ECLinPS and ECLinPS Lite SPICE I/O Modeling Kit

AN1503/D
ECLinPS and ECLinPS Lite
SPICE Modeling Kit
Prepared by
Senad Lomigora, Paul Shockman
ON Semiconductor Logic Applications Engineering
http://onsemi.com
APPLICATION NOTE
Objective
The objective of this kit is to provide customers with
enough circuit schematic and SPICE parameter information
to allow them to perform system level interconnect
modeling for the current devices of the standard ECLinPS
and ECLinPS Lite logic line, ON Semiconductor’s high
performance ECL family. The kit is not intended to provide
information necessary to perform circuit level modeling on
ECLinPS devices. With packaged gate delays of 300 ps and
output edge rates as low as 175 ps, this family defines the
state−of−the−art in ECL logic. The ECLinPS line is one of
ON Semiconductor’s high performance ECL/PECL family
of products.
Device Input and Output Buffers
Schematic Information
The kit contains representative input and output
schematics, netlists, and waveform used for the standard
ECLinPS and ECLinPS Lite devices. This application note
will be modified as new devices are added.
There are four terminals on all transistor models: Emitter,
Base, Collector, and Substrate (biased to VEE). Table 1
describes the nomenclature used in the schematics and
netlists.
VEE. A model can be used at the VEE pin: but is not necessary
since the current in the VEE pin is a constant. The
Appendix A includes explanation on the package models
nodes. For package model CDIP−16 only a center and end
pin values are provided. Remaining pins may be ratio values
between those two given pins.
Table 2. Available Packages
5 V FOR PECL AND (0 V) FOR ECL
VEE
−5 V FOR ECL AND (0 V) FOR PECL
GND
0V
VTT*
VCC − 2 V TERMINATION PLANE*
IN
TRUE INPUT TO CKT
INB or IN
INVERTED INPUT TO CKT
Q
TRUE OUTPUT OF CKT
QB or Q
INVERTED OUTPUT OF CKT
*Except for EL89, VTT = VCC − 3 V
Package
A case model for various package types is included to
improve the accuracy of the system model (see Table 2). The
package model represents the parasitics as they are
measured on a pin. The package pin model should be placed
on each device input pin connecting to an input model, all
device output pins connecting to an output model, VCC, and
 Semiconductor Components Industries, LLC, 2002
July, 2002 − Rev. 6
Page Number
SO−8
15
TSSOP−8
17
SO−20
19
PLCC−28
25
PLCC−20
32
CDIP−16
33
Input Buffer
The typical input buffer schematic is shown in Figure 2
(INBUFTYPICAL), and by netlist to represent the general
structure currently in use on the existing devices in this
family. The schematics require the addition of ESD models
(Figure 9) and package models (see Table 2) to more
accurately model behavior of the certain device. The
internal input pulldown resistor, RPD, is shown in Figure 2.
Single ended operation is shown although differential
operation may be represented by changing VBB to INB
(INVERTED INPUT TO CKT). The INB node will require
ESD, package, and RPD models. Revise the netlist
accordingly. It is unnecessary to include an ESD or Package
model for the VBB pins of the models because VBB is
intended as an internal node for most applications. If VBB is
modeled as an external node it is usually bypassed because
it is a constant voltage, and adding ESD and Package
parameters provide no additional benefit.
Output Buffer
The output buffer schematics (see Table 3) and netlists
may contain the temperature compensation structure, so
only the ESD and package models need to be added. Use the
proper ESD structure from Figure 9: for EL series devices
use “ECLinPS Lite ESD Circuitry”, and for E series devices
use “ECLinPS ESD Circuitry”. For the EL series Output
Table 1. Schematics and Netlist Nomenclature
VCC
Package Model
1
Publication Order Number:
AN1503/D
AN1503/D
modeling, delete the 185 series resistor in the ESD
schematic, ECLinPS Lite ESD Circuitry.
Any input or output that is driving or being driven by an
off chip signal should include the ESD and package models.
The output buffers show differential inputs and outputs.
When simulating a single ended output, the termination or
load resistor, package model, ESD structure and output
emitter follower, of the unused output, should not be
eliminated to simplify the system model.
SPICE Netlists
The netlists are organized as a group of subcircuits. In
each subcircuit model netlist, the model name is followed by
a list of node interconnects.
Temperature Compensation Network
for 100 Series
The output netlists include temperature compensation
network circuitry for 100 style output buffers. The
temperature compensation circuitry should be placed as
pictured in the output buffer schematics with L and R
representing left and right of the schematic. The circuit
components of the temperature compensation networks are
shown in Figure 8. For simulating 10 style outputs these
components should either be deleted or commented out of
the subcircuit netlists.
SPICE Parameter Information
In addition to the schematics and netlists is a listing of the
SPICE parameters for the transistors referenced in the
schematics and netlists. These parameters represent a typical
device of a given transistor. Varying the typical parameters
will affect the DC and AC performance of the structures; but
for the type of modeling intended by this note, the actual delay
times are not necessary and are not modeled, as a result
variation of the device parameters are meaningless. The
performance levels are more easily varied by other methods
and will be discussed in the next section. The resistors
referenced in the schematics are polysilicon and have little
parasitic capacitance in the real circuit so none is required in
the model. The schematics display the only devices needed in
the SPICE netlists.
Modeling Information
The bias drivers for the devices are not detailed since their
circuitry would result in a substantial increase of model
complexity and simulation time. Instead, these internal
