View detail for Atmel AVR32844: UC3L Schematic Checklist

Atmel AVR32844: UC3L Schematic Checklist
Features
•
•
•
•
•
•
•
Power circuits
Reset circuit
Clock and crystal oscillators
aWire, JTAG and Nexus debug ports
Capacitive touch (CAT) module
USB connection
Patents and trademarks:
- Atmel® QTouch® (patented charge-transfer method)
- Atmel QMatrix (patented charge-transfer method)
8-bit Atmel
Microcontrollers
Application Note
1 Introduction
A good hardware design comes from a proper schematic. Since Atmel AVR® UC3L
devices have a fair number of pins and functions, the schematic for these devices
can be large and quite complex.
This application note describes a common checklist, which should be used when
starting and reviewing the schematics for a UC3L design.
Rev. 32170A-AVR-08/11
2 Power circuit
2.1 Single 3.3 volt power supply
Figure 2-1. Single 3.3 volt power example schematic.
Close to
each pin
DC/DC converter
VDDIO
100nF
VDDIN
3.33.3
volt
volt
10µF
100nF
Voltage
regulator
VDDCORE
2.2µF
100nF
Table 2-1. Single 3.3 volt power supply checklist.
Signal name
VDDIO
VDDIN
Recommended pin connection
Description
1.62V to 3.6V
Powers I/O lines, OSC32K, RC32K, AST, wake, POR33 and SM33.
Decoupling/filtering capacitors
(1)(2)
and 10µF(1)
100nF
Decoupling/filtering capacitors must be added to improve startup
stability and reduce source voltage drop.
1.98V to 3.6V
Powers I/O lines and internal voltage regulator.
Decoupling/filtering capacitors
(1)(2)
and 10µF(1)
100nF
Decoupling/filtering capacitors must be added to improve startup
stability and reduce source voltage drop.
Output of the on-chip 1.8V voltage regulator. Powers CPU, peripherals,
memories, SCIF, BOD, RCSYS and DFLL.
VDDCORE
Decoupling/filtering capacitors
100nF(1)(2) and 2.2µF(1)
Notes:
Decoupling/filtering capacitors must be added to improve startup
stability and reduce source voltage drop.
1. These values are given only as a typical example.
2. Capacitor should be placed as close as possible to each pin in the signal group, vias should be avoided.
2
Atmel AVR32844
32170A-AVR-08/11
Atmel
AVR32844
2.2 Single 1.8 volt power supply
Figure 2-2. Single 1.8 volt power example schematic.
DC/DC converter
Close to
each pin
VDDIO
1.83.3
volt
volt
10 µF
100nF
VDDIN
100nF
Voltage
regulator
VDDCORE
100nF
Table 2-2. Single 1.8 volt power supply checklist.
Signal name
VDDIO
VDDIN
VDDCORE
Notes:
Recommended pin connection
Description
1.62V to 1.98V
Powers I/O lines, OSC32K, RC32K, AST, wake, POR33 and SM33.
Decoupling/filtering capacitors
(1)(2)
and 10µF(1)
100nF
Decoupling/filtering capacitors must be added to improve startup
stability and reduce source voltage drop.
1.62V to 1.98V
Powers I/O lines, internal voltage regulator not in use.
Decoupling/filtering capacitors
(1)(2)
and 10µF(1)
100nF
Decoupling/filtering capacitors must be added to improve startup
stability and reduce source voltage drop.
1.62V to 1.98V
Powers CPU, peripherals, memories, SCIF, BOD, RCSYS and DFLL.
Decoupling/filtering capacitors
(1)(2)
and 10µF(1)
100nF
Decoupling/filtering capacitors must be added to improve startup
stability and reduce source voltage drop.
1. These values are given only as a typical example.
2. Capacitor should be placed as close as possible to each pin in the signal group, vias should be avoided.
3
32170A-AVR-08/11
2.3 Single 3.3 volt power supply with 1.8V I/O lines
Figure 2-3. Single 3.3 volt power with 1.8 volt I/O lines example schematic.
