AVX VA100014A300

TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
GENERAL DESCRIPTION
The AVX TransGuard® Transient Voltage Suppressors (TVS)
with unique high-energy multilayer construction represents
state-of-the-art overvoltage circuit protection. Monolithic
multilayer construction provides protection from voltage
transients caused by ESD, lightning, NEMP, inductive switching, etc. True surface mount product is provided in EIA
industry standard packages. Thru-hole components are
supplied as conformally coated axial devices.
TRANSGUARD® DESCRIPTION
TransGuard® products are zinc oxide (ZnO) based ceramic
semiconductor devices with non-linear voltage-current characteristics (bi-directional) similar to back-to-back zener diodes.
They have the added advantage of greater current and energy
handling capabilities as well as EMI/RFI attenuation. Devices
are fabricated by a ceramic sintering process that yields a
structure of conductive ZnO grains surrounded by electrically
insulating barriers, creating varistor-like behavior.
The number of grain-boundary interfaces between conducting electrodes determines “Breakdown Voltage” of the
device. High voltage applications such as AC line protection
require many grains between electrodes while low voltage
requires few grains to establish the appropriate breakdown
voltage. Single layer ceramic disc processing proved to be a
viable production method for thick cross section devices
with many grains, but attempts to address low voltage
suppression needs by processing single layer ceramic disc
formulations with huge grain sites has had limited success.
AVX, the world leader in the manufacture of multilayer
ceramic capacitors, now offers the low voltage transient
protection marketplace a true multilayer, monolithic surface
mount varistor. Technology leadership in processing
thin dielectric materials and patented processes for
precise ceramic grain growth have yielded superior energy
dissipation in the smallest size. Now a varistor has voltage
characteristics determined by design and not just cell sorting
whatever falls out of the process.
Multilayer ceramic varistors are manufactured by mixing
ceramic powder in an organic binder (slurry) and casting it
into thin layers of precision thickness. Metal electrodes are
deposited onto the green ceramic layers which are then
stacked to form a laminated structure. The metal electrodes
are arranged so that their terminations alternate from one
end of the varistor to the other. The device becomes a
monolithic block during the sintering (firing) cycle providing
uniform energy dissipation in a small volume.
1
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
PART NUMBER IDENTIFICATION
Surface Mount Devices
Axial Leaded Devices
Important: For part number identification only, not for
construction of part numbers.
The information below only defines the numerical value of part number