reference voltages (VBB, LVCS, Etc.) should be driven with
ideal constant voltage sources.
The typical interconnect schematic has been modeled to
provide an output waveform of the ECLinPS Line. The
50 6″ Line
typical input buffer may be driven with output buffer as
shown in Figure 10. The schematics and SPICE parameters
will provide a typical output waveshape, which can be seen
in Figure 11. Simple adjustments can be made to the models
allowing output characteristics to simulate conditions at or
near the corners of some of the data book specifications.
Consistent cross−point voltages need to be maintained.
• To adjust rise and fall times:
Produce the desired rise and fall times output slew rates
by adjusting collector load resistors to change the gates
tail current. The VCS voltage will affect the tail current
in the output differential, which will interact with the
load resistor and collector resistor to determine tr and tf
at the output.
• To adjust the VOH:
Adjust the VOH and VOL level by the same amount by
varying VCC. The output levels will follow changes in
VCC at a 1:1 ratio.
• To adjust the VOL only:
Adjust the VOL level independently of the VOH level by
increasing or decreasing the collector load resistance.
Note that the VOH level will also change slightly due to
a IBASER drop across the collector load resistor. VOL can
be changed by varying the VCS supply, and therefore the
gate current through the current source resistor.
Summary
The information included in this kit provides adequate
information to run a SPICE level system interconnect
simulation. The block diagram in Figure 1 illustrates a typical
situation which can be modeled using the information in this
kit. Device input or output models are presented in Table 4
and Table 5.
Table 3. Buffer Model Figures
Buffer Model
Figure Number
Page Number
OBUF_A
3
6
OBUF_B
4
7
OBUF_C
5
8
OBUF_D
6
9
OBUF_E
7
10
INBUFTYPICAL
2
5
50 3″ Line
50 10″ Line
Typical Input
50 Typical Output
Typical Input
Typical Input
Figure 1. Typical Application for I/O SPICE Modeling Kit
http://onsemi.com
2
VTT
AN1503/D
Table 4. E Input/Output Selection
Device
Function
All Inputs
Output
E016
8 bit Sync. Binary Up Counter
INBUFTYPICAL
OBUF_A
E101
Quad 4 input OR/NOR Gate
INBUFTYPICAL
OBUF_A
E104
Quint 2 input AND/NAND Gate
INBUFTYPICAL
OBUF_A
E107
Quint 2 input XOR/XNOR Gate
INBUFTYPICAL
OBUF_A
E111
1:9 Diff. Clock Driver
INBUFTYPICAL
OBUF_A
E112
Quad Driver
INBUFTYPICAL
OBUF_A
E116
Quint Diff. Line Receiver
INBUFTYPICAL
OBUF_A
E122
9 Bit Buffer
INBUFTYPICAL
OBUF_A
E131
4 Bit D Flip−Flop
INBUFTYPICAL
OBUF_A
E136
6 Bit Universal Up/Down Counter
INBUFTYPICAL
OBUF_A
E137
8 Bit Ripple Counter
INBUFTYPICAL
OBUF_A
E141
8 Bit Shift Register
INBUFTYPICAL
OBUF_A
E142
9 Bit Shift Register
INBUFTYPICAL
OBUF_A
E143
9 Bit Hold Register
INBUFTYPICAL
OBUF_A
E150
6 Bit D Latch
INBUFTYPICAL
OBUF_A
E151
6 Bit D Register
INBUFTYPICAL
OBUF_A
E154
5 Bit 2:1 Mux−Latch
INBUFTYPICAL
OBUF_A
E155
6 Bit 2:1 Mux−Latch
INBUFTYPICAL
OBUF_A
E156
3 Bit 4:1 Mux−Latch
INBUFTYPICAL
OBUF_A
E157
Quad 2:1 Multiplexer
INBUFTYPICAL
OBUF_A
E158
5 Bit 2:1 Multiplexer
INBUFTYPICAL
OBUF_A
E160
12 Bit Parity Generator/Checker
INBUFTYPICAL
OBUF_A
E163
2 Bit 8:1 Multiplexer
INBUFTYPICAL
OBUF_A
E164
16:1 Multiplexer
INBUFTYPICAL
OBUF_A
E166
9 Bit Magnitude Comparator
INBUFTYPICAL
OBUF_A
E167
6 Bit 2:1 Mux−Register
INBUFTYPICAL
OBUF_A
E171
3 Bit 4:1 Multiplexer
INBUFTYPICAL
OBUF_A
E175
9 Bit Latch with Parity
INBUFTYPICAL
OBUF_A
E193
Error Detection/Correction Circuit
INBUFTYPICAL
OBUF_A
E195
Programmable Delay Chip
INBUFTYPICAL
OBUF_B
E196
Programmable Delay Chip
INBUFTYPICAL
OBUF_B
E197
Data Separator
INBUFTYPICAL
OBUF_A
E210
Dual 1:4, 1:5 Diff. Fanout Buffer
INBUFTYPICAL
OBUF_A
E211
1:6 Diff. Clock Distribution Chip
INBUFTYPICAL
OBUF_B
E212
3 Bit Scannable Registered Address Driver
INBUFTYPICAL
OBUF_B
E241
8 Bit Scannable Register
INBUFTYPICAL
OBUF_A
E256
3 Bit 4:1 Mux−Latch
INBUFTYPICAL
OBUF_A
E310
Low Voltage 2:8 Diff. Fanout Buffer
INBUFTYPICAL
OBUF_A
E336
3 Bit Registered Bus Transceiver
INBUFTYPICAL
OBUF_C
E337
3 Bit Scannable Registered Bus Transceiver
INBUFTYPICAL
OBUF_C
E404
Quad Diff. AND/NAND
INBUFTYPICAL
OBUF_B
E411
1:9 Diff. PECL/NECL RAMBus Clock Buffer
INBUFTYPICAL
OBUF_A
http://onsemi.com
3
AN1503/D
Table 4. E Input/Output Selection
E416
Quint Diff. Line Receiver
INBUFTYPICAL
OBUF_D
E431
3 Bit Diff. Flip−Flop
INBUFTYPICAL
OBUF_A
E445
4 Bit Serial/Parallel Converter (pins 17, 18 OBUF_B)
INBUFTYPICAL
OBUF_A
E446
4 Bit Parallel/Serial Converter (pins 14, 15 OBUF_B)
INBUFTYPICAL
OBUF_A
E451
6 Bit D Register Diff. Data and Clock
INBUFTYPICAL
OBUF_A
E452
5 Bit Diff. Register
INBUFTYPICAL
OBUF_A
E457
Triple Diff. 2:1 Multiplexer
INBUFTYPICAL
OBUF_B
E1651
Dual ECL Output Comparator with Latch
INBUFTYPICAL
OBUF_A
E1652
Dual ECL Output Comparator with Latch
INBUFTYPICAL
OBUF_A
Table 5. EL Input/Output Selection
Device
All Inputs
Output
EL01
4 input OR/NOR
INBUFTYPICAL
OBUF_B
EL04
2 input Diff. AND/NAND
INBUFTYPICAL
OBUF_B
EL05
3 input AND/NAND
INBUFTYPICAL
OBUF_B
EL07
3 input XOR/XNOR
INBUFTYPICAL
OBUF_B
EL11
1:2 Diff. Fanout Buffer
INBUFTYPICAL
OBUF_B
EL12
Low Impedance Driver
INBUFTYPICAL
OBUF_B
EL13
Dual 1:3 Fanout Buffer
INBUFTYPICAL
OBUF_A
EL14
1:5 Clock Distribution Chip
INBUFTYPICAL
OBUF_A
EL15
1:4 Clock Distribution Chip
INBUFTYPICAL
OBUF_A
EL16
Diff. Receiver
INBUFTYPICAL
OBUF_B
EL17
Quad Diff. Receiver
INBUFTYPICAL
OBUF_A
EL29
Dual Diff. Data and Clock D Flip−Flop with Set&Reset
INBUFTYPICAL
OBUF_A
EL30
D Flip−Flop with Set&Reset
INBUFTYPICAL
OBUF_A
EL31
Triple D Flip−Flop with Set&Reset
INBUFTYPICAL
OBUF_B
EL32
2 Divider
INBUFTYPICAL
OBUF_B
EL33
4 Divider
INBUFTYPICAL
OBUF_B
EL34
2, 4, 8 Clock Generation Chip
INBUFTYPICAL
OBUF_A
EL35
JK Flip−Flop
INBUFTYPICAL
OBUF_B
EL38
2, 4/6 Clock Generation Chip
INBUFTYPICAL
OBUF_A
EL39
2/4, 4/6 Clock Generation Chip
INBUFTYPICAL
OBUF_A
EL51
Diff. Clock D Flip−Flop
