) . . . . . . . . . . . . . . . . 57
DocID015276 Rev 8
3/79
79
Contents
8
STA339BWS
7.7.3
Coefficient b2 data register bits (addr 0x1A - 0x1C) . . . . . . . . . . . . . . . 58
7.7.4
Coefficient a1 data register bits (addr 0x1D - 0x1F) . . . . . . . . . . . . . . . 58
7.7.5
Coefficient a2 data register bits (addr 0x20 - 0x22) . . . . . . . . . . . . . . . . 58
7.7.6
Coefficient b0 data register bits (addr 0x23 - 0x25) . . . . . . . . . . . . . . . . 59
7.7.7
Coefficient read/write control register (addr 0x26) . . . . . . . . . . . . . . . . . 59
7.7.8
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.7.9
Thermal warning and overcurrent adjustment (TWOCL) . . . . . . . . . . . . 63
7.8
Variable max power correction registers (addr 0x27 - 0x28) . . . . . . . . . . 64
7.9
Distortion compensation registers (addr 0x29 - 0x2A) . . . . . . . . . . . . . . . 64
7.10
Fault detect recovery constant registers (addr 0x2B - 0x2C) . . . . . . . . . . 64
7.11
Device status register (addr 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.12
EQ coefficients and DRC configuration register (addr 0x31) . . . . . . . . . . 66
7.13
Extended configuration register (addr 0x36) . . . . . . . . . . . . . . . . . . . . . . 67
7.13.1
Dual-band DRC (B2DRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.13.2
EQ DRC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.14
Soft volume configuration registers (addr 0x37 - 0x38) . . . . . . . . . . . . . . 70
7.15
DRC RMS filter coefficients (addr 0x39-0x3E) . . . . . . . . . . . . . . . . . . . . . 71
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.1
Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.2
PLL filter circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.3
Typical output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
11
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4/79
DocID015276 Rev 8
STA339BWS
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Recommended operating condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Electrical specifications - digital section (Tamb = 25 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Electrical specifications - power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Timing parameters for slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Input sampling rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Internal interpolation ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
IR bit settings as a function of input sample rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Serial audio input interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Support serial audio input formats for MSB-first (SAIFB = 0) . . . . . . . . . . . . . . . . . . . . . . . 28
Supported serial audio input formats for LSB-first (SAIFB = 1) . . . . . . . . . . . . . . . . . . . . . 28
Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
FFX power output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
FFX compensating pulse size bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Overcurrent warning bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
De-emphasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Postscale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Dynamic range compression/anticlipping bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Zero-detect mute enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Submix mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
AM mode enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Distortion compensation variable enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Output configuration engine selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Binary output mode clock loss detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
LRCK double trigger protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Auto EAPD on clock loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
DocID015276 Rev 8
5/79
79
List of tables
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
6/79
STA339BWS
IC power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
External amplifier power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Line output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Master volume offset as a function of MVOL[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Channel volume as a function of CxVOL[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Audio preset gain compression/limiters selection for AMGC[3:2] = 00. . . . . . . . . . . . . . . . 47
AM interference frequency switching bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Audio preset AM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Bass management crossover frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Volume bypass register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Channel limiter mapping as a function of CxLS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Channel output mapping as a function of CxOM bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Tone control boost/cut as a function of BTC and TTC bits . . . . . . . . . . . . . . . . . . . . . . . . . 51
Limiter attack rate vs LxA bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Limiter release rate vs LxR bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Limiter attack threshold vs LxAT bits (AC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Limiter release threshold vs LxRT bits (AC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Limiter attack threshold vs LxAT bits (DRC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Limiter release threshold vs LxRT bits (DRC mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
RAM block for biquads, mixing, scaling, bass management. . . . . . . . . . . . . . . . . . . . . . . . 61
Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
EQ RAM select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Anticlipping and DRC preset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Anticlipping selection for AMGC[3:2] = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Bit PS48DB description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Bit XAR1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Bit XAR2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Bit BQ5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Bit BQ6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Bit BQ7 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Bit SVUPE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Bit SVDWE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
PowerSSO-36 EPD dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
DocID015276 Rev 8
STA339BWS
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Pin connection PowerSSO-36 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Power-on sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Power-off sequence for pop-free turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Timing diagram for SAI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Left and right processing, section 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Left and right processing, section 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Read mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
OCFG = 00 (default value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
OCFG = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
OCFG = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
OCFG = 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Output mapping scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.0 channels (OCFG = 00) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1 channels (OCFG = 01) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1 channels (OCFG = 10) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Basic limiter and volume flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B2DRC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
EQDRC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Application circuit for 2 or 2.1-channel configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Application circuit for mono BTL configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Output configuration for stereo BTL mode (RL = 8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
PowerSSO-36 power derating curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
PowerSSO-36 EPD outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
DocID015276 Rev 8
7/79
79
Description
1
STA339BWS
Description
The STA339BWS is an integrated solution of digital audio processing, digital amplifier
controls and power output stage to create a high-power single-chip FFX digital amplifier with
high quality and high efficiency. Three channels of FFX processing are provided. The FFX
processor implements the ternary, binary and binary differential processing capabilities of
the full FFX processor.
The STA339BWS is part of the Sound Terminal® family that provides full digital audio
streaming to the speakers and offers cost effectiveness, low power dissipation and sound
enrichment.
Also provided in the STA339BWS are a full assortment of digital processing features. This
includes up to 8 programmable biquads (EQ) per channel. Available presets enable a timeto-market advantage by substantially reducing the amount of software development needed
for functions such as audio preset volume loudness, preset volume curves and preset EQ
settings. There are also new advanced AM radio interference reduction modes. Dual-band
DRC dynamically equalizes the system to provide linear frequency speaker response
regardless of output power level. This feature separates the audio frequency band into two
sub-bands independently processed to provide better sound clarity and to avoid speaker
saturation.
The serial audio data input interface accepts all possible formats, including the popular I2S
format. The high-quality conversion from PCM audio to FFX PWM switching provides over
100 dB of SNR and of dynamic range.
Figure 1. Block diagram
I2C
Protection
current/thermal
I2S
Channel
1A
interface
Volume
control
Power
control
Logic
Channel
1B
FFX
Channel
2A
Regulators
Channel
2B
PLL
Bias
Digital DSP
8/79
Power
DocID015276 Rev 8
STA339BWS
Description
The power section consists of four independent half-bridges. These can be configured via
digital control to operate in different modes.

2.1 channels can be provided by two half bridges and a single full bridge, supplying up
to 2 x 9 W + 1 x 20 W of output power.

Two channels can be provided by two full-bridges, supplying up to 2 x 20 W of output
power.

The IC can also be configured as 2.1 channels with 2 x 20 W supplied by the device
plus a drive for an external FFX power amplifier, such as STA533WF or STA515W.

One channel can be provided by parallel BTL to obtain 1 x 40 W of output power. In this
configuration the CONFIG pin must be connected to VDD.
DocID015276 Rev 8
9/79
79
Pin connections
STA339BWS
2
Pin connections
2.1
Connection diagram
Figure 2. Pin connection PowerSSO-36 (top view)
2.2
GND_SUB
1
36
VDD_DIG
SA
2
35
GND_DIG
TEST_MODE
3
34
SCL
VSS
4
33
SDA
VCC_REG
5
32
INT_LINE
OUT2B
6
31
RESET
GND2
7
30
SDI
VCC2
8
29
LRCKI
OUT2A
9
28
BICKI
OUT1B
10
27
XTI
VCC1
11
26
GND_PLL
GND1
12
25
FILTER_PLL
OUT1A
13
24
VDD_PLL
GND_REG
14
23
PWRDN
VDD
15
22
GND_DIG
CONFIG
16
21
VDD_DIG
OUT3B / FFX3B
17
20
TWARN / OUT4A
OUT3A / FFX3A
18
19
EAPD / OUT4B
EP, exposed pad
(device ground)
Pin description
Table 2. Pin description
Pin
10/79
Type
Name
Description
1
GND
GND_SUB
Substrate ground
2
I
SA
I2C select address (pull-down)
3
I
TEST_MODE
This pin must be connected to ground (pull-down)
4
I/O
VSS
Internal reference at VCC - 3.3 V
5
I/O
VCC_REG
Internal VCC reference
6
O
OUT2B
Output half-bridge channel 2B
7
GND
GND2
Power negative supply
8
Power
VCC2
Power positive supply
9
O
OUT2A
Output half-bridge channel 2A
10
O
OUT1B
Output half-bridge channel 1B
DocID015276 Rev 8
STA339BWS
Pin connections
Table 2. Pin description (continued)
Pin
Type
Name
Description
11
Power
VCC1
Power positive supply
12
GND
GND1
Power negative supply
13
O
OUT1A
Output half-bridge channel 1A
14
GND
GND_REG
Internal ground reference
15
Power
VDD
Internal 3.3 V reference voltage
16
I
CONFIG
Parallel mode command
17
O
OUT3B / FFX3B
PWM out channel 3B / external bridge driver
18
O
OUT3A / FFX3A
PWM out channel 3A / external bridge driver
19
O
EAPD / OUT4B
Power down for external bridge / PWM out channel 4B
20
I/O
TWARN / OUT4A
Thermal warning from external bridge (pull-up when input)
/ PWM out channel 4A
21
Power
VDD_DIG
Digital supply voltage
22
GND
GND_DIG
Digital ground
23
I
PWRDN
Power down (pull-up)
24
Power
VDD_PLL
Positive supply for PLL
25
I
FILTER_PLL
Connection to PLL filter
26
GND
GND_PLL
Negative supply for PLL
27
I
XTI
PLL input clock
28
I
BICKI
I2S serial clock
29
I
LRCKI
I2S left/right clock
30
I
SDI
I2S serial data channels 1 and 2
31
I
RESET
Reset (pull-up)
32
O
INT_LINE
Fault interrupt
33
I/O
SDA
I2C serial data
34
I
SCL
I2C serial clock
35
GND
GND_DIG
Digital ground
36
Power
VDD_DIG
Digital supply voltage
-
-
EP
Exposed pad for PCB heatsink, to be connected to GND
DocID015276 Rev 8
11/79
79
Electrical specifications
STA339BWS
3
Electrical specifications
3.1
Absolute maximum ratings
Table 3. Absolute maximum ratings
Symbol
Parameter
Typ
Max
Unit
VCC
Power supply voltage (pins VCCx)
-0.3
-
24
V
VDD
Digital supply voltage (pins VDD_DIG)
-0.3
-
4.0
V
VDD
PLL supply voltage (pin VDD_PLL)
-0.3
-
4.0
V
Top
Operating junction temperature
-20
-
150
°C
Tstg
Storage temperature
-40
-
150
°C
Warning:
3.2
Min
Stresses beyond those listed in Table 3 above may cause
permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any
other conditions beyond those indicated under
“Recommended operating conditions” are not implied.
Exposure to absolute-maximum-rated conditions for
extended periods may affect device reliability. In the real
application, power supplies with nominal values rated within
the recommended operating conditions, may experience
some rising beyond the maximum operating conditions for a
short time when no or very low current is sinked (amplifier in
mute state). In this case the reliability of the device is
guaranteed, provided that the absolute maximum ratings are
not exceeded.
Thermal data
Table 4. Thermal data
Parameter
Min
Max
Unit
Rth j-case
Thermal resistance junction-case (thermal pad)
-
-
1.5
°C/W
Tth_sdj
Thermal shut-down junction temperature
-
150
-
°C
Tth_warn
Thermal warning temperature
-
130
-
°C
Tth_sdh
Thermal shut-down hysteresis
-
20
-
°C
-
24
-
°C/W
Rth j-amb
Thermal resistance junction-ambient
(1)
1. See Chapter 9: Package thermal characteristics on page 75 for details.
12/79
Typ
DocID015276 Rev 8
STA339BWS
3.3
Electrical specifications
Recommended operating conditions
Table 5. Recommended operating condition
Symbol
3.4
Parameter
Min
Typ
Max
Unit
VCC
Power supply voltage (VCCxA, VCCxB)
4.5
-
21.5
V
VDD_DIG
Digital supply voltage
2.7
3.3
3.6
V
VDD_PLL
PLL supply voltage
2.7
3.3
3.6
V
Tamb
Ambient temperature
-20
-
70
°C
Electrical specifications for the digital section
Table 6. Electrical specifications - digital section (Tamb = 25 °C)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Iil
Low level input current without
pull-up/down device
Vi = 0 V
-
-
1
μA
Iih
High level input current without
pull-up/down device
Vi = VDD_DIG
= 3.6 V
-
-
1
μA
Vil
Low level input voltage
-
-
-
Vih
High level input voltage
-
Vol
Low level output voltage
Iol = 2 mA
Voh
High level output voltage
Ioh = 2 mA
Rpu
Equivalent pull-up/down
resistance
-
DocID015276 Rev 8
0.8 *
VDD_DIG
-
0.8 *
VDD_DIG
-
0.2 *
VDD_DIG
0.4 *
VDD_DIG
V
V
V
-
-
V
50
-
k
13/79
79
Electrical specifications
3.5
STA339BWS
Electrical specifications for the power section
The specifications given in this section are valid for the operating conditions: VCC = 18 V,
f = 1 kHz, fsw = 384 kHz, Tamb = 25 °C and RL = 8 , unless otherwise specified.
Table 7. Electrical specifications - power section
Symbol
Parameter
Conditions
Output power BTL
Po
Output power SE
Min
Typ
Max
THD = 1%
-
16
-
THD = 10%
-
20
-
THD = 1%,RL= 4 
-
7
-
THD = 10%,RL= 4 
-
9
-
Unit
W
W
RdsON
Power P-channel or N-channel MOSFET
ld = 0.75 A
-
-
250
m
gP
Power P-channel RdsON matching
ld = 0.75 A
-
100
-
%
gN
Power N-channel RdsON matching
ld = 0.75 A
-
100
-
%
Idss
Power P-channel/N-channel leakage
VCC = 20 V
-
-
1
A
tr
Rise time
-
-
10
ns
tf
Fall time
Resistive load,
see Figure 3 below
-
-
10
ns
Supply current from VCC in power down
PWRDN = 0
-
0.3
-
A
Supply current from VCC in operation
PWRDN = 1
-
15
-
mA
IVDD
Supply current FFX processing
Internal clock =
49.152 MHz
-
55
-
mA
ILIM
Overcurrent limit
(1)
2.5
3.0
-
A
ISCP
Short -circuit protection
RL = 0 
3.0
3.6
-
A
VUVP
Undervoltage protection
-
-
-
4.3
V
tmin
Output minimum pulse width
No load
20
40
60
ns
DR
Dynamic range
-
-
100
-
dB
Signal to noise ratio, ternary mode
A-Weighted
-
100
-
dB
Signal to noise ratio binary mode
-
-
90
-
dB
Total harmonic distortion + noise
FFX stereo mode,
Po = 1 W
f = 1 kHz
-
0.2
-
%
Crosstalk
FFX stereo mode,
<5 kHz
One channel driven at 1 W, other channel
measured
80
-
dB
Peak efficiency, FFX mode
Po = 2 x 20 W
into 8
-
90
-
Peak efficiency, binary modes
Po = 2 x 9 W into 4 
+ 1 x 20 W into 8 
87
-
IVCC
SNR
THD+N
XTALK

