Appendix A - ATtiny4/5/9/10 Specification at 125°C - Appendix

Appendix A – ATtiny4/5/9/10 Specification at 125°C
This document contains information specific to devices operating at temperatures up
to 125°C. Only deviations are covered in this appendix, all other information can be
found in the complete datasheet. The complete datasheet can be found at
www.atmel.com.
8-bit
Microcontroller
with 512/1024
Bytes In-System
Programmable
Flash
ATtiny4/5/9/10
Appendix A
Rev. 8127D–Appendix A–AVR–08/11
1. Electrical Characteristics
1.1
Absolute Maximum Ratings*
Operating Temperature.................................. -55°C to +125°C
*NOTICE:
Storage Temperature ..................................... -65°C to +150°C
Voltage on any Pin except RESET
with respect to Ground ................................-0.5V to VCC+0.5V
Voltage on RESET with respect to Ground......-0.5V to +13.0V
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.
Maximum Operating Voltage ............................................ 6.0V
DC Current per I/O Pin ............................................... 40.0 mA
DC Current VCC and GND Pins................................ 200.0 mA
1.2
DC Characteristics
Table 1-1.
DC Characteristics. TA = -40°C to +125°C
Symbol
Parameter
Condition
Min.
VIL
Input Low Voltage
VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V
Input High-voltage
Except RESET pin
Max.
Units
-0.5
0.2VCC
0.3VCC
V
VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V
0.7VCC(1)
0.6VCC(1)
VCC +0.5(2)
V
Input High-voltage
RESET pin
VCC = 1.8V to 5.5V
0.9VCC(1)
VCC +0.5(2)
V
VOL
Output Low Voltage(3)
Except RESET pin(5)
IOL = 10 mA, VCC = 5V
IOL = 5 mA, VCC = 3V
0.7
0.6
V
VOH
Output High-voltage(4)
Except RESET pin(5)
IOH = -10 mA, VCC = 5V
IOH = -5 mA, VCC = 3V
ILIL
Input Leakage
Current I/O Pin
Vcc = 5.5V, pin low
(absolute value)
<0.05
2
µA
ILIH
Input Leakage
Current I/O Pin
Vcc = 5.5V, pin high
(absolute value)
<0.05
2
µA
RRST
Reset Pull-up Resistor
Vcc = 5.5V, input low
30
60
kΩ
RPU
I/O Pin Pull-up Resistor
Vcc = 5.5V, input low
20
50
kΩ
VIH
2
Typ.
4.2
2.4
V
ATtiny4/5/9/10
8127D–Appendix A–AVR–08/11
ATtiny4/5/9/10
Table 1-1.
Symbol
DC Characteristics. TA = -40°C to +125°C (Continued)
Parameter
Condition
Power Supply Current(6)
ICC
Power-down mode(7)
Notes:
Min.
Typ.
Max.
Units
Active 1MHz, VCC = 2V
0.2
0.5
mA
Active 4MHz, VCC = 3V
0.8
1.5
mA
Active 8MHz, VCC = 5V
2.7
5
mA
Idle 1MHz, VCC = 2V
0.02
0.2
mA
Idle 4MHz, VCC = 3V
0.13
0.5
mA
Idle 8MHz, VCC = 5V
0.6
1.5
mA
WDT enabled, VCC = 3V
4.5
20
µA
WDT disabled, VCC = 3V
0.15
10
µA
1. “Min” means the lowest value where the pin is guaranteed to be read as high.
2. “Max” means the highest value where the pin is guaranteed to be read as low.
3. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state
conditions (non-transient), the sum of all IOL (for all ports) should not exceed 60 mA. If IOL exceeds the test conditions, VOL
may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.
4. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state
conditions (non-transient), the sum of all IOH (for all ports) should not exceed 60 mA. If IOH exceeds the test condition, VOH
may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.
5. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence,
has a weak drive strength as compared to regular I/O pins.
6. Values are with external clock. Power Reduction is enabled (PRR = 0xFF) and there is no I/O drive.
7. BOD Disabled.
1.3
Speed
The maximum operating frequency of the device depends on VCC . As shown in Figure 1-1, the
relationship between maximum frequency vs. VCC is linear between 1.8V < VCC < 4.5V.
