TH72016 433MHz FSK/ASK Transmitter Features Fully integrated PLL-stabilized VCO Frequency range from 380 MHz to 450 MHz Single-ended RF output FSK through crystal pulling allows modulation from DC to 40 kbit/s High FSK deviation possible for wideband data transmission ASK achieved by on/off keying of internal power amplifier up to 40 kbit/s Wide power supply range from 1.95 V to 5.5 V Very low standby current Microcontroller clock output On-chip low voltage detector High over-all frequency accuracy FSK deviation and center frequency independently adjustable Adjustable output power range from -12 dBm to +10 dBm Adjustable current consumption from 3.8 mA to 11.0 mA Conforms to EN 300 220 and similar standards 10-pin Quad Flat No-Lead Package (QFN) Ordering Information Part Number Temperature Code Package Code Delivery Form TH72016 K (-40 °C to 125 °C) LD (10L QFN 3x3 Dual) 121 pc/tube 5000 pc/T&R Application Examples General digital data transmission Tire Pressure Monitoring Systems (TPMS) Remote Keyless Entry (RKE) Wireless access control Alarm and security systems Garage door openers Remote Controls Home and building automation Low-power telemetry systems Pin Description top FSKDTA FSKSW ROI EN CKOUT TH72016 bottom VCC VEE OUT CKDIV PSEL 10 1 9 8 2 3 7 6 4 5 General Description The TH72016 FSK/ASK transmitter IC is designed for applications in the European 433 MHz industrialscientific-medical (ISM) band, according to the EN 300 220 telecommunications standard; but it can also be used in other countries with similar standards, e.g. FCC part 15.231. The transmitter's carrier frequency fc is determined by the frequency of the reference crystal fref. The integrated PLL synthesizer ensures that carrier frequencies, ranging from 380 MHz to 450 MHz, can be achieved. This is done by using a crystal with a reference frequency according to: fref = fc/N, where N = 32 is the PLL feedback divider ratio. A clock signal with selectable frequency is provided. It can be used to drive a microcontroller. 39010 72016 Rev. 007 Page 1 of 16 Data Sheet March/08 TH72016 433MHz FSK/ASK Transmitter Document Content 1 2 Theory of Operation ...................................................................................................3 1.1 General ............................................................................................................................. 3 1.2 Block Diagram .................................................................................................................. 3 Functional Description ..............................................................................................3 2.1 Crystal Oscillator .............................................................................................................. 3 2.2 FSK Modulation ................................................................................................................ 4 2.3 Crystal Pulling................................................................................................................... 4 2.4 ASK Modulation ................................................................................................................ 5 2.5 Output Power Selection .................................................................................................... 5 2.6 Lock Detection.................................................................................................................. 5 2.7 Low Voltage Detection...................................................................................................... 5 2.8 Mode Control Logic .......................................................................................................... 6 2.9 Clock Output..................................................................................................................... 6 2.10 Timing Diagrams .............................................................................................................. 6 3 Pin Definition and Description ..................................................................................7 4 Electrical Characteristics ..........................................................................................8 5 4.1 Absolute Maximum Ratings .............................................................................................. 