Appendix A – ATtiny4/5/9/10 Specification at 125°C This document contains information specific to devices operating at temperatures up to 125°C. Only deviations are covered in this appendix, all other information can be found in the complete datasheet. The complete datasheet can be found at www.atmel.com. 8-bit Microcontroller with 512/1024 Bytes In-System Programmable Flash ATtiny4/5/9/10 Appendix A Rev. 8127D–Appendix A–AVR–08/11 1. Electrical Characteristics 1.1 Absolute Maximum Ratings* Operating Temperature.................................. -55°C to +125°C *NOTICE: Storage Temperature ..................................... -65°C to +150°C Voltage on any Pin except RESET with respect to Ground ................................-0.5V to VCC+0.5V Voltage on RESET with respect to Ground......-0.5V to +13.0V Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum Operating Voltage ............................................ 6.0V DC Current per I/O Pin ............................................... 40.0 mA DC Current VCC and GND Pins................................ 200.0 mA 1.2 DC Characteristics Table 1-1. DC Characteristics. TA = -40°C to +125°C Symbol Parameter Condition Min. VIL Input Low Voltage VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V Input High-voltage Except RESET pin Max. Units -0.5 0.2VCC 0.3VCC V VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V 0.7VCC(1) 0.6VCC(1) VCC +0.5(2) V Input High-voltage RESET pin VCC = 1.8V to 5.5V 0.9VCC(1) VCC +0.5(2) V VOL Output Low Voltage(3) Except RESET pin(5) IOL = 10 mA, VCC = 5V IOL = 5 mA, VCC = 3V 0.7 0.6 V VOH Output High-voltage(4) Except RESET pin(5) IOH = -10 mA, VCC = 5V IOH = -5 mA, VCC = 3V ILIL Input Leakage Current I/O Pin Vcc = 5.5V, pin low (absolute value) <0.05 2 µA ILIH Input Leakage Current I/O Pin Vcc = 5.5V, pin high (absolute value) <0.05 2 µA RRST Reset Pull-up Resistor Vcc = 5.5V, input low 30 60 kΩ RPU I/O Pin Pull-up Resistor Vcc = 5.5V, input low 20 50 kΩ VIH 2 Typ. 4.2 2.4 V ATtiny4/5/9/10 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 Table 1-1. Symbol DC Characteristics. TA = -40°C to +125°C (Continued) Parameter Condition Power Supply Current(6) ICC Power-down mode(7) Notes: Min. Typ. Max. Units Active 1MHz, VCC = 2V 0.2 0.5 mA Active 4MHz, VCC = 3V 0.8 1.5 mA Active 8MHz, VCC = 5V 2.7 5 mA Idle 1MHz, VCC = 2V 0.02 0.2 mA Idle 4MHz, VCC = 3V 0.13 0.5 mA Idle 8MHz, VCC = 5V 0.6 1.5 mA WDT enabled, VCC = 3V 4.5 20 µA WDT disabled, VCC = 3V 0.15 10 µA 1. “Min” means the lowest value where the pin is guaranteed to be read as high. 2. “Max” means the highest value where the pin is guaranteed to be read as low. 3. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOL (for all ports) should not exceed 60 mA. If IOL exceeds the test conditions, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition. 4. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOH (for all ports) should not exceed 60 mA. If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition. 5. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, has a weak drive strength as compared to regular I/O pins. 6. Values are with external clock. Power Reduction is enabled (PRR = 0xFF) and there is no I/O drive. 7. BOD Disabled. 1.3 Speed The maximum operating frequency of the device depends on VCC . As shown in Figure 1-1, the relationship between maximum frequency vs. VCC is linear between 1.8V < VCC < 4.5V. Figure 1-1. Maximum Frequency vs. VCC 10 MHz 6 MHz 4 MHz 1.8V 2.7V 4.5V 5.5V 3 8127D–Appendix A–AVR–08/11 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated Internal Oscillator It is possible to manually calibrate the internal oscillator to be more accurate than default factory calibration. Note that the oscillator frequency depends on temperature and voltage. Voltage and temperature