74VCX16244 Low−Voltage 1.8V/2.5V/3.3V 16−Bit Buffer With 3.6 V−Tolerant Inputs and Outputs (3−State, Non−Inverting) The 74VCX16244 is an advanced performance, non−inverting 16−bit buffer. It is designed for very high−speed, very low−power operation in 1.8 V, 2.5 V or 3.3 V systems. When operating at 2.5 V (or 1.8 V) the part is designed to tolerate voltages it may encounter on either inputs or outputs when interfacing to 3.3 V busses. It is guaranteed to be overvoltage tolerant to 3.6 V. The 74VCX16244 is nibble controlled with each nibble functioning identically, but independently. The control pins may be tied together to obtain full 16−bit operation. The 3−state outputs are controlled by an Output Enable (OEn) input for each nibble. When OEn is LOW, the outputs are on. When OEn is HIGH, the outputs are in the high impedance state. http://onsemi.com MARKING DIAGRAM 48 48 TSSOP−48 DT SUFFIX CASE 1201 A WL YY WW Features • Designed for Low Voltage Operation: VCC = 1.65 V − 3.6 V • 3.6 V Tolerant Inputs and Outputs • High Speed Operation: 2.5 ns max for 3.0 V to 3.6 V • • • • • • • 3.0 ns max for 2.3 V to 2.7 V 6.0 ns max for 1.65 V to 1.95 V Static Drive: ±24 mA Drive at 3.0 V ±18 mA Drive at 2.3 V ±6 mA Drive at 1.65 V Supports Live Insertion and Withdrawal IOFF Specification Guarantees High Impedance When VCC = 0 V Near Zero Static Supply Current in All Three Logic States (20 mA) Substantially Reduces System Power Requirements Latchup Performance Exceeds ±250 mA @ 125°C ESD Performance: Human Body Model >2000 V; Machine Model >200 V All Devices in Package TSSOP are Inherently Pb−Free* VCX16244 AWLYYWW 1 1 = Assembly Location = Wafer Lot = Year = Work Week ORDERING INFORMATION Package Shipping † 74VCX16244DT TSSOP (Pb−Free) 39 / Rail 74VCX16244DTR TSSOP (Pb−Free) 2500 / Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2006 June, 2006 − Rev. 5 1 Publication Order Number: 74VCX16244/D 74VCX16244 1 OE1 OE1 1 48 OE2 O0 2 47 D0 O1 3 46 D1 GND 4 45 GND O2 5 44 D2 O3 6 43 D3 VCC 7 42 VCC O4 8 41 D4 O5 9 40 D5 GND 10 48 OE2 25 OE3 24 OE4 D0:3 O0:3 D8:11 O8:11 D4:7 O4:7 D12:15 O12:15 One of Four Figure 2. Logic Diagram 39 GND O6 11 38 D6 O7 12 37 D7 O8 13 36 D8 O9 14 35 D9 GND 15 34 GND O10 16 33 D10 O11 17 32 D11 VCC 18 31 VCC O12 19 30 D12 O13 20 29 D13 GND 21 28 GND O14 22 27 D14 O15 23 26 D15 OE4 24 25 OE3 1 OE1 48 OE2 25 OE3 24 OE4 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 Figure 1. 