8 4.2 Normal Operating Conditions ........................................................................................... 8 4.3 Crystal Parameters ........................................................................................................... 8 4.4 DC Characteristics............................................................................................................ 9 4.5 AC Characteristics .......................................................................................................... 10 4.6 Output Power Steps – FSK Mode .................................................................................. 11 4.7 Output Power Steps – ASK Mode .................................................................................. 11 Test Circuit ...............................................................................................................12 5.1 6 Test circuit component list to Fig. 6 ................................................................................ 12 Package Description ................................................................................................13 6.1 Soldering Information ..................................................................................................... 13 6.2 Recommended PCB Footprints ...................................................................................... 13 7 Reliability Information..............................................................................................14 8 ESD Precautions ............................................................ Error! Bookmark not defined. 9 Disclaimer .................................................................................................................16 39010 72016 Rev. 007 Page 2 of 16 Data Sheet March/08 TH72016 433MHz FSK/ASK Transmitter 1 Theory of Operation 1.1 General As depicted in Fig.1, the TH72016 transmitter consists of a fully integrated voltage-controlled oscillator (VCO), a divide-by-32 divider (div32), a phase-frequency detector (PFD) and a charge pump (CP). An internal loop filter determines the dynamic behavior of the PLL and suppresses reference spurious signals. A Colpitts crystal oscillator (XOSC) is used as the reference oscillator of a phase-locked loop (PLL) synthesizer. The VCO’s output signal feeds the power amplifier (PA). The RF signal power Pout can be adjusted in four steps from Pout = –12 dBm to +10 dBm, either by changing the value of resistor RPS or by varying the voltage VPS at pin PSEL. The open-collector output (OUT) can be used either to directly drive a loop antenna or to be matched to a 50Ohm load. Bandgap biasing ensures stable operation of the IC at a power supply range of 1.95 V to 5.5 V. 1.2 Block Diagram RPS R1 ASKDTA CKDIV VCC 7 10 PSEL 6 PLL CKOUT 5 div 4 div 16 32 ROI 8 PA OUT antenna matching network PFD 3 XOSC XBUF XTAL CP VCO mode control 4 EN FSKSW CX2 CX1 2 1 9 FSKDTA VEE Fig. 1: Block diagram with external components 2 Functional Description 2.1 Crystal Oscillator A Colpitts crystal oscillator with integrated functional capacitors is used as the reference oscillator for the PLL synthesizer. The equivalent input capacitance CRO offered by the crystal oscillator input pin ROI is about 18pF. The crystal oscillator is provided with an amplitude control loop in order to have a very stable frequency over the specified supply voltage and temperature range in combination with a short start-up time. 39010 72016 Rev. 007 Page 3 of 16 Data Sheet March/08 TH72016 433MHz FSK/ASK Transmitter 2.2 FSK Modulation FSK modulation can be achieved by pulling the crystal oscillator frequency. A CMOScompatible data stream applied at the pin FSKDTA digitally modulates the XOSC via an integrated NMOS switch. Two external pulling capacitors CX1 and CX2 allow the FSK deviation Δf and the center frequency fc to be adjusted independently. At FSKDTA = 0, CX2 is connected in parallel to CX1 leading to the lowfrequency component of the FSK spectrum (fmin); while at FSKDTA = 1, CX2 is deactivated and the XOSC is set to its high frequency fmax. An external reference signal can be directly ACcoupled to the reference oscillator input pin ROI. Then the transmitter is used without a crystal. Now the reference signal sets the carrier frequency and may also contain the FSK (or FM) modulation. Fig. 2: Crystal