H i g h c u r r e n t P R O F E T TM BTS50080-1EGA Smart High-Side Power Switch One Channel, 8 mΩ Datasheet High current PROFETTM V1.1, 2011-08-16 Automotive Smart High-Side Power Switch BTS50080-1EGA 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 2.1 2.2 Block Diagram and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Assignment BTS50080-1EGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 4.1 4.2 4.3 4.4 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output On-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching losses for resistive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Inductive Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverse Operation Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage shutdown and restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics: Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10 10 10 11 12 14 15 16 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Over Temperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Infineon® INTELLIGENT LATCH - fault acknowledge and latch reset . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection - ReverSaveTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Load Protection, Loss of Vbb Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics: Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 18 18 19 19 20 21 21 21 22 7 7.1 7.2 7.3 7.4 7.5 Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis during ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis during OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics: Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 23 24 26 27 28 8 8.1 8.2 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Hints for PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 9 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 10 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Datasheet High current PROFETTM 2 7 7 8 9 9 V1.1, 2011-08-16 Smart High-Side Power Switch One Channel, 8 mΩ 1 BTS50080-1EGA Overview Features • • • • • • • • • • • Part of scalable product family 3.3 and 5V compatible, ground referenced CMOS compatible inputs Optimized electromagnetic compatibility (EMC) Very low standby current Stable behavior at under-voltage Secure load turn-off while device ground disconnected ReverSaveTM - Reverse battery protection without external components Inverse load current capability Infineon® INTELLIGENT LATCH Green Product (RoHS compliant) AEC qualified PG-DSO-12-16 Extended operating voltage range Vbb(ext) 6 .. 28V Minimum power stage over-voltage protection VDS(CL) 42 V Typical on-state resistance at Tj = 25°C RDS(ON) 8 mΩ Maximum on-state resistance at Tj = 150°C RDS(ON) 16 mΩ Typical nominal load current IL(nom) IL(SC)high 13 A Minimum short circuit shutdown Threshold (SCT) 80 A Maximum stand-by current for whole device with load for Tj ≤ 85°C Ibb(OFF) 10 µA Description The BTS50080-1EGA is a single channel high-side power switch in PG-DSO-12-16 package providing embedded protective functions including ReverSaveTM and Infineon® INTELLIGENT LATCH. The power transistor is built by a N-channel vertical power MOSFET with charge pump. The design is based on Smart power chip on chip technology. The BTS50080-1EGA has ground referenced CMOS compatible inputs. ReverSaveTM is a protection feature that causes the power transistor to switch on in case of reverse polarity. As a result, the power dissipation is reduced. Infineon® INTELLIGENT LATCH ensures a latched switch-off and reporting in case of fault condition. The Infineon® ENHANCED SENSE pin IS provides a sophisticated diagnostic feedback signal including current sense functionality, open load in ON-state (via sense signal) and open load and short to battery in OFF-state. Diagnostic reporting can be enabled and disabled by the DEN-Pin in ON-state and OFF-state. In OFF-state, open load detection can also be disabled by the DEN-Pin to optimize stand-by current. Type Package Marking BTS50080-1EGA PG-DSO-12-16 BTS 50080A Datasheet High current PROFETTM 3 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Overview Protective Functions • • • • • • • • • • Short circuit protection with latch Thermal shutdown with latch Infineon® INTELLIGENT LATCH - reset able latch resulting from protective switch-off ReverSaveTM - Reverse battery protection by self turn on of power MOSFET Inverse load current capability - Inverse operation function Under voltage shutdown with restart Over voltage protection (including load dump) Loss of ground protection Loss of Vbb protection (with external diode for charged inductive loads) Electrostatic discharge protection (ESD) Diagnostic Functions • • Enable function for diagnosis and reporting Provides capability for muliplexing of the reporting signal from multiple devices by DEN pin. In ON-state: • • • Provides