EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications PRODUCT FEATURES Datasheet General Description Applications The EMC1186 is a high accuracy, low cost, 1.8V System Management Bus (SMBus) compatible temperature sensor. Advanced features such as Resistance Error Correction (REC), Beta Compensation (to support CPU diodes requiring the BJT/transistor model including 65nm and lower geometry processors) and automatic diode type detection combine to provide a robust solution for complex environmental monitoring applications. The ability to communicate at 1.8V SMBus levels provides compatible I/O for the advanced processors found in today’s tablet and smartphone applications. Features Support for diodes requiring the BJT/transistor model — Supports 65nm and lower geometry CPU thermal diodes Additionally, the EMC1186provides a hardware programmable system shutdown feature that is programmed at part power-up via two pull-up resistor values and that cannot be masked or corrupted through the SMBus. REC automatically eliminates the temperature error caused by series resistance allowing greater flexibility in routing thermal diodes. Frequency hopping* and analog filters ensure remote diode traces can be as far as eight (8) inches without degrading the signal. Beta Compensation eliminates temperature errors caused by low, variable beta transistors common in today's fine geometry processors. The automatic beta detection feature monitors the external diode/transistor and determines the optimum sensor settings for accurate temperature measurements regardless of processor technology. This frees the user from providing unique sensor configurations for each temperature monitoring application. These advanced features plus ±1°C measurement accuracy provide a low-cost, highly flexible and accurate solution for critical temperature monitoring applications. EMC1186 Hardware Thermal Shutdown — triggers dedicated SYS_SHDN pin — hardware configured range 77°C to 112°C in 1°C steps — cannot be disabled or modified by software The EMC1186 monitors two temperature channels (one external and one internal), providing ±1°C accuracy for both external and internal diode temperatures. Switchi ng Current Notebook Computers Desktop Computers Industrial Embedded applications Pin and register compatible with EMC1422 Automatically determines external diode type and optimal settings Resistance Error Correction Frequency hops the remote sample frequency to reject DC converter and other coherent noise sources* Consecutive Alert queue to further reduce false Alerts Up to 1 External Temperature Monitors — 25°C typ, ±1°C max accuracy (20°C < TDIODE < 110°C) — 0.125°C resolution — Supports up to 2.2nF diode filter capacitor Internal Temperature Monitor — ±1°C accuracy — 0.125°C resolution 3.3V Supply Voltage 1.8V SMBus operation Programmable temperature limits for ALERT (85°C default high limit and 0°C default low limit) Available in small 8-pin 2mm x 3mm TDFN RoHS compliant package VDD = 3.3V SYS_SHDN Limit Internal Temperature Register Internal Temp Diode Low Limit Registers High Limit Registers Thermal diode SMBus Interface External Temperature Register(s) Digital Mux Digital Mux DN1 ΔΣADC Limit Comparator CPU Analog Mux DP1 1.8V – 3.3V VDD Conversion Rate Register Host EMC1186 DP1 SMCLK DN1 Internal SMDATA Diode SMBus Interface ALERT SMCLK Configuration Register Status Registers Interupt Masking SYS_SHDN SMDATA Power Control ALERT SYS_SHDN GND * Technology covered under the US patent 7,193,543. SMSC EMC1186 Revision 1.0 (07-11-13) DATASHEET Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Ordering Information: SMBUS ADDRESS ORDERING NUMBER PACKAGE FEATURES EMC1186-1-AC3-TR 8-pin TDFN 2mm x 3mm (RoHS compliant) Two temperature sensors, hardware set system shutdown, ALERT and SYS_SHDN pins, fixed SMBus address 1001_100(r/w) EMC1186-2-AC3-TR 8-pin TDFN 2mm x 3mm (RoHS compliant) Two temperature sensors, hardware set system shutdown, ALERT and THERM pins, fixed SMBus address 1001_101(r/w) This product meets the halogen maximum concentration values per IEC61249-2-21 For RoHS compliance and environmental information, please visit www.smsc.com/rohs Please contact your SMSC sales representative for additional documentation related to this product such as application notes, anomaly sheets, and design guidelines. Copyright © 2013 SMSC or its subsidiaries. All rights reserved. Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders. The Microchip name and logo, and the Microchip logo are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Revision 1.0 (07-11-13) 2 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Table of Contents Chapter 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 2 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 3 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 SMBus Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 4 System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1 Communications Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 SMBus Start Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 SMBus Address and RD / WR Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.3 SMBus Data Bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.4 SMBus ACK and NACK Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.5 SMBus Stop Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.6 SMBus Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.7 SMBus and I2C Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 SMBus Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 Write Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 Read Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.3 Send Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.4 Receive Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Alert Response Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 13 13 13 14 14 14 14 15 15 15 15 16 Chapter 5 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.1 Conversion Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Dynamic Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 .SYS_SHDN Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Hardware Thermal Shutdown Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 ALERT Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.1 ALERT Pin Interrupt Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.2 ALERT Pin Comparator Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6 ALERT and SYS_SHDN Pin Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.1 Beta Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.2 Resistance Error Correction (REC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.3 Programmable External Diode Ideality Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.8 Diode Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.9 Consecutive Alerts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.10 Digital Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.11 Temperature Measurement Results and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 17 18 19 20 20 20 20 21 21 21 22 22 22 22 24 Chapter 6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.1 Data Read Interlock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Configuration Register 03h / 09h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Conversion Rate Register 04h / 0Ah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SMSC EMC1186 3 DATASHEET 27 27 28 29 Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet 6.5 Limit Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6 Scratchpad Registers 11h and 12h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.7 Therm Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.8 Software Thermal Shutdown Configuration Register 1Dh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.9 Hardware Thermal Shutdown Limit Register 1Eh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.10 Channel Mask Register 1Fh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.11 Consecutive ALERT Register 22h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.12 External Diode Ideality Factor Registers 27h to 31h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.13 Filter Control Register 40h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.14 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.15 SMSC ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.16 Revision Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 30 31 31 32 32 33 34 36 37 37 37 