digits, and cannot be used to construct a desired set of electrical limits.
Please refer to the TransGuard® part number data for the correct electrical ratings.
Important: For part number identification only, not for
construction of part numbers.
The information below only defines the numerical value of part number
digits, and cannot be used to construct a desired set of electrical limits.
Please refer to the TransGuard® part number data for the correct electrical ratings.
V C 1206 05 D 150 R P
V A 1000 05 D 150 R L
TERMINATION FINISH:
LEAD FINISH:
P = Ni/Sn Alloy (Plated)
Copper clad steel, solder coated
PACKAGING (Pcs/Reel):
PACKAGING (Pcs/Reel):
STYLE
VC0402
VC0603
VC0805
VC1206
VC1210
“D”
N/A
1,000
1,000
1,000
1,000
“R”
N/A
4,000
4,000
4,000
2,000
STYLE
VA1000
VA2000
“T”
“W”
N/A
10,000
10,000
N/A
10,000
N/A
10,000
N/A
10,000
N/A
100
150
200
250
300
390
400
=
=
=
=
=
=
=
12V
18V
22V
27V
32V
42V
42V
500
560
580
620
650
101
121
=
=
=
=
=
=
=
Where: 100
150
300
400
50V
60V
60V
67V
67V
100V
120V
A
B
C
D
E
F
G
H
=
=
=
=
=
=
=
=
0.1J
0.2J
0.3J
0.4J
0.5J
0.7J
0.9J
1.2J
J
K
L
M
N
P
Q
R
=
=
=
=
=
=
=
=
1.5J
0.6J
0.8J
1.0J
1.1J
3.0J
1.3J
1.7J
S
T
U
V
W
X
Y
Z
=
=
=
=
=
=
=
=
Where:
03
05
09
12
14
= 3.3 VDC
= 5.6 VDC
= 9.0 VDC
= 12.0 VDC
= 14.0 VDC
=
=
=
=
12V
18V
32V
42V
580
650
101
121
=
=
=
=
A = 0.1J
D = 0.4J
K = 2.0J
Where: 03
05
14
18
1.9-2.0J
0.01J
4.0-5.0J
0.02J
6.0J
0.05J
12.0J
25.0J
=
=
=
=
3.3 VDC
5.6 VDC
14.0 VDC
18.0 VDC
26
30
48
60
=
=
=
=
26.0
30.0
48.0
60.0
0402
0603
0805
1206
1210
LENGTH
1.00±0.10mm
1.60±0.15mm
2.01±0.2mm
3.20±0.2mm
3.20±0.2mm
(0.040"±0.004")
(0.063"±0.006")
(0.079"±0.008")
(0.126"±0.008")
(0.126"±0.008")
SIZE
LENGTH
DIAMETER
1000 4.32mm (0.170") 2.54mm (0.100")
2000 4.83mm (0.190") 3.56mm (0.140")
CASE STYLE:
A = Axial
18
26
30
48
60
85
=
=
=
=
=
=
18.0
26.0
30.0
48.0
60.0
85.0
VDC
VDC
VDC
VDC
VDC
VDC
WIDTH
0.5±0.10mm
0.8±0.15mm
1.25±0.2mm
1.60±0.2mm
2.49±0.2mm
(0.020"±0.004")
(0.032"±0.006")
(0.049"±0.008")
(0.063"±0.008")
(0.098"±0.008")
CASE STYLE:
C = Chip
PRODUCT DESIGNATOR:
V = Varistor
MARKING:
All standard surface mount TransGuard® chips will not be marked.
PRODUCT DESIGNATOR:
V = Varistor
MARKING:
All axial TransGuards® are marked with vendor identification, product
identification, voltage/energy rating code and date code (see example below):
AVX
TVS
05D
825
Where: AVX = Always AVX (Vendor Identification)
TVS = Always TVS (Product Identification
- Transient Voltage Suppressor)
05D = Working VDC and Energy Rating (Joules)
Where: 05 = 5.6 VDC, D = 0.4J
725 = Three Digit Date Code
Where: 8 = Last digit of year (2008)
25 = Week of year
Not RoHS Compliant
LEAD-FREE COMPATIBLE
COMPONENT
2
VDC
VDC
VDC
VDC
CASE SIZE DESIGNATOR:
CASE SIZE DESIGNATOR:
SIZE
60V
67V
100V
120V
WORKING VOLTAGE:
WORKING VOLTAGE:
Where:
“T”
7,500
5,000
ENERGY:
ENERGY:
Where:
“R”
3,000
2,500
CLAMPING VOLTAGE:
CLAMPING VOLTAGE:
Where:
“D”
1,000
1,000
For RoHS compliant products,
please select correct termination style.
