UM1685 User manual EVAL6480H and EVAL6482H: high power microstepping motor drivers Introduction The EVAL6480H and EVAL6482H are two demonstration boards based on L648x devices implementing a complete stepper motor driver for high power applications. They are designed to operate with a supply voltage ranging from 10.5 V to 85 V and mount eight STD25NF10 MOSFETs with a maximum current of 25 A r.m.s.. In combination with the STEVAL-PCC009V2 demonstration board and the SPINFamily evaluation tool, the boards provide a complete and easy to use evaluation environment allowing the user to investigate all the features of the L648x devices. Both the boards support the daisy chain configuration making them suitable for the evaluation of the devices in multi motor applications. April 2015 DocID025458 Rev 2 1/31 www.st.com 31 Contents UM1685 Contents 1 Boards description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1 EVAL6480H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 EVAL6482H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Evaluation environment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Device configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1 Voltage mode driving (EVAL6480H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Advanced current control (EVAL6482H) . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Gate drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Overcurrent and stall detection thresholds . . . . . . . . . . . . . . . . . . . . . . . . 26 3.5 Speed profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 Sensing resistors of the EVAL6482H . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 How to change the supply configuration of the board . . . . . . . . . . . . 28 6 Daisy chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2/31 DocID025458 Rev 2 UM1685 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. EVAL6480H - electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 EVAL6480H - jumper and connector description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 EVAL6480H - master SPI connector pinout (J3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 EVAL6480H - slave SPI connector pinout (J4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 EVAL6480H - bill of material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 EVAL6482H - electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 EVAL6482H - jumper and connector description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 EVAL6482H - master SPI connector pinout (J3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 EVAL6482H - slave SPI connector pinout (J4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 EVAL6482H - bill of material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 VCC supply configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 VREG supply configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 VDD supply configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 DocID025458 Rev 2 3/31 31 List of figures UM1685 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. 4/31 EVAL6480H - jumper and connector location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 EVAL6480H - schematic part 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 EVAL6480H - schematic part 2/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 EVAL6480H - layout (top layer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 EVAL6480H - layout (inner layer 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 EVAL6480H - layout (inner layer 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 EVAL6480H - layout (bottom layer ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 EVAL6482H - jumper and connector location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 EVAL6482H - schematic part 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 EVAL6482H - schematic part 2/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 