TSX9291, TSX9292 16 MHz rail-to-rail CMOS 16 V operational amplifiers Datasheet - production data Applications • Communications • Process control 62776; • Active filtering ')1[76; • Test equipment Description 0LQL6276; 6276; Features • Rail-to-rail input and output • Wide supply voltage: 4 V - 16 V • Gain bandwidth product: 16 MHz typ at 16 V • Low power consumption: 2.8 mA typ at 16 V The TSX9291 and TSX9292 operational amplifiers (op-amps) offer excellent AC characteristics such as 16 MHz gain bandwidth, 27 V/μs slew rate, and 0.0003 % THD+N. They are decompensated amplifiers which are stable when used with a gain higher than 2 or lower than -1. The rail-to-rail input and output capability of these devices operates on a wide supply voltage range of 4 V to 16 V. These last two features make the TSX929x series particularly welladapted for a wide range of applications such as communications, I/V amplifiers for ADCs, and active filtering applications. • Slew rate: 27 V/μs Table 1. Device summary • Stable when used in gain configuration • Low input bias current: 10 pA typ Op-amp version • High tolerance to ESD: 4 kV HBM Single Dual TSX9291 TSX9292 • Extended temperature range: -40° C to +125° C • Automotive qualification Related products • See the TSX5 series for low power features • See the TSX6 series for micro power features • See the TSX92 series for unity gain stability • See the TSV9 series for lower voltage April 2014 This is information on a product in full production. DocID024568 Rev 4 1/31 www.st.com Contents TSX9291, TSX9292 Contents 1 Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5 4.1 Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 Input pin voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 Stability for gain = -1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.5 Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . 19 4.6 Long-term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.7 Capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.8 High side current sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.9 High speed photodiode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.1 SOT23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.2 DFN8 2x2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3 MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.4 SO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2/31 DocID024568 Rev 4 TSX9291, TSX9292 1 Package pin connections Package pin connections Figure 1. Pin connections (top view) 287 9&& 9&& ,1 ,1 SOT23-5 (TSX9291) 287 9&& 287 9&& ,1 287 ,1 287 ,1 ,1 ,1 ,1 9&& ,1 9&& ,1 DFN8 2x2 (TSX9292) DocID024568 Rev 4 MiniSO8/SO8 (TSX9292) 3/31 31 Absolute maximum ratings and operating conditions 2 TSX9291, TSX9292 Absolute maximum ratings and operating conditions Table 2. Absolute maximum ratings (AMR) Symbol VCC Parameter Supply voltage (1) Vid Differential input voltage Vin Input voltage Iin Tstg Rthja Tj Input current (3) Storage temperature Thermal resistance junction to ambient SOT23-5 DFN8 2x2 MiniSO8 SO8 MM: machine 18 V ±VCC mV VCC- - 0.2 to VCC++ 0.2 V 10 mA -65 to +150 °C 250 57 190 125 150 model(6) °C/W °C 4000 model(7) CDM: charged device Unit (4)(5) Maximum junction temperature HBM: human body ESD (2) Value 100 model(8) V 1500 Latch-up immunity 200 mA 1. All voltage values, except the differential voltage are with respect to network ground terminal. 2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal. 3. Input current must be limited by a resistor in series with the inputs. 4. Short-circuits can cause excessive heating and destructive dissipation. 5. Rth are typical values. 