PD - 97362 IRLS3034-7PPbF Applications l DC Motor Drive l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits HEXFET® Power MOSFET D G Benefits l Optimized for Logic Level Drive l Very Low RDS(ON) at 4.5V VGS l Superior R*Q at 4.5V VGS l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free S VDSS RDS(on) typ. max. ID (Silicon Limited) 40V 1.0mΩ 1.4mΩ 380Ac ID (Package Limited) 240A D S G S S S S D2Pak 7 Pin G D S Gate Drain Source Absolute Maximum Ratings Symbol Parameter Max. ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) 380c 270c 240 IDM PD @TC = 25°C Pulsed Drain Current d Maximum Power Dissipation Linear Derating Factor 1540 380 2.5 VGS Gate-to-Source Voltage Peak Diode Recovery f Operating Junction and dv/dt TJ TSTG Units A W W/°C V ± 20 1.3 -55 to + 175 Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) V/ns °C 300 Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy e Avalanche Currentd Repetitive Avalanche Energy d 250 See Fig. 14, 15, 22a, 22b mJ A mJ Thermal Resistance Symbol RθJC RθJA www.irf.com Parameter Junction-to-Case kl Junction-to-Ambient j Typ. Max. Units ––– 0.40 40 °C/W ––– 1 1/12/09 IRLS3034-7PPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance 40 ––– ––– VGS(th) IDSS Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance 1.0 ––– ––– ––– ––– ––– RG ––– ––– 0.035 ––– 1.0 1.4 1.2 1.7 ––– 2.5 ––– 20 ––– 250 ––– 100 ––– -100 1.9 ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mAd mΩ VGS = 10V, ID = 200A g VGS = 4.5V, ID = 180A g V VDS = VGS, ID = 250µA µA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance 370 ––– ––– ––– 120 180 ––– 32 ––– ––– 71 ––– ––– 49 ––– ––– 71 ––– ––– 590 ––– ––– 94 ––– ––– 200 ––– ––– 10990 ––– ––– 2030 ––– ––– 1100 ––– Effective Output Capacitance (Energy Related) ––– 2520 ––– Effective Output Capacitance (Time Related)h ––– 3060 ––– S nC ns pF Conditions VDS = 10V, ID = 220A ID = 170A VDS =20V VGS = 4.5V g ID = 170A, VDS =0V, VGS = 4.5V VDD = 26V ID = 220A RG = 2.7Ω VGS = 4.5V g VGS = 0V VDS = 40V ƒ = 1.0MHz, See Fig. 5 VGS = 0V, VDS = 0V to 32V i, See Fig. 11 VGS = 0V, VDS = 0V to 32V h Diode Characteristics Symbol IS Parameter Min. Typ. Max. Units Continuous Source Current VSD trr (Body Diode) Pulsed Source Current (Body Diode)d Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM ––– 380c A MOSFET symbol ––– ––– A showing the integral reverse 1540 D G S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 200A, VGS = 0V g VR = 34V, ––– 46 ––– ns TJ = 25°C IF = 220A TJ = 125°C ––– 49 ––– di/dt = 100A/µs g ––– 100 ––– nC TJ = 25°C TJ = 125°C ––– 110 ––– ––– 3.7 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 240A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.010mH RG = 25Ω, IAS = 220A, VGS =10V. Part not recommended for use above this value . 2 Conditions ––– ISD ≤ 220A, di/dt ≤ 1240A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C. RθJC value shown is at time zero. www.irf.com IRFLS3034-7PPbF 10000 100000 10000 BOTTOM 1000 ≤60µs PULSE WIDTH 1000 100 BOTTOM ≤60µs PULSE WIDTH Tj = 175°C 100 10 2.5V 1 2.5V 10 0.1 1 10 0.1 100 Fig 1. Typical Output Characteristics 100 2.0 100 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 2. Typical Output Characteristics 1000 T J = 175°C 10 T J = 25°C 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 ID = 200A VGS = 10V 1.5 1.0 0.5 1 2 3 4 5 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 100000 5.0 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd VGS, Gate-to-Source Voltage (V) ID= 170A Coss = Cds + Cgd Ciss 10000 Coss Crss 1000 VDS= 32V VDS= 20V 4.0 3.0 2.0 1.0 0.0 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) C, Capacitance (pF) VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V TOP Tj = 25°C ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 0 25 50 75 100 125 150 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRLS3034-7PPbF 1000 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) T J = 175°C 100 T J = 25°C 10 1000 100µsec 1msec 100 Limited by package 10msec 10 DC Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1.0 1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 VSD, Source-to-Drain Voltage (V) 300 200 100 0 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) ID, Drain Current (A) Limited By Package 75 T C , Case Temperature (°C) 2.5 Id = 5mA 48 46 44 42 40 -60 -40 -20 0 20 40 60 80 100120140160180 Fig 10. Drain-to-Source Breakdown Voltage EAS , Single Pulse Avalanche Energy (mJ) 1200 ID 47A 94A BOTTOM 220A TOP 1000 2.0 Energy (µJ) 50 T J , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature 1.5 1.0 0.5 0.0 800 600 400 200 0 -5 0 5 10 15 20 25 30 35 40 45 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 100 VDS, Drain-to-Source Voltage (V) 400 50 10 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 25 1 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy Vs. DrainCurrent www.irf.com IRFLS3034-7PPbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 τC τ τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri 1E-005 0.0001 τ4 τ4 τi (sec) 0.00741 0.000005 0.05041 0.000038 0.18384 0.001161 0.15864 0.008809 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 Ri (°C/W) R4 R4 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) 0.01 100 0.05 0.10 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 300 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 220A 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 3.0 16 2.5 14 IF = 89A V R = 34V TJ = 25°C TJ = 125°C 12 2.0 1.5 IRRM (A) VGS(th) , Gate threshold Voltage (V) IRLS3034-7PPbF ID = 250µA ID = 1.0mA ID = 1.0A 1.0 10 8 6 0.5 4 0.0 2 -75 -50 -25 0 25 50 75 100 125 150 175 0 100 200 T J , Temperature ( °C ) 400 500 600 700 Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage vs. Temperature 16 900 IF = 134A V R = 34V 14 IF = 89A V R = 34V 800 700 TJ = 25°C TJ = 125°C 12 TJ = 25°C TJ = 125°C 600 10 QRR (A) IRRM (A) 300 diF /dt (A/µs) 8 500 400 300 6 200 4 100 2 0 0 100 200 300 400 500 600 700 0 diF /dt (A/µs) 100 200 300 400 500 600 700 800 diF /dt (A/µs) Fig. 18 - Typical Recovery Current vs. dif/dt Fig. 19 - Typical Stored Charge vs. dif/dt 800 IF = 134A V R = 34V 700 TJ = 25°C TJ = 125°C 600 QRR (A) 500 400 300 200 100 0 0 100 200 300 400 500 600 700 800 diF /dt (A/µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFLS3034-7PPbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V A 0.01Ω tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit www.irf.com Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRLS3034-7PPbF D2Pak - 7 Pin Package Outline Dimensions are shown in millimeters (inches) Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRFLS3034-7PPbF D2Pak - 7 Pin Part Marking Information 14 D2Pak - 7 Pin Tape and Reel Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 01/09 9