AND8009/D ECLinPS Plus™ SPICE Modeling Kit Prepared by: Senad Lomigora, Paul Shockman ON Semiconductor Broadband Applications Engineering http://onsemi.com APPLICATION NOTE Objective Schematic Information The objective of ”AND8009 ECLinPS Plus SPICE Modeling Kit” is to provide sufficient circuit schematic and SPICE parameter information to allow system level interconnect modeling of the ECLinPS Plus logic line devices. The kit is not intended to provide sufficient information to perform whole device logic modeling. The kit contains representative input and output schematics, netlists, and waveforms used for the ECLinPS Plus devices. The buffer, package, and ESD subcircuit models may be connected to simulate driver and receiver interconnect characteristics as shown in Figure 1. A specific device may be modeled as shown in Figure 2. No Function Logic modeling is provided. ESD PACKAGE PACKAGE ESD BUFFER INTERCONNECT BUFFER INPUT BUFFER OUTPUT BUFFER Figure 1. Interconnect Model Template DEVICE PACKAGE BUFFER BUFFER ESD PACKAGE FUNCTIONAL LOGIC NOT MODELED ESD OUTPUT BUFFER INPUT BUFFER Figure 2. DEVICE Model Template © Semiconductor Components Industries, LLC, 2005 November, 2005 − Rev. 11 1 Publication Order Number: AND8009/D AND8009/D termination models must be added for proper buffer behavior. Output buffers are shown as differential. When simulating a single−ended output, both differential outputs should utilize ESD, package, and termination models to maintain properly balanced loading. There are four terminals on all transistor models: Emitter, Base, Collector, and Substrate (biased to VEE). It should be noted that circuits can be used single ended by replacing INB with VBB. Table 1 describes the nomenclature used in the schematics and netlists. To simulate a different operating modes all levels, except VCS, are adjusted with respect to VCC. The VCS is adjusted with respect to VEE ([VEE + 1.1 V $ 50 mV) Package Various simplified input and output package case models may be found in the Appendix Section, Package RLC. Specific device package pin models may be modified according to IBIS model parasitics values. Table 1. Schematics and Netlist Nomenclature Parameter Function Description VCC 3.3 V FOR LVPECL OR (0 V) FOR LVECL VCCO 1.6 V − 2.0 V HSTL Output Positive Supply VCS Internal Reference Voltage ([VEE + 1.1 V $ 50 mV) VHSTL HSTL Internal Constant Voltage Source VEE −3.3 V FOR LVECL OR (0 V) FOR LVPECL GND 0V VTT VCC − 2 V TERMINATION PLANE IN TRUE INPUT TO CKT INB or IN INVERTED INPUT TO CKT Q TRUE OUTPUT OF CKT QB or Q INVERTED OUTPUT OF CKT EP16 Buffer Model The EP16 interconnect has been completely modeled to provide a working schematic and output waveforms as examples of the ECLinPS Plus line. The typical input buffer may be driven with the output buffer, OBUF01. (See Figure 28, simplified EP16 SPICE model and Figure 29 typical output waveform.) SPICE Netlists The netlists are organized as a group of subcircuits. In each subcircuit model netlist, the model name is followed by a list of external node interconnects. Temperature Compensation Network for 100EP Input Buffer The output netlists include temperature compensation network circuitry for 100EP style output buffers. The circuit components of the temperature compensation networks are shown in Figure 29. For simulating 10EP style outputs these components should either be deleted or commented out of the subcircuit netlists. Subcircuit models such as the Input or Output Buffer, Package, Input ESD and Output ESD should connect to supplies through hierarchical, passed parameters such as VCC, VEE, etc., for proper simulation and not separately attached to independent power supplies. A typical input buffer schematic (Figure 3) and netlist are representing structures currently in use on most existing devices in this family. Specific devices may have unique input buffer models per Table 2. The ESD and package models should be added for more accurate model behavior. An internal input pulldown resistor is shown in the ESD network, Figure 26. Some devices may also display an internal pullup resistor to VCC. Refer to specific device data sheet pinout and logic diagram for internal input resistor. The input buffers may be shown as differential, but may be modified to represent a single−ended structure by using a DC bias on the non driven input (at the signal pin common mode voltage). It is unnecessary to include an ESD or package model for the VBB pins of the models because VBB is intended as an internal node for most applications. If VBB is modeled as an external node it is usually bypassed because it is a constant voltage, and adding ESD and Package parameters provide no additional benefit. SPICE Parameter Information In addition to the schematics and netlists is a listing of the SPICE parameters for the transistors referenced in the schematics and netlists. These parameters represent a typical device of a given transistor. Varying the typical parameters will affect the DC and AC performance of the structures; but for the type of modeling intended by this note, the actual delay times are not necessary and are not modeled, as a result variation of the device parameters are meaningless. The performance levels are more easily varied by other methods and will be discussed in the next section. The