AN-1021 ᆌᆩԴऻ One Technology Way t P.O. Box 9106 t Norwood, MA 02062-9106, U.S.A. t Tel: 781.329.4700 t Fax: 781.461.3113 t www.analog.com एᇀMMSEةڦఄೡᆌᆩۅܠၯጚ໙݆ ፕኁǖNing Jia ० ၄پยԢܠᅜᅂৗೡतةఄೡरຍፕྺᆩࢽহ௬ăᅺഄ० ࠓڦڇሰࢅዚዜኪ֡ڦፕᇱLjۉፆ๕ةఄೡ൱ׯ Ԩ႙ยऺڦăܸLjۉፆ๕ةఄೡ٪ሞڦऐႁܔഋဃ ֶतݣᅺጱLjᆖၚକةఄೡׂิڦXĂYፖՔăᅺُLj వॽةఄೡڦፖՔᇑഄࢫ၂๖ೡ)ᅂৗೡྜ*ڪඇܔഋăࡤ ᆶةఄೡڦፌዕׂ้LjՂႷံኴႜၯጚ໙݆ă ኍةܔఄೡڦঢ়ۆၯጚ໙݆ᅃዖएᇀෙ߲֖ቷڦۅෙۅ ၯጚ໙݆ăኄዖঢ়ۆෙۅၯጚ໙݆ၳ୲ߛĂၳࡕࡻLjړڍ ةఄೡড้ٷLjႠీডگăԨᆌᆩԴऻኍۉܔፆ๕ةఄ ೡLj༵କᅃዖएᇀፌၭݛဃֶ(MMSE)ۅܠڦၯጚ໙ ݆Lj֑ᆩෙ߲ᅜฉ֖ڦቷۅăຕბླྀํࢅڞᄓኤLjԨ ໙݆ڦ܈ᆫᇀঢ়ۆෙۅၯጚ໙݆ă Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2009 Analog Devices, Inc. All rights reserved. Rev. 0 | Page 1 of 12 AN-1021 ᆌᆩԴऻ ణ ० ................................................................................................... 1 ๖૩ ................................................................................................... 7 ຕბᇱ .......................................................................................... 3 ஃ ................................................................................................... 8 ঢ়ۆෙۅၯጚ໙݆ ................................................................ 4 پஓኴႜ ........................................................................................... 8 एᇀMMSEۅܠڦၯጚ໙݆ ................................................ 4 Պஓ ................................................................................................... 9 एᇀMMSEۅܠڦၯጚ໙݆ݴڦဆ ................................... 6 ֖࿔၅ ........................................................................................ 11 एᇀMMSEۅܠڦၯጚ໙݆ڦօየ ................................... 