MC74VHCT240A Octal Bus Buffer/Line Driver Inverting with 3−State Outputs The MC74VHCT240A is an advanced high speed CMOS octal bus buffer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. The MC74VHCT240A is an inverting 3−state buffer, and has two active−low output enables. This device is designed to be used with 3−state memory address drivers, etc. The VHCT inputs are compatible with TTL levels. This device can be used as a level converter for interfacing 3.3 V to 5.0 V, because it has full 5.0 V CMOS level output swings. The VHCT240A input and output (when disabled) structures provide protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. These input and output structures help prevent device destruction caused by supply voltage−input/output voltage mismatch, battery backup, hot insertion, etc. http://onsemi.com MARKING DIAGRAMS 20 1 SOIC−20WB SUFFIX DW CASE 751D VHCT240A AWLYYWWG 1 20 VHCT 240A ALYWG G Features • • • • • • • • • • • • High Speed: tPD = 5.6 ns (Typ) at VCC = 5.0 V Low Power Dissipation: ICC = 4 mA (Max) at TA = 25°C TTL−Compatible Inputs: VIL = 0.8 V; VIH = 2.0 V Power Down Protection Provided on Inputs and Outputs Balanced Propagation Delays Designed for 4.5 V to 5.5 V Operating Range Low Noise: VOLP = 1.1 V (Max) Pin and Function Compatible with Other Standard Logic Families Latchup Performance Exceeds 300 mA ESD Performance: Human Body Model > 2000 V; Machine Model > 200 V Chip Complexity: 110 FETs or 27.5 Equivalent Gates These Devices are Pb−Free and are RoHS Compliant © Semiconductor Components Industries, LLC, 2014 October, 2014 − Rev. 7 1 1 TSSOP−20 SUFFIX DT CASE 948E 1 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or G = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. Publication Order Number: MC74VHCT240A/D MC74VHCT240A A1 A2 A3 A4 DATA INPUTS B1 B2 B3 B4 2 18 4 16 6 14 8 12 11 9 13 7 15 5 17 3 YA1 OEA 1 20 VCC A1 2 19 OEB YA2 YB4 3 18 YA1 A2 4 17 B4 YB3 5 16 YA2 YA3 A3 6 15 B3 YB2 7 14 YA3 A4 8 13 B2 YB1 9 12 YA4 GND 10 11 B1 YA4 YB1 INVERTING OUTPUTS YB2 YB3 Figure 2. Pin Assignment YB4 FUNCTION TABLE INPUTS OUTPUT ENABLES 1 OEA 19 OEB OUTPUTS OEA, OEB A, B YA, YB L L H L H X H L Z Figure 1. Logic Diagram ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MAXIMUM RATINGS Symbol Parameter Value Unit VCC DC Supply Voltage – 0.5 to + 7.0 V Vin DC Input Voltage – 0.5 to + 7.0 V Vout DC Output Voltage – 0.5 to + 7.0 – 0.5 to VCC + 0.5 V IIK Input Diode Current − 20 mA IOK Output Diode Current (VOUT < GND; VOUT > VCC) ± 20 mA Iout DC Output Current, per Pin ± 25 mA ICC DC Supply Current, VCC and GND Pins ± 75 mA PD Power Dissipation in Still Air, 500 450 mW Tstg Storage Temperature – 65 to + 150 _C Output in 3−State High or Low State SOIC Package† TSSOP Package† This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high−impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND v (Vin or Vout) v VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V CC ). Unused outputs must be left open. Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. †Derating − SOIC Package: – 7 mW/_C from 65_ to 125_C TSSOP Package: − 6.1 mW/_C from 65_ to 125_C ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ RECOMMENDED OPERATING CONDITIONS Symbol Parameter VCC DC Supply Voltage Vin DC Input Voltage Vout DC Output Voltage TA Operating Temperature tr, tf Input Rise and Fall Time Output in 3−State High or Low State VCC =5.0V ±0.5V Min Max Unit 4.5 5.5 V 0 5.5 V 0 0 5.5 VCC V − 40 + 85 _C 0 20 ns/V Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. http://onsemi.com 2 MC74VHCT240A ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ DC ELECTRICAL CHARACTERISTICS Symbol Parameter Test Conditions TA = 25°C VCC V Min 2.0 VIH Minimum High−Level Input Voltage 4.5 to 5.5 VIL Maximum Low−Level Input Voltage 4.5 to 5.5 VOH Minimum High−Level Output Voltage Vin = VIH or VIL IOH = − 50mA 4.5 4.4 IOH = − 8mA 4.5 3.94 Maximum Low−Level Output Voltage Vin = VIH or VIL