resistors referenced in the schematics are polysilicon and have no parasitic capacitance in the real circuit and none is required in the model. The schematics display the only devices needed in the SPICE netlists. Output Buffer An output buffer schematic and netlist may or may not require the temperature compensation (TC) network structure depending on the specific device series. All 100 series devices will require the TC network. A 10 series device does not include a TC network. ESD, package, and http://onsemi.com 2 AND8009/D • To adjust the VOH: Modeling Information The bias drivers for the devices are not detailed since their circuitry would result in a substantial increase of model complexity and simulation time. Instead, these internal reference voltages (VBB, VCS, VHSTL, etc.) should be driven with ideal constant voltage sources. The schematics and SPICE parameters will provide a typical output waveshape, which can be seen in Figures 29, 30, and 31. Simple adjustments can be made to the models allowing output characteristics to simulate conditions at or near the corners of the data book specifications. Consistent cross−point voltages need to be maintained. Adjust the VOH and VOL level by the same amount by varying VCC. The output levels will follow changes in VCC at a 1:1 ratio. • To adjust the VOL only: Adjust the VOL level independently of the VOH level by increasing or decreasing the collector load resistance. Note that the VOH level will also change slightly due to a IBASER drop across the collector load resistor. VOL can be changed by varying the VCS supply, and therefore the gate current through the current source resistor. • To adjust rise and fall times: Summary The information included in this kit provides adequate information to run a SPICE level system interconnect simulation. Device input or output models are presented in Table 2. For EP and LVEP series devices not listed in Table 2, consult www.onsemi.com (Technical Support). Produce the desired rise and fall times output slew rates by adjusting collector load resistors to change the gates tail current. The VCS voltage will affect the tail current in the output differential, which will interact with the load resistor and collector resistor to determine tr and tf at the output. Table 2. ECLinPS PLUS INPUT/OUTPUT SELECTION TABLE Device Package A Package B Input ESD Input Buffer Output Buffer Output ESD EP01 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD EP05 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD EP08 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD EP11 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD EP14 20−lead TSSOP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD EP16 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD EP17 20−lead SO 20−lead TSSOP IN_ESD TYPICAL INBUF OBUF06 OUT_ESD EP29 20−lead TSSOP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD EP31 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD EP32 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD EP33 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF02 OUT_ESD EP35 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD EP40 20−lead TSSOP N/A IN_ESD TYPICAL INBUF OBUF09 OUT_ESD EP51 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD EP52 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD EP56 20−lead SO 20−lead TSSOP IN_ESD TYPICAL INBUF OBUF04 OUT_ESD EP57 20−lead TSSOP N/A IN_ESD TYPICAL INBUF OBUF04 OUT_ESD EP58 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD EP89 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF05 OUT_ESD EP90 20−lead TSSOP N/A IN_ESD TYPICAL INBUF OBUF04 OUT_ESD EP016 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF02 OUT_ESD EP016A 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF02 OUT_ESD EP101 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF06 OUT_ESD EP105 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF06 OUT_ESD EP116 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF06 OUT_ESD EP131 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF02 OUT_ESD http://onsemi.com 3 AND8009/D Table 2. ECLinPS PLUS INPUT/OUTPUT SELECTION TABLE Device Package A Package B Input ESD Input Buffer Output Buffer Output ESD EP139 20−lead SO 20−lead TSSOP IN_ESD TYPICAL INBUF OBUF07 OUT_ESD EP140 8−lead SO N/A IN_ESD TYPICAL INBUF OBUF09 OUT_ESD EP142 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD EP195 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF04 OUT_ESD EP196 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF04 OUT_ESD EP210S 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF10 OUT_ESD EP223 64−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF11 OUT_ESD EP445 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD EP446 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF04 OUT_ESD EP451 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD EP809 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF11 OUT_ESD LVEP11 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF08 OUT_ESD LVEP14 20−lead TSSOP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD LVEP16 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF08 OUT_ESD LVEP17 20−lead TSSOP 24−lead QFN IN_ESD TYPICAL INBUF OBUF03 OUT_ESD LVEP34 16−lead SO* 16−lead TSSOP* IN_ESD TYPICAL INBUF