pulling circuitry VCC ROI XTAL FSKSW CX2 CX1 VEE FSKDTA Description 0 fmin= fc - Δf (FSK switch is closed) 1 fmax= fc + Δf (FSK switch is open) 2.3 Crystal Pulling A crystal is tuned by the manufacturer to the required oscillation frequency f0 at a given load capacitance CL and within the specified calibration tolerance. The only way to pull the oscillation frequency is to vary the effective load capacitance CLeff seen by the crystal. Figure 3 shows the oscillation frequency of a crystal as a function of the effective load capacitance. This capacitance changes in accordance with the logic level of FSKDTA around the specified load capacitance. The figure illustrates the relationship between the external pulling capacitors and the frequency deviation. It can also be seen that the pulling sensitivity increases with the reduction of CL. Therefore, applications with a high frequency deviation require a low load capacitance. For narrow band FSK applications, a higher load capacitance could be chosen in order to reduce the frequency drift caused by the tolerances of the chip and the external pulling capacitors. f XTAL L1 f max C1 C0 CL eff R1 fc f min CX1 CRO CX1+CRO Fig. 3: CL (CX1+CX2) CRO CX1+CX2+CRO CL eff Crystal pulling characteristic For ASK applications CX2 can be omitted. Then CX1 has to be adjusted for center frequency. 39010 72016 Rev. 007 Page 4 of 16 Data Sheet March/08 TH72016 433MHz FSK/ASK Transmitter 2.4 ASK Modulation The TH72016 can be ASK-modulated by applying data directly at pin PSEL. This turns the PA on and off which leads to an ASK signal at the output. 2.5 Output Power Selection The transmitter is provided with an output power selection feature. There are four predefined output power steps and one off-step accessible via the power selection pin PSEL. A digital power step adjustment was chosen because of its high accuracy and stability. The number of steps and the step sizes as well as the corresponding power levels are selected to cover a wide spectrum of different applications. The implementation of the output power control logic is shown in figure 4. There are two matched current sources with an amount of about 8 µA. One current source is directly applied to the PSEL pin. The other current source is used for the generation of reference voltages with a resistor ladder. These reference voltages are defining the thresholds between the power steps. The four comparators deliver thermometer-coded control signals depending on the voltage level at the pin PSEL. In order to have a certain amount of ripple tolerance in a noisy environment the comparators are provided with a little hysteresis of about 20 mV. With these control signals, weighted current sources of the power amplifier are switched on or off to set the desired output power level (Digitally Controlled Current Source). The LOCK signal and the output of the low voltage detector are gating this current source. RPS PSEL & & & & & OUT Fig. 4: Block diagram of output power control circuitry There are two ways to select the desired output power step. First by applying a DC voltage at the pin PSEL, then this voltage directly selects the desired output power step. This kind of power selection can be used if the transmission power must be changed during operation. For a fixed-power application a resistor can be used which is connected from the PSEL pin to ground. The voltage drop across this resistor selects the desired output power level. For fixed-power applications at the highest power step this resistor can be omitted. The pin PSEL is in a high impedance state during the “TX standby” mode. 2.6 Lock Detection The lock detection circuitry turns on the power amplifier only after PLL lock. This prevents from unwanted emission of the transmitter if the PLL is unlocked. 2.7 Low Voltage Detection The supply voltage is sensed by a low voltage detect circuitry. The power amplifier is turned off if the supply voltage drops below a value of about 1.85 V. This is done in order to prevent unwanted emission of the transmitter if the supply voltage is too low. 39010 72016 Rev. 007 Page 5 of 16 Data Sheet March/08 TH72016 433MHz FSK/ASK Transmitter 2.8 Mode Control Logic The mode control logic allows two different modes of operation as listed in the following table. The mode control pin EN is pulled-down internally. This guarantees that the whole circuit is shut down if this pin is left floating. 