analog sense signal of load current in normal operation mode Provides defined fault current signal in case of overload, over temperature and short circuit to ground Open load detection in ON-state by load current sense In OFF-State: • Open load and short to battery detection Applications • • • • µC compatible high-side power switch with diagnostic feedback for 12 V system grounded loads All types of resistive, inductive and capacitive loads Most suitable for loads with high inrush currents, such as glow plugs, PTC heaters, or lamps Replaces electromechanical relays, fuses and discrete circuits Datasheet High current PROFETTM 4 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Block Diagram and Terms 2 Block Diagram and Terms 2.1 Block Diagram control chip base chip Vbb voltage sensor internal power supply IN over temperature gate control & charge pump driver logic ESD protection DEN T clamp for inductive load over current switch-off OUT load current sense IS open load detection @OFF GND Figure 1 Block Diagram 2.2 Terms Overview.emf Vbb Ibb IIN VIN IDEN V DEN VbIS VBB IN OUT DEN IS GND IL VOUT IIS RIS V DS or VON or V OFF V IS IGND Terms.emf Figure 2 Terms Datasheet High current PROFETTM 5 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Pin Configuration 3 Pin Configuration 3.1 Pin Assignment BTS50080-1EGA (top view) GND 1 12 NC IN 2 11 OUT IS 3 10 OUT DEN 4 9 OUT NC 5 8 OUT NC 6 7 NC heatslug (Vbb) Figure 3 Pin Configuration 3.2 Pin Definitions and Functions Pin PDSO12.emf Symbol I/O Function 1 GND - Ground connection for control chip 2 IN I Input: activates power switch. Has an internal pull down resistor. 3 IS O Sense Output: With diagnosis enabled, provides a sense current proportional to the load current during normal operation. During open load in ON provides no current. Provides a defined fault current in case of overload, over temperature or short circuit during ON or open load or short to battery during OFF (see Table 1 “Truth Table” on Page 24) 4 DEN I Diagnosis ENable: with high level enables diagnosis reporting and open load / short to battery detection in OFF. Resets a protective, latched switch-off by falling edge acknowledgement. Has an internal pull down resistor. 5, 6, 7, 12 NC - Not connected. For recommendation on handling the NC pins, please see Chapter 8.1. 8, 9, 10, OUT 11 O Output: output to the load; pins 8 to 11 must be externally shorted together1) heatslug Vbb - Supply Voltage: positive power supply for logic and output 1) Not shorting all output pins will considerably increase the on-state resistance, reduce the peak current capability, the clamping capability and decrease the current sense accuracy. Datasheet High current PROFETTM 6 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Operation outside the parameters listed here may cause permanent damage to the device. Exposure to maximum rating conditions for extended periods may affect device reliability Absolute Maximum Ratings 1) Tj = -40 °C to +150 °C (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Unit Conditions Max. Supply Voltage Vbb -Vbb(rev) Supply voltage for short circuit protection Vbat(SC) 4.1.1 Supply voltage 0 42 V 4.1.2 Reverse polarity voltage 0 16 V Tj = 25 °C 2) 0 28 V 3) - 42 V RI = 2 Ω 4), RL = 1Ω td =400 ms Tj = 25 °C VIN IIN VDEN IDEN -0.3 6 V - -2 2 mA 2) -0.3 6 V - -2 2 mA 2) VIS IIS -0.3 VZIS V - -10 mA - 4.1.3 (single pulse) 4.1.4 Supply Voltage for Load Dump protection Vbb(LD) Input Pins 4.1.5 Voltage at IN pin 4.1.6 Current through IN pin 4.1.7 Voltage at DEN pin 4.1.8 Current through DEN pin Output Pins 4.1.9 4.1.10 Voltage at sense pin Current through sense pin IS 2)5) 10 Power Stages 4.1.11 Load current 6) | IL | - IL(SC) A - 4.1.12 Inductive load switch-off energy (single pulse) EAS - 125 mJ 4.1.13 Inductive load switch-off energy (repetitive pulses) EAR - 63 mJ Vbb=13.5V7), IL(0) = 50A, Tj(0) ≤ 150 °C Vbb=13.5V7)8), IL(0) = 20A, Tj(0) ≤105 °C Tj ΔT j -40 150 °C - - 60 K - Tstg -55 150 °C - -2 -4 2 4 Temperatures 4.1.14 Junction temperature 4.1.15 Dynamic temperature increase while switching 4.1.16 Storage temperature ESD Susceptibility 4.1.17 ESD susceptibility HBM IN, DEN, IS, Vbb, OUT Vbb versus OUT VESD kV according to EIA/JESD 22-A 114B 1) Not subject to production test, specified by design. 2) t ≤ 2 min Datasheet High current PROFETTM 7 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA General Product Characteristics 3) Short circuit is defined as a combination of remaining resistances and inductances. See Figure 15. 4) Vbb(LD) is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839. RI is the internal resistance of the Load Dump pulse generator 5) Valid at disabled diagnosis. 6) Over current threshold switch-off is a protection feature. Protection features are not designed for continuous repetitive operation. 