Close to
each pin
DC/DC converter
10µF
VDDIN
100nF
3.3 volt
VDDIO
100nF
Voltage
regulator
VDDCORE
2.2µF
100nF
Table 2-3. Single 3.3 volt power supply with 1.8 volt I/O lines checklist.
Signal name
VDDIO
VDDIN
Recommended pin connection
Description
Connected to VDDCORE
Powers I/O lines, OSC32K, RC32K, AST, wake, POR33 and SM33.
Decoupling/filtering capacitors
(1)(2)
and 2.2µF(1)
100nF
Decoupling/filtering capacitors must be added to improve startup
stability and reduce source voltage drop.
1.98V to 3.6V
Powers I/O lines and internal voltage regulator.
Decoupling/filtering capacitors
(1)(2)
and 10µF(1)
100nF
Decoupling/filtering capacitors must be added to improve startup
stability and reduce source voltage drop.
Output of the on-chip 1.8V voltage regulator. Powers CPU, peripherals,
memories, SCIF, BOD, RCSYS and DFLL.
VDDCORE
Decoupling/filtering capacitors
100nF(1)(2) and 2.2µF(1)
Notes:
Decoupling/filtering capacitors must be added to improve startup
stability and reduce source voltage drop.
1. These values are given only as a typical example.
2. Capacitor should be placed as close as possible to each pin in the signal group, vias should be avoided.
4
Atmel AVR32844
32170A-AVR-08/11
Atmel
AVR32844
2.4 ADC reference power supply
The following schematic checklist is mandatory even if the internal ADC is not in use.
Figure 2-4. ADC reference power supply example schematic.
Close to pin
VDDANA
VDDCORE
100nF
ADVREF
GNDANA
Table 2-4. ADC reference power supply checklist.
Signal name
VDDANA
Recommended pin connection
Description
1.62V to 1.98V
Powers the on-chip ADC, must always be powered since the
analog multiplexer is powered by another domain.
RF EMI inductor(3)
Decoupling/filtering capacitor must be added to improve startup
(1)(2)
Decoupling/filtering capacitor 100nF
stability and reduce source voltage drop.
ADVREF
1.62V to VDDANA
Connect with VDDANA
GNDANA
Connect to analog ground
Notes:
ADVREF is a pure analog input.
1. These values are given only as a typical example.
2. Capacitor should be placed as close as possible to each pin in the signal group, vias should be avoided.
3. RF EMI inductor only needed if ADC is used in the design.
5
32170A-AVR-08/11
3 Reset circuit
Figure 3-1. Reset circuit example schematic.
VDDIO
10k ohm
Reset
100nF
Table 3-1. Reset circuit checklist.
Signal name
RESET
Note:
6
(1)
Recommended pin connection
Description
Can be left unconnected in case no The RESET_N pin is a Schmitt input and integrates a permanent pullreset from the system needs to be
up resistor to VDDIO
applied to the product
1. RESET_N pin is used by aWire. Reset circuitry should be disabled when using RESET_N pin during aWire
operation. Check Chapter 5 of this document.
Atmel AVR32844
32170A-AVR-08/11
Atmel
AVR32844
4 Clocks and crystal oscillators
4.1 External clock source
Figure 4-1. External clock source schematic.
Table 4-1. External clock source checklist.
Signal name
Recommended pin connection
Description
XIN
Connected to clock output from
external clock source
Up to VDDIO volt square wave signal up to 50MHz
XOUT
Can be left unconnected or used as
GPIO
4.2 Crystal oscillator
Figure 4-2. Crystal oscillator example schematic.
XIN
22pF
XOUT
22pF
Table 4-2. Crystal oscillator checklist.
