PDF Data Sheet Rev. A

30 V, 7.5 MHz, Low Bias Current,
Single-Supply, RRO, Precision Op Amp
ADA4622-2
Data Sheet
PIN CONFIGURATION
Next generation of the AD822
Wide bandwidth: 8 MHz typical
High slew rate: +23 V/µs/−18 V/µs typical
Low input bias current: ±10 pA maximum at TA = 25°C
Low offset voltage
A grade: ±0.8 mV maximum at TA = 25°C
B grade: ±0.35 mV maximum at TA = 25°C
Low offset voltage drift
A grade: ±2 µV/°C typical, ±15 µV/°C maximum
B grade: ±2 µV/°C typical, ±5 µV/°C maximum
Input voltage range includes Pin V−
Rail-to-rail output
Input electromagnetic interference (EMI) filters
90 dB typical at f = 1000 MHz and f = 2400 MHz
Industry-standard package and pinouts
OUT A 1
8
V+
–IN A 2
ADA4622-2
7
OUT B
+IN A 3
TOP VIEW
(Not to Scale)
6
–IN B
5
+IN B
V– 4
13502-001
FEATURES
Figure 1. 8-Lead MSOP (RM Suffix) Pin Configuration (See the Pin
Configurations and Function Descriptions Section for Additional Pin
Configurations)
APPLICATIONS
High output impedance sensor interfaces
Photodiode sensor interfaces
Transimpedance amplifiers
ADC drivers
Precision filters and signal conditioning
GENERAL DESCRIPTION
The ADA4622-2 is the next generation of the AD822 singlesupply, rail-to-rail output (RRO), precision junction field effect
transistors (JFET) input op amp. The ADA4622-2 includes many
improvements that make it desirable as an upgrade without
compromising the flexibility and ease of use that makes the
AD822 useful for a wide variety of applications.
The input voltage range includes the negative supply and the
output swings rail-to-rail. Input EMI filters are added to
increase the signal robustness in the face of closely located
switching noise sources.
The speed in terms of bandwidth and slew rate is increased
along with a strong output drive to improve settling time
performance and enable the device to drive the inputs of
modern single-ended, successive approximation register (SAR)
analog-to-digital converters (ADCs).
Rev. A
Voltage noise is reduced; broadband noise is reduced by 25%
and 1/f is reduced by half while keeping the supply current the
same as the AD822. DC precision in the ADA4622-2 improved
from the AD822 with half the offset and a maximum thermal
drift specification added to the ADA4622-2. The commonmode rejection ratio (CMRR) is improved from the AD822 to
make the ADA4622-2 more suitable when used in noninverting
gain and difference amplifier configurations.
The ADA4622-2 is specified for operation over the extended
industrial temperature range of −40°C to +125°C and operates
from 5 V to 30 V with specifications at +5 V, ±5 V, and ±15 V.
The ADA4622-2 is available in 8-lead SOIC, 8-lead MSOP, and
8-lead LFCSP packages.
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2015–2016 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
ADA4622-2
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Typical Performance Characteristics ........................................... 11
Applications ....................................................................................... 1
Theory Of Operation ..................................................................... 23
Pin Configuration ............................................................................. 1
Input Characteristics .................................................................. 23
General Description ......................................................................... 1
Output Characteristics............................................................... 24
Revision History ............................................................................... 2
Applications Information .............................................................. 25
Specifications..................................................................................... 3
Recommended Power Solution ................................................ 25
Electrical Characteristics, VSY = ±15 V ...................................... 3
Maximum Power Dissipation ................................................... 25
Electrical Characteristics, VSY = ±5 V ........................................ 5
Second-Order Low-Pass Filter.................................................. 25
Electrical Characteristics, VSY = 5 V .......................................... 7
Wideband Photodiode Preamplifier ........................................ 25
Absolute Maximum Ratings ............................................................ 9
Peak Detector .............................................................................. 28
Thermal Resistance ...................................................................... 9
Outline Dimensions ....................................................................... 29
ESD Caution .................................................................................. 9
Ordering Guide .......................................................................... 30
Pin Configurations and Function Descriptions ......................... 10
REVISION HISTORY
2/16—Rev. 0 to Rev. A
Added 8-Lead LFCSP .................................................................Universal
Changes to General Description Section............................................ 1
Changes to Settling Time to 0.1% Parameter and Settling Time
to 0.01% Parameter, Table 1 .............................................................4
Changes to Table 5 .............................................................................9
Added Pin Configurations and Function Descriptions Section,
Figure 2, Figure 3, Table 6, Figure 4, and Table 7; Renumbered
Sequentially ...................................................................................... 10
Changes to Figure 9.......................................................................... 11
Changes to Input Characteristics Section ....................................... 23
Changes to Recommended Power Solution Section ..................... 25
Changes to Wideband Photodiode Preamplifier Section .............. 26
Change to Figure 85 ......................................................................... 26
Change to Figure 86 ......................................................................... 27
Updated Outline Dimensions ......................................................... 29
Changes to Ordering Guide............................................................. 30
10/15—Revision 0: Initial Version
Rev. A | Page 2 of 30
Data Sheet
ADA4622-2
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS, VSY = ±15 V
Supply voltage (VSY) = ±15 V, common-mode voltage (VCM) = output voltage (VOUT) = 0 V, TA = 25°C, unless otherwise noted.