Chapter 7 Typical Operating Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Chapter 8 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.1 Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Chapter 9 Datasheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Revision 1.0 (07-11-13) 4 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet List of Figures Figure 1.1 Figure 2.1 Figure 4.1 Figure 5.1 Figure 5.2 Figure 5.3 Figure 5.4 Figure 5.5 Figure 8.1 Figure 8.3 Figure 8.2 Figure 8.4 Figure 8.5 EMC1186 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 EMC1186 Pin Diagram, TDFN-8 2mm x 3mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 SMBus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 System Diagram for EMC1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Block Diagram of Hardware Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Isolating ALERT and SYS_SHDN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Temperature Filter Step Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Temperature Filter Impulse Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2mm x 3mm TDFN Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2mm x 3mm TDFN Package PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2mm x 3mm TDFN Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 EMC1186-1 8-Pin TDFN Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 EMC1186-2 8-Pin TDFN Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 SMSC EMC1186 5 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet List of Tables Table 2.1 EMC1186 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 2.2 Pin Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 3.2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 3.3 SMBus Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 4.1 Protocol Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 4.2 Write Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 4.3 Read Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 4.4 Send Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 4.5 Receive Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 4.6 Alert Response Address Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 5.1 Supply Current vs. Conversion Rate for EMC1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 5.2 SYS_SHDN Threshold Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 5.3 Temperature Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 6.1 Register Set in Hexadecimal Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 6.2 Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 6.3 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 6.4 Conversion Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 6.5 Conversion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 6.6 Temperature Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 6.7 Scratchpad Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 6.8 Therm Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 6.9 Software Thermal Shutdown Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 6.10 Hardware Thermal Shutdown Limit Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 6.11 Channel Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 6.12 Consecutive ALERT Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 6.13 Consecutive Alert / Therm Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 6.14 Ideality Configuration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 6.15 Ideality Factor Look-Up Table (Diode Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 6.16 Substrate Diode Ideality Factor Look-Up Table (BJT Model) . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 6.17 Filter Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 6.18 FILTER Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 6.19 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 6.20 Manufacturer ID Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 6.21 Revision Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 9.1 Customer Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Revision 1.0 (07-11-13) 6 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Chapter 1 Block Diagram VDD EMC1186 Switching Current SYS_SHDN Limit Internal Temperature Register Low Limit Registers High Limit Registers Internal Temp Diode SMBus Interface External Temperature Register(s) Digital Mux DN1 ΔΣ ADC Limit Comparator Analog Mux DP1 Digital Mux Conversion Rate Register SMCLK Configuration Register Status Registers Interupt Masking SMDATA ALERT SYS_SHDN GND Figure 1.1 EMC1186 Block Diagram SMSC EMC1186 7 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Chapter 2 Pin Description EM C1186 VDD 1 DP 2 8 SM CLK 7 SM DATA Exposed pad DN 3 6 ALERT SYS_SHDN 4 5 G ND Figure 2.1 EMC1186 Pin Diagram, TDFN-8 2mm x 3mm The pin types are described Table 2.2. Table 2.1 EMC1186 Pin Description PIN NUMBER NAME 1 VDD 2 DP External diode positive (anode) connection AIO 3 DN External diode negative (cathode) connection AIO 4 SYS_SHDN 5 GND 6 ALERT 7 SMDATA SMBus Data input/output - requires pull-up resistor 8 SMCLK SMBus Clock input - requires pull-up resistor Bottom Pad Exposed Pad Revision 1.0 (07-11-13) FUNCTION Power supply Active low system shutdown output signal requires pull-up resistor which selects the Hardware Thermal Shutdown Limit Ground TYPE Power OD (5V) Power Active low digital ALERT output signal requires pull-up resistor Not internally connected, but recommend grounding. 8 DATASHEET OD (5V) DIOD (5V) DI (5V) - SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Table 2.2 Pin Types PIN TYPE Power AIO DI DESCRIPTION This pin is used to supply power or ground to the device. Analog Input / Output -This pin is used as an I/O for analog signals. Digital Input - This pin is used as a digital input. This pin is 5V tolerant. DIOD Digital Input / Open Drain Output - This pin is used as a digital I/O. When it is used as an output, it is open drain and requires a pull-up resistor. This pin is 5V tolerant. OD Open Drain Digital Output - This pin is used as a digital output. It is open drain and requires a pull-up resistor. This pin is 5V tolerant. SMSC EMC1186 9 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Chapter 3 Electrical Specifications 3.1 Absolute Maximum Ratings Table 3.1 Absolute Maximum Ratings DESCRIPTION RATING UNIT Supply Voltage (VDD) -0.3 to 4.0 V Voltage on 5V tolerant pins (V5VT_pin) -0.3 to 5.5 V 0 to 3.6 V -0.3 to VDD +0.3 V Operating Temperature Range -40 to +125 °C Storage Temperature Range -55 to +150 °C Voltage on 5V tolerant pins (|V5VT_pin - VDD|) (see Note 3.1) Voltage on any other pin to Ground Lead Temperature Range Refer to JEDEC Spec. J-STD-020 Package Thermal Characteristics for DFN-10 Thermal Resistance (θj-a) ESD Rating, All pins HBM 77.1 °C/W 2000 V Note: Stresses at or above those listed could cause permanent damage to the device. This is a stress rating only and functional operation of the device at any other condition above those indicated in the operation sections of this specification is not implied. Note 3.1 3.2 For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA,SYS_SHDN, and ALERT), the pull-up voltage must not exceed 3.6V when the device is unpowered. Electrical Specifications Table 3.2 Electrical Specifications VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values at TA = 27°C unless otherwise noted. CHARACTERISTIC SYMBOL MIN TYP MAX UNITS CONDITIONS DC Power Supply Voltage VDD Supply Current IDD Revision 1.0 (07-11-13) 3.0 3.3 3.6 V 200 410 µA 0.0625 conversion / sec, dynamic averaging disabled 215 425 µA 1 conversion / sec, dynamic averaging disabled 325 465 µA 4 conversions / sec, dynamic averaging disabled 10 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Table 3.2 Electrical Specifications (continued) VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values at TA = 27°C unless otherwise noted. CHARACTERISTIC SYMBOL MIN TYP MAX 890 1050 1120 UNITS CONDITIONS µA 4 conversions / sec, dynamic averaging enabled µA > 16 conversions / sec, dynamic averaging enabled Internal Temperature Monitor Temperature Accuracy ±0.25 Temperature Resolution ±1 °C -5°C < TA < 100°C ±2 °C -40°C < TA < 125°C 0.125 °C External Temperature Monitor Temperature Accuracy Temperature Resolution ±0.25 ±1 °C +20°C < TDIODE < +110°C 0°C < TA < 100°C ±0.5 ±2 °C -40°C < TDIODE < 127°C 0.125 °C ms Conversion Time all Channels tCONV 150 Capacitive Filter CFILTER 2.2 2.7 nF default settings Connected across external diode