characteristics can be found in Figure 2-32 on page 24 and Figure 2-33 on page 24. Table 1-2. Calibration Accuracy of Internal RC Oscillator Calibration Method Target Frequency VCC Temperature Accuracy at given Voltage & Temperature(1) Factory Calibration 8.0 MHz 3V 25°C ±10% User Calibration Fixed frequency within: 7.3 – 8.1 MHz Fixed voltage within: 1.8V – 5.5V Fixed temp. within: -40°C – 125°C ±1% Note: 1.4.2 1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage). External Clock Drive Figure 1-2. External Clock Drive Waveform V IH1 V IL1 Table 1-3. External Clock Drive Characteristics VCC = 1.8 - 5.5V VCC = 2.7 - 5.5V VCC = 4.5 - 5.5V Symbol Parameter 1/tCLCL Clock Frequency tCLCL Clock Period 250 125 100 ns tCHCX High Time 100 50 33 ns tCLCX Low Time 100 50 33 ns tCLCH Rise Time 2.0 1 0.6 μs tCHCL Fall Time 2.0 1 0.6 μs ΔtCLCL Change in period from one clock cycle to the next 2 2 2 % 4 Min. Max. Min. Max. Min. Max. Units 0 4 0 8 0 10 MHz ATtiny4/5/9/10 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.5 System and Reset Characteristics Table 1-4. Symbol Parameter VRST RESET Pin Threshold Voltage tRST Minimum pulse width on RESET Pin tTOUT Note: 1.5.1 Reset and Internal Voltage Characteristics Condition Min(1) Typ(1) 0.2 VCC VCC = 1.8V VCC = 3V VCC = 5V Max(1) Units 0.9VCC V 2000 700 400 Time-out after reset ns 64 128 ms 1. Values are guidelines, only Power-On Reset Table 1-5. Symbol Characteristics of Enhanced Power-On Reset. TA = -40 - 125°C Parameter Release threshold of power-on reset VPOR (2) VPOA Activation threshold of power-on reset SRON Power-On Slope Rate Notes: (3) Min(1) Typ(1) Max(1) Units 1.1 1.4 1.7 V 0.6 1.3 1.7 V 0.01 V/ms 1. Values are guidelines, only 2. Threshold where device is released from reset when voltage is rising 3. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling) 1.5.2 VCC Level Monitor Table 1-6. Voltage Level Monitor Thresholds Parameter Min Typ(1) Max Trigger level VLM1L 1.1 1.4 1.7 Trigger level VLM1H 1.4 1.6 1.9 Trigger level VLM2 2.0 2.5 2.7 Trigger level VLM3 3.0 3.7 4.5 Units V Settling time VMLM2,VLM3 (VLM1H,VLM1L) Note: 5 (50) µs 1. Typical values at room temperature 5 8127D–Appendix A–AVR–08/11 1.6 Analog Comparator Characteristics Table 1-7. Analog Comparator Characteristics, TA = -40°C - 125°C Symbol Parameter Condition VAIO Input Offset Voltage VCC = 5V, VIN = VCC / 2 ILAC Input Leakage Current VCC = 5V, VIN = VCC / 2 Analog Propagation Delay (from saturation to slight overdrive) VCC = 2.7V 750 VCC = 4.0V 500 Analog Propagation Delay (large step change) VCC = 2.7V 100 VCC = 4.0V 75 Digital Propagation Delay VCC = 1.8V - 5.5 1 tAPD tDPD Min All parameters are based on simulation results. None are tested in production 1.7 ADC Characteristics (ATtiny5/10, only) Symbol Parameter 40 mV 0.5 µA 2 CLK Condition Min Typ Max Units 8 Bits VREF = VCC = 4V, ADC clock = 200 kHz 1.0 LSB VREF = VCC = 4V, ADC clock = 1 MHz 2.0 LSB VREF = VCC = 4V, ADC clock = 200 kHz Noise Reduction Mode 1.0 LSB VREF = VCC = 4V, ADC clock = 1 MHz Noise Reduction Mode 2.0 LSB Integral Non-Linearity (INL) (Accuracy after Offset and Gain Calibration) VREF = VCC = 4V, ADC clock = 200 kHz 1.0 LSB Differential Non-linearity (DNL) VREF = VCC = 4V, ADC clock = 200 kHz 0.5 LSB Gain Error VREF = VCC = 4V, ADC clock = 200 kHz 1.0 LSB Offset Error VREF = VCC = 4V, ADC clock = 200 kHz 1.0 LSB Conversion Time Free Running Conversion Clock Frequency Input Voltage 65 260 µs 50 200 kHz GND VREF V Input Bandwidth 7.7 kHz Analog Input Resistance 100 MΩ ADC Conversion Output 6 < 10 ADC Characteristics. T = -40°C – 125°C. VCC = 2.5V – 5.5V Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset Errors) RAIN Units -0.5 Resolution VIN Max ns Note: Table 1-8. Typ 0 255 LSB ATtiny4/5/9/10 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.8 Serial Programming