Table 1.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
A Grade
Symbol
Test Conditions/Comments
Min
Typ
Max
Unit
0.04
±0.8
±2
±0.35
±0.8
±1
mV
mV
mV
mV
mV
±15
±5
±10
±1.5
µV/°C
µV/°C
pA
nA
pA
pA
nA
V
VOS
−40°C < TA < +125°C
B Grade
0.04
−40°C < TA < +125°C
Offset Voltage Match
Offset Voltage Drift
A Grade
B Grade
Input Bias Current
ΔVOS/ΔT
−40°C < TA < +125°C
−40°C < TA < +125°C
±2
±2
2
IB
−40°C < TA < +125°C
VCM = V−
Input Offset Current
−15
IOS
±10
±0.5
(V+) − 1
−40°C < TA < +125°C
Input Voltage Range
Common-Mode Rejection Ratio
A Grade
IVR
CMRR
B Grade
Large Signal Voltage Gain
Input Capacitance
Input Resistance
OUTPUT CHARACTERISTICS
Output Voltage
High
Low
AVO
CINDM
CINCM
RDIFF
RCM
VOH
VOL
Output Current
Short-Circuit Current
IOUT
ISC
Closed-Loop Output Impedance
ZOUT
(V−) − 0.2
VCM = V− to (V+) − 3 V
−40°C < TA < +125°C
VCM = V− to (V+) − 3 V
−40°C < TA < +125°C
RL = 10 kΩ, VOUT = −14.5 V to +14.5 V
−40°C < TA < +125°C
RL = 1 kΩ, VOUT = −14 V to +14 V
−40°C < TA < +125°C
Differential mode
Common mode
Differential mode
Common mode
84
81
87
85
117
109
102
93
ISOURCE = 1 mA
−40°C < TA < +125°C
ISOURCE = 15 mA
−40°C < TA < +125°C
ISINK = 1 mA
−40°C < TA < +125°C
ISINK = 15 mA
−40°C < TA < +125°C
VDROPOUT < 1 V
Sourcing
Sinking
f = 1 kHz, gain (AV) = 1
AV = 10
AV = 100
50
100
700
900
Rev. A | Page 3 of 30
100
dB
dB
dB
dB
dB
dB
dB
dB
pF
pF
Ω
Ω
100
122
110
0.4
3.6
1013
1013
30
500
45
315
20
42
−51
0.1
0.4
3
65
120
450
750
mV
mV
mV
mV
mV
mV
mV
mV
mA
mA
mA
Ω
Ω
Ω
ADA4622-2
Parameter
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
Data Sheet
Symbol
Test Conditions/Comments
Min
Typ
PSRR
VSY = ±4 V to ±18 V
−40°C < TA < +125°C
87
81
103
ISY
665
−40°C < TA < +125°C
DYNAMIC PERFORMANCE
Slew Rate
SR
Gain Bandwidth Product
Unity-Gain Crossover
−3 dB Bandwidth
Phase Margin
Settling Time to 0.1%
GBP
UGC
−3 dB
ФM
tS
Settling Time to 0.01%
tS
EMI REJECTION RATIO
f = 1000 MHz
f = 2400 MHz
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
Total Harmonic Distortion + Noise
Bandwidth (BW) = 80 kHz
BW = 500 kHz
MATCHING SPECIFICATIONS
Maximum Offset Voltage over
Temperature
Offset Voltage Temperature Drift
Input Bias Current
CROSSTALK
EMIRR
eN p-p
eN
iN
THD + N
VOUT = ±12.5 V, RL = 2 kΩ,
load capacitor (CL) = 100 pF, AV = 1
Low to high transition
High to low transition
AV = 100
AV = 1
AV = 1
VIN = 10 V step, RL = 2 kΩ, CL = 15 pF,
AV = −1
VIN = 10 V step, RL = 2 kΩ, CL = 15 pF,
AV = −1
VIN = 100 mV p-p