OBUF03 OUT_ESD LVEP56 20−lead TSSOP 24−lead QFN IN_ESD TYPICAL INBUF OBUF01 OUT_ESD LVEP111 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD LVEP210 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD LVEP221 52−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD LVEP222 52−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD LVEP224 64−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD NV4N840M QFN−32 − − 50 W to VCC OBUF12 − NB4L16M QFN−16 − − 50 W to VCC OBUF14 − NB4N527S QFN−16 − − INBUF02 OBUF13 − NB4N855S Micro−10 − − INBUF02 OBUF13 − NB4N507A SOIC−16 − − INBUF04 OBUF15 − *For package model, please consult manufacturer at www.onsemi.com (Technical Support). http://onsemi.com 4 AND8009/D Netlists and Schematics 0 Vdc + − VCC 0 R1 125 1 R2 125 R3 125 Q7 Q8 Q9 Q10 Q15 Q16 Q17 Q18 TNA TNA TNA TNA TNA TNA TNA TNA 3 IN 0 −1.33 Vdc − + 4 Q1 Q2 IN Q4 8 5 TNA INB + Q3 TNA TNA TNA INB 0 VCS − V1 = −1.7 V + V2 V2 = −0.95 V − TD = 1 n −2.1 Vdc VCS TR = 0.15 n TF = 0.15 n VEE PW = 1 n + V1 PER = 6 n VEE −3.3 Vdc − 10 Q11 Q12 Q13 Q14 Q19 Q20 Q21 Q22 TNA TNA TNA 7 R5 67 TNA TNA TNA TNA 9 R6 67 TNA 6 R4 125 Figure 3. Typical INBUF .SUBCKT TYPICAL INBUF IN INB VCS VEE Q_Q1 3 IN 5 TNA Q_Q2 3 IN 5 TNA Q_Q3 4 INB 5 TNA Q_Q4 4 INB 5 TNA Q_Q5 5 VCS 6 TNA Q_Q6 5 VCS 6 TNA Q_Q7 1 3 8 TNA Q_Q8 1 3 8 TNA Q_Q9 1 3 8 TNA Q_Q10 1 3 8 TNA Q_Q11 8 VCS 7 TNA Q_Q12 8 VCS 7 TNA Q_Q13 8 VCS 7 TNA Q_Q14 8 VCS 7 TNA Q_Q15 1 4 10 TNA Q_Q16 1 4 10 TNA Q_Q17 1 4 10 TNA Q_Q18 1 4 10 TNA Q_Q19 10 VCS 9 TNA Q_Q20 10 VCS 9 TNA Q_Q21 10 VCS 9 TNA Q_Q22 10 VCS 9 TNA R_R1 2 1 125 R_R2 3 2 125 R_R3 4 2 125 R_R4 VEE 6 125 R_R5 VEE 7 67 R_R6 VEE 9 67 V_V1 VEE 0 −3.3Vdc V_V2 VCS 0 −2.1Vdc V_IN IN 0 −1.33Vdc V_VCC 1 0 0Vdc V_INB INB 0 +PULSE −1.7V −0.95V 1n 0.15n 0.15n 1n 6n .END TYPICAL INBUF http://onsemi.com 5 AND8009/D LVPECL OUTPUT Buffer OBUF01 VCC R2 120 R1 120 ESD Q10 TNC Q11 TNC Q1 Q2 TNB TND TND Q3 INTD Q4 TNB 5 Q6 TND Q5 TND 8 SOIC PKG VCC D3 ESDM INTDb D1 ESDS D2 ESDS D4 ESDM D5 ESDM R12 .154 L1 2.17nH 71 D6 ESDM 9 VEE VEE VCC Q7 Q8 Q9 TND TND TNB 4 R3 T1 C4 .364p VEE VCS 4 NS Q 2 6 D13 ESDM 28 VEE D11 ESDS D12 ESDS D14 ESDM D15 ESDM R13 .154 L2 2.17nH 81 D16 ESDM 4 NS Qb 2 T2 10 C5 .364p VEE VEE VEE VCC INPUT Buffer Resistor Network R117 333 Die Pad ESD VCC 16 QFN PKG R107 .1 D 151 L101 .8nH R1011 50 R1010 50 Db R111 1.25K 17 C105 19 R109 1.25K .09p VT PINS VTT 2 VCC2 R108 .1 161 L102 .8nH VCC C107 .364p D111 ESDS C106 .364p D112 ESDM VEE VEE 2 18 20 C104 R112 1.25K .09p 23 21 Q101 TNE VCC2 C108 .364p D113 ESDM R118 244 VEE VEE INTDb + + VCC 3.3Vdc − + 0 VTT VEE + VCS2 .95Vdc − VCS 1.07Vdc − 0 VCS2 VTT 1.3Vdc − 0 0 0 V1 = 2.35 V2 = 1.95 TD = 1n TR = 0.165n TF = 0.165n PW = 0.585n PER = 1.5n Figure 4. http://onsemi.com 6 TNE 27 22 LVPECL OUTPUT BUFFER Internal Stimulus (666.6 MHz) VCS Q104 Q105 TNE VCS2 D114 R114 ESDS 92 LVPECL SUPPLIES VCC 24 Q103 Q102 TNE TNE 26 C109 .364p VEE VCC VEE R113 92 R115 333 VEE VCC2 R110 1.25K 25 + − INTDb 0 INTD V1 = 1.95 V2 = 2.35 TD = 1n TR = 0.165n TF = 0.165n PW = 0.585n PER = 1.5n + − INTD 0 R116 333 AND8009/D * OBUF01 driving INBUF02 V_INTD INTD 0 +PULSE 2.35 1.95 1n 0.165n 0.165n 0.585n 1.5n V_INTDb INTDB 0 +PULSE 1.95 2.35 1n 0.165n 0.165n 0.585n 1.5n V_VCC $G_VCC 0 3.3Vdc V_VCS $G_VCS 0 1.07Vdc V_VCS2 $G_VCS2 0 .95Vdc V_VTT $G_VTT 0 1.3Vdc .SUBCKT OBUF01 INTD INTDb VCC VCS VEE VTT D DB C_C4 0 9 .364p C_C5 0 10 .364p D_D1 5 $G_VCC ESDS D_D2 5 $G_VCC ESDS D_D3 0 5 ESDM D_D4 0 5 ESDM D_D5 0 5 ESDM D_D6 0 5 ESDM D_D11 6 $G_VCC ESDS D_D12 6 $G_VCC ESDS D_D13 0 6 ESDM D_D14 0 6 ESDM D_D15 0 6 ESDM D_D16 0 6 ESDM L_L1 7 9 2.17nH L_L2 8 10 2.17nH Q_Q1 2 INTD 1 TNB Q_Q2 2 INTD 1 TND Q_Q3 2 INTD 1 TND Q_Q4 3 INTDB 1 TNB Q_Q5 3 INTDB 1 TND Q_Q6 3 INTDB 1 TND Q_Q7 1 $G_VCS 4 TND Q_Q8 1 $G_VCS 4 TND Q_Q9 1 $G_VCS 4 TNB Q_Q10 $G_VCC 2 6 TNC R_R1 2 $G_VCC 120 R_R2 3 $G_VCC 120 R_R3 0 4 28 R_R12 5 7 .154 R_R13 6 8 .154 T_T1 9 0 D 0 Z0=50 TD=4000ps T_T2 10 0 DB 0 Z0=50 TD=4000ps .END OBUF01 http://onsemi.com 7 AND8009/D .SUBCKT INBUF02 D DB VCC VCS VEE C_C104 0 18 .09p C_C105 0 17 .09p C_C106 0 19 .364p C_C107 19 $G_VCC2 .364p C_C108 0 20 .364p C_C109 20 $G_VCC2 .364p D_D111 19 $G_VCC ESDS D_D112 0 19 ESDM D_D113 0 20 ESDM D_D114 20 $G_VCC2 ESDS L_L101 15 17 .8nH L_L102 16 18 .8nH Q_Q101 23 21 26 TNE Q_Q102 23 21 26 TNE Q_Q103 24 22 26 TNE Q_Q104 24 22 26 TNE Q_Q105 26 $G_VCS2 27 TNE Q_Q11 $G_VCC 3 5 TNC R_R107 D 15 .1 R_R108 DB 16 .1 R_R109 19 17 1.25K R_R110 18 20 1.25K R_R111 19 $G_VCC 1.25K R_R112 $G_VCC 20 1.25K R_R113 19 21 92 R_R114 22 20 92 R_R115 23 25 333 R_R116 24 25 333 R_R117 25 $G_VCC 333 R_R118 0 27 244 R_R1010 $G_VTT DB 50 R_R1011 D $G_VTT 50 .END INBUF02 http://onsemi.com 8 AND8009/D INBUF04 INPUT BUFFER INPUT Buffer VCC Resistor Network ESD 16 SOIC PKG VCC VCC 100 ps Delay T1 R101 .154 OE L101 2 1 2.17nH 2 D101 ESDS 3 D102 C101 ESDM .364p VCC D103 R104 ESDS 92 3.300V R102 C102 37.5K .364p 4 R103 ESDM R106 8160 8160 5 6 Q101 Q103 TNE TNE Q102 .364p 7 688.8mV TNE 0 0 R105 C103 D104 75K 0 73.48uA 3.593pA Die Pad 0 0 TTLREF 1.500V VCS Q104 TNE 1.050uA 8 −75.00uA 612.0mV R107 8160 0 OE LVTTL INPUT BUFFER Stimulus (100 MHz) OPERATIONAL SUPPLIES VCC TTLREF VCS OE + + + VCS 1.427Vdc − TTLREF − 1.5Vdc VCC − 3.3Vdc 0 0 0 V1 = 0.05 V2 = 3.25 TD = 1n TR = 2n TF = 2n PW = 3n PER = 10n Figure 5. INBUF04 Input Buffer NETLIST for