Characteristics Figure 1-3. Serial Programming Timing Receive Mode Transmit Mode TPIDATA tIVCH tCHIX tCLOV TPICLK tCLCH tCHCL tCLCL Table 1-9. Serial Programming Characteristics, TA = -40°C to 125°C, VCC = 5V (Unless Otherwise Noted) Symbol Parameter 1/tCLCL Clock Frequency Min Typ Max Units 2 MHz tCLCL Clock Period 500 ns tCLCH Clock Low Pulse Width 200 ns tCHCH Clock High Pulse Width 200 ns tIVCH Data Input to Clock High Setup Time 50 ns tCHIX Data Input Hold Time After Clock High 100 ns tCLOV Data Output Valid After Clock Low Time 200 ns 7 8127D–Appendix A–AVR–08/11 2. Typical Characteristics The data contained in this section is largely based on simulations and characterization of similar devices in the same process and design methods. Thus, the data should be treated as indications of how the part will behave. The following charts show typical behavior. These figures are not tested during manufacturing. During characterisation devices are operated at frequencies higher than test limits but they are not guaranteed to function properly at frequencies higher than the ordering code indicates. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. Current consumption is a function of several factors such as operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency. A sine wave generator with rail-to-rail output is used as clock source but current consumption in Power-Down mode is independent of clock selection. The difference between current consumption in Power-Down mode with Watchdog Timer enabled and Power-Down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer. The current drawn from pins with a capacitive load may be estimated (for one pin) as follows: I CP ≈ V CC × C L × f SW where VCC = operating voltage, CL = load capacitance and fSW = average switching frequency of I/O pin. 2.1 Active Supply Current Figure 2-1. Active Supply Current vs. VCC (Internal Oscillator, 8 MHz) ACTIVE SUPPLY CURRENT vs. VCC INTERNAL OSCILLATOR, 8 MHz 3,5 125 °C 85 °C 25 °C -40 °C 3 ICC (mA) 2,5 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 8 ATtiny4/5/9/10 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 Figure 2-2. Active Supply Current vs. VCC (Internal Oscillator, 1 MHz) ACTIVE SUPPLY CURRENT vs. VCC INTERNAL OSCILLATOR, 1 MHz 1 0,9 -40 °C 25 °C 85 °C 125 °C 0,8 0,7 ICC (mA) 0,6 0,5 0,4 0,3 0,2 0,1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-3. Active Supply Current vs. VCC (Internal Oscillator, 128 kHz) ACTIVE SUPPLY CURRENT vs. VCC INTERNAL OSCILLATOR, 128 KHz 0,12 -40 °C 25 °C 85 °C 125 °C 0,1 ICC (mA) 0,08 0,06 0,04 0,02 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 9 8127D–Appendix A–AVR–08/11 Figure 2-4. Active Supply Current vs. VCC (External Clock, 32 kHz) ACTIVE SUPPLY CURRENT vs. VCC INTERNAL OSCILLATOR, 32 KHz 0,04 125 °C 0,035 -40 °C 85 °C 25 °C 0,03 ICC (mA) 0,025 0,02 0,015 0,01 0,005 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2.2 Idle Supply Current Figure 2-5. Idle Supply Current vs. VCC (Internal Oscillator, 8 MHz) IDLE SUPPLY CURRENT vs. VCC INTERNAL RC OSCILLATOR, 8 MHz 0,7 125 °C 85 °C 25 °C -40 °C 0,6 ICC (mA) 0,5 0,4 0,3 0,2 0,1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 10 ATtiny4/5/9/10 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 Figure 2-6. Idle Supply Current vs. VCC (Internal Oscillator, 1 MHz) IDLE SUPPLY CURRENT vs. VCC INTERNAL RC OSCILLATOR, 1 MHz 0,7 0,6 ICC (mA) 0,5 0,4 0,3 125 °C 85 °C 25 °C -40 °C 0,2 0,1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2.3 Power-down Supply Current Figure 2-7. Power-down Supply Current vs. VCC (Watchdog Timer Disabled) POWER-DOWN SUPPLY CURRENT vs. V CC WATCHDOG TIMER DISABLED 3 125 °C 2,5 ICC (uA) 2 1,5 1 0,5 85 °C 25 °C -40 °C 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 11 8127D–Appendix A–AVR–08/11 Figure 2-8. Power-down