AT25010A/020A/040A - Mature

Features
• Serial Peripheral Interface (SPI) Compatible
• Supports SPI Modes 0 (0,0) and 3 (1,1)
– Data Sheet Describes Mode 0 Operation
• Medium-voltage and Standard-voltage Operation
•
•
•
•
•
•
•
– 5.0 (VCC = 4.5V to 5.5V)
– 2.7 (VCC = 2.7V to 5.5V)
5.0 MHz Clock Rate
8-byte Page Mode
Block Write Protection
– Protect 1/4, 1/2, or Entire Array
Write Protect (WP) Pin and Write Disable Instructions for Both Hardware and Software
Data Protection
Self-timed Write Cycle (10 ms max)
High Reliability
– Endurance: One Million Write Cycles
– Data Retention: 100 Years
8-pin PDIP and 8-lead JEDEC SOIC Package
SPI Serial
Automotive
EEPROMs
1K (128 x 8)
2K (256 x 8)
Description
The AT25010A/020A/040A provides 1024/2048/4096 bits of serial electrically erasable programmable read-only memory (EEPROM) organized as 128/256/512 words of
8 bits each. The device is optimized for use in many automotive applications where
low-power and low-voltage operation are essential. The AT25010A/020A/040A is
available in space-saving 8-pin PDIP and 8-lead JEDEC SOIC packages.
The AT25010A/020A/040A is enabled through the Chip Select pin (CS) and accessed
via a three-wire interface consisting of Serial Data Input (SI), Serial Data Output (SO),
and Serial Clock (SCK). All programming cycles are completely self-timed, and no
separate erase cycle is required before write.
4K (512 x 8)
AT25010A
AT25020A
AT25040A
Block write protection is enabled by programming the status register with one of four
blocks of write protection. Separate Program Enable and Program Disable instructions
are provided for additional data protection. Hardware data protection is provided via
the WP pin to protect against inadvertent write attempts. The HOLD pin may be used
to suspend any serial communication without resetting the serial sequence.
SPI, 1K Serial
E2PROM
Table 1. Pin Configurations
Pin Name
Function
CS
Chip Select
SCK
Serial Data Clock
SI
Serial Data Input
SO
Serial Data Output
GND
Ground
VCC
Power Supply
8-lead PDIP
CS
SO
WP
GND
1
2
3
4
8
7
6
5
VCC
HOLD
SCK
SI
8-lead SOIC
C S
SO
W P
G N D
1
2
3
4
8
7
6
5
V
H
S
S
C C
O L
C K
I
3402B-SEEPR-9/04
1
Absolute Maximum Ratings*
Operating Temperature.................................... −55°C to + 125°C
Storage Temperature ....................................... −65°C to + 150°C
Voltage on Any Pin
with Respect to Ground ....................................... −1.0V to + 7.0V
Maximum Operating Voltage .......................................... 6.25V
*NOTICE:
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.
DC Output Current........................................................ 5.0 mA
Figure 1. Block Diagram
STATUS
REGISTER
MEMORY ARRAY
128/256/512 x 8
ADDRESS
DECODER
DATA
REGISTER
OUTPUT
BUFFER
SI
CS
WP
SCK
MODE
DECODE
LOGIC
CLOCK
GENERATOR
SO
HOLD
2
AT25010A/020A/040A
3402B-SEEPR-9/04
AT25010A/020A/040A
Table 2. Pin Capacitance (1)
Applicable over recommended operating range from TA = 25°C, f = 1.0 MHz, VCC = +5.0V (unless otherwise noted)
Symbol
Test Conditions
COUT
CIN
Note:
Max
Units
Conditions
Output Capacitance (SO)
8
pF
VOUT = 0V
Input Capacitance (CS, SCK, SI, WP, HOLD)
