Smart High-Side Power Switch BTS740S2 6PDUW+LJK6LGH3RZHU6ZLWFK 7ZR&KDQQHOV[PΩ &XUUHQW6HQVH 3URGXFW6XPPDU\3DFNDJH 9EERQ $FWLYHFKDQQHOV 2QVWDWH5HVLVWDQFH 521 1RPLQDOORDGFXUUHQW ,/120 &XUUHQWOLPLWDWLRQ ,/6&U 2SHUDWLQJ9ROWDJH RQH PΩ $ $ 9 WZRSDUDOOHO PΩ $ $ P-DSO-20-9 PG-DSO20 *HQHUDO'HVFULSWLRQ • • 1FKDQQHOYHUWLFDOSRZHU026)(7ZLWKFKDUJHSXPSJURXQGUHIHUHQFHG&026FRPSDWLEOHLQSXW GLDJQRVWLFIHHGEDFNDQGSURSRUWLRQDOORDGFXUUHQWVHQVHPRQROLWKLFDOO\LQWHJUDWHGLQ6PDUW6,3026 WHFKQRORJ\ 3URYLGLQJHPEHGGHGSURWHFWLYHIXQFWLRQV $SSOLFDWLRQV • • • • &FRPSDWLEOHKLJKVLGHSRZHUVZLWFKZLWKGLDJQRVWLFIHHGEDFNIRU9DQG9JURXQGHGORDGV $OOW\SHVRIUHVLVWLYHLQGXFWLYHDQGFDSDFLWYHORDGV 0RVWVXLWDEOHIRUORDGVZLWKKLJKLQUXVKFXUUHQWVVRDVODPSV 5HSODFHVHOHFWURPHFKDQLFDOUHOD\VIXVHVDQGGLVFUHWHFLUFXLWV %DVLF)XQFWLRQV • • • • &026FRPSDWLEOHLQSXW 8QGHUYROWDJHDQGRYHUYROWDJHVKXWGRZQZLWKDXWRUHVWDUWDQGK\VWHUHVLV )DVWGHPDJQHWL]DWLRQRILQGXFWLYHORDGV /RJLFJURXQGLQGHSHQGHQWIURPORDGJURXQG 3URWHFWLRQ)XQFWLRQV • • • • • • • • 6KRUWFLUFXLWSURWHFWLRQ 2YHUORDGSURWHFWLRQ &XUUHQWOLPLWDWLRQ 7KHUPDOVKXWGRZQ 2YHUYROWDJHSURWHFWLRQLQFOXGLQJORDGGXPSZLWKH[WHUQDO UHVLVWRU 5HYHUVHEDWWHU\SURWHFWLRQZLWKH[WHUQDOUHVLVWRU /RVVRIJURXQGDQGORVVRI9EESURWHFWLRQ (OHFWURVWDWLFGLVFKDUJHSURWHFWLRQ(6' 'LDJQRVWLF)XQFWLRQV • • • • 3URSRUWLQDOORDGFXUUHQWVHQVH 'LDJQRVWLFIHHGEDFNZLWKRSHQGUDLQRXWSXW 2SHQORDGGHWHFWLRQLQ2))VWDWHZLWKH[WHUQDOUHVLVWRU )HHGEDFNRIWKHUPDOVKXWGRZQLQ21VWDWH Data Sheet 1 9EE ,1 67 ,6 /RJLF &KDQQHO ,1 67 ,6 /RJLF &KDQQHO 352)(7 *1' 287 /RDG 287 /RDG V1.0, 2007-05-13 Smart High-Side Power Switch BTS740S2 )XQFWLRQDOGLDJUDP RYHUYROWDJH SURWHFWLRQ LQWHUQDO YROWDJHVXSSO\ JDWH FRQWURO FKDUJH SXPS FXUUHQWOLPLW 9%% FODPSIRU LQGXFWLYHORDG 287 ,1 67 ,6 *1' ,1 67 ORJLF ,6 *1' (6' WHPSHUDWXUH VHQVRU /2$' 52 2SHQORDG GHWHFWLRQ *1' &XUUHQW VHQVH Channel 1 Control and protection circuit of channel 2 287 PROFET Pin Definitions and Functions Pin 1,10, 11,12, 15,16, 19,20 3 7 17,18 13,14 4 8 2 6 5 9 Data Sheet Pin configuration Symbol Function Vbb Positive power supply voltage. Design the wiring for the simultaneous max. short circuit currents from channel 1 to 2 and also for low thermal resistance IN1 Input 1,2, activates channel 1,2 in case of IN2 logic high signal OUT1 Output 1,2, protected high-side power output OUT2 of channel 1,2. Both pins of each output have to be connected in parallel for operation according ths spec (e.g. kilis). Design the wiring for the max. short circuit current ST1 Diagnostic feedback 1,2 of channel 1,2, ST2 open drain, invers to input level GND1 Ground 1 of chip 1 (channel 1) GND2 Ground 2 of chip 2 (channel 2) IS1 Sense current output 1,2; proportional to the load current, zero in the case of current IS2 limitation of the load current 2 (top view) Vbb GND1 IN1 ST1 IS1 GND2 IN2 ST2 IS2 Vbb 1 2 3 4 5 6 7 8 9 10 • 20 19 18 17 16 15 14 13 12 11 Vbb Vbb OUT1 OUT1 Vbb Vbb OUT2 OUT2 Vbb Vbb V1.0, 2007-05-13 Smart High-Side Power Switch BTS740S2 Maximum Ratings at Tj = 25°C unless otherwise specified Parameter Symbol Supply voltage (overvoltage protection see page 5) Supply voltage for full short circuit protection Tj,start = -40 ...