6 Rev. 0 | Page 2 of 12 AN-1021 ᆌᆩԴऻ ຕბᇱ 1๖ࢤᇶႚڦၙዐ႐ྺO)ᇱ*ۅLjၙӷ০ྺRă ्ۨࢤᇶႚپڦةఄೡူݛᅂৗೡ၂๖ڦ ၟăઢྈᇶ๖ᆩࢽᄂጣᅂৗೡ๖ࢤᇶႚႜةఄ ้Ljةఄೡׂิڦᅃፇ)ۅዐྺੲቧڦ၂๖*ăᅺُLj ۉፆ๕ةఄೡԨวऐႁܔഋဃֶࢅݣᅺጱڦᆖၚLjዘࠓ ࢫڦၟሞ߳ፖՔዡฉᅜփཞڦᅺጱገĂೝᅎࢅ ݣăၯጚ໙݆௬ଣڦසࢆॽةఄೡׂิڦፖՔገ࣑ ׯඓپ๖ၟڦᅃፇፖՔă ྺକՍᇀॆٷᅜฉݴဆLjփ्ݟยP’(x’, y’)ྺةఄೡথ ׂิڦፖՔLjഄڪॏटፖՔٳ๕P’(Rcos θ0, Rsin θ0)ăଷྔ् ยLjᇑP’(x’, y’)ܔᆌڦၙፖՔྺP(x, y)ă६ᇀP’(x’, y’)ᇑP(x, y)ڦ ࠲ဣLjڥǖ P(x, y) = P(KXRcos(θ0 + θ) + TX, KYRsin(θ0 + θ) + TY) ෙঙࡧຕLj cos(θ0 + θ) = cosθ0 cosθ − sinθ0 sinθ त sin(θ0 + θ) = sinθ0 cosθ + cosθ0 sinθ ڥᅜူײݛ๕ǖ ⎧ x' = R cos θ 0 ⎨ y ' = R sin θ 0 ⎩ P (x , y ) ⎧ x = K X R cos(θ 0 + θ ) + T X = K X R(cos θ 0 cos θ − sin θ 0 sin θ ) + T X ⎨ y = K R sin (θ + θ ) + T = K R(sin θ cos θ − cos θ sin θ ) + T Y 0 Y Y 0 0 Y ⎩ P(x, y) ሶᆶ O O ⎧ x = cos θK X x'− sin θK X y '+T X ⎨ y = cos θK y '− sin θK x'+T Y Y Y ⎩ ഄዐǖ θĂKXĂKYĂTXࢅTYྺຕă 08183-001 ยǖ cosθKX = KX1 1. ةఄೡဃֶ −sinθKX = KX2 ย٪ሞᅃۅLjഄၙፖՔྺP(x, y)LjةఄೡׂิڦፖՔ ྺP’(x’, y’)ă)Pۅ࿋ᇀࢤᇶႚฉLjᇑഄܔᆌڦP’ۅሶ࿋ᇀ ઢྈᇶฉă*ยP’(x’, y’) ገθঙ܈LjࢫሞXࢅYዡݴ՚ ݣKXࢅKYLjݴ՚ೝᅎTXࢅTYLjᅜ࣮ڟഄၙፖՔP(x, y)ăၯጚ໙݆ڦణڦऺ໙ဣຕθĂKXĂKYĂTXࢅTYă ࢫ૧ᆩኄၵဣຕةܔఄೡথׂิڦፖՔႜၯጚă TX = KX3 sinθKY = KY1 cosθKY = KY2 TY = KY3 ሶമຎײݛ๕߀ႀྺǖ ⎧ x = KX 1 x'+ KX 2 y '+ KX 3 ⎨ y = KY y '+ KY y '+ KY 1 2 3 ⎩ ૧ᆩᅜฉײݛ๕ઠၯጚP’(x’, y’)LjܸٗڟڥP(x, y)ăܔᇀXዡ ࢅYዡܸჾLj߳ײݛ๕ዐࡤᆶෙ߲࿄ኪဣຕă Rev. 0 | Page 3 of 12 AN-1021 ᆌᆩԴऻ ঢ়ۆෙۅၯጚ໙݆! एᇀMMSEۅܠڦၯጚ໙݆ ཚࡗฉຎݴဆLj்ڟڥକXዡईYዡڦၯጚײݛ๕ăܔᇀ X ዡई Y ዡLj߳ײݛ๕ࡤᆶෙ߲࿄ኪဣຕăᅺُLjසࡕ इڥෙ߲փ၎࠲֖ቷڦۅ႑တLjሶࠓॺ၍Ⴀײݛ ፇLjཚࡗײݛઠइڥ࿄ኪဣຕڦă ยෙ߲֖ቷڦۅၙፖՔྺ(x0, y0)Ă(x1, y1) ࢅ (x2, y2)Ljഄܔ ᆌ֑ڦᄣፖՔྺ(x’0, y’0)Ă(x’1, y’1) ࢅ (x’2, y’2)LjሶXዡࢅYዡ ײݛڦ๕ݴ՚ྺ ૧ᆩঢ়ۆෙۅၯጚ໙݆ڦڟڥဣຕLjᅜॽෙ߲֖ቷۅၯ ጚڟၙ࿋ዃăܸLjܔᇀփሞ֖ቷۅৎڦഄۅLjၯ ጚႠీփฯၙLjةړఄೡ၎ܔড้ٷᆮഄසُă๖૩և ํڦݴᄓࡕཞᄣኤํକኄ߲࿚༶ăᅺُLj୯૧ᆩෙ ߲ᅜฉ֖ڦቷۅLjᅜइڥፌॅၯጚဣຕă ⎧ x0 = KX 1 x0' + KX 2 y 0' + KX 3 ⎪ ' ' ⎨ x1 = KX 1 x1 + KX 2 y1 + KX 3 ' ⎪ x2 = KX 1 x2 + KX 2 y 2' + KX 3 ⎩ ยᆶN + 1߲֖ቷ(ۅN + 1 > 3)LjഄၙፖՔྺ(x0, y0)Ă(x1, y1)…(xN, yN)Ljഄܔᆌ֑ڦᄣፖՔྺ(x’0, y’0)Ă(x’1, y’1)… (x’N, y’N)Ljሶ၎ᆌײݛڦ๕සူǖ ⎧ x0 = KX 1 x0' + KX 2 y0' + KX 3 ⎪ ' ' ⎪ x1 = KX 1 x1 + KX 2 y1 + KX 3 ⎨ M ⎪ ⎪⎩ x N = KX 1 x N' + KX 2 y N' + KX 3 त ⎧ y0 = KY1 x0' + KY2 