Figure 1-1.
Maximum Frequency vs. VCC
10 MHz
6 MHz
4 MHz
1.8V
2.7V
4.5V
5.5V
3
8127D–Appendix A–AVR–08/11
1.4
Clock Characteristics
1.4.1
Accuracy of Calibrated Internal Oscillator
It is possible to manually calibrate the internal oscillator to be more accurate than default factory
calibration. Note that the oscillator frequency depends on temperature and voltage. Voltage and
temperature characteristics can be found in Figure 2-32 on page 24 and Figure 2-33 on page 24.
Table 1-2.
Calibration Accuracy of Internal RC Oscillator
Calibration
Method
Target Frequency
VCC
Temperature
Accuracy at given Voltage
& Temperature(1)
Factory
Calibration
8.0 MHz
3V
25°C
±10%
User
Calibration
Fixed frequency within:
7.3 – 8.1 MHz
Fixed voltage within:
1.8V – 5.5V
Fixed temp. within:
-40°C – 125°C
±1%
Note:
1.4.2
1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).
External Clock Drive
Figure 1-2.
External Clock Drive Waveform
V IH1
V IL1
Table 1-3.
External Clock Drive Characteristics
VCC = 1.8 - 5.5V
VCC = 2.7 - 5.5V
VCC = 4.5 - 5.5V
Symbol
Parameter
1/tCLCL
Clock Frequency
tCLCL
Clock Period
250
125
100
ns
tCHCX
High Time
100
50
33
ns
tCLCX
Low Time
100
50
33
ns
tCLCH
Rise Time
2.0
1
0.6
μs
tCHCL
Fall Time
2.0
1
0.6
μs
ΔtCLCL
Change in period from one clock cycle to the next
2
2
2
%
4
Min.
Max.
Min.
Max.
Min.
Max.
Units
0
4
0
8
0
10
MHz
ATtiny4/5/9/10
8127D–Appendix A–AVR–08/11
ATtiny4/5/9/10
1.5
System and Reset Characteristics
Table 1-4.
Symbol
Parameter
VRST
RESET Pin Threshold
Voltage
tRST
Minimum pulse width on
RESET Pin
tTOUT
Note:
1.5.1
Reset and Internal Voltage Characteristics
Condition
Min(1)
Typ(1)
0.2 VCC
VCC = 1.8V
VCC = 3V
VCC = 5V
Max(1)
Units
0.9VCC
V
2000
700
400
Time-out after reset
ns
64
128
ms
1. Values are guidelines, only
Power-On Reset
Table 1-5.
Symbol
Characteristics of Enhanced Power-On Reset. TA = -40 - 125°C
Parameter
Release threshold of power-on reset
VPOR
(2)
VPOA
Activation threshold of power-on reset
SRON
Power-On Slope Rate
Notes:
(3)
Min(1)
Typ(1)
Max(1)
Units
1.1
1.4
1.7
V
0.6
1.3
1.7
V
0.01
V/ms
1. Values are guidelines, only
2. Threshold where device is released from reset when voltage is rising
3. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling)
1.5.2
VCC Level Monitor
Table 1-6.
Voltage Level Monitor Thresholds
Parameter
Min
Typ(1)
Max
Trigger level VLM1L
1.1
1.4
1.7
Trigger level VLM1H
1.4
1.6
1.9
Trigger level VLM2
2.0
2.5
2.7
Trigger level VLM3
3.0
3.7
4.5
Units
V
Settling time VMLM2,VLM3 (VLM1H,VLM1L)
Note:
5 (50)
µs
1. Typical values at room temperature
5
8127D–Appendix A–AVR–08/11
1.6
Analog Comparator Characteristics
Table 1-7.
