KAI-2093 IMAGE SENSOR 1920 (H) X 1080 (V) INTERLINE CCD IMAGE SENSOR JUNE 11, 2014 DEVICE PERFORMANCE SPECIFICATION REVISION 1.1 PS-0026 KAI-2093 Image Sensor TABLE OF CONTENTS Summary Specification ......................................................................................................................................................................................... 5 Description .................................................................................................................................................................................................... 5 Features ......................................................................................................................................................................................................... 5 Applications .................................................................................................................................................................................................. 5 Ordering Information ............................................................................................................................................................................................ 6 Device Description ................................................................................................................................................................................................. 7 Architecture .................................................................................................................................................................................................. 7 Pin Description and Physical Orientation .............................................................................................................................................. 8 Imaging Performance ............................................................................................................................................................................................ 9 Typical Operational Conditions................................................................................................................................................................ 9 Optical Specifications ................................................................................................................................................................................. 9 CCD Specifications ...................................................................................................................................................................................... 9 Output Amplifier Specifications ........................................................................................................................................................... 10 General Specifications ............................................................................................................................................................................. 10 Typical Performance Curves ............................................................................................................................................................................ 11 Monochrome Quantum Efficiency ....................................................................................................................................................... 11 Monochrome with Microlens Angular Quantum Efficiency ........................................................................................................... 11 Color with Microlens Quantum Efficiency .......................................................................................................................................... 12 Frame Rates ............................................................................................................................................................................................... 13 Defect Definitions ................................................................................................................................................................................................ 14 Operational Conditions ........................................................................................................................................................................... 14 Specifications............................................................................................................................................................................................. 14 Defect Zones ............................................................................................................................................................................................. 15 Defect Classes ........................................................................................................................................................................................... 15 KAI-2093-ABA-CB-B1 ........................................................................................................................................................................... 15 All Other Part Numbers ...................................................................................................................................................................... 15 Operation .................................................................................................................................................................................................................. 16 Absolute Maximum Ratings ................................................................................................................................................................... 16 DC Bias Operating Conditions ............................................................................................................................................................... 16 AC Operating Conditions ........................................................................................................................................................................ 17 Clock Capacitance..................................................................................................................................................................................... 17 Operation Notes ....................................................................................................................................................................................... 