2.9 EN Mode Description 0 TX standby TX disabled 1 TX active CKOUT active TX / CKOUT enabled Clock Output The clock output CKOUT is CMOS-compatible and can be used to drive a microcontroller. The frequency of the clock can be changed by the clock divider control signal CKDIV, that can be selected according to the following table. A capacitor at pin CKOUT can be used to control the clock voltage swing and the spurious emission. CKDIV Clock divider ratio Clock frequency / fc=433.92MHz 0 4 3.39MHz 1 16 848kHz 2.10 Timing Diagrams After enabling the transmitter by the EN signal, the power amplifier remains inactive for the time ton, the transmitter start-up time. The crystal oscillator starts oscillation and the PLL locks to the desired output frequency within the time duration ton. After successful PLL lock, the LOCK signal turns on the power amplifier, and then the RF carrier can be FSK or ASK modulated. high high EN EN low low high high LOCK LOCK low low high high FSKDTA PSEL low low RF carrier t on t on Fig. 5: 39010 72016 Rev. 007 t t Timing diagrams for FSK and ASK modulation Page 6 of 16 Data Sheet March/08 TH72016 433MHz FSK/ASK Transmitter 3 Pin Definition and Description Pin No. 1 Name FSKDTA I/O Type Functional Schematic input 0: ENTX=1 1: ENTX=0 1.5kΩ FSKDTA 1 2 FSKSW Description FSK data input, CMOS compatible with internal pull-up circuit TX standby: no pull-up TX active: pull-up XOSC FSK pulling pin, MOS switch analog I/O FSKSW 2 3 ROI analog I/O XOSC connection to XTAL, Colpitts type crystal oscillator 25k ROI 3 36p 36p 4 EN mode control input, CMOS-compatible with internal pull-down circuit input 1.5kΩ EN 4 5 CKOUT output clock output, CMOS-compatible 400Ω CKOUT 5 6 PSEL analog I/O PSEL 8µA 1.5kΩ TX standby: IPSEL = 0 TX active: IPSEL = 8µA 6 7 CKDIV clock divider control input, CMOS compatible with internal pull-down circuit input 1.5kΩ CKDIV 7 0: ENTX=0 1: ENTX=1 8 OUT output OUT VCC 8 VEE power select input, highimpedance comparator logic TX standby: no pull-down TX active: pull-down power amplifier output, open collector VEE 9 VEE ground negative power supply 10 VCC supply positive power supply 39010 72016 Rev. 007 Page 7 of 16 Data Sheet March/08 TH72016 433MHz FSK/ASK Transmitter 4 Electrical Characteristics 4.1 Absolute Maximum Ratings Parameter Symbol Condition Min Max Unit Supply voltage VCC 0 7.0 V Input voltage VIN -0.3 VCC+0.3 V Storage temperature TSTG -65 150 °C Junction temperature TJ 150 °C Thermal Resistance RthJA 49 K/W Power dissipation Pdiss 0.12 W Electrostatic discharge VESD human body model (HBM) according to CDF-AECQ100-002 ±2.0 kV 4.2 Normal Operating Conditions Parameter Symbol Condition Min Max Unit Supply voltage VCC 1.95 5.5 V Operating temperature TA -40 125 °C Input low voltage CMOS VIL EN, FSKDTA 0.3*VCC V Input high voltage CMOS VIH EN, FSKDTA XOSC frequency fref set by the crystal 11.9 14 MHz VCO frequency fc fc = 32 • fref 380 450 MHz Clock frequency fCLK CKDIV=0, fCLK = fref / 4 3 3.5 MHz CKDIV=1, fCLK = fref / 16 750 875 kHz ±2.5 ±40 kHz 0.7*VCC V FSK deviation Δf depending on CX1, CX2 and crystal parameters FSK Data rate R NRZ 40 kbit/s ASK Data rate R NRZ 40 kbit/s Min Max Unit 11.9 14 MHz 10 15 pF 4.3 Crystal Parameters Parameter Symbol Condition Crystal frequency f0 Load capacitance CL Static capacitance C0 7 pF Series resistance R1 70 Ω -10 dB Spurious response 39010 72016 Rev. 007 aspur fundamental mode, AT only required for FSK Page 8 of 16 Data Sheet March/08 TH72016 433MHz FSK/ASK Transmitter 4.4 DC Characteristics all parameters under normal operating conditions, unless otherwise stated; typical values at TA = 23 °C and VCC = 3 V Parameter Symbol Condition Min Typ Max Unit 0.2 200 nA 4 µA Operating Currents EN=0, TA=85°C Standby current ISBY Supply current in power step 0 ICC0 EN=1 1.5 2.9 5.0 mA Supply current in power step 1 ICC1 EN=1 2.1 3.8 6.0 mA Supply current in power step 2 ICC2 EN=1 3.0 5.0 7.5 mA Supply current in power step 3 ICC3 EN=1 4.5 6.9 9.5 mA Supply current in power step 4 ICC4 EN=1 7.3 11.0 14.5 mA Input low voltage CMOS VIL EN, FSKDTA -0.3 0.3*Vcc V Input high voltage CMOS VIH EN, FSKDTA 0.7*VCC VCC+0.3 V 40 µA EN=0, TA=125°C Digital Pin Characteristics Pull down current, EN IPDEN EN=1 0.2 Low level input current, EN IINLEN EN=0 