AVX VC080526C580

TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
GENERAL DESCRIPTION
The AVX TransGuard® Transient Voltage Suppressors (TVS)
with unique high-energy multilayer construction represents
state-of-the-art overvoltage circuit protection. Monolithic
multilayer construction provides protection from voltage
transients caused by ESD, lightning, NEMP, inductive switching, etc. True surface mount product is provided in EIA
industry standard packages. Thru-hole components are
supplied as conformally coated axial devices.
TRANSGUARD® DESCRIPTION
TransGuard® products are zinc oxide (ZnO) based ceramic
semiconductor devices with non-linear voltage-current characteristics (bi-directional) similar to back-to-back zener diodes.
They have the added advantage of greater current and energy
handling capabilities as well as EMI/RFI attenuation. Devices
are fabricated by a ceramic sintering process that yields a
structure of conductive ZnO grains surrounded by electrically
insulating barriers, creating varistor-like behavior.
The number of grain-boundary interfaces between conducting electrodes determines “Breakdown Voltage” of the
device. High voltage applications such as AC line protection
require many grains between electrodes while low voltage
requires few grains to establish the appropriate breakdown
voltage. Single layer ceramic disc processing proved to be a
viable production method for thick cross section devices
with many grains, but attempts to address low voltage
suppression needs by processing single layer ceramic disc
formulations with huge grain sites has had limited success.
AVX, the world leader in the manufacture of multilayer
ceramic capacitors, now offers the low voltage transient
protection marketplace a true multilayer, monolithic surface
mount varistor. Technology leadership in processing
thin dielectric materials and patented processes for
precise ceramic grain growth have yielded superior energy
dissipation in the smallest size. Now a varistor has voltage
characteristics determined by design and not just cell sorting
whatever falls out of the process.
Multilayer ceramic varistors are manufactured by mixing
ceramic powder in an organic binder (slurry) and casting it
into thin layers of precision thickness. Metal electrodes are
deposited onto the green ceramic layers which are then
stacked to form a laminated structure. The metal electrodes
are arranged so that their terminations alternate from one
end of the varistor to the other. The device becomes a
monolithic block during the sintering (firing) cycle providing
uniform energy dissipation in a small volume.
1
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
PART NUMBER IDENTIFICATION
Surface Mount Devices
Axial Leaded Devices
Important: For part number identification only, not for
construction of part numbers.
The information below only defines the numerical value of part number
digits, and cannot be used to construct a desired set of electrical limits.
Please refer to the TransGuard® part number data for the correct electrical ratings.
Important: For part number identification only, not for
construction of part numbers.
The information below only defines the numerical value of part number
digits, and cannot be used to construct a desired set of electrical limits.
Please refer to the TransGuard® part number data for the correct electrical ratings.