18 Progressive and Interlaced Timing................................................................................................................................................... 18 Single Output Mode ............................................................................................................................................................................ 18 Dual Output Mode ................................................................................................................................................................................... 18 Exposure Control ...................................................................................................................................................................................... 19 Dark References ....................................................................................................................................................................................... 19 Connections to the Image Sensor ........................................................................................................................................................ 19 Timing ......................................................................................................................................................................................................................... 20 Requirements and Characteristics ....................................................................................................................................................... 20 Frame Timing ............................................................................................................................................................................................. 21 Frame Timing – Progressive Scan ..................................................................................................................................................... 21 Vertical Clock Edge Alignment .............................................................................................................................................................. 22 Frame Timing – Field Integration Mode .............................................................................................................................................. 23 Frame Timing – Frame Integration Mode ........................................................................................................................................... 24 Line Timing ................................................................................................................................................................................................. 25 Electronic Shutter Timing ....................................................................................................................................................................... 26 www.truesenseimaging.com Revision 1.1 PS-0026 Pg 2 KAI-2093 Image Sensor Storage and Handling .......................................................................................................................................................................................... 27 Storage Conditions................................................................................................................................................................................... 27 ESD ............................................................................................................................................................................................................... 27 Cover Glass Care and Cleanliness ......................................................................................................................................................... 27 Environmental Exposure ........................................................................................................................................................................ 27 Soldering Recommendations ................................................................................................................................................................ 27 Mechanical Drawings ........................................................................................................................................................................................... 28 Completed Assembly ............................................................................................................................................................................... 28 Cover Glass ................................................................................................................................................................................................. 30 Clear Cover Glass .................................................................................................................................................................................. 30 Quartz Cover Glass with AR Coatings .................................................................................................................................................. 31 Glass Transmission ................................................................................................................................................................................... 32 Quality Assurance and Reliability .................................................................................................................................................................. 33 Quality and Reliability ............................................................................................................................................................................. 33 Replacement .............................................................................................................................................................................................. 33 Liability of the Supplier ........................................................................................................................................................................... 33 Liability of the Customer ........................................................................................................................................................................ 