EMC1187 DATA SHEET (08/15/2013) DOWNLOAD

EMC1187
Triple Channel 1°C Temperature Sensor with Hardware
Thermal Shutdown and 1.8V SMBus Communications
PRODUCT FEATURES
Datasheet
General Description
Applications
The EMC1187 is a high accuracy, low cost, 1.8V System
Management Bus (SMBus) compatible temperature sensor.
Advanced features such as Resistance Error Correction (REC),
Beta Compensation (to support CPU diodes requiring the
BJT/transistor model including 65nm and lower geometry
processors) and automatic diode type detection combine to
provide a robust solution for complex environmental monitoring
applications. The ability to communicate at 1.8V SMBus levels
provides compatible I/O for the advanced processors found in
today’s tablet and smartphone applications.




Notebook Computers
Desktop Computers
Industrial
Embedded applications
Features

Hardware Thermal Shutdown
— triggers dedicated SYS_SHDN pin
— hardware configured range 77°C to 112°C in 1°C steps
— cannot be disabled or modified by software

Support for diodes requiring the BJT/transistor model
— Supports 65nm and lower geometry CPU thermal
diodes
The EMC1187 monitors three temperature channels (two
external and one internal), providing ±1°C accuracy for both
external and internal diode temperatures.


Additionally, the EMC1187provides a hardware programmable
system shutdown feature that is programmed at part power-up
via two pull-up resistor values and that cannot be masked or
corrupted through the SMBus.




REC automatically eliminates the temperature error caused by
series resistance allowing greater flexibility in routing thermal
diodes. Frequency hopping* and analog filters ensure remote
diode traces can be as far as eight (8) inches without degrading
the signal. Beta Compensation eliminates temperature errors
caused by low, variable beta transistors common in today's fine
geometry processors. The automatic beta detection feature
monitors the external diode/transistor and determines the
optimum sensor settings for accurate temperature
measurements regardless of processor technology. This frees
the user from providing unique sensor configurations for each
temperature monitoring application. These advanced features
plus ±1°C measurement accuracy provide a low-cost, highly
flexible and accurate solution for critical temperature monitoring
applications.
Pin and register compatible with EMC1423
Automatically determines external diode type and
optimal settings
Resistance Error Correction
Frequency hops the remote sample frequency to reject
DC converter and other coherent noise sources*
Consecutive Alert queue to further reduce false Alerts
Up to 2 External Temperature Monitor
— 25°C typ, ±1°C max accuracy (20°C < TDIODE < 110°C)
— 0.125°C resolution
— Supports up to 2.2nF diode filter capacitor

Internal Temperature Monitor
— ±1°C accuracy
— 0.125°C resolution




3.3V Supply Voltage
1.8V SMBus operation
Programmable temperature limits for ALERT (85°C
default high limit and 0°C default low limit)
Available in small 10-pin 3mm x 3mm DFN RoHS
compliant package
VDD
EMC1187
Switching
Current
SYS_SHDN Limit
VDD = 3.3V
1.8V – 3.3V
Conversion Rate Register
ΔΣ ADC
Internal
Temperature
Register
Low Limit Registers
High Limit Registers
Thermal
diode
SMBus Interface
DN2
External
Temperature
Register(s)
CPU
Digital Mux
Analog
Mux
DP2
Digital Mux
DN1
Limit Comparator
DP1
VDD
EMC1187
DP1
DN1
SMDATA
Internal
Diode
DP2
SMCLK
Internal
Temp Diode
Configuration Register
Status Registers
Interupt Masking
Host
SMCLK
DN2
ALERT
SYS_SHDN
SMBus
Interface
Power
Control
SMDATA
ALERT
SYS_SHDN
GND
* Technology covered under the US patent 7,193,543.
SMSC EMC1187
Revision 1.0 (07-11-13)
DATASHEET
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Ordering Information:
ORDERING NUMBER
PACKAGE
FEATURES
EMC1187-1-AIA-TR
10-pin DFN 3mm x 3mm
(RoHS compliant)
Up to three temperature sensors, hardware
set system shutdown, ALERT and
SYS_SHDN pins, fixed SMBus address
SMBUS
ADDRESS
1001_1100(r/w)
This product meets the halogen maximum concentration values per IEC61249-2-21
For RoHS compliance and environmental information, please visit www.smsc.com/rohs
Please contact your SMSC sales representative for additional documentation related to this product
such as application notes, anomaly sheets, and design guidelines.
Copyright © 2013 SMSC or its subsidiaries. All rights reserved.
Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for
construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC
reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications
before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent
rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated
version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors
known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not
designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property
damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of
this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered
trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders.
The Microchip name and logo, and the Microchip logo are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE
OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT;
TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD
TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Revision 1.0 (07-11-13)
2
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Table of Contents
Chapter 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Chapter 2 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter 3 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 SMBus Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 4 System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Communications Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1 SMBus Start Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.2 SMBus Address and RD / WR Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.3 SMBus Data Bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.4 SMBus ACK and NACK Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.5 SMBus Stop Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.6 SMBus Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.7 SMBus and I2C Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 SMBus Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1 Write Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 Read Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.3 Send Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.4 Receive Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Alert Response Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
13
13
13
13
14
14
14
14
15
15
15
15
16
Chapter 5 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1 Conversion Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Dynamic Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 .SYS_SHDN Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4 Hardware Thermal Shutdown Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5 ALERT Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.1 ALERT Pin Interrupt Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.2 ALERT Pin Comparator Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6 ALERT and SYS_SHDN Pin Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7 Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.1 Beta Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.2 Resistance Error Correction (REC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.3 Programmable External Diode Ideality Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8 Diode Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.9 Consecutive Alerts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.10 Digital Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.11 Temperature Measurement Results and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
17
18
19
20
20
20
20
21
21
21
22
22
22
22
24
Chapter 6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.1 Data Read Interlock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3 Status Register 02h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4 Configuration Register 03h / 09h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SMSC EMC1187
3
DATASHEET
28
28
28
29
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
6.5 Conversion Rate Register 04h / 0Ah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.6 Limit Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.7 Scratchpad Registers 11h and 12h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.8 Therm Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.9 External Diode Fault Register 1Bh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.10 Software Thermal Shutdown Configuration Register 1Dh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.11 Hardware Thermal Shutdown Limit Register 1Eh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.12 Channel Mask Register 1Fh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.13 Consecutive ALERT Register 22h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.14 Beta Configuration Registers 25h and 26h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.15 External Diode Ideality Factor Register 27h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.16 High Limit Status Register 35h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.17 Low Limit Status Register 36h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.18 Therm Limit Status Register 37h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.19 Filter Control Register 40h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.20 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.21 SMSC ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.22 Revision Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
31
32
33
33
33
34
35
35
37
38
40
40
41
41
42
42
42
Chapter 7 Typical Operating Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Chapter 8 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.1 Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Chapter 9 Datasheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Revision 1.0 (07-11-13)
4
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
List of Figures
Figure 1.1
Figure 2.1
Figure 4.1
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
EMC1187 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
EMC1187 Pin Diagram DFN-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SMBus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
System Diagram for EMC1187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Block Diagram of Hardware Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Isolating ALERT and SYS_SHDN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Temperature Filter Step Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Temperature Filter Impulse Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10-Pin DFN Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10-Pin DFN Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10 Pin DFN PCB Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
EMC1187-1 10-Pin DFN Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
SMSC EMC1187
5
DATASHEET
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
List of Tables
Table 2.1 EMC1187 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 2.2 Pin Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3.2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3.3 SMBus Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 4.1 Protocol Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4.2 Write Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 4.3 Read Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 4.4 Send Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 4.5 Receive Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 4.6 Alert Response Address Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 5.1 Supply Current vs. Conversion Rate for EMC1187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 5.2 SYS_SHDN Threshold Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 5.3 Temperature Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 6.1 Register Set in Hexadecimal Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 6.2 Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 6.3 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 6.4 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 6.5 Conversion Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 6.6 Conversion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 6.7 Temperature Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 6.8 Scratchpad Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 6.9 Therm Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 6.10 External Diode Fault Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 6.11 Software Thermal Shutdown Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 6.12 Hardware Thermal Shutdown Limit Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 6.13 Channel Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 6.14 Consecutive ALERT Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 6.15 Consecutive Alert / Therm Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 6.16 Beta Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 6.17 CPU Beta Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 6.18 Ideality Configuration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 6.19 Ideality Factor Look-Up Table (Diode Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 6.20 Substrate Diode Ideality Factor Look-Up Table (BJT Model) . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 6.21 High Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 6.22 Low Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 6.23 Therm Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 6.24 Filter Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 6.25 FILTER Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 6.26 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 6.27 Manufacturer ID Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 6.28 Revision Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 9.1 Customer Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Revision 1.0 (07-11-13)
6
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Chapter 1 Block Diagram
VDD
EMC1187
Switching
Current
SYS_SHDN Limit
Conversion Rate Register
External
Temperature
Register(s)
Internal
Temperature
Register
Low Limit Registers
High Limit Registers
Internal
Temp Diode
SMBus Interface
DN2
ΔΣ ADC
Digital Mux
Analog
Mux
Limit Comparator
DN1
DP2
Digital Mux
DP1
SMCLK
Configuration Register
Status Registers
Interupt Masking
SMDATA
ALERT
SYS_SHDN
GND
Figure 1.1 EMC1187 Block Diagram
SMSC EMC1187
7
DATASHEET
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Chapter 2 Pin Description
EMC1187
VDD
1
10
SMCLK
DP1
2
9
SMDATA
DN1
3
8
ALERT
DP2
4
7
SYS_SHDN
DN2
5
6
GND
Exposed
pad
Figure 2.1 EMC1187 Pin Diagram DFN-10
Table 2.1 EMC1187 Pin Description
PIN NUMBER
NAME
1
VDD
Power supply
2
DP1
External diode 1 positive (anode) connection
AIO
3
DN1
External diode 1 negative (cathode) connection