V C 1206 05 D 150 R P
V A 1000 05 D 150 R L
TERMINATION FINISH:
LEAD FINISH:
P = Ni/Sn Alloy (Plated)
M = Ni/Sn Pb (Plated)
Copper clad steel, solder coated
PACKAGING (Pcs/Reel):
PACKAGING (Pcs/Reel):
STYLE
VC0402
VC0603
VC0805
VC1206
VC1210
“D”
N/A
1,000
1,000
1,000
1,000
“R”
N/A
4,000
4,000
4,000
2,000
STYLE
VA1000
VA2000
“T”
“W”
N/A 10,000
10,000 N/A
10,000 N/A
10,000 N/A
10,000 N/A
500 =
560 =
580 =
620 =
650 =
101 =
121 =
Where: 100 =
150 =
300 =
400 =
50V
60V
60V
67V
67V
100V
120V
A = 0.1J
B = 0.2J
C = 0.3J
D = 0.4J
E = 0.5J
F = 0.7J
G = 0.9J
H = 1.2J
J = 1.5J
K = 0.6J
L = 0.8J
M = 1.0J
N = 1.1J
P = 3.0J
Q = 1.3J
R = 1.7J
Where:
03 =
05 =
09 =
12 =
14 =
3.3 VDC
5.6 VDC
9.0 VDC
12.0 VDC
14.0 VDC
SIZE
LENGTH
1.00±0.10mm
1.60±0.15mm
2.01±0.2mm
3.20±0.2mm
3.20±0.2mm
(0.040"±0.004")
(0.063"±0.006")
(0.079"±0.008")
(0.126"±0.008")
(0.126"±0.008")
26 = 26.0 VDC
30 = 30.0 VDC
48 = 48.0 VDC
60 = 60.0 VDC
CASE SIZE DESIGNATOR:
SIZE
LENGTH
DIAMETER
1000 4.32mm (0.170") 2.54mm (0.100")
2000 4.83mm (0.190") 3.56mm (0.140")
CASE STYLE:
A = Axial
18 =
26 =
30 =
48 =
60 =
18.0 VDC
26.0 VDC
30.0 VDC
48.0 VDC
60.0 VDC
WIDTH
0.5±0.10mm
0.8±0.15mm
1.25±0.2mm
1.60±0.2mm
2.49±0.2mm
(0.020"±0.004")
(0.032"±0.006")
(0.049"±0.008")
(0.063"±0.008")
(0.098"±0.008")
CASE STYLE:
C = Chip
PRODUCT DESIGNATOR:
V = Varistor
MARKING:
All standard surface mount TransGuard® chips will not be marked.
2
580 = 60V
650 = 67V
101 = 100V
121 = 120V
A = 0.1J
D = 0.4J
K = 2.0J
Where: 03 = 3.3 VDC
05 = 5.6 VDC
14 = 14.0 VDC
18 = 18.0 VDC
S = 1.9-2.0J
T = 0.01J
U = 4.0-5.0J
V = 0.02J
W = 6.0J
X = 0.05J
Y = 12.0J
Z = 25.0J
CASE SIZE DESIGNATOR:
0402
0603
0805
1206
1210
12V
18V
32V
42V
WORKING VOLTAGE:
WORKING VOLTAGE:
Where:
“T”
7,500
5,000
ENERGY:
ENERGY:
Where:
“R”
3,000
2,500
CLAMPING VOLTAGE:
CLAMPING VOLTAGE:
Where: 100 = 12V
150 = 18V
200 = 22V
250 = 27V
300 = 32V
390 = 42V
400 = 42V
“D”
1,000
1,000
PRODUCT DESIGNATOR:
V = Varistor
MARKING:
All axial TransGuards® are marked with vendor identification, product
identification, voltage/energy rating code and date code (see example below):
AVX
TVS
05D
825
Where: AVX = Always AVX (Vendor Identification)
TVS = Always TVS (Product Identification
- Transient Voltage Suppressor)
05D = Working VDC and Energy Rating (Joules)
Where: 05 = 5.6 VDC, D = 0.4J
725 = Three Digit Date Code
Where: 8 = Last digit of year (2008)
25 = Week of year
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