Signal name
XIN
XOUT
Notes:
Recommended pin connection
Description
Biasing capacitor 22pF
(1)(2)
External crystal between 3MHz and 16MHz, powered by VDDIO
Biasing capacitor 22pF
(1)(2)
Powered by VDDIO
1. These values are given only as a typical example The capacitance C of the biasing capacitors can be computed
based on the crystal load capacitance CL and the internal capacitance Ci of the MCU as follows:
C = 2(CL – Ci)
The value of CL can be found in the crystal datasheet and the value of Ci can be found in the MCU datasheet.
2. Capacitor should be placed as close as possible to each pin in the signal group, vias should be avoided.
7
32170A-AVR-08/11
4.3 32kHz crystal oscillator
Figure 4-3. 32kHz crystal oscillator example schematic.
XIN32
15pF
32 kHz
XOUT32
15pF
Table 4-3. 32kHz crystal oscillator checklist.
Signal name
Recommended pin connection
(1)(2)
XIN32
Biasing capacitor max. 15pF
XOUT32
Biasing capacitor max. 15pF(1)(2)
Notes:
Description
External 32kHz crystal. Primary (PA10) powered by VDDIO, secondary
(PA13- XIN32_2) powered by VDDIN
Primary (PA12) powered by VDDIO, secondary (PA20 – XOUT32_2)
powered by VDDIN
1. These values are given only as a typical example The capacitance C of the biasing capacitors can be computed
based on the crystal load capacitance CL and the internal capacitance Ci of the MCU as follows:
C = 2(CL – Ci)
The value of CL can be found in the crystal datasheet and the value of Ci can be found in the MCU datasheet.
2. Capacitor should be placed as close as possible to each pin in the signal group, vias should be avoided.
8
Atmel AVR32844
32170A-AVR-08/11
Atmel
AVR32844
5 JTAG and Nexus debug ports
5.1 aWire port interface
Figure 5-1. aWire port interface example schematic.
RESET_N / DATA
aWire data in/out
PA00 / DATAOUT
aWire data out
Optional
MCU
aWire master connector
Board Reset
Circuitry
Jumper
AW Debug
Interface
RESET_N
Power Manager
Table 5-1. aWire port interface checklist.
Signal name
Recommended pin connection
Description
DATA
Connect to aWire DATA signal on
external tool
Device external reset line used for data input and output. Reset circuitry
should be disabled as shown above when the RESET_N pin is used
during aWire operation
DATAOUT
Optional, connect to aWire
DATAOUT signal on external tool
Data output is optional and only needed for aWire full duplex mode
Note:
1. The aWire needs an external pull-up on the RESET_N pin to ensure that the pin is pulled up when the bus is not
driven.
9
32170A-AVR-08/11
5.2 JTAG port interface
Figure 5-2. JTAG port interface example schematic.
TMS
1
3
5
7
9
2x5
header
TCK
GND
TDO
VCC
TMS
RESET
4
VDD
TCK
100nF
6
8
EVTO
TDI
TDO
2
GND
RESET
10
TDI
Table 5-2. JTAG port interface checklist.
Signal name
Recommended pin connection
Description
TMS
PA01
Test mode select, sampled on rising TCK
TDO
PA02
Test data output, driven on falling TCK
TCK
PA00
Test clock, fully asynchronous to system clock frequency
RESET
RESET
Device external reset line
TDI
PA03
Test data input, sampled on rising TCK
EVTO
10
Event output, not used
Atmel AVR32844
32170A-AVR-08/11
Atmel
AVR32844
5.3 Nexus port interface
Figure 5-3. Nexus port interface example schematic.
TDI
1
3
5
7
9
11
13
15
17
19
VDD
100nF
21
10k
23
25
27
29
31
33
35
35
39
41
43
1
Nexus interface
2
3
4
5
6
7
8
RESET
EVTI
TDO
VCC
13
14
TCK
16
TMS
18
TDI
MDO5
TRST
MDO4
23
MDO3
25
MDO2
27
MDO1
29
MDO0
31
EVTO
33
MCK0
35
MSEO1
37
MSEO0
GND
GND
GND
GND
2
TMS
4
6
TCK
8
TDO
10
12
14
16
VDD
100nF
RESET
EVTI
18
20
MDO[0:5]
22
24
26
28
30
EVTO
32
34
MCK0
36
MSEO[0:1]
38
40
42
GND
11
32170A-AVR-08/11
Table 5-3. Nexus port interface checklist.