ALERT and SYS_SHDN pins Output Low Voltage VOL Leakage Current ILEAK 3.3 0.4 ±5 V ISINK = 8mA µA ALERT and SYS_SHDN pins Device powered or unpowered TA < 85°C pull-up voltage < 3.6V SMBus Electrical Characteristics Table 3.3 SMBus Electrical Specifications VDD = 3.0 to 3.6V, TA = -40°C to 125°C, all typical values are at TA = 27°C unless otherwise noted. CHARACTERISTIC SYMBOL MIN TYP MAX UNITS CONDITIONS SMBus Interface Input High Voltage VIH 1.4 VDD V 5V Tolerant. Voltage threshold based on 1.8V operation Input Low Voltage VIL -0.3 0.8 V 5V Tolerant. Voltage threshold based on 1.8V operation Leakage Current ILEAK ±5 µA Powered or unpowered TA < 85°C SMSC EMC1186 11 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Table 3.3 SMBus Electrical Specifications (continued) VDD = 3.0 to 3.6V, TA = -40°C to 125°C, all typical values are at TA = 27°C unless otherwise noted. CHARACTERISTIC SYMBOL Hysteresis MIN TYP MAX 50 Input Capacitance CIN Output Low Sink Current IOL UNITS CONDITIONS mV 5 pF 8.2 15 mA SMDATA = 0.4V SMBus Timing Clock Frequency fSMB Spike Suppression tSP Bus Free Time Stop to Start tBUF 1.3 µs Hold Time: Start tHD:STA 0.6 µs Setup Time: Start tSU:STA 0.6 µs Setup Time: Stop tSU:STO 0.6 µs Data Hold Time tHD:DAT 0 µs When transmitting to the master Data Hold Time tHD:DAT 0.3 µs When receiving from the master Data Setup Time tSU:DAT 100 ns Clock Low Period tLOW 1.3 µs Clock High Period tHIGH 0.6 µs Clock/Data Fall time tFALL 300 ns Min = 20+0.1CLOAD ns Clock/Data Rise time tRISE 300 ns Min = 20+0.1CLOAD ns Capacitive Load CLOAD 400 pF per bus line Timeout tTIMEOUT 35 ms Disabled by default Revision 1.0 (07-11-13) 10 25 400 kHz 50 ns 12 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Chapter 4 System Management Bus Interface Protocol 4.1 Communications Protocol The EMC1186 communicates with a host controller, such as an SMSC SIO, through the SMBus. The SMBus is a two-wire serial communication protocol between a computer host and its peripheral devices. A detailed timing diagram is shown in Figure 4.1. For the first 15ms after power-up the device may not respond to SMBus communications. . T LOW T HD:STA T HIGH T SU:STO T FALL SMCLK T RISE T HD:STA T SU:DAT T HD:DAT T SU:STA SMDATA TBUF S P S S - Start Condition P - Stop Condition P Figure 4.1 SMBus Timing Diagram 4.1.1 SMBus Start Bit The SMBus Start bit is defined as a transition of the SMBus Data line from a logic ‘1’ state to a logic ‘0’ state while the SMBus Clock line is in a logic ‘1’ state. 4.1.2 SMBus Address and RD / WR Bit The SMBus Address Byte consists of the 7-bit client address followed by the RD / WR indicator bit. If this RD / WR bit is a logic ‘0’, the SMBus Host is writing data to the client device. If this RD / WR bit is a logic ‘1’, the SMBus Host is reading data from the client device. The EMC1186-1 SMBus address is hard coded to 1001_100(r/w). The EMC1186-2 SMBus address is hard coded to 1001_101(r/w). 4.1.3 SMBus Data Bytes All SMBus Data bytes are sent most significant bit first and composed of 8-bits of information. 4.1.4 SMBus ACK and NACK Bits The SMBus client will acknowledge all data bytes that it receives. This is done by the client device pulling the SMBus data line low after the 8th bit of each byte that is transmitted. This applies to the Write Byte protocol. SMSC EMC1186 13 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet The Host will NACK (not acknowledge) the last data byte to be received from the client by holding the SMBus data line high after the 8th data bit has been sent. 4.1.5 SMBus Stop Bit The SMBus Stop bit is defined as a transition of the SMBus Data line from a logic ‘0’ state to a logic ‘1’ state while the SMBus clock line is in a logic ‘1’ state. When the device detects an SMBus Stop bit and it has been communicating with the SMBus protocol, it will reset its client interface and prepare to receive further communications. 4.1.6 SMBus Timeout The EMC1186 supports SMBus Timeout. If the clock line is held low for longer than tTIMEOUT, the device will reset its SMBus protocol. This function can be enabled by setting the TIMEOUT bit (see Section 6.11, "Consecutive ALERT Register 22h"). 4.1.7 SMBus and I2C Compatibility The EMC1186 is compatible with SMBus and I2C. The major differences between SMBus and I2C devices are highlighted here. For more information, refer to the SMBus 2.0 and I2C specifications. For information on using the EMC1186 in an I2C system, refer to SMSC AN 14.0 SMSC Dedicated Slave Devices in I2C Systems. 1. EMC1186 supports I2C fast mode at 400kHz. This covers the SMBus max time of 100kHz. 2. Minimum frequency for SMBus communications is 10kHz. 3. The SMBus client protocol will reset if the clock is held at a logic ‘0’ for longer than 30ms. This timeout functionality is disabled by default in the EMC1186 and can be enabled by writing to the TIMEOUT bit. I2C does not have a timeout. 4. I2C devices do not support the Alert Response Address functionality (which is optional for SMBus). Attempting to communicate with the EMC1186 SMBus interface with an invalid slave address or invalid protocol will result in no response from the device and will not affect its register contents. Stretching of the SMCLK signal is supported, provided other devices on the SMBus control the timing. 4.2 SMBus Protocols The device supports Send Byte, Read Byte, Write Byte, Receive Byte, and the Alert Response Address as valid protocols as shown below. All of the below protocols use the convention in Table 4.1. Table 4.1 Protocol Format Revision 1.0 (07-11-13) DATA SENT TO DEVICE DATA SENT TO THE HOST # of bits sent # of bits sent 14 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet 4.2.1 Write Byte The Write Byte is used to write one byte of data to the registers, as shown in Table 4.2. Table 4.2 Write Byte Protocol START SLAVE ADDRESS WR ACK REGISTER ADDRESS ACK REGISTER DATA ACK STOP 1 -> 0 YYYY_YYY 0 0 XXh 0 XXh 0 0 -> 1 4.2.2 Read Byte The Read Byte protocol is used to read one byte of data from the registers as shown in Table 4.3. Table 4.3 Read Byte Protocol START SLAVE ADDRESS WR ACK REGISTER ADDRESS ACK START SLAVE ADDRESS RD ACK REGISTER DATA NACK STOP 1 -> 0 YYYY_ YYY 0 0 XXh 0 1 -> 0 YYYY_ YYY 1 0 XX 1 0 -> 1 4.2.3 Send Byte The Send Byte protocol is used to set the internal address register pointer to the correct address location. No data is transferred during the Send Byte protocol as shown in Table 4.4. Table 4.4 Send Byte Protocol START SLAVE ADDRESS WR ACK REGISTER ADDRESS ACK STOP 1 -> 0 YYYY_YYY 0 0 XXh 0 0 -> 1 4.2.4 Receive Byte The Receive Byte protocol is used to read data from a register when the internal register address pointer is known to be at the right location (e.g. set via Send Byte). This is used for consecutive reads of the same register as shown in Table 4.5. Table 4.5 Receive Byte Protocol START SLAVE ADDRESS RD ACK REGISTER DATA NACK STOP 1 -> 0 YYYY_YYY 1 0 XXh 1 0 -> 1 SMSC EMC1186 15 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet 4.3 Alert Response Address The ALERT output can be used as a processor interrupt or as an SMBus Alert. When it detects that the ALERT pin is asserted, the host will send the Alert Response Address (ARA) to the general address of 0001_100xb. All devices with active interrupts will respond with their client address as shown in Table 4.6. Table 4.6 Alert Response Address Protocol START ALERT RESPONSE ADDRESS RD ACK DEVICE ADDRESS NACK STOP 1 -> 0 0001_100 1 0 YYYY_YYY 1 0 -> 1 The EMC1186 will respond to the ARA in the following way: 1. Send Slave Address and verify that full slave address was sent (i.e. the SMBus communication from the device was not prematurely stopped due to a bus contention event). 