6
pF
VIN = 0V
1. This parameter is characterized and is not 100% tested.
Table 3. DC Characteristics
Applicable over recommended operating range from: TA = −40°C to +125°C, VCC = +2.7V to +5.5V
Symbol
Parameter
VCC1
Min
Max
Units
Supply Voltage
2.7
5.5
V
VCC2
Supply Voltage
4.5
5.5
V
ICC1
Supply Current
VCC = 5.0V at 1 MHz, SO = Open, Read
3.0
mA
ICC2
Supply Current
VCC = 5.0V at 2 MHz, SO = Open, Read, Write
6.0
mA
ICC3
Supply Current
VCC = 5.0V at 5 MHz, SO = Open, Read, Write
6.0
mA
ISB1
Standby Current
VCC = 2.7V
CS = VCC
3.0
µA
ISB2
Standby Current
VCC = 5.0V
CS = VCC
5.0
µA
IIL
Input Leakage
VIN = 0V to VCC
−0.6
3.0
µA
Output Leakage
VIN = 0V to VCC
−0.6
3.0
µA
Input Low Voltage
−0.6
VCC x 0.3
V
VIH(1)
Input High Voltage
VCC x 0.7
VCC + 0.5
V
VOL1
Output Low Voltage
0.4
V
VOH1
Output High Voltage
VOL2
Output Low Voltage
IOL
VIL
(1)
VOH2
Notes:
Output High Voltage
Test Condition
3.6V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 3.6V
IOL = 2.0 mA
IOH = −1.0 mA
VCC − 0.8
IOL = 0.15 mA
IOH = −100 µA
V
0.2
VCC − 0.2
V
V
1. VIL min and VIH max are reference only and are not tested.
3
3402B-SEEPR-9/04
Table 4. AC Characteristics
Applicable over recommended operating range from TA = −40°C to +125°C, VCC = As Specified,
CL = 1 TTL Gate and 100 pF (unless otherwise noted)
Symbol
Parameter
Voltage
Min
Max
Units
fSCK
SCK Clock Frequency
4.5–5.5
2.7–5.5
0
0
5.0
5.0
MHz
tRI
Input Rise Time
4.5–5.5
2.7–5.5
2
2
µs
tFI
Input Fall Time
4.5–5.5
2.7–5.5
2
2
µs
tWH
SCK High Time
4.5–5.5
2.7–5.5
80
80
ns
tWL
SCK Low Time
4.5–5.5
2.7–5.5
80
80
ns
tCS
CS High Time
4.5–5.5
2.7–5.5
100
100
ns
tCSS
CS Setup Time
4.5–5.5
2.7–5.5
100
100
ns
tCSH
CS Hold0 Time
4.5–5.5
2.7–5.5
100
100
ns
tSU
Data In Setup Time
4.5–5.5
2.7–5.5
80
80
ns
tH
Data In Hold Time
4.5–5.5
2.7–5.5
80
80
ns
tHD
Hold Setup Time
4.5–5.5
2.7–5.5
80
80
ns
tCD
Hold Hold Time
4.5–5.5
2.7–5.5
80
80
ns
tV
Output Valid
4.5–5.5
2.7–5.5
0
0
tHO
Output Hold Time
4.5–5.5
2.7–5.5
0
0
tLZ
Hold to Output Low Z
4.5–5.5
2.7–5.5
0
0
tHZ
Hold to Output High Z
tDIS
80
80
ns
ns
100
100
ns
4.5–5.5
2.7–5.5
100
100
ns
Output Disable Time
4.5–5.5
2.7–5.5
100
100
ns
tWC
Write Cycle Time
4.5–5.5
2.7–5.5
5
5
ms
Endurance(1)
5.0V, 25°C, Page Mode
Note:
4
1M
Write Cycles
1. This parameter is characterized and is not 100% tested.
AT25010A/020A/040A
3402B-SEEPR-9/04
AT25010A/020A/040A
Serial Interface
Description
MASTER: The device that generates the serial clock.
SLAVE: Beca use the serial clock pin (SCK) is alw ays an in put, th e
AT25010A/020A/040A always operates as a slave.
TRANSMITTER/RECEIVER: The AT25010A/020A/040A has separate pins designated
for data transmission (SO) and reception (SI).
MSB: The Most Significant Bit (MSB) is the first bit transmitted and received.
SERIAL OP-CODE: After the device is selected with CS going low, the first byte will be
received. This byte contains the op-code that defines the operations to be performed.
The op-code also contains address bit A8 in both the Read and Write instructions.
INVALID OP-CODE: If an invalid op-code is received, no data will be shifted into the
AT25010A/020A/040A, and the serial output pin (SO) will remain in a high impedance
state until the falling edge of CS is detected again. This will reinitialize the serial
communication.