33 Test Data Retention ................................................................................................................................................................................. 33 Mechanical.................................................................................................................................................................................................. 33 Life Support Applications Policy .................................................................................................................................................................... 33 Revision Changes................................................................................................................................................................................................... 34 MTD/PS-0307 ............................................................................................................................................................................................. 34 PS-0026 ....................................................................................................................................................................................................... 34 www.truesenseimaging.com Revision 1.1 PS-0026 Pg 3 KAI-2093 Image Sensor TABLE OF FIGURES Figure 1: Sensor Architecture ...................................................................................................................................................................... 7 Figure 2: Package Pin Designations - Top View....................................................................................................................................... 8 Figure 3: Quantum Efficiency Spectrum for Monochrome Sensors .................................................................................................11 Figure 4: Angular Dependence of Quantum Efficiency .......................................................................................................................11 Figure 5: Quantum Efficiency Spectrum for Color Filter Array Sensors..........................................................................................12 Figure 6: Color Filter Array Pattern ..........................................................................................................................................................12 Figure 7: Progressive Frame Rate vs. HCCD Clock Frequency ...........................................................................................................13 Figure 8: Defect Zones ................................................................................................................................................................................15 Figure 9: Progressive Frame Timing .........................................................................................................................................................21 Figure 10: Ideal Vertical Clock Edge Position ........................................................................................................................................22 Figure 11: Interlaced Frame Timing - Field Integration Mode ...........................................................................................................23 Figure 12: Interlaced Frame Timing - Frame Integration Mode ........................................................................................................24 Figure 13: Line Timing .................................................................................................................................................................................25 Figure 14: Electronic Shutter Timing Diagram ......................................................................................................................................26 Figure 15: Completed Assembly (1 of 2) .................................................................................................................................................28 Figure 16: Completed Assembly (2 of 2) .................................................................................................................................................29 Figure 17: Clear Cover Glass Drawing ......................................................................................................................................................30 Figure 18: Quartz Cover Glass with AR Coating Drawing ...................................................................................................................31 Figure 19: Cover Glass Transmission ........................................................................................................................................................32 www.truesenseimaging.com Revision 1.1 PS-0026 Pg 4 KAI-2093 Image Sensor Summary Specification KAI-2093 Image Sensor DESCRIPTION The KAI-2093 Image Sensor is a high-performance multimegapixel image sensor designed for a wide range of medical imaging and machine vision applications. The 7.4 µm square pixels with microlenses provide high sensitivity and the large full well capacity results in high dynamic range. The split horizontal register offers a choice of single or dual output allowing either 15 or 30 frame per second (fps). The architecture allows for either progressive scan or interlaced readout. The imager features 5 V clocking to facilitate camera design. The vertical overflow drain structure provides antiblooming protection, and enables electronic shuttering for precise exposure control. FEATURES Progressive scan (non-interlaced) HCCD and output amplifier capable of 40 MHz operation 5 V HCCD clocking Single or dual video output operation Parameter Typical Value Architecture Interline CCD, Progressive Scan or Interlaced Readout Total Number of Pixels 1984 (H) x 1092 (V) Number of Effective Pixels 1928 (H) x 1084(V) Number of Active Pixels 1920 (H) x 1080 (V) Pixel Size 7.4 µm (H) x 7.4 µm (V) Active Image Size 14.208 mm (H) x 7.992 mm (V) 16.3 mm (diagonal) Aspect Ratio 16:9 Number of Outputs 1 or 2 Saturation Signal 40,000 electrons Output Sensitivity 14 µV/electron Quantum Efficiency KAI-2093-ABA (490 nm) 40% Quantum Efficiency KAI-2093-CBA R(620 nm), G(540nm), B(460nm) 37%, 34%, 30% Total Noise 40 electrons rms Dark Current (Typical) <0.5 nA/cm2 Dynamic Range 60 dB 28 light shielded reference columns per output Blooming Suppression 100 X Only 2 vertical CCD clocks and 2 horizontal CCD clocks Smear <0.03% Image Lag <10 electrons Electronic