Signal name
Recommended pin connection
Description
TDI
PA03
Test data input, sampled on rising TCK
TMS
PA01
Test mode select, sampled on rising TCK
TCK
PA00
Test clock, fully asynchronous to system clock frequency
TDO
PA02
Test data output, driven on falling TCK
RESET
Device external reset line
RESET
EVTI
(1)
MDO[0:5]
Event input
(1)
EVTO
PA04
Event output
MCK0(1)
Trace data output clock
MSE[0:1] (1)
Trace frame control
Note:
12
Trace data output
1. Two different connections are possible based on the value of OCD AXS register. Please refer to MCU datasheet
section Nexus OCD AUX port connections.
Atmel AVR32844
32170A-AVR-08/11
Atmel
AVR32844
6 Capacitive touch (CAT) module
6.1 QTouch
Figure 6-1. QTouch typical connection.
Table 6.1 QTouch pin selection guide.
CAT module PIN name
PIN name
(5)
QTouch method pin name
CSA0
PA13
SNS0
CSB0
PA18
SNSK0
CSA1
PA01
SNS1
CSB1
PA06
SNSK1
CSA2
PA00
SNS2
CSB2
PA07
SNSK2
CSA3
PA02
SNS3
CSB3
PA03
SNSK3
CSA4
CSB4
CSA5
(1)
SNS4
(2)
SNSK4
(3)
SNS5
PA08
PA09
PA10
(4)
CSB5
PA12
SNSK5
CSA6
PA14
SNS6
CSB6
PA15
SNSK6
CSA7
PA04
SNS7
CSB7
PA05
SNSK7
CSA8
PA16
SNS8
CSB8
PA17
SNSK8
CSA9
PB00
SNS9
CSB9
PB01
SNSK9
CSA10
PA19
SNS10
CSB10
PA22
SNSK10
CSA11
PB03
SNS11
13
32170A-AVR-08/11
CAT module PIN name
PIN name
QTouch method pin name
CSB11
PB02
SNSK11
(6)
CSA12
PA20
SNS12
CSB12
PB08
SNSK12
CSA13
PB07
SNS13
CSB13
PB06
SNSK13
CSA14
PB04
SNS14
CSB14
PB05
SNSK14
CSA15
PB12
SNS15
CSB15
PB09
SNSK15
CSA16
PB11
SNS16
CSB16
PB10
SNSK16
Notes:
1. This pin has an alternate function of XIN0
2. This pin has an alternate function of XOUT0
3. This pin has an alternate function of XIN32
4. This pin has an alternate function of XOUT32
5. This pin has an alternate function of XIN32_2
6. This pin has an alternate function of XOUT32_2
6.2 QMatrix
There are three different ways of connecting QMatrix to the CAT module
1. Internal current sources disabled.
2. Internal current sources enabled with DICS.INTREFSEL= 0.
3. Internal current sources enabled with DICS.INTREFSEL= 1.
In all the three modes, Ra=10kohm, Rb=50ohm are recommended values. These two
resistors should only be needed in some specialized applications (touch screens)
where the sense capacitors are charged to low voltages (15 to 20mV). In this case,
we need to insure that the comparator threshold is 0 or slightly positive.
In a more typical QMatrix application with an array of buttons, the capacitors will be
charged to 50mV or more, and then a comparator offset of -15mV is not a problem. In
this case ACREFN can be grounded and it is unnecessary to use VDIVEN.
14
Atmel AVR32844
32170A-AVR-08/11
Atmel
AVR32844
Figure 6-2. QMatrix example schematic for internal current sources disabled.