Analog Comparator Characteristics, TA = -40°C - 125°C
Symbol
Parameter
Condition
VAIO
Input Offset Voltage
VCC = 5V, VIN = VCC / 2
ILAC
Input Leakage Current
VCC = 5V, VIN = VCC / 2
Analog Propagation Delay
(from saturation to slight overdrive)
VCC = 2.7V
750
VCC = 4.0V
500
Analog Propagation Delay
(large step change)
VCC = 2.7V
100
VCC = 4.0V
75
Digital Propagation Delay
VCC = 1.8V - 5.5
1
tAPD
tDPD
Min
All parameters are based on simulation results. None are tested in production
1.7
ADC Characteristics (ATtiny5/10, only)
Symbol
Parameter
40
mV
0.5
µA
2
CLK
Condition
Min
Typ
Max
Units
8
Bits
VREF = VCC = 4V,
ADC clock = 200 kHz
1.0
LSB
VREF = VCC = 4V,
ADC clock = 1 MHz
2.0
LSB
VREF = VCC = 4V,
ADC clock = 200 kHz
Noise Reduction Mode
1.0
LSB
VREF = VCC = 4V,
ADC clock = 1 MHz
Noise Reduction Mode
2.0
LSB
Integral Non-Linearity (INL)
(Accuracy after Offset and
Gain Calibration)
VREF = VCC = 4V,
ADC clock = 200 kHz
1.0
LSB
Differential Non-linearity
(DNL)
VREF = VCC = 4V,
ADC clock = 200 kHz
0.5
LSB
Gain Error
VREF = VCC = 4V,
ADC clock = 200 kHz
1.0
LSB
Offset Error
VREF = VCC = 4V,
ADC clock = 200 kHz
1.0
LSB
Conversion Time
Free Running Conversion
Clock Frequency
Input Voltage
65
260
µs
50
200
kHz
GND
VREF
V
Input Bandwidth
7.7
kHz
Analog Input Resistance
100
MΩ
ADC Conversion Output
6
< 10
ADC Characteristics. T = -40°C – 125°C. VCC = 2.5V – 5.5V
Absolute accuracy
(Including INL, DNL, and
Quantization, Gain and Offset
Errors)
RAIN
Units
-0.5
Resolution
VIN
Max
ns
Note:
Table 1-8.
Typ
0
255
LSB
ATtiny4/5/9/10
8127D–Appendix A–AVR–08/11
ATtiny4/5/9/10
1.8
Serial Programming Characteristics
Figure 1-3.
Serial Programming Timing
Receive Mode
Transmit Mode
TPIDATA
tIVCH
tCHIX
tCLOV
TPICLK
tCLCH
tCHCL
tCLCL
Table 1-9.
Serial Programming Characteristics, TA = -40°C to 125°C, VCC = 5V (Unless Otherwise Noted)
Symbol
Parameter
1/tCLCL
Clock Frequency
Min
Typ
Max
Units
2
MHz
tCLCL
Clock Period
500
ns
tCLCH
Clock Low Pulse Width
200
ns
tCHCH
Clock High Pulse Width
200
ns
tIVCH
Data Input to Clock High Setup Time
50
ns
tCHIX
Data Input Hold Time After Clock High
100
ns
tCLOV
Data Output Valid After Clock Low Time
200
ns
7
8127D–Appendix A–AVR–08/11
2. Typical Characteristics
The data contained in this section is largely based on simulations and characterization of similar
devices in the same process and design methods. Thus, the data should be treated as indications of how the part will behave.
The following charts show typical behavior. These figures are not tested during manufacturing.
During characterisation devices are operated at frequencies higher than test limits but they are
not guaranteed to function properly at frequencies higher than the ordering code indicates.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. Current consumption is a function of several factors such as operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed
and ambient temperature. The dominating factors are operating voltage and frequency.
A sine wave generator with rail-to-rail output is used as clock source but current consumption in
Power-Down mode is independent of clock selection. The difference between current consumption in Power-Down mode with Watchdog Timer enabled and Power-Down mode with Watchdog
Timer disabled represents the differential current drawn by the Watchdog Timer.
The current drawn from pins with a capacitive load may be estimated (for one pin) as follows:
I CP ≈ V CC × C L × f SW
where VCC = operating voltage, CL = load capacitance and fSW = average switching frequency of
I/O pin.
2.1
Active Supply Current
Figure 2-1.
Active Supply Current vs. VCC (Internal Oscillator, 8 MHz)
ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL OSCILLATOR, 8 MHz
3,5
125 °C
85 °C
25 °C
-40 °C
3
ICC (mA)
2,5
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
8
ATtiny4/5/9/10
8127D–Appendix A–AVR–08/11
ATtiny4/5/9/10
Figure 2-2.