shutter Low Dark Current Frame Rate Single Output, 20 MHz Single Output, 35 MHz Dual Outputs, 20 MHz Dual Outputs, 37 MHz 9 fps 15 fps 17 fps 30 fps Maximum Data Rate 40 MHz/Channel (2 channels) Package 32 pin cerDIP APPLICATIONS Intelligent Transportation Systems Machine Vision Surveillance www.truesenseimaging.com Clear Glass or Quartz Glass with AR Coating, 2 sides Parameters above are specified at T = 40 °C unless otherwise noted. Cover Glass Revision 1.1 PS-0026 Pg 5 KAI-2093 Image Sensor Ordering Information Product Name Description KAI- 2093-AAA-CP-AE Monochrome, No Microlens, CERDIP Package (sidebrazed), Taped Clear Cover Glass (no coatings), Engineering Sample 2H4617 KAI- 2093-AAA-CP-BA Monochrome, No Microlens, CERDIP Package (sidebrazed), Taped Clear Cover Glass (no coatings), Standard Grade 2H4728 KAI- 2093-ABA-CB-AE Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Clear Cover Glass (no coatings), Engineering Sample 4H0174 KAI- 2093-ABA-CB-B1 Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Clear Cover Glass (no coatings), Grade 1 2H4725 KAI- 2093-ABA-CB-B2 Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Clear Cover Glass (no coatings), Grade 2 2H4923 KAI- 2093-ABA-CK-AE Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Quartz Cover Glass with AR coating (both sides), Engineering Sample 2H4920 KAI- 2093-ABA-CK-BA Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Quartz Cover Glass with AR coating (both sides), Standard Grade 2H4618 KAI- 2093-ABA-CP-AE Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Taped Clear Cover Glass (no coatings), Engineering Sample 2H4616 KAI- 2093-ABA-CP-BA Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Taped Clear Cover Glass (no coatings), Standard Grade 4H0137 KAI- 2093-CBA-CB-AE Color (Bayer RGB), Telecentric Microlens, CERDIP Package (sidebrazed), Clear Cover Glass (no coatings), Engineering Sample 4H0136 KAI- 2093-CBA-CB-BA Color (Bayer RGB), Telecentric Microlens, CERDIP Package (sidebrazed), Clear Cover Glass (no coatings), Standard Grade 4H0705 KEK-4H0705-KAI-2093-10-40 Evaluation Board, 10 Bit, 40 MHz (Complete Kit) n/a 4H0706 KEK-4H0706-KAI-2093-12-20 Evaluation Board, 12 Bit, 20 MHz (Complete Kit) n/a 2H4736 Marking Code KAI-2093 Serial Number KAI-2093M Serial Number KAI-2093CM Serial Number See Application Note Product Naming Convention for a full description of the naming convention used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at www.truesenseimaging.com. Please address all inquiries and purchase orders to: Truesense Imaging, Inc. 1964 Lake Avenue Rochester, New York 14615 Phone: (585) 784-5500 E-mail: [email protected] ON Semiconductor reserves the right to change any information contained herein without notice. All information furnished by ON Semiconductor is believed to be accurate. www.truesenseimaging.com Revision 1.1 PS-0026 Pg 6 KAI-2093 Image Sensor Device Description Single Output or Dual Output 1920 x 1080 imaging pixels 28 light shielded columns 4 buffer columns 4 buffer columns 28 light shielded columns 4 light shielded rows 2 buffer rows 2 buffer rows 4 light shielded rows 4 28 4 4 28 4 1920 960 960 4 28 4 28 4 empty pixels Video L 4 empty pixels ARCHITECTURE Video R 4 Figure 1: Sensor Architecture There are 4 light shielded rows followed by 1084 photoactive rows and finally 4 more light shielded rows. The first and last 2 photoactive rows are buffer rows giving a total of 1080 lines of image data. In the single output mode all pixels are clocked out of the Video L output in the lower left corner of the sensor. The first four empty pixels of each line do not receive charge from the vertical shift register. The next 28 pixels receive charge from the left light shielded edge followed by 1928 photoactive pixels and finally 28 more light shielded pixels from the right edge of the sensor. The first and last 4 photoactive pixels are buffer pixels giving a total of 1920 pixels of image data. In the dual output mode the clocking of the right half of the horizontal CCD is reversed. The left half of the image is clocked out Video L and the right half of the image is clocked out Video R. Each row consists of 4 empty pixels followed by 28 light shielded pixels followed by 964 photoactive pixels. When reconstructing the image, data from Video R will have to be reversed in a line buffer and appended to the Video L data. www.truesenseimaging.com Revision 1.1 PS-0026 Pg 7 KAI-2093 Image Sensor PIN DESCRIPTION AND PHYSICAL ORIENTATION 1 fR fH2BL fH1BL fH1SL fH2SL GND OG RD RD OG GND fH2SR fH1SR fH1BR fH2BR fR 16 32 Pixel (1,1) VSS VOUTL ESD fV2 fV1 VSUB GND VDDL VDDR GND VSUB fV1 fV2 GND VOUTR VSS 17 Figure 2: Package Pin Designations - Top View Pin Label Pin 1 φR 17 Label VSS 2 φH2BL 18 VOUTR 3 φH1BL 19 GND 4 φH1SL 20 φV2O 5 φH2SL 21 φV1 6 GND 22 VSUB 7 OG 23 GND 8 RD 24 VDDR 9 RD 25 VDDL 10 OG 26 GND 11 GND 27 VSUB 12 φH2SR 28 φV1 13 φH1SR 29 φV2E 14 φH1BR 30 ESD 15 φH2BR 31 VOUTL 16 φR 32 VSS The horizontal shift register is on the side of the sensor parallel to the row of pins 1 through 16. In single output mode the pixel closest to pin 1 will be read out first through Video L, the pixel closest to pin 17 will be read out last. In dual output mode the pixel closest to pin 16 will be read out first through Video R. www.truesenseimaging.com Revision 1.1 PS-0026 Pg 8 KAI-2093 Image Sensor Imaging Performance TYPICAL OPERATIONAL CONDITIONS Description Condition Temperature 40 °C Integration Time 33 ms (40 MHz HCCD frequency, 30 fps frame rate) Operation Nominal voltages and timing Image defects are excluded from performance tests. OPTICAL SPECIFICATIONS Symbol Description QEmax Peak Quantum Efficiency Min Nom Unit Notes 33 36 λQE Peak Quantum Efficiency Wavelength QE(540) Quantum Efficiency at 540nm θQEh θQEv NL % 1 490 nm 1 31 33 % 1 Microlens Acceptance Angle (horizontal) 12 13 degrees 2 Microlens Acceptance Angle (vertical) 25 30 degrees 2 Maximum Photoresponse Nonlinearity 2 % 3, 4 ΔG Maximum Gain Difference Between Outputs 10 % 3, 4 ΔNL Maximum Signal Error caused by Nonlinearity Differences 1 % 3, 4 Notes: 1. 2. 3. 4. Max For monochrome sensors. Value is the angular range of incident light for which the quantum efficiency is at least 50% of QE max at a wavelength of λQE. Angles are measured with respect to the sensor surface normal in a plane parallel to the horizontal axis (θQEh) or in a plane parallel to the vertical axis (θQEv). Value is over the range of 10% to 90% of photodiode saturation. Value is for the sensor operated without binning. CCD SPECIFICATIONS Symbol Description Min Max Unit Vertical CCD Charge Capacity HNe Horizontal CCD Charge Capacity PNe Photodiode Charge Capacity Id Dark Current 0.3 1.0 nA/cm2 Lag Image Lag < 10 50 e- Xab Antiblooming factor Smr Vertical Smear -72 dB 2. 