2. Set the MASK_ALL bit to clear the ALERT pin. APPLICATION NOTE: The ARA does not clear the Status Register and if the MASK_ALL bit is cleared prior to the Status Register being cleared, the ALERT pin will be reasserted. Revision 1.0 (07-11-13) 16 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Chapter 5 Product Description The is an SMBus temperature sensor with Hardware Thermal Shutdown. The EMC1186 monitors one internal diode and one externally connected temperature diode. Thermal management is performed in cooperation with a host device. This consists of the host reading the temperature data of both the external and internal temperature diodes of the EMC1186 and using that data to control the speed of one or more fans. The EMC1186 has two levels of monitoring. The first provides a maskable ALERT signal to the host when the measured temperatures exceeds user programmable limits. This allows the EMC1186 to be used as an independent thermal watchdog to warn the host of temperature hot spots without direct control by the host. The second level of monitoring asserts the SYS_SHDN pin when the External Diode 1 temperature exceeds a hardware specified threshold temperature. Additionally, the internal diode can be configured to assert the SYS_SHDN pin when the measured temperature exceeds user programmable limits. Figure 5.1 shows a system level block diagram of the EMC1186. VDD = 3.3V 1.8V – 3.3V VDD CPU Thermal diode Host EMC1186 DP1 DN1 Internal Diode SMCLK SMDATA SMBus Interface ALERT SYS_SHDN Power Control Figure 5.1 System Diagram for EMC1186 5.1 Conversion Rates The EMC1186 may be configured for different conversion rates based on the system requirements. The conversion rate is configured as described in Section 6.4. The default conversion rate is 4 conversions per second. Other available conversion rates are shown in Table 6.5, "Conversion Rate". 5.2 Dynamic Averaging Dynamic averaging causes the EMC1186 to measure the external diode channels for an extended time based on the selected conversion rate. This functionality can be disabled for increased power savings at the lower conversion rates (see Section 6.3, "Configuration Register 03h / 09h"). When dynamic averaging is enabled, the device will automatically adjust the sampling and measurement time for the external diode channels. This allows the device to average 2x or 16x longer than the normal 11 bit operation (nominally 21ms per channel) while still maintaining the selected conversion rate. The benefits of dynamic averaging are improved noise rejection due to the longer integration time as well as less random variation of the temperature measurement. When enabled, the dynamic averaging applies when a one-shot command is issued. The device will perform the desired averaging during the one-shot operation according to the selected conversion rate. SMSC EMC1186 17 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet When enabled, the dynamic averaging will affect the average supply current based on the chosen conversion rate as shown in Table 5.1. Table 5.1 Supply Current vs. Conversion Rate for EMC1186 AVERAGE SUPPLY CURRENT (TYPICAL) AVERAGING FACTOR (BASED ON 11-BIT OPERATION) CONVERSION RATE ENABLED (DEFAULT) DISABLED ENABLED (DEFAULT) DISABLED 1 / 16 sec 210uA 200uA 16x 1x 1 / 8 sec 265uA 200uA 16x 1x 1 / 4 sec 330uA 200uA 16x 1x 1 / 2 sec 395uA 200uA 16x 1x 1 / sec 460uA 215uA 16x 1x 4 / sec (default) 890uA 325uA 8x 1x 8 / sec 1010uA 630uA 4x 1x 16 / sec 1120uA 775uA 2x 1x 32 / sec 1200uA 1050uA 1x 1x 64 / sec 1400uA 1100uA 0.5x 0.5x 5.3 .SYS_SHDN Output The SYS_SHDN output is asserted independently of the ALERT output and cannot be masked. If the External Diode 1 temperature exceeds the Hardware Thermal Shutdown Limit for the programmed number of consecutive measurements, the SYS_SHDN pin is asserted. The Hardware Thermal Shutdown Limit is defined at power-up via the pull-up resistors on the SYS_SHDN and ALERT pins as shown in Table 5.2. This limit cannot be modified or masked via software. In addition to External Diode 1 channel triggering the SYS_SHDN pin when the measured temperature exceeds to the Hardware Thermal Shutdown Limit, each of the measurement channels can be configured to assert the SYS_SHDN pin when they exceed the corresponding THERM Limit. When the SYS_SHDN pin is asserted, it will not release until the External Diode 1 temperature drops below the Hardware Thermal Shutdown Limit minus 10°C and all other measured temperatures drop below the THERM Limit minus the THERM Hysteresis value (when linked to SYS_SHDN). Figure 5.2 shows a block diagram of the interaction between the input channels and the SYS_SHDN pin. Revision 1.0 (07-11-13) 18 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Hardware Thermal Shutdown SMBus Traffic Internal Diode Temperature Conversion and THERM Limit Compare Software Shutdown Enable H/W Thermal Shutdown Sensor 3.3V Temperature Conversion SW_SHDN 3.3V SYS_SHDN HW_SHDN ALERT Function Select Figure 5.2 Block Diagram of Hardware Thermal Shutdown 5.4 Hardware Thermal Shutdown Limit The Hardware Thermal Shutdown Limit temperature is determined by pull-up resistors on the SYS_SHDN and ALERT pins shown in Table 5.2. Table 5.2 SYS_SHDN Threshold Temperature SYS_SHD PULL-UP ALERT PULL-UP 4.7K OHM ±10% 6.8K OHM ±10% 10K OHM ±10% 15K OHM ±10% 22K OHM ±10% 33K OHM ±10% 4.7K OHM ±10% 77°C 83°C 89°C 95°C 101°C 107°C 6.8K OHM ±10% 78°C 84°C 90°C 96°C 102°C 108°C 10K OHM ±10% 79°C 85°C 91°C 97°C 103°C 109°C 15K OHM ±10% 80°C 86°C 92°C 98°C 104°C 110°C 22K OHM ±10% 81°C 87°C 93°C 99°C 105°C 111°C 33K OHM ±10% 82°C 88°C 94°C 100°C 106°C 112°C SMSC EMC1186 19 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet 5.5 ALERT Output The ALERT pin is an open drain output and requires a pull-up resistor to VDD and has two modes of operation: interrupt mode and comparator mode. The mode of the ALERT output is selected via the ALERT / COMP bit in the Configuration Register (see Section 6.3). 5.5.1 ALERT Pin Interrupt Mode When configured to operate in interrupt mode, the ALERT pin asserts low when an out of limit measurement (> high limit or < low limit) is detected on any diode or when a diode fault is detected, functioning as any standard ALERT in on the SMBus. The ALERT pin will remain asserted as long as an out-of-limit condition remains. Once the out-of-limit condition has been removed, the ALERT pin will remain asserted until the appropriate status bits are cleared. The ALERT pin can be masked by setting the MASK_ALL bit. Once the ALERT pin has been masked, it will be de-asserted and remain de-asserted until the MASK_ALL bit is cleared by the user. Any interrupt conditions that occur while the ALERT pin is masked will update the Status Register normally. There are also individual channel masks (see Section 6.10). The ALERT pin is used as an interrupt signal or as an SMBus Alert signal that allows an SMBus slave to communicate an error condition to the master. One or more ALERT outputs can be hard-wired together. 5.5.2 ALERT Pin Comparator Mode When the ALERT pin is configured to operate in comparator mode, it will be asserted if any of the measured temperatures exceeds the respective high limit. The ALERT pin will remain asserted until all temperatures drop below the corresponding high limit minus the Therm Hysteresis value. When the ALERT pin is asserted in comparator mode, the corresponding high limit status bits will be set. Reading these bits will not clear them until the ALERT pin is deasserted. Once the ALERT pin is deasserted, the status bits will be automatically cleared. The MASK_ALL bit will not block the ALERT pin in this mode; however, the individual channel masks (see Section 6.10) will prevent the respective channel from asserting the ALERT pin. 5.6 ALERT and SYS_SHDN Pin Considerations Because of the decode method used to determine the Hardware Thermal Shutdown Limit, it is important that the pull-up resistance on both the ALERT and SYS_SHDN pins be within the tolerances shown in Table 5.2. Additionally, the pull-up resistor on the ALERT and SYS_SHDN pins must be connected to the same 3.3V supply that drives the VDD pin. For 15ms after power up, the ALERT and SYS_SHDN pins must not be pulled low or the Hardware Thermal Shutdown Limit will not be decoded properly. If the system requirements do not permit these conditions, the ALERT and SYS_SHDN pins must be isolated from their respective busses during this time. One method of isolating the ALERT pin is shown in Figure 5.3. Revision 1.0 (07-11-13) 20 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet + 3 .3 V VDD 1 DP 2 DN SYS_SHDN 8 4 .7 K 33K SM CLK 7 SM DATA 3 6 ALER T 4 5 GND EM C1186 + 2 .5 - 5 V 22K S h a re d A le rt + 3 .3 V 4 .7 K 33K + 2 .5 - 5 V 22K S h a re d S Y S _ S H D N Figure 5.3 Isolating ALERT and SYS_SHDN Pin 5.7 Temperature Measurement The EMC1186 can monitor the temperature of one externally connected diodes. The device contains programmable High, Low, and Therm limits for all measured temperature channels. If the measured temperature goes below the Low limit or above the High limit, the ALERT pin can be asserted (based on user settings). 