X2
X3
X6
QMatrix Sensor Array
X7
YK0
Y0
Cs0 (Sense Capacitor)
YK1
Y1
Cs1 (Sense Capacitor)
AVR32 Chip
Rsmp1
Rsmp0
SMP
VDIVEN
Ra
ACREFN
Rb
15
32170A-AVR-08/11
Table 6-2. Some of maximum possible combination for QMatrix (internal current sources disabled).
CAT
module
PIN name
PIN name
(5)
QMatrix
method pin
name
Internal current sources disabled (five different possible combination)
A
B
C
D
E
F
X0
X1
Y0
YK0
X2
X3
Y1
YK1
X4
X5
X0
X1
Y0
YK0
X2
X3
Y1
YK1
X4
X5
Y2
YK2
X6
X7
Y3
YK3
ACREFN
X9
Y4
YK4
X10
X11
Y5
YK5
X12
X13
Y6
YK6
X14
X15
Y7
YK7
X16
X17
SMP
CSA0
CSB0
CSA1
CSB1
CSA2
CSB2
CSA3
CSB3
CSA4
CSB4
CSA5
CSB5
CSA6
CSB6
CSA7
CSB7
CSA8
CSB8
CSA9
CSB9
CSA10
CSB10
CSA11
CSB11
CSA12
CSB12
CSA13
CSB13
CSA14
CSB14
CSA15
CSB15
PA13
PA18
PA01
PA06
PA00
PA07
PA02
PA03
PA08(1)
PA09(2)
PA10(3)
PA12(4)
PA14
PA15
PA04
PA05
PA16
PA17
PB00
PB01
PA19
PA22
PB03
PB02
PA20(6)
PB08
PB07
PB06
PB04
PB05
PB12
PB09
X0
X1
Y0
YK0
X2
X3
Y1
YK1
X4
X5
Y2
YK2
X6
X7
Y3
YK3
X8
X9
Y4
YK4
X10
X11
Y5
YK5
X12
X13
Y6
YK6
X14
X15
Y7
YK7
X0
X1
Y0
YK0
X2
X3
Y1
YK1
X4
X5
Y2
YK2
X6
X7
Y3
YK3
ACREFN
SMP
Y4
YK4
X10
X11
Y5
YK5
X12
X13
Y6
YK6
X14
X15
Y7
YK7
SMP
X1
Y0
YK0
X2
X3
Y1
YK1
X4
X5
Y2
YK2
X6
X7
Y3
YK3
ACREFN
X9
Y4
YK4
X10
X11
Y5
YK5
X12
X13
Y6
YK6
X14
X15
Y7
YK7
X0
X1
Y0
YK0
X2
X3
Y1
YK1
X4
X5
Y2
YK2
X6
X7
Y3
YK3
ACREFN
X9
Y4
YK4
X10
SMP
Y5
YK5
X12
X13
Y6
YK6
X14
X15
Y7
YK7
SMP
X6
X7
Y3
YK3
ACREFN
X9
Y4
YK4
X10
X11
Y5
YK5
X12
X13
Y6
YK6
X14
X15
Y7
YK7
X0
X1
Y0
YK0
X2
X3
Y1
YK1
X4
X5
Y2
YK2
SMP
X7
Y3
YK3
ACREFN
X9
Y4
YK4
X10
X11
Y5
YK5
X12
X13
Y6
YK6
X14
X15
Y7
YK7
CSA16
CSB16
PB11
PB10
PA21
X16
X17
X16
X17
X16
X17
X16
X17
X16
X17
X16
X17
Notes:
1. This pin has an alternate function of XIN0
2. This pin has an alternate function of XOUT0
3. This pin has an alternate function of XIN32
4. This pin has an alternate function of XOUT32
5. This pin has an alternate function of XIN32_2
6. This pin has an alternate function of XOUT32_2
16
Atmel AVR32844
32170A-AVR-08/11
Atmel
AVR32844
Table 6-3. Some of maximum possible combination for QMatrix with SYNC and DIVEN (internal current sources
disabled).