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
ELECTRICAL CHARACTERISTICS
AVX PN
VW (DC)
VW (AC)
VB
VC
IVC
IL
ET
IP
Cap
Freq
Case
VC060303A100
3.3
2.3
5.0±20%
12
1
100
0.1
30
1450
K
0603
VC080503A100
3.3
2.3
5.0±20%
12
1
100
0.1
40
1400
K
0805
0805
VC080503C100
3.3
2.3
5.0±20%
12
1
100
0.3
120
5000
K
VC120603A100
3.3
2.3
5.0±20%
12
1
100
0.1
40
1250
K
1206
VC120603D100
3.3
2.3
5.0±20%
12
1
100
0.4
150
4700
K
1206
VA100003A100
3.3
2.3
5.0±20%
12
1
100
0.1
40
1500
K
1000
VA100003D100
3.3
2.3
5.0±20%
12
1
100
0.4
150
4700
K
1000
VC040205X150
5.6
4.0
8.5±20%
18
1
35
0.05
20
175
M
0402
VC060305A150
5.6
4.0
8.5±20%
18
1
35
0.1
30
750
K
0603
VC080505A150
5.6
4.0
8.5±20%
18
1
35
0.1
40
1100
K
0805
VC080505C150
5.6
4.0
8.5±20%
18
1
35
0.3
120
3000
K
0805
VC120605A150
5.6
4.0
8.5±20%
18
1
35
0.1
40
1200
K
1206
VC120605D150
5.6
4.0
8.5±20%
18
1
35
0.4
150
3000
K
1206
VA100005A150
5.6
4.0
8.5±20%
18
1
35
0.1
40
1000
K
1000
VA100005D150
5.6
4.0
8.5±20%
18
1
35
0.4
150
2800
K
1000
VC040209X200
9.0
6.4
12.7±15%
22
1
25
0.05
20
175
M
0402
VC060309A200
9.0
6.4
12.7±15%
22
1
25
0.1
30
550
K
0603
VC080509A200
9.0
6.4
12.7±15%
22
1
25
0.1
40
750
K
0805
VC080512A250
12.0
8.5
16±15%
27
1
25
0.1
40
525
K
0805
VC040214X300
14.0
10.0
18.5±12%
32
1
15
0.05
20
85
K
0402
VC060314A300
14.0
10.0
18.5±12%
32
1
15
0.1
30
350
K
0603
VC080514A300
14.0
10.0
18.5±12%
32
1
15
0.1
40
325
K
0805
VC080514C300
14.0
10.0
18.5±12%
32
1
15
0.3
120
900
K
0805
1206
VC120614A300
14.0
10.0
18.5±12%
32
1
15
0.1
40
600
K
VC120614D300
14.0
10.0
18.5±12%
32
1
15
0.4
150
1050
K
1206
VA100014A300
14.0
10.0
18.5±12%
32
1
15
0.1
40
325
K
1000
VA100014D300
14.0
10.0
18.5±12%
32
1
15
0.4
150
1100
K
1000
VC13MA0160KBA
16.0
14.0
24.5±10%
40
2.5
25
1.6
400
1800
K
1210
VC121016J390
16.0
13.0
25.5±10%
40
2.5
10
1.6
500
3100
K
1210
VC181216P400
16.0
11.0
24.5±10%
42
5
10
2.9
1000
5000
K
1812
VC222016Y400
16
11
24.5±10%
42
10
10
7.2
1500
13000
K
2220
VC040218X400
18.0
13.0
25.5±10%
42
1
10
0.05
20
65
M
0402
VC060318A400
18.0
13.0
25.5±10%
42
1
10
0.1
30
150
K
0603
VC080518A400
18.0
13.0
25.5±10%
42
1
10
0.1
30
225
K
0805
VC080518C400
18.0
13.0
25.5±10%
42
1
10
0.3
100
550
K
0805
VC120618A400
18.0
13.0
25.5±10%
42
1
10
0.1
30
350
K
1206
VC120618D400
18.0
13.0
25.5±10%
42
1
10
0.4
150
900
K
1206
VC120618E380
18.0
13.0
25.5±10%
38
1
15
0.5
200
930
K
1206
VC121018J390
18.0
13.0
25.5±10%
42
5
10
1.6
500
3100
K
1210
VJ13MC0180KBA
18.0
13.0
24.0±10%
45
10
25
1.5
500
3000
K
1210
VA100018A400
18.0
13.0
25.5±10%
42
1
10