+150°C Load current (Short-circuit current, see page 5) Load dump protection1) VLoadDump = VA + Vs, VA = 13.5 V RI2) = 2 Ω, td = 200 ms; IN = low or high, each channel loaded with RL = 7.0 Ω, Operating temperature range Storage temperature range Power dissipation (DC)4) Ta = 25°C: (all channels active) Ta = 85°C: Maximal switchable inductance, single pulse Vbb = 12V, Tj,start = 150°C4), IL = 5.5 A, EAS = 370 mJ, 0 Ω one channel: IL = 8.5 A, EAS = 790 mJ, 0 Ω two parallel channels: Vbb Vbb Values Unit 43 34 V V IL VLoad dump3) self-limited 60 A V Tj Tstg Ptot -40 ...+150 -55 ...+150 3.8 2.0 °C 18 16 mH 1.0 4.0 8.0 kV -10 ... +16 ±2.0 ±5.0 ±14 V mA Values typ Max Unit ZL W see diagrams on page 10 Electrostatic discharge capability (ESD) IN: VESD (Human Body Model) ST, IS: out to all other pins shorted: acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993 R=1.5kΩ; C=100pF VIN IIN IST IIS nput voltage (DC) Current through input pin (DC) Current through status pin (DC) Current through current sense pin (DC) see internal circuit diagram page 9 Thermal Characteristics Parameter and Conditions Symbol min Thermal resistance junction - soldering point4),5) each channel: Rthjs 4) junction - ambient one channel active: Rthja all channels active: ) ---- -40 33 12 --- K/W Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins (a 150Ω resistor for the GND connection is recommended. ) R = internal resistance of the load dump test pulse generator I ) V Load dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 ) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for V bb connection PCB is vertical without blown air See page 15 Data Sheet 3 V1.0, 2007-05-13 Smart High-Side Power Switch BTS740S2 Parameter and Conditions, each of the two channels Symbol at Tj = -40...+150°C, Vbb = 12 V unless otherwise specified Load Switching Capabilities and Characteristics On-state resistance (Vbb to OUT); IL = 5 A each channel, Tj = 25°C: RON Tj = 150°C: Values min typ max -- IL = 0.5 A Nominal load current mΩ 27 54 30 60 14 15 -- 50 -- mV 4.9 7.8 5.5 8.5 -- A -- -- 8 mA 25 25 70 80 150 200 µs dV/dton 0.1 -- 1 V/µs -dV/dtoff 0.1 -- 1 V/µs 5.0 3.2 -- --4.5 34 5.0 5.5 6.0 V V V ---- 4.7 -0.5 6.5 7.0 -- V 34 33 --- 43 -- V V two parallel channels, Tj = 25°C: Output voltage drop limitation at small load currents, see page 14 Unit VON(NL) Tj =-40...+150°C: one channel active: IL(NOM) two parallel channels active: Device on PCB6), Ta = 85°C, Tj ≤ 150°C Output current while GND disconnected or pulled up7); IL(GNDhigh) Vbb = 30 V, VIN = 0, see diagram page 10 Turn-on time8) IN Turn-off time IN RL = 12 Ω Slew rate on 8) 10 to 30% VOUT, RL = 12 Ω: Slew rate off 8) 70 to 40% VOUT, RL = 12 Ω: to 90% VOUT: ton to 10% VOUT: toff Operating Parameters Operating voltage9) Undervoltage shutdown Undervoltage restart Vbb(on) Vbb(under) Tj =-40...+25°C: Vbb(u rst) Tj =+150°C: Undervoltage restart of charge pump see diagram page 13 Tj =-40...+25°C: Vbb(ucp) Tj =150°C: Undervoltage hysteresis ∆Vbb(under) V ∆Vbb(under) = Vbb(u rst) - Vbb(under) Vbb(over) Vbb(o rst) Overvoltage shutdown Overvoltage restart 6) 7) 8) 9) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for Vbb connection. PCB is vertical without blown air. See page 15 not subject to production test, specified by design See timing diagram on page 11. At supply voltage increase up to Vbb= 4.7 V typ without charge pump, VOUT ≈Vbb - 2 V Data Sheet 4 V1.0, 2007-05-13 Smart High-Side Power Switch BTS740S2 Parameter and Conditions, each of the two channels Symbol at Tj = -40...