Supply Current vs. VCC (Watchdog Timer Enabled) POWER-DOWN SUPPLY CURRENT vs. VCC WATCHDOG TIMER ENABLED 10 125 °C -40 °C 8 25 °C 85 °C ICC (uA) 6 4 2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2.4 Pin Pull-up Figure 2-9. I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V) I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE 60 50 IOP (uA) 40 30 20 25 °C 10 85 °C -40 °C 125 °C 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 VOP (V) 12 ATtiny4/5/9/10 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 Figure 2-10. I/O Pin Pull-up Resistor Current vs. input Voltage (VCC = 2.7V) I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE 80 70 60 IOP (uA) 50 40 30 20 25 °C 10 85 °C -40 °C 125 °C 0 0 0,5 1,5 1 2 2,5 3 VOP (V) Figure 2-11. I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V) I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE 160 140 120 IOP (uA) 100 80 60 40 25 °C 85 °C -40 °C 125 °C 20 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 VOP (V) 13 8127D–Appendix A–AVR–08/11 Figure 2-12. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V) RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE 40 35 25 °C -40 °C 85 °C 125 °C 30 IRESET (uA) 25 20 15 10 5 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 VRESET (V) Figure 2-13. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V) RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE 60 25 °C -40 °C 85 °C 125 °C 50 IRESET (uA) 40 30 20 10 0 0 0,5 1 1,5 2 2,5 3 VRESET (V) 14 ATtiny4/5/9/10 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 Figure 2-14. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V) RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE 120 25 °C 100 -40 °C 85 °C 125 °C IRESET (uA) 80 60 40 20 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 VRESET (V) 2.5 Pin Driver Strength Figure 2-15. I/O Pin Output Voltage vs. Sink Current (VCC = 1.8V) I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT VCC = 1.8V 1 125 °C 0,9 0,8 0,7 85 °C VOL (V) 0,6 0,5 25 °C 0,4 -40 °C 0,3 0,2 0,1 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 IOL (mA) 15 8127D–Appendix A–AVR–08/11 Figure 2-16. I/O Pin Output Voltage vs. Sink Current (VCC = 3V) I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT VCC = 3V 0,8 125 °C 0,7 85 °C 0,6 VOL (V) 0,5 25 °C -40 °C 0,4 0,3 0,2 0,1 0 0 1 2 3 4 5 6 7 8 9 10 IOL (mA) Figure 2-17. I/O pin Output Voltage vs. Sink Current (VCC = 5V) I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT VCC = 5V 1,2 125 °C 1 85 °C VOL (V) 0,8 -40 °C 25 °C 0,6 0,4 0,2 0 0 2 4 6 8 10 12 14 16 18 20 IOL (mA) 16 ATtiny4/5/9/10 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 Figure 2-18. I/O Pin Output Voltage vs. Source Current (VCC = 1.8V) I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT VCC = 1.8V 2 1,8 1,6 VOH (V) 1,4 1,2 -40 °C 1 25 °C 0,8 85 °C 125 °C 0,6 0,4 0,2 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 IOH (mA) Figure 2-19. I/O Pin Output Voltage vs. Source Current (VCC = 3V) I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT VCC = 3V 3,1 2,9 VOH (V) 2,7 2,5 -40 °C 25 °C 2,3 85 °C 125 °C 2,1 1,9 1,7 1,5 0 1 2 3 4 5 6 7 8 9 10 IOH (mA) 17 8127D–Appendix A–AVR–08/11 Figure 2-20. I/O Pin output Voltage vs. Source Current (VCC = 5V) I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT VCC = 5V 5,2 5 VOH (V) 4,8 4,6 4,4 -40 °C 25 °C 4,2 85 °C 125 °C 4 3,8 0 2 4 6 8 10 12 14 16 18 20 IOH (mA) 2.6 Pin Threshold and Hysteresis Figure 2-21. I/O Pin Input Threshold Voltage vs. VCC (VIH, IO Pin Read as ‘1’) I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC VIH, IO PIN READ AS '1' 3,5 3 Threshold (V) 2,5 2 125 °C 85 °C 25 °C -40 °C 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 18 ATtiny4/5/9/10 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 Figure 2-22. I/O Pin Input threshold