Table 6.2-1
Table 6-2 “A” combination +SYNC
CAT
QMatrix
“A”
module
method pin
combination
PIN name PIN name name
I
J
K
L
M
+VDIVEN
CSA0
CSB0
CSA1
CSB1
CSA2
CSB2
CSA3
CSB3
CSA4
CSB4
PA13(5)
PA18
PA01
PA06
PA00
PA07
PA02
PA03
PA08(1)
PA09(2)
X0
X1
Y0
YK0
X2
X3
Y1
YK1
X4
X5
X0
X1
Y0
YK0
X2
X3
Y1
YK1
X4
X5
X0
SYNC
Y0
YK0
X2
X3
Y1
YK1
X4
X5
X0
X1
Y0
YK0
X2
X3
Y1
YK1
X4
X5
X0
X1
Y0
YK0
X2
X3
Y1
YK1
X4
X5
X0
X1
Y0
YK0
X2
X3
Y1
YK1
X4
X5
X0
X1
Y0
YK0
X2
X3
Y1
YK1
X4
X5
CSA5
CSB5
CSA6
CSB6
CSA7
CSB7
CSA8
CSB8
CSA9
CSB9
CSA10
CSB10
CSA11
PA10
PA12(4)
PA14
PA15
PA04
PA05
PA16
PA17
PB00
PB01
PA19
PA22
PB03
(3)
Y2
YK2
X6
X7
Y3
YK3
X8
X9
Y4
YK4
X10
X11
Y5
Y2
YK2
X6
SYNC
Y3
YK3
ACREFN
SMP
Y4
YK4
X10
X11
Y5
Y2
YK2
X6
X7
Y3
YK3
ACREFN
SMP
Y4
YK4
X10
X11
Y5
Y2
YK2
X6
X7
Y3
YK3
ACREFN
SMP
Y4
YK4
X10
X11
Y5
Y2
YK2
X6
X7
Y3
YK3
ACREFN
SMP
Y4
YK4
X10
X11
Y5
Y2
YK2
X6
X7
Y3
YK3
ACREFN
SMP
Y4
YK4
SYNC
X11
Y5
Y2
YK2
X6
X7
Y3
YK3
ACREFN
SMP
Y4
YK4
X10
X11
Y5
CSB11
CSA12
CSB12
CSA13
CSB13
CSA14
CSB14
CSA15
CSB15
CSA16
CSB16
PB02
PA20(6)
PB08
PB07
PB06
PB04
PB05
PB12
PB09
PB11
PB10
YK5
X12
X13
Y6
YK6
X14
X15
Y7
YK7
X16
X17
YK5
X12
X13
Y6
YK6
X14
X15
Y7
YK7
X16
X17
YK5
X12
X13
Y6
YK6
X14
X15
Y7
YK7
X16
X17
YK5
X12
SYNC
Y6
YK6
X14
X15
Y7
YK7
X16
X17
YK5
X12
X13
Y6
YK6
X14
X15
SYNC
YK5
X12
X13
Y6
YK6
X14
X15
Y7
YK7
X16
X17
YK5
X12
X13
Y6
YK6
X14
X15
Y7
YK7
VDIVEN
X17
Notes:
X16
X17
1. This pin has an alternate function of XIN0
2. This pin has an alternate function of XOUT0
3. This pin has an alternate function of XIN32
4. This pin has an alternate function of XOUT32
5. This pin has an alternate function of XIN32_2
6. This pin has an alternate function of XOUT32_2
17
32170A-AVR-08/11
Figure 6-3. QMatrix example schematic for internal current sources enabled with
DICS.INTREFSEL= 0 and DICS.INTEFSEL= 1.