%
1. Limit the current if overcurrent warning detect adjustment bypass is enabled (register bit CONFC.OCRB on page 31).
When disabled refer to the ISCP.
14/79
DocID015276 Rev 8
STA339BWS
Electrical specifications
Figure 3. Test circuit
OUTxY
VCC
(0.9)*VCC
½VCC
(0.1)*VCC
t
tr
tf
+Vcc
Duty cycle = 50%
OUTxY
INxY
Rload = 8 
+
-
vdc = Vcc/2
gnd
DocID015276 Rev 8
15/79
79
Electrical specifications
3.6
STA339BWS
Power on/off sequence
Figure 4. Power-on sequence
Note: no specific VCC and
VDD_DIG turn−on sequence
is required
TR = minimum time between XTI master clock stable and Reset removal: 1 ms
TC = minimum time between Reset removal and I2C program, sequence start: 1ms
Note:
The definition of a stable clock is when fmax - fmin < 1 MHz.
Section Serial audio input interface format on page 27 gives information on setting up the
I2S interface.
Figure 5. Power-off sequence for pop-free turn-off
Note: no specific VCC and
VDD_DIG turn−off sequence
is required
16/79
DocID015276 Rev 8
STA339BWS
4
Serial audio interface
Serial audio interface
The STA339BWS audio serial input interface was designed to interface with standard digital
audio components and to accept a number of serial data formats. The STA339BWS always
acts as the slave when receiving audio input from standard digital audio components. Serial
data for two channels is provided using three inputs: left/right clock LRCKI, serial clock
BICKI, and serial data SDI12.
The SAI bit and the SAIFB bit are used to specify the serial data format. The default serial
data format is I2S, MSB-first.
4.0.1
Timings
In the STA339BWS the BICKI and LRCKI pins are configured as inputs and they must be
supplied by the external peripheral.
Figure 6.
Timing diagram for SAI interface
Table 8.
Timing parameters for slave mode
Symbol
4.0.2
Parameter
Min
Typ
Max
Unit
tBCy
BICK cycle time
80
-
-
ns
tBCH
BICK pulse width high
40
-
-
ns
tBCL
BICK pulse width low
40
-
-
ns
tLRSU
LRCKI setup time to BICKI strobing edge
40
-
-
ns
tLRH
LRCKI hold time to BICKI strobing edge
40
-
-
ns
tLRJT
LRCKI Jitter Tolerance
40
ns
Delay serial clock enable
To tolerate anomalies in some I2S master devices, a PLL clock cycle delay can be added to
the BICKI signal before the SAI interface.
4.0.3
Channel input mapping
Each channel received via I2S can be mapped to any internal processing channel via the
channel input mapping registers. This allows for flexibility in processing. The default settings
of these registers map each I2S input channel to its corresponding processing channel.
DocID015276 Rev 8
17/79
79
Processing data paths
5
STA339BWS
Processing data paths
Figure 7 and Figure 8 below show the data processing paths inside STA339BWS. The
whole processing chain is composed of two consecutive sections. In the first one,
dual-channel processing is implemented and in the second section each channel is fed into
the post-mixing block either to generate a third channel (typically used in 2.1 output
configuration and with crossover filters enabled) or to have the channels processed by the
dual-band DRC block (2.0 output configuration with crossover filters used to define the
cut-off frequency of the two bands).
The first section, Figure 7, begins with a 2x oversampling FIR filter providing 2 * fS audio
processing. Then a selectable high-pass filter removes the DC level (enabled if HPB = 0).
The left and right channel processing paths can include up to 8 filters, depending on the
selected configuration (bits BQL, BQ5, BQ6, BQ7 and XO[3:0]). By default, four user
programmable, independent filters per channel are enabled, plus the preconfigured
de-emphasis, bass and treble controls (BQL = 0, BQ5 = 0, BQ6 = 0, BQ7 = 0).
If the coefficient sets for the two channels are linked (BQL = 1) it is possible to use the
de-emphasis, bass and treble filters in a user defined configuration (provided the relevant
BQx bits are set). In this case both channels use the same processing coefficients and can
have up to seven filters each. If BQL = 0 the BQx bits are ignored and the fifth, sixth and
seventh filters are configured as de-emphasis, bass and treble controls, respectively.
Figure 7. Left and right processing, section 1
Moreover, the common 8th filter can be available on both channels provided the predefined
crossover frequencies are not used, XO[3:0] = 0, and the dual-band DRC is not used.
In the second section, Figure 8, mixing and crossover filters are available. If B2DRC is not
enabled they are fully user-programmable and allow the generation of a third channel
(2.1 outputs). Alternatively, in mode B2DRC, these blocks are used to split the sub-band and
define the cut-off frequencies of the two bands. A prescaler and a final postscaler allow full
control over the signal dynamics before and after the filtering stages. A mixer function is also
available.
18/79
DocID015276 Rev 8
STA339BWS
Processing data paths
Figure 8. Left and right processing, section 2
Dual-band DRC enabled
Dual-band DRC disabled
#8
#8
DocID015276 Rev 8
19/79
79
I2C bus specification
6
STA339BWS
I2C bus specification
The STA339BWS supports the I2C protocol via the input ports SCL and SDA_IN (master to
slave) and the output port SDA_OUT (slave to master). This protocol defines any device
that sends data on to the bus as a transmitter and any device that reads the data as a
receiver. The device that controls the data transfer is known as the master and the other as
the slave. The master always starts the transfer and provides the serial clock for
synchronization. The STA339BWS is always a slave device in all of its communications. It
supports up to 400 kb/s (fast-mode bit rate).
For correct operation of the I2C interface ensure that the master clock generated by the PLL
has a frequency at least 10 times higher than the frequency of the applied SCL clock.
6.1
Communication protocol
6.1.1
Data transition or change
Data changes on the SDA line must only occur when the clock SCL is low. A SDA transition
while the clock is high is used to identify a START or STOP condition.
6.1.2
Start condition
START is identified by a high to low transition of the data bus, SDA, while the clock, SCL, is
stable in the high state. A START condition must precede any command for data transfer.
6.1.3
Stop condition
STOP is identified by low to high transition of SDA while SCL is stable in the high state. A
STOP condition terminates communication between STA339BWS and the bus master.
6.1.4
Data input
During the data input the STA339BWS samples the SDA signal on the rising edge of SCL.
For correct device operation the SDA signal must be stable during the rising edge of the
clock and the data can change only when the SCL line is low.
6.2
Device addressing
To start communication between the master and the STA339BWS, the master must initiate
with a start condition. Following this, the master sends onto the SDA line 8-bits (MSB first)
corresponding to the device select address and read or write mode bit.
The seven most significant bits are the device address identifiers, corresponding to the I2C
bus definition. In the STA339BWS the I2C interface has two device addresses depending on
the SA pin configuration, 0x38 when SA = 0, and 0x3A when SA = 1.
The eighth bit (LSB) identifies a read or write operation (R/W); this is set to 1 for read and to
0 for write. After a START condition the STA339BWS identifies the device address on the
SDA bus and if a match is found, acknowledges the identification during the 9th bit time
frame. The byte following the device identification is the address of a device register.
20/79
DocID015276 Rev 8
I2C bus specification
STA339BWS
6.3
Write operation
Following the START condition the master sends a device select code with the RW bit set
to 0. The STA339BWS acknowledges this and then waits for the byte of internal address.
After receiving the internal byte address the STA339BWS again responds with an
acknowledgement.
6.3.1
Byte write
In the byte write mode the master sends one data byte, this is acknowledged by the
STA339BWS. The master then terminates the transfer by generating a STOP condition.
6.3.2
Multi-byte write
The multi-byte write modes can start from any internal address. The master generating a
STOP condition terminates the transfer.
Figure 9. Write mode sequence
ACK
BYTE
WRITE
DEV-ADDR
START
ACK
SUB-ADDR
RW
STOP
ACK
MULTIBYTE
WRITE
ACK
DATA IN
DEV-ADDR
START
ACK
SUB-ADDR
RW
ACK
DATA IN
ACK
DATA IN
STOP
6.4
Read operation
6.4.1
Current address byte read
Following the START condition the master sends a device select code with the RW bit set
to 1. The STA339BWS acknowledges this and then responds by sending one byte of data.
The master then terminates the transfer by generating a STOP condition.
6.4.2
Current address multi-byte read
The multi-byte read modes can start from any internal address. Sequential data bytes are
read from sequential addresses within the STA339BWS. The master acknowledges each
data byte read and then generates a STOP condition terminating the transfer.
6.4.3
Random address byte read
Following the START condition the master sends a device select code with the RW bit set
to 0. The STA339BWS acknowledges this and then the master writes the internal address
byte. After receiving, the internal byte address the STA339BWS again responds with an
acknowledgement. The master then initiates another START condition and sends the device
select code with the RW bit set to 1. The STA339BWS acknowledges this and then
responds by sending one byte of data. The master then terminates the transfer by
generating a STOP condition.
DocID015276 Rev 8
21/79
79
I2C bus specification
6.4.4
STA339BWS
Random address multi-byte read
The multi-byte read modes could start from any internal address. Sequential data bytes are
read from sequential addresses within the STA339BWS. The master acknowledges each
data byte read and then generates a STOP condition terminating the transfer.
Figure 10. Read mode sequence
ACK
CURRENT
ADDRESS
READ
DEV-ADDR
START
NO ACK
DATA
RW
STOP
ACK
ACK
RANDOM
ADDRESS
READ
DEV-ADDR
START
SEQUENTIAL
CURRENT
READ
SUB-ADDR
RW
RW= ACK
HIGH
DEV-ADDR
ACK
DEV-ADDR
START
ACK
DATA
NO ACK
DATA
STOP
RW
ACK
DATA
NO ACK
DATA
START
DEV-ADDR
START
22/79
STOP
ACK
SEQUENTIAL
RANDOM
READ
ACK
SUB-ADDR
RW
ACK
DEV-ADDR
START
ACK
DATA
RW
DocID015276 Rev 8
ACK
DATA
NO ACK
DATA
STOP
STA339BWS
Register description
7
Register description
Note:
Addresses exceeding the maximum address number must not be written.
Table 9. Register summary
Addr
Name
D7
D6
D5
D4
D3
D2
D1
D0
0x00
CONFA
FDRB
TWAB
TWRB
IR1
IR0
MCS2
MCS1
MCS0
0x01
CONFB
C2IM
C1IM
DSCKE
SAIFB
SAI3
SAI2
SAI1
SAI0
0x02
CONFC
OCRB
Reserved
CSZ3
CSZ2
CSZ1
CSZ0
OM1
OM0
0x03
CONFD
SME
ZDE
DRC
BQL
PSL
DSPB
DEMP
HPB
0x04
CONFE
SVE
ZCE
DCCV
PWMS
AME
NSBW
MPC
MPCV
0x05
CONFF
EAPD
PWDN
ECLE
LDTE
BCLE
IDE
OCFG1
OCFG0
0x06
MUTELOC
LOC1
LOC0
Reserved
Reserved
C3M
C2M
C1M
Reserved
0x07
MVOL
MVOL[7:0]
0x08
C1VOL
C1VOL[7:0]
0x09
C2VOL
C2VOL[7:0]
0x0A
C3VOL
C3VOL[7:0]
0x0B
AUTO1
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
0x0C
AUTO2
XO3
XO2
AMAM2
AMAM1
AMAM0
AMAME
0x0D
AUTO3
0x0E
C1CFG
C1OM1
C1OM0
C1LS1
C1LS0
C1BO
C1VBP
C1EQBP
C1TCB
0x0F
C2CFG
C2OM1
C2OM0
C2LS1
C2LS0
C2BO
C2VBP
C2EQBP
C2TCB
0x10
C3CFG
C3OM1
C3OM0
C3LS1
C3LS0
C3BO
C3VBP
Reserved
Reserved
0x11
TONE
TTC3
TTC2
TTC1
TTC0
BTC3
BTC2
BTC1
BTC0
0x12
L1AR
L1A3
L1A2
L1A1
L1A0
L1R3
L1R2
L1R1
L1R0
0x13
L1ATRT
L1AT3
L1AT2
L1AT1
L1AT0
L1RT3
L1RT2
L1RT1
L1RT0
0x14
L2AR
L2A3
L2A2
L2A1
L2A0
L2R3
L2R2
L2R1
L2R0
0x15
L2ATRT
L2AT3
L2AT2
L2AT1
L2AT0
L2RT3
L2RT2
L2RT1
L2RT0
0x16
CFADDR
Reserved
Reserved
0x17
B1CF1
C1B[23:16]
0x18
B1CF2
C1B[15:8]
0x19
B1CF3
C1B[7:0]
0x1A
B2CF1
C2B[23:16]
0x1B
B2CF2
C2B[15:8]
0x1C
B2CF3
C2B[7:0]
0x1D
A1CF1
C3B[23:16]
0x1E
A1CF2
C3B[15:8]
AMGC[1:0]
XO1
XO0
Reserved
CFA[5:0]
DocID015276 Rev 8
23/79
79
Register description
STA339BWS
Table 9. Register summary (continued)
Addr
Name
D7
D6
D5
D4
D3
D2
D1
D0
R1
WA
W1
OCWARN
TFAULT
TWARN
0x1F
A1CF3
C3B[7:0]
0x20
A2CF1
C4B[23:16]
0x21
A2CF2
C4B[15:8]
0x22
A2CF3
C4B[7:0]
0x23
B0CF1
C5B[23:16]
0x24
B0CF2
C5B[15:8]
0x25
B0CF3
C5B[7:0]
0x26
CFUD
0x27
MPCC1
MPCC[15:8]
0x28
MPCC2
MPCC[7:0]
0x29
DCC1
DCC[15:8]
0x2A
DCC2
DCC[7:0]
0x2B
FDRC1
FDRC[15:8]
0x2C
FDRC2
FDRC[7:0]
0x2D
STATUS
0x2E
Reserved
Reserved
0x2F
Reserved
Reserved
0x30
Reserved
Reserved
0x31
EQCFG
XOB
0x32
EATH1
EATHEN1
EATH1[6:0]
0x33
ERTH1
ERTHEN1
ERTH1[6:0]
0x34
EATH2
EATHEN2
EATH2[6:0]
0x35
ERTH2
ERTHEN2
ERTH2[6:0]
0x36
CONFX
0x37
SVCA
Reserved
Reserved
SVUPE
SVUP[4:0]
0x38
SVCB
Reserved
Reserved
SVDWE
SVDW[4:0]
0x39
RMS0A
R_C0[23:16]
0x3A
RMS0B
R_C0[15:8]
0x3B
RMS0C
R_C0[7:0]
0x3C
RMS1A
R_C1[23:16]
0x3D
RMS1B
R_C1[15:8]
0x3E
RMS1C
R_C1[7:0]
24/79
Reserved
PLLUL
FAULT
Reserved
MDRC[1:0]
UVFAULT
Reserved
PS48DB
RA
Reserved
OCFAULT
AMGC[3:2]
XAR1
XAR2
DocID015276 Rev 8
Reserved
BQ5
SEL[1:0]
BQ6
BQ7
STA339BWS
Register description
7.1
Configuration registers (addr 0x00 to 0x05)
7.1.1
Configuration register A (addr 0x00)
D7
D6
D5
D4
D3
D2
D1
D0
FDRB
TWAB
TWRB
IR1
IR0
MCS2
MCS1
MCS0
0
1
1
0
0
0
1
1
Master clock select
Table 10. Master clock select
Bit
R/W
RST
Name
0
R/W
1
MCS0
1
R/W
1
MCS1
2
R/W
0
MCS2
Description
Selects the ratio between the input I2S sample
frequency and the input clock.
The STA339BWS supports sample rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz,
176.4 kHz, and 192 kHz. Therefore the internal clock is:

32.768 MHz for 32 kHz

45.1584 MHz for 44.1 kHz, 88.2 kHz, and 176.4 kHz

49.152 MHz for 48 kHz, 96 kHz, and 192 kHz
The external clock frequency provided to the XTI pin must be a multiple of the input sample
frequency (fs).
The relationship between the input clock and the input sample rate is determined by both
the MCSx and the IR (input rate) register bits. The MCSx bits determine the PLL factor
generating the internal clock and the IR bit determines the oversampling ratio used
internally.
Table 11. Input sampling rates
Input sample rate
fs (kHz)
IR
MCS[2:0]
101
100
011
010
001
000
32, 44.1, 48
00
576 * fs
128 * fs
256 * fs
384 * fs
512 * fs
768 * fs
88.2, 96
01
NA
64 * fs
128 * fs
192 * fs
256 * fs
384 * fs
176.4, 192
1X
NA
32 * fs
64 * fs
96 * fs
128 * fs
192 * fs
Interpolation ratio select
Table 12. Internal interpolation ratio
Bit
4:3
R/W
R/W
RST
00
Name
IR [1:0]
Description
Selects internal interpolation ratio based on input I2S
sample frequency
DocID015276 Rev 8
25/79
79
Register description
STA339BWS
The STA339BWS has variable interpolation (oversampling) settings such that internal
processing and FFX output rates remain consistent. The first processing block interpolates
by either 2-times or 1-time (pass-through) or provides a 2-times downsample. The
oversampling ratio of this interpolation is determined by the IR bits.
Table 13. IR bit settings as a function of input sample rate
Input sample rate fs (kHz)
IR
1st stage interpolation ratio
32
00
2-times oversampling
44.1
00
2-times oversampling
48
00
2-times oversampling
88.2
01
Pass-through
96
01
Pass-through
176.4
10
2-times downsampling
192
10
2-times downsampling
Thermal warning recovery bypass
Table 14. Thermal warning recovery bypass
Bit
5
R/W
R/W
RST
1
Name
Description
0: thermal warning recovery enabled
1: thermal warning recovery disabled
TWRB
This bit sets the behavior of the IC after a thermal warning disappears. If TWRB is enabled
the device automatically restores the normal gain and output limiting is no longer active. If it
is disabled the device keeps the output limit active until a reset is asserted or until TWRB set
to 0. This bit works in conjunction with TWAB
Thermal warning adjustment bypass
Table 15. Thermal warning adjustment bypass
Bit
6
R/W
R/W
RST
1
Name
TWAB
Description
0: thermal warning adjustment enabled
1: thermal warning adjustment disabled
Bit TWAB enables automatic output limiting when a power stage thermal warning condition
persists for longer than 400ms. When the feature is active (TWAB = 0) the desired output
limiting, set through bit TWOCL (-3 dB by default) at address 0x37 in the RAM coefficients
bank, is applied. The way the limiting acts after the warning condition disappears is
controlled by bit TWRB.
26/79
DocID015276 Rev 8
STA339BWS
Register description
Fault detect recovery bypass
Table 16. Fault detect recovery bypass
Bit
R/W
7
R/W
RST
0
Name
Description
0: fault detect recovery enabled
1: fault detect recovery disabled
FDRB
The on-chip power block provides feedback to the digital controller which is used to indicate
a fault condition (either overcurrent or thermal). When fault is asserted, the power control
block attempts a recovery from the fault by asserting the 3-state output, holding it for period
of time in the range of 0.1 ms to 1 second, as defined by the fault-detect recovery constant
register (FDRC registers 0x2B-0x2C), then toggling it back to normal condition. This
sequence is repeated as log as the fault indication exists. This feature is enabled by default
but can be bypassed by setting the FDRB control bit to 1. The fault condition is also
asserted by a low-state pulse of the normally high INT_LINE output pin.
7.1.2
Configuration register B (addr 0x01)
D7
D6
D5
D4
D3
D2
D1
D0
C2IM
C1IM
DSCKE
SAIFB
SAI3
SAI2
SAI1
SAI0
1
0
0
0
0
0
0
0
Serial audio input interface format
Table 17. Serial audio input interface
Bit
R/W
RST
Name
0
R/W
0
SAI0
1
R/W
0
SAI1
2
R/W
0
SAI2
3
R/W
0
SAI3
Description
Determines the interface format of the input serial
digital audio interface.
Serial data interface
The STA339BWS audio serial input interfaces with standard digital audio components and
accepts a number of serial data formats. STA339BWS always acts as slave when receiving
audio input from standard digital audio components. Serial data for two channels is provided
using three inputs: left/right clock LRCKI, serial clock BICKI, and serial data SDI.
Bits SAI and bit SAIFB are used to specify the serial data format. The default serial data
format is I2S, MSB first. Available formats are shown in the tables and figure that follow.
Serial data first bit
Table 18. Serial data first bit
SAIFB
Format
0
MSB-first
1
LSB-first
DocID015276 Rev 8
27/79
79
Register description
STA339BWS
Table 19. Support serial audio input formats for MSB-first (SAIFB = 0)
BICKI
32 * fs
48 * fs
64 * fs
SAI [3:0]
SAIFB
Interface format
0000
0
I2S 15-bit data
0001
0
Left/right-justified 16-bit data
0000
0
I2S 16 to 23-bit data
0001
0
Left-justified 16 to 24-bit data
0010
0
Right-justified 24-bit data
0110
0
Right-justified 20-bit data
1010
0
Right-justified 18-bit data
1110
0
Right-justified 16-bit data
0000
0
I2S 16 to 24-bit data
0001
0
Left-justified 16 to 24-bit data
0010
0
Right-justified 24-bit data
0110
0
Right-justified 20-bit data
1010
0
Right-justified 18-bit data
1110
0
Right-justified 16-bit data
Table 20. Supported serial audio input formats for LSB-first (SAIFB = 1)
BICKI
32 * fs
48 * fs
28/79
SAI [3:0]
SAIFB
Interface Format
2S
15-bit data
1100
1
I
1110
1
Left/right-justified 16-bit data
0100
1
I2S 23-bit data
0100
1
I2S 20-bit data
1000
1
I2S 18-bit data
1100
1
LSB first I2S 16-bit data
0001
1
Left-justified 24-bit data
0101
1
Left-justified 20-bit data
1001
1
Left-justified 18-bit data
1101
1
Left-justified 16-bit data
0010
1
Right-justified 24-bit data
0110
1
Right-justified 20-bit data
1010
1
Right-justified 18-bit data
1110
1
Right-justified 16-bit data
DocID015276 Rev 8
STA339BWS
Register description
Table 20. Supported serial audio input formats for LSB-first (SAIFB = 1) (continued)
BICKI
SAI [3:0]
64 * fs
SAIFB
Interface Format
2
0000
1
I S 24-bit data
0100
1
I2S 20-bit data
1000
1
I2S 18-bit data
1100
1
LSB first I2S 16-bit data
0001
1
Left-justified 24-bit data
0101
1
Left-justified 20-bit data
1001
1
Left-justified 18-bit data
1101
1
Left-justified 16-bit data
0010
1
Right-justified 24-bit data
0110
1
Right-justified 20-bit data
1010
1
Right-justified 18-bit data
1110
1
Right-justified 16-bit data
To make the STA339BWS work properly, the serial audio interface LRCKI clock must be
synchronous to the PLL output clock. It means that:
 N-4< = (frequency of PLL clock) / (frequency of LRCKI) = < N+4 cycles,
where N depends on the settings in Table 13 on page 26
 the PLL must be locked.
If these two conditions are not met, and IDE bit (register 0x05, bit 2) is set to 1, the
STA339BWS immediately mutes the I2S PCM data out (provided to the processing block)
and it freezes any active processing task.
Clock desyncronization can happen during STA339BWS operation because of source
switching or TV channel change. To avoid audio side effects, like click or pop noise, it is
strongly recommended to complete the following actions:
1. soft volume change
2. I2C read /write instructions
while the serial audio interface and the internal PLL are still synchronous.
Delay serial clock enable
Table 21. Delay serial clock enable
Bit
5
R/W
R/W
RST
0
Name
DSCKE
Description
0: no serial clock delay
1: serial clock delay by 1 core clock cycle to tolerate
anomalies in some I2S master devices
DocID015276 Rev 8
29/79
79
Register description
STA339BWS
Channel input mapping
Table 22. Channel input mapping
Bit
R/W
RST
Name
Description
6
R/W
0
C1IM
0: processing channel 1 receives left I2S Input
1: processing channel 1 receives right I2S Input
7
R/W
1
C2IM
0: processing channel 2 receives left I2S Input
1: processing channel 2 receives right I2S Input
Each channel received via I2S can be mapped to any internal processing channel via the
Channel Input Mapping registers. This allows for flexibility in processing. The default
settings of these registers maps each I2S input channel to its corresponding processing
channel.
7.1.3
Configuration register C (addr 0x02)
D7
D6
D5
D4
D3
D2
D1
D0
OCRB
Reserved
CSZ3
CSZ2
CSZ1
CSZ0
OM1
OM0
1
0
0
1
0
1
1
1
FFX power output mode
The FFX power output mode selects how the FFX output timing is configured.
Different power devices use different output modes.
Table 23. FFX power output mode
Bit
R/W
RST
Name
0
R/W
1
OM0
1
R/W
1
OM1
Description
Selects configuration of FFX output:
00: drop compensation
01: discrete output stage: tapered compensation
10: full-power mode
11: variable drop compensation (CSZx bits)
FFX compensating pulse size register
Table 24. FFX compensating pulse size bits
Bit
30/79
R/W
RST
Name
2
R/W
1
CSZ0
3
R/W
1
CSZ1
4
R/W
1
CSZ2
5
R/W
0
CSZ3
Description
When OM[1,0] = 11, this register determines the size
of the FFX compensating pulse from 0 clock ticks to
15 clock periods.
DocID015276 Rev 8
STA339BWS
Register description
Table 25. Compensating pulse size
CSZ[3:0]
Compensating pulse size
0000
0 ns (0 tick) compensating pulse size
0001
20 ns (1 tick) clock period compensating pulse size
…
…
1111
300 ns (15 tick) clock period compensating pulse size
Overcurrent warning adjustment bypass
Table 26. Overcurrent warning bypass
Bit
R/W
7
R/W
RST
1
Name
Description
0: overcurrent warning adjustment enabled
1: overcurrent warning adjustment disabled
OCRB
The OCRB is used to indicate how STA339BWS behaves when an overcurrent warning
condition occurs. If OCRB = 0 and the overcurrent condition happens, the power control
block forces an adjustment to the modulation limit (default is -3 dB) in an attempt to
eliminate the overcurrent warning condition. Once the overcurrent warning clipping
adjustment is applied, it remains in this state until reset is applied or OCRB is set to 1. The
level of adjustment can be changed via the TWOCL (thermal warning/overcurrent limit)
setting at address 0x37 of the user defined coefficient RAM (Section 7.7.7 on page 59). The
OCRB can be enabled when the output bridge is already on.
7.1.4
Configuration register D (addr 0x03)
D7
D6
D5
D4
D3
D2
D1
D0
SME
ZDE
DRC
BQL
PSL
DSPB
DEMP
HPB
0
1
0
0
0
0
0
0
High-pass filter bypass
Table 27. High-pass filter bypass
Bit
0
R/W
R/W
RST
0
Name
HPB
Description
1: bypass internal AC coupling digital high-pass filter
The STA339BWS features an internal digital high-pass filter for the purpose of AC coupling.
The purpose of this filter is to prevent DC signals from passing through a FFX amplifier. DC
signals can cause speaker damage. When HPB = 0, this filter is enabled.
DocID015276 Rev 8
31/79
79
Register description
STA339BWS
De-emphasis
Table 28. De-emphasis
Bit
1
R/W
R/W
RST
0
Name
Description
0: no de-emphasis
1: enable de-emphasis on all channels
DEMP
DSP bypass
Table 29. DSP bypass
Bit
2
R/W
R/W
RST
0
Name
Description
0: normal operation
1: bypass of biquad and bass/treble functions
DSPB
Setting the DSPB bit bypasses the EQ function of the STA339BWS.
Postscale link
Table 30. Postscale link
Bit
3
R/W
R/W
RST
0
Name
Description
0: each channel uses individual postscale value
1: each channel uses channel 1 postscale value
PSL
Postscale functionality can be used for power-supply error correction. For multi-channel
applications running off the same power-supply, the postscale values can be linked to the
value of channel 1 for ease of use and update the values faster.
Biquad coefficient link
Table 31. Biquad coefficient link
Bit
4
R/W
R/W
RST
0
Name
Description
0: each channel uses coefficient values
1: each channel uses channel 1 coefficient values
BQL
For ease of use, all channels can use the biquad coefficients loaded into the Channel-1
coefficient RAM space by setting the BQL bit to 1. Therefore, any EQ updates only have to
be performed once.
Dynamic range compression/anticlipping bit
Table 32. Dynamic range compression/anticlipping bit
Bit
5
32/79
R/W
R/W
RST
0
Name
DRC
Description
0: limiters act in anticlipping mode
1: limiters act in dynamic range compression mode
DocID015276 Rev 8
STA339BWS
Register description
Both limiters can be used in one of two ways, anticlipping or dynamic range compression.
When used in anticlipping mode the limiter threshold values are constant and dependent on
the limiter settings. In dynamic range compression mode the limiter threshold values vary
with the volume settings allowing a nighttime listening mode that provides a reduction in the
dynamic range regardless of the volume level.
Zero-detect mute enable
Table 33. Zero-detect mute enable
Bit
R/W
6
R/W
RST
1
Name
Description
0: automatic zero-detect mute disabled
1: automatic zero-detect mute enabled
ZDE
Setting the ZDE bit enables the zero-detect automatic mute. The zero-detect circuit looks at
the data for each processing channel at the output of the crossover (bass management)
filter. If any channel receives 2048 consecutive zero value samples (regardless of fs) then
that individual channel is muted if this function is enabled.
Submix mode enable
Table 34. Submix mode enable
Bit
R/W
7
7.1.5
R/W
RST
0
Name
Description
0: submix into left/right disabled
1: submix into left/right enabled
SME
Configuration register E (addr 0x04)
D7
D6
D5
D4
D3
D2
D1
D0
SVE
ZCE
DCCV
PWMS
AME
NSBW
MPC
MPCV
1
1
0
0
0
0
1
0
Max power correction variable
Table 35. Max power correction variable
Bit
0
R/W
R/W
RST
0
Name
Description
0: use standard MPC coefficient
1: use MPCC bits for MPC coefficient
MPCV
Max power correction
Table 36. Max power correction
Bit
1
R/W
R/W
RST
1
Name
MPC
Description
0: function disabled
1: enables power bridge correction for THD
reduction near maximum power output.
DocID015276 Rev 8
33/79
79
Register description
STA339BWS
Setting the MPC bit turns on special processing that corrects the STA339BWS power device
at high power. This mode should lower the THD+N of a full FFX system at maximum power
output and slightly below. If enabled, MPC is operational in all output modes except tapered
(OM[1,0] = 01) and binary. When OCFG = 00, MPC has no effect on channels 3 and 4, the
line-out channels.
Noise-shaper bandwidth selection
Table 37. Noise-shaper bandwidth selection
Bit
2
R/W
R/W
RST
0
Name
Description
1: third-order NS
0: fourth-order NS
NSBW
AM mode enable
Table 38. AM mode enable
Bit
3
R/W
R/W
RST
0
Name
Description
0: normal FFX operation.
1: AM reduction mode FFX operation
AME
STA339BWS features a FFX processing mode that minimizes the amount of noise
generated in frequency range of AM radio. This mode is intended for use when FFX is
operating in a device with an AM tuner active. The SNR of the FFX processing is reduced to
approximately 83 dB in this mode, which is still greater than the SNR of AM radio.
PWM speed mode
Table 39. PWM speed mode
Bit
4
R/W
R/W
RST
0
Name
Description
0: normal speed (384 kHz) all channels
1: odd speed (341.3 kHz) all channels
PWMS
Distortion compensation variable enable
Table 40. Distortion compensation variable enable
Bit
5
34/79
R/W
R/W
RST
0
Name
DCCV
Description
0: use preset DC coefficient
1: use DCC coefficient
DocID015276 Rev 8
STA339BWS
Register description
Zero-crossing volume enable
Table 41. Zero-crossing volume enable
Bit
R/W
6
R/W
RST
1
Name
Description
1: volume adjustments only occur at digital zerocrossings
0: volume adjustments occur immediately
ZCE
The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital
zero-crossings no clicks are audible.
Soft volume update enable
Table 42. Soft volume update enable
Bit
R/W
7
7.1.6
R/W
RST
1
Name
Description
1: volume adjustments ramp according to SVUP/SVDW
settings
0: volume adjustments occur immediately
SVE
Configuration register F (addr 0x05)
D7
D6
D5
D4
D3
D2
D1
D0
EAPD
PWDN
ECLE
LDTE
BCLE
IDE
OCFG1
OCFG0
0
1
0
1
1
1
0
0
Output configuration
Table 43. Output configuration
Bit
R/W
RST
Name
0
R/W
0
OCFG0
1
R/W
0
OCFG1
Description
Selects the output configuration
DocID015276 Rev 8
35/79
79
Register description
STA339BWS
Table 44. Output configuration engine selection
OCFG[1:0]
Note:
Output configuration
00
2 channel (full-bridge) power, 2 channel data-out:
1A/1B  1A/1B
2A/2B  2A/2B
LineOut1  3A/3B
LineOut2  4A/4B
Line Out Configuration determined by LOC register
0
01
2 (half-bridge), 1(full-bridge) on-board power:
1A  1A
Binary 0 °
2A  1B
Binary 90°
3A/3B  2A/2B Binary 45°
1A/B  3A/B
Binary 0°
2A/B  4A/B
Binary 90°
0
10
2 channel (full-bridge) power, 1 channel FFX:
1A/1B  1A/1B
2A/2B  2A/2B
3A/3B  3A/3B
EAPDEXT and TWARNEXT Active
0
11
1 channel mono-parallel:
3A  1A/1B
w/ C3BO 45°
3B  2A/2B
w/ C3BO 45°
1A/1B  3A/3B
2A/2B  4A/4B
1
To the left of the arrow is the processing channel. When using channel output mapping, any
of the three processing channel outputs can be used for any of the three inputs.
Figure 11. OCFG = 00 (default value)
36/79
Config pin
DocID015276 Rev 8
STA339BWS
Register description
Figure 12. OCFG = 01
Figure 13. OCFG = 10
Figure 14. OCFG = 11
The STA339BWS can be configured to support different output configurations. For each
PWM output channel a PWM slot is defined. A PWM slot is always 1 / (8 * fs) seconds
length. The PWM slot define the maximum extension for PWM rise and fall edge, that is,
rising edge as far as the falling edge cannot range outside PWM slot boundaries.
DocID015276 Rev 8
37/79
79
Register description
STA339BWS
Figure 15. Output mapping scheme
For each configuration the PWM signals from the digital driver are mapped in different ways
to the power stage:
38/79
DocID015276 Rev 8
STA339BWS
Register description
2.0 channels, two full-bridges (OCFG = 00)
Mapping:

FFX1A -> OUT1A

FFX1B -> OUT1B

FFX2A -> OUT2A

FFX2B -> OUT2B

FFX3A -> OUT3A

FFX3B -> OUT3B

FFX4A -> OUT4A

FFX4B -> OUT4B
Default modulation:

FFX1A/1B configured as ternary

FFX2A/2B configured as ternary

FFX3A/3B configured as lineout ternary

FFX4A/4B configured as lineout ternary
On channel 3 line out (LOC bits = 00) the same data as channel 1 processing is sent. On
channel 4 line out (LOC bits = 00) the same data as channel 2 processing is sent. In this
configuration, volume control or EQ have no effect on channels 3 and 4.
In this configuration the PWM slot phase is the following as shown in Figure 16.
Figure 16. 2.0 channels (OCFG = 00) PWM slots
DocID015276 Rev 8
39/79
79
Register description
STA339BWS
2.1 channels, two half-bridges + one full-bridge (OCFG = 01)
Mapping:

FFX1A -> OUT1A

FFX2A -> OUT1B

FFX3A -> OUT2A

FFX3B -> OUT2B

FFX1A -> OUT3A

FFX1B -> OUT3B

FFX2A -> OUT4A

FFX2B -> OUT4B
Modulation:

FFX1A/1B configured as binary

FFX2A/2B configured as binary

FFX3A/3B configured as binary

FFX4A/4B configured as binary
In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT3/OUT4
channels the channel 1 and channel 2 PWM are replicated.
In this configuration the PWM slot phase is the following as shown in Figure 17.
Figure 17. 2.1 channels (OCFG = 01) PWM slots
40/79
DocID015276 Rev 8
STA339BWS
Register description
2.1 channels, two full-bridges + one external full-bridge (OCFG = 10)
Mapping:

FFX1A -> OUT1A

FFX1B -> OUT1B

FFX2A -> OUT2A

FFX2B -> OUT2B

FFX3A -> OUT3A

FFX3B -> OUT3B

EAPD -> OUT4A

TWARN -> OUT4B
Default modulation:

FFX1A/1B configured as ternary

FFX2A/2B configured as ternary

FFX3A/3B configured as ternary

FFX4A/4B is not used
In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT4 channel the
external bridge control signals are multiplexed.
In this configuration the PWM slot phase is the following as shown in Figure 18.
Figure 18. 2.1 channels (OCFG = 10) PWM slots
DocID015276 Rev 8
41/79
79
Register description
STA339BWS
1 channel mono-parallel (OCFG = 11)
Mapping:
FFX1A -> OUT3A
FFX1B -> OUT3B
FFX2A -> OUT4A
FFX2B -> OUT4B
FFX3A -> OUT1A/OUT1B
FFX3B -> OUT2A/OUT2B
In this configuration, the CONFIG pin must be connected to the VDD pin.
42/79
DocID015276 Rev 8
STA339BWS
Register description
Invalid input detect mute enable
Table 45. Invalid input detect mute enable
Bit
2
R/W
R/W
RST
1
Name
Description
0: disables the automatic invalid input detect mute
1: enables the automatic invalid input detect mute
IDE
Setting the IDE bit enables this function, which looks at the input I2S data and automatically
mutes if the signals are perceived as invalid.
Binary output mode clock loss detection
Table 46. Binary output mode clock loss detection
Bit
3
R/W
R/W
RST
1
Name
Description
0: binary output mode clock loss detection disabled
1: binary output mode clock loss detection enable
BCLE
Detects loss of input MCLK in binary mode and will output 50% duty cycle.
LRCK double trigger protection
Table 47. LRCK double trigger protection
Bit
4
R/W
R/W
RST
1
Name
Description
0: LRCLK double trigger protection disabled
1: LRCLK double trigger protection enabled
LDTE
LDTE, when enabled, prevents double trigger of LRCLK on instable I2S input.
Auto EAPD on clock loss
Table 48. Auto EAPD on clock loss
Bit
5
R/W
R/W
RST
0
Name
Description
0: auto EAPD on clock loss not enabled
1: auto EAPD on clock loss
ECLE
When active, issues a power device power down signal (EAPD) on clock loss detection.
IC power down
Table 49. IC power down
Bit
6
R/W
R/W
RST
1
Name
PWDN
Description
0: IC power down low-power condition
1: IC normal operation
DocID015276 Rev 8
43/79
79
Register description
STA339BWS
The PWDN register is used to place the IC in a low-power state. When PWDN is written
as 0, the output begins a soft-mute. After the mute condition is reached, EAPD is asserted
to power down the power-stage, then the master clock to all internal hardware expect the
I2C block is gated. This places the IC in a very low power consumption state.
External amplifier power down
Table 50. External amplifier power down
Bit
7
R/W
R/W
RST
0
Name
EAPD
Description
0: external power stage power down active
1: normal operation
The EAPD register directly disables/enables the internal power circuitry.
When EAPD = 0, the internal power section is placed in a low-power state (disabled). This
register also controls the FFX4B/EAPD output pin when OCFG = 10.
7.2
Volume control registers (addr 0x06 - 0x0A)
The volume structure of the STA339BWS consists of individual volume registers for each
channel and a master volume register that provides an offset to each channels volume
setting. The individual channel volumes are adjustable in 0.5 dB steps from +48 dB
to -80 dB.
As an example if C3VOL = 0x00 or +48 dB and MVOL = 0x18 or -12 dB, then the total gain
for channel 3 = +36 dB.
The channel mutes provide a “soft mute” with the volume ramping down to mute in
4096 samples from the maximum volume setting at the internal processing rate
(approximately 96 kHz).
All changes in volume take place at zero-crossings when ZCE = 1 (Configuration register E
(addr 0x04)) on a per channel basis as this creates the smoothest possible volume
transitions. When ZCE = 0, volume updates occur immediately.
44/79
DocID015276 Rev 8
STA339BWS
7.2.1
Register description
Mute/line output configuration register (addr 0x06)
D7
D6
D5
D4
D3
D2
D1
D0
LOC1
LOC0
Reserved
Reserved
C3M
C2M
C1M
Reserved
0
0
0
1
0
0
0
0
Table 51. Line output configuration
LOC[1:0]
Line output configuration
00
Line output fixed - no volume, no EQ
01
Line output variable - channel 3 volume effects line output, no EQ
10
Line output variable with EQ - channel 3 volume effects line output
Line output is only active when OCFG = 00. In this case LOC determines the line output
configuration. The source of the line output is always the channel 1 and 2 inputs.
7.2.2
Master volume register (addr 0x07)
D7
D6
D5
D4
D3
D2
D1
D0
MVOL7
MVOL6
MVOL5
MVOL4
MVOL3
MVOL2
MVOL1
MVOL0
1
1
1
1
1
1
1
1
Table 52. Master volume offset as a function of MVOL[7:0]
MVOL[7:0]
7.2.3
7.2.4
Volume offset from channel value
00000000 (0x00)
0 dB
00000001 (0x01)
-0.5 dB
00000010 (0x02)
-1 dB
…
…
01001100 (0x4C)
-38 dB
…
…
11111110 (0xFE)
-127.5 dB
11111111 (0xFF)
Default mute, not to be used during operation
Channel 1 volume (addr 0x08)
D7
D6
D5
D4
D3
D2
D1
D0
C1VOL7
C1VOL6
C1VOL5
C1VOL4
C1VOL3
C1VOL2
C1VOL1
C1VOL0
0
1
1
0
0
0
0
0
Channel 2 volume (addr 0x09)
D7
D6
D5
D4
D3
D2
D1
D0
C2VOL7
C2VOL6
C2VOL5
C2VOL4
C2VOL3
C2VOL2
C2VOL1
C2VOL0
0
1
1
0
0
0
0
0
DocID015276 Rev 8
45/79
79
Register description
7.2.5
STA339BWS
Channel 3 / line output volume (addr 0x0A)
D7
D6
D5
D4
D3
D2
D1
D0
C3VOL7
C3VOL6
C3VOL5
C3VOL4
C3VOL3
C3VOL2
C3VOL1
C3VOL0
0
1
1
0
0
0
0
0
Table 53. Channel volume as a function of CxVOL[7:0]
CxVOL[7:0]
46/79
Volume
00000000 (0x00)
+48 dB
00000001 (0x01)
+47.5 dB
00000010 (0x02)
+47 dB
…
…
01011111 (0x5F)
+0.5 dB
01100000 (0x60)
0 dB
01100001 (0x61)
-0.5 dB
…
…
11010111 (0xD7)
-59.5 dB
11011000 (0xD8)
-60 dB
11011001 (0xD9)
-61 dB
11011010 (0xDA)
-62 dB
…
…
11101100 (0xEC)
-80 dB
11101101 (0xED)
Hard channel mute
…
…
11111111 (0xFF)
Hard channel mute
DocID015276 Rev 8
STA339BWS
Register description
7.3
Audio preset registers (addr 0x0B and 0x0C)
7.3.1
Audio preset register 1 (addr 0x0B)
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
Reserved
AMGC[1]
AMGC[0]
Reserved
Reserved
Reserved
Reserved
1
0
0
0
0
0
0
0
Using AMGC[3:0] bits, attack and release thresholds and rates are automatically configured
to properly fit application specific configurations. AMGC[3:2] is defined in register EQ
coefficients and DRC configuration register (addr 0x31) on page 66.
The AMGC[1:0] bits behave in two different ways depending on the value of AMGC[3:2].
When this value is 00 then bits AMGC[1:0] are defined below in Table 54.
Table 54. Audio preset gain compression/limiters selection for AMGC[3:2] = 00
AMGC[1:0]
7.3.2
Mode
00
User programmable GC
01
AC no clipping 2.1
10
AC limited clipping (10%) 2.1
11
DRC night-time listening mode 2.1
Audio preset register 2 (addr 0x0C)
D7
D6
D5
D4
D3
D2
D1
D0
XO3
XO2
XO1
XO0
AMAM2
AMAM1
AMAM0
AMAME
0
0
0
0
0
0
0
0
AM interference frequency switching
Table 55. AM interference frequency switching bits
Bit
0
R/W
R/W
RST
0
Name
AMAME
Description
Audio preset AM enable
0: switching frequency determined by PWMS setting
1: switching frequency determined by AMAM settings
Table 56. Audio preset AM switching frequency selection
AMAM[2:0]
48 kHz/96 kHz input fs
44.1 kHz/88.2 kHz input fs
000
0.535 MHz - 0.720 MHz
0.535 MHz - 0.670 MHz
001
0.721 MHz - 0.900 MHz
0.671 MHz - 0.800 MHz
010
0.901 MHz - 1.100 MHz
0.801 MHz - 1.000 MHz
011
1.101 MHz - 1.300 MHz
1.001 MHz - 1.180 MHz
100
1.301 MHz - 1.480 MHz
1.181 MHz - 1.340 MHz
DocID015276 Rev 8
47/79
79
Register description
STA339BWS
Table 56. Audio preset AM switching frequency selection (continued)
AMAM[2:0]
48 kHz/96 kHz input fs
44.1 kHz/88.2 kHz input fs
101
1.481 MHz - 1.600 MHz
1.341 MHz - 1.500 MHz
110
1.601 MHz - 1.700 MHz
1.501 MHz - 1.700 MHz
Bass management crossover
Table 57. Bass management crossover
Bit
R/W
RST
Name
4
R/W
0
XO0
5
R/W
0
XO1
6
R/W
0
XO2
7
R/W
0
XO3
Description
Selects the bass-management crossover frequency.
A 1st-order hign-pass filter (channels 1 and 2) or a
2nd-order low-pass filter (channel 3) at the selected
frequency is performed.
Table 58. Bass management crossover frequency
XO[3:0]
48/79
Crossover frequency
0000
User-defined (Section 7.7.8 on page 59)
0001
80 Hz
0010
100 Hz
0011
120 Hz
0100
140 Hz
0101
160 Hz
0110
180 Hz
0111
200 Hz
1000
220 Hz
1001
240 Hz
1010
260 Hz
1011
280 Hz
1100
300 Hz
1101
320 Hz
1110
340 Hz
1111
360 Hz
DocID015276 Rev 8
STA339BWS
7.4
Register description
Channel configuration registers (addr 0x0E - 0x10)
D7
D6
D5
D4
D3
D2
D1
D0
C1OM1
C1OM0
C1LS1
C1LS0
C1BO
C1VPB
C1EQBP
C1TCB
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C2OM1
C2OM0
C2LS1
C2LS0
C2BO
C2VPB
C2EQBP
C2TCB
0
1
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C3OM1
C3OM0
C3LS1
C3LS0
C3BO
C3VPB
Reserved
Reserved
1
0
0
0
0
0
0
0
Tone control bypass
Tone control (bass/treble) can be bypassed on a per channel basis for channels 1 and 2.
Table 59. Tone control bypass
CxTCB
Mode
0
Perform tone control on channel x - normal operation
1
Bypass tone control on channel x
EQ bypass
EQ control can be bypassed on a per channel basis for channels 1 and 2. If EQ control is
bypassed on a given channel the prescale and all filters (high-pass, biquads, de-emphasis,
bass, treble in any combination) are bypassed for that channel.
Table 60. EQ bypass
CxEQBP
Mode
0
Perform EQ on channel x - normal operation
1
Bypass EQ on channel x
Volume bypass
Each channel contains an individual channel volume bypass. If a particular channel has
volume bypassed via the CxVBP = 1 register then only the channel volume setting for that
particular channel affects the volume setting, the master volume setting has no effect on that
channel.
Table 61. Volume bypass register
CxVBP
Mode
0
Normal volume operations
1
Volume is by-passed
DocID015276 Rev 8
49/79
79
Register description
STA339BWS
Binary output enable registers
Each individual channel output can be set to output a binary PWM stream. In this mode
output A of a channel is considered the positive output and output B is negative inverse.
Table 62. Binary output enable registers
CxBO
Mode
0
FFX output operation
1
Binary output
Limiter select
Limiter selection can be made on a per-channel basis according to the channel limiter select
bits. CxLS bits are not considered when dual band DRC (Section 7.13.1 on page 67) or
EQ DRC (Section 7.13.2) is used.
.
Table 63. Channel limiter mapping as a function of CxLS bits
CxLS[1:0]
Channel limiter mapping
00
Channel has limiting disabled
01
Channel is mapped to limiter #1
10
Channel is mapped to limiter #2
Output mapping
Output mapping can be performed on a per channel basis according to the CxOM channel
output mapping bits. Each input into the output configuration engine can receive data from
any of the three processing channel outputs.
.
Table 64. Channel output mapping as a function of CxOM bits
CxOM[1:0]
50/79
Channel x output source from
00
Channel1
01
Channel 2
10
Channel 3
DocID015276 Rev 8
STA339BWS
7.5
Register description
Tone control register (addr 0x11)
D7
D6
D5
D4
D3
D2
D1
D0
TTC3
TTC2
TTC1
TTC0
BTC3
BTC2
BTC1
BTC0
0
1
1
1
0
1
1
1
Tone control
Table 65. Tone control boost/cut as a function of BTC and TTC bits
BTC[3:0]/TTC[3:0]
Boost/Cut
0000
-12 dB
0001
-12 dB
0010
-10 dB
…
…
0101
-4 dB
0110
-2 dB
0111
0 dB
1000
+2 dB
1001
+4 dB
…
…
1100
+10 dB
1101
+12 dB
1110
+12 dB
1111
+12 dB
7.6
Dynamic control registers (addr 0x12 - 0x15)
7.6.1
Limiter 1 attack/release rate (addr 0x12)
7.6.2
D7
D6
D5
D4
D3
D2
D1
D0
L1A3
L1A2
L1A1
L1A0
L1R3
L1R2
L1R1
L1R0
0
1
1
0
1
0
1
0
Limiter 1 attack/release threshold (addr 0x13)
D7
D6
D5
D4
D3
D2
D1
D0
L1AT3
L1AT2
L1AT1
L1AT0
L1RT3
L1RT2
L1RT1
L1RT0
0
1
1
0
1
0
0
1
DocID015276 Rev 8
51/79
79
Register description
7.6.3
7.6.4
7.6.5
STA339BWS
Limiter 2 attack/release rate (addr 0x14)
D7
D6
D5
D4
D3
D2
D1
D0
L2A3
L2A2
L2A1
L2A0
L2R3
L2R2
L2R1
L2R0
0
1
1
0
1
0
1
0
Limiter 2 attack/release threshold (addr 0x15)
D7
D6
D5
D4
D3
D2
D1
D0
L2AT3
L2AT2
L2AT1
L2AT0
L2RT3
L2RT2
L2RT1
L2RT0
0
1
1
0
1
0
0
1
Description
The STA339BWS includes two independent limiter blocks. The purpose of the limiters is to
automatically reduce the dynamic range of a recording to prevent the outputs from clipping