INBUFTYPICAL
OBUF_B
EL52
Diff. Data and Clock D Flip−Flop
INBUFTYPICAL
OBUF_B
EL56
Dual Diff. 2:1 Multiplexer
INBUFTYPICAL
OBUF_A
EL57
4:1 Diff. Multiplexer
INBUFTYPICAL
OBUF_B
EL58
2:1 Multiplexer
INBUFTYPICAL
OBUF_A
EL59
Triple 2:1 Multiplexer
INBUFTYPICAL
OBUF_A
Coaxial Cable Driver *
INBUFTYPICAL
OBUF_E
EL90
Triple ECL Input to PECL Output Translator
INBUFTYPICAL
OBUF_A
EL91
Triple LVPECL/PECL Input to −5V ECL Output Translator
INBUFTYPICAL
OBUF_A
EL89 *
Function
*EL89 has an output swing of 1.6 V and it is terminated 50 to VCC − 3 V (see Figure 7)
http://onsemi.com
4
AN1503/D
Netlists and Schematics
VCC
VCC
PKG
R1
250 1
R2
270 R3
270 Q4
TN6
3
2
Q5
TN6
Q
QB
IN
Q1
TN6
PKG
Rpd
50 k
ESD
PROTECTION
CIRCUITRY
4
VBB
Q6
TN6
6
VCS = VEE + 1.33
PULL DOWN
RESISTOR
Q2
TN6
Q3
TN6
R4
325 7
Q8
TN6
5
Ig = 1.5 mA
Q7
TN6
9
Ief = 0.75 mA
Q9
TN6
8
R5
650 VEE
RESISTOR TC = 0.405M, 2.2U
VEE
Figure 2. Typical Input Buffer (INBUFTYPICAL)
.SUBCKT INBUFTYPICAL
Q1
2 IN 4 TN6
Q2
3 VBB 4 TN6
Q3
4 VCS 5 TN6
Q4
VCC 3 Q TN6
Q5
VCC 2 QB TN6
Q6
QB QB 6 TN6
Q7
Q
Q 7 TN6
Q8
6 VCS 9 TN6
Q9
7 VCS 8 TN6
R1
VCC 1 250
R2
1 2 270
R3
1 3 270
R4
5 VEE 325
R5
9 VEE 650
R6
8 VEE 650
RPD
IN VEE 50K
.ENDS INBUFTYPICAL
http://onsemi.com
5
R6
650 AN1503/D
VCC
VCC +
0 Vdc
−
R1
300
0
STYLE A
TEMPERATURE
COMPENSATION
NETWORK
IN
R2
300
1
Q4
TNECLIPS
TCN
A
Q1
TN13P5
+
IN
−1.33 Vdc
−
INB
Q2
TN13P5
3
OUT
V1 = −0.95
V2 = −1.75
TD = 1n
TR = 0.35n
TF = 0.35n
PW = 1.5n
PER = 3.7n
0
VCS
Q3
TN13P5
+
−3.7 Vdc
−
Q5
TNECLIPS
2
VCS
0
4
R3
125
+
INB
−
R4
50
0
R5
50
VTT
+
−2 Vdc
−
VEE + VEE
−5 Vdc
−
OUTB
VTT
0
0
TERMINATION
Figure 3. Output Buffer (OBUF_A)
.SUBCKT OBUF_A
Q_Q1
1 IN 3 TN13P5
Q_Q2
2 INB 3 TN13P5
Q_Q3
3 VCS 4 TN13P5
Q_Q4
VCC 1 OUTB TNECLIPS
Q_Q5
VCC 2 OUT TNECLIPS
R_R1
1 VCC 300
R_R2
2 VCC 300
R_R3
VEE 4 125
R_R4
VTT OUT 50
R_R5
VTT OUTB 50
V_IN
IN 0 −1.33Vdc
V_INB
INB 0
V_VCC
VCC 0 0Vdc
V_VEE
VEE 0 −5Vdc
V_VTT
VTT 0 −2Vdc
V_VCS
VCS 0 −3.7Vdc
+PULSE −0.95 −1.75 1n 0.35n 0.35n 1.5n 3.7n
.END OBUF_A
http://onsemi.com
6
AN1503/D
VCC
VCC +
0 Vdc
−
R1
150
0
STYLE B
TEMPERATURE
COMPENSATION
NETWORK
IN
Q1a
+
IN
−1.33 Vdc
−
R2
150
1
Q1
TN13P5
6
Q2a
TN13P5
V1 = −0.95
V2 = −1.75
TD = 1n
TR = 0.35n
TF = 0.35n
PW = 2.5n
PER = 5.7n
0
Q3a
−3.7 Vdc
−
VCS
0
TN13P5
R4
4
INB
Q2
TN13P5
3
VCS
Q5
TNECLIPS
5
TCN
B
TN13P5
+
Q4
TNECLIPS
2
Q3
TN13P5
4
R3
65
OUT
+
OUTB
INB
−
R6
50
0
R7
50
VTT
+
−2 Vdc
−
VEE + VEE
−5 Vdc
−
R5
4
VTT
0
0
TERMINATION
Figure 4. Output Buffer (OBUF_B)
.SUBCKT OBUF_B
Q_Q1
1 IN 3 TN13P5
Q_Q1a
1 IN 3 TN13P5
Q_Q2
2 INB 3 TN13P5
Q_Q2a
2 INB 3 TN13P5
Q_Q3
3 VCS 4 TN13P5
Q_Q3a
3 VCS 4 TN13P5
Q_Q4
VCC 2 5 TNECLIPS
Q_Q5
VCC 1 6 TNECLIPS
R_R1
1 VCC 150
R_R2
2 VCC 150
R_R3
VEE 4 65
R_R4
OUT 5 4
R_R5
OUTB 6 4
R_R6
VTT OUT 50
R_R7
VTT OUTB 50
V_IN
IN 0 −1.33Vdc
V_INB
INB 0
V_VCC
VCC 0 0Vdc
V_VEE
VEE 0 −5Vdc
V_VCS
VCS 0 −3.7Vdc
V_VTT
VTT 0 −2Vdc
+PULSE −0.95 −1.75 1n 0.35n 0.35n 2.5n 5.7n
.END OBUF_B
http://onsemi.com
7
AN1503/D
VCC
VCC +
0 Vdc
−
0
STYLE C
TEMPERATURE
COMPENSATION
NETWORK
R1
100
R2
100
TCN
C
1
2
R4
60
R3
60
Q4a
3
4
Q4
TNECLIPS
TNECLIPS
7
IN
IN
−1.33 Vdc
Q1b
+
Q1a
Q1
TN13P5
TN13P5 TN13P5
INB
Q2
TN13P5
Q2a
R6
4
Q2b
BUS
TN13P5 TN13P5
5
−
V1 = −0.95
V2 = −1.75
TD = 1n
TR = 2n
TF = 2n
PW = 2n
PER = 8n
0
VCS
Q3b
+
−3.91 Vdc
−
Q3a
VCS TN13P5 TN13P5
Q3
TN13P5
6
R5
40
0
OUT
+
INB
−
R7
50
0
VTT
+
−2 Vdc
−
VEE + VEE
−5 Vdc
−
VTT
0
0
TERMINATION
Figure 5. Output Buffer (OBUF_C)
.SUBCKT OBUF_C
Q_Q1
3 IN 5 TN13P5
Q_Q1a
3 IN 5 TN13P5
Q_Q1b
3 IN 5 TN13P5
Q_Q2
4 INB 5 TN13P5
Q_Q2a
4 INB 5 TN13P5
Q_Q2b
4 INB 5 TN13P5
Q_Q3
5 VCS 6 TN13P5
Q_Q3a
5 VCS 6 TN13P5
Q_Q3b
5 VCS 6 TN13P5
Q_Q4
VCC 3 7 TNECLIPS
Q_Q4a
VCC 3 7 TNECLIPS
R_R1
1 VCC 100
R_R2
2 VCC 100
R_R3
3 1 60
R_R4
4 2 60
R_R5
VEE 6 40
R_R6
BUS 7 4
R_R7
VTT BUS 50
V_IN
IN 0 −1.33Vdc
V_INB
INB 0
V_VCC
VCC 0 0Vdc
V_VEE
VEE 0 −5Vdc
V_VCS
VCS 0 −3.91Vdc
V_VTT
VTT 0 −2Vdc
+PULSE −0.95 −1.75 1n 2n 2n 2n 8n
.END OBUF_C
http://onsemi.com
8
AN1503/D
VCC
VCC +
0 Vdc
−
R1
100
0
STYLE D
TEMPERATURE
COMPENSATION
NETWORK
IN
Q1b
+
IN
−1.33 Vdc
−
Q1a
R2
100
1
Q1
TN13P5
6
Q2a
−3.7 Vdc
−
VCS TN13P5 TN13P5
0
Q2b
TN13P5 TN13P5
3
Q3a
R4
4
INB
Q2
TN13P5
V1 = −0.95
V2 = −1.75
TD = 1n
TR = 0.35n
TF = 0.35n
PW = 2.5n
PER = 5.7n
0
Q3b
Q5
TNECLIPS
5
TCN
D
TN13P5 TN13P5
+
Q4
TNECLIPS
2
Q3
TN13P5
4
R3
43
OUT
+
OUTB
INB
−
R6
50
0
R7
50
VTT
+
−2 Vdc
−
VEE + VEE
−5 Vdc
−
R5
4
VTT
0
0
TERMINATION
Figure 6. Output Buffer (OBUF_D)
.SUBCKT OBUF_D
Q_Q1
1 IN 3 TN13P5
Q_Q1a
1 IN 3 TN13P5
Q_Q1b
1 IN 3 TN13P5
Q_Q2
2 INB 3 TN13P5
Q_Q2a
2 INB 3 TN13P5
Q_Q2b
2 INB 3 TN13P5
Q_Q3
3 N19458 4 TN13P5
Q_Q3a
3 N19458 4 TN13P5
Q_Q3b
3 N19458 4 TN13P5
Q_Q4
VCC 2 5 TNECLIPS
Q_Q5
VCC 1 6 TNECLIPS
R_R1
1 VCC 100
R_R2
2 VCC 100
R_R3
VEE 4 43
R_R4
OUT 5 4
R_R5
OUTB 6 4
R_R6
VTT OUT 50
R_R7
VTT OUTB 50
V_INB
INB 0
V_IN
IN 0 −1.33Vdc
V_VCC
VCC 0 0Vdc
V_VEE
VEE 0 −5Vdc
V_VCS
N19458 0 −3.7Vdc
V_VTT
VTT 0 −2Vdc
+PULSE −0.95 −1.75 1n 0.35n 0.35n 2.5n 5.7n
.END OBUF_D
http://onsemi.com
9
AN1503/D
VCC
VCC +
0 Vdc
−
R1
280
R2
280
Q4
TNECLIPS
2
0
1
Q6
IN
INB
TNJ
Q1a
+
IN
−1.33 Vdc
−
Q1
Q2
TN13P5 TN13P5
TN13P5
−3.67 Vdc
−
TN13P5
3
8
Q7
Q9
VCS
+
VCS
0
TNJ
Q2a
4
0
Q5
TNECLIPS
Q8
TNJ
Q3a
5
TN13P5
R3
323
Q3
TN13P5
TNJ
6
7
R4
68
V1 = −0.95
V2 = −1.75
TD = 1n
TR = 0.2n
TF = 0.2n
PW = 2.2n
PER = 4.8n
+
INB
−
OUT
0
R6
50
R7
50
VTT
R5
323
+
−3 Vdc
−
VEE + VEE
−5 Vdc
−
OUTB
VTT
0
0
TERMINATION
Figure 7. Output Buffer (OBUF_E)
.SUBCKT OBUF_E
Q_Q1
1 4 3 TN13P5
Q_Q1a
1 4 3 TN13P5
Q_Q2
2 8 3 TN13P5
Q_Q2a
2 8 3 TN13P5
Q_Q3
3 VCS 6 TN13P5
Q_Q3a
3 VCS 6 TN13P5
Q_Q4
VCC 2 OUT TNECLIPS
Q_Q5
VCC 1 OUTB TNECLIPS
Q_Q6
VCC IN 4 TN8
Q_Q7
4 VCS 5 TN8
Q_Q8
VCC INB 8 TN8
Q_Q9
8 VCS 7 TN8
R_R1
1 VCC 280
R_R2
2 VCC 280
R_R3
VEE 5 323
R_R4
VEE 6 68
R_R5
VEE 7 323
R_R6
VTT OUT 50
R_R7
VTT OUTB 50
V_IN
IN 0 −1.33Vdc
V_INB
INB 0
V_VCC
VCC 0 0Vdc
V_VEE
VEE 0 −5Vdc
V_VTT
VTT 0 −3Vdc
V_VCS
VCS 0 −3.67Vdc
+PULSE −0.95 −1.75 1n 0.2n 0.2n 2.2n 4.8n
.END OBUF_E
http://onsemi.com
10
AN1503/D
L
RTC
180
QT1
TN4
R
L
RTC
80
QT1
TN4
QT2
TN4
QT2
TN4