X2
X3
X6
QMatrix Sensor Array
X7
YK0
Y0
Cs0 (Sense Capacitor)
YK1
Y1
Cs1 (Sense Capacitor)
AVR32 Chip
DIS
Rdis
VDIVEN
Ra
ACREFN
NOTE: If DICS.INTREFSEL= 1
then it is not required to include
DIS signal and Rdis resistor in
design
Rb
18
Atmel AVR32844
32170A-AVR-08/11
Atmel
AVR32844
Table 6-4. Some of maximum possible combination for QMatrix (internal current sources enabled) with
DICS.INTREFSEL= 0 and DICS.INTREFSEL= 1.
CAT
module
PIN name
PIN name
(5)
QMatrix method pin name
DICS.INTREFSEL= 0
DICS.INTREFSEL= 1
CSA0
CSB0
CSA1
CSB1
CSA2
CSB2
CSA3
CSB3
CSA4
CSB4
CSA5
CSB5
CSA6
CSB6
CSA7
CSB7
CSA8
CSB8
CSA9
CSB9
CSA10
CSB10
CSA11
CSB11
CSA12
CSB12
CSA13
PA13
PA18
PA01
PA06
PA00
PA07
PA02
PA03
PA08(1)
PA09(2)
PA10(3)
PA12(4)
PA14
PA15
PA04
PA05
PA16
PA17
PB00
PB01
PA19
PA22
PB03
PB02
(6)
PA20
PB08
PB07
X0
X1
Y0
YK0
X2
X3
Y1
YK1
X4
X5
Y2
YK2
X6
X7
Y3
YK3
X8
X9
Y4
YK4
X10
X11
Y5
YK5
X12
X13
Y6
X0
X1
Y0
YK0
X2
X3
Y1
YK1
X4
X5
Y2
YK2
X6
X7
Y3
YK3
ACREFN
DIS
Y4
YK4
X10
X11
Y5
YK5
X12
X13
Y6
X0
X1
Y0
YK0
X2
X3
Y1
YK1
X4
X5
Y2
YK2
X6
X7
Y3
YK3
ACREFN
X9
Y4
YK4
X10
X11
Y5
YK5
X12
X13
Y6
CSB13
CSA14
CSB14
CSA15
CSB15
CSA16
CSB16
PB06
PB04
PB05
PB12
PB09
PB11
PB10
YK6
X14
X15
Y7
YK7
X16
X17
YK6
X14
X15
Y7
YK7
X16
X17
YK6
X14
X15
Y7
YK7
X16
X17
Notes:
1. This pin has an alternate function of XIN0
2. This pin has an alternate function of XOUT0
3. This pin has an alternate function of XIN32
4. This pin has an alternate function of XOUT32
5. This pin has an alternate function of XIN32_2
6. This pin has an alternate function of XOUT32_2
19
32170A-AVR-08/11
7 Resistive touch screen
Refer to "Resistive Touch Screen” of MCU data sheet for more details.
20
Atmel AVR32844
32170A-AVR-08/11
Atmel
AVR32844
8 USB connection
To be able to use the USB I/O, the VDDIN power supply must be 3.3V nominal.
8.1 Not used
When the USB interface is not used, D+ and D- should be connected to ground.
8.2 Device mode, powered from bus connection
Figure 8-1. USB in device mode, bus powered connection example schematic.
Table 8-1. USB bus powered connection checklist.
Signal name
Recommended pin connection
Description
5V tolerant I/O
Directly to connector
USB power measurement pin
D-
39ohm series resistor
Placed as close as possible to pin
Negative differential data line
D+
39ohm series resistor
Placed as close as possible to pin
Positive differential data line
21
32170A-AVR-08/11
8.3 Device mode, self powered connection
Figure 8-2. USB in device mode, self powered connection example schematic.
VBUS
5V Tolerant
I/O
D-
D39 ohm
D+
D+
39 ohm
GND
Table 8-2. USB self powered connection checklist.