in anticlipping mode or to actively reduce the dynamic range for a better listening
environment such as a night-time listening mode which is often needed for DVDs. The two
modes are selected via the DRC bit in Configuration register E (addr 0x04) on page 33.
Each channel can be mapped to either limiter or not mapped, meaning that channel will clip
when 0 dBFS is exceeded. Each limiter looks at the present value of each channel that is
mapped to it, selects the maximum absolute value of all these channels, performs the
limiting algorithm on that value, and then if needed adjusts the gain of the mapped channels
in unison.
Figure 19. Basic limiter and volume flow diagram
The limiter attack thresholds are determined by the LxAT registers if EATHx[7] bits are set
to 0 else the thresholds are determined by EATHx[6:0]. It is recommended in anticlipping
mode to set this to 0 dBFS, which corresponds to the maximum unclipped output power of a
FFX amplifier. Since gain can be added digitally within the STA339BWS it is possible to
exceed 0 dBFS or any other LxAT setting, when this occurs, the limiter, when active,
automatically starts reducing the gain. The rate at which the gain is reduced when the attack
threshold is exceeded is dependent upon the attack rate register setting for that limiter. Gain
reduction occurs on a peak-detect algorithm. Setting EATHx[7] bits to 1 selects the
anticlipping mode.
The limiter release thresholds are determined by the LxRT registers if ERTHx[7] bits are set
to 0 else the thresholds are determined by ERTHx[6:0]. Settings to 1 ERTHx[7] bits the
anticlipping mode is selected automatically. The release of limiter, when the gain is again
increased, is dependent on a RMS-detect algorithm. The output of the volume/limiter block
is passed through a RMS filter. The output of this filter is compared to the release threshold,
determined by the Release Threshold register. When the RMS filter output falls below the
52/79
DocID015276 Rev 8
STA339BWS
Register description
release threshold, the gain is again increased at a rate dependent upon the Release Rate
register. The gain can never be increased past its set value and, therefore, the release only
occurs if the limiter has already reduced the gain. The release threshold value can be used
to set what is effectively a minimum dynamic range, this is helpful as over limiting can
reduce the dynamic range to virtually zero and cause program material to sound “lifeless”.
In AC mode, the attack and release thresholds are set relative to full-scale. In DRC mode,
the attack threshold is set relative to the maximum volume setting of the channels mapped
to that limiter and the release threshold is set relative to the maximum volume setting plus
the attack threshold.
Table 66. Limiter attack rate vs LxA bits
LxA[3:0]
Attack Rate dB/ms
0000
3.1584
0001
2.7072
0010
2.2560
0011
1.8048
0100
1.3536
0101
0.9024
0110
0.4512
0111
0.2256
1000
0.1504
1001
0.1123
1010
0.0902
1011
0.0752
1100
0.0645
1101
0.0564
1110
0.0501
1111
0.0451
Fast
Slow
DocID015276 Rev 8
53/79
79
Register description
STA339BWS
Table 67. Limiter release rate vs LxR bits
LxR[3:0]
Release Rate dB/ms
0000
0.5116
0001
0.1370
0010
0.0744
0011
0.0499
0100
0.0360
0101
0.0299
0110
0.0264
0111
0.0208
1000
0.0198
1001
0.0172
1010
0.0147
1011
0.0137
1100
0.0134
1101
0.0117
1110
0.0110
1111
0.0104
Fast
Slow
Anticlipping mode
Table 68. Limiter attack threshold vs LxAT bits (AC mode)
LxAT[3:0]
54/79
AC (dB relative to fs)
0000
-12
0001
-10
0010
-8
0011
-6
0100
-4
0101
-2
0110
0
0111
+2
1000
+3
1001
+4
1010
+5
1011
+6
1100
+7
1101
+8
DocID015276 Rev 8
STA339BWS
Register description
Table 68. Limiter attack threshold vs LxAT bits (AC mode) (continued)
LxAT[3:0]
AC (dB relative to fs)
1110
+9
1111
+10
Table 69. Limiter release threshold vs LxRT bits (AC mode)
LxRT[3:0]
AC (dB relative to fs)
0000
-
0001
-29
0010
-20
0011
-16
0100
-14
0101
-12
0110
-10
0111
-8
1000
-7
1001
-6
1010
-5
1011
-4
1100
-3
1101
-2
1110
-1
1111
-0
Dynamic range compression mode
Table 70. Limiter attack threshold vs LxAT bits (DRC mode)
LxAT[3:0]
DRC (dB relative to Volume)
0000
-31
0001
-29
0010
-27
0011
-25
0100
-23
0101
-21
0110
-19
0111
-17
1000
-16
DocID015276 Rev 8
55/79
79
Register description
STA339BWS
Table 70. Limiter attack threshold vs LxAT bits (DRC mode) (continued)
LxAT[3:0]
DRC (dB relative to Volume)
1001
-15
1010
-14
1011
-13
1100
-12
1101
-10
1110
-7
1111
-4
Table 71. Limiter release threshold vs LxRT bits (DRC mode)
LxRT[3:0]
7.6.6
DRC (db relative to Volume + LxAT)
0000
-
0001
-38
0010
-36
0011
-33
0100
-31
0101
-30
0110
-28
0111
-26
1000
-24
1001
-22
1010
-20
1011
-18
1100
-15
1101
-12
1110
-9
1111
-6
Limiter 1 extended attack threshold (addr 0x32)
D7
D6
D5
D4
D3
D2
D1
D0
EATHEN1
EATH1[6]
EATH1[5]
EATH1[4]
EATH1[3]
EATH1[2]
EATH1[1]
EATH1[0]
0
0
1
1
0
0
0
0
The extended attack threshold value is determined as follows:
attack threshold = -12 + EATH1 / 4
56/79
DocID015276 Rev 8
STA339BWS
7.6.7
Register description
Limiter 1 extended release threshold (addr 0x33)
D7
D6
D5
D4
D3
D2
D1
D0
ERTHEN1
ERTH1[6]
ERTH1[5]
ERTH1[4]
ERTH1[3]
ERTH1[2]
ERTH1[1]
ERTH1[0]
0
0
1
1
0
0
0
0
The extended release threshold value is determined as follows:
release threshold = -12 + ERTH1 / 4
7.6.8
Limiter 2 extended attack threshold (addr 0x34)
D7
D6
D5
D4
D3
D2
D1
D0
EATHEN2
EATH2[6]
EATH2[5]
EATH2[4]
EATH2[3]
EATH2[2]
EATH2[1]
EATH2[0]
0
0
1
1
0
0
0
0
The extended attack threshold value is determined as follows:
attack threshold = -12 + EATH2 / 4
7.6.9
Limiter 2 extended release threshold (addr 0x35)
D7
D6
D5
D4
D3
D2
D1
D0
ERTHEN2
ERTH2[6]
ERTH2[5]
ERTH2[4]
ERTH2[3]
ERTH2[2]
ERTH2[1]
ERTH2[0]
0
0
1
1
0
0
0
0
The extended release threshold value is determined as follows:
release threshold = -12 + ERTH2 / 4
Note:
Attack/release threshold step is 0.125 dB in the range -12 dB and 0 dB.
7.7
User-defined coefficient control registers (addr 0x16 - 0x26)
7.7.1
Coefficient address register (addr 0x16)
7.7.2
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
Reserved
CFA5
CFA4
CFA3
CFA2
CFA1
CFA0
0
0
0
0
0
0
0
0
Coefficient b1 data register bits (addr 0x17 - 0x19)
D7
D6
D5
D4
D3
D2
D1
D0
C1B23
C1B22
C1B21
C1B20
C1B19
C1B18
C1B17
C1B16
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C1B15
C1B14
C1B13
C1B12
C1B11
C1B10
C1B9
C1B8
0
0
0
0
0
0
0
0
DocID015276 Rev 8
57/79
79
Register description
7.7.3
7.7.4
7.7.5
58/79
STA339BWS
D7
D6
D5
D4
D3
D2
D1
D0
C1B7
C1B6
C1B5
C1B4
C1B3
C1B2
C1B1
C1B0
0
0
0
0
0
0
0
0
Coefficient b2 data register bits (addr 0x1A - 0x1C)
D7
D6
D5
D4
D3
D2
D1
D0
C2B23
C2B22
C2B21
C2B20
C2B19
C2B18
C2B17
C2B16
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C2B15
C2B14
C2B13
C2B12
C2B11
C2B10
C2B9
C2B8
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C2B7
C2B6
C2B5
C2B4
C2B3
C2B2
C2B1
C2B0
0
0
0
0
0
0
0
0
Coefficient a1 data register bits (addr 0x1D - 0x1F)
D7
D6
D5
D4
D3
D2
D1
D0
C3B23
C3B22
C3B21
C3B20
C3B19
C3B18
C3B17
C3B16
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C3B15
C3B14
C3B13
C3B12
C3B11
C3B10
C3B9
C3B8
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C3B7
C3B6
C3B5
C3B4
C3B3
C3B2
C3B1
C3B0
0
0
0
0
0
0
0
0
Coefficient a2 data register bits (addr 0x20 - 0x22)
D7
D6
D5
D4
D3
D2
D1
D0
C4B23
C4B22
C4B21
C4B20
C4B19
C4B18
C4B17
C4B16
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C4B15
C4B14
C4B13
C4B12
C4B11
C4B10
C4B9
C4B8
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C4B7
C4B6
C4B5
C4B4
C4B3
C4B2
C4B1
C4B0
0
0
0
0
0
0
0
0
DocID015276 Rev 8
STA339BWS
7.7.6
7.7.7
Register description
Coefficient b0 data register bits (addr 0x23 - 0x25)
D7
D6
D5
D4
D3
D2
D1
D0
C5B23
C5B22
C5B21
C5B20
C5B19
C5B18
C5B17
C5B16
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C5B15
C5B14
C5B13
C5B12
C5B11
C5B10
C5B9
C5B8
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C5B7
C5B6
C5B5
C5B4
C5B3
C5B2
C5B1
C5B0
0
0
0
0
0
0
0
0
Coefficient read/write control register (addr 0x26)
D7
7.7.8
D6
D3
D2
D1
D0
Reserved
D5
D4
RA
R1
WA
W1
0
0
0
0
0
Description
Coefficients for user-defined EQ, mixing, scaling, and bass management are handled
internally in the STA339BWS via RAM. Access to this RAM is available to the user via an
I2C register interface. A collection of I2C registers are dedicated to this function. One
contains a coefficient base address, five sets of three store the values of the 24-bit
coefficients to be written or that were read, and one contains bits used to control the
write/read of the coefficient(s) to/from RAM.
Three different RAM banks are embedded in STA339BWS. The three banks are managed
in paging mode using EQCFG register bits. They can be used to store different EQ settings.
For speaker frequency compensation, a sampling frequency independent EQ must be
implemented. Computing three different coefficients set for 32 kHz, 44.1kHz, 48 kHz and
downloading them into the three RAM banks, it is possible to select the suitable RAM block
depending from the incoming frequency with a simple I2C write operation on register 0x31.
For example, in case of different input sources (different sampling rates), the three different
sets of coefficients can be downloaded once at the start up, and during the normal play it is
possible to switch among the three RAM blocks allowing a faster operation, without any
additional download from the microcontroller.
To write the coefficients in a particular RAM bank, this bank must be selected first writing
bit 0 and bit 1 in register 0x31. Then the write procedure below can be used.
Note that as soon as a RAM bank is selected, the EQ settings are automatically switched to
the coefficients stored in the active RAM block.
Note:
The read write operation on RAM coefficients works only if RLCKI (pin29) is switching and
stable (ref. Table 8, tLRJT timing) and PLL must be locked (ref bit D7 reg 0x2D).
DocID015276 Rev 8
59/79
79
Register description
STA339BWS
Reading a coefficient from RAM
1.
2.
3.
4.
5.
6.
Select the RAM block with register 0x31 bit1, bit0.
Write 6-bits of address to I2C register 0x16.
Write 1 to R1 bit in I2C address 0x26.
Read top 8-bits of coefficient in I2C address 0x17.
Read middle 8-bits of coefficient in I2C address 0x18.
Read bottom 8-bits of coefficient in I2C address 0x19.
Reading a set of coefficients from RAM
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Select the RAM block with register 0x31 bit1, bit0.
Write 6-bits of address to I2C register 0x16.
Write 1 to RA bit in I2C address 0x26.
Read top 8-bits of coefficient in I2C address 0x17.
Read middle 8-bits of coefficient in I2C address 0x18.
Read bottom 8-bits of coefficient in I2C address 0x19.
Read top 8-bits of coefficient b2 in I2C address 0x1A.
Read middle 8-bits of coefficient b2 in I2C address 0x1B.
Read bottom 8-bits of coefficient b2 in I2C address 0x1C.
Read top 8-bits of coefficient a1 in I2C address 0x1D.
Read middle 8-bits of coefficient a1 in I2C address 0x1E.
Read bottom 8-bits of coefficient a1 in I2C address 0x1F.
Read top 8-bits of coefficient a2 in I2C address 0x20.
Read middle 8-bits of coefficient a2 in I2C address 0x21.
Read bottom 8-bits of coefficient a2 in I2C address 0x22.
Read top 8-bits of coefficient b0 in I2C address 0x23.
Read middle 8-bits of coefficient b0 in I2C address 0x24.
Read bottom 8-bits of coefficient b0 in I2C address 0x25.
Writing a single coefficient to RAM
1.
2.
3.
4.
5.
6.
60/79
Select the RAM block with register 0x31 bit1, bit0.
Write 6-bits of address to I2C register 0x16.
Write top 8-bits of coefficient in I2C address 0x17.
Write middle 8-bits of coefficient in I2C address 0x18.
Write bottom 8-bits of coefficient in I2C address 0x19.
Write 1 to W1 bit in I2C address 0x26.
DocID015276 Rev 8
STA339BWS
Register description
Writing a set of coefficients to RAM
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Select the RAM block with register 0x31 bit1, bit0.
Write 6-bits of starting address to I2C register 0x16.
Write top 8-bits of coefficient b1 in I2C address 0x17.