48−Lead Pinout (Top View) EN1 EN2 EN3 EN4 47 1 46 1∇ 2 3 5 44 43 41 1 2∇ 6 8 40 9 38 11 37 36 1 3∇ 12 13 14 35 16 33 32 30 1 4∇ 17 19 29 20 27 22 26 23 O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 Figure 3. IEC Logic Diagram Table 1. PIN NAMES Pins Function OEn D0−D15 O0−O15 Output Enable Inputs Inputs Outputs TRUTH TABLE OE1 D0:3 O0:3 OE2 D4:7 O4:7 OE3 D8:11 O8:11 OE4 D12:15 O12:15 L L L L L L L L L L L L L H H L H H L H H L H H H X Z H X Z H X Z H X Z H = High Voltage Level; L = Low Voltage Level; Z = High Impedance State; X = High or Low Voltage Level and Transitions Are Acceptable, for ICC reasons, DO NOT FLOAT Inputs http://onsemi.com 2 74VCX16244 ABSOLUTE MAXIMUM RATINGS Symbol Parameter VCC DC Supply Voltage VI VO Value Condition Unit −0.5 to +4.6 V DC Input Voltage −0.5 ≤ VI ≤ +4.6 V DC Output Voltage −0.5 ≤ VO ≤ +4.6 Output in 3−State V −0.5 ≤ VO ≤ VCC + 0.5 Note 1; Outputs Active V IIK DC Input Diode Current −50 VI < GND mA IOK DC Output Diode Current −50 VO < GND mA +50 VO > VCC mA IO DC Output Source/Sink Current ±50 mA ICC DC Supply Current Per Supply Pin ±100 mA IGND DC Ground Current Per Ground Pin ±100 mA TSTG Storage Temperature Range −65 to +150 °C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. IO absolute maximum rating must be observed. RECOMMENDED OPERATING CONDITIONS Symbol Parameter Operating Data Retention Only Min Typ Max Unit 1.65 1.2 3.3 3.3 3.6 3.6 V −0.3 3.6 V 0 0 VCC 3.6 V VCC Supply Voltage VI Input Voltage VO Output Voltage IOH HIGH Level Output Current, VCC = 3.0 V − 3.6 V −24 mA IOL LOW Level Output Current, VCC = 3.0 V − 3.6 V 24 mA IOH HIGH Level Output Current, VCC = 2.3 V − 2.7 V −18 mA IOL LOW Level Output Current, VCC = 2.3 V − 2.7 V 18 mA IOH HIGH Level Output Current, VCC = 1.65 V − 1.95 V −6 mA IOL LOW Level Output Current, VCC = 1.65 V − 1.95 V TA Operating Free−Air Temperature Dt/DV Input Transition Rise or Fall Rate, VIN from 0.8 V to 2.0 V, VCC = 3.0 V (Active State) (3−State) http://onsemi.com 3 6 mA −40 +85 °C 0 10 ns/V 74VCX16244 DC ELECTRICAL CHARACTERISTICS TA = −40°C to +85°C Symbol VIH VIL VOH VOL Condition Min 1.65 V ≤ VCC < 2.3 V 0.65 x VCC 2.3 V ≤ VCC ≤ 2.7 V 1.6 2.7 V < VCC ≤ 3.6 V 2.0 Characteristic HIGH Level Input Voltage (Note 2) LOW Level Input Voltage (Note 2) HIGH Level Output Voltage LOW Level Output Voltage Max V 1.65 V ≤ VCC < 2.3 V 0.35 x VCC 2.3 V ≤ VCC ≤ 2.7 V 0.7 2.7 V < VCC ≤ 3.6 V 0.8 1.65 V ≤ VCC ≤ 3.6 V; IOH = −100 mA VCC − 0.2 VCC = 1.65 V; IOH = −6 mA 1.25 VCC = 2.3 V; IOH = −6 mA 2.0 VCC = 2.3 V; IOH = −12 mA 1.8 VCC = 2.3 V; IOH = −18 mA 1.7 VCC = 2.7 V; IOH = −12 mA 2.2 VCC = 3.0 V; IOH = −18 mA 2.4 VCC = 3.0 V; IOH = −24 mA 2.2 Unit V V 1.65 V ≤ VCC ≤ 3.6 V; IOL = 100 mA 0.2 VCC = 1.65 V; IOL = 6 mA 0.3 VCC = 2.3 V; IOL = 12 mA 0.4 VCC = 2.3 V; IOL = 18 mA 0.6 VCC = 2.7 V; IOL = 12 mA 0.4 VCC = 3.0 V; IOL = 18 mA 0.4 VCC = 3.0 V; IOL = 24 mA 0.55 V II Input Leakage Current 1.65 V ≤ VCC ≤ 3.6 V; 0 V ≤ VI ≤ 3.6 V ±5.0 mA IOZ 3−State Output Current 1.65 V ≤ VCC ≤ 3.6 V; 0 V ≤ VO ≤ 3.6 V; VI = VIH or VIL ±10 mA IOFF Power−Off Leakage Current VCC = 0 V; VI or VO = 3.6 V 10 mA ICC Quiescent Supply Current (Note 3) 1.65 V ≤ VCC ≤ 3.6 V; VI = GND or VCC 20 mA 1.65 V ≤ VCC ≤ 3.6 V; 3.6 V ≤ VI, VO ≤ 3.6 V ±20 mA DICC Increase in ICC per Input 2.7 V < VCC ≤ 3.6 V; VIH = VCC − 0.6 V 750 mA 2. These values of VI are used to test DC electrical characteristics only. 3. Outputs disabled or 3−state only. http://onsemi.com 4 74VCX16244 AC CHARACTERISTICS (Note 4; tR = tF = 2.0 ns; CL = 30 pF; RL = 500 W) TA = −40°C to +85°C VCC = 3.0 V to 3.6 V Symbol Parameter VCC = 2.3 V to 2.7 V VCC = 1.65 V to 1.95 V Waveform Min Max Min Max Min Max Unit tPLH tPHL Propagation Delay Input−to−Output 1 0.8 0.8 2.5 2.5 1.0 1.0 3.0 3.0 1.5 1.5 6.0 6.0 ns tPZH tPZL Output Enable Time to High and Low Level 2 0.8 0.8 3.5 3.5 1.0 1.0 4.1 4.1 1.5 1.5 8.2 8.2 ns tPHZ tPLZ Output Disable Time From High and Low Level 2 0.8 0.8 3.5 3.5 1.0 1.0 3.8 3.8 1.5 1.5 6.8 6.8 ns tOSHL tOSLH Output−to−Output Skew (Note 5) 0.75 0.75 ns 0.5 0.5 0.5 0.5 4. For CL = 50 pF, add approximately 300 ps to the AC maximum specification. 5. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (tOSHL) or LOW−to−HIGH (tOSLH); parameter guaranteed by design. AC CHARACTERISTICS (tR = tF = 2.0 ns; CL = 50 pF; RL = 500 W) TA = −405C to +855C VCC = 3.0 V to 3.6 V VCC = 2.7 V Waveform Min Max Max Unit tPLH tPHL Propagation Delay Input−to−Output 3 1.0 1.0 3.0 3.0 3.6 3.6 ns tPZH tPZL Output Enable Time to High and Low Level 4 1.0 1.0 4.4 4.4 5.4 5.4 ns tPHZ tPLZ Output Disable Time From High and Low Level 4 1.0 1.0 4.1 4.1 4.6 4.6 ns tOSHL tOSLH Output−to−Output Skew (Note 6) 0.5 0.5 0.5 0.5 ns Parameter Symbol Min 6. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (tOSHL) or LOW−to−HIGH (tOSLH); parameter guaranteed by design. http://onsemi.com 5 74VCX16244 DYNAMIC SWITCHING CHARACTERISTICS Symbol VOLP VOLV VOHV Condition Typical (TA = +25°C) Unit VCC = 1.8 V, CL = 30 pF, VIH = VCC, VIL = 0 V 0.25 V VCC = 2.5 V, CL = 30 pF, VIH = VCC, VIL = 0 V 0.6 VCC = 3.3 V, CL = 30 pF, VIH = VCC, VIL = 0 V 0.8 VCC = 1.8 V, CL = 30 pF, VIH = VCC, VIL = 0 V −0.25 VCC = 2.5 V, CL = 30 pF, VIH = VCC, VIL = 0 V −0.6 VCC = 3.3 V, CL = 30 pF, VIH = VCC, VIL = 0 V −0.8 VCC = 1.8 V, CL = 30 pF, VIH = VCC, VIL = 0 V 1.5 VCC = 2.5 V, CL = 30 pF, VIH = VCC, VIL = 0 V 1.9 VCC = 3.3 V, CL = 30 pF, VIH = VCC, VIL = 0 V 2.2 Characteristic Dynamic LOW Peak Voltage (Note 7) Dynamic LOW Valley Voltage (Note 7) Dynamic HIGH Valley Voltage (Note 8) V V 7. Number of outputs defined as “n”. Measured with “n−1” outputs switching from HIGH−to−LOW or LOW−to−HIGH. The remaining output is measured in the LOW state. 