RESISTOR TC = 0.405M, 2.2U
Style A
L
RTC
90
R
QT1
TN4
R
L
Style B
RTC
60
QT1
TN4
R
QT2
TN4
Style C
Style D
Figure 8. Temperature Compensation Networks
ECLinPS Lite ESD Circuitry
ECLinPS ESD Circuitry
VCC
INPUT
DESD1
CBVCC
RB
185
INPUT
To Input
Transistor
QESD
1
TN6
QESD
2
TN6
DESD2
CBSUB
RESISTOR TC = 0.405M, 2.2U
VEE
VEE
Figure 9. ESD Protection Circuitry
http://onsemi.com
11
AN1503/D
VCC
VCC +
0 Vdc
−
R1
300
R2
300
Q5
TNECLIPS
0
Q4
TNECLIPS
OBUF_A
IN
+
IN
−1.33 Vdc
−
Q1
TN13P5
Q2
TN13P5
OUT
0
VCS
Q3
TN13P5
+
−3.7 Vdc
−
INB
VCS
R3
125
0
V1 = −0.95
V2 = −1.75
TD = 1n
TR = 0.35n
TF = 0.35n
PW = 1.5n
PER = 3.7n
+
OUTB
INB
R4
50
−
R5
50
VTT
0
+
−2 Vdc
−
VEE
VTT
0
VEE +
−5 Vdc
−
TERMINATION
0
R1′
250 R2′
270 R3′
270 Q4′
TN6
Q5′
TN6
IN′
Q1′
TN6
Q2′
TN6
Q6′
TN6
IN′
Q7′
TN6
INBUFTYPICAL
Q3′
TN6
Q8′
TN6
R4′
325 TYPICAL INPUT BUFFER
Figure 10. Typical Interconnect Schematic
http://onsemi.com
12
R5′
650 VEE
Q9′
TN6
R6′
650 AN1503/D
VOUT, OUTPUT VOLTAGE (V)
−0.8
VOH = −920 mV
80%
−1.2
tr = 531 ps
tf = 528 ps
CROSS POINT
−1.6
20%
VOL = −1800 mV
−2.0
6.0
6.4
6.8
7.2
TIME (ns)
7.6
Figure 11. Typical Output Waveform
http://onsemi.com
13
8.0
AN1503/D
******************
Transistor and Diodes Nominal SPICE Models
*******************
*****************************************************************************
.MODEL TN4 NPN (IS=5.27E−18 BF=120 NF=1 VAF=30 IKF=6.48mA
+ ISE=2.75E−16 BR=10 NE=2 VAR=5 IKR=567uA
+ IRB=8.1uA RB=461.6 RBM=142.5 RE=21.6 RC=83.1
+ CJE=19.9fF VJE=0.9 MJE=0.4 XTB=0.73
+ CJC=25.1fF VJC=0.67 MJC=0.32 XCJC=0.3
+ CJS=49.6fF VJS=0.6 MJS=0.4 FC=0.9
+ TF=8pS TR=1nS XTF=10 VTF=1.4V ITF=17.0mA
+ ISC=0 EG=1.11 XTI=4.0 PTF=0 KF=0 AF=1 NR=1 NC=2)
*****************************************************************************
.MODEL TN6 NPN (IS=8.56E−18 BF=120 NF=1 VAF=30 IKF=10.5mA
+ ISE=4.48E−16 BR=10 NE=2 VAR=5 IKR=922uA
+ IRB=13.2uA RB=291.4 RBM=95.0 RE=13.3 RC=62.7
+ CJE=29.9fF VJE=0.9 MJE=0.4 XTB=0.73
+ CJC=31.2fF VJC=0.67 MJC=0.32 XCJC=0.3
+ CJS=60.9fF VJS=0.6 MJS=0.4 FC=0.9
+ TF=8pS TR=1nS XTF=10 VTF=1.4V ITF=27.6mA
+ ISC=0 EG=1.11 XTI=4.0 PTF=0 KF=0 AF=1 NR=1 NC=2)
*****************************************************************************
.MODEL TN13P5 NPN (IS=2.09E−17 BF=120 NF=1 VAF=30 IKF=25.7mA
+ ISE=1.09E−15 BR=10 NE=2 VAR=5 IKR=2.25mA
+ IRB=32.2uA RB=122.6 RBM=42.2 RE=5.44 RC=32.8
+ CJE=67.4fF VJE=0.9 MJE=0.4 XTB=0.73
+ CJC=53.8fF VJC=0.67 MJC=0.32 XCJC=0.3
+ CJS=103fF VJS=0.6 MJS=0.4 FC=0.9
+ TF=8pS TR=1nS XTF=10 VTF=1.4V ITF=67.5mA
+ ISC=0 EG=1.11 XTI=4.0 PTF=0 KF=0 AF=1 NR=1 NC=2)
*****************************************************************************
.MODEL TN8 NPN (IS=1.18E−17 BF=120 NF=1 VAF=30 IKF=14.6mA
+ ISE=6.20E−16 BR=10 NE=2 VAR=5 IKR=1.28mA
+ IRB=18.2uA RB=213.1 RBM=71.2 RE=9.60 RC=50.4
+ CJE=39.9fF VJE=0.9 MJE=0.4 XTB=0.73
+ CJC=37.2fF VJC=0.67 MJC=0.32 XCJC=0.3
+ CJS=72.2fF VJS=0.6 MJS=0.4 FC=0.9
+ TF=8pS TR=1nS XTF=10 VTF=1.4V ITF=38.3mA
+ ISC=0 EG=1.11 XTI=5.2 PTF=0 KF=0 AF=1 NR=1 NC=2)
*****************************************************************************
.MODEL TNECLIPS NPN (IS=2.27E−16 BF=120 NF=1 VAF=30 IKF=279mA
+ ISE=1.19E−14 BR=10 NE=2 VAR=5 IKR=24.4mA
+ IRB=349uA RB=15.98 RBM=4.17 RE=0.501 RC=11.1
+ CJE=611fF VJE=0.9 MJE=0.4 XTB=0.73
+ CJC=440fF VJC=0.67 MJC=0.32 XCJC=0.3
+ CJS=668fF VJS=0.6 MJS=0.4 FC=0.9
+ TF=8pS TR=1nS XTF=10 VTF=1.4V ITF=733mA
+ ISC=0 EG=1.11 XTI=4.0 PTF=0 KF=0 AF=1 NR=1 NC=2)
*****************************************************************************
.MODEL CBVCC (IS=1.00E−15 CJO=527fF Vj=0.545 M=0.32 BV=14.5 IBV=0.1E−6 XTI=5 TT=1nS)
*****************************************************************************
.MODEL CBSUB (IS=1.00E−15 CJO=453fF TT=1nS)
*****************************************************************************
http://onsemi.com
14
AN1503/D
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Package: SO−8
* SPICE subcircuit file of coupled transmission lines
*
* Transmission line model
*
* Conductor number−pin designation cross reference:
*
Conductor
Pin
*
1
1
*
2
2
*
3
3
*
4
4
*
5
5
*
6
6
*
7
7
*
8
8
*
* number of lumps:
1
* FASTEST APPLICABLE EDGE RATE:
0.076 ns
* COMPRESSION OF SUBCIRCUITS PERFORMED: discard ratio is 0.050
* Connect chip side to N**I and board side to N**O
*
.SUBCKT LINES N01I N01O N02I N02O N03I N03O N04I N04O
+ N05I N05O N06I N06O N07I N07O N08I N08O
L01WB
N01I
N01M
1.367e−09
L01
N01M
N01O
7.794e−10
C01
N01M
0
2.445e−13
L02WB
N02I
N02M
1.287e−09
L02
N02M
N02O
5.473e−10
C02
N02M
0
1.888e−13
L03WB
N03I
N03M
1.287e−09
L03
N03M
N03O
5.473e−10
C03
N03M
0
1.901e−13
L04WB
N04I
N04M
1.367e−09
L04
N04M
N04O
7.723e−10
C04
N04M
0
2.443e−13
L05WB
N05I
N05M
1.367e−09
L05
N05M
N05O
7.710e−10
C05
N05M
0
2.478e−13
L06WB
N06I
N06M
1.287e−09
L06
N06M
N06O
5.489e−10
C06
N06M
0
1.916e−13
L07WB
N07I
N07M
1.287e−09
L07
N07M
N07O
5.495e−10
C07
N07M
0
1.930e−13
L08WB
N08I
N08M
1.367e−09
L08
N08M
N08O
7.786e−10
C08
N08M
0
2.451e−13
K0102
L01
L02
0.1687
K0102WB L01WB
L02WB
0.3400
C0102
N01O
N02O
3.674e−14
K0103
L01
L03
0.0702
K0103WB L01WB
L03WB
0.1847
K0203
L02
L03
0.1822
K0203WB L02WB
L03WB
0.3505
C0203
N02O
N03O
3.521e−14
K0204
L02
L04
0.0682
K0204WB L02WB
L04WB
0.1847
K0304
L03
L04
0.1694
K0304WB L03WB
L04WB
0.3400
http://onsemi.com
15
AN1503/D
C0304
N03O
N04O
3.675e−14
K0305WB L03WB
L05WB
0.1847
K0405WB L04WB
L05WB
0.3455
K0406WB L04WB
L06WB
0.1847
K0506
L05
L06
0.1697
K0506WB L05WB
L06WB
0.3400
C0506
N05O
N06O
3.720e−14
K0507
L05
L07
0.0682
K0507WB L05WB
L07WB
0.1847
K0607
L06
L07
0.1824
K0607WB L06WB
L07WB
0.3505
C0607
N06O
N07O
3.570e−14
K0608
L06
L08
0.0702
K0608WB L06WB
L08WB
0.1847
K0708
L07
L08
0.1691
K0708WB L07WB
L08WB
0.3400
C0708
N07O
N08O
3.632e−14
.ENDS LINES
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
http://onsemi.com
16
AN1503/D
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Package: TSSOP−8
* SPICE subcircuit file of coupled transmission lines
*
* Transmission line model
*
* Conductor number−pin designation cross reference:
* counter−clockwise
*
Conductor
Pin
*
1
1
*
2
2
*
3
3
*
4
4
*
5
5
*
6
6
*
7
7
*
8
8
*
* number of lumps:
1
* FASTEST APPLICABLE EDGE RATE:
0.048 ns
* COMPRESSION OF SUBCIRCUITS PERFORMED: discard ratio is 0.050
*
R_SHORT 0 GND 0.0001
*
X_777 N01I N01O N02I N02O N03I N03O N04I N04O
+ N05I N05O N06I N06O N07I N07O N08I N08O GND PACKAGE
*
.SUBCKT PACKAGE N01I N01O N02I N02O N03I N03O N04I N04O
+ N05I N05O N06I N06O N07I N07O N08I N08O GND
R01WB
N01I
N01W
4.727e−02
L01WB
N01W
N01R
1.158e−09
R01
N01R
N01C
9.680e−04
C01
N01C
GND
8.978e−14
L01
N01C
N01O
7.466e−10
R02WB
N02I
N02W
3.815e−02
L02WB
N02W
N02R
9.835e−10
R02
N02R
N02C
9.680e−04
C02
N02C
GND
7.711e−14
L02
N02C
N02O
7.466e−10
R03WB
N03I
N03W
3.815e−02
L03WB
N03W
N03R
9.835e−10
R03
N03R
N03C
9.680e−04
C03
N03C
GND
7.704e−14
L03
N03C
N03O
7.465e−10
R04WB
N04I
N04W
4.727e−02
L04WB
N04W
N04R
1.158e−09
R04
N04R
N04C
9.680e−04
C04
N04C
GND
8.983e−14
L04
N04C
N04O
7.460e−10
R05WB
N05I
N05W
4.727e−02
L05WB
N05W
N05R
1.158e−09
R05
N05R
N05C
9.680e−04
C05
N05C
GND
8.983e−14
L05
N05C
N05O
7.460e−10
R06WB
N06I
N06W
3.815e−02
L06WB
N06W
N06R
9.835e−10
R06
N06R
N06C
9.680e−04
C06
N06C
GND
7.704e−14
L06
N06C
N06O
7.465e−10
R07WB
N07I
N07W
3.815e−02
http://onsemi.com
17
AN1503/D
L07WB
N07W
N07R
9.835e−10
R07
N07R
N07C
9.680e−04
C07
N07C
GND
7.711e−14
L07
N07C
N07O
7.466e−10
R08WB
N08I
N08W
4.727e−02
L08WB
N08W
N08R
1.158e−09
R08
N08R
N08C
9.680e−04
C08
N08C
GND
8.978e−14
L08
N08C
N08O
7.466e−10
K0102
L01
L02
0.2481
K0102WB L01WB
L02WB
0.1729
C0102
N01C
N02C
2.283e−14
K0103
L01
L03
0.1067
K0103WB L01WB
L03WB
0.0598
K0104
L01
L04
0.0593
K0203
L02
L03
0.2479
K0203WB L02WB
L03WB
0.1463
C0203
N02C
N03C
2.136e−14
K0204
L02
L04
0.1068
K0204WB L02WB
L04WB
0.0598
K0304
L03
L04
0.2481
K0304WB L03WB
L04WB
0.1729
C0304
N03C
N04C
2.279e−14
K0506
L05
L06
0.2481
K0506WB L05WB
L06WB
0.1513
C0506
N05C
N06C
2.279e−14
K0507
L05
L07
0.1068
K0507WB L05WB
L07WB
0.0615
K0508
L05
L08
0.0593
K0607
L06
L07
0.2479
K0607WB L06WB
L07WB
0.1729
C0607
N06C
N07C
2.136e−14
K0608
L06
L08
0.1067
K0608WB L06WB
L08WB
0.0615
K0708
L07
L08
0.2481
K0708WB L07WB
L08WB
0.1513
C0708
N07C
N08C
2.283e−14
.ENDS PACKAGE
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
http://onsemi.com
18
AN1503/D
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Package: SO−20
* SPICE subcircuit file of coupled transmission lines
*
* Transmission line model
*
* Conductor number−pin designation cross reference:
*
Conductor
Pin
*
1
1
*
2
2
*
3
3
*
4
4
*
5
5
*
6
6
*
7
7
*
8
8
*
9
9
*
10
10
*
11
11
*
12
12
*
13
13
*
14
14
*
15
15
*
16
16
*
17
17
*
18
18
*
19
19
*
20
20
*
* number of lumps:
1
* FASTEST APPLICABLE EDGE RATE:
0.275 ns
* COMPRESSION OF SUBCIRCUITS PERFORMED: discard ratio is 0.050
*
.SUBCKT PACKAGE N01I N01O N02I N02O N03I N03O N04I N04O
+ N05I N05O N06I N06O N07I N07O N08I N08O N09I N09O
+ N10I N10O N11I N11O N12I N12O N13I N13O N14I N14O
+ N15I N15O N16I N16O N17I N17O N18I N18O N19I N19O
+ N20I N20O BD_GND
R01WB
N01I
N01W
3.732e−02
L01WB
N01W
N01R
9.678e−10
R01
N01R
N01C
1.700e−02
C01
N01C
BD_GND 4.680e−13
L01
N01C
N01O
3.814e−09
R02WB
N02I
N02W
8.086e−02
L02WB
N02W
N02R
1.822e−09
R02
N02R
N02C
1.300e−02
C02
N02C
BD_GND 1.924e−13
L02
N02C
N02O
2.724e−09
R03WB
N03I
N03W
9.122e−02
L03WB
N03W
N03R
2.033e−09
R03
N03R
N03C
9.000e−02
C03
N03C
BD_GND 1.377e−13
L03
N03C
N03O
1.814e−09
R04WB
N04I
N04W
7.878e−02
L04WB
N04W
N04R
1.780e−09
R04
N04R
N04C
8.000e−02
C04
N04C
BD_GND 1.484e−13
L04
N04C
N04O
1.551e−09
R05WB
N05I
N05W
6.634e−02
L05WB
N05W
N05R
1.531e−09
R05
N05R
N05C
7.000e−02
http://onsemi.com
19
AN1503/D
C05
L05
R06WB
L06WB
R06
C06
L06
R07WB
L07WB
R07
C07
L07
R08WB
L08WB
R08
C08
L08
R09WB
L09WB
R09
C09
L09
R10WB
L10WB
R10
C10
L10
R11WB
L11WB
R11
C11
L11
R12WB
L12WB
R12
C12
L12
R13WB
L13WB
R13
C13
L13
R14WB
L14WB
R14
C14
L14
R15WB
L15WB
R15
C15
L15
R16WB
L16WB
R16
C16
L16
R17WB
L17WB
R17
C17
L17
N05C
N05C
N06I
N06W
N06R
N06C
N06C
N07I
N07W
N07R
N07C
N07C
N08I
N08W
N08R
N08C
N08C
N09I
N09W
N09R
N09C
N09C
N10I
N10W
N10R
N10C
N10C
N11I
N11W
N11R
N11C
N11C
N12I
N12W
N12R
N12C
N12C
N13I
N13W
N13R
N13C
N13C
N14I
N14W
N14R
N14C
N14C
N15I
N15W
N15R
N15C
N15C
N16I
N16W
N16R
N16C
N16C
N17I
N17W
N17R
N17C
N17C
BD_GND
N05O
N06W
N06R
N06C
BD_GND
N06O
N07W
N07R
N07C
BD_GND
N07O
N08W
N08R
N08C
BD_GND
N08O
N09W
N09R
N09C
BD_GND
N09O
N10W
N10R
N10C
BD_GND
N10O
N11W
N11R
N11C
BD_GND
N11O
N12W
N12R
N12C
BD_GND
N12O
N13W
N13R
N13C
BD_GND
N13O
N14W
N14R
N14C
BD_GND
N14O
N15W
N15R
N15C
BD_GND
N15O
N16W
N16R
N16C
BD_GND
N16O
N17W
N17R
N17C
BD_GND
N17O
1.635e−13
1.508e−09
6.634e−02
1.531e−09
7.000e−02
1.584e−13
1.508e−09
7.878e−02
1.780e−09
8.000e−02
1.476e−13
1.553e−09
4.976e−02
1.206e−09
9.000e−02
1.322e−13
1.820e−09
8.086e−02
1.822e−09
1.300e−02
1.864e−13
2.725e−09
7.256e−02
1.655e−09
1.700e−02
4.681e−13
3.814e−09
3.732e−02
9.678e−10
1.700e−02
4.761e−13
3.795e−09
8.086e−02
1.822e−09
1.300e−02
1.888e−13
2.745e−09
9.122e−02
2.033e−09
9.000e−02
1.346e−13
1.879e−09
7.878e−02
1.780e−09
8.000e−02
1.496e−13
1.436e−09
6.634e−02
1.531e−09
7.000e−02
1.550e−13
1.464e−09
6.634e−02
1.531e−09
7.000e−02
1.568e−13
1.465e−09
7.878e−02
1.780e−09
8.000e−02
1.492e−13
1.437e−09
http://onsemi.com
20
AN1503/D
R18WB
L18WB
R18
C18
L18
R19WB
L19WB
R19
C19
L19
R20WB
L20WB
R20
C20
L20
K0102
K0102WB
C0102
K0103
K0104
K0105
K0106
K0107
K0108
K0111
K0112
K0113
K0114
K0115
K0116
K0117
K0118
K0203
K0203WB
C0203
K0204
K0205
K0206
K0207
K0208
K0209
K0211
K0212
K0213
K0214
K0215
K0216
K0217
K0218
K0304
K0304WB
C0304
K0305
K0306
K0307
K0308
K0309
K0310
K0311
K0312
K0313
K0314
N18I
N18W
N18R
N18C
N18C
N19I
N19W
N19R
N19C
N19C
N20I
N20W
N20R
N20C
N20C
L01
L01WB
N01C
L01
L01
L01
L01
L01
L01
L01
L01
L01
L01
L01
L01
L01
L01
L02
L02WB
N02C
L02
L02
L02
L02
L02
L02
L02
L02
L02
L02
L02
L02
L02
L02
L03
L03WB
N03C
L03
L03
L03
L03
L03
L03
L03
L03
L03
L03
N18W
N18R
N18C
BD_GND
N18O
N19W
N19R
N19C
BD_GND
N19O
N20W
N20R
N20C
BD_GND
N20O
L02
L02WB
N02C
L03
L04
L05
L06
L07
L08
L11
L12
L13
L14
L15
L16
L17
L18
L03