7) See also Chapter 5.5 . 8) Resuls from simulation of temperature swing. Not subject to production test, specified by design. Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. 4.2 Pos. Functional Range Parameter Symbol Limit Values Min. Unit Conditions Max. Supply Voltage 4.2.1 Supply voltage range for normal operation Vbb(nor) 9 16 V - 4.2.2 Extended supply voltage range for Vbb(ext) operation 6 281) V 2) mA - 4 24 VDEN = 5V, VIS < 5.5V, Vbb = Vbb(nor) IIS - IIS(LH) > 30 µA, IIS(lim) > IIS, Vbb = Vbb(nor), VIN = VDEN = 5 V, VbIS > 5 V 4.2.3 Operating current VIN = 0V, VDS > VDS(OL) VIN = 5V IGND 4.2.4 Load current range for sense functionality 1) IL(IS) 1.5 59 A 4.2.5 Junction temperature Tj -40 150 °C - 1) Not subject to production test, specified by design 2) In extended supply voltage range, the device is functional but electrical parameters are not specified. Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table. Datasheet High current PROFETTM 8 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA General Product Characteristics 4.3 Thermal Resistance Pos. Parameter Symbol 4.3.1 Junction to case 1) 4.3.2 Control chip to case 1) 4.3.3 Junction to ambient 1) device on PCB4) Rthjc Rthj(cc)c Rthja 1) 2) 3) 4) Limit Values Unit Conditions Min. Typ. Max. - - 1.3 K/W 2) - 40 - K/W 3) K/W – - 27 - Not subject to production test, specified by design Specified Rthjc value is simulated at natural convection on a cold plate setup. Ta = 25 °C. Specified Rthj(cc)c value is simulated at natural convection on a cold plate setup. Ta = 25 °C, IL = 0A. Specified Rthja value and Figure 4 are according Jedec JESD51_7 at natural convection on FR4 2s2p board. The BTS50080-1EGA was measured on a 76.2 x 114.3 x 1.6 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu) applying power losses of 1.4W at the channel. According to JESD51-5 a thermal via array under the exposed pad contacted the first inner copper layer. Ta = 25 °C. Figure 4 shows the typical transient thermal impedance of BTS50080-1EGA. Figure 4 Transient Thermal Impedance Zth(JA)=f(tp) 4) 4.4 Package Pos. Parameter Value Test Conditions 4.4.1 Jedec humidity category acc. J-STD-020-D MSL3 - 4.4.2 Jedec classification temperature acc. J-STD-020-D 260°C - Datasheet High current PROFETTM 9 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Power Stages 5 Power Stages The power stage is built by a N-channel vertical power MOSFET (DMOS) with charge pump. 5.1 Input Circuit Figure 5 shows the input circuit of the BTS50080-1EGA. The input resistor to ground ensures that the input signal is low in case of open input pin. The zener diode protects the input circuit against ESD pulses. IN RIN GND Input.emf Figure 5 Input Circuit A high signal at the input pin causes the DMOS to switch on. 5.2 Output On-State Resistance The on-state resistance RDS(ON) depends on the supply voltage Vbb and the junction temperature Tj. Figure 6 shows these dependencies for the typical on-state resistance. The on-state resistance in reverse polarity mode is described in Chapter 6.5. 12,5 Vbb = 13.5 V R DS(ON) 10 mΩ typ. Tj = 25°C Ω 7,5 5 2,5 0 -40 0 40 80 °C 120 160 Tj Figure 6 Typical On-State Resistance 5.3 Output Timing The power stage is designed for high side configuration (Figure 9). Datasheet High current PROFETTM 10 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Power Stages The power stage has a defined switching behavior. Defined slew rates as well as edge shaping support PWM’ing of the load while achieving lowest EMC emission at minimum switching losses. V IN VIN (H ),min V IN(L ),ma x VO U T tO N tO F F tr tf t 90% 50% 30% (dV/ dt) O N (dV/ dt) O F F 10% t Ib b t sta n d b y I b b(O F F ) t Figure 7 Switching a Load (resistive) 5.4 Switching losses for resistive loads S witch On. e mf Switching the device on and off may cause switching losses EON and EOFF. In case of a resistive load, the switching losses depend on the supply voltage Vbb as well as on the load current IL and the junction temperature Tj. Figure 8 shows this dependencies of the switching losses. Datasheet High current PROFETTM 11 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Power Stages E ON, 30 E OFF E ON, 100 E OFF mJ typ., T j = 25°C, R L = 1Ω 25 mJ 20 typ., T j = 25°C, V bb = 13.5V 10 15 E OFF E OFF 10 E ON 1 E ON 5 0 0,1 0 5 10 15 20 E ON, 4 E OFF 25 V 30 0,1 V bb 1 Ω 10 RL E OFF mJ 3 E ON 2 1 typ., V bb=13.5V, R L = 1Ω 0 -50 0 Figure 8 Typical switching losses EON and EOFF 5.5 Output Inductive Clamp 50 100 °C 150 Tj When switching off inductive loads, the output voltage VOUT drops below ground potential due to the inductive properties of the load ( -diL/dt = -vL/L ; -VOUT ≅ -VL ). Datasheet High current PROFETTM 12 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Power Stages VBB base VDS(CL) charge pump V bb chip iL OUT GND VOUT LOAD control chip