ELECTRICAL CHARACTERISTICS
AVX
Part Number
Working Working Breakdown Clamping Test
Maximum Transient
Voltage Voltage
Voltage
Voltage Current Leakage
Energy
(DC)
(AC)
For VC
Current
Rating
VC060303A100 _ _
3.3
2.3
5.0±20%
12
1
100
0.1
Peak
Current
Rating
30
Typical Frequency
Cap
1450
K
Case
Size
0603
VC080503A100 _ _
3.3
2.3
5.0±20%
12
1
100
0.1
40
1400
K
0805
VC080503C100 _ _
3.3
2.3
5.0±20%
12
1
100
0.3
120
5000
K
0805
VC120603A100 _ _
3.3
2.3
5.0±20%
12
1
100
0.1
40
1250
K
1206
VC120603D100 _ _
3.3
2.3
5.0±20%
12
1
100
0.4
150
4700
K
1206
VA100003A100 _ _
3.3
2.3
5.0±20%
12
1
100
0.1
40
1500
K
1000
VA100003D100 _ _
3.3
2.3
5.0±20%
12
1
100
0.4
150
4700
K
1000
VC040205X150 _ _
5.6
4.0
8.5±20%
18
1
35
0.05
20
175
M
0402
VC060305A150 _ _
5.6
4.0
8.5±20%
18
1
35
0.1
30
750
K
0603
VC080505A150 _ _
5.6
4.0
8.5±20%
18
1
35
0.1
40
1100
K
0805
0805
VC080505C150 _ _
5.6
4.0
8.5±20%
18
1
35
0.3
120
3000
K
VC120605A150 _ _
5.6
4.0
8.5±20%
18
1
35
0.1
40
1200
K
1206
VC120605D150 _ _
5.6
4.0
8.5±20%
18
1
35
0.4
150
3000
K
1206
VA100005A150 _ _
5.6
4.0
8.5±20%
18
1
35
0.1
40
1000
K
1000
VA100005D150 _ _
5.6
4.0
8.5±20%
18
1
35
0.4
150
2800
K
1000
VC040209X200 _ _
9.0
6.4
12.7±15%
22
1
25
0.05
20
175
M
0402
VC060309A200 _ _
9.0
6.4
12.7±15%
22
1
25
0.1
30
550
K
0603
VC080509A200 _ _
9.0
6.4
12.7±15%
22
1
25
0.1
40
750
K
0805
VC080512A250 _ _
12.0
8.5
16±15%
27
1
25
0.1
40
525
K
0805
VC040214X300 _ _
14.0
10.0
18.5±12%
32
1
15
0.05
20
100
M
0402
VC060314A300 _ _
14.0
10.0
18.5±12%
32
1
15
0.1
30
350
K
0603
VC080514A300 _ _
14.0
10.0
18.5±12%
32
1
15
0.1
40
325
K
0805
VC080514C300 _ _
14.0
10.0
18.5±12%
32
1
15
0.3
120
900
K
0805
VC120614A300 _ _
14.0
10.0
18.5±12%
32
1
15
0.1
40
600
K
1206
VC120614D300 _ _
14.0
10.0
18.5±12%
32
1
15
0.4
150
1050
K
1206
VA100014A300 _ _
14.0
10.0
18.5±12%
32
1
15
0.1
40
325
K
1000
VA100014D300 _ _
14.0
10.0
18.5±12%
32
1
15
0.4
150
1100
K
1000
VC13MA0160KBA
16.0
14.0
24.5±10%
40
2.5
25
1.6
400
1800
K
1210
VC040218X400 _ _
18.0
13.0
25.5±10%
42
1
10
0.05
20
65
M
0402
VC060318A400 _ _
18.0
13.0
25.5±10%
42
1
10
0.1
30
150
K
0603
VC080518A400 _ _
18.0
13.0
25.5±10%
42
1
10
0.1
30
225
K
0805
VC080518C400 _ _
18.0
13.0
25.5±10%
42
1
10
0.3
100
550
K
0805
VC120618A400 _ _
18.0
13.0
25.5±10%
42
1
10
0.1
30
350
K
1206
VC120618D400 _ _
18.0
13.0
25.5±10%
42
1
10
0.4
150
900
K
1206
VC120618E380 _ _
18.0
13.0
22.0±10%
38
1
15
0.5
200
800
K
1206
VC121018J390 _ _
18.0
13.0
25.5±10%
42
5
10
1.5
500