EVAL6482H - layout (top layer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 EVAL6482H - layout (inner layer 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 EVAL6482H - layout (inner layer 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 EVAL6482H - layout (bottom layer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DocID025458 Rev 2 UM1685 Boards description 1 Boards description 1.1 EVAL6480H Table 1. EVAL6480H - electrical specifications Parameter Value Supply voltage (VS) 10.5 to 85 V Maximum output current (each phase) 25 Ar.m.s. at 25 °C(1) External MOSFET Rds(ON) 33 m typical at 25 °C(1) Gate driver supply voltage (VCC) 7.5 V to 15 V Logic supply voltage 3.3 V Logic interface supply voltage 3.3 V or 5 V Low level logic inputs 0V High level logic input VDD(2) Operating temperature -25 °C to +125 °C 1. Refer to STD25F10 datasheet for details. 2. All logic inputs are 5 V tolerant. Figure 1. EVAL6480H - jumper and connector location Slave SPI connector FLAG LED BUSY LED Master SPI connector External switch connector (SW input) Application area Motor supply voltage compensation regulation (ADCIN input) Power supply connector (10.5 V - 85 V) Supply management connector (VS, VSREG, VCCREG and GND) Supply management jumpers Phase A connector Phase B connector AM14874v1 DocID025458 Rev 2 5/31 31 Boards description UM1685 Table 2. EVAL6480H - jumper and connector description Name Type Function J5 Power supply Main supply voltage J7 Power output Power bridge A outputs J8 Power output Power bridge B outputs J6 Power supply Integrated voltage regulator inputs J3 SPI Master SPI connector J4 SPI Slave SPI connector JP1 Jumper VS to VSREG jumper JP2 Jumper VSREG to VCC jumper JP3 Jumper VCC to VCCREG jumper JP4 Jumper VCCREG to VREG jumper JP5 Jumper VREG to VDD jumper JP6 Jumper VDD to 3.3 V from SPI connector jump JP7 Jumper Daisy chain termination jumper JP8 Jumper STBY to VS pull-up jumper TP8 (BUSY/SYNC) Jumper BUSY/SYNC output test point Table 3. EVAL6480H - master SPI connector pinout (J3) 6/31 Pin number Type Description 1 Open drain output L6480 BUSY output 2 Open drain output L6480 FLAG output 3 Ground Ground 4 Supply EXT_VDD (can be used as external logic power supply) 5 Digital output SPI master IN slave OUT signal (connected to the L6480 SDO output through daisy chain termination jumper JP7) 6 Digital input SPI serial clock signal (connected to L6480 CK input) 7 Digital input SPI master OUT slave IN signal (connected to L6480 SDI input) 8 Digital input SPI slave select signal (connected to L6480 CS input) 9 Digital input L6480 step-clock input 10 Digital input L6480 standby/reset input DocID025458 Rev 2 UM1685 Boards description Table 4. EVAL6480H - slave SPI connector pinout (J4) Pin number Type Description 1 Open drain output L6480 BUSY output 2 Open drain output L6480 FLAG output 3 Ground Ground 4 Supply EXT_VDD (can be used as external logic power supply) 5 Digital output SPI master IN slave OUT signal (connected to pin 5 of J3) 6 Digital input SPI serial clock signal (connected to L6480 CK input) 7 Digital input SPI master OUT slave IN signal (connected to L6480 SDO output) 8 Digital input SPI slave select signal (connected to L6480 CS input) 9 Digital input L6480 step-clock input 10 Digital input L6480 standby/reset input DocID025458 Rev 2 7/31 31 VS 8/31 1 R1 100 OSCIN OSCOUT STCK FLAG BUSY DocID025458 Rev 2 2 2 1 3 5 7 9 1 3 5 7 9 2 4 6 8 10 J4 2 4 6 8 10 SPI_OUT J3 SPI_IN FLAG 3V3 DL1 LED - AMBER R4 470 R2 39k VDD VDD VDD VDD 7 FLAG BUSY 8 29 16 L6480 PGND DGND AGND SDI SDO 30 BUSY_SYNC 31 FLAG CS CK STBY_RES SW STCK 35 GND 39 PGND 23 22 G_HS_B 2 21 OUT_B 2 20 G_LS_B 2 G_HS_B 1 18 OUT_B 1 19 G_LS_B 1 G_HS_A 2 37 OUT_A 2 38 G_LS_A 2 24 25 26 28 PGND 3 G_HS_A 1 2 OUT_A 1 1 G_LS_A 1 N.C. VBOOT 4 C9 47n/100V BAV9 nCS CK SDI SDO CP 9 3 2 17 BUSY FLAG 6 VS D1 34 33 32 VCC_RE G VCC VS_RE G U1 1 C1 470n/ 25V STCK 11 10 12 C8 100n/100V C2 220n/100V VS Application