Voltage vs. VCC (VIL, IO Pin Read as ‘0’) I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC VIL, IO PIN READ AS '0' 3 2,5 Threshold (V) 2 1,5 1 125 °C 85 °C 25 °C -40 °C 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-23. I/O Pin Input Hysteresis vs. VCC I/O PIN INPUT HYSTERESIS vs. VCC 1 Input Hysteresis (V) 0,8 -40 °C 0,6 25 °C 0,4 85 °C 125 °C 0,2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 19 8127D–Appendix A–AVR–08/11 Figure 2-24. Reset Pin as I/O, Input Threshold Voltage vs. VCC (VIH, I/O Pin Read as ‘1’) RESET PIN AS I/O THRESHOLD VOLTAGE vs. VCC VIH, RESET READ AS '1' 3 -40 °C 25 °C 85 °C 125 °C 2,5 Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-25. Reset Pin as I/O, Input Threshold Voltage vs. VCC (VIL, I/O pin Read as ‘0’) RESET PIN AS I/O THRESHOLD VOLTAGE vs. VCC VIL, RESET READ AS '0' 2,5 125 °C 85 °C 25 °C -40 °C Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 20 ATtiny4/5/9/10 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 Figure 2-26. Reset Input Hysteresis vs. VCC (Reset Pin Used as I/O) RESET PIN AS I/O, INPUT HYSTERESIS vs. VCC VIL, PIN READ AS "0" 0,8 -40 °C 0,7 25 °C Input Hysteresis (V) 0,6 0,5 85 °C 125 °C 0,4 0,3 0,2 0,1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-27. Reset Input Threshold Voltage vs. VCC (VIH, I/O Pin Read as ‘1’) RESET INPUT THRESHOLD VOLTAGE vs. VCC VIH, IO PIN READ AS '1' 2,5 -40 °C 25 °C 85 °C 125 °C Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 21 8127D–Appendix A–AVR–08/11 Figure 2-28. Reset Input Threshold Voltage vs. VCC (VIL, I/O pin Read as ‘0’) RESET INPUT THRESHOLD VOLTAGE vs. VCC VIL, IO PIN READ AS '0' 2,5 125 °C 85 °C 25 °C -40 °C 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-29. Reset Pin, Input Hysteresis vs. VCC RESET PIN INPUT HYSTERESIS vs. VCC 1 Input Hysteresis (V) 0,8 0,6 0,4 0,2 -40 °C 25 °C 85 °C 125 °C 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 22 ATtiny4/5/9/10 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 2.7 Analog Comparator Offset Figure 2-30. Analog Comparator Offset Analog Comparator Offset Vcc = 5V 0,006 -40 °C 0,004 Offset 25 °C 0,002 85 °C 125 °C 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 -0,002 Vin 2.8 Internal Oscillator Speed Figure 2-31. Watchdog Oscillator Frequency vs. VCC WATCHDOG 128 kHz OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE 0,12 0,115 FRC (MHz) 0,11 -40 °C 25 °C 0,105 85 °C 0,1 125 °C 0,095 0,09 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 23 8127D–Appendix A–AVR–08/11 Figure 2-32. Calibrated Oscillator Frequency vs. VCC CALIBRATED 8.0MHz OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE 8,4 -40 °C 8,2 Frequency (MHz) 25 °C 85 °C 125 °C 8 7,8 7,6 7,4 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-33. Calibrated Oscillator Frequency vs. Temperature CALIBRATED 8.0MHz OSCILLATOR FREQUENCY vs. TEMPERATURE 8,3 8,2 Frequency (MHz) 8,1 8 7,9 5.0 V 7,8 3.0 V 7,7 1.8 V 7,6 7,5 -40 -20 0 20 40 60 80 100 120 140 Temperature 24 ATtiny4/5/9/10 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 Figure 2-34. Calibrated Oscillator Frequency vs, OSCCAL Value CALIBRATED 8.0MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE VCC = 3V 16 25 °C 85 °C -40 °C 125 °C 14 Frequency (MHz) 12 10 8 6 4 2 0 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 OSCCAL (X1) 2.9 VLM Thresholds Figure 2-35. VLM1L Threshold of VCC Level Monitor VLM THRESHOLD vs. TEMPERATURE VLM2:0 = 001 1,45 1,44 1,43 Threshold (V) 1,42 1,41 1,4 1,39 1,38 1,37 1,36 1,35 -40 -20 0 20 40 60 80 100 120 140 Temperature (C) 25 8127D–Appendix A–AVR–08/11 Figure 2-36. VLM1H Threshold of VCC Level Monitor VLM THRESHOLD vs. TEMPERATURE VLM2:0 = 010 1,7 Threshold (V) 1,65 1,6 1,55 1,5 1,45 -40 -20 0 20 40 60 80 100 120 140 100 120 140 Temperature (C) Figure 2-37. VLM2 Threshold of VCC Level Monitor