Write middle 8-bits of coefficient b1 in I2C address 0x18.
Write bottom 8-bits of coefficient b1 in I2C address 0x19.
Write top 8-bits of coefficient b2 in I2C address 0x1A.
Write middle 8-bits of coefficient b2 in I2C address 0x1B.
Write bottom 8-bits of coefficient b2 in I2C address 0x1C.
Write top 8-bits of coefficient a1 in I2C address 0x1D.
Write middle 8-bits of coefficient a1 in I2C address 0x1E.
Write bottom 8-bits of coefficient a1 in I2C address 0x1F.
Write top 8-bits of coefficient a2 in I2C address 0x20.
Write middle 8-bits of coefficient a2 in I2C address 0x21.
Write bottom 8-bits of coefficient a2 in I2C address 0x22.
Write top 8-bits of coefficient b0 in I2C address 0x23.
Write middle 8-bits of coefficient b0 in I2C address 0x24.
Write bottom 8-bits of coefficient b0 in I2C address 0x25.
Write 1 to WA bit in I2C address 0x26.
The mechanism for writing a set of coefficients to RAM provides a method of updating the
five coefficients corresponding to a given biquad (filter) simultaneously to avoid possible
unpleasant acoustic side-effects. When using this technique, the 6-bit address specifies the
address of the biquad b1 coefficient (for example, 0, 5, 10, 20, 35 decimal), and the
STA339BWS generates the RAM addresses as offsets from this base value to write the
complete set of coefficient data.
Table 72. RAM block for biquads, mixing, scaling, bass management
Index
(Decimal)
Index (Hex)
Description
Coefficient
Default
0
0x00
C1H10(b1/2)
0x000000
1
0x01
C1H11(b2)
0x000000
2
0x02
C1H12(a1/2)
0x000000
3
0x03
C1H13(a2)
0x000000
4
0x04
C1H14(b0/2)
0x400000
5
0x05
Channel 1 - Biquad 2
C1H20
0x000000
…
…
…
…
…
19
0x13
Channel 1 - Biquad 4
C1H44
0x400000
20
0x14
C2H10
0x000000
21
0x15
C2H11
0x000000
…
…
…
…
…
39
0x27
Channel 2 - Biquad 4
C2H44
0x400000
Channel 1 - Biquad 1
Channel 2 - Biquad 1
DocID015276 Rev 8
61/79
79
Register description
STA339BWS
Table 72. RAM block for biquads, mixing, scaling, bass management (continued)
Index
(Decimal)
Index (Hex)
40
0x28
41
0x29
42
0x2A
43
0x2B
44
Description
Coefficient
Default
C12H0(b1/2)
0x000000
C12H1(b2)
0x000000
C12H2(a1/2)
0x000000
C12H3(a2)
0x000000
0x2C
C12H4(b0/2)
0x400000
45
0x2D
C3H0(b1/2)
0x000000
46
0x2E
C3H1(b2)
0x000000
47
0x2F
C3H2(a1/2)
0x000000
48
0x30
C3H3(a2)
0x000000
49
0x31
C3H4(b0/2)
0x400000
50
0x32
Channel 1 - Prescale
C1PreS
0x7FFFFF
51
0x33
Channel 2 - Prescale
C2PreS
0x7FFFFF
52
0x34
Channel 1 - Postscale
C1PstS
0x7FFFFF
53
0x35
Channel 2 - Postscale
C2PstS
0x7FFFFF
54
0x36
Channel 3 - Postscale
C3PstS
0x7FFFFF
55
0x37
TWARN/OC - Limit
TWOCL
0x5A9DF7
56
0x38
Channel 1 - Mix 1
C1MX1
0x7FFFFF
57
0x39
Channel 1 - Mix 2
C1MX2
0x000000
58
0x3A
Channel 2 - Mix 1
C2MX1
0x000000
59
0x3B
Channel 2 - Mix 2
C2MX2
0x7FFFFF
60
0x3C
Channel 3 - Mix 1
C3MX1
0x400000
61
0x3D
Channel 3 - Mix 2
C3MX2
0x400000
62
0x3E
Unused
63
0x3F
Unused
Channel 1/2 - Biquad 8
for XO = 000
High-pass 2nd order filter
for XO 000
Channel 3 - Biquad
for XO = 000
Low-pass 2nd order filter
for XO 000
User-defined EQ
The STA339BWS can be programmed for four EQ filters (biquads) per each of the two input
channels. The biquads use the following equation:
Y[n] = 2 * (b0 / 2) * X[n] + 2 * (b1 / 2) * X[n-1] + b2 * X[n-2] - 2 * (a1 / 2) * Y[n-1] - a2 * Y[n-2]
= b0 * X[n] + b1 * X[n-1] + b2 * X[n-2] - a1 * Y[n-1] - a2 * Y[n-2]
where Y[n] represents the output and X[n] represents the input. Multipliers are 24-bit signed
fractional multipliers, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF
(0.9999998808).
62/79
DocID015276 Rev 8
STA339BWS
Register description
Coefficients stored in the user defined coefficient RAM are referenced in the following
manner:
CxHy0 = b1 / 2
CxHy1 = b2
CxHy2 = -a1 / 2
CxHy3 = -a2
CxHy4 = b0 / 2
where x represents the channel and the y the biquad number. For example, C2H41 is the b2
coefficient in the fourth biquad for channel 2.
Crossover and biquad #8
Additionally, the STA339BWS can be programmed for a high-pass filter (processing
channels 1 and 2) and a low-pass filter (processing channel 3) to be used for bassmanagement crossover when the XO setting is 000 (user-defined). Both of these filters
when defined by the user (rather than using the preset crossover filters) are second order
filters that use the biquad equation given above. They are loaded into the C12H0-4 and
C3Hy0-4 areas of RAM noted in Table 72, addresses 0x28 to 0x31.
By default, all user-defined filters are pass-through where all coefficients are set to 0, except
the b0/2 coefficient which is set to 0x400000 (representing 0.5)
Prescale
The STA339BWS provides a multiplication for each input channel for the purpose of scaling
the input prior to EQ. This pre-EQ scaling is accomplished by using a 24-bit signed
fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The scale factor
for this multiply is loaded into RAM. All channels can use the channel-1 prescale factor by
setting the Biquad link bit. By default, all prescale factors (RAM addresses 0x32 to 0x33) are
set to 0x7FFFFF.
Postscale
The STA339BWS provides one additional multiplication after the last interpolation stage and
the distortion compensation on each channel. This postscaling is accomplished by using a
24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The
scale factor for this multiply is loaded into RAM. This postscale factor can be used in
conjunction with an ADC equipped micro-controller to perform power-supply error
correction. All channels can use the channel-1 postscale factor by setting the postscale link
bit. By default, all postscale factors (RAM addresses 0x34 to 0x36) are set to 0x7FFFFF.
When line output is being used, channel-3 postscale affects both channels 3 and 4.
7.7.9
Thermal warning and overcurrent adjustment (TWOCL)
The STA339BWS provides a simple mechanism for reacting to overcurrent or thermal
warning detection in the power block. When the warning occurs, the TWOCL value is used
to provide output attenuation clipping on all channels.
The amount of attenuation to be applied in this situation can be adjusted by modifying the
overcurrent and thermal warning limiting value (RAM addr 0x37). By default, the overcurrent
postscale adjustment factor is set to 0x5A9DF7 (that is, -3 dB). Once the limiting is applied,
it remains until the device is reset or according to the TWRB and OCRB settings.
DocID015276 Rev 8
63/79
79
Register description
7.8
STA339BWS
Variable max power correction registers (addr 0x27 - 0x28)
D7
D6
D5
D4
D3
D2
D1
D0
MPCC15
MPCC14
MPCC13
MPCC12
MPCC11
MPCC10
MPCC9
MPCC8
0
0
0
1
1
0
1
0
D7
D6
D5
D4
D3
D2
D1
D0
MPCC7
MPCC6
MPCC5
MPCC4
MPCC3
MPCC2
MPCC1
MPCC0
1
1
0
0
0
0
0
0
MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This coefficient is
used in place of the default coefficient when MPCV = 1.
7.9
Distortion compensation registers (addr 0x29 - 0x2A)
D7
D6
D5
D4
D3
D2
D1
D0
DCC15
DCC14
DCC13
DCC12
DCC11
DCC10
DCC9
DCC8
1
1
1
1
0
0
1
1
D7
D6
D5
D4
D3
D2
D1
D0
DCC7
DCC6
DCC5
DCC4
DCC3
DCC2
DCC1
DCC0
0
0
1
1
0
0
1
1
DCC bits determine the 16 MSBs of the distortion compensation coefficient. This coefficient
is used in place of the default coefficient when DCCV = 1.
7.10
Fault detect recovery constant registers (addr 0x2B - 0x2C)
D7
D6
D5
D4
D3
D2
D1
D0
FDRC15
FDRC14
FDRC13
FDRC12
FDRC11
FDRC10
FDRC9
FDRC8
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
FDRC7
FDRC6
FDRC5
FDRC4
FDRC3
FDRC2
FDRC1
FDRC0
0
0
0
0
1
1
0
0
FDRC bits specify the 16-bit fault detect recovery time delay. When FAULT is asserted, the
TRISTATE output is immediately asserted low and held low for the time period specified by
this constant. A constant value of 0x0001 in this register is approximately 0.083 ms. The
default value of 0x000C gives approximately 0.1 ms.
Note:
64/79
0x0000 is a reserved value for these registers.
DocID015276 Rev 8
STA339BWS
7.11
Register description
Device status register (addr 0x2D)
D7
D6
D5
D4
D3
D2
D1
D0
PLLUL
FAULT
UVFAULT
Reserved
OCFAULT
OCWARN
TFAULT
TWARN
This read-only register provides fault and thermal-warning status information from the power
control block. Logic value 1 for faults or warning means normal state. Logic 0 means a fault
or warning detected on power bridge. The PLLUL = 1 means that the PLL is not locked.
Table 73. Status register bits
Bit
R/W
RST
Name
Description
0: PLL locked
7
R
-
PLLUL
6
R
-
FAULT
0: fault detected on power bridge
1: normal operation
5
R
-
UVFAULT
0: VCCxX internally detected
< undervoltage threshold
4
R
-
Reserved
-
3
R
-
OCFAULT
0: overcurrent fault detected
2
R
-
OCWARN
0: overcurrent warning
1
R
-
TFAULT
0: thermal fault, junction temperature over limit
0
R
-
TWARN
0: thermal warning, junction temperature is close to
the fault condition
1: PLL not locked
DocID015276 Rev 8
65/79
79
Register description
7.12
STA339BWS
EQ coefficients and DRC configuration register (addr 0x31)
D7
D6
D5
D4
D3
D2
D1
D0
XOB
Reserved
Reserved
AMGC[3]
AMGC[2]
Reserved
SEL[1]
SEL[0]
0
0
0
0
0
0
0
0
EQ RAM
Table 74. EQ RAM select
SEL[1:0]
EQ RAM bank selected
00 / 11
Bank 0 activated
01
Bank 1 activated
10
Bank 2 activated
DRC / Anticlipping
Bits AMGC[3:2] change the behavior of the bits AMGC[1:0] as given in Table 75 below.
Table 75. Anticlipping and DRC preset
AMGC[3:2]
Anticlipping and DRC preset selected
00
DRC / Anticlipping behavior is described in Table 54 on page 47 (default)
01
DRC / Anticlipping behavior is described Table 76 on page 66
10 / 11
Reserved
Anticlipping when AMGC[3:2] = 01
Table 76. Anticlipping selection for AMGC[3:2] = 01
AMGC[1:0]
Mode
00
AC0, stereo anticlipping 0 dB limiter
01
AC1, stereo anticlipping +1.25 dB limiter
10
AC2, stereo anticlipping +2 dB limiter
11
Reserved do not use
AC0, AC1, AC2 settings are designed for the loudspeaker protection function, limiting at the
minimum any audio artefacts introduced by typical anticlipping / DRC algorithms. More
detailed information is available in the applications notes “Configurable output power rate
using STA335BW” and “STA335BWS vs STA335BW”.
XOB
This bit can be used to bypass the crossover filters. Logic 1 means that the function is not
active. In this case, high pass crossover filter works as a pass-through on the data path
(b0 = 1, all the other coefficients at logic 0) while the low-pass filter is configured to have
zero signal on channel-3 data processing (all the coefficients are at logic 0).
66/79
DocID015276 Rev 8
STA339BWS
7.13
Register description
Extended configuration register (addr 0x36)
D7
D6
D5
D4
D3
D2
D1
D0
MDRC[1]
MDRC[0]
PS48DB
XAR1
XAR2
BQ5
BQ6
BQ7
0
0
0
0
0
0
0
0
Extended configuration register provides access to B2DRC and biquad 5, 6 and 7.
7.13.1
Dual-band DRC (B2DRC)
STA339BWS device provide a dual-band DRC (B2DRC) on the left and right channels data
path, as depicted in Figure 20. Dual-band DRC is activated by setting MDRC[1:0] = 1x.
Figure 20. B2DRC scheme
The low frequency information (LFE) is extracted from left and right channels, removing the
high frequencies using a programmable biquad filter, and then computing the difference with
the original signal. Limiter 1 (DRC1) is then used to control left/right high frequency
components amplitude while limiter 2 (DRC2) is used to control the low frequency
components (see Chapter 7.6).
The cut-off frequency of the high pass filters can be user defined, XO[3:0] = 0, or selected
from the predefined values.
DRC1 and DRC2 are then used to independently limit L/R high frequencies and LFE
channels amplitude (see Chapter 7.6) as well as their volume control. To be noted that, in
this configuration, the dedicated channel 3 volume control can be actually acted as a bass
boost enhancer as well (0.5 dB/step resolution).
The processed LFE channel is then recombined with the L and R channels in order to
reconstruct the 2.0 output signal.
Sub-band decomposition
The sub-band decomposition for B2DRC can be configured specifying the cutoff frequency.
The cut off frequency can be programmed in two ways, using XO bits in register 0x0C, or