reference 36 DL2 LED- RED R5 470 R3 39k 2 3V3 VS_REG C7 470n/25V JP6 13 VREG 27 VDD 5 ADC_IN 14 OSC_IN 15 OSC_OUT VDD 1 VDD 2 VCC C6 100n/25V 1 CK nCS STBY_RESET 3V3 C12 100p /6V3 CK nCS STBY_RESET FLAG C13 10n/ 6V3 STBY_RESET ADC_IN C5 22u/6V3 VCC_REG 1 1 STCK BUSY SDI STCK BUSY C10 10n/6V3 STBY ADC_IN VDD VREG C4 100n/4V 1 JP5 2 2 SDO 1 2 J2 N.M. 1 GND 1 2 1 STCK J1 N.M. 1 1 FLAG BUSY 1 ADC_IN 1 STBY_RESET C3 100n/6V3 2 VREG VREG 1 VCC_REG JP4 VCC 2 JP3 1 STBY 1 VC C 1 ADCIN 2 VS_REG JP2 1 VS 1 JP1 G_HS_B2 OUTB2 G_LS_B2 G_HS_B1 OUTB1 G_LS_B1 G_HS_A2 OUTA2 G_LS_A2 G_HS_A1 OUTA1 G_LS_A1 Boards description UM1685 Figure 2. EVAL6480H - schematic part 1/2 JP7 1 AM14875v1 STBY 4 3 DocID025458 Rev 2 3 R8 50 k/0.125W 3 D2 BZX585-B3V3 2 2 D3 BZX585-B3V6 4 ADC_IN Q6 STD25NF10 OUTA 2 3 R7 100k/0.125W Q5 STD25NF10 4 Q2 STD25NF10 1 1 G_LS_A2 OUTA2 G_HS_A2 VS G_LS_B1 OUTB1 C15 220n /100V G_HS_B1 1 1 4 VS 1 1 J7 Q1 STD25NF10 3 G_LS_A1 VS 1 VS 1 2 OUTA1 C14 220n/100V G_HS_A1 Application referenc e C11A 220u/100V Q7 Q8 STD25NF10 2 Q4 STD25NF10 OUTB STD25NF10 1 J8 Q3 STD25NF10 VS 1 2 1 + 4 JP8 R9 N.M . VDD VS_REG VCC_REG C11 220u/100V 4 3 R6 100k/0.125W 1 2 3 4 VS + OPTION 4 N.M. J6 J5 2 1 4 VS_REG VS VS_REG VCC_REG GND GND VS VS 1 1 G_LS_B2 OUTB2 G_HS_B2 UM1685 Boards description Figure 3. EVAL6480H - schematic part 2/2 3 3 3 1 AM14880v1 9/31 31 Boards description UM1685 Table 5. EVAL6480H - bill of material Item Quantity Reference Value Package 1 9 VS, VREG, VDD, VCC, STCK, STBY, FLAG, BUSY, ADCIN TPTH-RING-1MM (red) TPTH-RING-1MM 2 2 C1,C7 470 nF/25 V CAPC-0603 3 1 C2 220 nF/100 V CAPC-0805 4 1 C3 100 nF/6.3 V CAPC-0603 5 1 C4 100 nF/4 V CAPC-0603 6 1 C5 22 µF/6.3 V CAPC-1206 7 1 C6 100 nF/25 V CAPC-0603 8 1 C8 100 nF/100 V CAPC-0603 9 1 C9 47 nF/100 V CAPC-0805 10 2 C10, C13 10 nF/6.3 V CAPC-0603 11 1 C11 220 µF/100 V CAPES-R18H17 12 1 C11A 220 µF/100 V CAPE-R16H21-P75 13 1 C12 100 pF/6.3 V CAPC-0603 14 1 DL1 LED amber LEDC-0805 15 1 DL2 LED red LEDC-0805 16 1 D1 BAV99 SOT-23 17 1 D2 BZX585-B3V3 SOD523 18 1 D3 BZX585-B3V6 SOD523 19 1 GND TPTH-RING-1MM (black) TPTH-RING-1MM 20 5 JP1, JP3, JP5, JP7, JP8 Jumper CLOSED JP2SO 21 3 JP2, JP4, JP6 Jumper OPEN JP2SO 22 2 J1, J2 N. M. STRIP254P-M-2 23 1 J3 Pol. IDC male header vertical 10 poles (black) CON-FLAT-5X2-180M 24 1 J4 Pol. IDC male header vertical 10 poles (gray) CON-FLAT-5X2-180M 25 3 J5, J7, J8 Screw connector 2 poles MORSV-508-2P 26 1 J6 N. M. STRIP254P-M-4 27 8 Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8 STD25NF10 DPAK 28 1 R1 100 RESC-0603 29 2 R2, R3 39 k RESC-0603 30 2 R4, R5 470 RESC-0603 31 2 R6, R7 100 k/ 0.125 W RESC-0603 10/31 DocID025458 Rev 2 UM1685 Boards description Table 5. EVAL6480H - bill of material (continued) Item Quantity Reference Value Package 32 1 R8 33 k/ 0.125 W TRIMM-100X50X110-64W 33 1 R9 N. M. RESC-0603 34 1 U1 L6480 HTSSOP050P-660X110-38-EP DocID025458 Rev 2 11/31 31 Boards description UM1685 Figure 4. EVAL6480H - layout (top layer) Figure 5. EVAL6480H - layout (inner layer 2) 12/31 DocID025458 Rev 2 UM1685 Boards description Figure 6. EVAL6480H - layout (inner layer 3) Figure 7. EVAL6480H - layout (bottom layer ) DocID025458 Rev 2 13/31 31 Boards description 1.2 UM1685 EVAL6482H Table 6. EVAL6482H - electrical specifications Parameter Value Supply voltage (VS) 10.5 to 85 V Maximum output current (each phase) 6 Ar.m.s. at 25 °C(1) External MOSFET Rds(ON) 33 m typical at 25 °C(2) Gate driver supply voltage (VCC) 7.5 V to 15 V Logic supply voltage 3.3 V Logic interface supply voltage 3.3 V or 5 V Low level logic input 0V High level logic input VDD(3) Operating temperature -25 °C to +125 °C 1. Limited by the mounted sensing resistors. 2. Refer to STD25NF10 datasheet for details. 