AIO
4
DP2 / DN3
External diode 2 positive (anode) connection /
External Diode 3 negative (cathode) connection
for anti-parallel diodes
AIO
5
DN2 / DP3
External diode 2 negative (cathode) connection /
External Diode 3 positive (anode) connection for
anti-parallel diodes
AIO
6
GND
7
SYS_SHDN
8
ALERT
9
SMDATA
Revision 1.0 (07-11-13)
FUNCTION
Ground
TYPE
Power
Power
Active low system shutdown output signal requires pull-up resistor which selects the
Hardware Thermal Shutdown Limit
OD (5V)
Active low digital ALERT output signal - requires
pull-up resist
OD (5V)
SMBus Data input/output - requires pull-up
resistor
8
DATASHEET
DIOD (5V)
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Table 2.1 EMC1187 Pin Description (continued)
PIN NUMBER
NAME
10
SMCLK
Bottom Pad
Exposed Pad
FUNCTION
SMBus Clock input - requires pull-up resistor
Not internally connected, but recommend
grounding.
TYPE
DI (5V)
-
The pin types are described Table 2.2.
Table 2.2 Pin Types
PIN TYPE
Power
AIO
DI
DESCRIPTION
This pin is used to supply power or ground to the device.
Analog Input / Output -This pin is used as an I/O for analog signals.
Digital Input - This pin is used as a digital input. This pin is 5V tolerant.
DIOD
Digital Input / Open Drain Output - This pin is used as a digital I/O. When it is used as
an output, it is open drain and requires a pull-up resistor. This pin is 5V tolerant.
OD
Open Drain Digital Output - This pin is used as a digital output. It is open drain and
requires a pull-up resistor. This pin is 5V tolerant.
SMSC EMC1187
9
DATASHEET
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Chapter 3 Electrical Specifications
3.1
Absolute Maximum Ratings
Table 3.1 Absolute Maximum Ratings
DESCRIPTION
RATING
UNIT
Supply Voltage (VDD)
-0.3 to 4.0
V
Voltage on 5V tolerant pins (V5VT_pin)
-0.3 to 5.5
V
0 to 3.6
V
-0.3 to VDD +0.3
V
Operating Temperature Range
-40 to +125
°C
Storage Temperature Range
-55 to +150
°C
Voltage on 5V tolerant pins (|V5VT_pin - VDD|) (see Note 3.1)
Voltage on any other pin to Ground
Lead Temperature Range
Refer to JEDEC Spec. J-STD-020
ESD Rating, All pins HBM
2000
V
Note: Stresses at or above those listed could cause permanent damage to the device. This is a stress
rating only and functional operation of the device at any other condition above those indicated
in the operation sections of this specification is not implied.
Note 3.1
3.2
For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA,SYS_SHDN and
ALERT), the pull-up voltage must not exceed 3.6V when the device is unpowered.
Electrical Specifications
Table 3.2 Electrical Specifications
VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values at TA = 27°C unless otherwise noted.
CHARACTERISTIC
SYMBOL
MIN
TYP
MAX
UNITS
CONDITIONS
DC Power
Supply Voltage
VDD
Supply Current
IDD
Revision 1.0 (07-11-13)
3.0
3.3
3.6
V
200
410
µA
0.0625 conversion / sec, dynamic
averaging disabled
215
425
µA
1 conversion / sec, dynamic
averaging disabled
325
465
µA
4 conversions / sec, dynamic
averaging disabled
890
1050
µA
4 conversions / sec, dynamic
averaging enabled
10
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Table 3.2 Electrical Specifications (continued)
VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values at TA = 27°C unless otherwise noted.
CHARACTERISTIC
SYMBOL
MIN
TYP
MAX
1120
UNITS
µA
CONDITIONS
> 16 conversions / sec, dynamic
averaging enabled
Internal Temperature Monitor
Temperature Accuracy
±0.25
Temperature Resolution
±1
°C
-5°C < TA < 100°C
±2
°C
-40°C < TA < 125°C
0.125
°C
External Temperature Monitor
Temperature Accuracy
Temperature Resolution
Capacitive Filter
±0.25
±1
°C
+20°C < TDIODE < +110°C
0°C < TA < 100°C
±0.5
±2
°C
-40°C < TDIODE < 127°C
0.125
CFILTER
°C
2.2
2.7
nF
Connected across external diode
ALERT and SYS_SHDN pins
Output Low Voltage
VOL
Leakage Current
ILEAK
3.3
0.4
±5
V
ISINK = 8mA
µA
ALERT and pins
Device powered or unpowered
TA < 85°C
pull-up voltage < 3.6V
SMBus Electrical Characteristics
Table 3.3 SMBus Electrical Specifications
VDD = 3.0 to 3.6V, TA = -40°C to 125°C, all typical values are at TA = 27°C unless otherwise noted.
CHARACTERISTIC
SYMBOL
MIN
TYP
MAX
UNITS
CONDITIONS
SMBus Interface
Input High Voltage
VIH
1.4
VDD
V
5V Tolerant. Voltage threshold
based on 1.8V operation
Input Low Voltage
VIL
-0.3
0.8
V
5V Tolerant. Voltage threshold
based on 1.8V operation
Leakage Current
ILEAK
±5
µA
Powered or unpowered
TA < 85°C
Hysteresis
50
Input Capacitance
CIN
Output Low Sink Current
IOL
SMSC EMC1187
mV
5
pF
8.2
15
11
DATASHEET
mA
SMDATA = 0.4V
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Table 3.3 SMBus Electrical Specifications (continued)
VDD = 3.0 to 3.6V, TA = -40°C to 125°C, all typical values are at TA = 27°C unless otherwise noted.
CHARACTERISTIC
SYMBOL
MIN
TYP
MAX
UNITS
CONDITIONS
SMBus Timing
Clock Frequency
fSMB
Spike Suppression
tSP
Bus Free Time Stop to
Start
tBUF
1.3
µs
Hold Time: Start
tHD:STA
0.6
µs
Setup Time: Start
tSU:STA
0.6
µs
Setup Time: Stop
tSU:STO
0.6
µs
Data Hold Time
tHD:DAT
0
µs
When transmitting to the master
Data Hold Time
tHD:DAT
0.3
µs
When receiving from the master
Data Setup Time
tSU:DAT
100
ns
Clock Low Period
tLOW
1.3
µs
Clock High Period
tHIGH
0.6
µs
Clock/Data Fall time
tFALL
300
ns
Min = 20+0.1CLOAD ns
Clock/Data Rise time
tRISE
300
ns
Min = 20+0.1CLOAD ns
Capacitive Load
CLOAD
400
pF
per bus line
Timeout
tTIMEOUT
35
ms
Disabled by default
Revision 1.0 (07-11-13)
10
25
400
kHz
50
ns
12
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Chapter 4 System Management Bus Interface Protocol
4.1
Communications Protocol
The EMC1187 communicates with a host controller, such as an SMSC SIO, through the SMBus. The
SMBus is a two-wire serial communication protocol between a computer host and its peripheral
devices. A detailed timing diagram is shown in Figure 4.1.
For the first 15ms after power-up the device may not respond to SMBus communications.
.
T LOW
T HD:STA
T HIGH
T SU:STO
T FALL
SMCLK
T RISE
T HD:STA
T SU:DAT
T HD:DAT
T SU:STA
SMDATA
TBUF
S
P
S
S - Start Condition
P - Stop Condition
P
Figure 4.1 SMBus Timing Diagram
4.1.1
SMBus Start Bit
The SMBus Start bit is defined as a transition of the SMBus Data line from a logic ‘1’ state to a logic
‘0’ state while the SMBus Clock line is in a logic ‘1’ state.
4.1.2
SMBus Address and RD / WR Bit
The SMBus Address Byte consists of the 7-bit client address followed by the RD / WR indicator bit. If
this RD / WR bit is a logic ‘0’, the SMBus Host is writing data to the client device. If this RD / WR bit
is a logic ‘1’, the SMBus Host is reading data from the client device.
The EMC1187-1 SMBus address is hard coded to 1001_1100(r/w).
4.1.3
SMBus Data Bytes
All SMBus Data bytes are sent most significant bit first and composed of 8-bits of information.
4.1.4
SMBus ACK and NACK Bits
The SMBus client will acknowledge all data bytes that it receives. This is done by the client device
pulling the SMBus data line low after the 8th bit of each byte that is transmitted. This applies to the
Write Byte protocol.
The Host will NACK (not acknowledge) the last data byte to be received from the client by holding the
SMBus data line high after the 8th data bit has been sent.
SMSC EMC1187
13
DATASHEET
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
4.1.5
SMBus Stop Bit
The SMBus Stop bit is defined as a transition of the SMBus Data line from a logic ‘0’ state to a logic
‘1’ state while the SMBus clock line is in a logic ‘1’ state. When the device detects an SMBus Stop bit
and it has been communicating with the SMBus protocol, it will reset its client interface and prepare
to receive further communications.
4.1.6
SMBus Timeout
The EMC1187 supports SMBus Timeout. If the clock line is held low for longer than tTIMEOUT, the
device will reset its SMBus protocol. This function can be enabled by setting the TIMEOUT bit (see
Section 6.13, "Consecutive ALERT Register 22h").
4.1.7
SMBus and I2C Compatibility
The EMC1187 is compatible with SMBus and I2C. The major differences between SMBus and I2C
devices are highlighted here. For more information, refer to the SMBus 2.0 and I2C specifications. For
information on using the EMC1187 in an I2C system, refer to SMSC AN 14.0 SMSC Dedicated Slave
Devices in I2C Systems.
1. EMC1187 supports I2C fast mode at 400kHz. This covers the SMBus max time of 100kHz.
2. Minimum frequency for SMBus communications is 10kHz.
3. The SMBus client protocol will reset if the clock is held at a logic ‘0’ for longer than 30ms. This
timeout functionality is disabled by default in the EMC1187 and can be enabled by writing to the
TIMEOUT bit. I2C does not have a timeout.
4. I2C devices do not support the Alert Response Address functionality (which is optional for SMBus).
Attempting to communicate with the EMC1187 SMBus interface with an invalid slave address or invalid
protocol will result in no response from the device and will not affect its register contents. Stretching
of the SMCLK signal is supported, provided other devices on the SMBus control the timing.
4.2
SMBus Protocols
The device supports Send Byte, Read Byte, Write Byte, Receive Byte, and the Alert Response Address
as valid protocols as shown below.
All of the below protocols use the convention in Table 4.1.
Table 4.1 Protocol Format
Revision 1.0 (07-11-13)
DATA SENT
TO DEVICE
DATA SENT TO
THE HOST
# of bits sent
# of bits sent
14
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
4.2.1
Write Byte
The Write Byte is used to write one byte of data to the registers, as shown in Table 4.2.
Table 4.2 Write Byte Protocol
START
SLAVE
ADDRESS
WR
ACK
REGISTER
ADDRESS
ACK
REGISTER
DATA
ACK
STOP
1 -> 0
YYYY_YYY
0
0
XXh
0
XXh
0
0 -> 1
4.2.2
Read Byte
The Read Byte protocol is used to read one byte of data from the registers as shown in Table 4.3.
Table 4.3 Read Byte Protocol
START
SLAVE
ADDRESS
WR
ACK
REGISTER
ADDRESS
ACK
START
SLAVE
ADDRESS
RD
ACK
REGISTER
DATA
NACK
STOP
1 -> 0
YYYY_
YYY
0
0
XXh
0
1 -> 0
YYYY_
YYY
1
0
XX
1
0 -> 1
4.2.3
Send Byte
The Send Byte protocol is used to set the internal address register pointer to the correct address
location. No data is transferred during the Send Byte protocol as shown in Table 4.4.
Table 4.4 Send Byte Protocol
START
SLAVE
ADDRESS
WR
ACK
REGISTER
ADDRESS
ACK
STOP
1 -> 0
YYYY_YYY
0
0
XXh
0
0 -> 1
4.2.4
Receive Byte
The Receive Byte protocol is used to read data from a register when the internal register address
pointer is known to be at the right location (e.g. set via Send Byte). This is used for consecutive reads
of the same register as shown in Table 4.5.
Table 4.5 Receive Byte Protocol
START
SLAVE
ADDRESS
RD
ACK
REGISTER DATA
NACK
STOP
1 -> 0
YYYY_YYY
1
0
XXh
1
0 -> 1
SMSC EMC1187
15
DATASHEET
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
4.3
Alert Response Address
The ALERT output can be used as a processor interrupt or as an SMBus Alert.
When it detects that the ALERT pin is asserted, the host will send the Alert Response Address (ARA)
to the general address of 0001_100xb. All devices with active interrupts will respond with their client
address as shown in Table 4.6.
Table 4.6 Alert Response Address Protocol
START
ALERT
RESPONSE
ADDRESS
RD
ACK
DEVICE
ADDRESS
NACK
STOP
1 -> 0
0001_100
1
0
YYYY_YYY
1
0 -> 1
The EMC1187 will respond to the ARA in the following way:
1. Send Slave Address and verify that full slave address was sent (i.e. the SMBus communication
from the device was not prematurely stopped due to a bus contention event).
2. Set the MASK_ALL bit to clear the ALERT pin.
APPLICATION NOTE: The ARA does not clear the Status Register and if the MASK_ALL bit is cleared prior to the
Status Register being cleared, the ALERT pin will be reasserted.
Revision 1.0 (07-11-13)
16
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Chapter 5 Product Description
The is an SMBus temperature sensor with Hardware Thermal Shutdown. The EMC1187 monitor one
internal diode and up to two externally connected temperature diodes.
Thermal management is performed in cooperation with a host device. This consists of the host reading
the temperature data of both the external and internal temperature diodes of the EMC1187 and using
that data to control the speed of one or more fans.
The EMC1187 has two levels of monitoring. The first provides a maskable ALERT signal to the host
when the measured temperatures exceeds user programmable limits. This allows the EMC1187 to be