8. Number of outputs defined as “n”. Measured with “n−1” outputs switching from HIGH−to−LOW or LOW−to−HIGH. The remaining output is measured in the HIGH state. CAPACITIVE CHARACTERISTICS Symbol Parameter Condition Typical Unit CIN Input Capacitance Note 9 6 pF COUT Output Capacitance Note 9 7 pF CPD Power Dissipation Capacitance Note 9, 10MHz 20 pF 9. VCC = 1.8, 2.5 or 3.3 V; VI = 0 V or VCC. http://onsemi.com 6 74VCX16244 VIH Vm OEn 0V VIH Dn Vm Vm 0V tPLH On tPHL Vm VOH Vm tPHZ tPZH VOH Vy Vm On ≈ 0V tPZL VOL tPLZ ≈ VCC Vm On WAVEFORM 1 − PROPAGATION DELAYS tR = tF = 2.0 ns, 10% to 90%; f = 1 MHz; tW = 500 ns Vx VOL WAVEFORM 2 − OUTPUT ENABLE AND DISABLE TIMES tR = tF = 2.0 ns, 10% to 90%; f = 1 MHz; tW = 500 ns Figure 4. AC Waveforms Table 2. AC WAVEFORMS VCC Symbol 3.3 V ± 0.3 V 2.5 V ± 0.2 V 1.8 V ± 0.15 V VIH 2.7 V VCC VCC Vm 1.5 V VCC/2 VCC/2 Vx VOL + 0.3 V VOL + 0.15 V VOL + 0.15 V Vy VOH − 0.3 V VOH − 0.15 V VOH − 0.15 V VCC PULSE GENERATOR RL DUT RT CL 6 V or VCC × 2 OPEN GND RL Figure 5. Test Circuit Table 3. TEST CIRCUIT TEST SWITCH tPLH, tPHL Open tPZL, tPLZ 6 V at VCC = 3.3 ± 0.3 V; VCC × 2 at VCC = 2.5 ± 0.2 V; 1.8 ± 0.15 V tPZH, tPHZ GND CL = 30 pF or equivalent (Includes jig and probe capacitance) RL = 500 W or equivalent RT = ZOUT of pulse generator (typically 50 W) http://onsemi.com 7 74VCX16244 VIH Vm OEn 0V Dn Vm Vm tPLH On VIH tPHL Vm tPZH 0V VOH Vy Vm On VOH Vm tPHZ ≈ 0V tPZL VOL tPLZ Vm On WAVEFORM 3 − PROPAGATION DELAYS tR = tF = 2.0 ns, 10% to 90%; f = 1 MHz; tW = 500 ns ≈ VCC Vx VOL WAVEFORM 4 − OUTPUT ENABLE AND DISABLE TIMES tR = tF = 2.0 ns, 10% to 90%; f = 1 MHz; tW = 500 ns Figure 6. AC Waveforms Table 4. AC WAVEFORMS VCC Symbol 3.3 V ± 0.3 V 2.7 V VIH 2.7 V 2.7 V Vm 1.5 V 1.5 V Vx VOL + 0.3 V VOL + 0.3 V Vy VOH − 0.3 V VOH − 0.3 V VCC PULSE GENERATOR RL DUT RT CL 6V or VCC × 2 OPEN GND RL Figure 7. Test Circuit Table 5. TEST CIRCUIT TEST SWITCH tPLH, tPHL Open tPZL, tPLZ 6 V at VCC = 3.3 ± 0.3 V; VCC × 2 at VCC = 2.5 ± 0.2 V; 1.8 ± 0.15 V tPZH, tPHZ GND CL = 50 pF or equivalent (Includes jig and probe capacitance) RL = 500 W or equivalent RT = ZOUT of pulse generator (typically 50W) http://onsemi.com 8 74VCX16244 PACKAGE DIMENSIONS TSSOP DT SUFFIX CASE 1201−01 ISSUE A 48X K REF 0.12 (0.005) M T U S V K K1 ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ S T U S J J1 25 0.254 (0.010) M 48 SECTION N−N B −U− L N 1 24 A −V− PIN 1 IDENT. N F DETAIL E D 0.076 (0.003) −T− SEATING PLANE NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSIONS A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. C M 0.25 (0.010) −W− G H DETAIL E DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 12.40 12.60 6.00 6.20 −−− 1.10 0.05 0.15 0.50 0.75 0.50 BSC 0.37 −−− 0.09 0.20 0.09 0.16 0.17 0.27 0.17 0.23 7.95 8.25 0_ 8_ INCHES MIN MAX 0.488 0.496 0.236 0.244 −−− 0.043 0.002 0.006 0.020 0.030 0.0197 BSC 0.015 −−− 0.004 0.008 0.004 0.006 0.007 0.011 0.007 0.009 0.313 0.325 0_ 8_ ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 9 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative 74VCX16244/D