0.1 Hz to 10 Hz
f = 10 Hz
f = 100 Hz
f = 1 kHz
f = 10 kHz
f = 1 kHz
AV = 1, f = 10 Hz to 20 kHz,
input voltage (VIN) = 7 V rms at 1 kHz
RL = 5 kΩ, VIN = 20 V p-p
f = 1 kHz
f = 100 kHz
Rev. A | Page 4 of 30
Unit
700
725
dB
dB
µA
µA
23
−18
8
7
15.5
53
1.5
V/µs
V/µs
MHz
MHz
MHz
Degrees
µs
2
µs
90
90
dB
dB
0.75
30
15
12.5
12
0.8
µV p-p
nV/√Hz
nV/√Hz
nV/√Hz
nV/√Hz
fA/√Hz
0.0003
0.00035
%
%
0.5
mV
2.5
0.5
CS
Max
−112
−72
5
µV/°C
pA
dB
dB
Data Sheet
ADA4622-2
ELECTRICAL CHARACTERISTICS, VSY = ±5 V
VSY = ±5 V, VCM = VOUT = 0 V, TA = 25°C, unless otherwise noted.
Table 2.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
A Grade
Symbol
Test Conditions/Comments
Min
Typ
Max
Unit
0.04
±0.8
±2
±0.35
±0.8
±1
mV
mV
mV
mV
mV
±15
±5
±10
±1.5
µV/°C
µV/°C
pA
nA
pA
pA
nA
V
VOS
−40°C < TA < +125°C
B Grade
0.04
−40°C < TA < +125°C
Offset Voltage Match
Offset Voltage Drift
A Grade
B Grade
Input Bias Current
ΔVOS/ΔT
−40°C < TA < +125°C
−40°C < TA < +125°C
±2
±2
2
IB
−40°C < TA < +125°C
VCM = V−
Input Offset Current
−5
IOS
±10
±0.5
(V+) − 1
−40°C < TA < +125°C
Input Voltage Range
Common-Mode Rejection Ratio
A Grade
IVR
CMRR
B Grade
Large Signal Voltage Gain
Input Capacitance
Input Resistance
OUTPUT CHARACTERISTICS
Output Voltage
High
Low
AVO
CINDM
CINCM
RDIFF
RCM
VOH
VOL
Output Current
Short-Circuit Current
IOUT
ISC
Closed-Loop Output Impedance
ZOUT
(V−) − 0.2
VCM = V− to (V+) − 3 V
−40°C < TA < +125°C
VCM = V− to (V+) − 3 V
−40°C < TA < +125°C
RL = 10 kΩ, VOUT = −4.4 V to +4.4 V
−40°C < TA < +125°C
RL = 1 kΩ, VOUT = −4.4 V to +4.4 V
−40°C < TA < +125°C
Differential mode
Common mode
Differential mode
Common mode
75
73
78
75
113
105
100
91
ISOURCE = 1 mA
−40°C < TA < +125°C
ISOURCE = 15 mA
−40°C < TA < +125°C
ISINK = 1 mA
−40°C < TA < +125°C
ISINK = 15 mA
−40°C < TA < +125°C
VDROPOUT < 1 V
Sourcing
Sinking
f = 1 kHz, AV = 1
AV = 10
AV = 100
50
100
700
900
Rev. A | Page 5 of 30
91
dB
dB
dB
dB
dB
dB
dB
dB
pF
pF
Ω
Ω
91
118
105
0.4
3.6
1013
1013
30
490
45
315
20
31
−40
0.1
0.4
4
65
120
450
750
mV
mV
mV
mV
mV
mV
mV
mV
mA
mA
mA
Ω
Ω
Ω
ADA4622-2
Parameter
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
Data Sheet
Symbol
Test Conditions/Comments
Min
Typ
PSRR
VSY = ±4 V to ±18 V
−40°C < TA < +125°C
87
81
103
ISY
610
−40°C < TA < +125°C
DYNAMIC PERFORMANCE
Slew Rate
SR
Gain Bandwidth Product
Unity-Gain Crossover
−3 dB Bandwidth
Phase Margin
Settling Time to 0.1%
GBP
UGC
−3 dB
ФM
tS
Settling Time to 0.01%
tS
EMI REJECTION RATIO