used as an independent thermal watchdog to warn the host of temperature hot spots without direct
control by the host. The second level of monitoring asserts the SYS_SHDN pin when the External
Diode temperature exceeds a hardware specified threshold temperature.Additionally, the internal diode
and External Diode 2 can be configured to assert the SYS_SHDN pin when the measured temperature
exceeds user programmable limits.
For the EMC1187, the External Diode 2 channel is compatible with any diode type.
Figure 5.1 shows a system level block diagram of the EMC1187.
VDD = 3.3V 1.8V – 3.3V
VDD
CPU
Thermal
diode
Host
EMC1187
DP1
SMCLK
DN1
SMDATA
Internal
Diode
DP2
ALERT
SYS_SHDN
DN2
SMBus
Interface
Power
Control
Figure 5.1 System Diagram for EMC1187
5.1
Conversion Rates
The EMC1187 may be configured for different conversion rates based on the system requirements.
The conversion rate is configured as described in Section 6.5. The default conversion rate is 4
conversions per second. Other available conversion rates are shown in Table 6.6, "Conversion Rate".
5.2
Dynamic Averaging
Dynamic averaging causes the EMC1187 to measure the external diode channels for an extended time
based on the selected conversion rate. This functionality can be disabled for increased power savings
at the lower conversion rates (see Section 6.4, "Configuration Register 03h / 09h"). When dynamic
averaging is enabled, the device will automatically adjust the sampling and measurement time for the
external diode channels. This allows the device to average 2x or 16x longer than the normal 11 bit
operation (nominally 21ms per channel) while still maintaining the selected conversion rate. The
benefits of dynamic averaging are improved noise rejection due to the longer integration time as well
as less random variation of the temperature measurement.
SMSC EMC1187
17
DATASHEET
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
When enabled, the dynamic averaging applies when a one-shot command is issued. The device will
perform the desired averaging during the one-shot operation according to the selected conversion rate.
When enabled, the dynamic averaging will affect the average supply current based on the chosen
conversion rate as shown in Table 5.1.
Table 5.1 Supply Current vs. Conversion Rate for EMC1187
AVERAGE SUPPLY CURRENT
(TYPICAL)
AVERAGING FACTOR (BASED ON
11-BIT OPERATION)
CONVERSION RATE
ENABLED
(DEFAULT)
DISABLED
ENABLED
(DEFAULT)
DISABLED
1 / 16 sec
230uA
220uA
16x
1x
1 / 8 sec
275uA
220uA
16x
1x
1 / 4 sec
350uA
220uA
16x
1x
1 / 2 sec
405uA
220uA
16x
1x
1 / sec
480uA
250uA
8x
1x
2 / sec
850uA
290uA
4x
1x
4 / sec (default)
890uA
370uA
2x
1x
8 / sec
970uA
525uA
1x
1x
16 / sec
990uA
690uA
0.5x
0.5x
32 / sec
1030uA
1050uA
0.25x
0.25x
64 / sec
1500uA
1100uA
0.125x
0.125x
5.3
.SYS_SHDN
Output
The SYS_SHDN output is asserted independently of the ALERT output and cannot be masked. If the
External Diode 1 temperature exceeds the Hardware Thermal Shutdown Limit for the programmed
number of consecutive measurements, the SYS_SHDN pin is asserted.
The Hardware Thermal Shutdown Limit is defined at power-up via the pull-up resistors on the
SYS_SHDN and ALERT pins as shown in Table 5.2. This limit cannot be modified or masked via
software.
In addition to External Diode 1 channel triggering the SYS_SHDN pin when the measured temperature
exceeds to the Hardware Thermal Shutdown Limit, each of the measurement channels can be
configured to assert the SYS_SHDN pin when they exceed the corresponding THERM Limit.
When the SYS_SHDN pin is asserted, it will not release until the External Diode 1 temperature drops
below the Hardware Thermal Shutdown Limit minus 10°C and all other measured temperatures drop
below the THERM Limit minus the THERM Hysteresis value (when linked to SYS_SHDN).
Figure 5.2 shows a block diagram of the interaction between the input channels and the SYS_SHDN
pin.
Revision 1.0 (07-11-13)
18
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Internal Diode
S/W Set Sensor
(EMC1188 only)
S/W Set Sensor
Temperature
Conversion
and up to 4
THERM Limit
Registers
S/W Set Sensor
Hardware Thermal Shutdown
SMBus
Traffic
Software
Shutdown Enable
H/W Thermal
Shutdown Sensor
3.3V
Temperature
Conversion
SW_SHDN
3.3V
SYS_SHDN
HW_SHDN
ALERT
Function
Select
Figure 5.2 Block Diagram of Hardware Thermal Shutdown
5.4
Hardware Thermal Shutdown Limit
The Hardware Thermal Shutdown Limit temperature is determined by pull-up resistors on the
SYS_SHDN and ALERT pins shown in Table 5.2.
Table 5.2 SYS_SHDN Threshold Temperature
SYS_SHD
PULL-UP
ALERT
PULL-UP
4.7K OHM
±10%
6.8K OHM
±10%
10K OHM
±10%
15K OHM
±10%
22K OHM
±10%
33K OHM
±10%
4.7K OHM ±10%
77°C
83°C
89°C
95°C
101°C
107°C
6.8K OHM ±10%
78°C
84°C
90°C
96°C
102°C
108°C
10K OHM ±10%
79°C
85°C
91°C
97°C
103°C
109°C
15K OHM ±10%
80°C
86°C
92°C
98°C
104°C
110°C
22K OHM ±10%
81°C
87°C
93°C
99°C
105°C
111°C
33K OHM ±10%
82°C
88°C
94°C
100°C
106°C
112°C
SMSC EMC1187
19
DATASHEET
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
5.5
ALERT Output
The ALERT pin is an open drain output and requires a pull-up resistor to VDD and has two modes of
operation: interrupt mode and comparator mode. The mode of the ALERT output is selected via the
ALERT / COMP bit in the Configuration Register (see Section 6.4).
5.5.1
ALERT Pin Interrupt Mode
When configured to operate in interrupt mode, the ALERT pin asserts low when an out of limit
measurement (> high limit or < low limit) is detected on any diode or when a diode fault is detected,
functioning as any standard ALERT in on the SMBus. The ALERT pin will remain asserted as long
as an out-of-limit condition remains. Once the out-of-limit condition has been removed, the ALERT pin
will remain asserted until the appropriate status bits are cleared.
The ALERT pin can be masked by setting the MASK_ALL bit. Once the ALERT pin has been masked,
it will be de-asserted and remain de-asserted until the MASK_ALL bit is cleared by the user. Any
interrupt conditions that occur while the ALERT pin is masked will update the Status Register normally.
There are also individual channel masks (see Section 6.12).
The ALERT pin is used as an interrupt signal or as an SMBus Alert signal that allows an SMBus slave
to communicate an error condition to the master. One or more ALERT outputs can be hard-wired
together.
5.5.2
ALERT Pin Comparator Mode
When the ALERT pin is configured to operate in comparator mode, it will be asserted if any of the
measured temperatures exceeds the respective high limit. The ALERT pin will remain asserted until
all temperatures drop below the corresponding high limit minus the Therm Hysteresis value.
When the ALERT pin is asserted in comparator mode, the corresponding high limit status bits will be
set. Reading these bits will not clear them until the ALERT pin is deasserted. Once the ALERT pin is
deasserted, the status bits will be automatically cleared.
The MASK_ALL bit will not block the ALERT pin in this mode; however, the individual channel masks
(see Section 6.12) will prevent the respective channel from asserting the ALERT pin.
5.6
ALERT and SYS_SHDN Pin Considerations
Because of the decode method used to determine the Hardware Thermal Shutdown Limit, it is
important that the pull-up resistance on both the ALERT and SYS_SHDN pins be within the tolerances
shown in Table 5.2. Additionally, the pull-up resistor on the ALERT and SYS_SHDN pins must be
connected to the same 3.3V supply that drives the VDD pin.
For 15ms after power up, the ALERT and SYS_SHDN pins must not be pulled low or the Hardware
Thermal Shutdown Limit will not be decoded properly. If the system requirements do not permit these
conditions, the ALERT and SYS_SHDN pins must be isolated from their respective busses during this
time.
One method of isolating the ALERT pin is shown in Figure 5.3.
Revision 1.0 (07-11-13)
20
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
+3.3V
VDD
1
10
SMCLK
DP1
2
9
SMDATA
DN1
3
8
ALERT
DP2
4
7
SYS_SHDN
DN2
5
6
GND
EMC1187
4.7K 33K
+2.5 - 5V
22K
Shared Alert
+3.3V
4.7K 33K
+2.5 - 5V
22K
Shared SYS_SHDN
Figure 5.3 Isolating ALERT and SYS_SHDN Pin
5.7
Temperature Measurement
The EMC1187 can monitor the temperature of up to two externally connected diodes.
The device contains programmable High, Low, and Therm limits for all measured temperature
channels. If the measured temperature goes below the Low limit or above the High limit, the ALERT
pin can be asserted (based on user settings).
5.7.1
Beta Compensation
The EMC1187 is configured to monitor the temperature of basic diodes (e.g., 2N3904) or CPU thermal
diodes. It automatically detects the type of external diode (CPU diode or diode connected transistor)
and determines the optimal setting to reduce temperature errors introduced by beta variation.
Compensating for this error is also known as implementing the transistor or BJT model for temperature
measurement.
For discrete transistors configured with the collector and base shorted together, the beta is generally
sufficiently high such that the percent change in beta variation is very small. For example, a 10%
variation in beta for two forced emitter currents with a transistor whose ideal beta is 50 would contribute
approximately 0.25°C error at 100°C. However for substrate transistors where the base-emitter junction
is used for temperature measurement and the collector is tied to the substrate, the proportional beta
variation will cause large error. For example, a 10% variation in beta for two forced emitter currents
with a transistor whose ideal beta is 0.5 would contribute approximately 8.25°C error at 100°C.
5.7.2
Resistance Error Correction (REC)
Parasitic resistance in series with the external diodes will limit the accuracy obtainable from
temperature measurement devices. The voltage developed across this resistance by the switching
diode currents cause the temperature measurement to read higher than the true temperature.
Contributors to series resistance are PCB trace resistance, on die (i.e. on the processor) metal
resistance, bulk resistance in the base and emitter of the temperature transistor. Typically, the error
SMSC EMC1187
21
DATASHEET
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
caused by series resistance is +0.7°C per ohm. The EMC1187 automatically corrects up to 100 ohms
of series resistance.
5.7.3
Programmable External Diode Ideality Factor
The EMC1187 is designed for external diodes with an ideality factor of 1.008. Not all external diodes,
processor or discrete, will have this exact value. This variation of the ideality factor introduces error in
the temperature measurement which must be corrected for. This correction is typically done using
programmable offset registers. Since an ideality factor mismatch introduces an error that is a function
of temperature, this correction is only accurate within a small range of temperatures. To provide
maximum flexibility to the user, the EMC1187 provides a 6-bit register for each external diode where
the ideality factor of the diode used is programmed to eliminate errors across all temperatures.
APPLICATION NOTE: When monitoring a substrate transistor or CPU diode and beta compensation is enabled, the
Ideality Factor should not be adjusted. Beta Compensation automatically corrects for most
ideality errors.
5.8
Diode Faults
The EMC1187 detects an open on the DP and DN pins, and a short across the DP and DN pins. For
each temperature measurement made, the device checks for a diode fault on the external diode
channel(s). When a diode fault is detected, the ALERT pin asserts (unless masked, see Section 5.9)
and the temperature data reads 00h in the MSB and LSB registers (note: the low limit will not be
checked). A diode fault is defined as one of the following: an open between DP and DN, a short from
VDD to DP, or a short from VDD to DN.
If a short occurs across DP and DN or a short occurs from DP to GND, the low limit status bit is set
and the ALERT pin asserts (unless masked). This condition is indistinguishable from a temperature
measurement of 0.000°C (-64°C in extended range) resulting in temperature data of 00h in the MSB
and LSB registers.
If a short from DN to GND occurs (with a diode connected), temperature measurements will continue
as normal with no alerts.
5.9
Consecutive Alerts