+150°C, Vbb = 12 V unless otherwise specified ∆Vbb(over) Tj =-40: Vbb(AZ) Ibb=40 mA Tj =+25...+150°C: Standby current11) Tj =-40°C...25°C: Ibb(off) VIN = 0; Tj =150°C: Leakage output current (included in Ibb(off)) IL(off) VIN = 0 Operating current 12), VIN = 5V, IGND = IGND1 + IGND2, one channel on: IGND two channels on: Overvoltage hysteresis Overvoltage protection10) Values min typ max Unit -41 43 ---- 1 -47 8 24 -- --52 30 50 20 V V --- 1.2 2.4 3 6 mA 48 40 31 56 50 37 65 58 45 A --- 24 24 --- A -- 2.0 -- ms 41 43 150 -- -47 -10 -52 --- V µA µA Protection Functions13) Current limit, (see timing diagrams, page 12) Tj =-40°C: IL(lim) Tj =25°C: Tj =+150°C: Repetitive short circuit current limit, Tj = Tjt each channel IL(SCr) two parallel channels (see timing diagrams, page 12) Initial short circuit shutdown time Tj,start =25°C: toff(SC) (see timing diagrams on page 12) Output clamp (inductive load switch off)14) at VON(CL) = Vbb - VOUT, IL= 40 mA Tj =-40°C: VON(CL) Tj =25°C...150°C: Thermal overload trip temperature Tjt Thermal hysteresis ∆Tjt 10) 11) 12) 13 14) °C K Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins (a 150 Ω resistor in the GND connection is recommended). See also VON(CL) in table of protection functions and circuit diagram page 9. Measured with load; for the whole device; all channels off Add IST, if IST > 0 Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation. If channels are connected in parallel, output clamp is usually accomplished by the channel with the lowest VON(CL) Data Sheet 5 V1.0, 2007-05-13 Smart High-Side Power Switch BTS740S2 Parameter and Conditions, each of the two channels Symbol at Tj = -40...+150°C, Vbb = 12 V unless otherwise specified Reverse Battery Reverse battery voltage 15) Drain-source diode voltage (Vout > Vbb) IL = - 4.0 A, Tj = +150°C Values min typ max Unit -Vbb -VON --- -600 32 -- kILIS 4350 3100 4800 4800 5800 7800 4350 3800 4800 4800 5350 6300 5.4 6.1 6.9 V IIS(LL) IIS(LH) IIS(SH) 18) 0 0 0 ---- 1 15 10 µA tson(IS) -- -- 300 µs Current sense settling time to 10% of IIS static after 0A tsoff(IS) negative input slope18), IL = 5 -- 30 100 µs Current sense rise time (60% to 90%) after change 5A tslc(IS) of load current18) IL = 2.5 -- 10 -- µs VOUT(OL) 2 3 4 V RO 5 15 40 kΩ V mV Diagnostic Characteristics Current sense ratio16), static on-condition, VIS = 0...5 V, Vbb(on) = 6.517)...27V, kILIS = IL / IIS Tj = -40°C, IL = 5 A: Tj= -40°C, IL= 0.5 A: Tj= 25...+150°C, IL= 5 A: Tj= 25...+150°C, IL = 0.5 A: Current sense output voltage limitation Tj = -40 ...+150°C IIS = 0, IL = 5 A: Current sense leakage/offset current Tj = -40 ...+150°C VIN=0, VIS = 0, IL = 0: VIN=5 V, VIS = 0, IL = 0: VIN=5 V, VIS = 0, VOUT = 0 (short circuit) Current sense settling time to IIS static±10% after 5A positive input slope18), IL = 0 Open load detection voltage19) (off-condition) Internal output pull down (pin 17,18 to 2 resp. 13,14 to 6), VOUT=5 V 15) VIS(lim) Requires a 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 3 and circuit page 9). 