3100
K
1210
VJ13MC0180KBA
18.0
13.0
24.0±10%
45
10
25
1.5
500
3000
K
1210
VA100018A400 _ _
18.0
13.0
25.5±10%
42
1
10
0.1
40
350
K
1000
Termination/Lead Finish Code
Packaging Code
3
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
ELECTRICAL CHARACTERISTICS
AVX
Part Number
Working Working Breakdown Clamping Test
Maximum Transient
Voltage Voltage
Voltage
Voltage Current Leakage
Energy
(DC)
(AC)
For VC
Current
Rating
Peak
Current
Rating
Typical Frequency
Cap
Case
Size
VA100018D400 _ _
18.0
13.0
25.5±10%
42
1
10
0.4
150
900
K
1000
VC060326A580 _ _
26.0
18.0
34.5±10%
60
1
10
0.1
30
155
K
0603
VC080526A580 _ _
26.0
18.0
34.5±10%
60
1
10
0.1
30
120
K
0805
VC080526C580 _ _
26.0
18.0
34.5±10%
60
1
10
0.3
100
250
K
0805
VC120626D580 _ _
26.0
18.0
34.5±10%
60
1
10
0.4
120
500
K
1206
VC120626F540 _ _
26.0
20.0
33.0±10%
54
1
15
0.7
200
600
K
1206
VC121026H560 _ _
26.0
18.0
34.5±10%
60
5
10
1.2
300
2150
K
1210
VJ13MC0260KBA
26.0
18.0
33.0±10%
62
10
25
1.2
300
1120
K
1210
VC181226P540 _ _
26.0
20.0
33.0±10%
54
5
15
3.0
800
3000
K
1812
VA100026D580 _ _
26.0
18.0
34.5±10%
60
1
10
0.4
120
650
K
1000
VC060330A650 _ _
30.0
21.0
41.0±10%
67
1
10
0.1
30
125
K
0603
VC080530A650 _ _
30.0
21.0
41.0±10%
67
1
10
0.1
30
90
M
0805
VC120630D650 _ _
30.0
21.0
41.0±10%
67
1
10
0.4
120
400
K
1206
VC121030G620 _ _
30.0
21.0
41.0±10%
67
5
10
0.9
220
1750
K
1210
VC121030H620 _ _
30.0
21.0
41.0±10%
67
5
10
1.2
280
1850
K
1210
VJ13MC0300KBA
30.0
21.0
39.0±10%
73
10
25
0.9
220
1020
K
1210
VJ13PC0300KBA
30.0
21.0
39.0±10%
73
10
25
1.2
280
1150
K
1210
1000
VA100030D650 _ _
30.0
21.0
41.0±10%
67
1
10
0.4
120
550
K
VC120631M650 _ _
31.0
25.0
39.0±10%
65
1
15
1.0
200
500
K
1206
VC120638N770 _ _
38.0
30.0
47.0±10%
77
1
15
1.1
200
350
K
1206
VC121038S770 _ _
38.0
30.0
47.0±10%
77
2.5
15
2.0
300
750
K
1210
VC181238U770 _ _
38.0
30.0
47.0±10%
77
5
15
4.2
800
1700
K
1812
VC120645K900 _ _
45.0
35.0
56.0±10%
90
1
15
0.6
200
260
K
1206
VC181245U900 _ _
45.0
35.0
56.0±10%
90
5
15
4.0
500
1200
K
1812
VC120648D101 _ _
48.0
34.0
62.0±10%
100
1
10
0.4
100
225
K
1206
VC121048G101 _ _
48.0
34.0
62.0±10%
100
5
10
0.9
220
450
K
1210
VC121048H101 _ _
48.0
34.0
62.0±10%
100
5
10
1.2
250
500
K
1210
VJ13MC0480KBA
48.0
34.0
60.5±10%
110
10
25
0.9
220
800
K
1210
VJ13PC0480KBA
48.0
34.0
60.5±10%
110
10
25
1.2
250
840
K
1210
VA100048D101 _ _
48.0
34.0
62.0±10%
100
1
10
0.4
100
200
K
1000
VC120656F111 _ _
56.0
40.0
68.0±10%
110
1
15
0.7
100
180
K
1206
VC181256U111 _ _