INBUF04 V_OE OE 0 PULSE 0.05 3.25 1n 2n 2n 3n 10n V_TTLREF $G_TTLREF 0 1.5Vdc V_VCC $G_VCC 0 3.3Vdc V_VCS $G_VCS 0 1.427Vdc SUBCKT INBUF04 C_C101 0 3 .364p C_C102 4 $G_VCC .364p C_C103 0 4 .364p D_D101 3 $G_VCC ESDS D_D102 0 3 ESDM http://onsemi.com 9 OE + − 0 AND8009/D D_D103 3 $G_VCC ESDM D_D104 0 3 ESDS L_L101 2 3 2.17nH Q_Q101 5 4 7 TNE Q_Q102 4 4 $G_TTLREF TNE Q_Q103 6 $G_TTLREF 7 TNE Q_Q104 7 $G_VCS 8 TNE R_R101 1 2 .154 R_R102 4 $G_VCC 37.5K R_R103 4 0 75K R_R104 3 4 92 R_R105 5 $G_VCC 8160 R_R106 6 $G_VCC 8160 R_R107 0 8 8160 T_T1 OE 0 1 0 Z0=50 TD=100ps END INBUF04 3.48V 3.00V 2.00V 1.00V 0V −0.43V 20.2ns 24.0ns V(R101:1) 28.0ns 32.0ns 36.0ns Time Figure 6. Typical LVCMOS Driving INBUF04 Input Buffer at 100 MHz http://onsemi.com 10 40.0ns AND8009/D TC Network for 100EP VCC R1 120 283 W 2 IN + V1 = −0.95 V2 = −1.5 TD = 1 n TR = 0.165 n TF = 0.165 n PW = 0.585 n PER = 1.5 n Q1 TNB Q2 TND + R2 120 TNA TNA Q3 TND Q10 TNC Q4 TND Q5 TND Q6 TNB INB Q IN − 1 Q7 TND 0 + −2.22 Vdc − Q8 TND VCS 0 + Q9 TNB INB − V1 = −1.5 V2 = −0.95 TD = 1 n TR = 0.165 n TF = 0.165 n PW = 0.585 n PER = 1.5 n R3 28 + −3.3 Vdc − − Q11 TNC 3 VEE QB 4 5 R4 50 0 R5 50 VTT + −2 Vdc − VTT 0 0 Termination Figure 7. OBUF01 .SUBCKT OBUF01 IN INB VCS VCC VEE VTT Q_Q1 2 IN 1 TNB Q_Q2 2 IN 1 TND Q_Q3 2 IN 1 TND Q_Q4 3 INB 1 TND Q_Q5 3 INB 1 TND Q_Q6 3 INB 1 TNB Q_Q7 1 VCS 10 TND Q_Q8 1 VCS 10 TND Q_Q9 1 VCS 10 TNB Q_Q10 VCC 2 5 TNC Q_Q11 VCC 3 4 TNC R_R1 2 VCC 120 R_R2 3 VCC 120 R_R3 VEE 10 28 R_R4 VTT 4 50 R_R5 VTT 5 50 V_IN IN 0 +PULSE −0.95 −1.5 1n 0.165n 0.165n 0.585n 1.5n V_INB INB 0 +PULSE −1.5 −0.95 1n 0.165n 0.165n 0.585n 1.5n V_VCC VCC 0 0Vdc V_VEE VEE 0 −3.3Vdc V_VTT VTT 0 −2Vdc V_VCS VCS 0 −2.22Vdc .END OBUF01 http://onsemi.com 11 VCC 0 Vdc 0 AND8009/D TC Network for 100EP VCC VCC + − 0 Vdc R1 240 0 283 W 2 IN V1 = −0.95 V2 = −1.55 TD = 1 n TR = 0.158 n TF = 0.196 n PW = 0.573 n PER = 1.5 n + R2 240 TNA TNA Q3 TNC INB Q2 TNB Q1 TNB Q4 TNC 3 5 INB 0 V1 = −1.55 V2 = −0.95 TD = 1 n TR = 0.158 n TF = 0.196 n PW = 0.573 n PER = 1.5 n + − 0 1 R4 50 VTT IN − QB 4 Q5 TNB −2 Vdc + R5 50 VTT − 6 R3 56 + −2.2 Vdc + VEE −3.3 Vdc − VEE 0 Figure 8. OBUF02 .SUBCKT OBUF02 IN INB VCC VCS VEE VTT Q_Q1 2 IN 5 TNB Q_Q2 3 INB 5 TNB Q_Q3 VCC 2 4 TNC Q_Q4 VCC 3 1 TNC Q_Q5 5 VCS 6 TNB R_R1 2 VCC 240 R_R2 3 VCC 240 R_R3 VEE 6 56 R_R4 VTT 4 50 R_R5 VTT 1 50 V_IN IN 0 +PULSE −0.95 −1.55 1n 0.158n 0.196n 0.573n 1.5n V_INB INB 0 +PULSE −1.55 −0.95 1n 0.158n 0.196n 0.573n 1.5n V_VCC VCC 0 0Vdc V_VEE VEE 0 −3.3Vdc V_VTT VTT 0 −2Vdc V_VCS VCS 0 −2.2Vdc .END OBUF02 http://onsemi.com 12 − 0 VCS 0 Q Termination AND8009/D TC Network for 100EP VCC VCC + R1 245 0 Vdc − 0 V1 = −0.95 V2 = −1.5 TD = 1 n TR = 0.195 n TF = 0.195 n PW = 0.555 n PER = 1.5 n + 283 W 2 IN R2 245 TNA Q1 TNB TNA Q4 TNC 3 Q3 TNC INB Q2 TNB 1 QB 4 R4 50 IN + V1 = −1.5 V2 = −0.95 TD = 1 n TR = 0.195 n TF = 0.195 n PW = 0.555 n PER = 1.5 n R5 50 VTT − 0 Q INB − Q5 TNB −2 Vdc 5 R3 69 0 −3.3 Vdc + − VTT − + −2.17 Vdc VEE VEE 0 Figure 9. OBUF03 .SUBCKT OBUF03 IN INB VCC VCS VEE VTT Q_Q1 2 IN 1 TNB Q_Q2 3 INB 1 TNB Q_Q3 VCC 2 4 TNC Q_Q4 VCC 3 6 TNC Q_Q5 1 VCS 5 TNB R_R1 2 VCC 245 R_R2 3 VCC 245 R_R3 VEE 5 69 R_R4 VTT 4 50 R_R5 VTT 6 50 V_IN IN 0 +PULSE −0.95 −1.5 1n 0.195n 0.195n 0.555n 1.5n V_INB INB 0 +PULSE −1.5 −0.95 1n 0.195n 0.195n 0.555n 1.5n V_VCC VCC 0 0Vdc V_VEE VEE 0 −3.3Vdc V_VTT VTT 0 −2Vdc V_VCS VCS 0 −2.17Vdc .END OBUF03 http://onsemi.com 13 + − 0 VCS 0 Termination 6 AND8009/D TC Network for 100EP VCC VCC 0 Vdc + R1 180 − 0 IN V1 = −0.95 V2 = −1.55 TD = 1 n TR = 0.165 n TF = 0.165 n PW = 0.585 n PER = 1.5 n + Q1 TNB 283 W 1 Q2 TND R2 180 TNA TNA Q3 TND Q11 TNC 2 Q10 TNC Q4 TND Q5 TND Q6 TNB INB Q QB IN 5 − 0 + −2.29 Vdc − Q7 TND Q8 TND Q9 TNB + V1 = −1.55 V2 = −0.95 TD = 1 n TR = 0.165 n TF = 0.165 n PW = 0.585 n PER = 1.5 n 6 VCS R3 30 0 + −3.3 Vdc − INB − 3 R4 50 0 R5 50 VTT + −2 Vdc VEE 4 VTT − 0 0 Termination Figure 10. OBUF04 .SUBCKT OBUF04 IN INB VCS VCC VEE VTT Q_Q1 1 IN 5 TNB Q_Q2 1 IN 5 TND Q_Q3 1 IN 5 TND Q_Q4 2 INB 5 TND Q_Q5 2 INB 5 TND Q_Q6 2 INB 5 TNB Q_Q7 5 VCS 6 TND Q_Q8 5 VCS 6 TND Q_Q9 5 VCS 6 TNB Q_Q10 VCC 1 4 TNC Q_Q11 VCC 2 3 TNC R_R1 1 VCC 180 R_R2 2 VCC 180 R_R3 VEE 6 20 R_R4 VTT 3 50 R_R5 VTT 4 50 V_IN IN 0 +PULSE −0.95 −1.55 1n 0.165n 0.165n 0.585n 1.5n V_INB INB 0 +PULSE −1.55 −0.95 1n 0.165n 0.165n 0.585n 1.5n V_VCC VCC 0 0Vdc V_VEE VEE 0 −3.3Vdc V_VTT VTT 0 −2Vdc V_VCS VCS 0 −2.29Vdc .END OBUF04 http://onsemi.com 14 AND8009/D TC Network for 100EP VCC VCC 0 Vdc + R1 250 − 0 IN V1 = −0.95 V2 = −1.5 TD = 1 n TR = 0.165 n TF = 0.165 n PW = 0.585 n PER = 1.5 n + Q1 TNB Q13 TNC 2 283 W 1 Q2 TND R2 250 TNA TNA Q3 TND Q14 TNC Q4 TND Q5 TND INB Q6 TNB Q − 0 + − QB IN Q7 TND Q8 TND Q9 TND Q10 TNB Q11 TNB Q12 TNB − VEE 0 Figure 11. OBUF05 .SUBCKT OBUF05 IN INB VCS VCC VTT VEE Q_Q1 1 IN 5 TNB Q_Q2 1 IN 5 TND Q_Q3 1 IN 5 TND Q_Q4 2 INB 5 TND Q_Q5 2 INB 5 TND Q_Q6 2 INB 5 TNB Q_Q7 5 VCS 6 TND Q_Q8 5 VCS 6 TND Q_Q9 5 VCS 6 TND Q_Q10 5 VCS 6 TNB Q_Q11 5 VCS 6 TNB Q_Q12 5 VCS 6 TNB Q_Q13 VCC 2 3 TNC Q_Q14 VCC 1 4 TNC R_R1 1 VCC 285 R_R2 2 VCC 285 R_R3 VEE 6 38 R_R4 VTT 3 50 R_R5 VTT 4 50 V_IN IN 0 −1.33Vdc +PULSE −0.95 −1.5 1n 0.165n 0.165n 0.585n 1.5n V_INB INB 0 +PULSE −1.5 −0.95 1n 0.165n 0.165n 0.585n 1.5n V_VEE VEE 0 −3.3Vdc V_VCC VCC 0 0Vdc V_VTT VTT 0 −3Vdc V_VCS VCS 0 −2.25Vdc .END OBUF05 