3. 4. 5. 6. 35 100 50 ke 100 ke- 40 ke- 300 -75 Notes - VNe Notes: 1. 45 Nom 1 2 3, 4, 5, 6 3, 4 This value depends on the substrate voltage setting. Higher photodiode saturation charge capacities will lower the antiblooming specification. Substrate voltage will be specified with each part for nominal photodiode charge capacity. This is the first field decay lag at 70% saturation. Measured by strobe illumination of the device at 70% of photodiode saturation, and then measuring the subsequent frame’s average pixel output in the dark. Measured with a spot size of 100 vertical pixels. Measured with F/4 imaging optics and continuous green illumination centered at 550 nm. A blooming condition is defined as when the spot size doubles in size. Antiblooming factor is the light intensity which causes blooming divided by the light intensity which first saturates the photodiodes. www.truesenseimaging.com Revision 1.1 PS-0026 Pg 9 KAI-2093 Image Sensor OUTPUT AMPLIFIER SPECIFICATIONS Symbol Description Nominal Unit Notes Pd Power Dissipation 120 mW 1 F-3dB Bandwidth 140 MHz 1 CL Max Off-chip Load 10 pF 2 Av Gain ΔV/ΔN Sensitivity Notes: 1. 2. 0.75 14 1 μV/e- 1 For a 5 mA output load on each amplifier. Per amplifier. With total output load capacitance of CL= 10 pF between the outputs and AC ground. GENERAL SPECIFICATIONS Symbol Description Nominal Unit Notes ne-T Total Noise 40 e- rms 1 DR Dynamic Range 60 dB 2 Notes: 1. 2. Includes system electronics noise, dark pattern noise and dark current shot noise at 20 MHz. Uses 20LOG(PNe/ne-T). www.truesenseimaging.com Revision 1.1 PS-0026 Pg 10 KAI-2093 Image Sensor Typical Performance Curves MONOCHROME QUANTUM EFFICIENCY 0.50 0.45 0.40 Without Cover Glass 0.35 Absolute Quantum Efficiency 0.30 0.25 With Clear Cover Glass 0.20 0.15 Without Cover Glass, without Microlens 0.10 0.05 0.00 300 400 500 600 700 800 900 1000 Wavelength (nm) Figure 3: Quantum Efficiency Spectrum for Monochrome Sensors MONOCHROME WITH MICROLENS ANGULAR QUANTUM EFFICIENCY 100 90 80 70 Relative Quantum 60 Efficiency 50 (%) 40 30 20 10 0 Vertical Horizontal 0 5 10 15 20 25 30 Angle (degrees) Figure 4: Angular Dependence of Quantum Efficiency For the curve marked “Horizontal”, the incident light angle is varied in a plane parallel to the HCCD. For the curve marked “Vertical”, the incident light angle is varied in a plane parallel to the VCCD. www.truesenseimaging.com Revision 1.1 PS-0026 Pg 11 KAI-2093 Image Sensor COLOR WITH MICROLENS QUANTUM EFFICIENCY 0.40 0.35 With clear cover glass Absolute Quantum Efficiency 0.30 0.25 0.20 0.15 0.10 0.05 0.00 400 500 600 700 800 900 1000 Wavelength (nm) Red Green Figure 5: Quantum Efficiency Spectrum for Color Filter Array Sensors Blue Green Green Red Vertical Register First Imaging Pixel Horizontal Register Figure 6: Color Filter Array Pattern www.truesenseimaging.com Revision 1.1 PS-0026 Pg 12 KAI-2093 Image Sensor FRAME RATES 40 35 30 25 Frame Rate 20 (frames/s) 15 Dual Output 10 5 Single Output 0 0 5 10 15 20 25 30 35 40 HCCD Clock Frequency (MHz) Figure 7: Progressive Frame Rate vs. HCCD Clock Frequency www.truesenseimaging.com Revision 1.1 PS-0026 Pg 13 KAI-2093 Image Sensor Defect Definitions OPERATIONAL CONDITIONS Description Condition Temperature 40 °C Integration Time 33 ms (40 MHz HCCD frequency, no binning, 30 fps frame rate) Light source Continuous green illumination centered at 550 nm Operation Nominal voltages and timing SPECIFICATIONS Name Definition Major Defective Pixel A pixel whose signal deviates by more than 25 mV from the mean value of all active pixels under dark field condition or by more than 15% from the mean value of all active pixels under uniform illumination of 80% of saturation Minor Defective Pixel A pixel whose signal deviates by more than 8 mV from the mean value of all active pixels under dark field conditions Cluster Defect A group of 2 to 10 contiguous major defective pixels with a width no wider than 2 defective pixels Column Defect A group of more than 10 contiguous major defective pixels along a single column Notes: 1. 2. There will be at least two non-defective pixels separating any two major defective pixels. Buffer and dark reference pixels are not used for defect tests. www.truesenseimaging.com Revision 1.1 PS-0026 Pg 14 KAI-2093 Image Sensor Single Output or Dual Output 4 buffer columns 640 columns Zone A 640 x 380 380 rows 28 light shielded columns 380 rows 640 columns 4 buffer columns 28 light shielded columns 4 light shielded rows 2 buffer rows 4 empty pixels Video L 4 empty pixels DEFECT ZONES 2 buffer rows 4 light shielded rows 4 28 4 4 28 4 1920 960 960 4 28 4 28 Video R 4 Figure 8: Defect Zones DEFECT CLASSES KAI-2093-ABA-CB-B1 Maximum Number of Defects Major Point Minor Point Cluster Column Within Zone A Outside Zone A Within Zone A Outside Zone A Within Zone A Outside Zone A Within Zone A Outside Zone A 3 10 20 100 0 4 0 0 All Other Part Numbers Zone A is not used Maximum Number of Defects Major Point Minor Point Cluster Column 10 100 4 0 www.truesenseimaging.com Revision 1.1 PS-0026 Pg 15 KAI-2093 Image Sensor Operation ABSOLUTE MAXIMUM RATINGS Temperature Voltage between pins Current Notes: 1. 2. 3. Min Max Unit -50 70 °C VSUB to GND 8 20 V VDD, OG to GND 0 17 V VRD to GND 0 14 V φV1 to φV2 -20 20 V φH1 to φH2 -15 15 V φR to GND -15 15 V φH1, φH2 to OG -15 15 V φH1, φH2 to φV1, φV2 -15 15 V 0 10 mA Operation without damage Video Output Bias Current Notes 1, 3 2 For electronic shuttering VSUB may be pulsed to 50 V for up to 10 µs. Total for both outputs. Current is 5 mA for each output. Note that the current bias affects the amplifier bandwidth. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions. DC BIAS OPERATING CONDITIONS Symbol Description Min Nom Max Unit OG Output Gate -3.0 -2.5 -2.0 V VRD Reset Drain 10.0 10.5 11.0 V VSS Output Amplifier Return 0.0 0.7 1.0 V VDD Output Amplifier Supply 14.5 15.0 15.5 V GND Ground, P-well VSUB Substrate 8.0 TBD 17.0 V 2 VESD ESD Protection -8.0 -7.0 -6.0 V 1 Notes: 1. 2. 0.0 Notes V VESD must be at least 1 V more negative than φH1L and φH2L during sensor operation AND during camera power turn on. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions. www.truesenseimaging.com Revision 1.1 PS-0026 Pg 16 KAI-2093 Image Sensor AC OPERATING CONDITIONS Symbol Description Min Nom Max Unit φV2H Vertical CCD Clock High 7.5 8.0 8.5 V φV1M, φV2M Vertical CCD Clocks Midlevel -1.6 -1.5 -1.4 V φV1L, φV2L Vertical CCD Clocks Low -9.5 -9.0 -8.5 V φH1H, φH2H Horizontal CCD Clocks High 0.5 1.0 2.0 V φH1L, φH2L Horizontal CCD Clocks Low -5.0 -4.0 -3.8 V φR Reset Clock Amplitude φRL Reset Clock Low -4.0 -3.5 -3.0 V VShutter Electronic Shutter Voltage 44 48 52 V Notes: 1. 5.0 Notes V 1 Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions. The figure below shows the DC bias (VSUB) and AC clock (VES) applied to the SUB pin. Both the DC bias and AC clock are referenced to ground. VES VSUB GND GND CLOCK CAPACITANCE Clocks Capacitance Units Notes φV1 to GND 25 nF 1 φV2 to GND 25 nF 1 φV1 to φV2 5 nF φH1S to GND 45 pF 2 φH2S to GND 38 pF 2 φH1B to GND 21 pF 2 φH2B to GND 20 pF 2 φH2B to φH1S 10 pF 2 φH1B to φH1S 10 pF 2 φH2B to φH2S 10 pF 2 φH1B to φH2S 10 pF 2 φR to GND 10 pF Notes: 1. 2. Gate capacitance to GND is voltage dependent. Value is for nominal VCCD clock voltages. For nominal HCCD clock voltages, total capacitance for one half (H1SR only or H1SL only). www.truesenseimaging.com Revision 1.1 PS-0026 Pg 17 KAI-2093 Image Sensor OPERATION NOTES Progressive and Interlaced Timing Progressive and interlaced output modes are achieved by the applying the proper waveforms to the vertical clock input pins φV1, φV2E and φV2O. For progressive output, φV2 = φV2E = φV2O, with each of the 1092 lines read out individually using the timing in Figure 9. For interlaced output, there are two modes, field integration mode and frame integration mode. In both modes, 1092/2 = 546 lines are read in each frame readout, with one even frame readout and one odd frame readout necessary for a complete frame. Field integration mode bins together alternate lines, and the timing is shown in Figure 11. As with progressive readout, φV2 = φV2E = φV2O. Frame integration mode reads out the photodiodes of the even and odd lines separately, and the timing is shown in Figure 12. In this case, φV2E and φV2O are clocked individually. Single Output Mode When operating the sensor in single output mode all pixels of the image sensor will be shifted out the Video L output (pin 31). To conserve power and lower heat generation the output amplifier for Video R may be turned off by connecting VDDR (pin 24) and VOUTR (pin 18) to GND (zero volts). The φH1 timing from the timing diagrams should be applied to φH1SL, φH1BL, φH1SR, φH2BR, and the φH2 timing should be applied φH2SL, φH2BL, φH2SR, φH1BR. In other words, the clock driver generating the φH1 timing should be connected to pins 4, 3, 13, and 15. The clock driver generating the φH2 timing should be connected to pins 2, 5, 12, and 14. The horizontal CCD should be clocked for 4 empty pixels plus 28 light shielded pixels plus 1928 photoactive pixels plus 28 light shielded pixels for a total of 1988 pixels. DUAL OUTPUT MODE In dual output mode the connections to the φH1BR and φH2BR pins are swapped from the single output mode to change the direction of charge transfer of the right side horizontal shift register. In dual output mode both VDDL and VDDR (pins 25, 24) should be connected to 15 V. The φH1 timing from the timing diagrams should be applied to φH1SL, φH1BL, φH1SR, φH1BR, and the φH2 timing should be applied to φH2SL, φH2BL, φH2SR, φH2BR. The clock driver generating the φH1 timing should be connected to pins 4, 3, 13, and 14. The clock driver generating the φH2 timing should be connected to pins 2, 5, 12, and 15. The horizontal CCD should be clocked for 4 empty pixels plus 28 light shielded pixels plus 964 photoactive pixels for a total of 996 pixels. If the camera is to have the option of dual or single output mode, the clock driver signals sent to φH1BR and φH2BR may be swapped by using a relay. Another alternative is to have two extra clock drivers for φH1BR and φH2BR and invert the signals in the timing logic generator. If two extra clock drivers are used, care must be taken to ensure the rising and falling edges of the φH1BR and φH2BR clocks occur at the same time (within 3 ns) as the other HCCD clocks. www.truesenseimaging.com Revision 1.1 PS-0026 Pg 18 KAI-2093 Image Sensor EXPOSURE CONTROL If the sensor is operated at 20 MHz horizontal CCD frequency then the frame rate will be 9 fps and the integration time will be 1/9 s or 111 ms. To achieve shorter integration times, the electronic shutter option may be used by applying a pulse to the substrate (pins 22 and 27). The time between the falling edge of the substrate pulse and the falling edge of the transition of the φV2 clock from φV2H to φV2M is defined as the integration time. The substrate pulse and integration time are shown in Figure 14. Integration times longer than one frame time (111 ms in this example) do not require use of the electronic shutter. Without the electronic shutter the integration time is defined as the time between when the φV2 clock is at the φV2H level of 9.5 V (when the φV2 clock is at the φV2H level charge collected in the photodiodes is transferred to the vertical shift register). To extend the integration time, increase the time between each φV2H level of the φV2 clock. While the photodiodes are integrating photoelectrons the vertical and horizontal shift registers should be continuously clocked to prevent the collection of dark current in the vertical shift register. This is most easily done by increasing the number of lines read out of the image sensor. For example, to double the integration time read out 2184 lines instead of 1092 lines (but remember only the first 1092 lines will contain image data). Depending on the image quality desired and temperature of the sensor, integration times longer than one second may require the sensor to be cooled to control dark current. The output amplifiers will also generate a non-uniform dark current pattern near the bottom corners of the sensor. This can be reduced at long integration times by only turning on VDD to each amplifier during image readout. If the vertical and horizontal shift registers are also stopped during integration time, the dark current in the shift registers should be flushed out completely before transferring charge from the photodiodes to the vertical shift register. DARK REFERENCES There are 28 light shielded columns at the left and right side of the image sensor. The first and last two light shielded columns should not be used as a dark reference due to some light leakage