OutputClamp.emf Figure 9 Output Clamp To prevent destruction of the device, there is a voltage clamp mechanism implemented that keeps the voltage drop across the device at a certain level. At nominal battery voltage the output is clamped to VOUT(CL). At over voltages the output is clamped to VDS(CL). See Figure 9 and Figure 10 for details. The maximum allowed load inductance is limited. V OUT ON OFF V bb Vbb VDS(CL) t VDS(CL) V OUT(CL) Vbb IL VOUT t Figure 10 VOUT(CL) InductiveLoad.emf Switching an Inductance Maximum Load Inductance While de-energizing inductive loads, energy has to be dissipated in the BTS50080-1EGA. This energy can be calculated by the following equation: – V OUT ( CL ) ⎛ RL ⋅ IL ⎞ L - ⋅ ln ⎜ 1 + ------------------------E = ( V bb + V OUT ( CL ) ) ⋅ -----------------------------⎟ + I L ⋅ ------RL RL V OUT(CL) ⎠ ⎝ In the event of de-energizing very low ohmic inductances (RL≈0) the following, simplified equation can be used: V DS(CL) 2 1 E = --- LI L ⋅ -----------------------------------2 V DS(CL) – V bb The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 11 for the maximum allowed energy dissipation. Datasheet High current PROFETTM 13 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Power Stages Tj(0) = 150°C, Vbb = 13.5V Tj(0) = 105°C, Vbb = 13.5V Tj(0) = 150°C, Vbb = 13.5V Tj(0) = 105°C, Vbb = 13.5V Figure 11 Maximum energy dissipation1) 2) Note: Clamping overrides all protection functionalities. In order to avoid device destruction resulting from inductive switch-off or over voltage the device has to be operated within the maximum ratings. 5.6 Inverse Operation Capability The BTS50080-1EGA can be operated in inverse load current condition (+VOUT > +Vbb). The device can not block the current flow during inverse mode. In ON condition a voltage drop across the activated channel of -VON(inv)=RON(inv)*(-IL) can be observed. 1) Not subject to production test, specified by design. 2) Resuls for EAR from simulation of temperature swing. Datasheet High current PROFETTM 14 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Power Stages In OFF condition a voltage drop across the intrinsic body diode of -VOFF(inv)=f(-IL) can be observed. As long as the inverse current does not exceed |-IL| ≤ |-IL(inv)| the logic will operate and report according Table 1 and the BTS50080-1EGA will be able to remain in ON mode. +V bb control chip VBB V bb chip logic base GND VON(inv) OUT + - -I L Inverse_capability.emf Figure 12 Inverse current capability Note: Activation of any protection mechanism will not block the current flow. Over temperature detection and current sense is not functional during inverse mode. 5.7 Undervoltage shutdown and restart The BTS50080-1EGA is supplied by Vbb. The internal logic permanently monitors the supply voltage Vbb. In the event that the supply voltage drops below the under voltage shutdown threshold Vbb(u), the BTS50080-1EGA will switch off. If the supply voltage reaches nominal operating voltage range Vbb(ext), the BTS50080-1EGA will switch on after a delay tdelay(UV), assuming VIN=High. Protective latch is reset by undervoltage shutdown. Vbb Vbb(ext ) Vbb(u) t VOUT ON tdelay(UV) Z t Undervoltage.emf Figure 13 Undervoltage shutdown and restart Datasheet High current PROFETTM 15 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Power Stages 5.8 Electrical Characteristics: Power Stages Note: Characteristics show the deviation of parameters at the given supply voltage and junction temperature. Typical values show the typical parameters expected from manufacturing. Vbb = 9 V to 16 V, Tj = -40 °C to +150 °C (unless otherwise specified) typical values: Vbb = 13.5 V, Tj = 25 °C Pos. Parameter Symbol Limit Values Min. Typ. Unit Conditions µA 2) Max. General Stand-by current Tj = -40 °C, Tj = 25 °C Tj ≤ 85 °C 1) Tj = 150 °C Ibb(OFF) 5.8.2 Stand-by time 1) 2) 5.8.3 Undervoltage shutdown1) 5.8.1 5.8.4 1) Undervoltage recovery time , |VIN|=|VDEN|≤0.3V3), VOUT=VIS=0V, t > tstandby, no fault condition - 6 6 16 10 10 50 tstandby - 0.5 1 ms |VIN|=|VDEN|≤0.3V, VOUT=VIS=0V Vbb(u) tdelay(UV) - 5.7 6 V - - 10 - ms - VIN(L) VIN(H) VIN(hys) RIN -0.3 - 1.0 V - 2.0 - 5.5 V - - 100 - mV 1) 50 100 200 kΩ - mΩ VIN=5V, IL=20A - 8 11.5 10.5 13.5 16 27 TA = 85 °C Tj ≤ 150 °C VIN=VDEN=0V, VOUT=0V VOUT≥Vbb−VDS(CL)5), IL = 40 mA VOUT≥Vbb−VDS(CL)5), IL = 20 A 1) VDS≤Vbb -VOUT(CL)5), IL = 40 mA VDS≤Vbb -VOUT(CL)5), IL = 20 A 1) Vbb = 13.5 V, RL = 1 Ω Input characteristics 5.8.5 L-input level 5.8.6 H-input level 5.8.7 input hysteresis 5.8.8 input pull down resistor Output characteristics 5.8.9 On-state resistance Tj=25°C Tj=150°C Vbb=6V, Tj=25°C Vbb=6V, Tj=150°C RDS(ON) 5.8.10 Nominal load current 1)4) IL(nom) - 13 - A 5.8.11 Output leakage current IL(OFF) - 3 30 µA 5.8.12 Output clamp during switch-off -VOUT(CL) 16 18 20 V 16 20 25 V 42 50 - V 42 51 - V - 3 5 mJ - 3.5 5 mJ 5.8.13 Output clamp during over voltage 5.8.14 Switch-On energy 5N95% VOUT 5.8.15 Switch-Off energy 95P5% VOUT 5.8.16 Inverse operation on-state resistance Tj=25°C Tj=150°C Datasheet High current PROFETTM VDS(CL) EON EOFF RON(inv) mΩ 16 8 11.5 16 VIN = 5 V, IL = -20 A, no protective switch-off V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Power Stages Vbb = 9 V to 16 V, Tj = -40 °C to +150 °C (unless otherwise specified) typical values: Vbb = 13.5 V, Tj = 25 °C Pos. Parameter Symbol Limit Values Min. 5.8.17 5.8.18 Inverse operation output voltage drop Tj=25°C Tj=150°C -VOFF(inv) Inverse current capability1) -IL(inv) Turn-on time to 90%VOUT tON Turn-off time to 10%VOUT tOFF Slew rate On 30N50% VOUT Typ. Unit Conditions mV VIN=0V, IL = -10 A A - µs Vbb = 13.5 V RL = 1Ω Vbb = 13.5 V RL = 1 Ω Vbb = 13.5 V RL = 1 Ω Vbb = 13.5 V RL = 1 Ω Max. - 700 400 900 800 20 - - - 200 350 - 200 350 (dV/ dt)ON 0.1 0.15 0.21 -(dV/ dt)OFF 0.1 0.15 0.21 Timings 5.8.19 5.8.20 5.8.21 5.8.22 Slew rate Off 50P30% VOUT µs V/µs V/µs 1) Not subject to production test, specified by design 2) In case of protective switch-off STANDBY is only reached if the fault was acknowledged while IN=LOW by DEN=HIGHPLOW and tstandby expired. See also Chapter 6.4 for details. 3) Tested at VIN=VDEN=0V only 4) according JESD51_7, FR4 2s2p board, 76.2 x 114.3 x 1.6 mm, 2x70µm Cu, 2x35µm Cu. 5) See Figure 10. Datasheet High current PROFETTM 17 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Protection Functions 6 Protection Functions The BTS50080-1EGA provides embedded protective functions. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are neither designed for continuous nor repetitive operation. 6.1 Short Circuit Protection The internal logic permanently monitors the load current IL. In the event the load current exceeds the short circuit shutdown threshold (IL>IL(SC)), the device will switch off immediately. Any protective switch off latches the output. Please refer to Figure 14 for details. The protective switch off remains latched until the fault is acknowledged and reset by a falling edge at the DEN pin. See also Chapter 6.4. VIN t VDEN IL t I L(SC) reset latch Figure 14 reset latch latch reset latch reset t latch I_L(SC)_detect.emf Shutdown by short circuit current detection Before switching on, the device is measuring the battery voltage Vbb(0). In case Vbb(0) is above Vbb(SCT), the short circuit current threshold IL(SC)high is reduced to a lower level IL(SC)low. Note: In case of a short circuit between OUT and ground, an impedance between Vbat and Vbb pin of the device (see Figure 15) may cause the device’s supply voltage to drop below Vbb(u) before short circuit shutdown threshold is reached. In that case, the device will detect an undervoltage condition and behave as described in Chapter 5.7. 6.2 Short Circuit Impedance The capability to handle single short circuit events depends on the battery voltage as well as on the primary and secondary short impedance. Figure 15 outlines allowable combinations for a single short circuit event of maximum, secondary inductance for given secondary resistance. Datasheet High current PROFETTM 18 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Protection Functions 15 LSC Vbb IN OUT 5uH 10mΩ LSC PROFET µH 10 RSC Applicable impedances for: V bat ≤ V bat(SC) IL(SC) = IL (SC)High for Vbb < Vbb(SCT); I L(SC) = I L(SC)Low for Vbb ≥ Vbb(SCT); GND Vbat 5 LO AD SHORT CIRCUIT 0 short_circuit.emf 10 0 20 30 mΩ L-R.emf Figure 15 Short circuit 6.3 Over Temperature Protection 50 RSC The internal logic permanently monitors the junction temperature of the output stage. In the event of an over temperature (Tj > Tjt) the output will switch off immediately. Please refer to Figure 16 for details.The protective switch off remains latched until the fault is acknowledged and reset by a falling edge at the DEN pin. See also Chapter 6.4. V IN t VDEN ϑ jt ϑj latch reset latch reset latch t latch reset t Over_Temp.emf Figure 16 Over temperature detection 6.4 Infineon® INTELLIGENT LATCH - fault acknowledge and latch reset The BTS50080-1EGA provides Infineon® INTELLIGENT LATCH to avoid permanent resetting of a protective, latched switch off in PWM applications. To reset a latched protective switch off the fault has to be acknowledged by a falling edge at the DEN pin. For a reset signal it’s recommended to set the DEN signal to HIGH for 20µs before setting DEN to LOW for 20µs. Please refer to Figure for details. Datasheet High current PROFETTM 19 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Protection Functions IN t DEN t over temp. / short circuit t VOUT t Ibb latch reset latch reset t fault_acknowledge.emf Infineon® INTELLIGENT LATCH - fault acknowledge and latch reset 6.5 Reverse Polarity Protection - ReverSaveTM The device can not block a current flow in