y0' + KY3 ⎪ ' ' ⎨ y1 = KY1 x1 + KY2 y1 + KY3 ⎪ y = KY x ' + KY y ' + KY 1 2 2 2 3 ⎩ 2 त ⎧ y0 = KY1 x0' + KY2 y0' + KY3 ⎪ ' ' ⎪ y1 = KY1 x1 + KY2 y1 + KY3 ⎨ M ⎪ ' ⎪⎩ y N = KY1 x N + KY2 y N' + KY3 एᇀُLjॽᅜฉຎ߀ײݛႀྺਈንఇ๕ǖ ⎡ x0' ⎢ ' ⎢ x1 ⎢ x2' ⎣ y0' 1⎤ ⎡ KX 1 ⎤ ⎡ x0 ⎤ ⎥ y1' 1⎥ • ⎢⎢ KX 2 ⎥⎥ = ⎢⎢ x1 ⎥⎥ y2' 1⎥⎦ ⎢⎣ KX 3 ⎥⎦ ⎢⎣ x2 ⎥⎦ ⎡ x0' ⎢ ' ⎢ x1 ⎢ x2' ⎣ y0' 1⎤ ⎡ KY1 ⎤ ⎡ y0 ⎤ ⎥ y1' 1⎥ • ⎢⎢ KY2 ⎥⎥ = ⎢⎢ y1 ⎥⎥ ' y2 1⎥⎦ ⎢⎣ KY3 ⎥⎦ ⎢⎣ y2 ⎥⎦ ጀᅪLj߳ײݛፇዐײݛڦຕ(N + 1)ٷᇀ࿄ኪဣຕ߲ڦຕ (3)ă त ९Lj்ڦణڦ໙ࢇඇև(N + 1)߲֖ቷڦۅፌॅ ၯጚဣຕăइڥፌॅဣຕ݆ݛڦፏთMMSEࡀሶăኄኟ ኄዖ໙݆ྺएᇀMMSEۅܠڦၯጚ໙݆ڦᇱᅺሞă ᅜXዡྺ૩Ljۨᅭᅃ߲ణՔࡧຕ ሞُएإฉLjᅜཚࡗײݛ໙ၯጚဣຕKX1ĂKX2Ă KX3ĂKY1ĂKY2 ࢅ KY3ă ཚࡗၩᇮ݆൱ڦڥࡕසူǖ ' ' ' ' ' ' ' ' k = ( x0 − x2 )( y1 − y2) − (x1 − x2 )( y0 − y2 ) ሶ ย!!!!!!!!!!!!!!!!!! KX 1 = KX 2 = KX 3 = KY1 =( KY2 = N i =0 ഄዐLjFXྺ֖ቷڦۅဃֶೝࢅݛă ( x0 − x2 )( y1' − y2 ' ) − ( x1 − x2 )( y0' − y2' ) k ( x1 − x2 )( x1' − x2 ' ) − ( x0 − x2 )( x1' − x2' ) k ' 0 ' 2 1 ' 1 2 y (x x − x x ) +(y1' x0' x2 − x2' x0)+ (y2' x1' x0 − x0' x1) k y0 − y2)( x1' − x2 ') − ( y1 − y2 k )( y ' 0 − y2' ) ( y1 − y2 )(x0' − x2 ') −( y0 − y2 )(x1' − x2' ) KY3 = ( FX = ∑ KX 1 xi' + KX 2 yi' + KX 3 − xi k y0'( x2' y1 − x1' y2 )+ (y1' x0' y2 − x2' y0) +(y2' x1' y0 − x0' y1) k Rev. 0 | Page 4 of 12 ) 2 AN-1021 ᆌᆩԴऻ KX1ĂKX2ࢅKX3ڦፌॅဣຕኸ๑ణՔࡧຕFXፌၭڦఫၵဣ ຕăᅺُLj๑ᆩᅜူײݛ๕ǖ ཚࡗၩᇮ݆൱ڦڥࡕසူǖ ย ⎧ ∂FX =0 ⎪ ⎪ ∂KX 1 ⎪ ∂FX =0 ⎨ ⎪ ∂KX 2 ⎪ ∂FX = 0 ⎪ ∂KX 3 ⎩ न N ⎧ ∂FX = 2 xi' KX 1 xi' + KX 2 yi' + KX 3 − xi = 0 ∑ ⎪ ∂ KX i 0 = 1 ⎪ N ⎪ ∂FX = ∑ 2 yi' KX 1 xi' + KX 2 yi' + KX 3 − xi = 0 ⎨ ⎪ ∂KX 2 i=0N ⎪ ∂FX ' ' ⎪ ∂KX = ∑ 2 KX 1 xi + KX 2 yi + KX 3 − xi = 0 i =0 3 ⎩ ( ) ( ) ( i =0 N ∑y i =0 N '2 i ∑y i =0 ' i ⎡ KY1 ⎤ ⎢ KY2 ⎥ ⎢ KY ⎥ ⎣ 3⎦ b1 = ∑y ∑y , b = ∑ yi , 2 c0 = ∑x x ∑x c1 = ∑yx ∑y , c = ∑ xi , 2 d0 = ∑x y , ∑x d1 = ∑yx ∑y , d = ∑ yi 2 ' i ' i , ' i ' ' i i ' i ' i i ' i , '2 