16) This range for the current sense ratio refers to all devices. The accuracy of the k can be raised at least by ILIS a factor of two by matching the value of kILIS for every single device. In the case of current limitation the sense current IIS is zero and the diagnostic feedback potential VST is High. See figure 2c, page 12. 17) Valid if V bb(u rst) was exceeded before. 18) not subject to production test, specified by design 19) External pull up resistor required for open load detection in off state Data Sheet 6 V1.0, 2007-05-13 Smart High-Side Power Switch BTS740S2 Parameter and Conditions, each of the two channels Symbol Values min typ max RI 3.0 4.5 7.0 kΩ VIN(T+) VIN(T-) ∆ VIN(T) IIN(off) IIN(on) td(ST OL3) -1.5 -1 20 -- --0.5 -50 400 3.5 --50 90 -- V V V µA µA µs tdon(ST) -- 13 -- µs tdoff(ST) -- 1 -- µs 5.4 ---- 6.1 ---- 6.9 0.4 0.7 2 V at Tj = -40...+150°C, Vbb = 12 V unless otherwise specified Input and Status Feedback20) Input resistance Unit (see circuit page 9) Input turn-on threshold voltage Input turn-off threshold voltage Input threshold hysteresis Off state input current VIN = 0.4 V: On state input current VIN = 5 V: Delay time for status with open load after Input neg. slope (see diagram page 13) Status delay after positive input slope (not subject to production test, specified by design) Status delay after negative input slope (not subject to production test, specified by design) Status output (open drain) Zener limit voltage Tj =-40...+150°C, IST = +1.6 mA: VST(high) ST low voltage Tj =-40...+25°C, IST = +1.6 mA: VST(low) Tj = +150°C, IST = +1.6 mA: Status leakage current, VST = 5 V, Tj=25 ... +150°C: IST(high) 20) µA If ground resistors RGND are used, add the voltage drop across these resistors. Data Sheet 7 V1.0, 2007-05-13 Smart High-Side Power Switch BTS740S2 Truth Table Input 1 Output 1 Status 1 Input 2 Output 2 Status 2 level level level L H L H L H L H L H L H L H L H L L H L H L L21) L L H H H L H H H H H H L22) L H (L25)) L H L H L H Normal operation Currentlimitation Short circuit to GND Overtemperature Short circuit to Vbb Open load Undervoltage Overvoltage L24) H L L L L L Current Sense 1 Current Sense 2 IIS 0 nominal 0 0 0 0 0 0 0 <nominal 23) 0 0 0 0 0 0 0 Negative output voltage clamp L = "Low" Level X = don't care Z = high impedance, potential depends on external circuit H = "High" Level Status signal after the time delay shown in the diagrams (see fig 5. page 13) Parallel switching of channel 1 and 2 is possible by connecting the inputs and outputs in parallel. The status outputs ST1 and ST2 have to be configured as a 'Wired OR' function with a single pull-up resistor. The current sense outputs IS1 and IS2 have to be connected with a single pull-down resistor. Terms 9 ,EE EE , ,1 /HDGIUDPH , 67 , ,6 ,1 67 9 9 ,1 67 ,6 9,6 921 9EE 287 , / , ,6 *1' 5 *1' /HDGIUDPH , 67 352)(7 &KLS , ,1 9287 ,*1' 9EE ,1 67 9 9 ,1 67 ,6 9 ,6 921 287 , / 352)(7 &KLS *1' 5*1' 9287 ,*1' Leadframe (Vbb) is connected to pin 1,10,11,12,15,16,19,20 External RGND optional; two resistors RGND1, RGND2 = 150 Ω or a single resistor RGND = 75 Ω for reverse battery protection up to the max. operating voltage. 