f = 1000 MHz
f = 2400 MHz
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
Total Harmonic Distortion + Noise
BW = 80 kHz
BW = 500 kHz
MATCHING SPECIFICATIONS
Maximum Offset Voltage over
Temperature
Offset Voltage Temperature Drift
Input Bias Current
CROSSTALK
EMIRR
eN p-p
eN
iN
THD + N
VOUT = ±3 V, RL = 2 kΩ, CL = 100 pF,
AV = 1
Low to high transition
High to low transition
AV = 100
AV = 1
AV = 1
VIN = 8 V step, RL = 2 kΩ, CL = 15 pF,
AV = −1
VIN = 8 V step, RL = 2 kΩ, CL = 15 pF,
AV = −1
VIN = 100 mV p-p
0.1 Hz to 10 Hz
f = 10 Hz
f = 100 Hz
f = 1 kHz
f = 10 kHz
f = 1 kHz
AV = 1, f = 10 Hz to 20 kHz,
VIN = 1.5 V rms at 1 kHz
RL = 5 kΩ, VIN = 6 V p-p
f = 1 kHz
f = 100 kHz
Rev. A | Page 6 of 30
Unit
675
700
dB
dB
µA
µA
21
−16
7.8
6.5
10
50
1.5
V/µs
V/µs
MHz
MHz
MHz
Degrees
µs
2
µs
90
90
dB
dB
0.75
30
15
12.5
12
0.8
µV p-p
nV/√Hz
nV/√Hz
nV/√Hz
nV/√Hz
pA/√Hz
0.0005
0.0008
%
%
0.5
mV
2.5
0.5
CS
Max
−112
−72
5
µV/°C
pA
dB
dB
Data Sheet
ADA4622-2
ELECTRICAL CHARACTERISTICS, VSY = 5 V
VSY = 5 V, VCM = 0 V, VOUT = VSY/2, TA = 25°C, unless otherwise noted.
Table 3.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
A Grade
Symbol
Test Conditions/Comments
Min
Typ
Max
Unit
0.04
±0.8
±2
±0.35
±0.8
±1
mV
mV
mV
mV
mV
±15
±5
±10
±1.5
±10
±0.5
(V+) − 1
µV/°C
µV/°C
pA
nA
pA
nA
V
VOS
−40°C < TA < +125°C
B Grade
0.04
−40°C < TA < +125°C
Offset Voltage Match
Offset Voltage Drift
A Grade
B Grade
Input Bias Current
ΔVOS/ΔT
−40°C < TA < +125°C
−40°C < TA < +125°C
±2
±2
2
IB
−40°C < TA < +125°C
Input Offset Current
IOS
Input Voltage Range
Common-Mode Rejection Ratio
A Grade
IVR
CMRR
−40°C < TA < +125°C
B Grade
Large Signal Voltage Gain
Input Capacitance
Input Resistance
OUTPUT CHARACTERISTICS
Output Voltage
High
Low
AVO
CINDM
CINCM
RDIFF
RCM
VOH
VOL
Output Current
Short-Circuit Current
IOUT
ISC
Closed-Loop Output Impedance
ZOUT
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
PSRR
(V−) − 0.2
VCM = V− to (V+) − 3 V
−40°C < TA < +125°C
VCM = V− to (V+) − 3 V
−40°C < TA < +125°C
RL = 10 kΩ to V−, VOUT = 0.2 V to 4.6 V
−40°C < TA < +125°C
RL = 1 kΩ to V−, VOUT = 0.2 V to 4.6 V
−40°C < TA < +125°C
Differential mode
Common mode
Differential mode
Common mode
70
67
73
70
110
99
96
87
ISOURCE = 1 mA
−40°C < TA < +125°C
ISOURCE = 15 mA
−40°C < TA < +125°C
ISINK = 1 mA
−40°C < TA < +125°C
ISINK = 15 mA
−40°C < TA < +125°C
VDROPOUT < 1 V
Sourcing
Sinking
f = 1 kHz, AV = 1
AV = 10
AV = 100
50
100
700
900
VSY = 4 V to 15 V