5.7.1 Beta Compensation The EMC1186 is configured to monitor the temperature of basic diodes (e.g., 2N3904) or CPU thermal diodes. For External Diode 1, it automatically detects the type of external diode (CPU diode or diode connected transistor) and determines the optimal setting to reduce temperature errors introduced by beta variation. Compensating for this error is also known as implementing the transistor or BJT model for temperature measurement. For discrete transistors configured with the collector and base shorted together, the beta is generally sufficiently high such that the percent change in beta variation is very small. For example, a 10% variation in beta for two forced emitter currents with a transistor whose ideal beta is 50 would contribute approximately 0.25°C error at 100°C. However for substrate transistors where the base-emitter junction is used for temperature measurement and the collector is tied to the substrate, the proportional beta variation will cause large error. For example, a 10% variation in beta for two forced emitter currents with a transistor whose ideal beta is 0.5 would contribute approximately 8.25°C error at 100°C. 5.7.2 Resistance Error Correction (REC) Parasitic resistance in series with the external diodes will limit the accuracy obtainable from temperature measurement devices. The voltage developed across this resistance by the switching diode currents cause the temperature measurement to read higher than the true temperature. Contributors to series resistance are PCB trace resistance, on die (i.e. on the processor) metal resistance, bulk resistance in the base and emitter of the temperature transistor. Typically, the error caused by series resistance is +0.7°C per ohm. The EMC1186 automatically corrects up to 100 ohms of series resistance. SMSC EMC1186 21 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet 5.7.3 Programmable External Diode Ideality Factor The EMC1186 is designed for external diodes with an ideality factor of 1.008. Not all external diodes, processor or discrete, will have this exact value. This variation of the ideality factor introduces error in the temperature measurement which must be corrected for. This correction is typically done using programmable offset registers. Since an ideality factor mismatch introduces an error that is a function of temperature, this correction is only accurate within a small range of temperatures. To provide maximum flexibility to the user, the EMC1186 provides a 6-bit register for each external diode where the ideality factor of the diode used is programmed to eliminate errors across all temperatures. APPLICATION NOTE: When monitoring a substrate transistor or CPU diode and beta compensation is enabled, the Ideality Factor should not be adjusted. Beta Compensation automatically corrects for most ideality errors. 5.8 Diode Faults The EMC1186 detects an open on the DP and DN pins, and a short across the DP and DN pins. For each temperature measurement made, the device checks for a diode fault on the external diode channel(s). When a diode fault is detected, the ALERT pin asserts (unless masked, see Section 5.9) and the temperature data reads 00h in the MSB and LSB registers (note: the low limit will not be checked). A diode fault is defined as one of the following: an open between DP and DN, a short from VDD to DP, or a short from VDD to DN. If a short occurs across DP and DN or a short occurs from DP to GND, the low limit status bit is set and the ALERT pin asserts (unless masked). This condition is indistinguishable from a temperature measurement of 0.000°C (-64°C in extended range) resulting in temperature data of 00h in the MSB and LSB registers. If a short from DN to GND occurs (with a diode connected), temperature measurements will continue as normal with no alerts. 5.9 Consecutive Alerts The EMC1186 contain multiple consecutive alert counters. One set of counters applies to the ALERT pin and the second set of counters applies to the SYS_SHDN pin. Each temperature measurement channel has a separate consecutive alert counter for each of the ALERT and SYS_SHDN pins. All counters are user programmable and determine the number of consecutive measurements that a temperature channel(s) must be out-of-limit or reporting a diode fault before the corresponding pin is asserted. See Section 6.11, "Consecutive ALERT Register 22h" for more details on the consecutive alert function. 5.10 Digital Filter To reduce the effect of noise and temperature spikes on the reported temperature, the External Diode 1 channel uses a programmable digital filter. This filter can be configured as Level 1, Level 2, or Disabled (default) (see Section 6.13). The typical filter performance is shown in Figure 5.4 and Figure 5.5. Revision 1.0 (07-11-13) 22 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Filter Step Response Temperature (C) 90 Disabled 80 70 Level1 Level2 60 50 40 30 20 10 0 0 2 4 6 8 10 12 14 Samples Figure 5.4 Temperature Filter Step Response Filter Impulse Response 90 Temperature (C) 80 Disabled 70 60 50 Level1 40 Level2 30 20 10 0 0 2 4 6 8 10 12 14 Samples Figure 5.5 Temperature Filter Impulse Response SMSC EMC1186 23 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet 5.11 Temperature Measurement Results and Data The temperature measurement results are stored in the internal and external temperature registers. These are then compared with the values stored in the high and low limit registers. Both external and internal temperature measurements are stored in 11-bit format with the eight (8) most significant bits stored in a high byte register and the three (3) least significant bits stored in the three (3) MSB positions of the low byte register. All other bits of the low byte register are set to zero. The EMC1186 has two selectable temperature ranges. The default range is from 0°C to +127°C and the temperature is represented as binary number able to report a temperature from 0°C to +127.875°C in 0.125°C steps. The extended range is an extended temperature range from -64°C to +191°C. The data format is a binary number offset by 64°C. The extended range is used to measure temperature diodes with a large known offset (such as AMD processor diodes) where the diode temperature plus the offset would be equivalent to a temperature higher than +127°C. Table 5.3 shows the default and extended range formats. Table 5.3 Temperature Data Format TEMPERATURE (°C) DEFAULT RANGE 0°C TO 127°C EXTENDED RANGE -64°C TO 191°C Diode Fault 000 0000 0000 000 0000 0000 -64 000 0000 0000 000 0000 0000 -1 000 0000 0000 001 1111 1000 0 000 0000 0000 010 0000 0000 0.125 000 0000 0001 010 0000 0001 1 000 0000 1000 010 0000 1000 64 010 0000 0000 100 0000 0000 65 010 0000 1000 100 0000 1000 127 011 1111 1000 101 1111 1000 127.875 011 1111 1111 101 1111 1111 128 011 1111 1111 110 0000 0000 190 011 1111 1111 111 1111 0000 191 011 1111 1111 111 1111 1000 >= 191.875 011 1111 1111 111 1111 1111 Revision 1.0 (07-11-13) 24 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Chapter 6 Register Description The registers shown in Table 6.1 are accessible through the SMBus. An entry of ‘-’ indicates that the bit is not used and will always read ‘0’. Table 6.1 Register Set in Hexadecimal Order REGISTER ADDRESS R/W REGISTER NAME FUNCTION DEFAULT VALUE 00h R Internal Diode Data High Byte Stores the integer data for the Internal Diode 00h 01h R External Diode 1 Data High Byte Stores the integer data for External Diode 1 00h 03h R/W Configuration Controls the general operation of the device (mirrored at address 09h) 00h Page 28 04h R/W Conversion Rate Controls the conversion rate for updating temperature data (mirrored at address 0Ah) 06h (4/sec) Page 29 05h R/W Internal Diode High Limit Stores the 8-bit high limit for the Internal Diode (mirrored at address 0Bh) 55h (85°C) 06h R/W Internal Diode Low Limit Stores the 8-bit low limit for the Internal Diode (mirrored at address 0Ch) 00h (0°C) 07h R/W External Diode 1 High Limit High Byte Stores the integer portion of the high limit for External Diode 1 (mirrored at register 0Dh) 55h (85°C) 08h R/W External Diode 1 Low Limit High Byte Stores the integer portion of the low limit for External Diode 1 (mirrored at register 0Eh) 00h (0°C) 09h R/W Configuration Controls the general operation of the device (mirrored at address 03h) 0Ah R/W Conversion Rate Controls the conversion rate for updating temperature data (mirrored at address 04h) PAGE Page 27 Page 29 SMSC EMC1186 25 DATASHEET 00h 06h (4/sec) Page 28 Page 29 Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Table 6.1 