under the edges of the light shielding. Only the center 24 columns should be used for dark reference line clamping. There are 4 light shielded rows at the top and bottom of the image sensor. Only the center two light shielded rows should be used as a dark reference. CONNECTIONS TO THE IMAGE SENSOR The reset clock signal operates at the pixel frequency. The traces on the circuit board to the reset clock pins should be kept short and of equal length to ensure that the reset pulse arrives at each pin simultaneously. The circuit board traces to the horizontal clock pins should also be placed to ensure that the clock edges arrive at each pin simultaneously. If reset pulses and the horizontal clock edges are misaligned the noise performance of the sensor will be degraded and balancing the offset and gain of the two output amplifiers will be difficult. The bias voltages on OG, RD, VSS and VDD should be well filtered with capacitors placed as close to the pins as possible. Noise on the video outputs will be most strongly affected by noise on VSS, VDD, GND, and VSUB. If the electronic shutter is not used then a filtering capacitor should also be placed on VSUB. If the electronic shutter is used, the VSUB voltage should be kept as clean and noise free as possible. The voltage on VSS may be set by using the 0.6 to 0.7 volt drop across a diode. Place the diode from VSS to GND. To disable one of the output amplifiers connect VDD to GND, do not let VDD float. The ESD voltage must reach its operating point before any of the horizontal clocks reach their low level. If any pin on the sensor comes within 1 V of the ESD pin the electrostatic damage protection circuit will become active and will not turn off until all voltages are powered down. Operating the sensor with the ESD protection circuit active may damage the sensor. www.truesenseimaging.com Revision 1.1 PS-0026 Pg 19 KAI-2093 Image Sensor Timing REQUIREMENTS AND CHARACTERISTICS Symbol Description Min Nom Max Unit THD HCCD Delay 1.3 1.5 10.0 μs TVCCD VCCD Transfer time 1.3 1.5 TV3rd Photodiode Transfer time 8.0 12.0 15.0 μs T3P VCCD Pedestal time 20.0 25.0 50.0 μs T3D VCCD Delay 15.0 20.0 100.0 μs TR Reset Pulse time 5.0 10.0 TS Shutter Pulse time 3.0 5.0 10.0 μs TSD Shutter Pulse delay 1.0 1.6 10.0 μs TH HCCD Clock Period 25.0 50.0 200.0 ns TVR VCCD rise/fall time 0.0 0.1 1.0 μs TVE Vertical Clock Edge Alignment 0.0 100.0 ns www.truesenseimaging.com Notes μs ns Revision 1.1 PS-0026 Pg 20 KAI-2093 Image Sensor FRAME TIMING Frame Timing – Progressive Scan Progressive Frame Timing f V1 TL TV3rd f V2 = f V2E = f V2O T3P Line 1091 TL T3D Line 1092 Line 1 f H1 f H2 Frame Timing for Vertical Binning by 2 f V1 TL TV3rd f V2 = f V2E = f V2O T3P Line 545 TL T3D Line 546 Line 1 f H1 f H2 Figure 9: Progressive Frame Timing www.truesenseimaging.com Revision 1.1 PS-0026 Pg 21 KAI-2093 Image Sensor VERTICAL CLOCK EDGE ALIGNMENT KAI-2093 Vertical Clock Timing - Edge Position V1 See Detail B V2 Detail A V1 This falling edge of V2 should be the same as the rising edge of V1 or slightly after it. V2 This rising edge of V2 should be the same as the falling edge of V1 or slightly before it. tve tve Detail B V1 This rising edge of V2 should be the same as the falling edge of V1 or slightly before it. V2 tve Figure 10: Ideal Vertical Clock Edge Position www.truesenseimaging.com Revision 1.1 PS-0026 Pg 22 KAI-2093 Image Sensor FRAME TIMING – FIELD INTEGRATION MODE Interlaced Frame Timing - Field Integration Mode - Even Field Readout fV1 TL fV2 = fV2E = fV2O T3P T3D TV3rd TL Interlaced Frame Timing - Field Integration Mode - Odd Field Readout fV1 TL fV2 = fV2E = fV2O T3P TV3rd T3D TL Figure 11: Interlaced Frame Timing - Field Integration Mode www.truesenseimaging.com Revision 1.1 PS-0026 Pg 23 KAI-2093 Image Sensor FRAME TIMING – FRAME INTEGRATION MODE Interlaced Frame Timing - Frame Integration Mode - Even Field Readout fV1 TL fV2E T3P T3D fV2O TV3rd TL Interlaced Frame Timing - Frame Integration Mode - Odd Field Readout fV1 TL fV2E T3P T3D fV2O TV3rd TL Figure 12: Interlaced Frame Timing - Frame Integration Mode www.truesenseimaging.com Revision 1.1 PS-0026 Pg 24 KAI-2093 Image Sensor LINE TIMING Progressive Line Timing TL f V1 TVCCD f V2 THD f H1 f H2 1986 1987 1988 31 32 33 34 35 36 31 32 33 34 35 36 994 995 996 1 2 3 4 5 6 Dual Output Pixel Count 1957 1958 1959 1960 1961 1962 Single Output Pixel Count 1 2 3 4 5 6 fR Interlaced Line Timing and Line Timing for Vertical Binning by Two TL f V1 f V2E, f V2O 3 x TVCCD THD f H1 f H2 1986 1987 1988 31 32 33 34 35 31 32 33 34 35 994 995 996 1 2 3 4 5 6 Dual Output Pixel Count 1958 1959 1960 1961 1962 Single Output Pixel Count 1 2 3 4 5 6 fR Figure 13: Line Timing www.truesenseimaging.com Revision 1.1 PS-0026 Pg 25 KAI-2093 Image Sensor ELECTRONIC SHUTTER TIMING Electronic Shutter Line Timing fV1 fV2 TVCCD THD Vshutter TS VSUB TSD fH1 fH2 fR Integration Time Definition fV2 Integration Time Vshutter VSUB Figure 14: Electronic Shutter Timing Diagram www.truesenseimaging.com Revision 1.1 PS-0026 Pg 26 KAI-2093 Image Sensor Storage and Handling ENVIRONMENTAL EXPOSURE STORAGE CONDITIONS Description Temperature Humidity Notes: 1. 2. Symbol Minimum Maximum Units Notes T -55 80 °C 1 RH 5 90 % 2 Long-term exposure toward the maximum temperature will accelerate color filter degradation. T=25 °C. Excessive humidity will degrade MTTF. ESD 1. This device contains limited protection against Electrostatic Discharge (ESD). ESD events may cause irreparable damage to a CCD image sensor either immediately or well after the ESD event occurred. Failure to protect the sensor from electrostatic discharge may affect device performance and reliability. 2. Devices should be handled in accordance with strict ESD procedures for Class 0 (<250V per JESD22 Human Body Model test), or Class A (<200V JESD22 Machine Model test) devices. Devices are shipped in static-safe containers and should only be handled at static-safe workstations. 3. See Application Note Image Sensor Handling Best Practices for proper handling and grounding procedures. This application note also contains workplace recommendations to minimize electrostatic discharge. 4. Store devices in containers made of electroconductive materials. COVER GLASS CARE AND CLEANLINESS 1. The cover glass is highly susceptible to particles and other contamination. Perform all assembly operations in a clean environment. 2. Touching the cover glass must be avoided. 