The EMC1187 contain multiple consecutive alert counters. One set of counters applies to the ALERT
pin and the second set of counters applies to the SYS_SHDN pin. Each temperature measurement
channel has a separate consecutive alert counter for each of the ALERT and SYS_SHDN pins. All
counters are user programmable and determine the number of consecutive measurements that a
temperature channel(s) must be out-of-limit or reporting a diode fault before the corresponding pin is
asserted.
See Section 6.13, "Consecutive ALERT Register 22h" for more details on the consecutive alert
function.
5.10
Digital Filter
To reduce the effect of noise and temperature spikes on the reported temperature, the External Diode
channel uses a programmable digital filter. This filter can be configured as Level 1, Level 2, or Disabled
(default) (see Section 6.19). The typical filter performance is shown in Figure 5.4 and Figure 5.5.
Revision 1.0 (07-11-13)
22
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Filter Step Response
Temperature (C)
90
Disabled
80
70
Level1
Level2
60
50
40
30
20
10
0
0
2
4
6
8
10
12
14
Samples
Figure 5.4 Temperature Filter Step Response
Filter Impulse Response
90
Temperature (C)
80
Disabled
70
60
50
Level1
40
Level2
30
20
10
0
0
2
4
6
8
10
12
14
Samples
Figure 5.5 Temperature Filter Impulse Response
SMSC EMC1187
23
DATASHEET
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
5.11
Temperature Measurement Results and Data
The temperature measurement results are stored in the internal and external temperature registers.
These are then compared with the values stored in the high and low limit registers. Both external and
internal temperature measurements are stored in 11-bit format with the eight (8) most significant bits
stored in a high byte register and the three (3) least significant bits stored in the three (3) MSB
positions of the low byte register. All other bits of the low byte register are set to zero.
The EMC1187 has two selectable temperature ranges. The default range is from 0°C to +127°C and
the temperature is represented as binary number able to report a temperature from 0°C to +127.875°C
in 0.125°C steps.
The extended range is an extended temperature range from -64°C to +191°C. The data format is a
binary number offset by 64°C. The extended range is used to measure temperature diodes with a large
known offset (such as AMD processor diodes) where the diode temperature plus the offset would be
equivalent to a temperature higher than +127°C.
Table 5.3 shows the default and extended range formats.
Table 5.3 Temperature Data Format
TEMPERATURE (°C)
DEFAULT RANGE 0°C TO 127°C
EXTENDED RANGE -64°C TO 191°C
Diode Fault
000 0000 0000
000 0000 0000
-64
000 0000 0000
000 0000 0000
-1
000 0000 0000
001 1111 1000
0
000 0000 0000
010 0000 0000
0.125
000 0000 0001
010 0000 0001
1
000 0000 1000
010 0000 1000
64
010 0000 0000
100 0000 0000
65
010 0000 1000
100 0000 1000
127
011 1111 1000
101 1111 1000
127.875
011 1111 1111
101 1111 1111
128
011 1111 1111
110 0000 0000
190
011 1111 1111
111 1111 0000
191
011 1111 1111
111 1111 1000
>= 191.875
011 1111 1111
111 1111 1111
Revision 1.0 (07-11-13)
24
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Chapter 6 Register Description
The registers shown in Table 6.1 are accessible through the SMBus. An entry of ‘-’ indicates that the
bit is not used and will always read ‘0’.
Table 6.1 Register Set in Hexadecimal Order
REGISTER
ADDRESS
R/W
REGISTER NAME
FUNCTION
DEFAULT
VALUE
00h
R
Internal Diode Data
High Byte
Stores the integer data for the
Internal Diode
00h
01h
R
External Diode Data
High Byte
Stores the integer data for External
Diode
00h
02h
R
Status
Stores the status bits for the
Internal Diode and External Diode
00h
03h
R/W
Configuration
Controls the general operation of
the device (mirrored at address
09h)
04h
R/W
Conversion Rate
Controls the conversion rate for
updating temperature data
(mirrored at address 0Ah)
06h
(4/sec)
05h
R/W
Internal Diode High
Limit
Stores the 8-bit high limit for the
Internal Diode (mirrored at address
0Bh)
55h
(85°C)
06h
R/W
Internal Diode Low
Limit
Stores the 8-bit low limit for the
Internal Diode (mirrored at address
0Ch)
00h
(0°C)
55h
(85°C)
00h
(0°C)
PAGE
Page 28
Page 28
Page 29
Page 30
Page 31
07h
R/W
External Diode High
Limit High Byte
Stores the integer portion of the
high limit for External Diode
(mirrored at register 0Dh)
08h
R/W
External Diode Low
Limit High Byte
Stores the integer portion of the
low limit for External Diode
(mirrored at register 0Eh)
09h
R/W
Configuration
Controls the general operation of
the device (mirrored at address
03h)
0Ah
R/W
Conversion Rate
Controls the conversion rate for
updating temperature data
(mirrored at address 04h)
SMSC EMC1187
25
DATASHEET
Page 29
06h
(4/sec)
Page 30
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Table 6.1 Register Set in Hexadecimal Order (continued)
REGISTER
ADDRESS
R/W
REGISTER NAME
FUNCTION
DEFAULT
VALUE
0Bh
R/W
Internal Diode High
Limit
Stores the 8-bit high limit for the
Internal Diode (mirrored at address
05h)
55h
(85°C)
0Ch
R/W
Internal Diode Low
Limit
Stores the 8-bit low limit for the
Internal Diode (mirrored at address
06h)
00h
(0°C)
55h
(85°C)
PAGE
Page 31
0Dh
R/W
External Diode High
Limit High Byte
Stores the integer portion of the
high limit for External Diode
(mirrored at register 07h)
0Eh
R/W
External Diode Low
Limit High Byte
Stores the integer portion of the
low limit for External Diode
(mirrored at register 08h)
00h
(0°C)
10h
R
External Diode Data
Low Byte
Stores the fractional data for
External Diode
00h
Page 28
11h
R/W
Scratchpad
Scratchpad register for software
compatibility
00h
Page 32
12h
R/W
Scratchpad
Scratchpad register for software
compatibility
00h
Page 32
13h
R/W
External Diode High
Limit Low Byte
Stores the fractional portion of the
high limit for External Diode
00h
14h
R/W
External Diode Low
Limit Low Byte
Stores the fractional portion of the
low limit for External Diode
00h
15h
R/W
External Diode 2
High Limit High Byte
Stores the integer portion of the
high limit for External Diode 2
55h
(85°C)
16h
R/W
External DIode 2 Low
Limit High Byte
Stores the integer portion of the
low limit for External Diode 2
00h
(0°C)
17h
R/W
External Diode 2
High Limit Low Byte
Stores the fractional portion of the
high limit External Diode 2
00h
18h
R/W
External Diode 2 Low
Limit Low Byte
Stores the fractional portion of the
low limit for External Diode 2
00h
19h
R/W
External Diode
Therm Limit
Stores the 8-bit critical temperature
limit for External Diode
55h
(85°C)
Page 33
1Ah
R/W
External Diode 2
Therm Limit
Stores the 8-bit critical temperature
limit for External Diode 2
55h
(85°C)
Page 33
1Bh
R-C
External Diode Fault
Stores status bits indicating which
external diode detected a diode
fault
00h
Page 33
1Dh
R/W
SYS_SHDN
Configuration
Controls which software channels,
if any, are linked to the
SYS_SHDN pin
00h
Page 33
Page 31
Page 31
Page 31
Revision 1.0 (07-11-13)
26
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Table 6.1 Register Set in Hexadecimal Order (continued)
REGISTER
ADDRESS
R/W
REGISTER NAME
FUNCTION
DEFAULT
VALUE
PAGE
1Eh
R
Hardware Thermal
Shutdown Limit
When read, returns the selected
Hardware Thermal Shutdown Limit
N/A
Page 34
1Fh
R/W
Channel Mask
Register
Controls the masking of individual
channels
00h
Page 35
20h
R/W
Internal Diode Therm
Limit
Stores the 8-bit critical temperature
limit for the Internal Diode
55h
(85°C
0Ah
(10°C)
Page 33
21h
R/W
Therm Hysteresis
Stores the 8-bit hysteresis value
that applies to all Therm limits
22h
R/W
Consecutive ALERT
Controls the number of out-of-limit
conditions that must occur before
an interrupt is asserted
70h
23h
R
External Diode 2
Data High Byte
Stores the integer data for External
Diode 2
00h
24h
R
External Diode 2
Data Low Byte
Stores the fractional data for
External Diode 2
00h
26h
R/W
External Diode 2
Beta Configuration
Stores the Beta Compensation
circuitry settings for External Diode
2
27h
R/W
External Diode
Ideality Factor
Stores the ideality factor for
External Diode
12h
(1.008)
Page 38
28h
R/W
External Diode 2
Ideality Factor
Stores the ideality factor for
External Diode 2
12h
(1.008)
Page 38
29h
R
Internal Diode Data
Low Byte
Stores the fractional data for the
Internal Diode
00h
Page 28
35h
R-C
High Limit Status
Status bits for the High Limits
00h
Page 40
36h
R-C
Low Limit Status
Status bits for the Low Limits
00h
Page 40
37h
R
Therm Limit Status
Status bits for the Therm Limits
00h
Page 41
40h
R/W
Filter Control
Controls the digital filter setting for
the External Diode channel
00h
Page 41
FDh
R
Product ID
(EMC1823)
Stores a fixed value that identifies
the device
23h
Page 42
FEh
R
Manufacturer ID
Stores a fixed value that
represents SMSC
5Dh
Page 42
FFh
R
Revision
Stores a fixed value that
represents the revision number
07h
Page 42
Page 35
Page 28
SMSC EMC1187
27
DATASHEET
08h(EMC1
187)
07h
Page 38
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
6.1
Data Read Interlock
When any temperature channel high byte register is read, the corresponding low byte is copied into
an internal ‘shadow’ register. The user is free to read the low byte at any time and be guaranteed that
it will correspond to the previously read high byte. Regardless if the low byte is read or not, reading
from the same high byte register again will automatically refresh this stored low byte data.
6.2
Temperature Data Registers
Table 6.2 Temperature Data Registers
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
00h
R
Internal Diode
High Byte
128
64
32
16
8
4
2
1
00h
29h
R
Internal Diode
Low Byte
0.5
0.25
0.125
-
-
-
-
-
00h
01h
R
External Diode
High Byte
128
64
32
16
8
4
2
1
00h
10h
R
External Diode
Low Byte
0.5
0.25
0.125
-
-
-
-
-
00h
23h
R
External Diode
2 High Byte
128
64
32
16
8
4
2
1
00h
24h
R
External Diode
2 Low Byte
0.5
0.25
0.125
-
-
-
-
-
00h
2Ah
R
External Diode
3 High Byte
128
64
32
16
8
4
2
1
00h
2Bh
R
External Diode
3 Low Byte
0.5
0.25
0.125
-
-
-
-
-
00h
As shown in Table 6.2, all temperatures are stored as an 11-bit value with the high byte representing
the integer value and the low byte representing the fractional value left justified to occupy the MSBits.
6.3
Status Register 02h
Table 6.3 Status Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
02h
R
Status
BUSY
-
-
HIGH
LOW
FAULT
THERM
HWSD
00h
The Status Register reports general error conditions. To identify specific channels, refer to Section 6.9,
Section 6.16, Section 6.17, and Section 6.18. The individual Status Register bits are cleared when the
appropriate High Limit, Low Limit, or Therm Limit register has been read or cleared.
Bit 7 - BUSY - This bit indicates that the ADC is currently converting. This bit does not cause either
the ALERT or THERM pin to be asserted.
Revision 1.0 (07-11-13)
28
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Bit 4 - HIGH - This bit is set when any of the temperature channels exceeds its programmed high limit.
See the High Limit Status Register for specific channel information (Section 6.16). When set, this bit
will assert the ALERT pin.
Bit 3 - LOW - This bit is set when any of the temperature channels drops below its programmed low
limit. See the Low Limit Status Register for specific channel information (Section 6.17). When set, this
bit will assert the ALERT pin.
Bit 2 - FAULT - This bit is asserted when a diode fault is detected on any of the external diode
channels. See the External Diode Fault Register for specific channel information (Section 6.9). When
set, this bit will assert the ALERT pin.
Bit 1 - THERM - This bit is set when the any of the temperature channels exceeds its programmed
Therm Limit. See the Therm Limit Status Register for specific channel information (Section 6.18).
When set, this bit will assert the THERM pin.
Bit 0 - HWSD - This bit is set when the External Diode 1 Temperature exceeds the Hardware Thermal
Shutdown Limit set by the pull-up resistors on the ALERT and SYS_SHDN pins. When set, this bit will
assert the SYS_SHDN pin.
6.4
Configuration Register 03h / 09h
Table 6.4 Configuration Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
R/W
Configuration
MASK_
ALL
-
ALERT/
COMP
RECD
RECD2
RANGE
DAVG_
DIS
APDD
00h
03h
09h
The Configuration Register controls the basic operation of the device. This register is fully accessible
at either address.
Bit 7 - MASK_ALL - Masks the ALERT pin from asserting.