0.1
40
350
K
1000
VA100018D400
18.0
13.0
25.5±10%
42
1
10
0.4
150
900
K
1000
VC121022R440
22.0
17.0
27±10%
44
2.5
10
1.7
400
1600
K
1210
VC060326A580
26.0
18.0
34.5±10%
60
1
10
0.1
30
155
K
0603
VC080526A580
26.0
18.0
34.5±10%
60
1
10
0.1
30
120
K
0805
VC080526C580
26.0
18.0
34.5±10%
60
1
10
0.3
100
250
K
0805
3
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
ELECTRICAL CHARACTERISTICS
AVX PN
VW (DC)
VW (AC)
VB
VC
IVC
IL
ET
IP
Cap
Freq
VC120626D580
26.0
18.0
34.5±10%
60
1
10
0.4
120
500
K
Case
1206
VC120626F540
26.0
20.0
33.0±10%
54
1
15
0.7
200
600
K
1206
VC121026H560
26.0
18.0
34.5±10%
60
5
10
1.2
300
2150
K
1210
VJ13MC0260KBA
26.0
18.0
33.0±10%
62
10
25
1.2
300
1120
K
1210
VC181226P540
26.0
20.0
33.0±10%
54
5
15
3.0
800
3000
K
1812
VA100026D580
26.0
18.0
34.5±10%
60
1
10
0.4
120
650
K
1000
VC060330A650
30.0
21.0
41.0±10%
67
1
10
0.1
30
125
K
0603
VC080530A650
30.0
21.0
41.0±10%
67
1
10
0.1
30
90
M
0805
VC080530C650
30.0
21.0
41.0±10%
67
1
10
0.3
80
250
K
0805
VC120630D650
30.0
21.0
41.0±10%
67
1
10
0.4
120
400
K
1206
VC121030G620
30.0
21.0
41.0±10%
67
5
10
0.9
220
1750
K
1210
VC121030H620
30.0
21.0
41.0±10%
67
5
10
1.2
280
1850
K
1210
VC121030S620
30.0
21.0
41.0±10%
67
5
10
1.9
300
1500
K
1210
VJ13MC0300KBA
30.0
21.0
39.0±10%
73
10
25
0.9
220
1020
K
1210
VJ13PC0300KBA
30.0
21.0
39.0±10%
73
10
25
1.2
280
1150
K
1210
VA100030D650
30.0
21.0
41.0±10%
67
1
10
0.4
120
550
K
1000
VC080531C650
31.0
25.0
39.0±10%
65
1
10
0.3
80
250
K
0805
VC120631M650
31.0
25.0
39.0±10%
65
1
15
1.0
200
500
K
1206
VC080538C770
38.0
30.0
47.0±10%
77
1
10
0.3
80
200
K
0805
VC120638N770
38.0
30.0
47.0±10%
77
1
15
1.1
200
400
K
1206
VC121038S770
38.0
30.0
47.0±10%
77
2.5
15
2.0
400
1000
K
1210
VC181238U770
38.0
30.0
47.0±10%
77
5
15
4.2
800
1300
K
1812
VC222038Y770
38.0
30.0
47.0±10%
77
10
15
12
2000
4200
K
2220
VC120642L800
42.0
32.0
51.0±10%
80
1
15
0.8
180
600
K
1206
VC120645K900
45.0
35.0
56.0±10%
90
1
15
0.6
200
260
K
1206
VC181245U900
45.0
35.0
56.0±10%
90
5
15
4.0
500
1200
K
1812
VC120648D101
48.0
34.0
62.0±10%
100
1
10
0.4
100
225
K
1206
VC121048G101
48.0
34.0
62.0±10%
100
5
10
0.9
220
450
K
1210
VC121048H101
48.0
34.0
62.0±10%
100
5
10
1.2
250
500
K
1210
VJ13MC0480KBA
48.0
34.0
60.0±10%
110
10
25
0.9
220
800
K
1210
VJ13PC0480KBA
48.0
34.0
60.0±10%
110
10
25
1.2
250
840
K
1210
VA100048D101
48.0
34.0
62.0±10%
100
1
10
0.4
100
200
K
1000
1206
VC120656F111
56.0
40.0
68.0±10%
110
1
15
0.7
100
180
K
VC181256U111
56.0
40.0
68.0±10%
110
5
15
4.8
500
800
K
1812
VC121060J121