L03WB
N03C
L04
L05
L06
L07
L08
L09
L11
L12
L13
L14
L15
L16
L17
L18
L04
L04WB
N04C
L05
L06
L07
L08
L09
L10
L11
L12
L13
L14
9.122e−02
2.033e−09
9.000e−02
1.346e−13
1.892e−09
8.086e−02
1.822e−09
1.300e−02
1.880e−13
2.767e−09
7.256e−02
1.655e−09
1.700e−02
4.712e−13
3.825e−09
0.4539
0.1239
2.674e−13
0.2557
0.1742
0.1290
0.1011
0.0834
0.0636
−0.0789
−0.0755
−0.0716
−0.0594
−0.0669
−0.0657
−0.0672
−0.0625
0.3964
0.1239
1.529e−13
0.2341
0.1587
0.1206
0.0974
0.0760
0.0554
−0.0743
−0.0723
−0.0707
−0.0604
−0.0678
−0.0677
−0.0685
−0.0682
0.3767
0.1239
1.006e−13
0.2211
0.1564
0.1219
0.0956
0.0762
0.0639
−0.0654
−0.0662
−0.0688
−0.0614
http://onsemi.com
21
AN1503/D
K0315
K0316
K0317
K0318
K0319
K0320
K0405
K0405WB
C0405
K0406
K0407
K0408
K0409
K0410
K0411
K0412
K0413
K0414
K0415
K0416
K0417
K0418
K0419
K0420
K0506
K0506WB
C0506
K0507
K0508
K0509
K0510
K0511
K0512
K0513
K0514
K0515
K0516
K0517
K0518
K0519
K0520
K0607
K0607WB
C0607
K0608
K0609
K0610
K0611
K0612
K0613
K0614
K0615
K0616
K0617
K0618
K0619
K0620
K0708
K0708WB
C0708
K0709
K0710
L03
L03
L03
L03
L03
L03
L04
L04WB
N04C
L04
L04
L04
L04
L04
L04
L04
L04
L04
L04
L04
L04
L04
L04
L04
L05
L05WB
N05C
L05
L05
L05
L05
L05
L05
L05
L05
L05
L05
L05
L05
L05
L05
L06
L06WB
N06C
L06
L06
L06
L06
L06
L06
L06
L06
L06
L06
L06
L06
L06
L07
L07WB
N07C
L07
L07
L15
L16
L17
L18
L19
L20
L05
L05WB
N05C
L06
L07
L08
L09
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L06
L06WB
N06C
L07
L08
L09
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L07
L07WB
N07C
L08
L09
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L08
L08WB
N08C
L09
L10
−0.0683
−0.0692
−0.0684
−0.0730
−0.0609
−0.0501
0.3731
0.1239
8.137e−14
0.2290
0.1637
0.1218
0.0976
0.0836
−0.0645
−0.0673
−0.0722
−0.0658
−0.0724
−0.0733
−0.0708
−0.0763
−0.0673
−0.0597
0.3775
0.1239
8.844e−14
0.2293
0.1565
0.1208
0.1013
−0.0636
−0.0679
−0.0742
−0.0683
−0.0737
−0.0741
−0.0704
−0.0760
−0.0684
−0.0622
0.3743
0.1239
7.898e−14
0.2214
0.1591
0.1293
−0.0607
−0.0668
−0.0752
−0.0700
−0.0741
−0.0742
−0.0690
−0.0754
−0.0697
−0.0652
0.3762
0.1239
1.016e−13
0.2343
0.1746
http://onsemi.com
22
AN1503/D
K0711
K0712
K0713
K0714
K0715
K0716
K0717
K0718
K0719
K0720
K0809
K0809WB
C0809
K0810
K0812
K0813
K0814
K0815
K0816
K0817
K0818
K0819
K0820
K0910
K0910WB
C0910
K0913
K0914
K0915
K0916
K0917
K0918
K0919
K0920
K1011WB
K1013
K1014
K1015
K1016
K1017
K1018
K1019
K1020
K1112
K1112WB
C1112
K1113
K1114
K1115
K1116
K1117
K1118
K1213
K1213WB
C1213
K1214
K1215
K1216
K1217
K1218
K1314
K1314WB
L07
L07
L07
L07
L07
L07
L07
L07
L07
L07
L08
L08WB
N08C
L08
L08
L08
L08
L08
L08
L08
L08
L08
L08
L09
L09WB
N09C
L09
L09
L09
L09
L09
L09
L09
L09
L10WB
L10
L10
L10
L10
L10
L10
L10
L10
L11
L11WB
N11C
L11
L11
L11
L11
L11
L11
L12
L12WB
N12C
L12
L12
L12
L12
L12
L13
L13WB
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L09
L09WB
N09C
L10
L12
L13
L14
L15
L16
L17
L18
L19
L20
L10
L10WB
N10C
L13
L14
L15
L16
L17
L18
L19
L20
L11WB
L13
L14
L15
L16
L17
L18
L19
L20
L12
L12WB
N12C
L13
L14
L15
L16
L17
L18
L13
L13WB
N13C
L14
L15
L16
L17
L18
L14
L14WB
−0.0581
−0.0657
−0.0756
−0.0707
−0.0736
−0.0730
−0.0667
−0.0735
−0.0692
−0.0661
0.3970
0.1239
1.545e−13
0.2564
−0.0591
−0.0723
−0.0685
−0.0698
−0.0693
−0.0624
−0.0702
−0.0681
−0.0670
0.4542
0.1239
2.677e−13
−0.0675
−0.0688
−0.0687
−0.0693
−0.0618
−0.0723
−0.0742
−0.0759
0.1239
−0.0616
−0.0675
−0.0668
−0.0685
−0.0609
−0.0731
−0.0773
−0.0803
0.4562
0.1239
2.679e−13
0.2725
0.1533
0.1161
0.0901
0.0702
0.0567
0.4103
0.1239
1.538e−13
0.2091
0.1398
0.1055
0.0812
0.0684
0.3577
0.1239
http://onsemi.com
23
AN1503/D
C1314
N13C
N14C
1.026e−13
K1315
L13
L15
0.2088
K1316
L13
L16
0.1474
K1317
L13
L17
0.1074
K1318
L13
L18
0.0930
K1319
L13
L19
0.0693
K1320
L13
L20
0.0578
K1415
L14
L15
0.3383
K1415WB L14WB
L15WB
0.1239
C1415
N14C
N15C
7.843e−14
K1416
L14
L16
0.1987
K1417
L14
L17
0.1302
K1418
L14
L18
0.1078
K1419
L14
L19
0.0825
K1420
L14
L20
0.0715
K1516
L15
L16
0.3631
K1516WB L15WB
L16WB
0.1239
C1516
N15C
N16C
9.179e−14
K1517
L15
L17
0.1988
K1518
L15
L18
0.1480
K1519
L15
L19
0.1072
K1520
L15
L20
0.0918
K1617
L16
L17
0.3380
K1617WB L16WB
L17WB
0.1239
C1617
N16C
N17C
7.810e−14
K1618
L16
L18
0.2096
K1619
L16
L19
0.1419
K1620
L16
L20
0.1183
K1718
L17
L18
0.3595
K1718WB L17WB
L18WB
0.1239
C1718
N17C
N18C
1.034e−13
K1719
L17
L19
0.2122
K1720
L17
L20
0.1565
K1819
L18
L19
0.4140
K1819WB L18WB
L19WB
0.1239
C1819
N18C
N19C
1.536e−13
K1820
L18
L20
0.2766
K1920
L19
L20
0.4603
K1920WB L19WB
L20WB
0.1239
C1920
N19C
N20C
2.679e−13
.ENDS PACKAGE
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
http://onsemi.com
24
AN1503/D
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Package: PLCC−28
* SPICE subcircuit file of coupled transmission lines
*
* Transmission line model
*
* Note:
* 1. The model assume ground plane is 15 mil below package
* 2. The model assume flag is floating
* 3. The flag is 170 x 170 mil square, pin 1 starts from up left corner
* 4. The lead sequence is counter clockwise
*
* Conductor number−pin designation cross reference:
*
Conductor
Pin
*
1
1
*
2
2
*
3
3
*
4
4
*
5
5
*
6
6
*
7
7
*
8
8
*
9
9
*
10
10
*
11
11
*
12
12
*
13
13
*
14
14
*
15
15
*
16
16
*
17
17
*
18
18
*
19
19
*
20
20
*
21
21
*
22
22
*
23
23
*
24
24
*
25
25
*
26
26
*
27
27
*
28
28
*
* number of lumps:
1
* FASTEST APPLICABLE EDGE RATE:
0.209 ns
* COMPRESSION OF SUBCIRCUITS PERFORMED: discard ratio is 0.050
*
* ECLinPS usage requires the input nodes used in the subcircuit call
* statement (X_777) that are tied to global ports(VCC, VCCO, and VEE internal
* to the die) to have the same global names in the subcircuit call statement(X_777).
* For example, if VCC is wirebonded to pin 20 for a certain design, then N20I
* should be relabeled to VCC. Again, the change needs only to be incorporated
* in the X_777 subcircuit callout statement. Since this requires a change to
* the netlist below, it is necessary for each design to have a copy of this file with
* the appropriate changes made that are required for that design.