6. According to JEDEC standard JESD22-A114F 7. According to JEDEC standard JESD22-A115A 8. According to ANSI/ESD STM5.3.1 Table 3. Operating conditions Symbol 4/31 Parameter VCC Supply voltage Vicm Common mode input voltage range Toper Operating free air temperature range Value 4 to 16 DocID024568 Rev 4 VCC- - 0.1 to VCC+ + 0.1 -40 to +125 Unit V °C TSX9291, TSX9292 3 Electrical characteristics Electrical characteristics Table 4. Electrical characteristics at VCC+ = +4.5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Vio Parameter Input offset voltage Conditions Min. Vicm = 2 V Tmin < Top < Tmax ΔVio/ ΔT Input offset voltage drift ΔVio Iib Iio Typ. 2 Max. Unit 4 5 mV 10 μV/°C nV month Long-term input offset voltage drift(1)(2) TSX9291 TSX9292 6 9 Input bias current Vout = VCC/2 Tmin < Top < Tmax 10 100 200 Input offset current Vout = VCC/2 Tmin < Top < Tmax 10 100 200 --------------------------- pA RIN Input resistance 1 TΩ CIN Input capacitance 8 pF CMR Avd VOH VOL Common mode rejection ratio 20 log (ΔVic/ΔVio) Large signal voltage gain High level output voltage Low level output voltage GBP FU 61 59 82 Vicm = -0.1 V to 4.6 V, VOUT = VCC/2 Tmin < Top < Tmax 59 57 72 RL= 2 kΩ, Vout = 0.3 V to 4.2 V Tmin < Top < Tmax 100 90 108 RL= 10 kΩ, Vout = 0.2 V to 4.3 V Tmin < Top < Tmax 100 90 112 dB RL= 2 kΩ to VCC/2 Tmin < Top < Tmax 50 RL= 10 kΩ to VCC/2 Tmin < Top < Tmax 10 16 20 RL= 2 kΩ to VCC/2 Tmin < Top < Tmax 42 80 100 RL= 10 kΩ to VCC/2 Tmin < Top < Tmax 9 16 20 Vout = 4.5 V Tmin < Top < Tmax 16 13 21 Isource Vout = 0 V Tmin < Top < Tmax 16 13 21 Supply current (per amplifier) No load, Vout = VCC/2 Tmin < Top < Tmax 2.9 Gain bandwidth product RL = 10 kΩ, CL = 20 pF, G = 20 dB 15.6 Unity gain frequency RL = 10 kΩ, CL = 20 pF 14.2 DocID024568 Rev 4 80 100 mV from VCC+ mV Isink Iout ICC Vicm = -0.1 V to 2 V, VOUT = VCC/2 Tmin < Top < Tmax mA 3.4 3.5 MHz 5/31 31 Electrical characteristics TSX9291, TSX9292 Table 4. Electrical characteristics at VCC+ = +4.5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) (continued) Symbol Parameter Conditions Min. Typ. Max. Unit Gain Minimum gain for stability Phase margin = 60 °, Rg = Rf = 1 kΩ RL = 10 kΩ, CL = 20 pF -1 +2 SR+ Positive slew rate Av = +1, Vout = 0.5 to 4.0 V Measured between 10 % to 90 % 27 Negative slew rate Av = +1, Vout = 4.0 to 0.5 V Measured between 90 % to 10 % 22 Equivalent input noise voltage f = 10 kHz f = 100 kHz 17.9 12.9 nV -----------Hz Low-frequency peak-topeak input noise Bandwidth: f = 0.1 to 10 Hz 8.1 µVpp Total harmonic distortion + noise f = 1 kHz, Av = +1, RL = 10 kΩ, Vout = 2 Vrms 0.002 % SRen ∫ en THD+N V/μs 1. Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Section 4.6: Long-term input offset voltage drift. 2. When used in comparator mode, with high differential input voltage, during a long period of time with VCC close to 16V and Vicm>VCC/2, Vio can experience a permanent drift of few mV drift. The phenomenon is particularly worsen at low temperatures. 6/31 DocID024568 Rev 4 TSX9291, TSX9292 Electrical characteristics Table 5. Electrical characteristics at VCC+ = +10 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL= 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Vio Parameter Input offset voltage Conditions Min. Typ. Tmin < Top < Tmax ΔVio/ ΔT Input offset voltage drift 2 Max. Unit 4 5 mV 10 μV/°C nV month Long-term input offset voltage drift(1) (2) TSX9291 TSX9292 92 128 Iib Input bias current Vout = VCC/2 Tmin < Top < Tmax 10 100 200 Iio Input offset current Vout = VCC/2 Tmin < Top < Tmax 10 100 200 ΔVio --------------------------- pA RIN Input resistance 1 TΩ CIN Input capacitance 8 pF CMR Avd VOH VOL Common mode rejection ratio 20 log (ΔVic/ΔVio) Large signal voltage gain High level output voltage Low level output voltage GBP FU Gain 72 70 85 Vicm = -0.1 V to 10.1 V, VOUT = VCC/2 Tmin < Top < Tmax 64 62 75 RL = 2 kΩ, Vout = 0.3 V to 9.7 V Tmin < Top < Tmax 100 90 107 RL = 10 kΩ, Vout = 0.2 V to 9.8 V Tmin < Top < Tmax 100 90 117 dB RL = 2 kΩ to VCC/2 Tmin < Top < Tmax 94 RL = 10 kΩ to VCC/2 Tmin < Top < Tmax 31 40 50 RL = 2 kΩ to VCC/2 Tmin < Top < Tmax 80 110 130 RL = 10 kΩ to VCC/2 Tmin < Top < Tmax 14 40 50 Vout = 10 V Tmin < Top < Tmax 50 42 55 Isource Vout = 0 V Tmin < Top < Tmax 75 70 82 Supply current (per amplifier) No load, Vout = VCC/2 Tmin < Top < Tmax 3.1 Gain bandwidth product RL = 10 kΩ, CL = 20 pF, G = 20 dB 16 Unity gain frequency RL = 10 kΩ, CL = 20 pF Minimum gain for stability Phase margin = 60 °, Rg = Rf = 1 kΩ RL = 10 kΩ, CL = 20 pF DocID024568 Rev 4 110 130 mV from VCC+ mV Isink Iout ICC Vicm = -0.1 V to 7 V, VOUT = VCC/2 Tmin < Top < Tmax 15.4 mA 3.6 3.6 MHz -1 +2 7/31 31 Electrical characteristics TSX9291, TSX9292 Table 5. Electrical characteristics at VCC+ = +10 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL= 10 kΩ connected to VCC/2 (unless otherwise specified) (continued) Symbol Parameter Conditions Min. Typ. Max. Unit Positive slew rate Av = +1, Vout = 0.5 to 9.5 V Measured between 10 % to 90 % 29 Negative slew rate Av = +1, Vout = 9.5 to 0.5 V Measured between 90 % to 10 % 30 Equivalent input noise voltage f = 10 kHz f = 100 kHz 16.8 12 nV -----------Hz ∫ en Low-frequency peak-topeak input noise Bandwidth: f = 0.1 to 10 Hz 8.64 µVpp THD+N Total harmonic distortion + noise f = 1 kHz, Av = +1, RL = 10 kΩ, Vout = 2 Vrms 0.0006 % SR+ SRen V/μs 1. Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Section 4.6: Long-term input offset voltage drift. 2. When used in comparator mode, with high differential input voltage, during a long period of time with VCC close to 16V and Vicm>VCC/2, Vio can experience a permanent drift of few mV drift. The phenomenon is particularly worsen at low temperatures. 8/31 DocID024568 Rev 4 TSX9291, TSX9292 Electrical characteristics Table 6. Electrical characteristics at VCC+ = +16 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL= 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Vio Parameter Input offset voltage Conditions Min. Typ. Tmin < Top < Tmax ΔVio/ ΔT Input offset voltage drift 2 Max. Unit 4 5 mV 10 μV/°C μV month Long-term input offset voltage drift(1) (2) TSX9291 TSX9292 Iib Input bias current Vout = VCC/2 Tmin < Top < Tmax 10 100 200 Iio Input offset current Vout = VCC/2 Tmin < Top < Tmax 10 100 200 ΔVio 1.73 2.26 --------------------------- pA RIN Input resistance 1 TΩ CIN Input capacitance 8 pF CMR SVR Avd VOH VOL Common mode rejection ratio 20 log (ΔVic/ΔVio) Supply voltage rejection ratio Large signal voltage gain High level output voltage Low level output voltage GBP FU 73 71 85 Vicm = -0.1 V to 16.1 V, VOUT = VCC/2 Tmin < Top < Tmax 67 65 76 Vcc = 4.5 V to 16 V Tmin < Top < Tmax 73 71 85 RL= 2 kΩ, Vout = 0.3 V to 15.7 V Tmin < Top < Tmax 100 90 105 RL= 10 kΩ, Vout = 0.2 V to 15.8 V Tmin < Top < Tmax 100 90 113 dB RL= 2 kΩ to VCC/2 Tmin < Top < Tmax 150 RL= 10 kΩ to VCC/2 Tmin < Top < Tmax 43 50 70 RL= 2 kΩ to VCC/2 Tmin < Top < Tmax 140 200 230 RL= 10 kΩ to VCC/2 Tmin < Top < Tmax 30 50 70 Vout = 16 V Tmin < Top < Tmax 45 40 50 Isource Vout = 0 V Tmin < Top < Tmax 65 60 74 Supply current (per amplifier) No load, Vout = VCC/2 Tmin < Top < Tmax 2.8 Gain bandwidth product RL = 10 kΩ, CL = 20 pF, G = 20 dB 16 Unity gain frequency RL = 10 kΩ, CL = 20 pF DocID024568 Rev 4 200 230 mV from VCC+ mV Isink Iout ICC Vicm = -0.1 V to 13 V, VOUT = VCC/2 Tmin < Top < Tmax 15.7 mA 3.4 3.4 MHz 9/31 31 Electrical characteristics TSX9291, TSX9292 Table 6. Electrical characteristics at VCC+ = +16 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL= 10 kΩ connected to VCC/2 (unless otherwise specified) (continued) Symbol Parameter Conditions Gain Minimum gain for stability Phase margin = 60 °, Rg = Rf = 1 kΩ RL = 10 kΩ, CL = 20 pF -1 +2 SR+ Positive slew rate Av = +1, Vout = 0.5 to 15.5 V Measured between 10 % to 90 % 26 Negative slew rate Av = +1, Vout = 15.5 to 0.5 V Measured between 90 % to 10 % 27 Equivalent input noise voltage f = 10 kHz f = 100 kHz 16.5 11.8 nV -----------Hz ∫ en Low-frequency peak-topeak input noise Bandwidth: f = 0.1 to 10 Hz 8.58 µVpp THD+N Total harmonic distortion + Noise f = 1 kHz, Av = +1, RL= 10 kΩ, Vout = 4Vrms 0.0003 % Settling time Gain = +1, 100 mV input voltage 0.1 % of final value 1 % of final value 245 178 ns SRen tS Min. Typ. Max. Unit V/μs 1. Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Section 4.6: Long-term input offset voltage drift. 2. When used in comparator mode, with high differential input voltage, during a long period of time with VCC close to 16V and Vicm>VCC/2, Vio can experience a permanent drift of few mV drift. The phenomenon is particularly worsen at low temperatures. 