CHIP SELECT: The AT25010A/020A/040A is selected when the CS pin is low. When
the device is not selected, data will not be accepted via the SI pin, and the serial output
pin (SO) will remain in a high impedance state.
H O LD : Th e H O LD p in is u se d in co n jun ctio n w it h the C S pin to s e le ct th e
AT25010A/020A/040A. When the device is selected and a serial sequence is underway,
HOLD can be used to pause the serial communication with the master device without
resetting the serial sequence. To pause, the HOLD pin must be brought low while the
SCK pin is low. To resume serial communication, the HOLD pin is brought high while the
SCK pin is low (SCK may still toggle during HOLD). Inputs to the SI pin will be ignored
while the SO pin is in the high impedance state.
WRITE PROTECT: The write protect pin (WP) will allow normal read/write operations
when held high. When the WP pin is brought low, all write operations are inhibited.
WP going low while CS is still low will interrupt a write to the AT25010A/020A/040A. If
the internal write cycle has already been initiated, WP going low will have no effect on
any write operation.
5
3402B-SEEPR-9/04
Figure 2. SPI Serial Interface
AT25010A/020A/040A
6
AT25010A/020A/040A
3402B-SEEPR-9/04
AT25010A/020A/040A
Functional
Description
The AT25010A/020A/040A is designed to interface directly with the synchronous serial
peripheral interface (SPI) of the 6805 and 68HC11 series of microcontrollers.
The AT25010A/020A/040A utilizes an 8-bit instruction register. The list of instructions
and their operation codes are contained in Table 5. All instructions, addresses, and data
are transferred with the MSB first and start with a high-to-low CS transition.
Table 5. Instruction Set for the AT25010A/020A/040A
Instruction Name
Instruction Format
Operation
WREN
0000 X110
Set Write Enable Latch
WRDI
0000 X100
Reset Write Enable Latch
RDSR
0000 X101
Read Status Register
WRSR
0000 X001
Write Status Register
READ
0000 A011
Read Data from Memory Array
WRITE
0000 A010
Write Data to Memory Array
Note:
“A” represents MSB address bit A8.
WRITE ENABLE (WREN): The device will power up in the write disable state when VCC
is applied. All programming instructions must therefore be preceded by a Write Enable
instruction. The WP pin must be held high during a WREN instruction.
WRITE DISABLE (WRDI): To protect the device against inadvertent writes, the Write
Disable instruction disables all programming modes. The WRDI instruction is independent of the status of the WP pin.
READ STATUS REGISTER (RDSR): The Read Status Register instruction provides
access to the status register. The ready/busy and write enable status of the device can
be determined by the RDSR instruction. Similarly, the block write protection bits indicate
the extent of protection employed. These bits are set by using the WRSR instruction.
Table 6. Status Register Format
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
X
X
X
X
BP1
BP0
WEN
RDY
Table 7. Read Status Register Bit Definition
Bit
Definition
Bit 0 (RDY)
Bit 0 = “0” (RDY) indicates the device is ready. Bit 0 = “1”
indicates the write cycle is in progress.
Bit 1 (WEN)
Bit 1 = “0” indicates the device is not write enabled. Bit 1 = “1”
indicates the device is write enabled.
Bit 2 (BP0)
See Table 8.
Bit 3 (BP1)
See Table 8.
Bits 4–7 are “0”s when device is not in an internal write cycle.
Bits 0–7 are “1”s during an internal write cycle.
WRITE STATUS REGISTER (WRSR): The WRSR instruction allows the user to select
one of four levels of protection. The AT25010A/020A/040A is divided into four array segments. Top quarter, top half, or all of the memory segments can be protected. Any of the
7
3402B-SEEPR-9/04
data within any selected segment will therefore be read only. The block write protection
levels and corresponding status register control bits are shown in Table 8.
Bits BP1 and BP0 are nonvolatile cells that have the same properties and functions as
the regular memory cells (e.g., WREN, tWC, RDSR).
Table 8. Block Write Protect Bits
Status Register Bits
Array Addresses Protected
Level
BP1
BP0
AT25010A
AT25020A
AT25040A
0
0
0
None
None
None
1 (1/4)
0
1
60-7F
C0-FF
180-1FF
2 (1/2)
1
0
40-7F
80-FF
100-1FF
3 (All)
1
1
00-7F
00-FF
000-1FF
READ SEQUENCE (READ): Reading the AT25010A/020A/040A via the serial output
(SO) pin requires the following sequence. After the CS line is pulled low to select a
device, the read op-code (including A8) is transmitted via the SI line followed by the byte
address to be read (A7–A0). Upon completion, any data on the SI line will be ignored.