Active Supply Current vs. VCC (Internal Oscillator, 1 MHz)
ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL OSCILLATOR, 1 MHz
1
0,9
-40 °C
25 °C
85 °C
125 °C
0,8
0,7
ICC (mA)
0,6
0,5
0,4
0,3
0,2
0,1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-3.
Active Supply Current vs. VCC (Internal Oscillator, 128 kHz)
ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL OSCILLATOR, 128 KHz
0,12
-40 °C
25 °C
85 °C
125 °C
0,1
ICC (mA)
0,08
0,06
0,04
0,02
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
9
8127D–Appendix A–AVR–08/11
Figure 2-4.
Active Supply Current vs. VCC (External Clock, 32 kHz)
ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL OSCILLATOR, 32 KHz
0,04
125 °C
0,035
-40 °C
85 °C
25 °C
0,03
ICC (mA)
0,025
0,02
0,015
0,01
0,005
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
2.2
Idle Supply Current
Figure 2-5.
Idle Supply Current vs. VCC (Internal Oscillator, 8 MHz)
IDLE SUPPLY CURRENT vs. VCC
INTERNAL RC OSCILLATOR, 8 MHz
0,7
125 °C
85 °C
25 °C
-40 °C
0,6
ICC (mA)
0,5
0,4
0,3
0,2
0,1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
10
ATtiny4/5/9/10
8127D–Appendix A–AVR–08/11
ATtiny4/5/9/10
Figure 2-6.
Idle Supply Current vs. VCC (Internal Oscillator, 1 MHz)
IDLE SUPPLY CURRENT vs. VCC
INTERNAL RC OSCILLATOR, 1 MHz
0,7
0,6
ICC (mA)
0,5
0,4
0,3
125 °C
85 °C
25 °C
-40 °C
0,2
0,1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
2.3
Power-down Supply Current
Figure 2-7.
Power-down Supply Current vs. VCC (Watchdog Timer Disabled)
POWER-DOWN SUPPLY CURRENT vs. V CC
WATCHDOG TIMER DISABLED
3
125 °C
2,5
ICC (uA)
2
1,5
1
0,5
85 °C
25 °C
-40 °C
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
11
8127D–Appendix A–AVR–08/11
Figure 2-8.
Power-down Supply Current vs. VCC (Watchdog Timer Enabled)
POWER-DOWN SUPPLY CURRENT vs. VCC
WATCHDOG TIMER ENABLED
10
125 °C
-40 °C
8
25 °C
85 °C
ICC (uA)
6
4
2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
2.4
Pin Pull-up
Figure 2-9.
I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V)
I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
60
50
IOP (uA)
40
30
20
25 °C
10
85 °C
-40 °C
125 °C
0
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
2
VOP (V)
12
ATtiny4/5/9/10
8127D–Appendix A–AVR–08/11
ATtiny4/5/9/10
Figure 2-10. I/O Pin Pull-up Resistor Current vs. input Voltage (VCC = 2.7V)
I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
80
70
60
IOP (uA)
50
40
30
20
25 °C
10
85 °C
-40 °C
125 °C
0
0
0,5
1,5
1
2
2,5
3
VOP (V)
Figure 2-11. I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V)
I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
160
140
120
IOP (uA)
100
80
60
40
25 °C
85 °C
-40 °C
125 °C
20
0
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
VOP (V)
13
8127D–Appendix A–AVR–08/11
Figure 2-12. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)
RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
40
35
25 °C
-40 °C
85 °C
125 °C
30
IRESET (uA)
25
20
15
10
5
0
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
2
VRESET (V)
Figure 2-13. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)
RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
60
25 °C
-40 °C
85 °C
125 °C
50
IRESET (uA)
40
30
20
10
0
0
0,5
1
1,5
2
2,5
3
VRESET (V)
14
ATtiny4/5/9/10
8127D–Appendix A–AVR–08/11
ATtiny4/5/9/10