21) The voltage drop over the power transistor is Vbb-VOUT > 3V typ. Under this condition the sense current IIS is zero 22) An external short of output to V , in the off state, causes an internal current from output to ground. If R bb GND is used, an offset voltage at the GND and ST pins will occur and the VST low signal may be errorious. 23) Low ohmic short to V may reduce the output current I and therefore also the sense current I . bb L IS 24) Power Transistor off, high impedance Data Sheet 8 V1.0, 2007-05-13 Smart High-Side Power Switch BTS740S2 Input circuit (ESD protection), IN1 or IN2 Inductive and overvoltage output clamp, OUT1 or OUT2 ,1 5 , 9EE 9= (6'=' , , , 9 *1' 21 287 The use of ESD zener diodes as voltage clamp at DC conditions is not recommended. Status output, ST1 or ST2 3RZHU*1' VON clamped to VON(CL) = 47 V typ. 9 5 6721 Overvoltage and reverse batt. protection 67 9 5 67 (6' =' *1' 9EE ,1 9 5, /RJLF 67 ESD-Zener diode: 6.1 V typ., max 5.0 mA; RST(ON) < 375 Ω at 1.6 mA. The use of ESD zener diodes as voltage clamp at DC conditions is not recommended. 59 ,6 287 5 ,6 9 352)(7 = Current sense output *1' 5 *1' 6LJQDO*1' 9 ,6 , ,6 (6'=' = 5 ,6 ,6 5 /RDG /RDG*1' VZ1 = 6.1 V typ., VZ2 = 47 V typ., RGND = 150 Ω, RST=15kΩ, RI=4.5kΩ typ., RIS=1kΩ, RV=15kΩ, In case of reverse battery the current has to be limited by the load. Temperature protection is not active *1' Open-load detection OUT1 or OUT2 ESD-Zener diode: 6.1 V typ., max 14 mA; RIS = 1 kΩ nominal OFF-state diagnostic condition: VOUT > 3 V typ.; IN low 9 5 EE (;7 2)) 2XW 67 /RJLF 5 9 287 2 6LJQDO*1' Data Sheet 9 V1.0, 2007-05-13 Smart High-Side Power Switch BTS740S2 Inductive load switch-off energy dissipation GND disconnect ( EE ,1 ( $6 9EE ,1 287 352)(7 67 352)(7 *1' 9 EE 9 ,1 9 (/RD 9EE / 67 9 *1' 67 287 Any kind of load. In case of IN = high is VOUT ≈ VIN - VIN(T+). Due to VGND > 0, no VST = low signal available. *1' =/ ^ 5 (/ (5 / Energy stored in load inductance: 2 EL = 1/2·L·I L GND disconnect with GND pull up While demagnetizing load inductance, the energy dissipated in PROFET is ,1 9EE EAS= Ebb + EL - ER= VON(CL)·iL(t) dt, 352)(7 287 with an approximate solution for RL > 0 Ω: 67 EAS= *1' 9 9 EE 9 ,1 67 9 *1' Any kind of load. If VGND > VIN - VIN(T+) device stays off Due to VGND > 0, no VST = low signal available. IL· L (V + |VOUT(CL)|) 2·RL bb OQ(1+ |V IL·RL OUT(CL)| ) Maximum allowable load inductance for a single switch off (one channel)4) / I,/Tj,start = 150°C, Vbb = 12 V, RL = 0 Ω ZL [mH] Vbb disconnect with energized inductive load KLJK ,1 9EE 352)(7 287 67 *1' 9 EE For inductive load currents up to the limits defined by ZL (max. ratings and diagram on page 10) each switch is protected against loss of Vbb. Consider at your PCB layout that in the case of Vbb disconnection with energized inductive load all the load current flows through the GND connection. Data Sheet 10 V1.0, 2007-05-13 Smart High-Side Power Switch BTS740S2 Timing diagrams Both channels are symmetric and consequently the diagrams are valid for channel 1 and channel 2 Figure 1a: Switching a resistive load, change of load current in on-condition: Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition: ,1 ,1 67 W don(ST) 9287 W doff(ST) 9287 W on ,/ W slc(IS) /RDG ,,6 W on W off G9GWRQ W slc(IS) W soff(IS) W off ,/ /RDG W son(IS) G9GWRII W W The sense signal is not valid during settling time after turn or change of load current. Figure 2b: Switching a lamp: Figure 1b: Vbb turn on: ,1 ,1 ,1 67 9 EE 9 287 9 9 287 287 , 67RSHQGUDLQ / W 67RSHQGUDLQ W proper turn on under all conditions Data Sheet 11 V1.0, 2007-05-13 Smart High-Side Power Switch BTS740S2 Figure 2c: Switching a lamp with current limit: Figure 3a: Turn on into short circuit: shut down by overtemperature, restart by cooling ,1 ,1 67 , RWKHUFKDQQHOQRUPDORSHUDWLRQ / , 9287 /OLP , ,/ /6&U W RII6& ,6 ,,6 67 W W Heating up of the chip may require several milliseconds, depending on external conditions Figure 2d: Switching an inductive load ,1 Figure 3b: Turn on into short circuit: shut down by overtemperature, restart by cooling (two parallel switched channels 1 and 2) ,1 67 ,, // [,/OLP 9 287 , , /6&U / , /2/ W W RII6& 6 ,6 *) if the time constant of load is too large, open-load-status may occur 67 W ST1 and ST2 have to be configured as a 'Wired OR' function ST1/2 with a single pull-up resistor Data Sheet 12 V1.0, 2007-05-13 Smart High-Side Power Switch BTS740S2 Figure 6a: Undervoltage: Figure 4a: Overtemperature: Reset if Tj <Tjt ,1 ,1 67 67 ,/ QRWGHILQHG 9 EE Vbb(u cp) V bb(under) , ,6 , 7- 9bb(u rst) / ,,6 W W Figure 6b: Undervoltage restart of charge pump Figure 5a: Open load: detection (with REXT), turn on/off to open load 921&/ 9RQ ,1 WG672/ 67 RII VWDWH 9287 RQVWDWH 9 9 EEXUVW , / 9 RSHQORDG 9 , ,6 9 EERYHU RII VWDWH EERUVW EEXFS EEXQGHU 9 EE W charge pump starts at Vbb(ucp) =4.7 V typ. Data Sheet 13 V1.0, 2007-05-13 Smart High-Side Power Switch BTS740S2 Figure 8b: Current sense ratio: Figure 7a: Overvoltage: N ,/,6 ,1 67 VON(CL) 9bb V bb(over) V bb(o rst) ,/ , ,6 W Figure 8a: Current sense versus load current26:: >P$@ >$@ , / Figure 9a: Output voltage drop versus load current: 921 >9@ , ,6 521 9211/ ,/ >$@ ,/ 26 >$@ This range for the current sense ratio refers to all devices. The accuracy of the kILIS can be raised at Data Sheet 14 V1.0, 2007-05-13 Smart High-Side Power Switch BTS740S2 1.27 0.35 0.35 x 45˚ 7.6 -0.2 1) 0.23 +0.0 9 8˚ ma x 2.65 max 2.45 -0.2 0.2 -0.1 Package Outlines 0.4 +0.8 +0.15 2) 0.2 24x 20 0.1 10.3 ±0.3 11 GPS05094 1 12.8 1) 10 -0.2 Index Marking 1) Does not include plastic or metal protrusions of 0.15 max per side 2) Does not include dambar protrusion of 0.05 max per side Figure 1 PG-DSO-20 (Plastic Dual Small Outline Package) (RoHS-compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pbfree finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Please specify the package needed (e.g. green package) when placing an order You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products. Data Sheet 17 Dimensions in mm V1.0, 2007-05-13 Smart High-Side Power Switch BTS740S2 Revision History Version 1.0 Data Sheet Date Changes 2007-05-13 Creation of the green datasheet. 18 V1.0, 2007-05-13 Edition 2007-05-13 Published by Infineon Technologies AG 81726 Munich, Germany © Infineon Technologies AG 5/13/07. All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.