‘0’ - (default) - The ALERT pin is not masked. If any of the appropriate status bits are set the
ALERT pin will be asserted.

‘1’ - The ALERT pin is masked. It will not be asserted for any interrupt condition unless it is
configured in comparator mode. The Status Register will be updated normally.
Bit 5 - ALERT/COMP - Controls the operation of the ALERT pin.

‘0’ (default) - The ALERT acts as an Alert pin and has interrupt behavior as described in
Section 5.5.1.

‘1’ - The ALERT acts as a THERM pin and has comparator behavior as described in Section 5.5.2.
In this mode the MASK_ALL bit is ignored.
Bit 4 - RECD - Disables the Resistance Error Correction (REC) for External Diode.

‘0’ (default) - REC is enabled for External Diode.

‘1’ - REC is disabled for External Diode.
Bit 3 - RECD2 - Disables the Resistance Error Correction (REC) for External Diode 2 and External
Diode 3.

‘0’ (default) - REC is enabled for External Diode 2 and External Diode 3.

‘1’ - REC is disabled for External Diode 2 and External Diode 3.
SMSC EMC1187
29
DATASHEET
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Bit 2 - RANGE - Configures the measurement range and data format of the temperature channels.

‘0’ (default) - The temperature measurement range is 0°C to +127.875°C and the data format is
binary.

‘1’ -The temperature measurement range is -64°C to +191.875°C and the data format is offset
binary (see Table 5.3).
Bit 1 - DAVG_DIS - Disables the dynamic averaging feature on all temperature channels.
6.5

‘0’ (default) - The dynamic averaging feature is enabled. All temperature channels will be converted
with an averaging factor that is based on the conversion rate as shown in Table 6.6.

‘1’ - The dynamic averaging feature is disabled. All temperature channels will be converted with a
maximum averaging factor of 1x (equivalent to 11-bit conversion). For higher conversion rates, this
averaging factor will be reduced as shown in Table 6.6.
Conversion Rate Register 04h / 0Ah
Table 6.5 Conversion Rate Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
R/W
Conversion
Rate
-
-
-
-
04h
0Ah
B3
B2
B1
B0
DEFAULT
06h
(4/sec)
CONV[3:0]
The Conversion Rate Register controls how often the temperature measurement channels are updated
and compared against the limits. This register is fully accessible at either address.
Bits 3-0 - CONV[3:0] - Determines the conversion rate as shown in Table 6.6.
Table 6.6 Conversion Rate
CONV[3:0]
HEX
3
2
1
0
CONVERSIONS / SECOND
0h
0
0
0
0
1
1h
0
0
0
1
1
2h
0
0
1
0
1
3h
0
0
1
1
4h
0
1
0
0
1
5h
0
1
0
1
2
6h
0
1
1
0
4 (default)
7h
0
1
1
1
8
8h
1
0
0
0
16
9h
1
0
0
1
32
Revision 1.0 (07-11-13)
30
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Table 6.6 Conversion Rate (continued)
CONV[3:0]
HEX
3
2
1
0
CONVERSIONS / SECOND
Ah
1
0
1
0
64
Bh - Fh
6.6
All others
1
Limit Registers
Table 6.7 Temperature Limit Registers
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
R/W
Internal Diode
High Limit
128
64
32
16
8
4
2
1
55h
(85°C)
R/W
Internal Diode
Low Limit
128
64
32
16
8
4
2
1
00h
(0°C)
R/W
External
Diode High
Limit High
Byte
128
64
32
16
8
4
2
1
55h
(85°C)
R/W
External
Diode High
Limit Low
Byte
0.5
0.25
0.125
-
-
-
-
-
00h
R/W
External
Diode Low
Limit High
Byte
128
64
32
16
8
4
2
1
00h
(0°C)
14h
R/W
External
Diode Low
Limit Low
Byte
0.5
0.25
0.125
-
-
-
-
-
00h
15h
R/W
External
Diode 2 High
Limit High
Byte
128
64
32
16
8
4
2
1
55h
(85°C)
R/W
External
Diode 2 Low
Limit High
Byte
128
64
32
16
8
4
2
1
00h
(0°C)
R/W
External
Diode 2 High
Limit Low
Byte
0.5
0.25
0.125
-
-
-
-
-
00h
05h
0Bh
06h
0Ch
07h
0Dh
13h
08h
0Eh
16h
17h
SMSC EMC1187
31
DATASHEET
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Table 6.7 Temperature Limit Registers (continued)
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
R/W
External
Diode 2 Low
Limit Low
Byte
0.5
0.25
0.125
-
-
-
-
-
00h
2Ch
R/W
External
Diode 3 High
Limit High
Byte
128
64
32
16
8
4
2
1
55h
(85°C)
2Dh
R/W
External
Diode 3 Low
Limit High
Byte
128
64
32
16
8
4
2
1
00h
(0°C)
R/W
External
Diode 3 High
Limit Low
Byte
0.5
0.25
0.125
-
-
-
-
-
00h
R/W
External
Diode 3 Low
Limit Low
Byte
0.5
0.25
0.125
-
-
-
-
-
00h
18h
2Eh
2Fh
The device contains both high and low limits for all temperature channels. If the measured temperature
exceeds the high limit, then the corresponding status bit is set and the ALERT pin is asserted.
Likewise, if the measured temperature is less than or equal to the low limit, the corresponding status
bit is set and the ALERT pin is asserted.
The data format for the limits must match the selected data format for the temperature so that if the
extended temperature range is used, the limits must be programmed in the extended data format.
The limit registers with multiple addresses are fully accessible at either address.
6.7
Scratchpad Registers 11h and 12h
Table 6.8 Scratchpad Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
11h
R/W
Scratchpad
7
6
5
4
3
2
1
0
00h
12h
R/W
Scratchpad
7
6
5
4
3
2
1
0
00h
The Scratchpad Registers are Read / Write registers that are used for place holders to be software
compatible with legacy programs. Reading from the registers will return what is written to them.
Revision 1.0 (07-11-13)
32
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
6.8
Therm Limit Registers
Table 6.9 Therm Limit Registers
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
19h
R/W
External
Diode Therm
Limit
128
64
32
16
8
4
2
1
55h
(85°C)
1Ah
R/W
External
Diode 2
Therm Limit
128
64
32
16
8
4
2
1
55h
(85°C)
20h
R/W
Internal Diode
Therm Limit
128
64
32
16
8
4
2
1
55h
(85°C)
21h
R/W
Therm
Hysteresis
128
64
32
16
8
4
2
1
0Ah
(10°C)
The Therm Limit Registers are used to determine whether a critical thermal event has occurred. If the
measured temperature exceeds the Therm Limit, the SYS_SHDN pin will be asserted (if the
corresponding measurement channel is linked to the SYS_SHDN pin - see Section 6.10, "Software
Thermal Shutdown Configuration Register 1Dh"). The limit setting must match the chosen data format
of the temperature reading registers.
6.9
External Diode Fault Register 1Bh
Table 6.10 External Diode Fault Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
1Bh
R-C
External
Diode Fault
-
-
-
-
B3
B2
B1
B0
DEFAULT
E2FLT
E1FLT
-
00h
The External Diode Fault Register indicates which of the external diodes caused the FAULT bit in the
Status Register to be set. This register is cleared when it is read.
Bit 2 - E2FLT - This bit is set if the External Diode 2 channel reported a diode fault.
Bit 1 - E1FLT - This bit is set if the External Diode 1 channel reported a diode fault.
6.10
Software Thermal Shutdown Configuration Register 1Dh
Table 6.11 Software Thermal Shutdown Configuration Register
ADDR.
1Dh
R/W
REGISTER
B7
B6
B5
B4
R/W
Software
Thermal
Shutdown
Configuration
-
-
-
-
SMSC EMC1187
33
DATASHEET
B3
-
B2
B1
B0
DEFAULT
E2SYS
EXT1SYS
INTSYS
00h
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
The Software Thermal Shutdown Configuration Register controls whether any of the software channels
will assert the SYS_SHDN pin. If a channel is enabled, the temperature is compared against the
corresponding Therm Limit. If the measured temperature exceeds the Therm Limit, the SYS_SHDN
pin is asserted. This functionality is in addition to the Hardware Shutdown circuitry.
Bit 2 - E2SYS - Configures the External Diode 2 channel to assert the SYS_SHDN pin based on its
Therm Limit.

‘0’ (default) - The External Diode 2 channel is not linked to the SYS_SHDN pin. If the temperature
exceeds its Therm Limit, the E2THERM status bit is set but the SYS_SHDN pin is not asserted.

‘1’ - The External Diode 2 channel is linked to the SYS_SHDN pin. If the temperature exceeds its
Therm Limit, the E2THERM status bit is set and the SYS_SHDN pin is asserted. It will remain
asserted until the temperature drops below its Therm Limit minus the Therm Hysteresis.
Bit 1 - EXT1SYS - configures the External Diode 1 channel to assert the SYS_SHDN pin based on its
Therm Limit.

‘0’ (default) - The External Diode 1 channel is not linked to the SYS_SHDN pin. If the temperature
exceeds the Therm Limit, the E1THERM status bit is set but the SYS_SHDN pin is not asserted.

‘1’ - The External Diode 1 channel is linked to the SYS_SHDN pin. If the temperature exceeds its
Therm Limit, the E1THERM status bit is set and the SYS_SHDN pin is asserted. It will remain
asserted until the temperature drops below its Therm Limit minus the Therm Hysteresis.
Bit 0 - INTSYS - Configures the Internal Diode channel to assert the SYS_SHDN pin based on its
Therm Limit.
6.11

‘0’ (default) - The Internal Diode channel is not linked to the SYS_SHDN pin. If the temperature
exceeds its Therm Limit, the ITHERM status bit is set but the SYS_SHDN pin is not asserted.