3. All logic inputs are 5 V tolerant. Figure 8. EVAL6482H - jumper and connector location Slave SPI connector FLAG LED BUSY LED Master SPI connector External switch connector (SW input) Application area ADCIN input Power supply connector (10.5 V - 85 V) Supply management connector (VS, VSREG, VCCREG and GND) Supply management jumpers Phase A connector Phase B connector AM15181v1 14/31 DocID025458 Rev 2 UM1685 Boards description Table 7. EVAL6482H - jumper and connector description Name Type Function J5 Power supply Main supply voltage J7 Power output Power bridge A outputs J8 Power output Power bridge B outputs J6 Power supply Integrated voltage regulator inputs J3 SPI Master SPI connector J4 SPI Slave SPI connector JP1 Jumper VS to VSREG jumper JP2 Jumper VSREG to VCC jumper JP3 Jumper VCC to VCCREG jumper JP4 Jumper VCCREG to VREG jumper JP5 Jumper VREG to VDD jumper JP6 Jumper VDD to 3.3 V from SPI connector jumper JP7 Jumper Daisy chain termination jumper JP8 Jumper STBY to VS pull-up jumper Table 8. EVAL6482H - master SPI connector pinout (J3) Pin number Type Description 1 Open drain output L6482 BUSY output 2 Open drain output L6482 FLAG output 3 Ground Ground 4 Supply EXT_VDD (can be used as external logic power supply) 5 Digital output SPI master IN slave OUT signal (connected to the L6482 SDO output through daisy chain termination jumper JP7) 6 Digital input SPI serial clock signal (connected to L6482 CK input) 7 Digital input SPI master OUT slave IN signal (connected to L6482 SDI input) 8 Digital input SPI slave select signal (connected to L6482 CS input) 9 Digital input L6482 step-clock input 10 Digital input L6482 standby/reset input DocID025458 Rev 2 15/31 31 Boards description UM1685 Table 9. EVAL6482H - slave SPI connector pinout (J4) Pin number Type Description 1 Open drain output L6482 BUSY output 2 Open drain output L6482 FLAG output 3 Ground Ground 4 Supply EXT_VDD (can be used as external logic power supply) 5 Digital output SPI master IN slave OUT signal (connected to pin 5 of J3) 6 Digital input SPI serial clock signal (connected to L6482 CK input) 7 Digital input SPI master OUT slave IN signal (connected to L6482 SDO output) 8 Digital input SPI slave select signal (connected to L6482 CS input) 9 Digital input L6482 step-clock input 10 Digital input L6482 standby/reset input 16/31 DocID025458 Rev 2 C3 1 DocID025458 Rev 2 2 1 3 5 7 9 1 3 5 7 9 J4 SPI_OUT J3 SPI_IN 2 4 6 8 10 2 4 6 8 10 2 1 CK nCS STBY_RESET FLAG CK nCS STBY_RESET 3V3 3V3 1 JP5 BUSY DL1 LED - AMBER R4 470 R2 39k VDD VDD VDD VDD VDD BUSY FLAG FLAG 30 31 24 25 26 28 14 15 5 13 27 11 10 12 C8 100n/100V L6482 6 VS 1 D1 8 29 16 9 3 2 7 39 GND VBOOT C9 47n/100V BAV99 C1 470n/25V CP PGND DGND AGND BUSY_SYNC FLAG CS CK SDI SDO STBY_RES SW STCK OSC_IN OSC_OUT ADC_IN VREG VDD VCC_REG VCC VS_REG U1 C2 220n/100V VS Application reference STCK BUSY FLAG VS_REG C7 470n/25V VDD 2 3V3 nCS CK SDI SDO DL2 LED - RED R5 470 R3 39k 1 JP6 34 33 32 VDD 2 VCC C6 100n/25V VREG VREG 2 VREG VCC_REG C5 22u/6V3 C12 100p/6V3 C4 100n/4V FLAG C13 10n/6V3 STBY_RESET ADC_IN VREG 1 JP4 VCC_REG 2 STCK BUSY SDI STCK BUSY C10 10n/6V3 STBY ADC_IN 100n/6V3 VDD VCC VCC 2 JP3 1 2 SDO 1 2 J2 N.M. R1 100 OSCIN OSCOUT STCK FLAG BUSY 1 VCC 1 JP7 1 2 1 GND 1 STCK 1 FLAG 1 J1 N.M. GND STCK FLAG BUSY BUSY 1 STBY_RESET STBY 1 ADC_IN ADC_IN 2 JP2 VS_REG 1 STBY 1 VS VS 1 JP1 1 ADCIN VS SENSEB G_HS_B2 OUT_B2 G_LS_B2 G_HS_B1 OUT_B1 G_LS_B1 SENSEA G_HS_A2 OUT_A2 G_LS_A2 G_HS_A1 OUT_A1 G_LS_A1 23 22 21 20 17 18 19 35 36 37 38 3 2 1 SENSEB G_HS_B2 OUTB2 G_LS_B2 G_HS_B1 OUTB1 G_LS_B1 SENSEA G_HS_A2 OUTA2 G_LS_A2 G_HS_A1 OUTA1 G_LS_A1 UM1685 Boards description Figure 9. EVAL6482H - schematic part 1/2 1 AM15182v1 17/31 31 18/31 STBY DocID025458 Rev 2 R17 3 50k/0.125W 3 D2 BZX585-B3V3 2 4 1 3 2 D3 BZX585-B3V6 R7 100k/0.125W 4 JP8 R9 N.M. 3 R18 0R1/2W ADC_IN R19 0R1/2W 1 1 G_LS_A2 OUTA2 G_HS_A2 SENSEB G_LS_B1 OUTB1 C15 220n/100V G_HS_B1 VS 1 1 4 Q6 STD25NF10 OUTA 2 Q2 STD25NF10 3 R6 100k/0.125W VS 1 J7 1 2 Q5 STD25NF10 1 Q1 STD25NF10 J8 R20 R21 0R1/2W 0R1/2W Q8 STD25NF10 2 Q4 STD25NF10 OUTB Q7 STD25NF10 1 Q3 STD25NF10 VS 1 2 SENSEA VS 1 VS 4 G_LS_A1 OUTA1 C14 220n/100V G_HS_A1 Application reference C11A 220u/100V 