reverse battery condition. In order to minimize power dissipation, the device offers ReverSaveTM functionality. Under reverse polarity condition, the output stage will be switched on, provided a sufficient gate to source voltage is generated VGS≈VGND_bb. Please refer to Figure 17 for details. -V bb control chip VBB base chip V ON(rev) OUT GND -IL LOAD V bb Reverse.emf Figure 17 Reverse battery protection Use the following formula for estimation of overall power dissipation Pdiss(rev) in reverse polarity mode. P 2 diss(rev) ≈ R ON(rev) ⋅ I L Note: No protection mechanism is active during reverse polarity. The control chip is not functional. Potentials of logic pins can become negative. Affected pins have to be protected by means of series resistors. Datasheet High current PROFETTM 20 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Protection Functions 6.6 ESD Protection All logic pins have ESD protection. Beside the output clamp for the power stage as described in Chapter 5.5 there is a clamp mechanism implemented for pin IS. See Figure 18 for details. V bb control chip base ESD protection IN DEN IS chip OUT GND Figure 18 Over-Voltage Protection 6.7 Loss of Ground Protection OverVoltage.emf In case of complete loss of the device ground connections the BTS50080-1EGA securely changes to or remains in OFF state, if the sense resistor RIS is higher than 500Ω. 6.8 Loss of Load Protection, Loss of Vbb Protection In case of loss of load with charged primary inductances the maximum supply voltage has to be limited. It is recommended to use a Z-diode, a varistor (VZa < 42 V) or Vbb clamping power switches with connected loads in parallel. In case of loss of Vbb connection with charged inductive loads, a current path with load current capability has to be provided, to demagnetize the charged inductances. It is recommended to use a diode, a Z-diode or a varistor (VZb < 16 V, VZL+VD < 16 V, ). For higher clamp voltages currents through all pins have to be limited according to the maximum ratings. Please refer to Figure 19 for details. base chip OUT OUT GND GND V b b_ L o a d_ d isco n n e ct.e mf Figure 19 chip logic V Za VBB base LOAD V Zb control chip LOAD VBB logic control chip VD VZL V b b_ d isco n n e ct.e mf Loss of Vbb In case of complete loss of Vbb the BTS50080-1EGA remains in OFF state. Datasheet High current PROFETTM 21 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Protection Functions 6.9 Electrical Characteristics: Protection Functions Note: Characteristics show the deviation of parameters at the given supply voltage and junction temperature. Typical values show the typical parameters expected from manufacturing Vbb = 9 V to 16 V, Tj = -40 °C to +150 °C (unless otherwise specified) typical values: Vbb = 13.5 V, Tj = 25 °C Pos. Parameter Symbol Limit Values Min. Typ. Unit Conditions A VIN = 5 V Vbb(0) < Vbb(SCT) Max. Over-Load Protection 6.9.1 Short circuit shutdown threshold (SCT) Tj = -40 °C, Tj = 25 °C Tj = 150 °C IL(SC)high 80 80 150 135 200 170 6.9.2 Short circuit shutdown threshold at IL(SC)low high battery voltages 42 70 95 A VIN = 5 V Vbb(0) > Vbb(SCT) 6.9.3 Supply voltage for reduced short circuit shutdown threshold1) Vbb(SCT) 20 22 25 V - 6.9.4 Thermal shut down temperature Tjt 150 170 - °C - mΩ IL = -10A, RIS = 1 kΩ V IIS = -2 mA 1) Reverse Battery 6.9.5 On-State resistance in case of reverse polarity Vbb=-8V, Tj=150°C 1) Vbb=-12V, Tj=150°C RON(rev) - 12 16 20 27 6 9.5 - Over-Voltage 6.9.6 Over-voltage protection Sense pin VIS(CL) 1) Not subject to production test, specified by design Datasheet High current PROFETTM 22 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Diagnostic Functions 7 Diagnostic Functions For diagnosis purposes, the BTS50080-1EGA provides an Infineon® ENHANCED SENSE signal at the pin IS. 7.1 Diagnosis Enable In ON-State, diagnosis is allways enabled. Providing a low signal at the DEN pin will disable the reporting. In OFFstate, both, reporting and diagnosis can be disabled by a low signal at DEN pin. The pin IS will be set to tri-state mode when a low signal is provided at the DEN pin. A high signal at the DEN pin enables the reporting and the open load and short to battery diagnosis during OFF mode. A falling edge at the DEN resets a preceding latched output and reporting condition. Please see Figure 20 and Table 1 for details. Vbb Vb ,IS VD S VBB 1 IN I IS(fa u lt) 1 0 1 DEN & ESD protection I L>I L( SC ) I IS 0 I L/k IL IS reporting enable IS VIS current sense I L(OL) 0 1 IL ≥1 & ϑj> ϑjT S Q R Q & OUT ≥1 & V D S<V D S(O L ) INTELLIGENT LATCH R IS open load diagnosis fault open load @OFF detection GND GND Figure 20 S e n se.e mf Block Diagram: Diagnosis Datasheet High current PROFETTM 23 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Diagnostic Functions Table 1 Truth Table Operation Mode Normal Operation (ON) Input (IN) Level Output Level H ~Vbb Inverse Operation (-IL) Diagnostic Output (IS) DEN = H DEN = L IIS = IL / kILIS Z >Vbb Z Short Circuit to GND Z IIS(fault) Over Temperature Z IIS(fault) Short Circuit to Vbb Vbb IIS<IL/kILIS Open Load ~Vbb Z Protective switch-off resulting from Short Circuit to GND or Over Temperature 1) X Z IIS(fault) Z Normal Operation (OFF) L Z Z Z >Vbb IIS(fault) Z IIS(fault)2), Z3) Short Circuit to Vbb >Vbb-VDS(OL) <Vbb-VDS(OL) IIS(fault) Z Open Load >Vbb-VDS(OL) <Vbb-VDS(OL) IIS(fault) Z Inverse Operation (-IL) Short Circuit to GND Over Temperature L = Low Level, H = High Level, Z = high impedance, only leakage provided, potential depends on external circuit 1) Output and fault reporting remains latched until falling DEN edge acknowledge. 2) Before fault acknowledgement and latch reset. 3) After fault acknowledgement and latch reset. 7.2 Diagnosis during ON During normal operation, an enabled IS pin provides a sense current, which is proportional to the load current as long as Vb,IS>5V and as long as IIS*RIS<VZ,IS. The ratio of the output current is defined as kILIS=IL/IIS. During switchon sense current is provided after a sense settling time tsIS(ON). During inverse operation and switch-off no current is provided. The output sense current is limited to IIS,lim. Please refer to Figure 21 for details. Datasheet High current PROFETTM 24 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Diagnostic Functions normal operation VIN t VON t I L2 IL I L1 I IS I IS1 0.9*I IS 1 I IS(L L) 0.1*IIS tsIS (O N ) Figure 21 t I IS(lim ) I IS2 t sIS (L C) tsIS (o ff) t S witch On .e m f Timing of Diagnosis Signal in ON-state The accuracy of the provided current sense ratio (kILIS = IL / IIS) depends on the load current. Please refer to Figure 22 for details. A typical resistor RIS of 1 kΩ is recommended (see also Chapter 6.7). 80000 kILIS 60000 40000 max. 20000 typ. min. 0 0 Figure 22 10 20 30 40 A 50 60 IL Current sense ratio kILIS1) The diagnosis signal can be switched off by a low signal at the diagnosis enable pin DEN. See Figure 23 for details on the timing between the DEN pin and the diagnosis signal IIS. Please note that the diagnosis is disabled, when no signal is provided at the pin DEN. 1) The curves show the behavior based on characterization data. The marked points are described in this Datasheet in Section 7.5 (Position 7.5.5). Datasheet High current PROFETTM 25 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Diagnostic Functions IIS tsIS(DEN) tdIS(DEN) t DEN reset protective latch Figure 23 t sense_enable .emf Timing of Sense Enable Signal During fault condition an enabled IS pin provides a defined fault current IIS(fault). Fault conditions are over-current, over-temperature and short circuit switch-off. Any protective switch-off during on-state causes a latched OFF of the output and reporting, until being reset by a falling edge at the pin DEN. See Figure 24 for details. IN t DEN t Short / Over Temp t V OUT IIS latch reset Figure 24 Fault acknowledge and latch reset 7.3 Diagnosis during OFF t IIS(fault) IL/k ILIS latch reset t fault acknowledge@ON .emf During normal operation a disabled IS pin provides no current. In case of shorted load to battery, open load or inverse operation an enabled IS pin provides a defined fault current IIS(fault). See Figure 25 for details. IN t DEN t IOL t VOUT Vbb -V DS (OL) IIS IIS (fault) t t td(OL) Figure 25 [email protected] Fault reporting Datasheet High current PROFETTM 26 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Diagnostic Functions 7.4 Diagnosis Disable In order to achieve minimum standby current, the IN pin and the DEN pin have to be low level. A possible preceding fault condition and reporting has to be reset by a falling edge at the pin DEN. See also Chapter 6.4 for details. Datasheet High current PROFETTM 27 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Diagnostic Functions 7.5 Electrical Characteristics: Diagnostic Functions Note: Characteristics show the deviation of parameters at the given supply voltage and junction temperature. Typical values show the typical parameters expected from manufacturing. Vbb = 9 V to 16 V, Tj = -40 °C to +150 °C (unless otherwise specified) typical values: Vbb = 13.5 V, Tj = 25 °C Pos. Parameter Symbol Limit Values Min. Unit Conditions Typ. Max. -0.3 - 1.0 V – 2.0 - 5.5 V – – 100 - mV 1) 50 100 200 kΩ – - 21 - k 19 18.5 16 9 21 21 21 21 23 24 28 74 VIN = VDEN = 5 V, IIS < IIS(lim), VIS < VZ,IS, Vb,IS > 5 V – – VDEN = 5 V, VON < 400 mV, typ. Vb,IS > 5 V VDEN = 5 V, Vb,IS > 5 V, VON > 400 mV,typ. Input characteristics for Diagnosis Enable 7.5.1 L-input level 7.5.2 H-input level 7.5.3 input hysteresis 7.5.4 input pull down resistor VDEN(L) VDEN(H) VDEN(hys) RDEN Load Current Sense 7.5.5 Current sense ratio, static oncondition kILIS IL=40A IL=10A