i ' i ' i i ' i ' i i ' i a2 = ' i N ' N ' N ' N ⎡ a0 ⎢a ⎢ 1 ⎢⎣a2 b0 1⎤ ⎡ KX 1 ⎤ ⎡c0 ⎤ b1 1⎥⎥ • ⎢⎢ KX 2 ⎥⎥ = ⎢⎢ c1 ⎥⎥ b2 1⎥⎦ ⎢⎣ KX 3 ⎥⎦ ⎢⎣c2 ⎥⎦ ⎡a0 ⎢a ⎢ 1 ⎣⎢a2 b0 1⎤ ⎡ KY1 ⎤ ⎡d 0 ⎤ b1 1⎥⎥ • ⎢⎢ KY2 ⎥⎥ = ⎢⎢ d1 ⎥⎥ b2 1⎥⎦ ⎢⎣ KY3 ⎦⎥ ⎣⎢d 2 ⎦⎥ փవ݀၄Ljᅜฉײݛፇ߭ڦ๕ᇑമ௬ঢ়ۆෙۅ໙݆ײݛڦፇ ၎ཞǖ ⎡ ' ⎤ ⎤ xi' ⎥ ⎢ ∑ xi xi ⎥ ∑ i =0 ⎡ KX 1 ⎤ ⎢ iN=0 ⎥ ⎥ N ⎢ y' x ⎥ ⎢ ⎥ '⎥ = BX y , , KX = ⎢ KX 2 ⎥ i i ∑ i ⎢∑ ⎥ ⎥ i =0 i =0 ⎢ N ⎥ ⎥ ⎢⎣ KX 3 ⎥⎦ ⎢ ∑ xi ⎥ N ⎥ ⎢⎣ i =0 ⎥⎦ ⎥⎦ , BY= ∑x y ∑x ' i ' i त N ⎡ x0' ⎢ ' ⎢ x1 ⎢ x2' ⎣ y0' 1⎤ ⎡ KX 1 ⎤ ⎡ x0 ⎤ ⎥ y1' 1⎥ • ⎢⎢ KX 2 ⎥⎥ = ⎢⎢ x1 ⎥⎥ y2' 1⎥⎦ ⎢⎣ KX 3 ⎥⎦ ⎢⎣ x2 ⎥⎦ ⎡ x0' ⎢ ' ⎢ x1 ⎢ x2' ⎣ y0' 1⎤ ⎡ KY1 ⎤ ⎡ y0 ⎤ ⎥ y1' 1⎥ • ⎢⎢ KY2 ⎥⎥ = ⎢⎢ y1 ⎥⎥ y2' 1⎥⎦ ⎢⎣ KY3 ⎥⎦ ⎢⎣ y2 ⎥⎦ त एᇀُLjॽ߳ײݛ๕߀ႀྺਈንఇ๕3t,9#9Ljժ ཚࡗ൱മຎײݛፇ໙ፌॅဣຕ,93−1t#9ă ᇑXዡૌຼLjย KY= b0 = ' i i =0 ) N ∑x y , ∑y एᇀُLjॽײݛፇ3t,9#9ࢅ3t,:#:ݴ՚߀ႀྺ ย ∑ xi' yi' a1 = ' i N N ⎧⎛ N ' 2 ⎞ ⎛ N ' '⎞ ⎛ N '⎞ ' ' ⎪⎜ ∑ xi ⎟ KX 1 + ⎜ ∑ xi yi ⎟ KX 2 + ⎜ ∑ xi ⎟ KX 3 = ∑ xi xi i i i i = = = = 0 0 0 0 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎪ N ⎛ N '⎞ ⎛ N '⎞ ⎪⎛ N ' ' ⎞ ' ' ⎨ ⎜ ∑ xi yi ⎟ KX 1 + ⎜ ∑ yi ⎟ KX 2 + ⎜ ∑ yi ⎟ KX 3 = ∑ yi xi i =0 ⎠ ⎝ i =0 ⎠ ⎝ i =0 ⎠ ⎪ ⎝ i =0 N ⎪ ⎛ N '⎞ ⎛ N '⎞ ⎜ ∑ xi ⎟ KX 1 + ⎜ ∑ yi ⎟ KX 2 + N ⋅ KX 3 = ∑ xi ⎪ i =0 ⎝ i =0 ⎠ ⎝ i =0 ⎠ ⎩ N ∑x ∑x , ∑x ഄዐLj!!!๖ Σ• ∑• ᅜฉײݛ๕०ࣅྺ ⎡ N '2 ⎢ ∑ xi ⎢ Ni=0 R = ⎢∑ xi' yi' ⎢ i =0 ⎢ N ⎢ ∑ xi' ⎢⎣ i=0 '2 i a0 = ⎡N ' ⎤ ⎢∑ xi y i ⎥ ⎢ i N= 0 ⎥ ⎢ y' y ⎥ ∑ i i ⎢ i =0 ⎥ ⎢ N ⎥ ⎢ ∑ yi ⎥ ⎣⎢ i = 0 ⎦⎥ ࢫनཚࡗ൱ײݛፇ3 t ,: #:Lj໙:ዡڦፌॅဣ ຕ,:3−1t#:ă Rev. 0 | Page 5 of 12 AN-1021 ᆌᆩԴऻ ሞُएإฉLj૧ᆩ၎ཞࠅڦ๕ऺ໙ဣຕڦࡕă एᇀMMSEۅܠڦၯጚ໙݆ڦօየ ย ྜׯएᇀMMSEۅܠڦၯጚ໙݆ူڦଚօየǖ 1. ስN +1 (N + 1 > 3)߲֖ቷ(ۅx0, y0)Ă(x1, y1)…(xN, yN)ă 2. ةڟڥఄೡׂิ֖ڦቷ֑ڦۅᄣፖՔ(x’0, y’0)Ă(x’1, y’1) …(x’N, y’N)ă 3. ૧ᆩԨᆌᆩԴऻߴࠅڦ๕Lj໙ၯጚဣຕKXࢅ! ! KYăԈઔᅜူࠅ๕ǖ k = (a0 − a2 )(b1 − b2 )− (a1 − a2 )(b0 − b2 ) ሶ KX 1 = KX 2 = (c0 − c2 )(b1 − b2 )− (c1 − c2 )(b0 − b2 ) k (c1 − c2 )(a0 − a2 )− (c0 − c2 )(a1 − a2 ) k = (a0 − a2 )(b1 − b2 )− (a1 − a2 )(b0 − b2 ) k (c0 − c2 )(b1 − b2 )− (c1 − c2 )(b0 − b2 ) KX 1 = b (a c − a c )+ b1 (a0c2 − a2c0 )+ b2 (a1c0 − a0c1 ) KX 3 = .0 2 1 1 2 k k KX 2 = KY1 (d − d 2 )(b1 − b2 )− (d1 − d 2 )(b0 − b2 ) = 0 KX 3 = KY2 (d − d 2 )(a0 − a2 )− (d 0 − d 2 )(a1 − a2 ) = 1 k k KY1 = b (a d − a d )+ b1 (a0 d 2 − a2 d 0 )+ b2 (a1d 0 − a0 d1 ) KY3 = .0 2 1 1 2 k KY2 = एᇀMMSEۅܠڦၯጚ໙݆ݴڦဆ ཚࡗऺ໙a0Ăa1Ăa2Ǘb0Ăb1Ăb2Ǘc0Ăc1Ăc2ࢅd0Ăd1Ăd2 ᅜ݀၄Ljॽa0Ăa1Ăa2ړፕएᇀෙዖփཞڦ݆ݛx’iेڦ ೝኵLjॽb0Ăb1Ăb2ੂፕएᇀෙዖփཞڦ݆ݛy’iेڦ ೝኵăૌຼںLjॽc0Ăc1Ăc2ړፕएᇀෙዖփཞڦ݆ݛ xiेڦೝኵLjd0Ăd1Ăd2ሶྺएᇀෙዖփཞڦ݆ݛ yiेڦೝă KY3 = 4. ᆯᇀፌዕײݛፇᇑമ௬ঢ়ۆෙۅ໙݆ײݛڦፇਏᆶ၎ཞ߭ ๕LjᅺُLjॽएᇀMMSEࡀሶڦ໙݆ྺଷᅃዖෙۅ໙ ݆ăܸLjएᇀMMSEڦ໙݆ڦ൶՚ሞᇀLjഄ֑ᆩڦփ ඪࢆ֖ቷڦۅথ႑တLjܸ֖ቷेڦۅೝ႑တă࣑ ჾኮLjံᄲ໙N + 1߲থ֑ᄣ(ۅx’0, y’0)Ă(x’1, y’1)…(x’N, y’N)ڦෙ߲ेೝ(ۅa0, b0)Ă(a1, b1)Ă(a2, b2)ăኄෙ߲े ೝܔۅᆌڦၙፖՔྺ(c0, d0)Ă(c1, d1)ࢅ(c2, d2)ă९Lj एᇀMMSEڦ໙݆ڪၳᇀܔኄෙ߲ेೝܸۅჾڦঢ়ۆ ෙۅ໙݆ă Rev. 0 | Page 6 of 12 (c1 − c2 )(a0 − a2 )− (c0 − c2 )(a1 − a2 ) k b.0 (a2c1 − a1c2 )+ b1 (a0c2 − a2c0 )+ b2 (a1c0 − a0c1 k (d 0 − d 2 )(b1 − b2 )− (d1 − d 2 )(b0 − b2 ) k (d1 − d 2 )(a0 − a2 )− (d 0 − d 2 )(a1 − a2 ) k b.0 (a2 d1 − a1d 2 )+ b1 (a0 d 2 − a2 d 0 )+ b2 (a1d 0 − a0 d1 ) k ሞኟ֡ፕዐLj૧ᆩၯጚဣຕ(KX, KY)ࢅူଚײݛ๕ ऺ໙P’(x’, y’)ڦၯጚۅă ⎧ x = KX 1 x ' + KX 2 y ' + KX 3 ⎨ ' ' ⎩ y = KY1 x + KY2 y + KY3 ) AN-1021 ᆌᆩԴऻ ๖૩ থူઠڦෙ߲ํᄓݴ՚֑ᆩঢ়ۆෙۅ໙݆ĂएᇀMMSEڦ ۅ໙݆ࢅएᇀMMSEڦ৵ۅ໙݆ǖ 1 2 3 ঢ়ۆෙۅ໙݆ስෙ߲֖ቷۅLjन2ዐۅڦ1Ăۅ6ࢅ!ۅ 8ă၎ᆌڦၯጚဣຕྺǖ KX1=+1.011238LjKX2=−0.003952LjKX3=−24.638760 KY1=+0.009894LjKY2=+1.005168LjKY3=−130.112700 ૧ᆩᅜฉဣຕLjၯጚࢫڦࡕଚᇀ1ዐă एᇀMMSEڦۅ໙݆ስ߲֖ቷۅLjन2ዐ!ۅڦ 1Ăۅ3Ăۅ5Ăۅ7ࢅۅ9ă၎ᆌڦၯጚဣຕྺǖ KX1= +1.009899, KX2 = −0.002260, KX3 = −23.715720 KY1=+0.008494, KY2= +1.006247, KY3 = −121.821000 ૧ᆩᅜฉဣຕLjၯጚࢫڦࡕଚᇀ2ዐă एᇀMMSEڦ৵ۅ໙݆ስ৵߲֖ቷۅLjन2ዐ!ۅڦ 1Ăۅ2Ăۅ3Ăۅ4Ăۅ5Ăۅ6Ăۅ7Ăۅ8ࢅۅ9ă၎ᆌ!