−40°C < TA < +125°C
80
74
ISY
87
87
115
104
0.4
3.6
1013
1013
30
500
45
310
Rev. A | Page 7 of 30
65
120
450
750
20
27
−35
0.1
0.6
5
95
600
−40°C < TA < +125°C
dB
dB
dB
dB
dB
dB
dB
dB
pF
pF
Ω
Ω
650
675
mV
mV
mV
mV
mV
mV
mV
mV
mA
mA
mA
Ω
Ω
Ω
dB
dB
µA
µA
ADA4622-2
Parameter
DYNAMIC PERFORMANCE
Slew Rate
Data Sheet
Symbol
Test Conditions/Comments
SR
VOUT = 0.5 V to 3.5 V, RL = 2 kΩ,
CL = 100 pF, AV = 1
Low to high transition
High to low transition
AV = 100
AV = 1
AV = 1
Gain Bandwidth Product
Unity-Gain Crossover
−3 dB Bandwidth
Phase Margin
Settling Time to 0.1%
GBP
UGC
−3 dB
ФM
tS
Settling Time to 0.01%
tS
EMI REJECTION RATIO
f = 1000 MHz
f = 2400 MHz
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
Total Harmonic Distortion + Noise
BW = 80 kHz
BW = 500 kHz
MATCHING SPECIFICATIONS
Maximum Offset Voltage over
Temperature
Offset Voltage Temperature Drift
Input Bias Current
CROSSTALK
EMIRR
eN p-p
eN
iN
THD + N
VIN = 4 V step, RL = 2 kΩ, CL = 15 pF,
AV = −1
VIN = 4 V step, RL = 2 kΩ, CL = 15 pF,
AV = −1
VIN = 100 mV p-p
0.1 Hz to 10 Hz
f = 10 Hz
f = 100 Hz
f = 1 kHz
f = 10 kHz
f = 1 kHz
AV = 1, f = 10 Hz to 20 kHz,
VIN = 0.5 V rms at 1 kHz
Min
Typ
RL = 5 kΩ, VIN = 3 V p-p
f = 1 kHz
f = 100 kHz
Rev. A | Page 8 of 30
Unit
20
−15
7.2
6
9
50
1.5
V/µs
V/µs
MHz
MHz
MHz
Degrees
µs
2.0
µs
90
90
dB
dB
0.75
30
15
12.5
12
0.8
µV p-p
nV/√Hz
nV/√Hz
nV/√Hz
nV/√Hz
pA/√Hz
0.0025
0.0025
%
%
0.5
mV
2.5
0.5
CS
Max
−112
−72
5
µV/°C
pA
dB
dB
Data Sheet
ADA4622-2
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 4.
Parameter
Supply Voltage
Input Voltage
Differential Input Voltage
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range
Lead Temperature, Soldering (10 sec)
ESD Rating, Human Body Model (HBM)
Rating
36 V
(V−) − 0.3 V to (V+) + 0.2 V
36 V
−65°C to +150°C
−40°C to +125°C
−65°C to +150°C
300°C
4 kV
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
Thermal performance is directly linked to printed circuit board
(PCB) design and operating environment. Close attention to
PCB thermal design is required.
Table 5. Thermal Resistance1
Package Type
8-Lead SOIC
1-Layer JEDEC Board
2-Layer JEDEC Board
8-Lead MSOP
1-Layer JEDEC Board
2-Layer JEDEC Board
8-Lead LFCSP
1-Layer JEDEC Board
2-Layer JEDEC Board
2-Layer JEDEC Board with 2 × 2 Vias
1
θJA
Unit
180
120
°C/W
°C/W
265
185
°C/W
°C/W
272
145
55
°C/W
°C/W
°C/W
Thermal impedance simulated values are based on a JEDEC thermal test
board. See JEDEC JESD51.