http://onsemi.com 15 3 4 R4 50 V1 = −1.5 V2 = −0.95 TD = 1 n TR = 0.165 n TF = 0.165 n PW = 0.585 n PER = 1.5 n R3 36 + −3.3 Vdc − INB 0 6 −2.25 Vdc VCS 0 + 5 R5 50 VTT + −3 Vdc − VTT 0 Termination AND8009/D TC Network for 100EP VCC VCC 0 Vdc + R1 177 − 0 IN + V1 = −0.95 V2 = −1.5 TD = 1 n TR = 0.165 n TF = 0.165 n PW = 0.585 n PER = 1.5 n Q7 TNC 2 283 W 1 Q1 TNB R2 177 TNA TNA Q8 TNC Q2 TND Q3 TND IN Q4 TNB INB Q QB 6 − 0 Q5 TND + −2.25 Vdc − INB − R3 37.5 + −3.3 Vdc − VEE 0 0 V1 = −1.5 V2 = −0.95 TD = 1 n TR = 0.165 n TF = 0.165 n PW = 0.585 n PER = 1.5 n Figure 12. OBUF06 .SUBCKT OBUF06 IN INB VCC VCS VEE VTT Q_Q1 1 IN 6 TNB Q_Q2 1 IN 6 TND Q_Q3 2 INB 6 TND Q_Q4 2 INB 6 TNB Q_Q5 6 VCS 5 TND Q_Q6 6 VCS 5 TNB Q_Q7 VCC 2 3 TNC Q_Q8 VCC 1 4 TNC R_R1 1 VCC 177 R_R2 2 VCC 177 R_R3 VEE 5 37.5 R_R4 VTT 3 50 R_R5 VTT 4 50 V_IN IN 0 +PULSE −0.95 −1.5 1n 0.165n 0.165n 0.585n 1.5n V_INB INB 0 +PULSE −1.5 −0.95 1n 0.165n 0.165n 0.585n 1.5n V_VEE VEE 0 −3.3Vdc V_VCC VCC 0 0Vdc V_VTT VTT 0 −2Vdc V_VCS VCS 0 −2.25Vdc .END OBUF06 http://onsemi.com 16 3 4 R4 50 5 VCS 0 + Q6 TNB R5 50 VTT + −2 Vdc VTT − 0 Termination AND8009/D TC Network for 100EP 1 VCC + R1 245 0 Vdc − 0 IN 6 R2 245 TNA 283 W 2 + 11 TNA Q1 Q3 TNC Q2 TNB V1 = −0.95 V2 = −1.5 TD = 1 n TR = 0.195 n TF = 0.195 n PW = 0.555 n PER = 1.5 n Q4 TNC TNB 3 QB IN INB − 10 + INB 0 R4 50 13 R3 55 − + −3.3 Vdc − 5 7 8 9 Q5 TNB 0 V1 = −1.5 V2 = −0.95 TD = 1 n TR = 0.195 n TF = 0.195 n PW = 0.555 n PER = 1.5 n Q R5 50 4 + −2.22 Vdc VEE 0 Figure 13. OBUF07 .SUBCKT OBUF07 Q_Q1 2 6 3 TNB Q_Q2 11 10 3 TNB Q_Q3 1 2 8 TNC Q_Q4 1 11 7 TNC Q_Q5 3 9 13 TNB R_R1 2 1 245 R_R2 11 1 245 R_R3 5 13 55 R_R4 4 8 50 R_R5 4 7 50 V_IN 6 0 +PULSE −0.95 −1.5 1n 0.195n 0.195n 0.555n 1.5n V_INB 10 0 +PULSE −1.5 −0.95 1n 0.195n 0.195n 0.555n 1.5n V_VEE 5 0 −3.3Vdc V_VCC 1 0 0Vdc V_VTT 4 0 −2Vdc V_VCS 9 0 −2.22Vdc .END OBUF07 http://onsemi.com 17 − + VCS 0 −2 Vdc VTT − 0 Termination AND8009/D TC Network for 100EP VCC VCC 0 Vdc + R1 175 − 0 IN + Q2 TND Q11 TNC 2 283 W 1 Q1 TNB R2 175 TNA TNA Q3 TND Q10 TNC Q4 TND Q5 TND Q6 INB TNB Q QB INB V1 = −0.95 − V2 = − 1.5 TD = 1 n TR = 0.195 n 0 TF = 0.195 n PW = 0.555 n PER = 1.5 n 5 + −2.36 Vdc − Q7 TND Q8 TND Q9 TNB + 6 VCS V1 = −1.5 V2 = − 0.95 TD = 1 n TR = 0.195 n TF = 0.195 n PW = 0.555 n PER = 1.5 n R3 17 0 + −3.3 Vdc − VEE 0 INB − 3 4 R4 50 0 R5 50 VTT + −2 Vdc − V2 0 Termination Figure 14. OBUF08 .SUBCKT OBUF08 IN INB VCC VCS VEE VTT Q_Q1 1 IN 5 TNB Q_Q2 1 IN 5 TND Q_Q3 1 IN 5 TND Q_Q4 2 INB 5 TND Q_Q5 2 INB 5 TND Q_Q6 2 INB 5 TNB Q_Q7 5 VCS 6 TND Q_Q8 5 VCS 6 TND Q_Q9 5 VCS 6 TNB Q_Q10 VCC 1 4 TNC Q_Q11 VCC 2 3 TNC R_R1 1 VCC 175 R_R2 2 VCC 175 R_R3 VEE 6 17 R_R4 VTT 3 50 R_R5 VTT 4 50 V_INB INB 0 +PULSE −1.5 −0.95 1n 0.195n 0.195n 0.555n 1.5n V_IN IN 0 +PULSE −0.95 −1.5 1n 0.195n 0.195n 0.555n 1.5n V_VEE VEE 0 −3.3Vdc V_VTT VTT 0 −2Vdc V_VCS VCS 0 −2.36Vdc V_VCC VCC 0 0Vdc .END OBUF08 http://onsemi.com 18 AND8009/D TC Network for 100EP VCC VCC + 3.3 Vdc R1 61.25 − 0 IN IN Q1 TNB + V1 = 1.2 − V2 = 1 TD = 1 n 0 TR = 0.13 n TF = 0.13 n 1.25 PW = 0.5 n Vdc PER = 1.26 n R2 61.25 TNA 1 Q8 TNC 2 283 W TNA Q9 TNC Q2 TND Q3 TND Q4 INB TNB 5 6 R4 4 R5 4 Q QB 3 VCS Q5 TND + − Q6 TND Q7 TND + V1 = 1 V2 = 1.2 TD = 1 n TR = 0.13 n TF = 0.13 n PW = 0.5 n PER = 1.26 n 4 VCS 0 R3 14 VEE 0 INB − R6 50 0 R7 50 VTT + 1.3 Vdc − VTT 0 Figure 15. OBUF09 .SUBCKT OBUF09 IN INB VCC VCS VTT VEE Q QB Q_Q1 1 IN 3 TNB Q_Q2 1 IN 3 TND Q_Q3 2 INB 3 TND Q_Q4 2 INB 3 TNB Q_Q5 3 VCS 4 TND Q_Q6 3 VCS 4 TND Q_Q7 3 VCS 4 TND Q_Q8 VCC 2 5 TNC Q_Q9 VCC 1 6 TNC R_R1 1 VCC 61.25 R_R2 2 VCC 61.25 R_R3 VEE 4 14 R_R4 Q 5 4 R_R5 QB 6 4 R_R6 VTT Q 50 R_R7 VTT QB 50 V_INB INB 0 +PULSE 1 1.2 1n 0.13n 0.13n 0.5n 1.26n V_IN IN 0 +PULSE 1.2 1 1n 0.13n 0.13n 0.5n 1.26n V_VCS VCS 0 1.25Vdc V_VCC VCC 0 3.3Vdc V_VTT VTT 0 1.3Vdc .END OBUF09 http://onsemi.com 19 Termination AND8009/D VCC 2.5 + VCC R6 90 1 − 0 R1 280 TC Network for 100EP TNA IN + V1 = 1.7 − V2 = 1.5 TD = 1 n 0 TR = 0.1 n TF = 0.1 n PW = 1 n PER = 2.2 n Q3 TNC Q1 TNB Q4 TNC 2 283 W 3 IN R2 280 TNA Q2 TND 4 R4 100 INB INB + V1 = 1.5 − V2 = 1.7 TD = 1 n 0 TR = 0.1 n TF = 0.1 n PW = 1 n PER = 2.2 n Q QB Termination Q5 TNB Q6 TNB 5 R3 74 6 R5 13 7 R7 13 VEE + − VCS 0.99 Vdc + − VCS 0 Figure 16. OBUF10 .SUBCKT OBUF10 IN INB VCC VCS VEE Q QB Q_Q1 3 IN 4 TNB Q_Q2 2 INB 4 TNB Q_Q3 VCC 3 QB TNC Q_Q4 VCC 2 Q TNC Q_Q5 4 VCS 5 TNB Q_Q6 QB VCS 6 TNB Q_Q7 Q VCS 7 TNB R_R1 3 1 295 R_R2 2 1 295 R_R3 VEE 5 64.3 R_R4 QB Q 100 R_R5 VEE 6 10 R_R6 1 VCC 61.25 R_R7 VEE 7 10 V_IN IN 0 +PULSE 1.5 1.7 1n 0.1n 0.1n 1n 2.6n V_INB INB 0 +PULSE 1.7 1.5 1n 0.1n 0.1n 1n 2.6n V_VCC VCC 0 2.5 V_VEE VEE 0 0Vdc V_VCS VCS 0 0.99Vdc .END OBUF10 http://onsemi.com 20 Q7 TNB 0 VEE 0 Vdc AND8009/D VHSTL Internal Constant Voltage Source VHSTL + VHSTL R1 2.0 Vdc − 490 VCCO R2 490 Q9 Q10 Q11 VCC0+ 1.8 Vdc − Q12 Q8 TNC TNC TNC 1 0 2 IN Q2 Q1 INB 3 IN TNB TNB + + V1 = 1.3 V2 = 1.5 − − TD = 1.0 n Q4 Q3 0 4 0 TR = 0.5 n TF = 0.5 n + 5 VCS PW = 5.0 n PER = 11 n 1.3 Vdc − TND TND 0 Q5 Q6 TNC TNC INB V1 = 1.5 V2 = 1.3 TD = 1.0 n TR = 0.5 n TF = 0.5 n PW = 5.0 n PER = 11 n R3 225 TNC Q7 TNC 0 TNC Q QB R4 50 R5 50 VTT 0 Termination 0 Figure 17. OBUF11 .SUBCKT OBUF11 IN INB VCCO VHSTL Q QB Q_Q1 1 IN 3 TNB Q_Q2 2 INB 3 TNB Q_Q3 3 4 5 TND Q_Q4 3 4 5 TND Q_Q5 VCCO 2 Q TNC Q_Q6 VCCO 2 Q TNC Q_Q7 VCCO 2 Q TNC Q_Q8 VCCO 2 Q TNC Q_Q9 