56.0
40.0
68.0±10%
110
5
15
4.8
500
800
K
1812
VC121060J121 _ _
60.0
42.0
76.0±10%
120
5
10
1.5
250
400
K
1210
VJ13MC0600KBA
60.0
42.0
75.0±10%
126
10
25
1.5
250
600
K
1210
VA200060K121 _ _
60.0
42.0
76.0±10%
120
1
10
2.0
300
400
K
2000
VC120665L131 _ _
65.0
50.0
82.0±10%
135
1
15
0.8
100
120
K
1206
Termination/Lead Finish Code
Packaging Code
VW (DC)
VW (AC)
VB
VB Tol
VC
DC Working Voltage (V)
AC Working Voltage (V)
Typical Breakdown Voltage (V @ 1mADC )
VB Tolerance is ± from Typical Value
Clamping Voltage (V @ IVC )
IVC
IL
ET
IP
Cap
Freq
4
Test Current for VC (A, 8x20µS)
Maximum Leakage Current at the Working Voltage (µA)
Transient Energy Rating (J, 10x1000µS)
Peak Current Rating (A, 8x20µS)
Typical Capacitance (pF) @ frequency specified
and 0.5 VRMS
Frequency at which capacitance is measured
(K = 1kHz, M = 1MHz)
Dimensions
Dimensions: Millimeters
(Inches)
0.51 ±0.05
(0.020" ±0.002")
D
Max.
L
Max.
25.4 (1.0")
Min. Lead Length
DIMENSIONS: mm (inches)
AVX Style
VA1000
VA2000
(L) Max Length
mm
(in.)
4.32
(0.170)
4.83
(0.190)
(D) Max Diameter
mm
(in.)
2.54
(0.100)
3.56
(0.140)
䉲
䉲
W
䉲
䉲
L
䉲
Lead Finish: Copper Clad Steel, Solder Coated
T
䉲
䉲
䉲
t
DIMENSIONS: mm (inches)
AVX Style
0402
0603
0805
1206
1210
1812
2220
(L) Length
mm
(in.)
1.00±0.10
(0.040±0.004)
1.60±0.15
(0.063±0.006)
2.01±0.20
(0.079±0.008)
3.20±0.20
(0.126±0.008)
3.20±0.20
(0.126±0.008)
4.50±0.20
(0.177±0.008)
5.70±0.20
(0.224±0.008)
(W) Width
mm
(in.)
0.50±0.10
(0.020±0.004)
0.80±0.15
(0.031±0.006)
1.25±0.20
(0.049±0.008)
1.60±0.20
(0.063±0.008)
2.49±0.20
(0.098±0.008)
3.20±0.20
(0.126±0.008)
5.00±0.20
(0.197±0.008)
(T) Max Thickness
mm
(in.)
0.6
(0.024)
0.9
(0.035)
1.02
(0.040)
1.02
(0.040)
1.70
(0.067)
1.70
(0.067)
1.70
(0.067)
(t) Land Length
mm
(in.)
0.25±0.15
(0.010±0.006)
0.35±0.15
(0.014±0.006)
0.71 max.
(0.028 max.)
0.71 max.
(0.028 max.)
0.71 max.
(0.028 max.)
0.50±0.25
(0.020±0.010)
0.50±0.25
(0.020±0.010)
5
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0402 CHIP SIZE)
VOLTAGE/CURRENT CHARACTERISTICS
PULSE DEGRADATION
Multilayer construction and improved grain structure result in
excellent transient clamping characteristics up to 20 amps
peak current, while maintaining very low leakage currents
under DC operating conditions. The VI curves below show the
voltage/current characteristics for the 5.6V, 9V, 14V, 18V and
low capacitance StaticGuard parts with currents ranging from
parts of a micro amp to tens of amps.