*
* R_SHORT 0 ground 0.0001
*
X_777 N01I N01O N02I N02O N03I N03O N04I N04O
+ N05I N05O N06I N06O N07I N07O N08I N08O N09I N09O
http://onsemi.com
25
AN1503/D
+ N10I N10O N11I N11O N12I N12O N13I N13O N14I N14O
+ N15I N15O N16I N16O N17I N17O N18I N18O N19I N19O
+ N20I N20O N21I N21O N22I N22O N23I N23O N24I N24O
+ N25I N25O N26I N26O N27I N27O N28I N28O ground PACKAGE
*
.SUBCKT PACKAGE N01I N01O N02I N02O N03I N03O N04I N04O
+ N05I N05O N06I N06O N07I N07O N08I N08O N09I N09O
+ N10I N10O N11I N11O N12I N12O N13I N13O N14I N14O
+ N15I N15O N16I N16O N17I N17O N18I N18O N19I N19O
+ N20I N20O N21I N21O N22I N22O N23I N23O N24I N24O
+ N25I N25O N26I N26O N27I N27O N28I N28O ground
R01WB
N01I
N01W
1.124e−01
L01WB
N01W
N01R
2.474e−09
R01
N01R
N01C
1.120e−02
C01
N01C
ground 3.919e−13
L01
N01C
N01O
2.346e−09
R02WB
N02I
N02W
9.952e−02
L02WB
N02W
N02R
2.204e−09
R02
N02R
N02C
1.120e−02
C02
N02C
ground 1.950e−13
L02
N02C
N02O
2.180e−09
R03WB
N03I
N03W
9.164e−02
L03WB
N03W
N03R
2.042e−09
R03
N03R
N03C
1.100e−02
C03
N03C
ground 1.789e−13
L03
N03C
N03O
2.050e−09
R04WB
N04I
N04W
9.039e−02
L04WB
N04W
N04R
2.016e−09
R04
N04R
N04C
1.100e−02
C04
N04C
ground 1.748e−13
L04
N04C
N04O
2.030e−09
R05WB
N05I
N05W
9.164e−02
L05WB
N05W
N05R
2.042e−09
R05
N05R
N05C
1.100e−02
C05
N05C
ground 1.800e−13
L05
N05C
N05O
2.049e−09
R06WB
N06I
N06W
9.952e−02
L06WB
N06W
N06R
2.204e−09
R06
N06R
N06C
1.120e−02
C06
N06C
ground 1.936e−13
L06
N06C
N06O
2.184e−09
R07WB
N07I
N07W
1.124e−01
L07WB
N07W
N07R
2.474e−09
R07
N07R
N07C
1.120e−02
C07
N07C
ground 3.916e−13
L07
N07C
N07O
2.341e−09
R08WB
N08I
N08W
1.124e−01
L08WB
N08W
N08R
2.474e−09
R08
N08R
N08C
1.120e−02
C08
N08C
ground 3.916e−13
L08
N08C
N08O
2.341e−09
R09WB
N09I
N09W
9.952e−02
L09WB
N09W
N09R
2.204e−09
R09
N09R
N09C
1.120e−02
C09
N09C
ground 1.936e−13
L09
N09C
N09O
2.184e−09
R10WB
N10I
N10W
9.164e−02
L10WB
N10W
N10R
2.042e−09
R10
N10R
N10C
1.100e−02
C10
N10C
ground 1.800e−13
L10
N10C
N10O
2.049e−09
R11WB
N11I
N11W
9.039e−02
http://onsemi.com
26
AN1503/D
L11WB
R11
C11
L11
R12WB
L12WB
R12
C12
L12
R13WB
L13WB
R13
C13
L13
R14WB
L14WB
R14
C14
L14
R15WB
L15WB
R15
C15
L15
R16WB
L16WB
R16
C16
L16
R17WB
L17WB
R17
C17
L17
R18WB
L18WB
R18
C18
L18
R19WB
L19WB
R19
C19
L19
R20WB
L20WB
R20
C20
L20
R21WB
L21WB
R21
C21
L21
R22WB
L22WB
R22
C22
L22
R23WB
L23WB
R23
N11W
N11R
N11C
N11C
N12I
N12W
N12R
N12C
N12C
N13I
N13W
N13R
N13C
N13C
N14I
N14W
N14R
N14C
N14C
N15I
N15W
N15R
N15C
N15C
N16I
N16W
N16R
N16C
N16C
N17I
N17W
N17R
N17C
N17C
N18I
N18W
N18R
N18C
N18C
N19I
N19W
N19R
N19C
N19C
N20I
N20W
N20R
N20C
N20C
N21I
N21W
N21R
N21C
N21C
N22I
N22W
N22R
N22C
N22C
N23I
N23W
N23R
N11R
N11C
ground
N11O
N12W
N12R
N12C
ground
N12O
N13W
N13R
N13C
ground
N13O
N14W
N14R
N14C
ground
N14O
N15W
N15R
N15C
ground
N15O
N16W
N16R
N16C
ground
N16O
N17W
N17R
N17C
ground
N17O
N18W
N18R
N18C
ground
N18O
N19W
N19R
N19C
ground
N19O
N20W
N20R
N20C
ground
N20O
N21W
N21R
N21C
ground
N21O
N22W
N22R
N22C
ground
N22O
N23W
N23R
N23C
2.016e−09
1.100e−02
1.748e−13
2.030e−09
9.164e−02
2.042e−09
1.100e−02
1.789e−13
2.050e−09
9.952e−02
2.204e−09
1.120e−02
1.950e−13
2.180e−09
1.124e−01
2.474e−09
1.120e−02
3.919e−13
2.346e−09
1.124e−01
2.474e−09
1.120e−02
3.919e−13
2.346e−09
9.952e−02
2.204e−09
1.120e−02
1.950e−13
2.180e−09
9.164e−02
2.042e−09
1.100e−02
1.789e−13
2.050e−09
9.039e−02
2.016e−09
1.100e−02
1.748e−13
2.030e−09
9.164e−02
2.042e−09
1.100e−02
1.800e−13
2.049e−09
9.952e−02
2.204e−09
1.120e−02
1.936e−13
2.184e−09
1.124e−01
2.474e−09
1.120e−02
3.916e−13
2.341e−09
1.124e−01
2.474e−09
1.120e−02
3.916e−13
2.341e−09
9.952e−02
2.204e−09
1.120e−02
http://onsemi.com
27
AN1503/D
C23
L23
R24WB
L24WB
R24
C24
L24
R25WB
L25WB
R25
C25
L25
R26WB
L26WB
R26
C26
L26
R27WB
L27WB
R27
C27
L27
R28WB
L28WB
R28
C28
L28
K0102
K0102WB
C0102
K0103
K0103WB
K0104
K0105
K0106
K0107
K0124
K0125
K0126
K0127
K0128
C0128
K0203
K0203WB
C0203
K0204
K0204WB
K0205
K0206
K0207
K0225
K0226
K0227
K0228
K0304
K0304WB
C0304
K0305
K0305WB
K0306
K0307
K0308
N23C
N23C
N24I
N24W
N24R
N24C
N24C
N25I
N25W
N25R
N25C
N25C
N26I
N26W
N26R
N26C
N26C
N27I
N27W
N27R
N27C
N27C
N28I
N28W
N28R
N28C
N28C
L01
L01WB
N01C
L01
L01WB
L01
L01
L01
L01
L01
L01
L01
L01
L01
N01C
L02
L02WB
N02C
L02
L02WB
L02
L02
L02
L02
L02
L02
L02
L03
L03WB
N03C
L03
L03WB
L03
L03
L03
ground
N23O
N24W
N24R
N24C
ground
N24O
N25W
N25R
N25C
ground
N25O
N26W
N26R
N26C
ground
N26O
N27W
N27R
N27C
ground
N27O
N28W
N28R
N28C
ground
N28O
L02
L02WB
N02C
L03
L03WB
L04
L05
L06
L07
L24
L25
L26
L27
L28
N28C
L03
L03WB
N03C
L04
L04WB
L05
L06
L07
L25
L26
L27
L28
L04
L04WB
N04C
L05
L05WB
L06
L07
L08
1.936e−13
2.184e−09
9.164e−02
2.042e−09
1.100e−02
1.800e−13
2.049e−09
9.039e−02
2.016e−09
1.100e−02
1.748e−13
2.030e−09
9.164e−02
2.042e−09
1.100e−02
1.789e−13
2.050e−09
9.952e−02
2.204e−09
1.120e−02
1.950e−13
2.180e−09
1.124e−01
2.474e−09
1.120e−02
3.919e−13
2.346e−09
0.4380
0.1463
2.394e−13
0.2472
0.0501
0.1557
0.1083
0.0742
0.0543
0.0506
0.0745
0.1092
0.1565
0.2194
5.401e−14
0.4331
0.1463
2.332e−13
0.2413
0.0708
0.1554
0.1051
0.0741
0.0619
0.0898
0.1237
0.1565
0.4342
0.2238
2.254e−13
0.2434
0.0853
0.1552
0.1083
0.0506
http://onsemi.com
28
AN1503/D
K0327
K0328
K0405
K0405WB
C0405
K0406
K0406WB
K0407
K0408
K0409
K0427
K0428
K0506
K0506WB
C0506
K0507
K0507WB
K0508
K0509
K0528
K0607
K0607WB
C0607
K0608
K0609
K0610
K0611
K0708
K0708WB
C0708
K0709
K0710
K0711
K0712
K0809
K0809WB
C0809
K0810
K0810WB
K0811
K0812
K0813
K0814
K0910
K0910WB
K0910
K0911
K0911WB
K0912
K0913
K0914
K1011
K1011WB
C1011
K1012
K1012WB
K1013
K1014
K1015
K1112
K1112WB
C1112
L03
L03
L04
L04WB
N04C
L04
L04WB
L04
L04
L04
L04
L04
L05
L05WB
N05C
L05
L05WB
L05
L05
L05
L06
L06WB
N06C
L06
L06
L06
L06
L07
L07WB
N07C
L07
L07
L07
L07
L08
L08WB
N08C
L08
L08WB
L08
L08
L08
L08
L09
L09WB
N09C
L09
L09WB
L09
L09
L09
L10
L10WB
N10C
L10
L10WB
L10
L10
L10
L11
L11WB
N11C
L27
L28
L05
L05WB
N05C
L06
L06WB
L07
L08
L09
L27
L28
L06
L06WB
N06C
L07
L07WB
L08
L09
L28
L07
L07WB
N07C
L08
L09
L10
L11
L08
L08WB
N08C
L09
L10
L11
L12
L09
L09WB
N09C
L10
L10WB
L11
L12
L13
L14
L10
L10WB
N10C
L11
L11WB
L12
L13
L14
L11
L11WB
N11C
L12
L12WB
L13
L14
L15
L12
L12WB
N12C
0.0898
0.1092
0.4355
0.2238
2.282e−13
0.2418
0.0708
0.1558
0.0742
0.0613
0.0619
0.0745
0.4330
0.1463
2.324e−13
0.2474
0.0501
0.1087
0.0889
0.0506
0.4383
0.1463
2.402e−13
0.1558
0.1228
0.0889
0.0613
0.2174
0.0811
5.266e−14
0.1558
0.1087
0.0742
0.0506
0.4383
0.1463
2.402e−13
0.2474
0.0501
0.1558
0.1083
0.0741
0.0543
0.4330
0.1463
2.324e−13
0.2418
0.0708
0.1552
0.1051
0.0742
0.4355
0.2238
2.282e−13
0.2434
0.0853
0.1554
0.1083
0.0506