Register Set in Hexadecimal Order (continued) REGISTER ADDRESS R/W REGISTER NAME FUNCTION DEFAULT VALUE 0Bh R/W Internal Diode High Limit Stores the 8-bit high limit for the Internal Diode (mirrored at address 05h) 55h (85°C) 0Ch R/W Internal Diode Low Limit Stores the 8-bit low limit for the Internal Diode (mirrored at address 06h) 00h (0°C) 55h (85°C) PAGE Page 29 0Dh R/W External Diode 1 High Limit High Byte Stores the integer portion of the high limit for External Diode 1 (mirrored at register 07h) 0Eh R/W External Diode 1 Low Limit High Byte Stores the integer portion of the low limit for External Diode 1 (mirrored at register 08h) 00h (0°C) 10h R External Diode 1 Data Low Byte Stores the fractional data for External Diode 1 00h Page 27 11h R/W Scratchpad Scratchpad register for software compatibility 00h Page 30 12h R/W Scratchpad Scratchpad register for software compatibility 00h Page 30 13h R/W External Diode 1 High Limit Low Byte Stores the fractional portion of the high limit for External Diode 1 00h 14h R/W External Diode 1 Low Limit Low Byte Stores the fractional portion of the low limit for External Diode 1 00h 19h R/W External Diode 1 Therm Limit Stores the 8-bit critical temperature limit for External Diode 1 55h (85°C) Page 31 1Dh R/W SYS_SHDN Configuration Controls which software channels, if any, are linked to the SYS_SHDN pin 00h Page 31 1Eh R Hardware Thermal Shutdown Limit When read, returns the selected Hardware Thermal Shutdown Limit N/A Page 32 1Fh R/W Channel Mask Register Controls the masking of individual channels 00h Page 32 20h R/W Internal Diode Therm Limit Stores the 8-bit critical temperature limit for the Internal Diode 55h (85°C 21h R/W Therm Hysteresis Stores the 8-bit hysteresis value that applies to all Therm limits 0Ah (10°C) 22h R/W Consecutive ALERT Controls the number of out-of-limit conditions that must occur before an interrupt is asserted 70h Page 33 27h R/W External Diode 1 Ideality Factor Stores the ideality factor for External Diode 1 12h (1.008) Page 34 Page 29 Page 31 Revision 1.0 (07-11-13) 26 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Table 6.1 Register Set in Hexadecimal Order (continued) REGISTER ADDRESS R/W REGISTER NAME FUNCTION DEFAULT VALUE PAGE 29h R Internal Diode Data Low Byte Stores the fractional data for the Internal Diode 00h Page 27 40h R/W Filter Control Controls the digital filter setting for the External Diode 1 channel 00h Page 36 FDh R Product ID Stores a fixed value that identifies the device 22h Page 37 FEh R Manufacturer ID Stores a fixed value that represents SMSC 5Dh Page 37 FFh R Revision Stores a fixed value that represents the revision number 07h Page 37 6.1 Data Read Interlock When any temperature channel high byte register is read, the corresponding low byte is copied into an internal ‘shadow’ register. The user is free to read the low byte at any time and be guaranteed that it will correspond to the previously read high byte. Regardless if the low byte is read or not, reading from the same high byte register again will automatically refresh this stored low byte data. 6.2 Temperature Data Registers Table 6.2 Temperature Data Registers ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 00h R Internal Diode High Byte 128 64 32 16 8 4 2 1 00h 29h R Internal Diode Low Byte 0.5 0.25 0.125 - - - - - 00h 01h R External Diode 1 High Byte 128 64 32 16 8 4 2 1 00h 10h R External Diode 1 Low Byte 0.5 0.25 0.125 - - - - - 00h As shown in Table 6.2, all temperatures are stored as an 11-bit value with the high byte representing the integer value and the low byte representing the fractional value left justified to occupy the MSBits. SMSC EMC1186 27 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Bit 0 - HWSD - This bit is set when the External Diode 1 Temperature exceeds the Hardware Thermal Shutdown Limit set by the pull-up resistors on the ALERT and SYS_SHDN pins. When set, this bit will assert the SYS_SHDN pin. 6.3 Configuration Register 03h / 09h Table 6.3 Configuration Register ADDR R/W REGISTER B7 B6 R/W Configuration MASK_ ALL RUN/ STOP 03h 09h B5 B4 B3 B2 B1 ALERT/ COMP RECD1 - RANGE DAVG_ DIS B0 DEFAULT 00h The Configuration Register controls the basic operation of the device. This register is fully accessible at either address. Bit 7 - MASK_ALL - Masks the ALERT pin from asserting. ‘0’ - (default) - The ALERT pin is not masked. If any of the appropriate status bits are set the ALERT pin will be asserted. ‘1’ - The ALERT pin is masked. It will not be asserted for any interrupt condition unless it is configured in comparator mode. The Status Registers will be updated normally. Bit 6 - RUN / STOP - Controls Active/Standby modes. ‘0’ (default) - The device is in Active mode and converting on all channels. ‘1’ - The device is in Standby mode and not converting. Bit 5 - ALERT/COMP - Controls the operation of the ALERT pin. ‘0’ (default) - The ALERT acts as an Alert pin and has interrupt behavior as described in Section 5.5.1. ‘1’ - The ALERT acts as a THERM pin and has comparator behavior as described in Section 5.5.2. In this mode the MASK_ALL bit is ignored. Bit 4 - RECD1 - Disables the Resistance Error Correction (REC) for External Diode 1. ‘0’ (default) - REC is enabled for External Diode 1. ‘1’ - REC is disabled for External Diode 1. Bit 2 - RANGE - Configures the measurement range and data format of the temperature channels. ‘0’ (default) - The temperature measurement range is 0°C to +127.875°C and the data format is binary. ‘1’ -The temperature measurement range is -64°C to +191.875°C and the data format is offset binary (see Table 5.3). Bit 1 - DAVG_DIS - Disables the dynamic averaging feature on all temperature channels. ‘0’ (default) - The dynamic averaging feature is enabled. All temperature channels will be converted with an averaging factor that is based on the conversion rate as shown in Table 6.5. ‘1’ - The dynamic averaging feature is disabled. All temperature channels will be converted with a maximum averaging factor of 1x (equivalent to 11-bit conversion). For higher conversion rates, this averaging factor will be reduced as shown in Table 6.5. Revision 1.0 (07-11-13) 28 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet 6.4 Conversion Rate Register 04h / 0Ah Table 6.4 Conversion Rate Register ADDR R/W REGISTER B7 B6 B5 B4 R/W Conversion Rate - - - - 04h 0Ah B3 B2 B1 B0 DEFAULT 06h (4/sec) CONV[3:0] The Conversion Rate Register controls how often the temperature measurement channels are updated and compared against the limits. This register is fully accessible at either address. Bits 3-0 - CONV[3:0] - Determines the conversion rate as shown in Table 6.5. Table 6.5 Conversion Rate CONV[3:0] HEX 3 2 1 0 CONVERSIONS / SECOND 0h 0 0 0 0 1 1h 0 0 0 1 1 2h 0 0 1 0 1 3h 0 0 1 1 1 4h 0 1 0 0 1 5h 0 1 0 1 2 6h 0 1 1 0 4 (default) 7h 0 1 1 1 8 8h 1 0 0 0 16 9h 1 0 0 1 32 Ah 1 0 1 0 64 Bh - Fh 6.5 All others 1 Limit Registers Table 6.6 Temperature Limit Registers ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT R/W Internal Diode High Limit 128 64 32 16 8 4 2 1 55h (85°C) 05h 0Bh SMSC EMC1186 29 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Table 6.6 Temperature Limit Registers (continued) ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT R/W Internal Diode Low Limit 128 64 32 16 8 4 2 1 00h (0°C) R/W External Diode 1 High Limit High Byte 128 64 32 16 8 4 2 1 55h (85°C) R/W External Diode 1 High Limit Low Byte 0.5 0.25 0.125 - - - - - 00h R/W External Diode 1 Low Limit High Byte 128 64 32 16 8 4 2 1 00h (0°C) R/W External Diode 1 Low Limit Low Byte 0.5 0.25 0.125 - - - - - 00h 06h 0Ch 07h 0Dh 13h 08h 0Eh 14h The device contains both high and low limits for all temperature channels. If the measured temperature exceeds the high limit, then the corresponding status bit is set and the ALERT pin is asserted. Likewise, if the measured temperature is less than or equal to the low limit, the corresponding status bit is set and the ALERT pin is asserted. The data format for the limits must match the selected data format for the temperature so that if the extended temperature range is used, the limits must be programmed in the extended data format. The limit registers with multiple addresses are fully accessible at either address. 