0.02 µA High level input current, FSKDTA IINHDTA FSKDTA=1 0.02 µA Pull up current FSKDTA active mode IPUDTAa FSKDTA=0, EN=1 12 µA Pull up current FSK standby mode IPUDTAs FSKDTA=0, EN=0 0.02 µA Low level input current CKDIV IINLCKDIV CKDIV=0 0.02 µA Pull-down current CKDIV active mode IPDCKDIVa CKDIV=1, EN=1 12 µA Pull-down current CKDIV standby mode IPDCKDIVs CKDIV=1, EN=0 0.02 µA 70 Ω 0.1 0.1 4.0 1.5 1.5 FSK Switch Resistance MOS switch On resistance RON FSKDTA=0, EN=1 MOS switch Off resistance ROFF FSKDTA=1, EN=1 Power select current IPSEL EN=1 Power select voltage step 0 VPS0 EN=1 Power select voltage step 1 VPS1 EN=1 Power select voltage step 2 VPS2 Power select voltage step 3 Power select voltage step 4 20 1 MΩ Power Select Characteristics 7.0 8.6 9.9 µA 0.035 V 0.14 0.24 V EN=1 0.37 0.60 V VPS3 EN=1 0.78 1.29 V VPS4 EN=1 1.55 EN=1 1.75 V Low Voltage Detection Characteristic Low voltage detect threshold 39010 72016 Rev. 007 VLVD Page 9 of 16 1.85 1.95 V Data Sheet March/08 TH72016 433MHz FSK/ASK Transmitter 4.5 AC Characteristics all parameters under normal operating conditions, unless otherwise stated; typical values at TA = 23 °C and VCC = 3 V; test circuit shown in Fig. 6, fc = 433.92 MHz Parameter Symbol Condition Min Typ Max Unit -70 dBm -10 1) dBm -1.5 1) dBm 4.5 1) dBm 10 1) dBm CW Spectrum Characteristics Output power in step 0 (Isolation in off-state) Poff EN=1 Output power in step 1 P1 EN=1 Output power in step 2 Output power in step 3 Output power in step 4 P2 P3 P4 -13 EN=1 -3.5 EN=1 2 EN=1 4.5 Phase noise L(fm) @ 200kHz offset Spurious emissions according to EN 300 220-1 (2000.09) table 13 Pspur -12 -3 3 8 -88 -83 dBc/Hz 47MHz< f <74MHz 87.5MHz< f <118MHz 174MHz< f <230MHz 470MHz< f <862MHz B=100kHz -54 dBm f < 1GHz, B=100kHz -36 dBm f > 1GHz, B=1MHz -30 dBm 0.3*VCC V Clock output Characteristics Output low voltage CMOS VOL Output high voltage CMOS VOH depending on capacitor CCK and CKDIV 0.7*VCC V Start-up Parameters Start-up time ton from standby to transmit mode 0.8 1.2 ms ±3 ppm ±10 ppm ±20 ppm Frequency Stability Frequency stability vs. supply voltage dfVCC Frequency stability vs. temperature dfTA Frequency stability vs. variation range of CRO dfCRO crystal at constant temperature 1) output matching network tuned for 5V supply 39010 72016 Rev. 007 Page 10 of 16 Data Sheet March/08 TH72016 433MHz FSK/ASK Transmitter 4.6 Output Power Steps – FSK Mode Power step 0 1 2 3 4 RPS / kΩ <3 22 56 120 not connected 4.7 Output Power Steps – ASK Mode typical values at TA = 23 °C and VCC = 3 V; test circuit shown in Fig. 6 Power step 1 2 3 4 RPS / kΩ 2.4 2.8 3.5 not connected R1 / kΩ 36 14 7 0 V PSlow VPSlow = voltage across RPS if ASK_DTA at 0V VPShigh = voltage across RPS if ASK_DTA at Vcc RPS R1 V PShigh RPS R1 Vc c PSEL 6 PSEL 6 If the transmitter is operated at any supply voltage Vcc, the values for R1 and RPS can be calculated as follows: R1 = 39010 72016 Rev. 007 VCC ⋅ VPSlow I PSEL ⋅ VPShigh RPS = R1 Page 11 of 16 VPShigh VCC − VPShigh Data Sheet March/08 TH72016 433MHz FSK/ASK Transmitter 5 Test Circuit CM1 CM2 RPS LM OUT CM3 LT CB1 CKDIV PSEL EN CKOUT 3 4 5 CX1 CCK OUT 2 XTAL 1 CX2 ROI 6 VEE 7 FSKSW 8 VCC 9 FSKDTA 10 R1 Fig. 6: 5.1 CKDIV CKOUT GND 1 2 1 2 VCC 1 2 GND ASK_DTA EN GND 1 2 3 VCC GND FSK_DTA 1 2 VCC 1 2 GND CB0 Test circuit for FSK and ASK with 50 Ω matching network Test circuit component list to Fig. 6 Part Size Value @ 433.92 MHz Tolerance CM1 0805 5.6pF ±5% impedance matching capacitor CM2 0805 10 pF ±5% impedance matching capacitor CM3 0805 82 pF ±5% impedance matching capacitor LM 0805 33 nH ±5% impedance matching inductor, note 2 LT 0805 33 nH ±5% output tank inductor, note 2 XOSC FSK capacitor (Δf = ±20 kHz), note 1 XOSC ASK capacitor, trimmed to fC, note 1 CX1_FSK 0805 10 pF ±5% CX1_ASK 0805 18 pF ±5% CX2 0805 27 pF ±5% Description XOSC capacitor (Δf = ±20 kHz), note 1 only needed for FSK clock spur suppression capacitor, CKDIV 0 / 1 CCK 0805 18 pF / 180 pF ±5% RPS 0805 see section 4.6 ±5% FSK or CW mode power-select resistor R1 0805 see section 4.7 ±5% ASK power-select resistor, not used at FSK CB0 1206 220 nF ±20% CB1 0805 330 pF ±10% de-coupling capacitor de-coupling capacitor XTAL SMD 6x3.5 13.56000MHz ±30ppm cal. ±30ppm temp. fundamental wave crystal, CL = 10 pF, C0, max = 5 pF, R1 = 50 Ω Note 1: value depending on crystal parameters