VLM THRESHOLD vs. TEMPERATURE VLM2:0 = 011 2,48 Threshold (V) 2,47 2,46 2,45 2,44 2,43 -40 -20 0 20 40 60 80 Temperature (C) 26 ATtiny4/5/9/10 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 Figure 2-38. VLM3 Threshold of VCC Level Monitor VLM THRESHOLD vs. TEMPERATURE VLM2:0 = 100 3,9 Threshold (V) 3,8 3,7 3,6 3,5 3,4 -40 -20 0 20 40 60 80 100 120 140 Temperature (C) 2.10 Current Consumption of Peripheral Units Figure 2-39. Temperature Dependence of VLM Current vs. VCC VLM SUPPLY CURRENT vs. VCC VLM2:0 = 001 350 -40 °C 300 25 °C 85 °C 125 °C ICC (uA) 250 200 150 100 50 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 27 8127D–Appendix A–AVR–08/11 Figure 2-40. Watchdog Timer Current vs. VCC WATCHDOG TIMER CURRENT vs. VCC 10 125 °C -40 °C 25 °C 85 °C 8 ICC (uA) 6 4 2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2.11 Reset Pulsewidth Figure 2-41. Minimum Reset Pulse Width vs. VCC MINIMUM RESET PULSE WIDTH vs. VCC 2500 Pulsewidth (ns) 2000 1500 1000 125 °C 85 °C 25 °C -40 °C 500 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 28 ATtiny4/5/9/10 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 3. Ordering Information 3.1 ATtiny4 Speed (MHz) Power Supply Ordering Code(1) Package(2) Operational Range 10 1.8 - 5.5V ATtiny4-TS8R(3) 6ST1 Industrial (-40°C to 125°C) Notes: 1. Tape and reel. 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). NiPdAu finish. 3. Top/bottomside markings for ATtiny4: – Topside: T4x (x stands for “die revision”) – Bottomside: z8zzz [8 stands for (-40°C to 125°C)] Package Type 6ST1 6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23) 29 8127D–Appendix A–AVR–08/11 3.2 ATtiny5 Speed (MHz) Power Supply Ordering Code(1) Package(2) Operational Range 10 1.8 - 5.5V ATtiny5-TS8R(3) 6ST1 Industrial (-40°C to 125°C) Notes: 1. Tape and reel. 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). NiPdAu finish. 3. Top/bottomside markings for ATtiny5: – Topside: T5x (x stands for “die revision”) – Bottomside: z8zzz [8 stands for (-40°C to 125°C)] Package Type 6ST1 30 6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23) ATtiny4/5/9/10 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 3.3 ATtiny9 Speed (MHz) Power Supply Ordering Code(1) Package(2) Operational Range 10 1.8 - 5.5V ATtiny9-TS8R(3) 6ST1 Industrial (-40°C to 125°C) Notes: 1. Tape and reel. 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). NiPdAu finish. 3. Top/bottomside markings for ATtiny9: – Topside: T9x (x stands for “die revision”) – Bottomside: z8zzz [8 stands for (-40°C to 125°C)] Package Type 6ST1 6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23) 31 8127D–Appendix A–AVR–08/11 3.4 ATtiny10 Speed (MHz) Power Supply Ordering Code(1) Package(2) Operational Range 10 1.8 - 5.5V ATtiny10-TS8R(3) 6ST1 Industrial (-40°C to 125°C) Notes: 1. Tape and reel. 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). NiPdAu finish. 3. Top/bottomside markings for ATtiny10: – Topside: T10x (x stands for “die revision”) – Bottomside: z8zzz [8 stands for (-40°C to 125°C)] Package Type 6ST1 32 6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23) ATtiny4/5/9/10 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 4. Revision History Revision No. History 8127A–Appendix A–AVR–02/10 Initial revision 8127D–Appendix A–AVR–08/11 Updated contact information 33 8127D–Appendix A–AVR–08/11 Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: (+1)(408) 441-0311 Fax: (+1)(408) 487-2600 Atmel Asia Limited Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 JAPAN Tel: (+81)(3) 3523-3551 Fax: (+81)(3) 3523-7581 Technical Support [email protected] Sales Contact www.atmel.com/contacts Product Contact Web Site www.atmel.com Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2011 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 8127D–Appendix A–AVR–08/11