MC74VHCT04A Hex Inverter The MC74VHCT04A is an advanced high speed CMOS inverter fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7 V, allowing the interface of 5 V systems to 3 V systems. The VHCT inputs are compatible with TTL levels. This device can be used as a level converter for interfacing 3.3 V to 5.0 V, because it has full 5 V CMOS level output swings. The VHCT04A input structures provide protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. The output structures also provide protection when VCC = 0 V. These input and output structures help prevent device destruction caused by supply voltage − input/output voltage mismatch, battery backup, hot insertion, etc. MARKING DIAGRAMS 14 SOIC−14 D SUFFIX CASE 751A 1 High Speed: tPD = 4.7 ns (Typ) at VCC = 5 V Low Power Dissipation: ICC = 2 μA (Max) at TA = 25°C TTL−Compatible Inputs: VIL = 0.8 V; VIH = 2.0 V Power Down Protection Provided on Inputs and Outputs Balanced Propagation Delays Designed for 4.5 V to 5.5 V Operating Range Low Noise: VOLP = 1.0 V (Max) Pin and Function Compatible with Other Standard Logic Families Latchup Performance Exceeds 300 mA ESD Performance: HBM > 2000 V; Machine Model > 200 V Chip Complexity: 48 FETs or 12 Equivalent Gates These Devices are Pb−Free and are RoHS Compliant VHCT04AG AWLYWW 1 14 VHCT 04A ALYWG G TSSOP−14 DT SUFFIX CASE 948G 1 Features • • • • • • • • • • • • http://onsemi.com 1 A = Assembly Location WL, L = Wafer Lot Y = Year WW, W = Work Week G or G = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION Device Package Shipping† MC74VHCT04ADR2G SOIC−14 (Pb−Free) 2500 / Tape & Reel MC74VHCT04ADTR2G TSSOP14 (Pb−Free) 2500 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. © Semiconductor Components Industries, LLC, 2014 September, 2014 − Rev. 5 1 Publication Order Number: MC74VHCT04A/D MC74VHCT04A A1 A2 A3 1 2 3 4 5 6 9 8 11 10 13 12 Y1 Y2 VCC A6 Y6 A5 Y5 A4 Y4 14 13 12 11 10 9 8 Y3 Y=A A4 A5 A6 Y4 Y5 Y6 1 2 3 4 5 6 7 A1 Y1 A2 Y2 A3 Y3 GND Figure 2. Pinout: 14−Lead Packages (Top View) Figure 1. Logic Diagram FUNCTION TABLE Inputs Outputs A Y L H H L http://onsemi.com 2 MC74VHCT04A ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MAXIMUM RATINGS Symbol Value Unit VCC DC Supply Voltage Parameter – 0.5 to + 7.0 V Vin DC Input Voltage – 0.5 to + 7.0 V Vout DC Output Voltage – 0.5 to + 7.0 – 0.5 to VCC + 0.5 V VCC = 0 High or Low State IIK Input Diode Current − 20 mA IOK Output Diode Current (VOUT < GND; VOUT > VCC) ± 20 mA Iout DC Output Current, per Pin ± 25 mA ICC DC Supply Current, VCC and GND Pins ± 50 mA PD Power Dissipation in Still Air, 500 450 mW Tstg Storage Temperature – 65 to + 150 _C SOIC Packages† TSSOP Package† This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high−impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND v (Vin or Vout) v VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V CC ). Unused outputs must be left open. Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. †Derating — SOIC Packages: – 7 mW/_C from 65_ to 125_C TSSOP Package: − 6.1 mW/_C from 65_ to 125_C ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ RECOMMENDED OPERATING CONDITIONS Symbol Parameter VCC DC Supply Voltage Vin DC Input Voltage Vout DC Output Voltage VCC = 0 High or Low State TA Operating Temperature tr, tf Input Rise and Fall Time VCC =5.0V ±0.5V Min Max Unit 4.5 5.5 V 0 5.5 V 0 0 5.5 VCC V − 40 + 85 _C 0 20 ns/V Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. DC ELECTRICAL CHARACTERISTICS TA = 25°C Min Symbol Parameter VIH Minimum High−Level Input Voltage 4.5 to 5.5 VIL Maximum Low−Level Input Voltage 4.5 to 5.5 VOH Minimum High−Level Output Voltage Vin = VIH or VIL IOH = − 50μA 4.5 4.4 IOH = − 8mA 4.5 3.94 Maximum Low−Level Output Voltage Vin = VIH or VIL IOL = 50μA 4.5 IOL = 8mA VOL Test Conditions VCC V Typ TA = − 40 to 85°C Max 2.0 Min Max 2.0 0.8 4.5 Unit V 0.8 4.4 V V 3.80 0.0 0.1 0.1 4.5 0.36 0.44 V Iin Maximum Input Leakage Current Vin = 5.5 V or GND 0 to 5.5 ± 0.1 ± 1.0 μA ICC Maximum Quiescent Supply Current Vin = VCC or GND 5.5 2.0 20.0 μA ICCT Quiescent Supply Current Per Input: VIN = 3.4V Other Input: VCC or GND 5.5 1.35 1.50 mA IOPD Output Leakage Current VOUT = 5.5V 0 0.5 5.0 μA Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. http://onsemi.com 3 MC74VHCT04A ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0ns) TA = 25°C Symbol Parameter tPLH, tPHL Maximum Propagation Delay, A to Y Cin Test Conditions VCC = 5.0 ± 0.5V CL = 15pF CL = 50pF Maximum Input Capacitance Min TA = − 40 to 85°C Typ Max Min Max Unit 4.7 5.5 6.7 7.7 1.0 1.0 7.5 8.5 ns 4 10 10 pF Typical @ 25°C, VCC = 5.0V 11 CPD Power Dissipation Capacitance (Note 1) pF 1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC/6 (per buffer). CPD is used to determine the no−load dynamic power consumption; PD = CPD VCC2 fin + ICC VCC. NOISE CHARACTERISTICS (Input tr = tf = 3.0ns, CL = 50pF, VCC = 5.0V) TA = 25°C Symbol Typ Characteristic Max Unit VOLP Quiet Output Maximum Dynamic VOL 0.8 1.0 V VOLV Quiet Output Minimum Dynamic VOL −0.8 −1.0 V VIHD Minimum High Level Dynamic Input Voltage 2.0 V VILD Maximum Low Level Dynamic Input Voltage 0.8 V TEST POINT A 3V OUTPUT 1.5V DEVICE UNDER TEST GND tPLH tPHL CL* VOH Y 1.5V VOL *Includes all probe and jig capacitance Figure 3. Switching Waveforms Figure 4. Test Circuit http://onsemi.com 4 MC74VHCT04A PACKAGE DIMENSIONS SOIC−14 CASE 751A−03 ISSUE K D A B 14 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 8 A3 E H L 1 0.25 M DETAIL A 7 B 13X M b 0.25 M C A S B S e DETAIL A h A X 45 _ M A1 C SEATING PLANE DIM A A1 A3 b D E e H h L M MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.19 0.25 0.35 0.49 8.55 8.75 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ SOLDERING FOOTPRINT* 6.50 14X 1.18 1 1.27 PITCH 14X 0.58 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 5 INCHES MIN MAX 0.054 0.068 0.004 0.010 0.008 0.010 0.014 0.019 0.337 0.344 0.150 0.157 0.050 BSC 0.228 0.244 0.010 0.019 0.016 0.049 0_ 7_ MC74VHCT04A PACKAGE DIMENSIONS TSSOP−14 DT SUFFIX CASE 948G ISSUE B 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. S S N 2X 14 L/2 0.25 (0.010) 8 M B −U− L PIN 1 IDENT. F 7 1 0.15 (0.006) T U N S DETAIL E K A −V− ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ K1 J J1 SECTION N−N −W− C 0.10 (0.004) −T− SEATING PLANE D G H DETAIL E DIM A B C D F G H J J1 K K1 L M MILLIMETERS INCHES MIN MAX MIN MAX 4.90 5.10 0.193 0.200 4.30 4.50 0.169 0.177 −−− 1.20 −−− 0.047 0.05 0.15 0.002 0.006 0.50 0.75 0.020 0.030 0.65 BSC 0.026 BSC 0.50 0.60 0.020 0.024 0.09 0.20 0.004 0.008 0.09 0.16 0.004 0.006 0.19 0.30 0.007 0.012 0.19 0.25 0.007 0.010 6.40 BSC 0.252 BSC 0_ 8_ 0_ 8_ SOLDERING FOOTPRINT 7.06 1 0.65 PITCH 14X 0.36 14X 1.26 DIMENSIONS: MILLIMETERS ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 6 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC74VHCT04A/D