IL=5A IL=1.5A VIN = 0 (e.g. during de energizing of disabled inductive loads) 7.5.6 Sense saturation current 1) IIS(lim) 3.5 6 10 mA 7.5.7 Sense current under fault conditions IIS(fault) 3.5 6 10 mA or VOFF<VDS(OL) 7.5.8 7.5.9 Current sense leakage current Current sense offset current Tj = -40 °C, Tj = 25 °C Tj = 150 °C IIS(LL) IIS(LH) Current sense leakage, while diagnosis disabled 7.5.11 Current sense settling time to 90% tsIS(ON) IIS_stat. 7.5.12 0.1 0.5 – – 8 18 30 60 – 1 2 μA – 350 700 μs μA IIS(dis) 7.5.10 μA – 1) Current sense settling time to 10% tsIS(OFF) – 8 30 μs Current sense settling time to 90% tsIS(LC) – 15 50 μs Current sense settling time to 90% tsIS(DEN) – 8 30 μs IIS_stat.1) Datasheet High current PROFETTM VDEN = 5 V, RL = 0.5 Ω VIN = 5P0V (switchoff), IIS_stat.1) 7.5.14 VIN = 5V, VDEN = 0V VIN = 0N5V (switchon), IIS_stat.1) 7.5.13 VIN=VDEN=0V VIN=VDEN=5V, IL ≤ 0A VDEN = 5V, RL = 0.5Ω VIN=VDEN=5V, IL = 10N20A VIN = 5V, OUT=ON, VDEN = 0N5V 28 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Diagnostic Functions Vbb = 9 V to 16 V, Tj = -40 °C to +150 °C (unless otherwise specified) typical values: Vbb = 13.5 V, Tj = 25 °C Pos. 7.5.15 Parameter Symbol Limit Values Unit Conditions Min. Typ. Max. – 2 20 μs VIN = 5V, VDEN = 5P0V VIN = 0V, VDEN = 5V, VDS = 2V VIN = 0V, VDEN = 5V VIN = 5P0 V, VDEN = 5V, Vbb = 13.5V, Current sense deactivation time to tdIS(DEN) 10% IIS_stat.1) Open Load at OFF state 7.5.16 Open load output current IL(OL) 3 5 10 mA 7.5.17 Open load detection threshold voltage VDS(OL) 2 2.8 3.5 V 7.5.18 Open load blanking after negative input slope1) td(OL) – 0.3 1 ms 1) Not subject to production test, specified by design Datasheet High current PROFETTM 29 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Application schematic 8 Application schematic Figure 26 shows an example for an application schematic. Vbat +5V 47nF VBB 10K IN 10K µC DEN 10K 47nF BTS50080-1EGA LOAD IS GND 1k a p p lica tio n_e xa m p le.e m f GND Figure 26 OUT application example Note: This is a simplified example of an application circuit. The function must be verified in the real application. 8.1 • • • • Handling of NC pins: It is recommended to connect all NC pins on a defined potential. E.g. pin 7 and pin 12 could be connected to OUT potential, while pin 5 and 6 could be connected to OUT or DEN. EMC filter cap between Vbb and GND: It is recommended to place the filter cap as close as possible to the device to minimize the inductance of the loop. The resistors connecting µC and IN-pin as well as µC and DEN-pin are recommended to protect the µC inputs against fast electrical transients. Ground shift: It is recommended to avoid a ground shift between µC ground and device pin GND of more than 0.3V during normal operation. 8.2 • • • • Hints for PCB layout Further Application Information Please contact us to get the Pin FMEA Please contact us to get a test report on short circuit robustness according to AEC Q100-012 Please contact us for Application Note “Diagnosis with BTS500x0-1EGA” For further information you may contact http://www.infineon.com/ Datasheet High current PROFETTM 30 V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Package Outlines 0.1 12x 7.8 ±0.1 0.1 C (Heatslug) Seating Plane 5˚ ±3˚ B 35 0.1±0.05 STANDOUT (1.55) 0.8 0 +0.1 STANDOFF 2.35 ±0.1 C 7.5 ±0.11) +0.075 0.25 -0 .0 Package Outlines 2.6 MAX. 9 (0.2) 0.7 ±0.15 10.3 ±0.3 0.25 B 12 Index Marking 12x 0.25 M C A B 0.4 A 7 7 1 6 6 12 4.2 ±0.1 6.4 ±0.11) 1.6 ±0.1 Bottom View 1 Heatslug 1 +0.13 5.1±0.1 5x 1=5 1) Does not include plastic or metal protrusion of 0.15 max. per side PG-DSO-12-4, -5, -8, -11, -12, -16-PO V04 9.4 4.5 1.67 8.1 0.65 MAX. 1 PG-DSO-12-4, -5, -8, -11, -12, -16-FP V01 Figure 27 PG-DSO-12-16 (Plastic Dual Small Outline Package) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products. Datasheet High current PROFETTM 31 Dimensions in mm V1.1, 2011-08-16 Smart High-Side Power Switch BTS50080-1EGA Revision History 10 Revision History BTS50080-1EGA Revision History: V1.1, 2011-08-16 Version Date Changes Datasheet Rev. 1.1 2011-08-16 Update from production distribution data Chapter 5.8: Parameter Ibb(OFF) and IL(OFF) limits tightened for Tj=150°C. Typical value updated. Chapter 5.8: Parameter tON, tOFF, (dV/dt)ON and -(dV/dt)OFF limits tightened. Typical values updated. Chapter 6.9: Parameter IL(SC)high limits tightened for Tj=150°C. Chapter 6.9: Parameter VIS(CL) limits tightened. Chapter 7.5: Parameter kILIS limits tightened for IL = 5A, 10A, 40A. Figure 22 updated. Chapter 4.3, Chapter 6.9: Parameter numbering corrected. Datasheet Rev. 1.0 2009-04-06 Initial version of datasheet. Datasheet High current PROFETTM 32 V1.1, 2011-08-16 Edition 2011-08-16 Published by Infineon Technologies AG 81726 Munich, Germany © 8/16/11 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.