4 VDD VCC_REG + 3 VS_REG VS_REG C11 220u/100V 4 N.M. 1 2 3 4 VS + OPTION 4 J6 J5 2 1 4 VS VS_REG VCC_REG GND GND VS VS 1 1 G_LS_B2 OUTB2 G_HS_B2 Boards description UM1685 Figure 10. EVAL6482H - schematic part 2/2 3 3 3 1 AM15183v1 UM1685 Boards description Table 10. EVAL6482H - bill of material Item Quantity Reference Value Package 1 9 VS, VREG, VDD, VCC, STCK, STBY, FLAG, BUSY, ADCIN TPTH-RING (red) TPTH-RING-1MM 2 1 GND TP-RING (black) TPTH-RING-1MM 3 2 C1,C7 470 nF/25 V CAPC-0603 4 3 C2, C14, C15 220 nF/100 V CAPC-0805 5 1 C3 100 nF/6.3 V CAPC-0603 6 1 C4 100 nF/4 V CAPC-0603 7 1 C5 22 µF/6.3 V CAPC-1206 8 1 C6 100 nF/25 V CAPC-0603 9 1 C8 100 nF/100 V CAPC-0603 10 1 C9 47 nF/100 V CAPC-0805 11 2 C10, C13 10 nF/6.3 V CAPC-0603 12 1 C11 220 µF/100 V CAPES-R18H17 13 1 C11A 220 µF/100 V CAPE-R16H21-P75 14 1 C12 100 pF/6.3 V CAPC-0603 15 1 DL1 LED amber LEDC-0805 16 1 DL2 LED red LEDC-0805 17 1 D1 BAV99 SOT-23 18 1 D2 BZX585-B3V3 SOD523 19 1 D3 BZX585-B3V6 SOD523 20 5 JP1, JP3, JP5, JP7, JP8 Jumper CLOSED JP2SO 21 3 JP2, JP4, JP6 Jumper OPEN JP2SO 22 2 J1, J2 N. M. STRIP254P-M-2 23 1 J3 Pol. IDC male header vertical 10 poles (black) CON-FLAT-5X2-180M 24 1 J4 Pol. IDC male header vertical 10 poles (gray) CON-FLAT-5X2-180M 25 3 J5, J7, J8 Screw connector 2 poles MORSV-508-2P 26 1 J6 N. M. STRIP254P-M-4 27 8 Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8 STD25NF10 DPAK 28 1 R1 100 RESC-0603 29 2 R2, R3 39 k RESC-0603 30 2 R4, R5 470 RESC-0603 31 2 R6, R7 100 k/ 0.125 W RESC-0603 DocID025458 Rev 2 19/31 31 Boards description UM1685 Table 10. EVAL6482H - bill of material (continued) Item Quantity Reference Value Package 32 1 R9 N. M. RESC-0603 33 1 R17 50 k/ 0.125 W TRIMM-100X50X110-64W 34 4 R18, R19, R20, R21 0.1 /2W RESC-2010 35 1 U1 L6482 HTSSOP050P-660X110-38-EP 20/31 DocID025458 Rev 2 UM1685 Boards description Figure 11. EVAL6482H - layout (top layer) AM15185v1 Figure 12. EVAL6482H - layout (inner layer 2) AM15187v1 DocID025458 Rev 2 21/31 31 Boards description UM1685 Figure 13. EVAL6482H - layout (inner layer 3) AM15188v1 Figure 14. EVAL6482H - layout (bottom layer) AM15189v1 22/31 DocID025458 Rev 2 UM1685 2 Evaluation environment setup Evaluation environment setup The evaluation environment is composed by: One or more EVAL6480H or EVAL6482H device One STEVAL-PCC009V2 demonstration board A USB cable A stepper motor with a small mechanical load (unloaded stepper motors suffer of strong resonance issues) A power supply with an output voltage within the operative range of the evaluation board A PC with a Microsoft© Windows® 7 or Windows XP operating system and with a free USB port The SPINFamily evaluation tool (the last version can be downloaded from the STMicroelectronics® website). In order to start using the evaluation environment the following steps are required: 1. Install the SPINFamily evaluation tool. 2. Start the SPINFamily evaluation tool (by default it is in Start menu > All programs > STMicroelectronics > SPINFamily Evaluation Tool). 3. Select the proper device when requested by the application. 4. Plug the STEVAL-PCC009V2 demonstration board to a free USB port. 5. Wait a few seconds for board initialization. 6. Connect the SPI_IN connector (black) of the demonstration board to the 10-pin connector of the STEVAL-PCC009V2 board using the provided cable. For connecting more devices to the same board, please consult Section 6: Daisy chaining on page 29. 7. Power up the demonstration boards. The FLAG LED should turn on. 8. Click on the button with the USB symbol to connect the STEVAL-PCC009V2 board to the PC and initialize the evaluation environment. The application automatically identifies the number of demonstration boards connected. 