22
Signal name
Recommended pin connection
Description
5V tolerant I/O
Directly to connector
USB power measurement pin
D-
39ohm series resistor
Negative differential data line
Placed as close as possible to pin
D+
39ohm series resistor
Positive differential data line
Placed as close as possible to pin
Atmel AVR32844
32170A-AVR-08/11
Atmel AVR32844
9 Miscellaneous topics
9.1 I/O line considerations
The device datasheet contains subsection “I/O Line Considerations” under section
“Package and Pinout”.
9.2 Boot loader pin
If a pin is used to enter in the boot loader mode provided by the default bootloader
programmed on all chips, that pin should be pulled-up or pulled-low depending on the
chosen boot loader pin configuration.
23
32170A-AVR-08/11
10 Suggested reading
10.1 Device datasheet
The device datasheet contains block diagrams of the peripherals and details about
implementing firmware for the device. The datasheet is available on
http://www.atmel.com/AVR32 in the Datasheets section.
0
10.2 Touch design documents
Touch design documents contain the principles required for designing with buttons,
sliders and wheels. They are available on,
http://www.atmel.com/dyn/products/app_notes_v2.asp?family_id=697.
10.3 Hardware – QT600
Atmel QT600 is a complete touch development kit for buttons, sliders and wheels.
They are available on
http://www.atmel.com/dyn/products/tools_card_v2.asp?tool_id=4658.
10.4 Hardware – STK600 routing card for 48-pin AT32UC3L0 - STK600-RCUC3L0-34
Atmel STK®600-RCUC3L0-34 is the correct routing card for using with STK600.
Schematic of same is available on
http://www.atmel.com/dyn/resources/prod_documents/A09-0644_STK600-RCUC3L034_sch.PDF.
24
Atmel AVR32844
32170A-AVR-08/11
Atmel AVR32844
11 Table of contents
Features ............................................................................................... 1
1 Introduction ...................................................................................... 1
2 Power circuit .................................................................................... 2
2.1 Single 3.3 volt power supply................................................................................ 2
2.2 Single 1.8 volt power supply................................................................................ 3
2.3 Single 3.3 volt power supply with 1.8V I/O lines ................................................. 4
2.4 ADC reference power supply .............................................................................. 5
3 Reset circuit ..................................................................................... 6
4 Clocks and crystal oscillators ........................................................ 7
4.1 External clock source .......................................................................................... 7
4.2 Crystal oscillator .................................................................................................. 7
4.3 32kHz crystal oscillator........................................................................................ 8
5 JTAG and Nexus debug ports......................................................... 9
5.1 aWire port interface ............................................................................................. 9
5.2 JTAG port interface ........................................................................................... 10
5.3 Nexus port interface .......................................................................................... 11
6 Capacitive touch (CAT) module.................................................... 13
6.1 QTouch.............................................................................................................. 13
6.2 QMatrix .............................................................................................................. 14
7 Resistive touch screen .................................................................. 20
8 USB connection ............................................................................. 21
8.1 Not used ............................................................................................................ 21
8.2 Device mode, powered from bus connection .................................................... 21
8.3 Device mode, self powered connection ............................................................ 22
9 Miscellaneous topics ..................................................................... 23
9.1 I/O line considerations....................................................................................... 23
9.2 Boot loader pin .................................................................................................. 23
10 Suggested reading....................................................................... 24
10.1 Device datasheet............................................................................................. 24
10.2 Touch design documents ................................................................................ 24
10.3 Hardware – QT600.......................................................................................... 24
10.4 Hardware – STK600 routing card for 48-pin AT32UC3L0 - STK600-RCUC3L034............................................................................................................................. 24
11 Table of contents ......................................................................... 25
25
32170A-AVR-08/11
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com
Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Milennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369
Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chou-ku, Tokyo 104-0033
JAPAN
Tel: (+81) 3523-3551
Fax: (+81) 3523-7581
© 2011 Atmel Corporation. All rights reserved.
®
®
®
®
Atmel , Atmel logo and combinations thereof, AVR , QTouch , STK , and others are registered trademarks or trademarks of Atmel
Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.
32170A-AVR-08/11