10/31 DocID024568 Rev 4 TSX9291, TSX9292 Electrical characteristics Figure 2. Supply current vs. supply voltage Figure 3. Distribution of input offset voltage at VCC = 4.5 V 0 3 o i V f o n o i t u b i r t s i D T=25°C T=125°C 5 2 VICM=VCC/2 V 5 2 . 2 = m c i V , V 5 . 4 = c c V 3.6 0 2 Supply Current (mA) 3.0 2.4 T=-40°C 5 1 1.8 0 1 5 % n o i t a l u p o P 1.2 0 0.6 3 V m ︵ 2 1 16.0 0 14.0 e g a t l o V t e s f f O t u p n I 6.0 8.0 10.0 12.0 Supply voltage (V) 1 - 4.0 2 - 2.0 3 - 0.0 0.0 ︶ Figure 4. Distribution of input offset voltage at Figure 5. Input offset voltage vs. temperature at VCC = 16 V VCC = 16 V 0 3 5 o i V f o n o i t u b i r t s i D 0 2 Input offset voltage (mV) V 8 = m c i V , V 6 1 = c c V 5 2 5 1 0 1 5 % n o i t a l u p o P 0 V m e g a t l o v t e s f f o t u p n I ︶ Figure 6. Distribution of input offset voltage drift over temperature -3 -20 0 20 40 60 Temperature (°C) 80 100 120 Figure 7. Input offset voltage vs. common mode voltage at VCC = 4 V 5 2 1.0 0.8 V 8 = m T i c / V o , i V V 6 1 = c c V Δ Δ Vcc=4V 0.5 5 1 Input offset voltage (mV) 0 2 0 1 5 % n o i t a l u p o P 0 -5 -40 3 2 1 0 1 - 2 - 3 - ︵ Vcc=16V, Vicm=8V 3 0.3 0.0 -0.3 -0.5 -0.8 T=-40°C T=25°C -1.0 0 -1.3 -1.5 T=125°C -1.8 0 1 - 2 - 3 - 4 - 5 - 6 - 7 - -2.0 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5 2.8 3.0 3.3 3.5 3.8 4.0 C ° / V µ T / o i V Δ Δ︵ Common mode voltage(V) ︶ DocID024568 Rev 4 11/31 31 Electrical characteristics TSX9291, TSX9292 Figure 9. Output current vs. output voltage at VCC = 4 V 1.8 30 1.2 20 0.6 T=25°C 0.0 -0.6 T=-40°C -1.2 -1.8 Vcc=16V Output Current (mA) Input offset voltage (mV) Figure 8. Input offset voltage vs. common mode voltage at VCC = 16 V -3.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 Common mode voltage(V) Figure 10. Output current vs. output voltage at VCC = 10 V Sink Vid=-1V Output Current (mA) 50 T=125°C T=25°C 0 Vcc=10V -25 -50 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Output Voltage (V) Vcc=4V -10 50 Source Vid=1V 8.0 1.0 1.5 2.0 2.5 Output Voltage (V) Sink Vid=-1V 3.0 3.5 T=125°C 0 Vcc=16V -25 -50 Source Vid=1V -75 0.0 2.5 5.0 7.5 10.0 Output Voltage (V) 12.5 140 15.6 120 15.4 100 15.2 1.0 Rl=2kΩ Vcc=16V G=2 T=25°C Rl=10kΩ 0.2 60 40 20 -20 -40 8.0 7.9 7.8 7.7 7.6 7.5 7.4 0.5 0.4 0.3 0.2 0.1 Input voltage (V) Phase 0 0.0 0.0 Gain Phase (°) 14.8 0.4 12/31 360 320 280 240 200 160 120 80 40 0 -40 -80 -120 -160 -200 -240 -280 -320 -360 80 15.0 Gain (dB) Output voltage (V) 15.8 0.6 15.0 Figure 13. Open loop gain vs. frequency 16.0 0.8 4.0 T=-40°C T=25°C 9.0 10.0 Figure 12. Output rail linearity 0.5 25 Source Vid=1V -75 T=125°C 0 Figure 11. Output current vs. output voltage at VCC = 16 V T=-40°C 25 T=25°C 10 -30 0.0 15.0 Output Current (mA) 0.0 T=-40°C -20 T=125°C -2.4 Sink Vid=-1V 0.01 DocID024568 Rev 4 Vcc=16V, Vicm=8V, Rl=10kΩ , Cl=20pF, VRl=Vcc/2 0.1 1 10 100 Frequency (kHz) 1000 10000 TSX9291, TSX9292 Electrical characteristics Figure 14. Bode diagram vs. temperature for VCC = 4 V Figure 15. Bode diagram vs. temperature for VCC = 10 V 250 250 40 200 200 Gain 150 T=25°C T=125°C 0 -50 T=-40°C T=125°C 0 0 -50 T=-40°C -20 -100 Phase 100 -100 Phase -150 -150 Vcc=4V, Vicm=2V, G=100 Rl=10kΩ , Cl=20pF, VRl=Vcc/2 -40 Vcc=10V, Vicm=5V, G=100 Rl=10kΩ , Cl=20pF, VRl=Vcc/2 -40 -200 1 10 100 1000 -200 -250 -250 1 10000 10 100 1000 10000 Frequency (kHz) Frequency (kHz) Figure 16. Bode diagram vs. temperature for VCC = 16 V Figure 17. Bode diagram at VCC = 16 V with low common mode voltage 250 40 40 T=25°C T=25°C 100 0 T=-40°C -20 -50 -100 Phase 150 T=-40°C 100 50 Gain (dB) T=125°C T=125°C 20 Phase (°) 50 0 200 Gain 150 20 Gain (dB) 250 200 Gain 0 0 -50 -20 -100 Phase -150 Vcc=16V, Vicm=8V, G=100 Rl=10kΩ , Cl=20pF, Vrl=Vcc/2 -40 -150 -200 Vcc=16V, Vicm=0.5V, G=100 Rl=10kΩ , Cl=20pF, VRl=Vcc/2 -40 -250 1 10 100 1000 -200 -250 10000 1 10 Frequency (kHz) 100 1000 10000 Frequency (kHz) Figure 18. Bode diagram at VCC = 16 V with high common mode voltage Figure 19. Bode diagram at VCC = 16 V and RL = 10 kΩ, CL = 47 pF 250 250 40 40 200 Gain T=25°C 50 0 -50 -100 Phase Gain (dB) 100 T=-40°C 0 -20 T=25°C 50 0 0 T=125°C T=-40°C -20 -200 -250 1 10 100 1000 10000 -50 -100 Phase -150 -150 Vcc=16V, Vicm=15.5V, G=100 Rl=10kΩ , Cl=20pF, VRl=Vcc/2 -40 150 100 20 Phase (°) Gain (dB) T=125°C 200 Gain 150 20 Phase (°) -20 150 50 Gain (dB) Gain (dB) 50 0 T=25°C 20 100 Phase (°) 20 Phase (°) 40 Phase (°) Gain Vcc=16V, Vicm=8V, G=100 Rl=10kΩ , Cl=47pF, VRl=Vcc/2 -40 -200 -250 1 10 100 1000 10000 Frequency (kHz) Frequency (kHz) DocID024568 Rev 4 13/31 31 Electrical characteristics TSX9291, TSX9292 Figure 20. Bode diagram at VCC = 16 V and RL = 2 kΩ, CL = 20 pF Figure 21. Slew rate vs. supply voltage and temperature 250 40 30 200 Gain Gain (dB) T=125°C 0 50 0 T=-40°C -50 -20 Slew Rate (V/µs) 100 Phase (°) 20 -100 Phase T=25°C -200 T=125°C T=-40°C 10 0 Vicm=VRl=Vcc/2 Rl=10kΩ , Cl=20pF Vin from 0.5V to Vcc-0.5V -10 -20 -150 Vcc=16V, Vicm=8V, G=100 Rl=2.2kΩ , Cl=20pF, VRl=Vcc/2 -40 SR positive 20 150 T=25°C SR negative -30 -250 1 10 100 1000 4.0 5.0 6.0 7.0 8.0 9.0 10.0 10.011.012.0 12.013.014.0 14.015.016.0 16.0 Vcc (V) 10000 Frequency (kHz) Figure 22. Small signal overshoot vs capacitive load without feedback capacitor Cf Figure 23. Small step response with G = +2 0.15 80 Overshoot (%) 60 50 0.10 Vcc=16V, 100mVpp, G=-1; Rf=Rg=1kΩ Rl=10kΩ Output Voltage (V) 70 40 30 20 0.05 0.00 -0.05 10 0 10 -0.15 -400.0n 100 Load capacitance (pF) Figure 24. Small step response with feedback capacitor Cf=0pF 800.0n 1.2µ 2.00 Cf=5pF Cf=8pF Output Voltage (V) Output Voltage (V) 400.0n Time (s) 3.00 0.05 Cf=12pF 0.00 -0.05 Vcc = 16V Rl=10kΩ ;Cl=20pF G=-1; Rf=Rg=1kΩ T=25°C -0.10 -0.15 -400.0n 14/31 0.0 Figure 25. Large step response 0.15 0.10 Vcc = 16V Rl=10kΩ ;Cl=20pF G=2; Rf=Rg=1kΩ T=25°C -0.10 0.0 400.0n Time (s) 800.0n 1.00 0.00 -1.00 Vcc = 16V Rl=10kΩ ;Cl=20pF G=-1; Rf=Rg=1kΩ T=25°C -2.00 1.2µ -3.00 -400.0n DocID024568 Rev 4 0.0 400.0n Time (s) 800.0n 1.2µ TSX9291, TSX9292 Electrical characteristics Figure 26. Desaturation time Figure 27. Peaking close loop with different Rl 1.5 20 15 Input Signal 1.0 10 0.5 5 10 0 -0.5 -5 -1.0 -1.5 2µ 4µ 6µ 8µ 10µ 12µ 14µ 16µ 18µ 0 -30 1k -15 20µ Rl=2kΩ -10 -20 -10 Vcc=16V, Vicm=8V, G=11 Rl=10kΩ , Cl=20pF 0 Gain (dB) 0.0 Output signal (V) Input signal (V) Rl=10kΩ Vcc=4.5V to 16V Vicm=Vcc/2 Rf=Rg=1kΩ Gain=-1 Cl=20pF 10k 100k Figure 28. Output impedance vs frequency in close loop configuration Output Impedance (Ω ) 10 Vcc=16V Vicm=8V Osc level=30mVRMS G=1 Ta=25°C 1 0.1 0.01 100 1k 10k 100k Frequency (Hz) 1M 600 Vicm=15.5V 400 Vicm=0.5V 300 Vicm=8V 200 100 0 10 100 1k Frequency (Hz) 10 Vcc=16V 4 Vicm=8V T=25°C THD + N (%) 2 0 -2 -1 10 -2 10 -3 Vcc=16V Vicm=Vcc/2 Vin=2Vrms Gain=2 BW=80kHz Rl=600Ω Rl=2kΩ -4 10 2 4 6 8 10k Figure 31. THD+N vs. frequency at VCC = 16 V 6 Input voltage noise (µV) Vcc=16V T=25°C 500 10M Figure 30. 0.1 to 10 Hz noise with 16 V supply voltage -6 0 10M Figure 29. Noise vs. frequency with 16 V supply voltage Equivalent Input Voltage Noise (nV/VHz) 1000 100 1M Frequency (Hz) Time (s) Rl=10kΩ -4 10 Time (s) DocID024568 Rev 4 100 1k 10k 100k Frequency (Hz) 15/31 31 Electrical characteristics TSX9291, TSX9292 Figure 32. THD+N vs. output voltage at VCC = 16 V Figure 33. Power supply rejection ratio (PSRR) vs. frequency 0 -120 10 Vcc=16V Vicm=Vcc/2 f=1kHz Gain=2 BW=22kHz THD + N (%) -2 10 +PSRR -100 PSRR (dB) -1 10 Rl=600Ω -80 -PSRR -60 -40 -3 10 -20 Rl=10kΩ Rl=2kΩ -4 10 0.1 1 Vcc=16V, Vicm=8V, G=1 Rl=10kΩ , Cl=20pF, Vripple=100mVpp 0 100 10 1k 10k 100k 1M Frequency (Hz) Output Voltage (Vrms) Figure 34. Crosstalk vs. frequency between operators on TSX9292 at VCC = 16 V 0 -20 Vcc=16V Vicm=Vcc/2 Rl=10kΩ Cl=20pF Vout=3.5Vrms Crosstalk (dB) -40 -60 -80 -100 Ch1 to Ch2 -120 -140 Ch2 to Ch1 -160 -180 1k 10k 100k Frequency (Hz) 16/31 DocID024568 Rev 4 1M 10M TSX9291, TSX9292 Application information 4 Application information 4.1 Operating voltages The TSX929x series of operation amplifiers can operate from 4 V to 16 V. Parameters are fully specified at 4.5 V, 10 V, and 16 V power supplies. However, parameters are very stable in the full VCC range. Additionally, the main specifications are guaranteed in the extended temperature range of -40 to +125 °C. 4.2 Rail-to-rail input The TSX9291 and TSX9292 are designed with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input and the input common mode range is extended from (VCC-) - 0.1 V to (VCC+) + 0.1 V. However, the performance of these devices is clearly optimized for the PMOS differential pairs (which means from (VCC-) - 0.1 V to (VCC+) - 2 V). Beyond (VCC+) - 2 V, the operational amplifiers are still functional but with downgraded performances (see Figure 19). Performances are still suitable for a large number of applications requiring the rail-to-rail input feature. TSX9291 and TSX9292 are designed to prevent phase reversal. 