Figure 2-14. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)
RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
120
25 °C
100
-40 °C
85 °C
125 °C
IRESET (uA)
80
60
40
20
0
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
VRESET (V)
2.5
Pin Driver Strength
Figure 2-15. I/O Pin Output Voltage vs. Sink Current (VCC = 1.8V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 1.8V
1
125 °C
0,9
0,8
0,7
85 °C
VOL (V)
0,6
0,5
25 °C
0,4
-40 °C
0,3
0,2
0,1
0
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
IOL (mA)
15
8127D–Appendix A–AVR–08/11
Figure 2-16. I/O Pin Output Voltage vs. Sink Current (VCC = 3V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 3V
0,8
125 °C
0,7
85 °C
0,6
VOL (V)
0,5
25 °C
-40 °C
0,4
0,3
0,2
0,1
0
0
1
2
3
4
5
6
7
8
9
10
IOL (mA)
Figure 2-17. I/O pin Output Voltage vs. Sink Current (VCC = 5V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 5V
1,2
125 °C
1
85 °C
VOL (V)
0,8
-40 °C
25 °C
0,6
0,4
0,2
0
0
2
4
6
8
10
12
14
16
18
20
IOL (mA)
16
ATtiny4/5/9/10
8127D–Appendix A–AVR–08/11
ATtiny4/5/9/10
Figure 2-18. I/O Pin Output Voltage vs. Source Current (VCC = 1.8V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 1.8V
2
1,8
1,6
VOH (V)
1,4
1,2
-40 °C
1
25 °C
0,8
85 °C
125 °C
0,6
0,4
0,2
0
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
IOH (mA)
Figure 2-19. I/O Pin Output Voltage vs. Source Current (VCC = 3V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 3V
3,1
2,9
VOH (V)
2,7
2,5
-40 °C
25 °C
2,3
85 °C
125 °C
2,1
1,9
1,7
1,5
0
1
2
3
4
5
6
7
8
9
10
IOH (mA)
17
8127D–Appendix A–AVR–08/11
Figure 2-20. I/O Pin output Voltage vs. Source Current (VCC = 5V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 5V
5,2
5
VOH (V)
4,8
4,6
4,4
-40 °C
25 °C
4,2
85 °C
125 °C
4
3,8
0
2
4
6
8
10
12
14
16
18
20
IOH (mA)
2.6
Pin Threshold and Hysteresis
Figure 2-21. I/O Pin Input Threshold Voltage vs. VCC (VIH, IO Pin Read as ‘1’)
I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC
VIH, IO PIN READ AS '1'
3,5
3
Threshold (V)
2,5
2
125 °C
85 °C
25 °C
-40 °C
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
18
ATtiny4/5/9/10
8127D–Appendix A–AVR–08/11
ATtiny4/5/9/10
Figure 2-22. I/O Pin Input threshold Voltage vs. VCC (VIL, IO Pin Read as ‘0’)
I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC
VIL, IO PIN READ AS '0'
3
2,5
Threshold (V)
2
1,5
1
125 °C
85 °C
25 °C
-40 °C
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-23. I/O Pin Input Hysteresis vs. VCC
I/O PIN INPUT HYSTERESIS vs. VCC
1
Input Hysteresis (V)
0,8
-40 °C
0,6
25 °C
0,4
85 °C
125 °C
0,2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
19
8127D–Appendix A–AVR–08/11
Figure 2-24. Reset Pin as I/O, Input Threshold Voltage vs. VCC (VIH, I/O Pin Read as ‘1’)
RESET PIN AS I/O THRESHOLD VOLTAGE vs. VCC
VIH, RESET READ AS '1'
3
-40 °C
25 °C
85 °C
125 °C
2,5
Threshold (V)
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-25. Reset Pin as I/O, Input Threshold Voltage vs. VCC (VIL, I/O pin Read as ‘0’)
RESET PIN AS I/O THRESHOLD VOLTAGE vs. VCC
VIL, RESET READ AS '0'
2,5
125 °C
85 °C
25 °C
-40 °C
Threshold (V)
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
20
ATtiny4/5/9/10
8127D–Appendix A–AVR–08/11
ATtiny4/5/9/10
Figure 2-26. Reset Input Hysteresis vs. VCC (Reset Pin Used as I/O)
RESET PIN AS I/O, INPUT HYSTERESIS vs. VCC