ڦ ၯጚဣຕྺǖ KX1= +1.011161, KX2 = −0.001887, KX3 = −25.777180 KY1=+0.009718, KY2= +1.006107, KY3 = −126.258100 ૧ᆩᅜฉဣຕLjၯጚࢫڦࡕଚᇀ3ዐă ! 5 6 7 8 9 ! ! ! 08183-002 4 2. ስ֖ቷۅ ස2๖Ljٗةఄೡฉስକ৵߲ۅăഄၙፖՔྺ (3931, 3849)Ă(2047, 3849)Ă(164, 3849)Ă(3931, 2047)Ă (2047, 2047)Ă(164, 2047)Ă(3931, 246)Ă(2047, 246) ࢅ (164, 246)ăةఄೡׂิܔڦᆌ֑ᄣፖՔྺ(3927, 3920)Ă(2054, 3936)Ă(193, 3943)Ă(3911, 2119)Ă(2054, 2127)Ă(195, 2164)Ă(3915, 331)Ă(2050, 354)ࢅ(189, 371)ă၂Ljၙፖ Քᇑܔᆌ֑ڦᄣፖՔኮक़٪ሞटڦٷဃֶă ! ! ! ! ! 1. ঢ়ۆෙۅ໙݆ڦࡕ Point (X, Y) ၙፖՔ ֑ᄣፖՔ ၯጚፖՔ ဃֶ ဃֶೝࢅݛ 1 (3931, 3849) (3927, 3920) (3931, 3849) (0, 0) (276, 650) 2 (2047, 3849) (2054, 3936) (2037, 3846) (−10, −3) 3 (164, 3849) (193, 3943) (155, 3835) (−9, −14 ) 4 (3931, 2047) (3911, 2119) (3922, 2039) (−9, −8 ) 5 (2047, 2047) (2054, 2127) (2044, 2028) (−3, −19 ) 6 (164, 2047) (195, 2164) (164, 2047) (0, 0) 7 (3931, 246) (3915, 331) (3933, 242) (+2, −4 ) 8 (2047, 246) (2050, 354) (2047, 246) (0, 0) 9 (164, 246) (189, 371) (165, 244) (+1, −2) 1 2 3 4 5 6 7 8 9 (3931, 3849) (3927, 3920) (3933, 3856) (2, 7) (159, 418) (2047, 3849) (2054, 3936) (2042, 3856) (−5, +7) (164, 3849) (193, 3943) (162, 3847) (−2, −2 ) (3931, 2047) (3911, 2119) (3921, 2044) (−10, −3 ) (2047, 2047) (2054, 2127) (2046, 2036) (−1, −11) (164, 2047) (195, 2164) (168, 2057) (4, 10) (3931, 246) (3915, 331) (3929, 245) (−2, −1) (2047, 246) (2050, 354) (2046, 252) (−1, +6) (164, 246) (189, 371) (166, 253) (+2, +7) 1 2 3 4 5 6 7 8 9 (3931, 3849) (3927, 3920) (3938, 3856) (7, 7) (110, 363) (2047, 3849) (2054, 3936) (2044, 3854) (−3, +5) (164, 3849) (193, 3943) (162, 3842) (−2, −7) (3931, 2047) (3911, 2119) (3925, 2044) (−6, −3) (2047, 2047) (2054, 2127) (2047, 2034) (0, −13) (164, 2047) (195, 2164) (167, 2053) (3, 6) (3931, 246) (3915, 331) (3932, 245) (+1, −1) (2047, 246) (2050, 