‘1’ - The Internal Diode channel is linked to the SYS_SHDN pin. If the temperature exceeds its
Therm Limit, the ITHERM status bit is set and the SYS_SHDN pin is asserted. It will remain
asserted until the temperature drops below its Therm Limit minus the Therm Hysteresis.
Hardware Thermal Shutdown Limit Register 1Eh
Table 6.12 Hardware Thermal Shutdown Limit Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
1Eh
R
Hardware
Thermal
Shutdown Limit
128
64
32
16
8
4
2
1
N/A
This read only register returns the Hardware Thermal Shutdown Limit selected by the value of the pullup resistors on the ALERT and SYS_SHDN pins. The data represents the hardware set temperature
in °C using the active temperature setting set by the RANGE bit in the Configuration Register. See
Table 5.3, "Temperature Data Format" for the data format.
When the External Diode 1 Temperature exceeds this limit, the SYS_SHDN pin is asserted and will
remain asserted until the External Diode 1 Temperature drops below this limit minus 10°C.
Revision 1.0 (07-11-13)
34
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
6.12
Channel Mask Register 1Fh
Table 6.13 Channel Mask Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
1Fh
R/W
Channel
Mask
-
-
-
-
-
E2
MASK
E1
MASK
INT
MASK
00h
The Channel Mask Register controls individual channel masking. When a channel is masked, the
ALERT pin will not be asserted when the masked channel reads a diode fault or out of limit error. The
channel mask does not mask the SYS_SHDN pin.
Bit 2 - E2MASK - Masks the ALERT pin from asserting when the External Diode 2 channel is out of
limit or reports a diode fault.

‘0’ (default) - The External Diode 2 channel will cause the ALERT pin to be asserted if it is out of
limit or reports a diode fault.

‘1’ - The External Diode 2 channel will not cause the ALERT pin to be asserted if it is out of limit
or reports a diode fault.
Bit 1 - E1MASK - Masks the ALERT pin from asserting when the External Diode1 channel is out of
limit or reports a diode fault.

‘0’ (default) - The External Diode1 channel will cause the ALERT pin to be asserted if it is out of
limit or reports a diode fault.

‘1’ - The External Diode1 channel will not cause the ALERT pin to be asserted if it is out of limit
or reports a diode fault.
Bit 0 - INTMASK - Masks the ALERT pin from asserting when the Internal Diode temperature is out
of limit.
6.13

‘0’ (default) - The Internal Diode channel will cause the ALERT pin to be asserted if it is out of limit.

‘1’ - The Internal Diode channel will not cause the ALERT pin to be asserted if it is out of limit.
Consecutive ALERT Register 22h
Table 6.14 Consecutive ALERT Register
ADDR.
R/W
REGISTER
B7
22h
R/W
Consecutive
ALERT
TIME
OUT
B6
B5
B4
CTHRM[2:0]
B3
B2
CALRT[2:0]
B1
B0
DEFAULT
-
70h
The Consecutive ALERT Register determines how many times an out-of-limit error or diode fault must
be detected in consecutive measurements before the ALERT or SYS_SHDN pin is asserted.
Additionally, the Consecutive ALERT Register controls the SMBus Timeout functionality.
An out-of-limit condition (i.e. HIGH, LOW, or FAULT) occurring on the same temperature channel in
consecutive measurements will increment the consecutive alert counter. The counters will also be reset
if no out-of-limit condition or diode fault condition occurs in a consecutive reading.
When the ALERT pin is configured as an interrupt, when the consecutive alert counter reaches its
programmed value, the following will occur: the STATUS bit(s) for that channel and the last error
condition(s) (i.e. E1HIGH or E2LOW and/or E2FAULT) will be set to ‘1’, the ALERT pin will be asserted,
the consecutive alert counter will be cleared, and measurements will continue.
SMSC EMC1187
35
DATASHEET
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
When the ALERT pin is configured as a comparator, the consecutive alert counter will ignore diode
fault and low limit errors and only increment if the measured temperature exceeds the High Limit.
Additionally, once the consecutive alert counter reaches the programmed limit, the ALERT pin will be
asserted, but the counter will not be reset. It will remain set until the temperature drops below the High
Limit minus the Therm Hysteresis value.
For example, if the CALRT[2:0] bits are set for 4 consecutive alerts on an EMC1187 device, the high
limits are set at 70°C, and none of the channels are masked, the ALERT pin will be asserted after the
following four measurements:
1. Internal Diode reads 71°C and external diodes read 69°C. Consecutive alert counter for INT is
incremented to 1.
2. Both the Internal Diode and External Diode1 read 71°C and External Diode 2 reads 68°C.
Consecutive alert counter for INT is incremented to 2 and for EXT is set to 1.
3. The External Diode1 reads 71°C and both the Internal Diode and External Diode 2 read 69°C.
Consecutive alert counter for INT and EXT2 are cleared and EXT1 is incremented to 2.
4. The Internal Diode reads 71°C and external diodes read 71°C. Consecutive alert counter for INT
is set to 1EXT2 is set to 1, and EXT is incremented to 3.
5. The Internal Diode reads 71°C and both the external diode read 71°C. Consecutive alert counter
for INT is incremented to 2EXT2 is set to 2, and EXT is incremented to 4. The appropriate status
bits are set for EXT and the ALERT pin is asserted. EXT counter is reset to 0 and all other counters
hold the last value until the next temperature measurement.
Bit 7 - TIMEOUT - Determines whether the SMBus Timeout function is enabled.

‘0’ (default) - The SMBus Timeout feature is disabled. The SMCLK line can be held low indefinitely
without the device resetting its SMBus protocol.

‘1’ - The SMBus Timeout feature is enabled. If the SMCLK line is held low for more than tTIMEOUT,
the device will reset the SMBus protocol.
Bits 6-4 CTHRM[2:0] - Determines the number of consecutive measurements that must exceed the
corresponding Therm Limit and Hardware Thermal Shutdown Limit before the SYS_SHDN pin is
asserted. All temperature channels use this value to set the respective counters. The consecutive
THERM counter is incremented whenever any of the measurements exceed the corresponding Therm
Limit or if the External Diode 1 measurement exceeds the Hardware Thermal Shutdown Limit.
If the temperature drops below the Therm Limit or Hardware Thermal Shutdown Limit, the counter is
reset. If the programmed number of consecutive measurements exceed the Therm Limit or Hardware
Thermal Shutdown Limit, and the appropriate channel is linked to the SYS_SHDN pin, the SYS_SHDN
pin will be asserted low.
Once the SYS_SHDN pin is asserted, the consecutive Therm counter will not reset until the
corresponding temperature drops below the appropriate limit minus the corresponding hysteresis.
The bits are decoded as shown in Table 6.15. The default setting is 4 consecutive out of limit
conversions.
Bits 3-1 - CALRT[2:0] - Determine the number of consecutive measurements that must have an out of
limit condition or diode fault before the ALERT pin is asserted. temperature channels use this value
to set the respective counters. The bits are decoded as shown in Table 6.15. The default setting is 1
consecutive out of limit conversion.
Revision 1.0 (07-11-13)
36
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Table 6.15 Consecutive Alert / Therm Settings
NUMBER OF CONSECUTIVE OUT OF LIMIT
MEASUREMENTS
2
1
0
0
0
0
1
(default for CALRT[2:0])
0
0
1
2
0
1
1
3
1
1
1
4
(default for CTHRM[2:0])
6.14
Beta Configuration Registers 25h and 26h
Table 6.16 Beta Configuration Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
26h
R
External
Diode 2 Beta
Configuration
-
-
-
-
ENABLE2
B2
B1
B0
DEFAULT
BETA2[2:0]
This register is used to set the Beta Compensation factor that is used for External Diode 2s.
External Diode 2.

‘0’ - The Beta Compensation Factor auto-detection circuitry is disabled.