Traditionally varistors have suffered degradation of electrical
performance with repeated high current pulses resulting in
decreased breakdown voltage and increased leakage current. It has been suggested that irregular intergranular
boundaries and bulk material result in restricted current
paths and other non-Schottky barrier paralleled conduction
paths in the ceramic. Repeated pulsing of TransGuard® transient voltage suppressors with 150Amp peak 8 x 20µS
waveforms shows negligible degradation in breakdown
voltage and minimal increases in leakage current. This
does not mean that TransGuard® suppressors do not suffer
degradation, but it occurs at much higher current.
100
VC04LC18V500
VC040218X400
VC040214X300
VC040209X200
VC040205X150
Voltage (V)
80
ESD TEST OF 0402 PARTS
60
35
40
VC04LC18V500
30
0
10-9
10-7
10-5
10-3
10-1
10
103
BREAKDOWN VOLTAGE (Vb)
20
105
Current (A)
PEAK POWER VS PULSE DURATION
25
20
VC040214X300
15
VC040209X200
10
1300
VC040218X400
VC040205X150
1200
5
1100
10
100
1000
10000
8kV ESD STRIKES
VC040218X400
VC040214X300
VC040209X200
VC04LC18V500
VC040205X150
1000
800
INSERTION LOSS CHARACTERISTICS
0
700
-5
600
500
-10
dB
PEAK POWER (W)
900
400
300
200
VC04LC18V
VC040218X
-15 VC040214X
VC040209X
VC040205X
-20
100
0
10
100
IMPULSE DURATION (μS)
6
1000
-25
0.01
0.1
1
Frequency (GHz)
10
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0603, 0805, 1206 & 1210 CHIP SIZES)
VOLTAGE/CURRENT CHARACTERISTICS
Multilayer construction and improved grain structure result in excellent transient clamping characteristics up to 500 amps peak
current, depending on case size and energy rating, while maintaining very low leakage currents under DC operating conditions. The VI curve below shows the voltage/current characteristics for the 3.3V, 5.6V, 12V, 14V, 18V, 26V, 30V, 48V and
60VDC parts with currents ranging from parts of a micro amp to tens of amps.
VI Curves - 3.3V and 5.6V Products
25
Voltage (V)
20
15
10
VI Curves - 9V, 12V, and 14V Products
5
50
10-6
3.3V, 0.1J
10-3
Current (A)
3.3V, >0.1J
10+0
5.6V, 0.1J
40
10+3
5.6V, >0.1J
Voltage (V)
0
10-9
30
20
10
VI Curves - 18V and 26V Products
0
10-9
100
9V, 0.1J
80
10-3
Current (A)
12V, 0.1J
10+0
14V, 0.1J
10+3
14V, >0.1J
60
40
VI Curves - 30V, 48V, and 60V Products
20
200
0
10-9
10-6
18V, 0.1J
10-3
Current (A)
18V, >0.1J
10+0
26V, 0.1J
10+3
26V, >0.1J
150
Voltage (V)
Voltage (V)
10-6
100
50
0
10-9
10-6
30V, 0.1J
10-3
Current (A)
30V, >0.1J
10+0
48V
10+3
60V
7
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0603, 0805, 1206 & 1210 CHIP SIZES)
3.3V
8
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0603, 0805, 1206 & 1210 CHIP SIZES)
TEMPERATURE CHARACTERISTICS
TransGuard® suppressors are designed to operate over the full temperature range from -55°C to +125°C. This operating
temperature range is for both surface mount and axial leaded products.