354) (2046, 250) (−1, +4) (164, 246) (189, 371) (165, 249) (+1,+3) 2. एᇀMMSEڦۅ໙݆ڦࡕ Point (X, Y˅ ၙፖՔ ֑ᄣፖՔ ၯጚፖՔ ဃֶ ဃֶೝࢅݛ 3. एᇀMMSEڦ৵ۅ໙݆ڦࡕ Point (X, Y˅ ၙፖՔ ֑ᄣፖՔ ၯጚፖՔ ဃֶ ဃֶೝࢅݛ Rev. 0 | Page 7 of 12 AN-1021 ᆌᆩԴऻ ஃ! پஓኴႜ! සമຎํᄓࡕ๖Ljஃ֑ᆩనዖၯጚ໙݆LjၯጚፖՔ ᇺᇺᆫᇀথ֑ᄣፖՔăଷྔLjཚࡗԲডෙዖํᄓLj ڥᅜူஃ ᅜCᇕჾՊႀڦၯጚ໙݆پஓ९“Պஓ”ևݴăᆶෙ߲֖ቷ ้ۅLjپஓኴႜঢ়ۆෙۅၯጚ໙݆ăᆶෙ߲ᅜฉ֖ڦቷۅ ้LjپஓኴႜएᇀMMSEۅܠڦၯጚ໙݆ăپஓᅙཚࡗ ADuC7026֪)ADuC7026ADIࠅິڦᅃMCUׂ *ăෙ߲๖૩ํᄓڦࡕ֑ᆩپஓऺ໙ڟڥă ! ! ! ! ! ! ! ! ! ! ঢ়ۆෙۅၯጚ໙݆ᆶዺᇀॽෙ߲֖ቷۅၯጚڟၙ࿋! ዃăଷྔLjܔᇀ੍ৎෙ߲֖ቷۅڦۅLjഄႠీ၄!ݥ ࡻăܸLjܔᇀփሞ֖ቷۅৎۅڦLjঢ়ۆෙۅၯ! ጚ໙݆ڦ၄փฯၙăኄዖ໙݆ڦဃֶೝࢅݛ֪! ᆩෙዖ໙݆ዐፌڦٷăᅺُLjܔᇀةఄೡ٫၎! ܔডڦٷᆌᆩLjঢ়ۆෙዖၯጚ໙݆ժڦࡻݥስă ܔᇀగၵ)ۅথৎ֖ቷ*ۅڦۅLjएᇀMMSEۅܠڦၯ! ጚ໙݆ڦ၄փසঢ়ۆෙۅၯጚ໙݆ăܸLj৽ኝ߲! ةఄೡઠੂLjएᇀMMSEۅܠڦၯጚ໙݆ڦဃֶೝ!ݛ ࢅၭᇀঢ়ۆෙۅ໙݆Ljᅺྺ૧ᆩକෙ߲ᅜฉ֖ቷ!ۅ ڦ႑တăᅺܸLjጺ༹ܸჾLjഄႠీᆫᇀঢ়ۆෙۅ໙݆ă ܔᇀएᇀMMSEۅܠڦၯጚ໙݆Lj๑ᆩ֖ڦቷۅሁ! ܠLjႠీሁॅă ํᄓࡕᇑຕბླྀڞ၎ࢇޙă Rev. 0 | Page 8 of 12 AN-1021 ᆌᆩԴऻ Պஓ #define N algorithm 9 // number of reference points for calibration signed short int ReferencePoint[N][2]; // ideal position of reference points signed short int SamplePoint[N][2]; // sampling position of reference points double KX1, KX2, KX3, KY1, KY2, KY3; // coefficients for calibration algorithm void Do_Calibration(signed short int *Px, signed short int *Py) // do calibration for point (Px, Py) using the calculated coefficients { *Px=(signed short int)(KX1*(*Px)+KX2*(*Py)+KX3+0.5); *Py=(signed short int)(KY1*(*Px)+KY2*(*Py)+KY3+0.5); } int Get_Calibration_Coefficient() algorithm: KX1, KX2, KX3, KY1, KY2, KY3 // calculate the coefficients for calibration { int i; int Points=N; double a[3],b[3],c[3],d[3],k; if(Points<3) { return 0; } else { if(Points==3) { for(i=0; i<Points; i++) { a[i]=(double)(SamplePoint[i][0]); b[i]=(double)(SamplePoint[i][1]); c[i]=(double)(ReferencePoint[i][0]); d[i]=(double)(ReferencePoint[i][1]); } } else