The data (D7–D0) at the specified address is then shifted out onto the SO line. If only
one byte is to be read, the CS line should be driven high after the data comes out. The
read sequence can be continued since the byte address is automatically incremented
and data will continue to be shifted out. When the highest address is reached, the
address counter will roll over to the lowest address allowing the entire memory to be
read in one continuous read cycle.
WRITE SEQUENCE (WRITE): In order to program the AT25010A/020A/040A, the write
protect pin (WP) must be held high and two separate instructions must be executed.
First, the device must be write enabled via the Write Enable (WREN) instruction. Then a
Write (WRITE) instruction may be executed. Also, the address of the memory location(s) to be programmed must be outside the protected address field location selected
by the block write protection level. During an internal write cycle, all commands will be
ignored except the RDSR instruction.
A Write instruction requires the following sequence. After the CS line is pulled low to
select the device, the write op-code (including A8) is transmitted via the SI line followed
by the byte address (A7–A0) and the data (D7–D0) to be programmed. Programming
will start after the CS pin is brought high. The low-to-high transition of the CS pin must
occur during the SCK low time immediately after clocking in the D0 (LSB) data bit.
The ready/busy status of the device can be determined by initiating a Read Status Register (RDSR) instruction. If Bit 0 = “1”, the write cycle is still in progress. If Bit 0 = “0”, the
write cycle has ended. Only the Read Status Register instruction is enabled during the
write programming cycle.
The AT25010A/020A/040A is capable of an 8-byte page write operation. After each byte
of data is received, the three low-order address bits are internally incremented by one;
the six high-order bits of the address will remain constant. If more than 8 bytes of data
are transmitted, the address counter will roll over and the previously written data will be
overwritten. The AT25010A/020A/040A is automatically returned to the write disable
state at the completion of a write cycle.
NOTE: If the WP pin is brought low or if the device is not write enabled (WREN), the
device will ignore the Write instruction and will return to the standby state, when CS is
brought high. A new CS falling edge is required to reinitiate the serial communication.
8
AT25010A/020A/040A
3402B-SEEPR-9/04
AT25010A/020A/040A
Timing Diagrams
Figure 3. Synchronous Data Timing (for mode 0)
t CS
VIH
CS
VIL
t CSH
t CSS
VIH
t WH
SCK
t WL
VIL
tH
t SU
VIH
SI
VALID IN
VIL
tV
VOH
SO
HI-Z
t HO
t DIS
HI-Z
VOL
Figure 4. WREN Timing
Figure 5. WRDI Timing
9
3402B-SEEPR-9/04
Figure 6. RDSR Timing
CS
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
SCK
INSTRUCTION
SI
SO
DATA OUT
HIGH IMPEDANCE
7
6
5
4
3
2
1
0
12
13
14
15
2
1
0
MSB
Figure 7. WRSR Timing
CS
0
1
2
3
4
5
6
7
8
9
10
11
7
6
5
4
SCK
INSTRUCTION
SI
SO
DATA IN
3
HIGH IMPEDANCE
Figure 8. READ Timing
10
AT25010A/020A/040A
3402B-SEEPR-9/04
AT25010A/020A/040A
Figure 9. WRITE Timing
CS
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
SCK
INSTRUCTION
SI
BYTE ADDRESS
8
7
6
5
4
3
2
1
DATA IN
0
7
6
5
4
3
2
1
0
9TH BIT OF ADDRESS
SO
HIGH IMPEDANCE
Figure 10. HOLD Timing
CS
tCD
tCD
SCK
tHD
tHD
HOLD
tHZ
SO
tLZ
11
3402B-SEEPR-9/04
AT25010A Ordering Information
Ordering Code
Package