IOL = 50mA 4.5 IOL = 8mA Iin Maximum Input Leakage Current IOZ VOL Typ TA = − 40 to 85°C Max Min Max 2.0 0.8 V 0.8 4.5 Unit 4.4 V V 3.80 0.0 0.1 0.1 V 4.5 0.36 0.44 Vin = 5.5 V or GND 0 to 5.5 ± 0.1 ± 1.0 mA Maximum 3−State Leakage Current Vin = VIL or VIH Vout = VCC or GND 5.5 ± 0.25 ± 2.5 mA ICC Maximum Quiescent Supply Current Vin = VCC or GND 5.5 4.0 40.0 mA ICCT Quiescent Supply Current Per Input: VIN = 3.4V Other Input: VCC or GND 5.5 1.35 1.50 mA IOPD Output Leakage Current VOUT = 5.5V 0 0.5 5.0 mA Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0ns) TA = 25°C Typ Max Min Max Unit tPLH, tPHL Maximum Propagation Delay A to YA or B to YB VCC = 5.0 ± 0.5V CL = 15pF CL = 50pF 5.6 6.1 7.8 8.8 1.0 1.0 9.0 10.0 ns tPZL, tPZH Output Enable Time OEA to YA or OEB to YB VCC = 5.0 ± 0.5V RL = 1kW CL = 15pF CL = 50pF 7.7 8.2 10.4 11.4 1.0 1.0 12.0 13.0 ns tPLZ, tPHZ Output Disable Time OEA to YA or OEB to YB VCC = 5.0 ± 0.5V RL = 1kW CL = 50pF 8.8 11.4 1.0 13.0 ns Output to Output Skew VCC = 5.0 ± 0.5V (Note 1) CL = 50pF 1.0 1.0 ns 10 10 pF Symbol tOSLH, tOSHL Parameter Test Conditions Min TA = − 40 to 85°C Cin Maximum Input Capacitance 4 Cout Maximum Three−State Output Capacitance (Output in High−Impedance State) 9 pF Typical @ 25°C, VCC = 5.0V CPD 19 Power Dissipation Capacitance (Note 2) pF 1. Parameter guaranteed by design. tOSLH = |tPLHm − tPLHn|, tOSHL = |tPHLm − tPHLn|. 2. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC / 8 (per bit). CPD is used to determine the no−load dynamic power consumption; PD = CPD VCC2 fin + ICC VCC. NOISE CHARACTERISTICS (Input tr = tf = 3.0ns, CL = 50pF, VCC = 5.0V) TA = 25°C Parameter Symbol Typ Max Unit VOLP Quiet Output Maximum Dynamic VOL 0.9 1.1 V VOLV Quiet Output Minimum Dynamic VOL − 0.9 − 1.1 V VIHD Minimum High Level Dynamic Input Voltage 2.0 V VILD Maximum Low Level Dynamic Input Voltage 0.8 V http://onsemi.com 3 MC74VHCT240A 3V 1.5V OEA or OEB 3V A or B tPZL 1.5V GND tPLZ HIGH IMPEDANCE GND tPHL tPLH YA or YB YA or YB 1.5V VOH 1.5V tPZH VOL YA or YB Figure 3. Switching Waveform VOH -0.3V 1.5V HIGH IMPEDANCE Figure 4. Switching Waveform TEST POINT TEST POINT OUTPUT DEVICE UNDER TEST VOL +0.3V tPHZ OUTPUT DEVICE UNDER TEST CL* *Includes all probe and jig capacitance 1 kW CL* CONNECT TO VCC WHEN TESTING tPLZ AND tPZL. CONNECT TO GND WHEN TESTING tPHZ AND tPZH. *Includes all probe and jig capacitance Figure 5. Test Circuit Figure 6. Test Circuit INPUT Figure 7. Input Equivalent Circuit ORDERING INFORMATION Package Shipping† MC74VHCT240ADWRG SOIC−20WB (Pb−Free) 1000 / Tape & Reel MC74VHCT240ADTRG TSSOP−20 (Pb−Free) 2500 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 4 MC74VHCT240A PACKAGE DIMENSIONS TSSOP−20 CASE 948E−02 ISSUE C 20X 0.15 (0.006) T U 2X K REF 0.10 (0.004) S L/2 20 M T U S V K K1 ÍÍÍÍ ÍÍÍÍ ÍÍÍÍ S J J1 11 B L SECTION N−N −U− PIN 1 IDENT 0.25 (0.010) N 1 10 M 0.15 (0.006) T U S A −V− N F DETAIL E C G D H DETAIL E 0.100 (0.004) −T− SEATING PLANE NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. MILLIMETERS INCHES DIM MIN MAX MIN MAX A 6.40 6.60 0.252 0.260 B 4.30 4.50 0.169 0.177 ----C 1.20 0.047 D 0.05 0.15 0.002 0.006 F 0.50 0.75 0.020 0.030 G 0.65 BSC 0.026 BSC −W− H 0.27 0.37 0.011 0.015 J 0.09 0.20 0.004 0.008 J1 0.09 0.16 0.004 0.006 K 0.19 0.30 0.007 0.012 K1 0.19 0.25 0.007 0.010 L 6.40 BSC 0.252 BSC M 0_ 8_ 0_ 8_ SOLDERING FOOTPRINT 7.06 1 0.65 PITCH 16X 0.36 16X 1.26 DIMENSIONS: MILLIMETERS http://onsemi.com 5 MC74VHCT240A PACKAGE DIMENSIONS SOIC−20 WB DW SUFFIX CASE 751D−05 ISSUE G 20 11 X 45 _ h H M E 0.25 10X NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. q A B M D 1 10 20X B B 0.25 M T A S B S L A 18X e A1 DIM A A1 B C D E e H h L q MILLIMETERS MIN MAX 2.35 2.65 0.10 0.25 0.35 0.49 0.23 0.32 12.65 12.95 7.40 7.60 1.27 BSC 10.05 10.55 0.25 0.75 0.50 0.90 0_ 7_ SEATING PLANE C T ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 6 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC74VHCT240A/D