4.3 Input pin voltage range The TSX929x series has internal ESD diode protection on the inputs. These diodes are connected between the input and each supply rail to protect MOSFETs inputs from electrostatic discharges. Thus, if the input pin voltage exceeds the power supply by 0.5 V, the ESD diodes become conductive and excessive current could flow through them. To prevent any permanent damage, this current must be limited to 10 mA. This can be done by adding a resistor, Rs, in series with the input pin (Figure 35). The Rs resistor value has to be calculated for a 10 mA current limitation on the input pins. Figure 35. Limiting input current with a series resistor 5J 5I 9 5V 9LQ 76; 9RXW *$06&% DocID024568 Rev 4 17/31 31 Application information 4.4 TSX9291, TSX9292 Stability for gain = -1 TSX9291 and TSX9292 can be used in gain = -1 configuration (see Figure 36). However some precautions must be taken regarding the setting of the Rg and Rf resistors. Effectively, the input capacitance of the TSX929x series creates a pole with Rf and Rg. In high frequency, this pole decreases the phase margin and also causes gain peaking. This effect has a direct impact on the stability. Figure 37 shows the peaking, depending on the values of the gain and feedback resistances. Figure 36. Configuration for gain = -1 Cf Rf +Vcc Rg Vin ‐ Vout + CL=20pF -Vcc Figure 37. Close loop gain vs. frequency 20 Rf=Rg=20kΩ 10 Gain (dB) Rf=Rg=1kΩ 0 Rf=Rg=10kΩ -10 Vcc=16V Vicm=Vcc/2 Gain=-1 Rl=10kΩ Cl=20pF -20 -30 1k 10k 100k 1M Frequency (Hz) 18/31 RL=10kO DocID024568 Rev 4 10M TSX9291, TSX9292 Application information Whenever possible, it is best to choose smaller feedback resistors. It is recommended to use 1 kΩ gain and feedback resistance (Rf and Rg) when gain = -1 is necessary. In the application, if a large value of Rf and Rg has to be used, a feedback capacitance can be added in parallel with Rf, to reduce or eliminate the gain peaking. Additionally, Cf helps to compensate the input capacitance and to increase stability. Figure 38 shows how Cf reduces the gain peaking. Figure 38. Close loop gain vs. frequency with capacitive compensation 20 Cf=0pF 10 Gain (dB) Cf=1pF 0 Cf=1.5pF Vcc=16V Vicm=Vcc/2 Gain=-1 Rf=Rg=10kΩ Rl=10kΩ Cl=20pF -10 -20 -30 1k 10k 100k 1M 10M Frequency (Hz) 4.5 Input offset voltage drift over temperature The maximum input voltage drift over the temperature variation is defined as the offset variation related to offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations. The maximum input voltage drift over temperature is computed using Equation 1. Equation 1 ΔV io V io ( T ) – V io ( 25° C ) ------------ = max -------------------------------------------------ΔT T – 25° C with T = -40 °C and 125 °C. The datasheet maximum value is guaranteed by a measurement on a representative sample size ensuring a Cpk (process capability index) greater than 2. DocID024568 Rev 4 19/31 31 Application information 4.6 TSX9291, TSX9292 Long-term input offset voltage drift To evaluate product reliability, two types of stress acceleration are used: • Voltage acceleration, by changing the applied voltage • Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature. The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2. Equation 2 A FV = e β ⋅ ( VS – VU ) Where: AFV is the voltage acceleration factor β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1) VS is the stress voltage used for the accelerated test VU is the voltage used for the application The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3. Equation 3 A FT = e Ea ⎛ 1 1 ------ ⋅ ------ – ------⎞ ⎝ T U T S⎠ k Where: AFT is the temperature acceleration factor Ea is the activation energy of the technology based on the failure rate k is the Boltzmann constant (8.6173 x 10-5 eV.K-1) TU is the temperature of the die when VU is used (K) TS is the temperature of the die under temperature stress (K) The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4). Equation 4 A F = A FT × A FV AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration. 