Note 2: for high-power applications high-Q wire-wound inductors should be used 39010 72016 Rev. 007 Page 12 of 16 Data Sheet March/08 TH72016 433MHz FSK/ASK Transmitter 6 Package Description The device TH72016 is RoHS compliant. D D2 10 6 L 0.23 exposed pad E2 E 0.36 0.225x45° 5 1 b e A3 A The “exposed pad” is not connected to internal ground, it should not be connected to the PCB. A1 Fig. 7: 10L QFN 3x3 Dual all Dimensions in mm min max D E D2 E2 A A1 2.85 3.15 2.85 3.15 2.23 2.48 1.49 1.74 0.80 1.00 0 0.05 A3 L 0.20 0.3 0.5 e b 0.50 0.18 0.30 all Dimensions in inch min 0.112 0.112 0.0878 0.051 0.0315 0 0.0118 0.0071 0.0079 0.0197 max 0.124 0.124 0.0976 0.055 0.0393 0.002 0.0197 0.0118 6.1 Soldering Information • 6.2 The device TH72016 is qualified for MSL1 with soldering peak temperature 260 deg C according to JEDEC J-STD-20 Recommended PCB Footprints e C PL X Y 10 6 Z G E2 th 1 5 all Dimensions in mm min max Z G D2th E2th X Y CPL e 3.55 3.90 1.9 2.3 3.2 3.6 1.3 1.7 0.25 0.30 0.7 1.0 0.3 0.5 0.5 all Dimensions in inch min 0.1398 0.0748 0.1260 0.0512 0.0098 0.0276 0.0591 0.0197 max 0.1535 0.0906 0.1417 0.0669 0.0118 0.0394 0.0197 D2 th solder pad 39010 72016 Rev. 007 solder stop Fig. 8: PCB land pattern style Page 13 of 16 Data Sheet March/08 TH72016 433MHz FSK/ASK Transmitter 7 Reliability Information This Melexis device is classified and qualified regarding soldering technology, solderability and moisture sensitivity level, as defined in this specification, according to following test methods: Reflow Soldering SMD’s (Surface Mount Devices) • IPC/JEDEC J-STD-020 “Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)” Wave Soldering SMD’s (Surface Mount Devices) • EN60749-20 “Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat” Solderability SMD’s (Surface Mount Devices) • EIA/JEDEC JESD22-B102 “Solderability” For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board. 8 ESD Precautions Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products. 39010 72016 Rev. 007 Page 14 of 16 Data Sheet March/08 TH72016 433MHz FSK/ASK Transmitter Your Notes 39010 72016 Rev. 007 Page 15 of 16 Data Sheet March/08 TH72016 433MHz FSK/ASK Transmitter 9 Disclaimer 1) The information included in this documentation is subject to Melexis intellectual and other property rights. Reproduction of information is permissible only if the information will not be altered and is accompanied by all associated conditions, limitations and notices. 2) Any use of the documentation without the prior written consent of Melexis other than the one set forth in clause 1 is an unfair and deceptive business practice. Melexis is not responsible or liable for such altered documentation. 3) The information furnished by Melexis in this documentation is provided ’as is’. Except as expressly warranted in any other applicable license agreement, Melexis disclaims all warranties either express, implied, statutory or otherwise including but not limited to the merchantability, fitness for a particular purpose, title and non-infringement with regard to the content of this documentation. 4) Notwithstanding the fact that Melexis endeavors to take care of the concept and content of this documentation, it may include technical or factual inaccuracies or typographical errors. Melexis disclaims any responsibility in connection herewith. 5) Melexis reserves the right to change the documentation, the specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. 6) Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the information in this documentation. 7) The product described in this documentation is intended for use in normal commercial applications. Applications requiring operation beyond ranges specified in this documentation, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application. 8) Any supply of products by Melexis will be governed by the Melexis Terms of Sale, published on www.melexis.com. © Melexis NV. All rights reserved. For the latest version of this document, go to our website at: www.melexis.com Or for additional information contact Melexis Direct: Europe, Africa: Americas: Asia: Phone: +32 1367 0495 E-mail: [email protected] Phone: +1 603 223 2362 E-mail: [email protected] Phone: +32 1367 0495 E-mail: [email protected] ISO/TS 16949 and ISO14001 Certified 39010 72016 Rev. 007 Page 16 of 16 Data Sheet March/08