VCCO 1 QB TNC Q_Q10 VCCO 1 QB TNC Q_Q11 VCCO 1 QB TNC Q_Q12 VCCO 1 QB TNC R_R1 1 VHSTL 490 R_R2 2 VHSTL 490 R_R3 0 5 225 R_R4 0 Q 50 R_R5 0 QB 50 V_IN IN 0 +PULSE 1.3 1.5 1n 0.5n 0.5n 5n 11n V_INB INB 0 +PULSE 1.5 1.3 1n 0.5n 0.5n 5n 11n V_VCCO VCCO 0 1.8Vdc V_VHSTL VHSTL 0 2.0Vdc V_VCS 4 0 1.3Vdc .END OBUF11 http://onsemi.com 21 AND8009/D OUTPUT Buffer VCC ESD QFN PKG VCC R1 50 R2 50 1 Q1 INTD D1 ESDS 2 Q4 TNB Q2 TNB R3 3 0.4 D2 ESDM TNB 0.9nH C4 .300p VEE 4 Q9 TNB 5 D3 ESDS Q10 Q11 TNB TNB 6 8.259mA 8.255mA R4 Q 2 VEE 12.4 TNB 1 VCC INTD Q7 L1 7 Q5 TNB VCS R12 12 R5 R13 L2 8 1 0.4 D4 ESDS Q 2 0.9nH VEE C5 .300p VEE 12 VEE Receiver Termination VCC T−line delay 1000 ps T1 D 16 QFN PKG 392.0uA R1011 50 L101 0.9nH 2 V 1 9 Die Cap R101 0.4 11 C103 .6p C101 .300p VEE VEE T2 L102 0.9nH D 2 R1010 50 7.671mA VCC 10 R102 0.4 12 C104 .6p C102 .300p VEE 2.5 GHz Operational Frequency 3.3 V LVPECL Supply Mode Operation VCC VCS + + INTD VEE V1 = 2.45 V2 = 2.25 TD = 1n TR = 0.125n TF = 0.125n PW = 0.075n PER = 0.4n VCS 0.97Vdc − 16.19mA 0 1 VEE VEE VCC 3.3Vdc − VEE V T−line delay 1000 ps 154.9uA 0 0 + − INTD INTD 163.3uA 0 V1 = 2.25 V2 = 2.45 TD = 1n TR = 0.125n TF = 0.125n PW = 0.075n PER = 0.4n + − INTD 6.381uA 0 Figure 18. OBUF12 Driving Typical Receiver with Termination and 1000 ps T−Line Delay http://onsemi.com 22 AND8009/D Netlist V_VCC V_VCS V_INTD V_INTDb for OBUF12 Driving Typical Receiver with Termination and 1000 ps T−line delay $G_VCC 0 3.3Vdc $G_VCS 0 0.97Vdc INTD 0 +PULSE 2.25 2.45 1n 0.125n 0.125n 0.075n 0.4n INTDB 0 +PULSE 2.45 2.25 1n 0.125n 0.125n 0.075n 0.4n .SUBCKT OBUF12 VCC VCS VEE INT INTb Q Qb Q_Q1 1 INTD 3 TNB Q_Q10 4 $G_VCS 6 TNB Q_Q11 4 $G_VCS 6 TNB Q_Q2 1 INTD 3 TNB Q_Q4 2 INTDB 4 TNB Q_Q5 2 INTDB 4 TNB Q_Q7 3 $G_VCS 5 TNB Q_Q9 3 $G_VCS 5 TNB D_D1 1 $G_VCC ESDS D_D2 0 1 ESDM D_D3 2 $G_VCC ESDS D_D4 0 2 ESDS C_C4 0 Q .300p C_C5 0 QB .300p R_R1 1 $G_VCC 50 R_R2 2 $G_VCC 50 R_R3 4 3 12.4 R_R4 0 5 12 R_R5 0 6 12 L_L1 7 Q 0.9nH L_L2 8 QB 0.9nH .END OBUF12 .SUBCKT RECEIVER VCC VEE D Db T_T1 Q 0 D 0 Z0=50 TD=1000ps T_T2 QB 0 DB 0 Z0=50 TD=1000ps C_C101 0 D .300p C_C102 0 DB .300p C_C103 0 11 .6p C_C104 0 12 .6p L_L101 9 D 0.9nH L_L102 10 DB 0.9nH R_R101 11 9 0.4 R_R1010 DB $G_VCC 50 R_R1011 D $G_VCC 50 R_R102 12 10 0.4 R_R12 1 7 0.4 R_R13 2 8 0.4 .END RECEIVER http://onsemi.com 23 AND8009/D 3.287V 3.200V 3.100V 3.000V 2.913V 5.120ns 5.200ns V(R1010:1) V(R1011:1) 5.300ns V(R1011:1) 5.400ns 5.500ns Time Figure 19. OBUF12 at 2.5 GHz Operation Frequency; VOUTamp at 360 mVPP; VOH at 3.28 V; VOL at 2.92 V; tr/tf (20% − 80%) is 86 ps (With Receiver Load) http://onsemi.com 24 AND8009/D OUTPUT Buffer VCC Q1 TNB 2 INTD Q2 TNB Q4 Q3 TNB TNB ESD TERMINATION INTD R2 50 VCC R1 50 3 4 Q5 TNB INTDX D2 ESDM Trace Delay Trace Delay RECEIVER: 8 SOIC PKG 1 L1 11 2 T1 Q .1 R12 V 1000 ps C4 .9pF VEE TNB VCS Q9 TNB 8 7 D3 ESDM VEE C104 .364p VEE V 1 25 Q10 TNB 50 ps 100 D4 ESDS 5 .154 R107 L101 1 2 17 15 2.17nH R100 VCC 6 R5 13 VEE VEE VEE INTDX T101 9 .8nH VEE Q8 Q6 Q7 TNB TNB 16 QFM PKG D1 ESDS .1 R13 L2 12 2 T2 T102 Q 14 10 .8nH 1000 ps C5 .9pF VEE VEE VEE 50 ps VEE VEE L102 1 2 18 D119 .154 16 2.17nH .364p R108 VEE VEE R3 50 R4 50 VEE LVPECL Mode Supplies VCC + VCC 3.3Vdc − VCS VCS .96Vdc 0 + − 0 INTD INTD INTDX INTDX VEE 0 V1 = 2.45 V2 = 1.9 TD = .1n TR = 0.075n TF = 0.075n PW = .525n PER = 1.2n + INTD − 0 V1 = 1.9 V2 = 2.45 TD = .1n TR = 0.075n TF = 0.075n PW = .525n PER = 1.2n + INTD − 0 V1 = 1.425 V2 = 1.225 TD = .1n TR = 0.075n TF = 0.075n PW = .525n PER = 1.2n + INTDX − 0 Figure 20. OBUF13 With Termination And Receiver Package Load SPICE NETLIST for OBUF13: V_VCC $G_VCC 0 3.3Vdc V_VCS $G_VCS 0 .96Vdc V_INTD INTD 0 PULSE 2.45 1.9 .1n 0.075n 0.075n .525n 1.2n V_INTDb INTDB 0 PULSE 1.9 2.45 .1n 0.075n 0.075n .525n 1.2n V_INTDX INTDX 0 PULSE 1.225 1.425 .1n 0.075n 0.075n .525n 1.2n V_INTDXb INTDXB 0 PULSE 1.425 1.225 .1n 0.075n 0.075n .525n 1.2n .SUBCKT OBUF13 C_C104 0 13 .364p C_C4 0 11 .9pF C_C5 0 12 .9pF C_D119 0 14 .364p D_D1 3 $G_VCC ESDS D_D2 0 3 ESDM D_D3 0 4 ESDM http://onsemi.com 25 V1 = 1.225 V2 = 1.425 TD = .1n TR = 0.075n TF = 0.075n PW = .525n PER = 1.2n + INTDX − 0 AND8009/D D_D4 4 $G_VCC ESDS L_L1 9 11 .8nH L_L101 11 13 2.17nH L_L102 12 14 2.17nH L_L2 10 12 .8nH Q_Q1 $G_VCC INTDB 2 TNB Q_Q10 6 $G_VCS 8 TNB Q_Q2 $G_VCC INTDB 2 TNB Q_Q3 $G_VCC INTD 1 TNB Q_Q4 $G_VCC INTD 1 TNB Q_Q5 4 INTDX 6 TNB Q_Q6 4 INTDX 6 TNB Q_Q7 3 INTDXB 5 TNB Q_Q8 3 INTDXB 5 TNB Q_Q9 5 $G_VCS 7 TNB R_R1 3 1 50 R_R100 Q QB 100 R_R107 9 11 .154 R_R108 10 12 .154 R_R12 3 9 .1 R_R13 4 10 .1 R_R2 4 2 50 R_R3 0 7 50 R_R4 0 8 50 R_R5 5 6 25 T_T1 11 0 Q 0 Z0=50 TD=1000ps T_T101 Q 0 9 0 Z0=50 TD=50ps T_T102 QB 0 10 0 Z0=50 TD=50ps T_T2 12 0 QB 0 Z0=50 TD=1000ps .END OBUF13 1.400V 1.300V 1.200V 1.100V 1.052V 45.662ns V(Q) 45.800ns V(QB) 46.000ns 46.200ns 46.400ns 46.600ns 46.744ns Time Figure 21. OBUF13 Typical Waveform at 1.0 GHz with Termination and Receiver Package Load (95ps tr/tf) http://onsemi.com 26 AND8009/D OUTPUT Buffer VCC ESD QFN PKG VCC R1 50 R2 50 D1 ESDS 1 INTD Q3 TNB Q5 TNB Q4 TNB Q6 TNB 364.6uA L1 R3 3 7.819mA 0.9nH C4 .300p VEE Q9 TNB Q10 TNB D3 ESDS Q11 TNB 5 8.635mA R4 VEE 4 12.4 Q7 TNB Q12 TNB R5 R13 D4 ESDS Q13 TNB 8 1 L2 8.077mA 2 0.9nH 0.4 C5 .300p VEE 6 8.638mA 12 Q 2 VCC INTD VEE 12 VEE Receiver Termination Die Cap 16 QFN PKG VCC T−line delay 