9. The evaluation environment is ready. Before start working with the demonstration board, the device must be configured according to the indications described in Section 3: Device configuration. Warning: Important - the device configuration is mandatory. The default configuration is not operative. DocID025458 Rev 2 23/31 31 Device configuration 3 UM1685 Device configuration This section offers an overview of the basic configuration steps which are required for make the demonstration board operative. More details about the configuration of the gate driving circuitry and the control algorithms are available in the AN4354 “L648x devices: gate drivers setup”. Warning: Important - the device configuration is mandatory. The default configuration is not operative. Important - before changing the device configuration verify that the device is in high impedance status (power stage is disabled). 3.1 Voltage mode driving (EVAL6480H) The configuration parameters of the voltage mode driving can be obtained through the BEMF compensation tool embedded in the SPINFamily software. A wrong setup of these parameters could cause several issues, in particular: The phase current decreases with the speed and the motor will stall. The wrong voltage is applied to the motor and the system is very noisy. The phase current reaches the overcurrent limit. The BEMF compensation form uses the application parameters as inputs in order to evaluate the proper device setup. The required inputs are: Supply voltage. Target phase current (r.m.s. value) at different motion conditions (acceleration, deceleration, constant speed and holding). Target operating speed (maximum speed). Motor characteristics. The motor characteristics are: electrical constant (Ke), phase inductance and resistance. The inductance and the resistance of the phase are given in the motor datasheet. The Ke is rarely given in the specification and must be measured. In the help section of the SPINFamily software a step by step procedure is explained. The same procedure can also be found in the application note “AN4144: Voltage mode control operation and parameter optimization” on www.st.com. Click on the “evaluate” button to get the suggested setup for the voltage mode driving. Then click on “write” button to copy the data into the registers of the L6480 device. 24/31 DocID025458 Rev 2 UM1685 3.2 Device configuration Advanced current control (EVAL6482H) The following configuration gives good results with most of motors: Minimum ON time = 4 µs. Minimum OFF time = 21 µs. Max fast decay = 10 µs. Max fast decay at step change = 16 µs. Target switching time = 48 µs. Predictive current control enabled. The impact of the timing parameters are explained in the application note “AN4158: Peak current control with automatic decay adjustment and predictive current control: basics and setup” on www.st.com. The target phase current is set through the TVAL registers. The TVAL determinates the reference voltage (i.e. the voltage drop on the sense resistors) corresponding to the peak of the current sine wave (microstepping operation): Equation 1 Ipeak = TVAL_X / Rsense = TVAL_X / 0.05 The sensing resistors can be changed as described in Section 5: How to change the supply configuration of the board. 3.3 Gate drivers The configuration of the gate driving circuitry depends on the external MOSFETs characteristics. The demonstration boards mount the STD25NF10 Power MOSFETs. Warning: Important - a wrong gate driving setup may cause spurious overcurrent failures even if no load is connected to the power stage. According to the STD25NF10 datasheet the total gate charge required to turn on the MOSFET is about 55 nC. The charge supplied by the device at each commutation is equal to the gate current (Igate) multiplied by the controlled current time (tcc). With a gate current of 64 mA and a controller current time of 1000 ns, 64 nC are provided to the gate. The gate current can be changed in order to speed up or slow down the commutation speed (i.e. the slew rate of the power stage outputs); in this case the controlled current time should be changed accordingly. The boards are designed to operate with a VCC voltage of 15 V, so the