ESD CAUTION
Rev. A | Page 9 of 30
ADA4622-2
Data Sheet
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
–IN A 2
ADA4622-2
7
+IN A 3
TOP VIEW
(Not to Scale)
6
–IN B
5
+IN B
V– 4
ADA4622-2
V+
OUT A 1
OUT B
–IN A
2
+IN A 3
V–
Figure 2. 8-Lead MSOP Pin Configuration
4
8
V+
7 OUT B
TOP VIEW
(Not to Scale) 6 –IN B
5
+IN B
13502-201
8
13502-101
OUT A 1
Figure 3. 8-Lead SOIC Pin Configuration
Table 6. 8-Lead SOIC and 8-Lead MSOP Pin Function Descriptions
Mnemonic
OUT A
−IN A
+IN A
V−
+IN B
−IN B
OUT B
V+
Description
Output, Channel A
Inverting Input, Channel A
Noninverting Input, Channel A
Negative Supply Voltage
Noninverting Input, Channel B
Inverting Input, Channel B
Output, Channel B
Positive Supply Voltage
OUT A 1
–IN A 2
+IN A 3
V– 4
8 V+
ADA4622-2
TOP VIEW
(Not to Scale)
7 OUT B
6 –IN B
5 +IN B
NOTES
1. IT IS RECOMMENDED TO CONNECT THE
EXPOSED PAD TO THE V+ PIN.
13502-102
Pin No.
1
2
3
4
5
6
7
8
Figure 4. 8-Lead LFCSP Pin Configuration
Table 7. 8-Lead LFCSP Pin Function Descriptions
Pin No.
1
2
3
4
5
6
7
8
EPAD
Mnemonic
OUT A
−IN A
+IN A
V−
+IN B
−IN B
OUT B
V+
EPAD
Description
Output, Channel A.
Inverting Input, Channel A.
Noninverting Input, Channel A.
Negative Supply Voltage.
Noninverting Input, Channel B.
Inverting Input, Channel B.
Output, Channel B.
Positive Supply Voltage.
Exposed Pad. It is recommended to connect the exposed pad to the V+ pin.
Rev. A | Page 10 of 30
Data Sheet
ADA4622-2
TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25°C, unless otherwise noted.
20
160
VSY = ±15V
16
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
18
VCM = 0V
VOUT = 0V
140
120
100
80
60
40
14
12
10
8
6
13502–002
0
–1.00
–0.75
–0.50
–0.25
0
0.25
0.50
0.75
13502-005
4
20
2
0
–10.0
1.00
–7.5
–5.0
–2.5
5.0
7.5
10.0
25
100
VSY = ±5V
VCM = 0V
VOUT = 0V
90
20
NUMBER OF AMPLIFIERS
80
70
60
50
40
30
15
10
5
13502–003
20
10
–0.75
–0.50
–0.25
0
0.25
0.50
0.75
0
–10.0
1.00
13502-006
NUMBER OF AMPLIFIERS
2.5
Figure 8. Input Offset Voltage Drift (TCVOS) Distribution (−40°C to +85°C),
VSY = ±15 V
Figure 5. Input Offset Voltage (VOS) Distribution, VSY = ±15 V
0
–1.00
0
TCVOS (µV/°C)
VOS (mV)
–7.5
–5.0
–2.5
0
2.5
5.0
7.5
10.0
TCVOS (µV/°C)
VOS (mV)
Figure 9. Input Offset Voltage Drift (TCVOS) Distribution (−40°C to +125°C),
VSY = ±5 V
Figure 6. Input Offset Voltage (VOS) Distribution, VSY = ±5 V
1000
100
VSY = ±15V
VCM = 0V
VOUT = 2.5V
90
500
70
VOS (µV)
60
50
0
40
30
–500
10
0
–1.00
–0.75
–0.50
–0.25
0
0.25
0.50
0.75
–1000
–15
1.00
–10
–5
0
5
10
15
VCM (V)
VOS (mV)
Figure 7. Input Offset Voltage (VOS) Distribution, VSY = 5 V
13502-008
20
13502–004
NUMBER OF AMPLIFIERS
80
Figure 10. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM), VSY = ±15 V
Rev. A | Page 11 of 30
ADA4622-2