‘1’ (default) - The Beta Compensation factor auto-detection circuitry is enabled. At the beginning of
every conversion, the optimal Beta Compensation factor setting will be determined and applied.
The BETA2X[2:0] bits will be automatically updated to indicate the current setting. This is the
default for EMC1187
Bit 2-0 - BETA2[2:0] - These bits always reflect the current beta configuration settings. If auto-detection
circuitry is enabled, these bits will be updated automatically and writing to these bits will have no effect.
If the auto-detection circuitry is disabled, these bits will determine the beta configuration setting that is
used for the respective channels.Care should be taken when setting the BETA2[2:0] bits when the
auto-detection circuitry is disabled. If the Beta Compensation factor is set at a beta value that is higher
than the transistor beta, the circuit may introduce measurement errors. When measuring a discrete
thermal diode (such as 2N3904) or a CPU diode that functions like a discrete thermal diode (such as
an AMD processor diode), the BETA2[2:0] bits should be set to ‘111b’.
Table 6.17 CPU Beta Values
BETA2[2:0]
HEX
ENABLE2
2
1
0
0h
0
0
0
0
0.11
1h
0
0
0
1
0.18
SMSC EMC1187
37
DATASHEET
MINIMUM BETA
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Table 6.17 CPU Beta Values (continued)
BETA2[2:0]
HEX
ENABLE2
2
1
0
2h
0
0
1
0
0.25
3h
0
0
1
1
0.33
4h
0
1
0
0
0.43
5h
0
1
0
1
1.00
6h
0
1
1
0
2.33
7h
0
1
1
1
Disabled
8h - Fh
1
X
X
X
Auto-detection
6.15
MINIMUM BETA
External Diode Ideality Factor Register 27h
Table 6.18 Ideality Configuration Registers
ADDR.
R/W
REGISTER
B7
B6
27h
R/W
External
Diode
Ideality
Factor
-
-
IDEALITY[5:0]
12h
28h
R/W
External
Diode 2
Ideality
Factor
-
-
IDEALITY2[5:0]
12h
R/W
External
Diode 3
Ideality
Factor
-
-
IDEALITY3[5:0]
12h
31h
B5
B4
B3
B2
B1
B0
DEFAULT
This register stores the ideality factors that are applied to the external diode. Table 6.19 defines each
setting and the corresponding ideality factor. Beta Compensation and Resistance Error Correction
automatically correct for most diode ideality errors; therefore, it is not recommended that these settings
be updated without consulting SMSC.
Table 6.19 Ideality Factor Look-Up Table (Diode Model)
SETTING
FACTOR
SETTING
FACTOR
SETTING
FACTOR
08h
0.9949
18h
1.0159
28h
1.0371
09h
0.9962
19h
1.0172
29h
1.0384
0Ah
0.9975
1Ah
1.0185
2Ah
1.0397
Revision 1.0 (07-11-13)
38
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Table 6.19 Ideality Factor Look-Up Table (Diode Model) (continued)
SETTING
FACTOR
SETTING
FACTOR
SETTING
FACTOR
0Bh
0.9988
1Bh
1.0200
2Bh
1.0410
0Ch
1.0001
1Ch
1.0212
2Ch
1.0423
0Dh
1.0014
1Dh
1.0226
2Dh
1.0436
0Eh
1.0027
1Eh
1.0239
2Eh
1.0449
0Fh
1.0040
1Fh
1.0253
2Fh
1.0462
10h
1.0053
20h
1.0267
30h
1.0475
11h
1.0066
21h
1.0280
31h
1.0488
12h
1.0080
22h
1.0293
32h
1.0501
13h
1.0093
23h
1.0306
33h
1.0514
14h
1.0106
24h
1.0319
34h
1.0527
15h
1.0119
25h
1.0332
35h
1.0540
16h
1.0133
26h
1.0345
36h
1.0553
17h
1.0146
27h
1.0358
37h
1.0566
For CPU substrate transistors that require the BJT transistor model, the ideality factor behaves slightly
differently than for discrete diode-connected transistors. Refer to Table 6.20 when using a CPU
substrate transistor.
Table 6.20 Substrate Diode Ideality Factor Look-Up Table (BJT Model)
SETTING
FACTOR
SETTING
FACTOR
SETTING
FACTOR
08h
0.9869
18h
1.0079
28h
1.0291
09h
0.9882
19h
1.0092
29h
1.0304
0Ah
0.9895
1Ah
1.0105
2Ah
1.0317
0Bh
0.9908
1Bh
1.0120
2Bh
1.0330
0Ch
0.9921
1Ch
1.0132
2Ch
1.0343
0Dh
0.9934
1Dh
1.0146
2Dh
1.0356
0Eh
0.9947
1Eh
1.0159
2Eh
1.0369
0Fh
0.9960
1Fh
1.0173
2Fh
1.0382
10h
0.9973
20h
1.0187
30h
1.0395
11h
0.9986
21h
1.0200
31h
1.0408
12h
1.0000
22h
1.0213
32h
1.0421
13h
1.0013
23h
1.0226
33h
1.0434
SMSC EMC1187
39
DATASHEET
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Table 6.20 Substrate Diode Ideality Factor Look-Up Table (BJT Model) (continued)
SETTING
FACTOR
SETTING
FACTOR
SETTING
FACTOR
14h
1.0026
24h
1.0239
34h
1.0447
15h
1.0039
25h
1.0252
35h
1.0460
16h
1.0053
26h
1.0265
36h
1.0473
17h
1.0066
27h
1.0278
37h
1.0486
APPLICATION NOTE: When measuring a 65nm Intel CPU, the Ideality Setting should be the default 12h. When
measuring a 45nm Intel CPU, the Ideality Setting should be 15h.
6.16
High Limit Status Register 35h
Table 6.21 High Limit Status Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
35h
R-C
High Limit
Status
-
-
-
-
-
E2HIGH
EHIGH
IHIGH
00h
The High Limit Status Register contains the status bits that are set when a temperature channel high
limit is exceeded. If any of these bits are set, the HIGH status bit in the Status Register is set. Reading
from the High Limit Status Register will clear all bits if. Reading from the register will also clear the
HIGH status bit in the Status Register.
The ALERT pin will be set if the programmed number of consecutive alert counts have been met and
any of these status bits are set.
The status bits will remain set until read unless the ALERT pin is configured as a comparator output
(see Section 5.5.2).
Bit 2 - E2HIGH - This bit is set when the External Diode 2 channel exceeds its programmed high limit.
Bit 1 - E1HIGH - This bit is set when the External Diode 1 channel exceeds its programmed high limit.
Bit 0 - IHIGH - This bit is set when the Internal Diode channel exceeds its programmed high limit.
6.17
Low Limit Status Register 36h
Table 6.22 Low Limit Status Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
36h
R-C
Low Limit
Status
-
-
-
-
-
E2LOW
ELOW
ILOW
00h
The Low Limit Status Register contains the status bits that are set when a temperature channel drops
below the low limit. If any of these bits are set, then the LOW status bit in the Status Register is set.
Reading from the Low Limit Status Register will clear all bits. Reading from the register will also clear
the LOW status bit in the Status Register.
Revision 1.0 (07-11-13)
40
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
The ALERT pin will be set if the programmed number of consecutive alert counts have been met and
any of these status bits are set.
The status bits will remain set until read unless the ALERT pin is configured as a comparator output
(see Section 5.5.2).
Bit 2 - E2LOW - This bit is set when the External Diode 2 channel drops below its programmed low
limit.
Bit 1 - E1LOW - This bit is set when the External Diode 1 channel drops below its programmed low
limit.
Bit 0 - ILOW - This bit is set when the Internal Diode channel drops below its programmed low limit.
6.18
Therm Limit Status Register 37h
Table 6.23 Therm Limit Status Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
37h
R-C
Therm
Limit
Status
-
-
-
-
B3
B2
B1
B0
DEFAULT
E2
THERM
E1
THERM
ITHERM
00h
The Therm Limit Status Register contains the status bits that are set when a temperature channel
Therm Limit is exceeded. If any of these bits are set, the THERM status bit in the Status Register is
set. Reading from the Therm Limit Status Register will not clear the status bits. Once the temperature
drops below the Therm Limit minus the Therm Hysteresis, the corresponding status bits will be
automatically cleared. The THERM bit in the Status Register will be cleared when all individual channel
THERM bits are cleared.
Bit 2 - E2THERM - This bit is set when the External Diode 2 channel exceeds its programmed Therm
Limit. When set, this bit will assert the THERM pin.
Bit 1 - E1THERM - This bit is set when the External Diode 1 channel exceeds its programmed Therm
Limit. When set, this bit will assert the THERM pin.
Bit 0- ITHERM - This bit is set when the Internal Diode channel exceeds its programmed Therm Limit.
When set, this bit will assert the THERM pin.
6.19
Filter Control Register 40h
Table 6.24 Filter Configuration Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
40h
R/W
Filter Control
-
-
-
-
-
-
B1
B0
FILTER[1:0]
DEFAULT
00h
The Filter Configuration Register controls the digital filter on the External Diode channel.
Bits 1-0 - FILTER[1:0] - Control the level of digital filtering that is applied to the External Diode
temperature measurement as shown in Table 6.25. See Figure 5.4 and Figure 5.5 for examples on the
filter behavior.
SMSC EMC1187
41
DATASHEET
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Table 6.25 FILTER Decode
FILTER[1:0]
6.20
1
0
AVERAGING
0
0
Disabled (default)
0
1
Level 1
1
0
Level 1
1
1
Level 2
Product ID Register
Table 6.26 Product ID Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
FDh
R
Product ID
(EMC1187)
0
0
1
0
0
0
1
1
23h
The Product ID Register holds a unique value that identifies the device.
6.21
SMSC ID Register
Table 6.27 Manufacturer ID Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
FEh
R
SMSC ID
0
1
0
1
1
1
0
1
5Dh
The Manufacturer ID register contains an 8-bit word that identifies the SMSC as the manufacturer of
the EMC1187.
6.22
Revision Register
Table 6.28 Revision Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
FFh
R
Revision
0
0
0
0
0
1
1
1
07h
The Revision register contains an 8-bit word that identifies the die revision.
Revision 1.0 (07-11-13)
42
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Chapter 7 Typical Operating Curves
Tem perature Error vs. Am bient Tem perature
(2N3904, TDIODE = 42.5°C, VDD = 3.3V)
1.0
1.0
0.8
0.8
0.6
Temperature Error (°C)
Temperature Error (°C)
Tem perature Error vs. Filter Capacitor
(2N3904, TA = 27°C, TDIODE = 27°C, VDD = 3.3V)
0.5
0.3
0.0
-0.3
-0.5
-0.8
-1.0
0
1000
2000
3000
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
4000
-1.0
-40 -25 -10
Filter Capacitor (pF)
Temperature Error (°C)
Temperature Error (°C)
SMSC EMC1187
5
4
Beta Compensation
Disabled
3
2
1
0
Beta Compensation Enabled
-1
20
110 125
95 110 125
Temperature Error vs. CPU Temperature
Typical 65nm CPU from major vendor
(TA = 27°C, VDD = 3.3V, BETA = 011, CFILTER = 470pF)
Tem perature Error vs. External Diode Tem perature
(2N3904, TA = 42.5°C, VDD = 3.3V)
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
-40 -25 -10 5
20 35 50 65 80 95
External Diode Tem perature (°C)
5
20 35 50 65 80
Am bient Tem perature (°C)
40
60
80
100
120
CPU Temperature (°C)
43
DATASHEET
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Chapter 8 Package Information
Figure 8.1 10-Pin DFN Package Drawing
Revision 1.0 (07-11-13)
44
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
8.1
Package Markings
Figure 8.2 10-Pin DFN Package Dimensions
Figure 8.3 10 Pin DFN PCB Footprint
The EMC1187 devices will be marked as shown in Figure 8.4.
SMSC EMC1187
45
DATASHEET
Revision 1.0 (07-11-13)
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
TOP
LINE 1: Device code, first 2 of last 6
digits of lot number
4
2
L
L
LINE 2: Last 4 digits of lot number
L
L
L
L
ex
PIN 1
BOTTOM
BOTTOM MARKING IS NOT ALLOWED
Figure 8.4 EMC1187-1 10-Pin DFN Package Markings
Revision 1.0 (07-11-13)
46
DATASHEET
SMSC EMC1187
Triple Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications
Datasheet
Chapter 9 Datasheet Revision History
Table 9.1 Customer Revision History
REVISION LEVEL & DATE
Rev. 1.0 (07-11-13)
SMSC EMC1187
SECTION/FIGURE/ENTRY
CORRECTION
Formal document release
47
DATASHEET
Revision 1.0 (07-11-13)