20/31 DocID024568 Rev 4 TSX9291, TSX9292 Application information Equation 5 Months = A F × 1000 h × 12 months ⁄ ( 24 h × 365.25 days ) To evaluate the op-amp reliability, a follower stress condition is used where VCC is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules). The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see Equation 6). Equation 6 V CC = maxV op with V icm = V CC ⁄ 2 The long-term drift parameter (ΔVio), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months (Equation 7). Equation 7 V io drift ΔV io = -----------------------------( months ) where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration. 4.7 Capacitive load Driving a large capacitive load can cause stability issues. Increasing the load capacitance produces gain peaking in the frequency response, with overshooting and ringing in the step response. It is usually considered that with a gain peaking higher than 2.3 dB the op-amp might become unstable. Generally, the unity gain configuration is the worst configuration for stability and the ability to drive large capacitive loads. Figure 39 shows the serial resistor (Riso) that must be added to the output, to make the system stable. Figure 40 shows the test configuration for Riso. DocID024568 Rev 4 21/31 31 Application information TSX9291, TSX9292 Figure 39. Stability criteria with a serial resistor Vcc=16V, Vicm=8V, T=25°C, Rl=10 kΩ G=-1, Rf=Rg=1kΩ 100 Serial Resistor (Ohm) Stable Unstable 10 0.01 0.1 1 10 Capacitive Load (nF) Figure 40. Test configuration for Riso 5I 9 9,1 5J 5LVR 9 &ORDG N *$06&% 22/31 DocID024568 Rev 4 100 TSX9291, TSX9292 4.8 Application information High side current sensing TSX9291 and TSX9292 rail to rail input devices can be used to measure a small differential voltage on a high side shunt resistor and translate it into a ground referenced output voltage. The gain is fixed by external resistance. Figure 41. High side current sensing configuration & ORDG 5J 5I , ,Q 5VKXQW 5J 9 ,S 9 9287 76; 5I *$06&% VOUT can be expressed as shown in Equation 8. Equation 8 R g2 R f2 R g2 R f1 R f1 R f1 V out = R shunt × I ⎛⎝ 1 – ------------------------- ⎞⎠ ⎛⎝ 1 + ----------⎞⎠ + I p ⎛⎝ -------------------------⎞⎠ × ⎛⎝ 1 + ----------⎞⎠ – I n xR f1 – V io ⎛⎝ 1 + ----------⎞⎠ R g2 + R f2 R g2 + R f2 R g1 R g1 R g1 Assuming that Rf2 = Rf1 = Rf and Rg2 = Rg1 = Rg, Equation 8 can be simplified as Equation 9. Equation 9 Rf Rf V out = R shunt × I ⎛ ------- ⎞ – V io ⎛ 1 + -------⎞ + R f × I io ⎝ Rg ⎠ ⎝ R g⎠ With the TSX929x series, the high side current measurement must be made by respecting the common mode voltage of the amplifier: (VCC-) - 0.1V to (VCC+) + 0.1V. If the application requires a higher common voltage, please refer to the TSC high side current sensing family. DocID024568 Rev 4 23/31 31 Application information 4.9 TSX9291, TSX9292 High speed photodiode The TSX929x series is an excellent choice for current to voltage (I-V) conversions. Due to the CMOS technology, the input bias currents are extremely low. Moreover, the low noise and high unity-gain bandwidth of TSX9291 TSX9292 make them particularly suitable for high-speed photodiode preamplifier applications. The photodiode is considered as a capacitive current source. The input capacitance, CIN, includes the parasitic input common mode capacitance, CCM (3pF), and the input differential mode capacitance, CDIFF (8pF). CIN acts in parallel with the intrinsic capacitance of the photodiode, CD. At higher frequencies, the capacitors affect the circuit response. The output capacitance of a current sensor has a strong effect on the stability of the op-amp feedback loop. CF stabilizes the gain and limits the transimpedance