Data Sheet
1000
160
VSY = ±5V
NUMBER OF AMPLIFIERS
500
VOS (µV)
VCM = 0V
VOUT = 0V
140
0
120
100
80
60
40
–500
–1000
–5
–4
–3
–2
–1
0
1
2
3
4
0
–3
13502–015
13502-009
20
–2
–1
5
VCM (V)
0
IB (pA)
1
Figure 14. Input Bias Current (IB) Distribution, VSY = ±5 V
Figure 11. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM), VSY = ±5 V
1000
120
VSY = 5V
VCM = 0V
VOUT = 2.5V
NUMBER OF AMPLIFIERS
100
500
VOS (µV)
3
2
0
–500
80
60
40
–1000
0
0.5
1.0
1.5
2.0
2.5
3.0
VCM (V)
3.5
4.0
4.5
0
–3
5.0
13502–016
13502-010
20
–2
–1
0
1
2
3
IB (pA)
Figure 12. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM), VSY = 5 V
Figure 15. Input Bias Current (IB) Distribution, VSY = 5 V
10
160
VSY = ±15V
VCM = 0V
VOUT = 0V
0
120
IB (pA)
100
80
–10
60
40
–20
20
–2
–1
0
IB (pA)
1
2
Figure 13. Input Bias Current (IB) Distribution, VSY = ±15 V
–30
–15
3
13502-017
0
–3
13502–014
NUMBER OF AMPLIFIERS
140
–10
–5
0
5
10
15
VCM (V)
Figure 16. Input Bias Current (IB) vs. Input Common-Mode Voltage (VCM),
VSY = ±15 V
Rev. A | Page 12 of 30
Data Sheet
ADA4622-2
4
100
VSY = ±5V
VSY = ±5V
10
0
1
–40°C
+25°C
+85°C
+125°C
100m
–4
10m
13502-018
–2
–6
–5
–4
–3
–2
–1
0
1
2
3
4
13502–021
VOL (V)
IB (pA)
2
1m
5
1µ
10µ
100µ
VCM (V)
1m
10m
100m
ILOAD (A)
Figure 17. Input Bias Current (IB) vs. Input Common-Mode Voltage (VCM), VSY = ±5 V
Figure 20. Output Voltage Low (VOL) to Supply Rail vs. Load Current (ILOAD)
over Temperature, VSY = ±5 V
6
100
VSY = 5V
VSY = 5V
4
10
1
0
–40°C
+25°C
+85°C
+125°C
VOL (V)
IB (pA)
2
–2
100m
–4
13502–019
–8
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
13502–022
10m
–6
1m
5.0
1µ
10µ
100µ
VCM (V)
1m
10m
100m
ILOAD (A)
Figure 18. Input Bias Current (IB) vs. Input Common-Mode Voltage (VCM), VSY = 5 V
Figure 21. Output Voltage Low (VOL) to Supply Rail vs. Load Current (ILOAD)
over Temperature, VSY = 5 V
100
100
VSY = ±15V
VSY = ±15V
10
10
1
100m
10m
10m
13502–020
100m
1m
1µ
10µ
–40°C
+25°C
+85°C
+125°C
VOH (V)
VOL (V)
–40°C
+25°C
+85°C
+125°C
100µ
1m
10m
13502–023
1
1m
1µ
100m
10µ
100µ
1m
10m
100m
ILOAD (A)
ILOAD (A)
Figure 19. Output Voltage Low (VOL) to Supply Rail vs. Load Current (ILOAD)
over Temperature, VSY = ±15 V
Figure 22. Output Voltage High (VOH) to Supply Rail vs. Load Current (ILOAD)
over Temperature, VSY = ±15 V
Rev. A | Page 13 of 30
ADA4622-2
Data Sheet
10
225
120
180
80
135
60
90
40
45
20
0
–40°C
+25°C
+85°C
+125°C
13502–024
10m
1m
10µ
100µ
1m
10m
–45
–20
–90
–40
10
100m
100
1k
ILOAD (A)
1M
10M
225
120
10
VSY = ±5V
VSY = 5V
100
180
80
135
60
90
40
45
20
0
1
GAIN (dB)
–40°C
+25°C
+85°C
+125°C
100m
0
–45
–20
–90
13502–025
10m
1m
1µ
–135
100M
Figure 26. Open-Loop Gain and Phase vs. Frequency, VSY = ±15 V
Figure 23. Output Voltage High (VOH) to Supply Rail vs. Load Current (ILOAD)