1000 ps T1 364.6uA R1011 50 D L101 0.9nH 2 V 1 9 R101 0.4 11 C103 .6p C101 .300p VEE VEE VEE T−line delay 1000 ps V VCS 7 1 0.4 D2 ESDM Q2 TNB Q1 TNB R12 T2 D L102 0.9nH 2 R1010 50 8.077mA 1 10 R102 0.4 12 C104 .6p C102 .300p VEE VEE VCC VEE 3.3 V LVPECL Supply Mode Operation VCC + VCS 4 GHz Operational Frequency INTD VEE V1 = 2.425 V2 = 2.225 TD = 1n TR = 0.05n TF = 0.05n PW = 0.075n PER = 0.25n VCS + 0.96Vdc − VCC 3.3Vdc − 0 0 0 + − INTD 0 INTD V1 = 2.225 V2 = 2.425 TD = 1n TR = 0.05n TF = 0.05n PW = 0.075n PER = 0.25n Figure 22. OBUF14 With Termination And Reciever Package Load http://onsemi.com 27 + − INTD 0 Q AND8009/D NETLIST for OBUF14 V_INTD INTD 0 +PULSE 2.225 2.425 1n 0.05n 0.05n 0.075n 0.25n V_INTDb INTDB 0 +PULSE 2.425 2.225 1n 0.05n 0.05n 0.075n 0.25n V_VCC $G_VCC 0 3.3Vdc V_VCS $G_VCS 0 0.96Vdc .SUBCKT OBUF14 VCC VCS INTD INTDb Q Qb Q_Q1 1 INTD 3 TNB Q_Q2 1 INTD 3 TNB Q_Q3 1 INTD 3 TNB Q_Q4 2 INTDB 4 TNB Q_Q5 2 INTDB 4 TNB Q_Q6 2 INTDB 4 TNB Q_Q7 3 $G_VCS 5 TNB Q_Q9 3 $G_VCS 5 TNB Q_Q10 3 $G_VCS 5 TNB Q_Q11 4 $G_VCS 6 TNB Q_Q12 4 $G_VCS 6 TNB Q_Q13 4 $G_VCS 6 TNB R_R1 1 $G_VCC 50 R_R2 2 $G_VCC 50 R_R3 4 3 12.4 R_R4 0 5 12 R_R5 0 6 12 R_R12 1 7 0.4 R_R13 2 8 0.4 D_D1 1 $G_VCC ESDS D_D2 0 1 ESDM D_D3 2 $G_VCC ESDS D_D4 0 2 ESDS C_C4 0 Q .300p C_C5 0 QB .300p L_L1 7 Q 0.9nH L_L2 8 QB 0.9nH .END OBUF14 .SUBCKT RECEIVER VCC VCS D Db T_T1 Q 0 D 0 Z0=50 TD=1000ps T_T2 QB 0 DB 0 Z0=50 TD=1000ps C_C101 0 D .300p C_C102 0 DB .300p C_C103 0 11 .6p C_C104 0 12 .6p L_L101 9 D 0.9nH L_L102 10 DB 0.9nH R_R101 11 9 0.4 R_R102 12 10 0.4 R_R1010 DB $G_VCC 50 R_R1011 D $G_VCC 50 .END RECEIVER http://onsemi.com 28 AND8009/D 3.277V 3.200V 3.100V 3.000V 2.900V 7.333ns 7.400ns V(R1010:1) V(R1011:1) 7.500ns V(R1011:1) Time 7.600ns 7.700ns Figure 23. OBUF14 Typical Output Waveform at 4 GHz Operation; Amplitude 345 mVPP; VOL 2.91, VOH 3.26 tr/tf 60 ps http://onsemi.com 29 AND8009/D 3 Q2 TNC INTD Q1 TNC 1 D2 ESDS D3 ESDM D4 ESDM 7 1 5 L1 2.17nH 2 9 VCC 800 ps Delay T1 R50 270 VDD VDD VDD VCC VCC Q3 TND Q5 TND Q4 TND Q6 TND Q7 TNB Q8 TNB D5 ESDS 4 D7 ESDM 2 R1 9.5 15.05mA R51 62 Q C3 .364p R3 .154 VDD INTD VCSD D1 ESDS TERMINATION DRIVER Trace DRIVER SOIC 16 PKG V DRIVER ESD VCC D6 ESDS 6 8 1 L2 2.17nH R2 .154 D8 ESDM 2 10 800 ps Delay T2 R52 62 Q R53 270 C4 .364p VDD VDD V DRIVER − Open Collector (OC) OUTPUT Buffer VDD VDD VDD RECEIVER INPUT Buffer R101 125 RECEIVER Input Trace RECEIVER 8 SOIC PKG VCC RECEIVER ESD 10 ps Delay T101 13 1 11 L101 2.17nH R107 .154 2 15 C101 .364p 14 1 12 R108 .154 2 16 C102 .364p VDD VDD R109 D103 ESDM D104 ESDM 92 VDD VCC VDD L102 2.17nH D102 ESDS 17 C103 .6p TNA + 3.3Vdc + D105 ESDS D106 ESDS R110 D107 ESDM D108 ESDM 92 − 0 Q103 TNA Q105 TNA Q106 TNA 23 R104 125 C104 .6p VDD INTERNAL STIMULUS SOURCES at 100 MHz VCSD INTD VDD VCSD 1.01Vdc − 0 Q102 TNA 22 VDD VDD + VCSR 1.05Vdc − R103 125 20 18 INTD VCSR Q101 VDD OPERATIONAL SUPPLIES VCC R102 125 19 VCSR VDD 10 ps Delay T102 D101 ESDS 21 RECEIVER Die Pad Cap 0 0 V1 = 2.3 V2 = 2.1 TD = 1n TR = .25n TF = .25n PW = 4.75n PER = 10n INTD + − 0 V1 = 2.1 V2 = 2.3 TD = 1n TR = .25n TF = .25n PW = 4.75n PER = 10n INTD + − 0 Figure 24. An OBUF15 Open Collector Output Buffer Driving A Typical LVPECL Receiver http://onsemi.com 30 Q104 TNA AND8009/D NETLIST for OBUF15 V_INTD INTD 0 PULSE 2.1 2.3 1n .25n .25n 4.75n 10n V_INTDb INTDB 0 PULSE 2.3 2.1 1n .25n .25n 4.75n 10n V_VCC $G_VCC 0 3.3Vdc V_VCSD $G_VCSD 0 1.01Vdc V_VCSR $G_VCSR 0 1.05Vdc SUBCKT OBUF15 Q_Q1 3 INTDB 1 TNC Q_Q2 4 INTD 1 TNC Q_Q3 1 $G_VCSD 2 TND Q_Q4 1 $G_VCSD 2 TND Q_Q5 1 $G_VCSD 2 TND Q_Q6 1 $G_VCSD 2 TND Q_Q7 1 $G_VCSD 2 TNB Q_Q8 1 $G_VCSD 2 TNB R_R1 0 2 9.5 D_D1 3 $G_VCC ESDS D_D2 3 $G_VCC ESDS D_D3 0 3 ESDM D_D4 0 3 ESDM D_D5 4 $G_VCC ESDS D_D6 4 $G_VCC ESDS D_D7 0 4 ESDM D_D8 0 4 ESDM R_R2 4 8 .154 R_R3 3 7 .154 L_L1 7 9 2.17nH L_L2 8 10 2.17nH C_C3 0 9 .364p C_C4 0 10 .364p T_T1 9 0 Q 0 Z0=50 TD=800ps T_T2 10 0 QB 0 Z0=50 TD=800ps R_R50 Q 0 270 R_R51 Q $G_VCC 62 R_R52 QB $G_VCC 62 R_R53 0 QB 270 .END SUBCKT RECEIVER C_C101 0 15 .364p C_C102 0 16 .364p C_C103 0 17 .6p C_C104 0 18 .6p D_D101 15 $G_VCC ESDS D_D102 15 $G_VCC ESDS D_D103 0 15 ESDM D_D104 0 15 ESDM D_D105 16 $G_VCC ESDS D_D106 16 $G_VCC ESDS D_D107 0 16 ESDM D_D108 0 16 ESDM L_L101 13 15 2.17nH L_L102 14 16 2.17nH Q_Q101 19 17 22 TNA Q_Q102 19 17 22 TNA Q_Q103 20 18 22 TNA Q_Q104 20 18 22 TND Q_Q105 22 $G_VCSR 23 TNA Q_Q106 22 $G_VCSR 23 TNA R_R101 21 $G_VCC 125 R_R102 19 21 125 R_R103 20 21 125 http://onsemi.com 31 AND8009/D R_R104 R_R107 R_R108 R_R109 R_R110 T_T101 T_T102 .END RECEIVER 0 23 125 11 13 .154 12 14 .154 15 17 92 16 18 92 Q 0 11 0 Z0=50 TD=10ps QB 0 12 0 Z0=50 TD=10ps 2.718V 2.400V 2.000V 1.917V 16.5ns 18.0ns V(QB) 20.0ns 22.0ns 24.0ns 26.0ns 28.0ns Time V(Q) Figure 25. OBUF15 Output Driving LVPECL Receiver Typical Waveforms at 100 MHz; VOH 1.94 V; VOL 2.68 V; Vamp 736 mV; 199 ps tr/tf at 2.09 V and 2.53 V (20%/80%) http://onsemi.com 32 AND8009/D VCC RB1 185 *RPU D1 IN D4 D5 D2 D6 D7 D3 D8 RB2 185 RPD 75 k D9 PAD Pulldown Resistor VEE * See device data sheet Figure 26. Input ESD .SUBCKT IN_ESD VCC VEE IN PAD D1 IN VCC ESDM D2 IN VCC ESDM D3 IN VCC ESDM D4 VEE IN ESDM D5 VEE IN ESDS D6 VEE IN ESDM D7 VEE IN ESDS D8 VEE IN ESDM D9 VEE IN ESDS RPD IN VEE 75K RPU IN VCC 36.5K RB1 IN PAD 185 RB2 IN PAD 185 .ENDS IN_ESD VCC D1 PAD D3 D4 D2 D5 