Operation Range
AT25010A-10PA-5.0C
AT25010AN-10SA-5.0C
8P3
8S1
Automotive
(−40°C to 125°C)
AT25010A-10PA-2.7C
AT25010AN-10SA-2.7C
8P3
8S1
Automotive
(−40°C to 125°C)
Package Type
8P3
8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S1
8-lead, 0.150" Wide, Plastic Gull Wing Small Outline Package (JEDEC SOIC)
Options
−5.0
Standard Device (4.5V to 5.5V)
−2.7
Low Voltage (2.7V to 5.5V)
12
AT25010A/020A/040A
3402B-SEEPR-9/04
AT25010A/020A/040A
AT25020A Ordering Information
Ordering Code
Package
Operation Range
AT25020A-10PA-5.0C
AT25020AN-10SA-5.0C
8P3
8S1
Automotive
(−40°C to 125°C)
AT25020A-10PA-2.7C
AT25020AN-10SA-2.7C
8P3
8S1
Automotive
(−40°C to 125°C)
Package Type
8P3
8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S1
8-lead, 0.150" Wide, Plastic Gull Wing Small Outline Package (JEDEC SOIC)
Options
−5.0
Standard Device (4.5V to 5.5V)
−2.7
Low Voltage (2.7V to 5.5V)
13
3402B-SEEPR-9/04
AT25040A Ordering Information
Ordering Code
Package
Operation Range
AT25040A-10PA-5.0C
AT25040AN-10SA-5.0C
8P3
8S1
Automotive
(-40°C to 125°C)
AT25040A-10PA-2.7C
AT25040AN-10SA-2.7C
8P3
8S1
Automotive
(-40°C to 125°C)
Package Type
8P3
8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S1
8-lead, 0.150" Wide, Plastic Gull Wing Small Outline Package (JEDEC SOIC)
Options
−5.0
Standard Device (4.5V to 5.5V)
−2.7
Low Voltage (2.7V to 5.5V)
14
AT25010A/020A/040A
3402B-SEEPR-9/04
AT25010A/020A/040A
Packaging Information
8P3 – PDIP
E
1
E1
N
Top View
c
eA
End View
COMMON DIMENSIONS
(Unit of Measure = inches)
D
e
D1
A2 A
b2
b3
b
4 PLCS
Side View
L
MIN
NOM
MAX
NOTE
A
–
–
0.210
2
A2
0.115
0.130
0.195
b
0.014
0.018
0.022
5
b2
0.045
0.060
0.070
6
b3
0.030
0.039
0.045
6
c
0.008
0.010
0.014
D
0.355
0.365
0.400
3
SYMBOL
D1
0.005
–
–
3
E
0.300
0.310
0.325
4
E1
0.240
0.250
0.280
3
e
0.100 BSC
eA
0.300 BSC
L
Notes:
0.115
0.130
4
0.150
2
1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA, for additional information.
2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
4. E and eA measured with the leads constrained to be perpendicular to datum.
5. Pointed or rounded lead tips are preferred to ease insertion.
6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).
01/09/02
R
2325 Orchard Parkway
San Jose, CA 95131
TITLE
8P3, 8-lead, 0.300" Wide Body, Plastic Dual
In-line Package (PDIP)
DRAWING NO.
REV.
8P3
B
15
3402B-SEEPR-9/04
8S1 – JEDEC SOIC
C
1
E
E1
L
N
∅
Top View
End View
e
B
COMMON DIMENSIONS
(Unit of Measure = mm)
A
A1
D
Side View
SYMBOL
MIN
NOM
MAX
A
1.35
–
1.75
A1
0.10
–
0.25
b
0.31
–
0.51
C
0.17
–
0.25
D
4.80
–
5.00
E1
3.81
–
3.99
E
5.79
–
6.20
e
NOTE
1.27 BSC
L
0.40
–
1.27
∅
0˚
–
8˚
Note: These drawings are for general information only. Refer to JEDEC Drawing MS-012, Variation AA for proper dimensions, tolerances, datums, etc.
10/7/03
R
16
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TITLE
8S1, 8-lead (0.150" Wide Body), Plastic Gull Wing
Small Outline (JEDEC SOIC)
DRAWING NO.
8S1
REV.
B
AT25010A/020A/040A
3402B-SEEPR-9/04
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Atmel Operations
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not
intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© Atmel Corporation 2004. All rights reserved. Atmel® , logo and combinations thereof are registered
trademarks, and Everywhere You Are™ is a trademark of Atmel Corporation or its subsidiaries. Other terms
and product names may be trademarks of others.
Printed on recycled paper.
3402B-SEEPR-9/04