VIL, PIN READ AS "0"
0,8
-40 °C
0,7
25 °C
Input Hysteresis (V)
0,6
0,5
85 °C
125 °C
0,4
0,3
0,2
0,1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-27. Reset Input Threshold Voltage vs. VCC (VIH, I/O Pin Read as ‘1’)
RESET INPUT THRESHOLD VOLTAGE vs. VCC
VIH, IO PIN READ AS '1'
2,5
-40 °C
25 °C
85 °C
125 °C
Threshold (V)
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
21
8127D–Appendix A–AVR–08/11
Figure 2-28. Reset Input Threshold Voltage vs. VCC (VIL, I/O pin Read as ‘0’)
RESET INPUT THRESHOLD VOLTAGE vs. VCC
VIL, IO PIN READ AS '0'
2,5
125 °C
85 °C
25 °C
-40 °C
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-29. Reset Pin, Input Hysteresis vs. VCC
RESET PIN INPUT HYSTERESIS vs. VCC
1
Input Hysteresis (V)
0,8
0,6
0,4
0,2
-40 °C
25 °C
85 °C
125 °C
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
22
ATtiny4/5/9/10
8127D–Appendix A–AVR–08/11
ATtiny4/5/9/10
2.7
Analog Comparator Offset
Figure 2-30. Analog Comparator Offset
Analog Comparator Offset
Vcc = 5V
0,006
-40 °C
0,004
Offset
25 °C
0,002
85 °C
125 °C
0
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
-0,002
Vin
2.8
Internal Oscillator Speed
Figure 2-31. Watchdog Oscillator Frequency vs. VCC
WATCHDOG 128 kHz OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE
0,12
0,115
FRC (MHz)
0,11
-40 °C
25 °C
0,105
85 °C
0,1
125 °C
0,095
0,09
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
23
8127D–Appendix A–AVR–08/11
Figure 2-32. Calibrated Oscillator Frequency vs. VCC
CALIBRATED 8.0MHz OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE
8,4
-40 °C
8,2
Frequency (MHz)
25 °C
85 °C
125 °C
8
7,8
7,6
7,4
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-33. Calibrated Oscillator Frequency vs. Temperature
CALIBRATED 8.0MHz OSCILLATOR FREQUENCY vs. TEMPERATURE
8,3
8,2
Frequency (MHz)
8,1
8
7,9
5.0 V
7,8
3.0 V
7,7
1.8 V
7,6
7,5
-40
-20
0
20
40
60
80
100
120
140
Temperature
24
ATtiny4/5/9/10
8127D–Appendix A–AVR–08/11
ATtiny4/5/9/10
Figure 2-34. Calibrated Oscillator Frequency vs, OSCCAL Value
CALIBRATED 8.0MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE
VCC = 3V
16
25 °C
85 °C
-40 °C
125 °C
14
Frequency (MHz)
12
10
8
6
4
2
0
0
16
32
48
64
80
96
112
128
144
160
176
192
208
224
240
OSCCAL (X1)
2.9
VLM Thresholds
Figure 2-35. VLM1L Threshold of VCC Level Monitor
VLM THRESHOLD vs. TEMPERATURE
VLM2:0 = 001
1,45
1,44
1,43
Threshold (V)
1,42
1,41
1,4
1,39
1,38
1,37
1,36
1,35
-40
-20
0
20
40
60
80
100
120
140
Temperature (C)
25
8127D–Appendix A–AVR–08/11
Figure 2-36. VLM1H Threshold of VCC Level Monitor
VLM THRESHOLD vs. TEMPERATURE
VLM2:0 = 010
1,7
Threshold (V)
1,65
1,6
1,55
1,5
1,45
-40
-20
0
20
40
60
80
100
120
140
100
120
140
Temperature (C)
Figure 2-37. VLM2 Threshold of VCC Level Monitor
VLM THRESHOLD vs. TEMPERATURE
VLM2:0 = 011
2,48
Threshold (V)
2,47
2,46
2,45
2,44
2,43
-40
-20
0
20
40
60
80
Temperature (C)
26
ATtiny4/5/9/10
8127D–Appendix A–AVR–08/11
ATtiny4/5/9/10
Figure 2-38. VLM3 Threshold of VCC Level Monitor
VLM THRESHOLD vs. TEMPERATURE
VLM2:0 = 100
3,9
Threshold (V)
3,8
3,7
3,6
3,5
3,4
-40
-20
0
20
40
60
80
100
120
140
Temperature (C)
2.10
Current Consumption of Peripheral Units
Figure 2-39. Temperature Dependence of VLM Current vs. VCC
VLM SUPPLY CURRENT vs. VCC
VLM2:0 = 001
350
-40 °C
300
25 °C
85 °C
125 °C
ICC (uA)