D6 VEE Figure 27. Output ESD .SUBCKT OUT_ESD D1 OUT D2 OUT D3 VEE D4 VEE D5 VEE D6 VEE .ENDS OUT_ESD VCC VEE OUT VCC ESDM VCC ESDM OUT ESDM OUT ESDS OUT ESDM OUT ESDS http://onsemi.com 33 OUT AND8009/D The following is an example of a typical run−deck file which might be used to simulate Figure 28 to produce output waveform shown in Figure 29. TYPICAL TEST CIRCUIT VCC VEE VCS VTT VIN VINB .GROUND .TRAN VCC VEE VCS VTT IN INB 0 0.2NS 0 0 0 0 0 0 0V −3.3V −2.2V −2.0V PULSE(−1.7 −0.95 5NS 5NS 5NS 50NS 110NS) PULSE(−0.95 −1.7 5NS 5NS 5NS 50NS 110NS) 120NS R1 120 IN OBUF01 Q3 Q11 TNC Q4 Q5 Q10 Q6 INB TND TNB −1.33 Vdc 0 TND Q7 TND TND Q8 TND VCC TNC + QB TNB V1 = 1.5 V V2 = −0.95 V TD = 1 n TR = 0.15 n TF = 0.15 n PW = 1 n PER = 6 n Q9 TND − 0 Vdc Q + R4 50 − 0 −2 Vdc TNB R5 50 + − 0 R3 28 Termination 125 R2B 125 Q7B R3B 125 TNA IN’ Q1B TNA Q2B TNA −2.2 Vdc + − Q6B TNA VCS −3.3 Vdc Q3B Q4B TNA Q5B + − VEE 0 − Q2 0 + Q1 R2 120 TNA Q8B TNA IN’B Q9B Q10B TNA TNA Q15B Q16B Q17B Q18B TNA TNA TNA TNA TYPICAL INPUT BUFFER TNA Q11B Q12B TNA TNA R4B 125 Q13B Q14B TNA R5B 67 Figure 28. EP16 Buffer http://onsemi.com 34 TNA Q19B Q20B Q21B Q22B TNA TNA TNA TNA R6B 67 AND8009/D −0.865 V VOH = 932.6 mV 80% −1.200 V tr = 174.7 ps CROSS POINT Vout tf = 131.8 ps 20% −1.600 V −1.837 V 9.9 VOL = 1720 mV 10.0 10.1 10.2 10.3 10.4 10.5 10.6 Time (ns) Figure 29. Typical Generic Output Waveform 2.34 V VOH = 2.281 V 80% 2.20 V tr = 125.1 ps CROSS POINT Vout tf = 118 ps 2.00 V 20% 1.84 V 1.509 VOL = 1.88 V 1.600 1.700 1.800 1.900 2.000 2.100 Time (ns) Figure 30. OBUF09 Reduced Swing Output Waveform (EP40/140) 1.4 V 80% VOH = 1.42 V tr = 179 ps Vout CROSS POINT 1.2 V tf = 140 ps 20% 1.0 V VOL = 0.946 V 4.854 5.000 5.200 5.400 5.600 5.800 6.000 Time (ns) Figure 31. LVDS Output Waveform (EP210’s) http://onsemi.com 35 6.188 AND8009/D ****************** Transistor and Diodes Nominal SPICE Models* ******************* ***************************************************************************** .MODEL TNA NPN (IS=8.12e−18 BF=192 NF=1 VAF=75.6 IKF=1.49e−02 + ISE=9.14e−17 NE=2 BR=15.8 VAR=2.76 IKR=2.2e−03 ISC=2.62e−16 + NC=1.578 RB=327 IRB=4.8e−05 RBM=0.001 RE=10 RC=15 CJE=2.0e−14 + VJE=.8867 MJE=.2868 TF=9.02e−12 ITF=7.6e−03 XTF=2.8 VTF=3.4 PTF=41.56 TR=1NS + CJC=5.6e−15 VJC=.6324 MJC=.3006 XCJC=.3 CJS=4.8e−15 VJS=.4193 MJS=.2563 + EG=1.119 XTI=3.999 XTB=0.8826 FC=0.9) ***************************************************************************** .MODEL TNB NPN (IS=2.71e−17 BF=172 NF=1 VAF=71.4 IKF=4.38e−02 + ISE=1.33e−15 NE=2 BR=17.9 VAR=2.76 IKR=3.0e−03 ISC=2.22e−16 + NC=1.578 RB=67 IRB=6.47e−05 RBM=0.001 RE=3 RC=4 CJE=5.09e−14 + VJE=.8867 MJE=.2868 TF=9.02e−12 ITF=2.53e−02 XTF=2.8 VTF=3.4 PTF=41.56 TR=1NS + CJC=20.6e−15 VJC=.6324 MJC=.3006 XCJC=.3 CJS=1.7e−14 VJS=.4193 MJS=.2563 + EG=1.119 XTI=3.999 XTB=0.8826 FC=0.9) ***************************************************************************** .MODEL TNC NPN (IS=6.55e−17 BF=103 NF=1 VAF=90 IKF=2.91e−01 + ISE=8.85e−15 NE=2 BR=15.7 NR=1 VAR=3.82 IKR=2.01e−02 ISC=1.48e−15 + NC=2 RB=10.5 IRB=4.39e−04 RBM=0.29 RE=0.351 RC=9 CJE=3.5e−13 + VJE=.8167 MJE=.1973 TF=8.99e−12 ITF=1.3e−01 XTF=5.67 VTF=1.86 PTF=41.43 TR=6.405e−10 + CJC=1.4e−13 VJC=.6401 MJC=.2674 XCJC=1 CJS=9.3e−14 VJS=.5002 MJS=.1706 + EG=1.135 XTI=4.177 XTB=0.6322 FC=0.961) ***************************************************************************** .MODEL TND NPN (IS=1.36e−17 BF=180 NF=1 VAF=87.6 IKF=2.19e−02 + ISE=6.65e−16 NE=2 BR=16.9 VAR=2.76 IKR=1.5e−03 ISC=1.11e−16 + NC=1.578 RB=136 IRB=3.24e−05 RBM=0.001 RE=6 RC=8 CJE=1.02e−13 + VJE=.8867 MJE=.2868 TF=9.02e−12 ITF=1.27e−02 XTF=2.8 VTF=3.4 PTF=41.56 TR=1NS + CJC=10.3e−15 VJC=.6324 MJC=.3006 XCJC=.3 CJS=9.94e−15 VJS=.4193 MJS=.2563 + EG=1.119 XTI=3.999 XTB=0.8826 FC=0.9) ***************************************************************************** .MODEL TNE NPN (IS=2.68e−18 BF=223 NF=1 VAF=56.0 IKF=3.96e−03 + ISE=3.07e−17 NE=2 BR=13.9 VAR=2.76 IKR=7.23e−04 ISC=6.08e−17 + NC=1.578 RB=386 IRB=1.3e−05 RBM=0.001 RE=26 RC=28 CJE=6.0e−15 + VJE=.8867 MJE=.2868 TF=9.02PS ITF=2.6e−03 XTF=2.8 VTF=3.4 PTF=41.56 TR=1NS + CJC=3.4e−15 VJC=.6324 MJC=.3006 XCJC=.3 CJS=3.4e−15 VJS=.4193 MJS=.2563 + EG=1.119 XTI=3.999 XTB=0.8826 FC=0.9) ***************************************************************************** .MODEL ESDM D (IS=1.55E−14 CJO=160fF RS=12 VJ=.58 M=.25 BV=9) ***************************************************************************** .MODEL ESDS D (IS=1.55E−14 CJO=29fF VJ=.624 M=.571) ***************************************************************************** *SPICE MODELS 4.5 http://onsemi.com 36 AND8009/D APPENDIX: PACKAGE RLC MODELS Package R (W) L (nH) C (pF) 1.5 0.188 1 SOIC−8 2 TSSOP−8 0.048 1.9 0.089 3 SOIC−20 W 0.136 3.04 0.158 4 TSSOP−20 0.033 1.76 0.98 5 QFN−24 0.055 1.29 0.05 6 LQFP−32 0.67 2.38 0.13 7 LQFP−52 0.88 3.3 0.072 8 LQFP−64 0.10 0.67 0.05 9 QFN−16 0.039 0.75 0.13 10 QFN−32 0.42 1.39 0.142 11 TSSOP−10 0.048 1.9 0.089 12 SOIC−16 0.152 2.714 0.364 13 TSSOP−16 0.044 0.82 0.41 ECLinPS Plus is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free Literature Distribution Center for ON Semiconductor USA/Canada P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Phone: 81−3−5773−3850 Email: [email protected] http://onsemi.com 37 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. AND8009/D