60.0
42.0
76.0±10%
120
5
10
1.5
250
400
K
1210
VJ13MC06000KBA
60.0
42.0
75.0±10%
126
10
25
1.5
250
600
K
1210
VA200060K121
60.0
42.0
76.0±10%
120
1
10
2.0
300
400
K
2000
VC120665L131
65.0
50.0
82.0±10%
135
1
15
0.8
100
250
K
1206
VC120665M131
65.0
50.0
82.0±10%
135
1
15
1.0
150
250
K
1206
VC121065P131
65.0
50.0
82±10%
135
2.5
15
2.7
350
600
K
1210
VC121085S151
85.0
60.0
100±10%
150
1
35
2.0
250
275
K
1210
VW (DC)
VW (AC)
VB
VB Tol
VC
IVC
IL
4
DC Working Voltage (V)
AC Working Voltage (V)
Typical Breakdown Voltage (V @ 1mADC )
VB Tolerance is ± from Typical Value
Clamping Voltage (V @ IVC )
Test Current for VC (A, 8x20μS)
Maximum Leakage Current at the
ET
IP
Cap
Freq
Working Voltage (μA)
Transient Energy Rating (J, 10x1000μS)
Peak Current Rating (A, 8x20μS)
Typical Capacitance (pF) @ frequency specified
and 0.5 VRMS
Frequency at which capacitance is measured
(K = 1kHz, M = 1MHz)
Dimensions
Dimensions: Millimeters
(Inches)
0.51 ±0.05
(0.020" ±0.002")
D
Max.
L
Max.
25.4 (1.0")
Min. Lead Length
DIMENSIONS: mm (inches)
AVX Style
VA1000
VA2000
(L) Max Length
mm
(in.)
4.32
(0.170)
4.83
(0.190)
(D) Max Diameter
mm
(in.)
2.54
(0.100)
3.56
(0.140)
䉲
䉲
W
䉲
䉲
L
䉲
Lead Finish: Copper Clad Steel, Solder Coated
T
䉲
䉲
䉲
t
DIMENSIONS: mm (inches)
AVX Style
0402
0603
0805
1206
1210
1812
2220
(L) Length
mm
(in.)
1.00±0.10
(0.040±0.004)
1.60±0.15
(0.063±0.006)
2.01±0.20
(0.079±0.008)
3.20±0.20
(0.126±0.008)
3.20±0.20
(0.126±0.008)
4.50±0.30
(0.177±0.012)
5.70±0.40
(0.224±0.016)
(W) Width
mm
(in.)
0.50±0.10
(0.020±0.004)
0.80±0.15
(0.031±0.006)
1.25±0.20
(0.049±0.008)
1.60±0.20
(0.063±0.008)
2.49±0.20
(0.098±0.008)
3.20±0.30
(0.126±0.012)
5.00±0.40
(0.197±0.016)
(T) Max Thickness
mm
(in.)
0.6
(0.024)
0.9
(0.035)
1.02
(0.040)
1.02
(0.040)
1.70
(0.067)
2.00
(0.080)
2.00
(0.080)
(t) Land Length
mm
(in.)
0.25±0.15
(0.010±0.006)
0.35±0.15
(0.014±0.006)
0.71 max.
(0.028 max.)
0.94 max.
(0.037 max.)
1.14 max.
(0.045 max.)
1.00 max.
(0.039 max.)
1.00 max.
(0.039 max.)
5
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0402 CHIP SIZE)
VOLTAGE/CURRENT CHARACTERISTICS
PULSE DEGRADATION
Multilayer construction and improved grain structure result in
excellent transient clamping characteristics up to 20 amps
peak current, while maintaining very low leakage currents
under DC operating conditions. The VI curves below show the
voltage/current characteristics for the 5.6V, 9V, 14V, 18V and
low capacitance StaticGuard parts with currents ranging from
parts of a micro amp to tens of amps.