if(Points>3) { for(i=0; i<3; i++) { a[i]=0; b[i]=0; c[i]=0; d[i]=0; } for(i=0; i<Points; i++) Rev. 0 | Page 9 of 12 AN-1021 ᆌᆩԴऻ { a[2]=a[2]+(double)(SamplePoint[i][0]); b[2]=b[2]+(double)(SamplePoint[i][1]); c[2]=c[2]+(double)(ReferencePoint[i][0]); d[2]=d[2]+(double)(ReferencePoint[i][1]); a[0]=a[0]+(double)(SamplePoint[i][0])*(double)(SamplePoint[i][0]); a[1]=a[1]+(double)(SamplePoint[i][0])*(double)(SamplePoint[i][1]); b[0]=a[1]; b[1]=b[1]+(double)(SamplePoint[i][1])*(double)(SamplePoint[i][1]); c[0]=c[0]+(double)(SamplePoint[i][0])*(double)(ReferencePoint[i][0]); c[1]=c[1]+(double)(SamplePoint[i][1])*(double)(ReferencePoint[i][0]); d[0]=d[0]+(double)(SamplePoint[i][0])*(double)(ReferencePoint[i][1]); d[1]=d[1]+(double)(SamplePoint[i][1])*(double)(ReferencePoint[i][1]); } a[0]=a[0]/a[2]; a[1]=a[1]/b[2]; b[0]=b[0]/a[2]; b[1]=b[1]/b[2]; c[0]=c[0]/a[2]; c[1]=c[1]/b[2]; d[0]=d[0]/a[2]; d[1]=d[1]/b[2]; a[2]=a[2]/Points; b[2]=b[2]/Points; c[2]=c[2]/Points; d[2]=d[2]/Points; } k=(a[0]-a[2])*(b[1]-b[2])-(a[1]-a[2])*(b[0]-b[2]); KX1=((c[0]-c[2])*(b[1]-b[2])-(c[1]-c[2])*(b[0]-b[2]))/k; KX2=((c[1]-c[2])*(a[0]-a[2])-(c[0]-c[2])*(a[1]-a[2]))/k; KX3=(b[0]*(a[2]*c[1]-a[1]*c[2])+b[1]*(a[0]*c[2]-a[2]*c[0])+b[2]*(a[1]*c[0]a[0]*c[1]))/k; KY1=((d[0]-d[2])*(b[1]-b[2])-(d[1]-d[2])*(b[0]-b[2]))/k; KY2=((d[1]-d[2])*(a[0]-a[2])-(d[0]-d[2])*(a[1]-a[2]))/k; KY3=(b[0]*(a[2]*d[1]-a[1]*d[2])+b[1]*(a[0]*d[2]-a[2]*d[0])+b[2]*(a[1]*d[0]a[0]*d[1]))/k; return Points; } } Rev. 0 | Page 10 of 12 AN-1021 ᆌᆩԴऻ ֖࿔၅ Vidales, Carlos E. “How to Calibrate Touch Screens, Embedded Systems Design.”Embedded.com, May 31, 2002. Embedded Systems Design.May 27, 2009. Rev. 0 | Page 11 of 12 AN-1021 ᆌᆩԴऻ ጀ ©2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. AN08183-0-7/09(0) Rev. 0 | Page 12 of 12