6.6 Scratchpad Registers 11h and 12h Table 6.7 Scratchpad Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 11h R/W Scratchpad 7 6 5 4 3 2 1 0 00h 12h R/W Scratchpad 7 6 5 4 3 2 1 0 00h The Scratchpad Registers are Read / Write registers that are used for place holders to be software compatible with legacy programs. Reading from the registers will return what is written to them. Revision 1.0 (07-11-13) 30 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet 6.7 Therm Limit Registers Table 6.8 Therm Limit Registers ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 19h R/W External Diode 1 Therm Limit 128 64 32 16 8 4 2 1 55h (85°C) 20h R/W Internal Diode Therm Limit 128 64 32 16 8 4 2 1 55h (85°C) 21h R/W Therm Hysteresis 128 64 32 16 8 4 2 1 0Ah (10°C) The Therm Limit Registers are used to determine whether a critical thermal event has occurred. If the measured temperature exceeds the Therm Limit, the SYS_SHDN pin will be asserted (if the corresponding measurement channel is linked to the SYS_SHDN pin - see Section 6.8, "Software Thermal Shutdown Configuration Register 1Dh"). The limit setting must match the chosen data format of the temperature reading registers. 6.8 Software Thermal Shutdown Configuration Register 1Dh Table 6.9 Software Thermal Shutdown Configuration Register ADDR. 1Dh R/W REGISTER B7 B6 B5 B4 R/W Software Thermal Shutdown Configuration - - - - B3 B2 - - B1 B0 DEFAULT EXTSYS INTSYS 00h The Software Thermal Shutdown Configuration Register controls whether any of the software channels will assert the SYS_SHDN pin. If a channel is enabled, the temperature is compared against the corresponding Therm Limit. If the measured temperature exceeds the Therm Limit, the SYS_SHDN pin is asserted. This functionality is in addition to the Hardware Shutdown circuitry. Bit 1 - EXT1SYS - configures the External Diode 1 channel to assert the SYS_SHDN pin based on its Therm Limit. ‘0’ (default) - The External Diode 1 channel is not linked to the SYS_SHDN pin. If the temperature exceeds the Therm Limit, the E1THERM status bit is set but the SYS_SHDN pin is not asserted. ‘1’ - The External Diode 1 channel is linked to the SYS_SHDN pin. If the temperature exceeds its Therm Limit, the E1THERM status bit is set and the SYS_SHDN pin is asserted. It will remain asserted until the temperature drops below its Therm Limit minus the Therm Hysteresis. Bit 0 - INTSYS - Configures the Internal Diode channel to assert the SYS_SHDN pin based on its Therm Limit. ‘0’ (default) - The Internal Diode channel is not linked to the SYS_SHDN pin. If the temperature exceeds its Therm Limit, the ITHERM status bit is set but the SYS_SHDN pin is not asserted. ‘1’ - The Internal Diode channel is linked to the SYS_SHDN pin. If the temperature exceeds its Therm Limit, the ITHERM status bit is set and the SYS_SHDN pin is asserted. It will remain asserted until the temperature drops below its Therm Limit minus the Therm Hysteresis. SMSC EMC1186 31 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet 6.9 Hardware Thermal Shutdown Limit Register 1Eh Table 6.10 Hardware Thermal Shutdown Limit Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 1Eh R Hardware Thermal Shutdown Limit 128 64 32 16 8 4 2 1 N/A This read only register returns the Hardware Thermal Shutdown Limit selected by the value of the pullup resistors on the ALERT and SYS_SHDN pins. The data represents the hardware set temperature in °C using the active temperature setting set by the RANGE bit in the Configuration Register. See Table 5.3, "Temperature Data Format" for the data format. When the External Diode 1 Temperature exceeds this limit, the SYS_SHDN pin is asserted and will remain asserted until the External Diode 1 Temperature drops below this limit minus 10°C. 6.10 Channel Mask Register 1Fh Table 6.11 Channel Mask Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 1Fh R/W Channel Mask - - - - - - EXT MASK INT MASK 00h The Channel Mask Register controls individual channel masking. When a channel is masked, the ALERT pin will not be asserted when the masked channel reads a diode fault or out of limit error. The channel mask does not mask the SYS_SHDN pin. Bit 1 - EXTMASK - Masks the ALERT pin from asserting when the External Diode channel is out of limit or reports a diode fault. ‘0’ (default) - The External Diode channel will cause the ALERT pin to be asserted if it is out of limit or reports a diode fault. ‘1’ - The External Diode channel will not cause the ALERT pin to be asserted if it is out of limit or reports a diode fault. Bit 0 - INTMASK - Masks the ALERT pin from asserting when the Internal Diode temperature is out of limit. ‘0’ (default) - The Internal Diode channel will cause the ALERT pin to be asserted if it is out of limit. ‘1’ - The Internal Diode channel will not cause the ALERT pin to be asserted if it is out of limit. Revision 1.0 (07-11-13) 32 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet 6.11 Consecutive ALERT Register 22h Table 6.12 Consecutive ALERT Register ADDR. R/W REGISTER B7 22h R/W Consecutive ALERT TIME OUT B6 B5 B4 CTHRM[2:0] B3 B2 B1 CALRT[2:0] B0 DEFAULT - 70h The Consecutive ALERT Register determines how many times an out-of-limit error or diode fault must be detected in consecutive measurements before the ALERT or SYS_SHDN pin is asserted. Additionally, the Consecutive ALERT Register controls the SMBus Timeout functionality. An out-of-limit condition (i.e. HIGH, LOW, or FAULT) occurring on the same temperature channel in consecutive measurements will increment the consecutive alert counter. The counters will also be reset if no out-of-limit condition or diode fault condition occurs in a consecutive reading. When the ALERT pin is configured as an interrupt, when the consecutive alert counter reaches its programmed value, the following will occur: the STATUS bit(s) for that channel and the last error condition(s) (i.e. EHIGH,) will be set to ‘1’, the ALERT pin will be asserted, the consecutive alert counter will be cleared, and measurements will continue. When the ALERT pin is configured as a comparator, the consecutive alert counter will ignore diode fault and low limit errors and only increment if the measured temperature exceeds the High Limit. Additionally, once the consecutive alert counter reaches the programmed limit, the ALERT pin will be asserted, but the counter will not be reset. It will remain set until the temperature drops below the High Limit minus the Therm Hysteresis value. For example, if the CALRT[2:0] bits are set for 4 consecutive alerts on an EMC1186 device, the high limits are set at 70°C, and none of the channels are masked, the ALERT pin will be asserted after the following four measurements: 1. Internal Diode reads 71°C and the external diode reads 69°C. Consecutive alert counter for INT is incremented to 1. 2. Both the Internal Diode and the External Diode read 71°C. Consecutive alert counter for INT is incremented to 2 and for EXT1 is set to 1. 3. The External Diode reads 71°C and the Internal Diode reads 69°C. Consecutive alert counters for INT is cleared and EXT is incremented to 2. 4. The Internal Diode reads 71°C and the external diode reads 71°C. Consecutive alert counter for INT is set to 1, and EXT1 is incremented to 3. 5. The Internal Diode reads 71°C and the external diodes read 71°C. Consecutive alert counter for INT is incremented to 2, and EXT1 is incremented to 4. The appropriate status bits are set for EXT1 and the ALERT pin is asserted. EXT1 counter is reset to 0 and all other counters hold the last value until the next temperature measurement. Bit 7 - TIMEOUT - Determines whether the SMBus Timeout function is enabled. ‘0’ (default) - The SMBus Timeout feature is disabled. The SMCLK line can be held low indefinitely without the device resetting its SMBus protocol. ‘1’ - The SMBus Timeout feature is enabled. If the SMCLK line is held low for more than tTIMEOUT, the device will reset the SMBus protocol. Bits 6-4 CTHRM[2:0] - Determines the number of consecutive measurements that must exceed the corresponding Therm Limit and Hardware Thermal Shutdown Limit before the SYS_SHDN pin is asserted. All temperature channels use this value to set the respective counters. The consecutive THERM counter is incremented whenever any of the measurements exceed the corresponding Therm Limit or if the External Diode 1 measurement exceeds the Hardware Thermal Shutdown Limit. SMSC EMC1186 33 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet If the temperature drops below the Therm Limit or Hardware Thermal Shutdown Limit, the counter is reset. If the programmed number of consecutive measurements exceed the Therm Limit or Hardware Thermal Shutdown Limit, and the appropriate