bandwidth. To ensure good stability and to obtain good noise performance, CF can be set as shown in Equation 10. Equation 10 C IN + C D C F > -------------------------------------------------- – C SMR 2 ⋅ π ⋅ R F ⋅ F GBP where, • CIN = CCM + CDIFF = 11 pF • CDIFF is the differential input capacitance: 8 pF typical • CCM is the Common mode input capacitance: 3 pF typical • CD is the intrinsic capacitance of the photodiode • CSMR is the parasitic capacitance of the surface mount RF resistor: 0.2 pF typical • FGBP is the gain bandwidth product: 10 MHz at 16 V RF fixes the gain as shown in Equation 11. Equation 11 V OUT = R F × I D Figure 42. High speed photodiode &) 5) 9&& 1IPUPEJPEF *% &' &LQ 9287 9&& *$06&% 24/31 DocID024568 Rev 4 TSX9291, TSX9292 5 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. DocID024568 Rev 4 25/31 31 Package information 5.1 TSX9291, TSX9292 SOT23-5 package mechanical data Figure 43. SOT23-5 package mechanical drawing Table 7. SOT23-5 package mechanical data Dimensions Ref. A Millimeters Min. Typ. Max. Min. Typ. Max. 0.90 1.20 1.45 0.035 0.047 0.057 A1 26/31 Inches 0.15 0.006 A2 0.90 1.05 1.30 0.035 0.041 0.051 B 0.35 0.40 0.50 0.013 0.015 0.019 C 0.09 0.15 0.20 0.003 0.006 0.008 D 2.80 2.90 3.00 0.110 0.114 0.118 D1 1.90 0.075 e 0.95 0.037 E 2.60 2.80 3.00 0.102 0.110 0.118 F 1.50 1.60 1.75 0.059 0.063 0.069 L 0.10 0.35 0.60 0.004 0.013 0.023 K 0° 10 ° 0° DocID024568 Rev 4 10 ° TSX9291, TSX9292 DFN8 2x2 package information Figure 44. DFN8 2x2 package mechanical drawing ' $ % & [ ( 3,1,1'(;$5($ & [ 7239,(: $ & $ & 6($7,1* 3/$1( 6,'(9,(: & H ESOFV 3,1,1'(;$5($ & $ % 3LQ,' / 5.2 Package information %277209,(: *$06&% Table 8. DFN8 2x2 package mechanical data Dimensions Ref. Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 0.70 0.75 0.80 0.028 0.030 0.031 A1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.15 0.20 0.25 0.006 0.008 0.010 D 2.00 0.079 E 2.00 0.079 e 0.50 0.020 L 0.045 0.55 0.65 N 0.018 0.022 0.026 8 DocID024568 Rev 4 27/31 31 Package information 5.3 TSX9291, TSX9292 MiniSO8 package information Figure 45. MiniSO8 package mechanical drawing Table 9. MiniSO8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.006 0.033 0.80 0.016 0.024 0.95 0.037 L2 0.25 0.010 ccc 0° 0.037 0.026 L1 k 28/31 Inches 8° 0.10 DocID024568 Rev 4 0° 0.031 8° 0.004 TSX9291, TSX9292 5.4 Package information SO8 package information Figure 46. SO8 package mechanical drawing Table 10. SO8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.75 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.25 Max. 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 L1 k ccc 1.04 0° 0.040 8° 0.10 DocID024568 Rev 4 1° 8° 0.004 29/31 31 Ordering information 6 TSX9291, TSX9292 Ordering information Table 11. Order codes Order code Temperature range TSX9291ILT TSX9291IYLT -40° C to +125° C TSX9292IST TSX9292IDT TSX9292IYDT Packing Marking K28 SOT23-5 (1) TSX9292IQ2T Package DFN8 2x2 MiniSO8 K209 Tape and reel TSX9292I SO8 (1) K28 SX9292IY 1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent. 7 Revision history Table 12. Document revision history Date Revision 24-Apr-2013 1 Initial release 2 Added the dual version op-amp (TSX9292) and updated the datasheet accordingly. Added the silhouettes, pin connections, and package information for DFN8 2x2, MiniSO8, and SO8; updated Table 2. Added Figure 34. 3 Added long-term input offset voltage drift parameter in Table 4, Table 5, and Table 6. Added Section 4.5: Input offset voltage drift over temperature in Section 4: Application information. Added Section 4.6: Long-term input offset voltage drift in Section 4: Application information. Corrected Figure 15: Bode diagram vs. temperature for VCC = 10 V. 4 Table 4, Table 5, and Table 6: updated phase margin condition for the gain parameter. Section 4.3: Input pin voltage range: added information concerning an Rs resistor; updated Figure 35. Table 11: updated markings of order codes TSX9291IYLT and TSX9291IQ2T. 01-Jul-2013 10-Dec-2013 28-Apr-2014 30/31 Changes DocID024568 Rev 4 TSX9291, TSX9292 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com DocID024568 Rev 4 31/31 31