3. Improper cleaning of the cover glass may damage these devices. Refer to Application Note Image Sensor Handling Best Practices. www.truesenseimaging.com 1. Extremely bright light can potentially harm CCD image sensors. Do not expose to strong sunlight for long periods of time, as the color filters and/or microlenses may become discolored. In addition, long time exposures to a static high contrast scene should be avoided. Localized changes in response may occur from color filter/microlens aging. For Interline devices, refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible lighting Conditions. 2. Exposure to temperatures exceeding maximum specified levels should be avoided for storage and operation, as device performance and reliability may be affected. 3. Avoid sudden temperature changes. 4. Exposure to excessive humidity may affect device characteristics and may alter device performance and reliability, and therefore should be avoided. 5. Avoid storage of the product in the presence of dust or corrosive agents or gases, as deterioration of lead solderability may occur. It is advised that the solderability of the device leads be assessed after an extended period of storage, over one year. SOLDERING RECOMMENDATIONS 1. The soldering iron tip temperature is not to exceed 370 °C. Higher temperatures may alter device performance and reliability. 2. Flow soldering method is not recommended. Solder dipping can cause damage to the glass and harm the imaging capability of the device. Recommended method is by partial heating using a grounded 30 W soldering iron. Heat each pin for less than 2 seconds duration. Revision 1.1 PS-0026 Pg 27 KAI-2093 Image Sensor Mechanical Drawings COMPLETED ASSEMBLY Figure 15: Completed Assembly (1 of 2) Notes: 1. 2. See Ordering Information for marking code. Cover glass is manually placed and visually aligned over die – location accuracy is not guaranteed. www.truesenseimaging.com Revision 1.1 PS-0026 Pg 28 KAI-2093 Image Sensor Figure 16: Completed Assembly (2 of 2) Notes: 1. 2. Center of image is nominally coincident with the center of the package. Die is aligned within 2 degree of any package cavity edge. www.truesenseimaging.com Revision 1.1 PS-0026 Pg 29 KAI-2093 Image Sensor COVER GLASS Clear Cover Glass Figure 17: Clear Cover Glass Drawing Notes: 1. 2. Cover Glass Material: Dust/Scratch: www.truesenseimaging.com Schott D263T eco or equivalent. 5 microns maximum. Revision 1.1 PS-0026 Pg 30 KAI-2093 Image Sensor QUARTZ COVER GLASS WITH AR COATINGS Figure 18: Quartz Cover Glass with AR Coating Drawing Notes: 1. 2. 3. Cover Glass Material: SK1300 or equivalent. Dust/Scratch: 10 microns maximum. MAR Coat Each Side: 340nm - 360nm: Reflectance ≤ 0.5%. 520nm - 550nm: Reflectance ≤ 4%. www.truesenseimaging.com Revision 1.1 PS-0026 Pg 31 KAI-2093 Image Sensor GLASS TRANSMISSION 100 90 80 Transmission (%) 70 60 50 40 30 20 10 0 200 300 400 500 600 700 800 900 Wavelength (nm) Clear Glass Quartz Glass w ith AR Coatings Figure 19: Cover Glass Transmission www.truesenseimaging.com Revision 1.1 PS-0026 Pg 32 KAI-2093 Image Sensor Quality Assurance and Reliability QUALITY AND RELIABILITY All image sensors conform to the specifications stated in this document. This is accomplished through a combination of statistical process control and visual inspection and electrical testing at key points of the manufacturing process, using industry standard methods. Information concerning the quality assurance and reliability testing procedures and results are available from ON Semiconductor upon request. For further information refer to Application Note Quality and Reliability. REPLACEMENT All devices are warranted against failure in accordance with the Terms of Sale. Devices that fail due to mechanical and electrical damage caused by the customer will not be replaced. LIABILITY OF THE SUPPLIER A reject is defined as an image sensor that does not meet all of the specifications in this document upon receipt by the customer. Product liability is limited to the cost of the defective item, as defined in the Terms of Sale. LIABILITY OF THE CUSTOMER Damage from mishandling (scratches or breakage), electrostatic discharge (ESD), or other electrical misuse of the device beyond the stated operating or storage limits, which occurred after receipt of the sensor by the customer, shall be the responsibility of the customer. TEST DATA RETENTION Image sensors shall have an identifying number traceable to a test data file. Test data shall be kept for a period of 2 years after date of delivery. MECHANICAL The device assembly drawing is provided as a reference. ON Semiconductor reserves the right to change any information contained herein without notice. All information furnished by ON Semiconductor is believed to be accurate. Life Support Applications Policy ON Semiconductor image sensors are not authorized for and should not be used within Life Support Systems without the specific written consent of ON Semiconductor. www.truesenseimaging.com Revision 1.1 PS-0026 Pg 33 KAI-2093 Image Sensor Revision Changes MTD/PS-0307 Revision Number Description of Changes 0.0 Initial Formal Version. 1.0 2.0 Section 4.2, new color quantum efficiency 3.0 3.1 Changed cover glass material to D263T eco or equivalent Updated Storage and Handling page references to Application Note Image Sensor Handling and Best Practices 4.0 Added the note “Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions” to the following sections o Absolute Maximum Ratings o DC Bias Operating Conditions o AC Operating Conditions o Storage and Handling Page 8 section 3.5 AC Timing Conditions table: Added Tve: Vertical Clock Edge Alignment Page 10: Added Figure 5 Vertical Clock Timing – Edge Position Page 15: Updated Figure 9 Frame Rate to show dual mode out to 40 MHz. Previous plot cut off dual mode at 35 MHz Page 22: Added that a cluster defect will be no wider that two defective pixels. Page 22: Added a note that there will be at least two good pixels between any two major defects (pixels or clusters) Removed appendix 1 Added revision changes Updated format Updated defect definitions section Added Storage and Handling section Updated completed assembly drawing Added cover glass drawings Added cover glass transmission curves PS-0026 Revision Number Description of Changes 1.0 Initial release with new document number, updated branding and document template Updated Storage and Handling and Quality Assurance and Reliability sections 1.1 Updated branding www.truesenseimaging.com © 2014, Semiconductor Components Industries, LLC. Revision 1.1 PS-0026 Pg 34