corresponding value for the integrated regulator should be set. The UVLO threshold should be 11 V. At each commutation some voltage oscillations are generated. This noise could trigger the overcurrent protection. This event is avoided by adding a blanking time after each commutation. A blanking time of 500 ns prevents the occurrence of spurious overcurrent detection in most operative conditions. DocID025458 Rev 2 25/31 31 Device configuration UM1685 In conclusion the suggested configuration for the demonstration boards is following: 3.4 VCC value = 15 V. UVLO threshold = 11 V (10 V on boot). Gate current = 64 mA. Controlled current time = 1 s. Dead time = 250 ns. Blanking time = 500 ns. Turn OFF boost time = disabled. Overcurrent and stall detection thresholds The overcurrent protection and the stall detection (EVAL6480H only) are implemented by measuring the drain-source voltage of the MOSFETs, hence their value is a voltage and not a current. The protection thresholds are set according to the voltage drop caused by the target triggering current on the MOSFET RdsON at the expected operating temperature (in fact this parameter increases with temperature). During the preliminary stages of evaluation, the max. value of 1000 mV can be set for both protections. The default value of 281.25 mV has a good probability to trigger the overcurrent alarm. Warning: 3.5 Important - it is strongly discouraged to disable the overcurrent shutdown. It may result in critical failures. Speed profile The max. speed parameter is the maximum speed the motor will run. By default, it is about 1000 step/s. That means, if you send a command to run at 2000 step/s, the motor speed is limited at 1000 step/s. This is an important safety feature in the final application, but not necessarily useful to evaluate the device performances. Setting the parameter to high values (e.g. 6000 step/s) allows evaluating the maximum speed which can be achieved by the application under test through the speed tracking command (Run), but it probably limits the possibility to use positioning commands (Move, GoTo, etc.). The Full-step speed parameter indicates the speed at which the system switches from microstepping to full step operation. In voltage mode driving devices (EVAL6480H), it is always recommended to operate in microstepping and not to switch to the full step. Hence, this parameter should be greater than the maximum speed. 26/31 DocID025458 Rev 2 UM1685 4 Sensing resistors of the EVAL6482H Sensing resistors of the EVAL6482H The output current range of the board is determined by the sensing resistors as indicated in Equation 2 and Equation 3: Equation 2 Ipeak,min = 7.8 mV / Rsense Equation 3 Ipeak,max = 1 V / Rsense Where 7.8 mV and 1 V are the minimum and the maximum value of the TVAL registers. However the actual output current is usually limited by the power rating of the sensing resistors: Equation 4 I out limit = Note: P d max -----------------R sense (r.m.s. value) The power rating of the sensing resistor determining the maximum output current is 50% of the nominal one. If the operative range resulting from the sensing resistors which are mounted on the board is not suitable for the application, it is possible to change these components in order to fit the requirements. The sensing resistors should make the current control to operate with a peak reference voltage between 0.2 and 0.1 volts. This way the power dissipation on the sensing resistor is not excessive and the offset of the sensing circuitry does not affect the performance of the current control algorithm. Equation 5 Rsense = 0.2 V / Ipeak DocID025458 Rev 2 27/31 31 How to change the supply configuration of the board 5 UM1685 How to change the supply configuration of the board The configuration of the supply voltages can be changed through the jumpers from J1 to J6 as listed in Table 11, Table 12 and Table 13. Table 11. VCC supply configurations Configuration JP1 Internally generated