250
200
150
100
50
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
27
8127D–Appendix A–AVR–08/11
Figure 2-40. Watchdog Timer Current vs. VCC
WATCHDOG TIMER CURRENT vs. VCC
10
125 °C
-40 °C
25 °C
85 °C
8
ICC (uA)
6
4
2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
2.11
Reset Pulsewidth
Figure 2-41. Minimum Reset Pulse Width vs. VCC
MINIMUM RESET PULSE WIDTH vs. VCC
2500
Pulsewidth (ns)
2000
1500
1000
125 °C
85 °C
25 °C
-40 °C
500
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
28
ATtiny4/5/9/10
8127D–Appendix A–AVR–08/11
ATtiny4/5/9/10
3. Ordering Information
3.1
ATtiny4
Speed (MHz)
Power Supply
Ordering Code(1)
Package(2)
Operational Range
10
1.8 - 5.5V
ATtiny4-TS8R(3)
6ST1
Industrial
(-40°C to 125°C)
Notes:
1. Tape and reel.
2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). NiPdAu finish.
3. Top/bottomside markings for ATtiny4:
– Topside: T4x (x stands for “die revision”)
– Bottomside: z8zzz [8 stands for (-40°C to 125°C)]
Package Type
6ST1
6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23)
29
8127D–Appendix A–AVR–08/11
3.2
ATtiny5
Speed (MHz)
Power Supply
Ordering Code(1)
Package(2)
Operational Range
10
1.8 - 5.5V
ATtiny5-TS8R(3)
6ST1
Industrial
(-40°C to 125°C)
Notes:
1. Tape and reel.
2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). NiPdAu finish.
3. Top/bottomside markings for ATtiny5:
– Topside: T5x (x stands for “die revision”)
– Bottomside: z8zzz [8 stands for (-40°C to 125°C)]
Package Type
6ST1
30
6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23)
ATtiny4/5/9/10
8127D–Appendix A–AVR–08/11
ATtiny4/5/9/10
3.3
ATtiny9
Speed (MHz)
Power Supply
Ordering Code(1)
Package(2)
Operational Range
10
1.8 - 5.5V
ATtiny9-TS8R(3)
6ST1
Industrial
(-40°C to 125°C)
Notes:
1. Tape and reel.
2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). NiPdAu finish.
3. Top/bottomside markings for ATtiny9:
– Topside: T9x (x stands for “die revision”)
– Bottomside: z8zzz [8 stands for (-40°C to 125°C)]
Package Type
6ST1
6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23)
31
8127D–Appendix A–AVR–08/11
3.4
ATtiny10
Speed (MHz)
Power Supply
Ordering Code(1)
Package(2)
Operational Range
10
1.8 - 5.5V
ATtiny10-TS8R(3)
6ST1
Industrial
(-40°C to 125°C)
Notes:
1. Tape and reel.
2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). NiPdAu finish.
3. Top/bottomside markings for ATtiny10:
– Topside: T10x (x stands for “die revision”)
– Bottomside: z8zzz [8 stands for (-40°C to 125°C)]
Package Type
6ST1
32
6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23)
ATtiny4/5/9/10
8127D–Appendix A–AVR–08/11
ATtiny4/5/9/10
4. Revision History
Revision No.
History
8127A–Appendix A–AVR–02/10
Initial revision
8127D–Appendix A–AVR–08/11
Updated contact information
33
8127D–Appendix A–AVR–08/11
Headquarters
International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369
Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (+81)(3) 3523-3551
Fax: (+81)(3) 3523-7581
Technical Support
[email protected]
Sales Contact
www.atmel.com/contacts
Product Contact
Web Site
www.atmel.com
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2011 Atmel Corporation. All rights reserved.
Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms
and product names may be trademarks of others.
8127D–Appendix A–AVR–08/11