channel is linked to the SYS_SHDN pin, the SYS_SHDN pin will be asserted low. Once the SYS_SHDN pin is asserted, the consecutive Therm counter will not reset until the corresponding temperature drops below the appropriate limit minus the corresponding hysteresis. The bits are decoded as shown in Table 6.13. The default setting is 4 consecutive out of limit conversions. Bits 3-1 - CALRT[2:0] - Determine the number of consecutive measurements that must have an out of limit condition or diode fault before the ALERT pin is asserted. All temperature channels use this value to set the respective counters. The bits are decoded as shown in Table 6.13. The default setting is 1 consecutive out of limit conversion. Table 6.13 Consecutive Alert / Therm Settings 6.12 NUMBER OF CONSECUTIVE OUT OF LIMIT MEASUREMENTS 2 1 0 0 0 0 1 (default for CALRT[2:0]) 0 0 1 2 0 1 1 3 1 1 1 4 (default for CTHRM[2:0]) External Diode Ideality Factor Registers 27h to 31h Table 6.14 Ideality Configuration Registers ADDR. R/W REGISTER B7 B6 27h R/W External Diode 1 Ideality Factor - - B5 B4 B3 B2 IDEALITY1[5:0] B1 B0 DEFAULT 12h These registers store the ideality factors that are applied to the external diodes. Table 6.15 defines each setting and the corresponding ideality factor. Beta Compensation and Resistance Error Correction automatically correct for most diode ideality errors; therefore, it is not recommended that these settings be updated without consulting SMSC. Revision 1.0 (07-11-13) 34 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Table 6.15 Ideality Factor Look-Up Table (Diode Model) SETTING FACTOR SETTING FACTOR SETTING FACTOR 08h 0.9949 18h 1.0159 28h 1.0371 09h 0.9962 19h 1.0172 29h 1.0384 0Ah 0.9975 1Ah 1.0185 2Ah 1.0397 0Bh 0.9988 1Bh 1.0200 2Bh 1.0410 0Ch 1.0001 1Ch 1.0212 2Ch 1.0423 0Dh 1.0014 1Dh 1.0226 2Dh 1.0436 0Eh 1.0027 1Eh 1.0239 2Eh 1.0449 0Fh 1.0040 1Fh 1.0253 2Fh 1.0462 10h 1.0053 20h 1.0267 30h 1.0475 11h 1.0066 21h 1.0280 31h 1.0488 12h 1.0080 22h 1.0293 32h 1.0501 13h 1.0093 23h 1.0306 33h 1.0514 14h 1.0106 24h 1.0319 34h 1.0527 15h 1.0119 25h 1.0332 35h 1.0540 16h 1.0133 26h 1.0345 36h 1.0553 17h 1.0146 27h 1.0358 37h 1.0566 For CPU substrate transistors that require the BJT transistor model, the ideality factor behaves slightly differently than for discrete diode-connected transistors. Refer to Table 6.16 when using a CPU substrate transistor. Table 6.16 Substrate Diode Ideality Factor Look-Up Table (BJT Model) SETTING FACTOR SETTING FACTOR SETTING FACTOR 08h 0.9869 18h 1.0079 28h 1.0291 09h 0.9882 19h 1.0092 29h 1.0304 0Ah 0.9895 1Ah 1.0105 2Ah 1.0317 0Bh 0.9908 1Bh 1.0120 2Bh 1.0330 0Ch 0.9921 1Ch 1.0132 2Ch 1.0343 0Dh 0.9934 1Dh 1.0146 2Dh 1.0356 0Eh 0.9947 1Eh 1.0159 2Eh 1.0369 0Fh 0.9960 1Fh 1.0173 2Fh 1.0382 SMSC EMC1186 35 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Table 6.16 Substrate Diode Ideality Factor Look-Up Table (BJT Model) (continued) SETTING FACTOR SETTING FACTOR SETTING FACTOR 10h 0.9973 20h 1.0187 30h 1.0395 11h 0.9986 21h 1.0200 31h 1.0408 12h 1.0000 22h 1.0213 32h 1.0421 13h 1.0013 23h 1.0226 33h 1.0434 14h 1.0026 24h 1.0239 34h 1.0447 15h 1.0039 25h 1.0252 35h 1.0460 16h 1.0053 26h 1.0265 36h 1.0473 17h 1.0066 27h 1.0278 37h 1.0486 APPLICATION NOTE: When measuring a 65nm Intel CPU, the Ideality Setting should be the default 12h. When measuring a 45nm Intel CPU, the Ideality Setting should be 15h. Bit 1 - E1HIGH - This bit is set when the External Diode 1 channel exceeds its programmed high limit. Bit 0 - IHIGH - This bit is set when the Internal Diode channel exceeds its programmed high limit. Bit 1 - ELOW - This bit is set when the External Diode channel drops below its programmed low limit. Bit 0 - ILOW - This bit is set when the Internal Diode channel drops below its programmed low limit. Bit 1 - ETHERM - This bit is set when the External Diode channel exceeds its programmed Therm Limit. When set, this bit will assert the THERM pin. Bit 0- ITHERM - This bit is set when the Internal Diode channel exceeds its programmed Therm Limit. When set, this bit will assert the THERM pin. 6.13 Filter Control Register 40h Table 6.17 Filter Configuration Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 40h R/W Filter Control - - - - - - B1 B0 DEFAULT FILTER[1:0] 00h The Filter Configuration Register controls the digital filter on the External Diode 1 channel. Bits 1-0 - FILTER[1:0] - Control the level of digital filtering that is applied to the External Diode 1 temperature measurement as shown in Table 6.18. See Figure 5.4 and Figure 5.5 for examples on the filter behavior. Revision 1.0 (07-11-13) 36 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Table 6.18 FILTER Decode FILTER[1:0] 6.14 1 0 AVERAGING 0 0 Disabled (default) 0 1 Level 1 1 0 Level 1 1 1 Level 2 Product ID Register Table 6.19 Product ID Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT FDh R Product ID 0 0 1 0 0 0 1 0 22h The Product ID Register holds a unique value that identifies the device. 6.15 SMSC ID Register Table 6.20 Manufacturer ID Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT FEh R SMSC ID 0 1 0 1 1 1 0 1 5Dh The Manufacturer ID register contains an 8-bit word that identifies the SMSC as the manufacturer of the EMC1186. 6.16 Revision Register Table 6.21 Revision Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT FFh R Revision 0 0 0 0 0 1 1 1 07h The Revision register contains an 8-bit word that identifies the die revision. SMSC EMC1186 37 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Chapter 7 Typical Operating Curves Tem perature Error vs. Am bient Tem perature (2N3904, TDIODE = 42.5°C, VDD = 3.3V) 1.0 1.0 0.8 0.8 0.6 Temperature Error (°C) Temperature Error (°C) Tem perature Error vs. Filter Capacitor (2N3904, TA = 27°C, TDIODE = 27°C, VDD = 3.3V) 0.5 0.3 0.0 -0.3 -0.5 -0.8 -1.0 0 1000 2000 3000 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 4000 -1.0 -40 -25 -10 Filter Capacitor (pF) Temperature Error (°C) Temperature Error (°C) Revision 1.0 (07-11-13) 5 4 Beta Compensation Disabled 3 2 1 0 Beta Compensation Enabled -1 20 110 125 95 110 125 Temperature Error vs. CPU Temperature Typical 65nm CPU from major vendor (TA = 27°C, VDD = 3.3V, BETA = 011, CFILTER = 470pF) Tem perature Error vs. External Diode Tem perature (2N3904, TA = 42.5°C, VDD = 3.3V) 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -40 -25 -10 5 20 35 50 65 80 95 External Diode Tem perature (°C) 5 20 35 50 65 80 Am bient Tem perature (°C) 40 60 80 100 120 CPU Temperature (°C) 38 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Tem perature Error vs. Am bient Tem perature (2N3904, TDIODE = 27°C, VDD = 3.3V) 120 0.8 100 80 REC Disabled 0.6 60 0.4 40 0.2 20 REC Enabled 0.0 0 50 100 Series R (Ohm) 2.0 0 200 150 EXT2 - APD 1.5 Temperature Error (°C) 1.0 Temperature Error (°C) REC Disabled Temperature Error (°C) REC Enabled Temperature Error vs. Series Resistance EXT3 - APD 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -40 -25 -10 5 20 35 50 65 80 Am bient Tem perature (°C) 95 110 125 S upply Curre nt vs. Conve rsion Ra te 1200 1100 1000 Supply Current (uA 900 800 Dy namic A v eraging Enabled 700 Dy namic A v eraging Dis abled 600 500 400 300 200 1 2 4 8 16 32 64 Conve rsion Ra te SMSC EMC1186 39 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Chapter 8 Package Information Figure 8.1 2mm x 3mm TDFN Package Drawing Revision 1.0 (07-11-13) 40 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Figure 8.2 2mm x 3mm TDFN Package Dimensions Figure 8.3 2mm x 3mm TDFN Package PCB Land Pattern SMSC EMC1186 41 DATASHEET Revision 1.0 (07-11-13) Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet 8.1 Package Markings The EMC1186 devices will be marked as shown in Figure 8.4 and Figure 8.5. TOP LINE 1: Preface, First digit of Device Code E 4 LINE 2: Second digit of Device Code, Revision 0 R PIN 1 BOTTOM BOTTOM MARKING IS NOT ALLOWED Figure 8.4 EMC1186-1 8-Pin TDFN Package Markings TOP LINE 1: Preface, First digit of Device Code E 4 LINE 2: Second digit of Device Code, Revision 1 R PIN 1 BOTTOM BOTTOM MARKING IS NOT ALLOWED Figure 8.5 EMC1186-2 8-Pin TDFN Package Markings Revision 1.0 (07-11-13) 42 DATASHEET SMSC EMC1186 Dual Channel 1°C Temperature Sensor with Hardware Thermal Shutdown and 1.8V SMBus Communications Datasheet Chapter 9 Datasheet Revision History Table 9.1 Customer Revision History REVISION LEVEL & DATE Rev. 1.0 (07-11-13) SMSC EMC1186 SECTION/FIGURE/ENTRY CORRECTION Formal document release 43 DATASHEET Revision 1.0 (07-11-13)