using “user programmable” mode (coefficients stored in RAM addresses 0x28 to 0x31).
DocID015276 Rev 8
67/79
79
Register description
STA339BWS
For the user programmable mode, use the formulae below to compute the high pass filters:
b0 = (1 + alpha) / 2
a0 = 1
b1 = -(1 + alpha) / 2
a1 = -alpha
b2 = 0
a2 = 0
where alpha = (1-sin(0)) / cos(0), and 0 is the cut-off frequency.
A first-order filter is suggested to guarantee that for every 0 the corresponding low-pass
filter obtained as difference (as shown in Figure 20) has a symmetric (relative to HP filter)
frequency response, and the corresponding recombination after the DRC has low ripple.
Second-order filters can be used as well, but in this case the filter shape must be carefully
chosen to provide good low pass response and minimum ripple recombination. For secondorder is not possible to give a closed formula to get the best coefficients, but empirical
adjustment should be done.
DRC settings
The DRC blocks used by B2DRC are the same as those described in Chapter 7.6. B2DRC
configure automatically the DRC blocks in anticlipping mode. Attack and release thresholds
can be selected using registers 0x32, 0x33, 0x34, 0x35, while attack and release rates are
configured by registers 0x12 and 0x14.
Band downmixing
The low-frequency band is down-mixed to the left and right channels at the B2DRC output.
Channel volume can be used to weight the bands recombination to fine tune the overall
frequency response.
7.13.2
EQ DRC mode
Setting MDRC = 01, it is possible to add a programmable biquad (the XO biquad at RAM
addresses 0x28 to 0x2C is used for this purpose) to the Limiter/compressor measure path
(side chain). Using EQDRC the peak detector input can be shaped in frequency using the
programmable biquad. For example, if a bass boost of 2 dB is applied (using a low-shelf
filter, for example), the effect is that the EQDRC out will limit bass frequencies to 2 dB below
the selected attack threshold.
Generally speaking, if the biquad boosts frequency f with an amount of X dB, the level of a
compressed sine wave at the output is TH - X, where TH is the selected attack threshold.
Note:
68/79
EQDRC works only if the biquad frequency response magnitude is >= 0 dB for every
frequency.
DocID015276 Rev 8
STA339BWS
Register description
Figure 21. EQDRC scheme
Extended postscale range
Table 77. Bit PS48DB description
PS48DB
Mode
0
Postscale value is applied as defined in coefficient RAM
1
Postscale value is applied with offset of +48 dB with respect to the coefficient
RAM value
Postscale is an attenuation by default. When PS48DB is set to 1, an offset of 48 dB is
applied to the configured word, so postscale can act as a gain too.
Extended attack rate
The attack rate shown in Table 66 can be extended to provide up to 8 dB/ms attack rate on
both limiters.
Table 78. Bit XAR1 description
XAR1
Mode
0
Limiter1 attack rate is configured using Table 66
1
Limiter1 attack rate is 8 dB/ms
Table 79. Bit XAR2 description
XAR2
Mode
0
Limiter2 attack rate is configured using Table 66
1
Limiter2 attack rate is 8 dB/ms
Extended biquad selector
De-emphasis filter as well as bass and treble controls can be configured as user defined
filters when equalization coefficients link is activated (BQL = 1) and the corresponding BQx
bit is set to 1.
DocID015276 Rev 8
69/79
79
Register description
STA339BWS
Table 80. Bit BQ5 description
BQ5
Mode
0
Preset de-emphasis filter selected
1
User defined biquad 5 coefficients are selected
Table 81. Bit BQ6 description
BQ6
Mode
0
Preset bass filter selected as per Table 65
1
User defined biquad 6 coefficients are selected
Table 82. Bit BQ7 description
BQ7
Mode
0
Preset treble filter selected as per Table 65
1
User defined biquad 7 coefficients are selected
When filters from 5th to 7th are configured as user-programmable, the corresponding
coefficients are stored respectively in addresses 0x14-0x18 (BQ5), 0x19-0x1D (BQ6) and
0x1E-0x22 (BQ7) as in Table 72 on page 61.
Note:
BQx bits are ignored if BQL = 0 or if DEMP = 1 (relevant for BQ5) or CxTCB = 1 (relevant for
BQ6 and BQ7).
7.14
Soft volume configuration registers (addr 0x37 - 0x38)
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
Reserved
SVUPE
SVUP[4]
SVUP[3]
SVUP[2]
SVUP[1]
SVUP[0]
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
Reserved
SVDWE
SVDW4]
SVDW[3]
SVDW[2]
SVDW[1]
SVDW[0]
0
0
0
0
0
0
0
0
Soft volume update has a fixed rate by default. Using register 0x37 and 0x38 it is possible to
override the default behavior allowing different volume change rates.
It is also possible to independently define the fade-in (volume is increased) and fade-out
(volume is decreased) rates according to the desired behavior.
Table 83. Bit SVUPE description
SVUPE
70/79
Mode
0
When volume is increased, use the default rate
1
When volume is increased, use the rates defined by SVUP[4:0]
DocID015276 Rev 8
STA339BWS
Register description
When SVUPE = 1 the fade-in rate is defined by the SVUP[4:0] bits according to the
following formula:
Fade-in rate = 48 / (N + 1) dB/ms
where N is the SVUP[4:0] value.
Table 84. Bit SVDWE description
SVDWE
Mode
0
When volume is decreased, use the default rate
1
When volume is decreased, use the rates defined by SVDW[4:0]
When SVDWE = 1 the fade-out rate is defined by the SVDW[4:0] bits according to the
following formula:
Fade-in rate = 48 / (N + 1) dB/ms
where N is the SVDW[4:0] value.
Note:
For fade-out rates greater than 6 dB/ms it is suggested to disable bit ZCE (Section 7.1.5 on
page 33) in order to avoid any audible pop noise.
7.15
DRC RMS filter coefficients (addr 0x39-0x3E)
D7
D6
D5
D4
D3
D2
D1
D0
R_C0[23]
R_C0[22]
R_C0[21]
R_C0[20]
R_C0[19]
R_C0[18]
R_C0[17]
R_C0[16]
0
0
0
0
0
0
0
1
D7
D6
D5
D4
D3
D2
D1
D0
R_C0[15]
R_C0[14]
R_C0[13]
R_C0[12]
R_C0[11]
R_C0[10]
R_C0[9]
R_C0[8]
1
1
1
0
1
1
1
0
D7
D6
D5
D4
D3
D2
D1
D0
R_C0[7]
R_C0[6]
R_C0[5]
R_C0[4]
R_C0[3]
R_C0[2]
R_C0[1]
R_C0[0]
1
1
1
1
1
1
1
1
D7
D6
D5
D4
D3
D2
D1
D0
R_C1[23]
R_C1[22]
R_C1[21]
R_C1[20]
R_C1[19]
R_C1[18]
R_C1[17]
R_C1[16]
0
1
1
1
1
1
1
0
D7
D6
D5
D4
D3
D2
D1
D0
R_C1[15]
R_C1[14]
R_C1[13]
R_C1[12]
R_C1[11]
R_C1[10]
R_C1[9]
R_C1[8]
1
1
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
R_C1[7]
R_C1[6]
R_C1[5]
R_C1[4]
R_C1[3]
R_C1[2]
R_C1[1]
R_C1[0]
0
0
1
0
0
1
1
0
Signal level detection in DRC algorithm is computed using the following formula:
y(t) = c0 * abs(x(t)) + c1 * y(t-1)
where x(t) represents the audio signal applied to the limiter, and y(t) the measured level.
DocID015276 Rev 8
71/79
79
Applications
8.1
Application schematics
STA339BWS
8
Figure 22 and Figure 23 show the typical application schematics for stereo and mono configuration, respectively. Special attention
has to be paid to the layout of the PCB. All the decoupling capacitors have to be placed as close as possible to the device to limit
spikes on the supplies.
Figure 22. Application circuit for 2 or 2.1-channel configuration
DocID015276 Rev 8
Applications
72/79
STA339BWS
Figure 23. Application circuit for mono BTL configuration
DocID015276 Rev 8
Applications
73/79
Applications
8.2
STA339BWS
PLL filter circuit
It is recommended to use the applications circuit and values for the PLL loop filter to achieve
the best performance from the device in general applications. Note that the ground of this
filter circuit has to be connected to the ground of the PLL without any resistive path.
Concerning the component values, it must be taken into account that the greater the filter
bandwidth, the less is the lock time but the higher is the PLL output jitter.
8.3
Typical output configuration
Figure 24 shows the typical output configuration used for BTL stereo mode. Please contact
STMicroelectronics for other recommended output configurations.
Figure 24. Output configuration for stereo BTL mode (RL = 8 
22 μH
OUT1A
100 nF
100 nF
22R
6R2
470 nF
Left
100 nF
330 pF
6R2
100 nF
22 μH
OUT1B
22 μH
OUT2A
100 nF
100 nF
22R
6R2
100 nF
330 pF
6R2
100 nF
22 μH
OUT2B
74/79
470 nF
DocID015276 Rev 8
Right
STA339BWS
9
Package thermal characteristics
Package thermal characteristics
Using a double-layer PCB the thermal resistance, junction to ambient, with 2 copper ground
areas of 3 x 3 cm2 and with 16 via holes is 24 °C/W in natural air convection.
The dissipated power within the device depends primarily on the supply voltage, load
impedance and output modulation level.
Thus, the maximum estimated dissipated power for the STA339BWS is:
2 x 20 W @ 8, 18 V
Pd max is approximately 4 W
2 x 9 W + 1 x 20 W @ 4 , 8 ,18 V
Pd max is approximately 5 W
Figure 25 shows the power derating curve for the PowerSSO-36 package on PCBs with
copper areas of 2 x 2 cm2 and 3 x 3 cm2.
Figure 25. PowerSSO-36 power derating curve
STA339BWS
PowerSSO-
DocID015276 Rev 8
75/79
79
Package mechanical data
10
STA339BWS
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 26 shows the package outline and Table 85 gives the dimensions.
Table 85. PowerSSO-36 EPD dimensions
Dimensions in mm
Dimensions in inches
Symbol
Min
76/79
Typ
Max
Min
Typ
Max
A
2.15
-
2.47
0.085
-
0.097
A2
2.15
-
2.40
0.085
-
0.094
a1
0.00
-
0.10
0.00
-
0.004
b
0.18
-
0.36
0.007
-
0.014
c
0.23
-
0.32
0.009
-
0.013
D
10.10
-
10.50
0.398
-
0.413
E
7.40
-
7.60
0.291
-
0.299
e
-
0.5
-
-
0.020
-
e3
-
8.5
-
-
0.335
-
F
-
2.3
-
-
0.091
-
G
-
-
0.10
-
-
0.004
H
10.10
-
10.50
0.398
-
0.413
h
-
-
0.40
-
-
0.016
k
0
-
8 degrees
0
-
8 degrees
L
0.60
-
1.00
0.024
-
0.039
M
-
4.30
-
-
0.169
-
N
-
-
10 degrees
-
-
10 degrees
O
-
1.20
-
-
0.047
-
Q
-
0.80
-
-
0.031
-
S
-
2.90
-
-
0.114
-
T
-
3.65
-
-
0.144
-
U
-
1.00
-
-
0.039
-
X
4.10
-
4.70
0.161
-
0.185
Y
6.50
-
7.10
0.256
-
0.280
DocID015276 Rev 8
h x 45°
STA339BWS
Figure 26. PowerSSO-36 EPD outline drawing
DocID015276 Rev 8
Package mechanical data
77/79
Revision history
11
STA339BWS
Revision history
Table 86. Document revision history
Date
Revision
10-Dec-2008
1
Initial release.
2
Updated names/descriptions for pins 17-20 in Chapter 2 on page 10
Added cross reference to I2S interface setup in Section 3.6: Power
on/off sequence on page 18
Added Figure 4: Power-off sequence for pop-free turn-off on page 18
Updated text and Figure 22: Application diagram on page 71
Updated Section 7.2: PLL filter on page 71
3
Updated presentation
Removed master mute from Section 7.2.5 on page 46
Added Rth j-amb typical value to Table 4 on page 12
Updated Biquad # in Figure 8 on page 19
Updated section Fault detect recovery bypass on page 27
Updated SV naming in Table 42 on page 35
Updated CxBO description in Table 62 on page 50
Updated Biquad # for C12Hx in Table 72 on page 61
Updated text in sections Crossover and biquad #8, Prescale and
Postscale on page 63.
17-Dec-2010
4
“Sound Terminal” now has registered trademark status
Updated test circuit in Figure 3 on page 15
Removed text concerning hard mute in Section 7.2 on page 44
Updated coefficient register addresses towards end of
Section 7.13.2 on page 68
Updated applications circuit in Figure 24 on page 74
22-Nov-2011
5
Updated bit D4 to “1” in Section 7.2.1: Mute/line output configuration
register (addr 0x06) on page 45
20-Sep-2012
6
Added Section 4 on page 17
Modified Note:: The read write operation on RAM coefficients works
only if RLCKI (pin29) is switching and stable (ref. Table 8, tLRJT
timing) and PLL must be locked (ref bit D7 reg 0x2D).
Updated Company information appearing on last page of document
24-Oct-2013
7
Modified ILIM and ISCP min. values in Table 7 on page 14
8
Updated power section paragraph in Section 1: Description
Added 1 channel mono-parallel (OCFG = 11) in Section 7.1.6:
Configuration register F (addr 0x05)
Updated Figure 22: Application circuit for 2 or 2.1-channel
configuration and added Figure 23: Application circuit for mono BTL
configuration
16-Feb-2009
01-Mar-2010
22-Sep-2014
78/79
Changes
DocID015276 Rev 8
STA339BWS
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2014 STMicroelectronics – All rights reserved
DocID015276 Rev 8
79/79
79