Traditionally varistors have suffered degradation of electrical
performance with repeated high current pulses resulting in
decreased breakdown voltage and increased leakage current. It has been suggested that irregular intergranular
boundaries and bulk material result in restricted current
paths and other non-Schottky barrier paralleled conduction
paths in the ceramic. Repeated pulsing of TransGuard® transient voltage suppressors with 150Amp peak 8 x 20μS
waveforms shows negligible degradation in breakdown
voltage and minimal increases in leakage current. This
does not mean that TransGuard® suppressors do not suffer
degradation, but it occurs at much higher current.
100
VC04LC18V500
VC040218X400
VC040214X300
VC040209X200
VC040205X150
Voltage (V)
80
ESD TEST OF 0402 PARTS
60
35
40
VC04LC18V500
30
0
10-9
10-7
10-5
10-3
10-1
10
103
BREAKDOWN VOLTAGE (Vb)
20
105
Current (A)
PEAK POWER VS PULSE DURATION
25
20
VC040214X300
15
VC040209X200
10
1300
VC040218X400
VC040205X150
1200
5
1100
10
100
1000
10000
8kV ESD STRIKES
VC040218X400
VC040214X300
VC040209X200
VC04LC18V500
VC040205X150
1000
800
INSERTION LOSS CHARACTERISTICS
0
700
-5
600
500
-10
dB
PEAK POWER (W)
900
400
300
200
VC04LC18V
VC040218X
-15 VC040214X
VC040209X
VC040205X
-20
100
0
10
100
IMPULSE DURATION (μS)
6
1000
-25
0.01
0.1
1
Frequency (GHz)
10
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0603, 0805, 1206 & 1210 CHIP SIZES)
VOLTAGE/CURRENT CHARACTERISTICS
Multilayer construction and improved grain structure result in excellent transient clamping characteristics up to 500 amps peak
current, depending on case size and energy rating, while maintaining very low leakage currents under DC operating conditions. The VI curve below shows the voltage/current characteristics for the 3.3V, 5.6V, 12V, 14V, 18V, 26V, 30V, 48V and
60VDC parts with currents ranging from parts of a micro amp to tens of amps.
VI Curves - 3.3V and 5.6V Products
25
Voltage (V)
20
15
10
VI Curves - 9V, 12V, and 14V Products
5
50
10-6
3.3V, 0.1J
10-3
Current (A)
3.3V, >0.1J
10+0
5.6V, 0.1J
40
10+3
5.6V, >0.1J
Voltage (V)
0
10-9
30
20
10
VI Curves - 18V and 26V Products
0
10-9
100
9V, 0.1J
80
10-3
Current (A)
12V, 0.1J
10+0
14V, 0.1J
10+3
14V, >0.1J
60
40
VI Curves - 30V, 48V, and 60V Products
20
200
10-6
18V, 0.1J
10-3
Current (A)
18V, >0.1J
10+0
26V, 0.1J
10+3
26V, >0.1J
150
Voltage (V)
0
10-9
100
VI Curve - 85V Product
50
200
160
0
10-9
Voltage (V)
Voltage (V)
10-6
10-6
120
30V, 0.1J
10-3
Current (A)
30V, >0.1J
10+0
48V
10+3
60V
80
40
0
1.E-09
1.E-06
1.E-03
1.E+00
1.E+03
Current (A)
7
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0603, 0805, 1206 & 1210 CHIP SIZES)
3.3V
8
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0603, 0805, 1206 & 1210 CHIP SIZES)
TEMPERATURE CHARACTERISTICS
TransGuard® suppressors are designed to operate over the full temperature range from -55°C to +125°C. This operating
temperature range is for both surface mount and axial leaded products.