TYPICAL ENERGY DERATING VS TEMPERATURE
1.25
1
40
30
0.8
20
10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
Current (A)
-40 C
25 C
85 C
Energy Derating
Voltage as a Percent of
Average Breakdown Voltage
Temperature Dependence of Voltage
100
90
80
70
60
50
0.6
0.4
125 C
TYPICAL BREAKDOWN AND CLAMPING VOLTAGES
VS TEMPERATURE - 5.6V
0
-60 -40 -20
0
20
40
60
80
100 120
140 160
Temperature ( oC)
20
VC
15
5.6V
VB
10
5
-55
-40
-20
0
20
40
60
Temperature ( o C)
80
100
120
140
150
TYPICAL CAPACITANCE VS TEMPERATURE
TYPICAL BREAKDOWN AND CLAMPING VOLTAGES
VS TEMPERATURE - 18V
+25
+20
( VC )
40
30
20
-55
18V
-40
( VB )
-20
0
20
40
60
Temperature ( o C)
80
100
120
140
150
TYPICAL BREAKDOWN AND CLAMPING VOLTAGES
VS TEMPERATURE - 26V
+10
ge
era
Av
+5
0
-5
-10
-15
-25
( VC )
50
30
-55
+15
-20
60
40
Capacitance Relative to 25°C
50
25° C Reference
Typical Breakdown (VB )
and Clamping (VC ) Voltages
Typical Breakdown (VB )
and Clamping (VC ) Voltages
Typical Breakdown (VB )
and Clamping (VC ) Voltages
0.2
-40
-20
0
20
40
60
80
100
120
140
Temperature (°C)
26V
( VB )
-40
-20
0
20
40
60
Temperature (∞C)
80
100
120
140
150
9
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0603, 0805, 1206 & 1210 CHIP SIZES)
PULSE DEGRADATION
Traditionally varistors have suffered degradation of electrical performance with repeated high current pulses resulting in decreased
breakdown voltage and increased leakage current. It has been
suggested that irregular intergranular boundaries and bulk material
result in restricted current paths and other non-Schottky barrier
paralleled conduction paths in the ceramic. Repeated pulsing of
both 5.6 and 14V TransGuard® transient voltage suppressors with
150 Amp peak 8 x 20µS waveforms shows negligible degradation
in breakdown voltage and minimal increases in leakage current.
This does not mean that TransGuard® suppressors do not suffer
degradation, but it occurs at much higher current. The plots
of typical breakdown voltage vs number of 150A pulses are
shown below.
Repetitive Peak Current Strikes
Repetitive Peak Current Strikes
TransGuard® 1210 1.5J Product
10%
Change in Breakdown Voltage (%)
Change in Breakdown Voltage (%)
TransGuard® 1206 0.4J Product
VC120618D400
8%
VC120626D580
6%
VC120614D300
4%
VC120605D150
2%
0%
0
100
200
300
400
Number of Strikes
500
600
10%
8%
6%
VC121018J390
4%
2%
0%
0
100
200
300
400
Number of Strikes
Figure 1
Repetitive Peak Current Strikes
Repetitive Peak Current Strikes
Change in Breakdown Voltage (%)
Change in Breakdown Voltage (%)
StaticGuard 0805 0.1J Product
15%
10%
VC080518A400
VC080518C400
0%
0
100
200
300
400
Number of Strikes
600
Figure 3
TransGuard® 0805 0.1J and 0.3J Products
5%
500
500
600
30%
25%
20%
15%
10%
VC08LC18A500
5%
0%
0
100
200
300
400
Number of Strikes
500
600
Figure 4
Figure 2
CAPACITANCE/FREQUENCY
CHARACTERISTICS
TransGuard® Capacitance vs Frequency 0805
80
80
60
40
20
VC060305A150
VC06LC18X500
0
0
10
20
40
60
Frequency (MHz)
Capacitance Change (%)
100
Capacitance Change (%)
100
100
VC080505C150
60
40
20
VC080518C400
0
VC060326A580
80
100
TransGuard® Capacitance vs Frequency 1206
VC080514A300
0
20
40
60
Frequency (MHz)
80
100
Capacitance Change (%)
TransGuard® Capacitance vs Frequency 0603
80
60
VC120614D300
40
20
VC120648D101
0
VC12LC18A500
0
20
40
60
Frequency (MHz)
80
100