0.4342
0.2238
2.254e−13
http://onsemi.com
29
AN1503/D
K1113
K1113WB
K1114
K1115
K1116
K1213
K1213WB
C1213
K1214
K1214WB
K1215
K1216
K1314
K1314WB
C1314
K1315
K1316
K1317
K1318
K1415
K1415WB
C1415
K1416
K1417
K1418
K1419
K1516
K1516WB
C1516
K1517
K1517WB
K1518
K1519
K1520
K1521
K1617
K1617WB
C1617
K1618
K1618WB
K1619
K1620
K1621
K1718
K1718WB
C1718
K1719
K1719WB
K1720
K1721
K1722
K1819
K1819WB
C1819
K1820
K1820WB
K1821
K1822
K1823
K1920
K1920WB
C1920
L11
L11WB
L11
L11
L11
L12
L12WB
N12C
L12
L12WB
L12
L12
L13
L13WB
N13C
L13
L13
L13
L13
L14
L14WB
N14C
L14
L14
L14
L14
L15
L15WB
N15C
L15
L15WB
L15
L15
L15
L15
L16
L16WB
N16C
L16
L16WB
L16
L16
L16
L17
L17WB
N17C
L17
L17WB
L17
L17
L17
L18
L18WB
N18C
L18
L18WB
L18
L18
L18
L19
L19WB
N19C
L13
L13WB
L14
L15
L16
L13
L13WB
N13C
L14
L14WB
L15
L16
L14
L14WB
N14C
L15
L16
L17
L18
L15
L15WB
N15C
L16
L17
L18
L19
L16
L16WB
N16C
L17
L17WB
L18
L19
L20
L21
L17
L17WB
N17C
L18
L18WB
L19
L20
L21
L18
L18WB
N18C
L19
L19WB
L20
L21
L22
L19
L19WB
N19C
L20
L20WB
L21
L22
L23
L20
L20WB
N20C
0.2413
0.0708
0.1557
0.0745
0.0619
0.4331
0.1463
2.332e−13
0.2472
0.0501
0.1092
0.0898
0.4380
0.1463
2.394e−13
0.1565
0.1237
0.0898
0.0619
0.2194
0.0811
5.401e−14
0.1565
0.1092
0.0745
0.0506
0.4380
0.1463
2.394e−13
0.2472
0.0501
0.1557
0.1083
0.0742
0.0543
0.4331
0.1463
2.332e−13
0.2413
0.0708
0.1554
0.1051
0.0741
0.4342
0.2238
2.254e−13
0.2434
0.0853
0.1552
0.1083
0.0506
0.4355
0.2238
2.282e−13
0.2418
0.0708
0.1558
0.0742
0.0613
0.4330
0.1463
2.324e−13
http://onsemi.com
30
AN1503/D
K1921
L19
L21
0.2474
K1921WB L19WB
L21WB
0.0501
K1922
L19
L22
0.1087
K1923
L19
L23
0.0889
K2021
L20
L21
0.4383
K2021WB L20WB
L21WB
0.1463
C2021
N20C
N21C
2.402e−13
K2022
L20
L22
0.1558
K2023
L20
L23
0.1228
K2024
L20
L24
0.0889
K2025
L20
L25
0.0613
K2122
L21
L22
0.2174
K2122WB L21WB
L22WB
0.0811
C2122
N21C
N22C
5.266e−14
K2123
L21
L23
0.1558
K2124
L21
L24
0.1087
K2125
L21
L25
0.0742
K2126
L21
L26
0.0506
K2223
L22
L23
0.4383
K2223WB L22WB
L23WB
0.1463
C2223
N22C
N23C
2.402e−13
K2224
L22
L24
0.2474
K2224WB L22WB
L24WB
0.0501
K2225
L22
L25
0.1558
K2226
L22
L26
0.1083
K2227
L22
L27
0.0741
K2228
L22
L28
0.0543
K2324
L23
L24
0.4330
K2324WB L23WB
L24WB
0.1463
C2324
N23C
N24C
2.324e−13
K2325
L23
L25
0.2418
K2325WB L23WB
L25WB
0.0708
K2326
L23
L26
0.1552
K2327
L23
L27
0.1051
K2328
L23
L28
0.0742
K2425
L24
L25
0.4355
K2425WB L24WB
L25WB
0.2238
C2425
N24C
N25C
2.282e−13
K2426
L24
L26
0.2434
K2426WB L24WB
L26WB
0.0853
K2427
L24
L27
0.1554
K2428
L24
L28
0.1083
K2526
L25
L26
0.4342
K2526WB L25WB
L26WB
0.2238
C2526
N25C
N26C
2.254e−13
K2527
L25
L27
0.2413
K2527WB L25WB
L27WB
0.0708
K2528
L25
L28
0.1557
K2627
L26
L27
0.4331
K2627WB L26WB
L27WB
0.1463
C2627
N26C
N27C
2.332e−13
K2628
L26
L28
0.2472
K2628WB L26WB
L28WB
0.0501
K2728
L27
L28
0.4380
K2728WB L27WB
L28WB
0.1463
C2728
N27C
N28C
2.394e−13
.ENDS PACKAGE
*
*
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
http://onsemi.com
31
AN1503/D
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Package: PLCC−20
* ECLinPS Package Model (20−lead PLCC)
* GND = 0V
*
* EXT = (External Input to Pin)
* INT = (Internal Output of the Pin)
*
.SUBCKT PKG20 EXT INT GND
CPKG
82
GND
0.65PF
RPKG1
EXT
82
750
RPKG2
82
83
750
RPKG3
83
INT
0.2
LPKG1
EXT
82
0.9NH
LPKG2
82
83
0.9NH
.ENDS PKG20
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
RPKG1
750 RPKG2
750 EXT
LPKG1
0.9 nH
LPKG2
0.9 nH
CPKG
0.65 pF
http://onsemi.com
32
RPKG3
0.2 INT
AN1503/D
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Package: CDIP−16
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
* ECLinPS Package Model (16−lead CERDIP END PIN)
* EXT = (External Input to Pin) INT = (Internal Output of the Pin) GND = (0V)
*
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
.SUBCKT PKG16EP EXT INT GND
CPKG
82
GND
1.3PF
RPKG1
EXT
82
750
RPKG2
82
83
750
RPKG3
83
INT
0.1
LPKG1
EXT
82
5.5NH
LPKG2
82
83
5.5NH
.ENDS PKG16EP
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
* ECLinPS Package Model (16−lead CERDIP CENTER PIN)
* EXT = (External Input to Pin) INT = (Internal Output of the Pin) GND = (0V)
*
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
.SUBCKT PKG16CP EXT INT GND
CPKG
82
GND
0.7PF
RPKG1
EXT
82
750
RPKG2
82
83
750
RPKG3
83
INT
0.1
LPKG1
EXT
82
2.5NH
LPKG2
82
83
2.5NH
.ENDS PKG16CP
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
http://onsemi.com
33
AN1503/D
APPENDIX A
Package Models Help
In the SPICE netlist, X_777 is a circuit element (black
box) with connections to a subcircuit:
circuit element
X_777
connections
N01I N01O N021 N02O N03I N03O N04I N04O
+N05I N05O N061 N06O N07I N07O N08I N08O GND
subcircuit
PACKAGE
The defined connection nodes of the circuit element are
declared as:
N01I N01O N021 N02O N03I N03O N04I N04O
N05I N05O N061 N06O N07I N07O N08I N08O GND
The subcircuit PACKAGE is connected to these same nodes:
.SUBCKT PACKAGE
N01I N01O N021 N02O N03I N03O N04I N04O
+N05I N05O N061 N06O N07I N07O N08I N08O GND
where:
N01I is the PACKAGE pin #1 internal node connection to the chip pad
N01O is the PACKAGE pin #1 external node connecting to the lead
Internal to the subcircuit PACKAGE are several nodes for
each pin (See Figure 7). For pin 2, of the 8 pin TSSOP, the
netlist:
R02WB
L02WB
R02
C02
L02
N02I
N02W
N02R
N02C
N02C
N02I
N02W
N02R
N02C
GND
N02O
3.815e−02
9.835e−10
9.680e−04
7.711e−14
7.466e−10
N02W
R02WB
N02R
L02WB
N02O
L02
R02
N02C
C02
GND
Figure 12.
Parasitic Mutual inductance, K, and capacitance, C, is also
represented. Such as “K0102”, where inductance from Lead
#1 (L01) to Lead #2 (L02) is indicated.
K0102
K0102WB
C0102
K0103
K0103WB
K0104
K0203
K0203WB
C0203
K0204
K0204WB
L01
L01WB
N01C
L01
L01WB
L01
L02
L02WB
N02C
L02
L02WB
L02
L02WB
N02C
L03
L03WB
L04
L03
L03WB
N03C
L04
L04WB
0.2481
0.1729
2.283e−14
0.1067
0.0598
0.0593
0.2479
0.1463
2.136e−14
0.1068
0.0598
http://onsemi.com
34
AN1503/D
N01I
N01W
R01WB
N01R
N01O
L01WB
L01
R01
K0103WB
N01C
C0102
C01
K0102WB
K0102
GND
K0104
N02I
N02W
R02WB
N02R
L02WB
N02O
L02
R02
K0103
K0102
K0203WB
N02C
C02
GND
N03I
N03W
R03WB
N03R
L03WB
N03O
L03
R03
N03C
C03
GND
N04I
N04W
R04WB
N04R
L04WB
N04O
L04
R04
N04C
C04
GND
Figure 13.
http://onsemi.com
35
AN1503/D
ECLinPS Plus and ECLinPS Lite are trademarks of Semiconductor Components Industries, LLC.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4−32−1 Nishi−Gotanda, Shinagawa−ku, Tokyo, Japan 141−0031
Phone: 81−3−5740−2700
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
N. American Technical Support: 800−282−9855 Toll Free USA/Canada
http://onsemi.com
36
AN1503/D