TYPICAL ENERGY DERATING VS TEMPERATURE
1.25�
1�
40
30
0.8�
20
10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
Current (A)
-40 C
25 C
85 C
Energy Derating
Voltage as a Percent of
Average Breakdown Voltage
Temperature Dependence of Voltage
100
90
80
70
60
50
0.6�
0.4�
125 C
TYPICAL BREAKDOWN AND CLAMPING VOLTAGES
VS TEMPERATURE - 5.6V
0
-60 -40 -20
0
20
40
60
80
100 120
140 160
o
�Temperature ( �C)
20
VC
15
5.6V
VB
10
5
-55
-40
-20
0
20
40
60
Temperature ( o C)
80
100
120
140
150
TYPICAL CAPACITANCE VS TEMPERATURE
TYPICAL BREAKDOWN AND CLAMPING VOLTAGES
VS TEMPERATURE - 18V
+25
+20
( VC )
40
30
20
-55
18V
-40
( VB )
-20
0
20
40
60
Temperature ( o C)
80
100
120
140
150
TYPICAL BREAKDOWN AND CLAMPING VOLTAGES
VS TEMPERATURE - 26V
+10
Av
+5
era
ge
0
-5
-10
-15
-25
( VC )
50
30
-55
+15
-20
60
40
Capacitance Relative to 25°C
50
25° C Reference
Typical Breakdown (VB )
and Clamping (VC ) Voltages
Typical Breakdown (VB )
and Clamping (VC ) Voltages
Typical Breakdown (VB )
and Clamping (VC ) Voltages
0.2�
-40
-20
0
20
40
60
80
100
120
140
Temperature (°C)
26V
( VB )
-40
-20
0
20
40
60
Temperature (∞C)
80
100
120
140
150
9
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0603, 0805, 1206 & 1210 CHIP SIZES)
PULSE DEGRADATION
Traditionally varistors have suffered degradation of electrical performance with repeated high current pulses resulting in decreased
breakdown voltage and increased leakage current. It has been
suggested that irregular intergranular boundaries and bulk material
result in restricted current paths and other non-Schottky barrier
paralleled conduction paths in the ceramic. Repeated pulsing of
both 5.6 and 14V TransGuard® transient voltage suppressors with
150 Amp peak 8 x 20μS waveforms shows negligible degradation
in breakdown voltage and minimal increases in leakage current.
This does not mean that TransGuard® suppressors do not suffer
degradation, but it occurs at much higher current. The plots
of typical breakdown voltage vs number of 150A pulses are
shown below.
Repetitive Peak Current Strikes
Repetitive Peak Current Strikes
TransGuard® 1210 1.5J Product
10%
Change in Breakdown Voltage (%)
Change in Breakdown Voltage (%)
TransGuard® 1206 0.4J Product
VC120618D400
8%
VC120626D580
6%
VC120614D300
4%
VC120605D150
2%
0%
0
100
200
300
400
Number of Strikes
500
600
10%
8%
6%
VC121018J390
4%
2%
0%
0
100
200
300
400
Number of Strikes
Figure 1
Repetitive Peak Current Strikes
Repetitive Peak Current Strikes
Change in Breakdown Voltage (%)
Change in Breakdown Voltage (%)
StaticGuard 0805 0.1J Product
15%
10%
VC080518A400
VC080518C400
0%
0
100
200
300
400
Number of Strikes
600
Figure 3
TransGuard® 0805 0.1J and 0.3J Products
5%
500
500
600
30%
25%
20%
15%
10%
VC08LC18A500
5%
0%
0
100
200
300
400
Number of Strikes
500
600
Figure 4
Figure 2
CAPACITANCE/FREQUENCY
CHARACTERISTICS
TransGuard® Capacitance vs Frequency 0805
80
80
60
40
20
VC060305A150
VC06LC18X500
0
0
10
20
40
60
Frequency (MHz)
Capacitance Change (%)
100
Capacitance Change (%)
100
100
VC080505C150
60
40
20
VC080518C400
0
VC060326A580
80
100
TransGuard® Capacitance vs Frequency 1206
VC080514A300
0
20
40
60
Frequency (MHz)
80
100
Capacitance Change (%)
TransGuard® Capacitance vs Frequency 0603
80
60
VC120614D300
40
20
VC120648D101
0
VC12LC18A500
0
20
40
60
Frequency (MHz)
80
100