from Closed VS JP2 VSREG range Notes Open VCC + 3 V ÷ 85 V Default. VCC value is determined by the internal regulator configuration. Internally generated from a voltage source different from VS Open Open VCC + 3 V ÷ VS VCC value is determined by the internal regulator configuration. External protection diode could be required (see following text below table). Externally supplied (equal to VSREG) Open Closed 7.5 V ÷ 15 V External protection diode could be required (see following text below table). Note: When the VCC voltage of 7.5 V is used, the charge pump diodes should be replaced with low-drop ones (suggested part BAR43SFILM). Otherwise the resulting boot voltage could be lower than the respective UVLO threshold and the device is not operative. When the VSREG pin is not shorted to the VS (JP1 is open) particular care must be taken in order to avoid that the VBOOT voltage falls below the VSREG one (e.g. VS is floating and VSREG is supplied). In this case the internal ESD diode is turned on and the device could be damaged. Adding a low drop diode between the VSREG and VS protects the internal ESD diode from this event (the diodes of the charge pump must also be low drop type). Table 12. VREG supply configurations Configuration JP3 JP4 VCCREG range Notes Internally generated from Closed VCC Open VCC Default. Internally generated from a voltage source different from VCC Open Open 6.3 V ÷ VCC External protection diode could be required (see following text below table). Externally supplied (equal to VCCREG) Open Closed 3.3 V External protection diode could be required (see following text below table). When the VCCREG pin is not shorted to the VCC (JP3 is open) particular care must be taken in order to avoid that the VCC voltage falls below the VCCREG one. In this case the internal ESD diode is turned on and the device could be damaged. Adding a low drop diode between the VCCREG and VCC protects the internal ESD diode from this event. 28/31 DocID025458 Rev 2 UM1685 Daisy chaining Table 13. VDD supply configurations Configuration JP5 JP6 VDD range Notes Supplied by VREG Closed Open 3.3 V Default, 3.3 V logic. Supplied by SPI connectors Open Closed 3.3 V or 5 V 3.3 V when connected to the STEVAL-PCC009V2 Supplied by VDD test point Open Open 3.3 V or 5 V Must be 3.3 V if connected to the STEVAL-PCC009V2 6 Daisy chaining More demonstration boards can be connected in daisy chain mode. To drive two or more boards in daisy chain configuration: Note: 1. Connect the STEVAL-PCC009V2 board 10-pin connector to the SPI_IN connector of the first demonstration board through the 10-pole flat cable. 2. Open the termination jumper (see Section 1.1: EVAL6480H on page 5 and Section 1.2: EVAL6482H on page 14). 3. Connect the SPI_OUT connector of the first demonstration board to the SPI_IN of the next one through the 10-pole flat cable. 4. Repeat point 2 and 3 for all the others board of the chain but the last one. 5. Check the termination jumpers of the demonstration boards: all the jumpers but the last one should be opened. Increasing the number of devices connected in chain could degrade SPI communication performances. If communication issues occur, try to reduce the SPI clock speed. DocID025458 Rev 2 29/31 31 Revision history 7 UM1685 Revision history Table 14. Document revision history Date Revision 28-Nov-2013 1 Initial release. 2 Updated Section : Introduction on page 1 (replaced “cSPIN™” and “cSPIN™ family” by “L648x”). Updated Figure 4: EVAL6480H - layout (top layer) on page 12 to Figure 7: EVAL6480H - layout (bottom layer ) on page 13 (converted to greyscale). Removed Figure 11. EVAL6482H - layout (silkscreen) from page 20. Updated title of the AN4354 (replaced “cSPIN™ family” by “L648x devices:”) in Section 3: Device configuration on page 24. Minor modifications throughout document. 08-Apr-2015 30/31 Changes DocID025458 Rev 2 UM1685 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID025458 Rev 2 31/31 31