over Temperature, VSY = ±5 V
VOL (V)
100k
10k
FREQUENCY (Hz)
10µ
100µ
1m
10m
–40
10
100m
100
1k
100k
10k
FREQUENCY (Hz)
1M
10M
PHASE (Degrees)
1µ
0
13502-028
100m
GAIN (dB)
VOL (V)
1
13502-027
100
PHASE (Degrees)
VSY = ±15V
VSY = ±5V
–135
100M
ILOAD (A)
Figure 27. Open-Loop Gain and Phase vs. Frequency, VSY = ±5 V
Figure 24. Output Voltage High (VOH) to Supply Rail vs. Load Current (ILOAD)
over Temperature, VSY = 5 V
225
120
140
VSY = ±15V
VSY = ±5V
VSY = 5V
130
100
180
80
135
60
90
40
45
20
0
GAIN (dB)
110
90
80
100
1k
10k
100k
0
–45
–20
–90
–40
10
LOAD RESISTANCE (kΩ)
Figure 25. Open-Loop Gain (AVO) vs. Load Resistance
100
1k
100k
10k
FREQUENCY (Hz)
1M
10M
–135
100M
Figure 28. Open-Loop Gain and Phase vs. Frequency, VSY = 5 V
Rev. A | Page 14 of 30
13502-029
100
13502–026
GAIN (dB)
120
PHASE (Degrees)
VSY = 5V
Data Sheet
ADA4622-2
60
1000
VSY = ±15V
VSY = ±15V
50
100
AV = +100
OUTPUT IMPEDANCE (Ω)
GAIN (dB)
40
30
AV = +10
20
10
AV = +1
0
10
GAIN = 100
1
GAIN = 10
0.1
100
1k
10k
100k
FREQUENCY (Hz)
1M
10M
0.01
10
100M
100
13502-033
–20
10
GAIN = 1
13502-030
–10
1k
10k
100k
1M
10M
FREQUENCY (Hz)
Figure 29. Closed-Loop Gain vs. Frequency, VSY = ±15 V
Figure 32. Output Impedance vs. Frequency, VSY = ±15 V
60
1000
VSY = ±5V
VSY = ±5V
50
100
AV = +100
OUTPUT IMPEDANCE (Ω)
GAIN (dB)
40
30
AV = +10
20
10
AV = +1
0
10
GAIN = 100
1
GAIN = 10
0.1
100
1k
10k
100k
FREQUENCY (Hz)
1M
10M
0.01
10
100M
100
13502-034
–20
10
GAIN = 1
13502-031
–10
1k
10k
100k
1M
10M
FREQUENCY (Hz)
Figure 30. Closed-Loop Gain vs. Frequency, VSY = ±5 V
Figure 33. Output Impedance vs. Frequency, VSY = ±5 V
60
1000
VSY = 5V
VSY = 5V
50
OUTPUT IMPEDANCE (Ω)
30
AV = +10
20
10
AV = +1
0
10
GAIN = 100
1
GAIN = 10
0.1
–20
10
GAIN = 1
100
1k
10k
100k
FREQUENCY (Hz)
1M
10M
0.01
10
100M
100
13502-035
–10
13502-032
GAIN (dB)
100
AV = +100
40
1k
10k
100k
1M
FREQUENCY (Hz)
Figure 31. Closed-Loop Gain vs. Frequency, VSY = 5 V
Figure 34. Output Impedance vs. Frequency, VSY = 5 V
Rev. A | Page 15 of 30
10M
ADA4622-2
Data Sheet
120
120
VSY = ±15V
VSY = ±15V
100
100
80
PSRR (dB)
CMRR (dB)
80
60
60
+PSRR
40
–PSRR
40
20
20
100
1k
10k
100k
10M
1M
–20
10
100M
13502-039
13502-036
0
10
0
100
1k
FREQUENCY (Hz)
Figure 35. CMRR vs. Frequency, VSY = ±15 V
1M
10M
100M
Figure 38. PSRR vs. Frequency, VSY = ±15 V
120
140
VSY = ±5V
VSY = ±5V
120
100
100
80
PSRR (dB)
CMRR (dB)
100k
10k
FREQUENCY (Hz)
80
60
60
+PSRR
40
20
0
0
10
13502-037
20
100
1k
10k
100k
10M
1M
–20
10
100M
13502-040
–PSRR
40
100
1k
FREQUENCY (Hz)
Figure 36. CMRR vs. Frequency, VSY = ±5 V
100k
10k
FREQUENCY (Hz)
1M
10M
100M
Figure 39. PSRR vs. Frequency, VSY = ±5 V
120
100
VSY = 5V
VSY = 5V
100
80
80
PSRR (dB)
40
60
–PSRR
40
20
20
100
1k
10k
100k
1M
10M
–20
10
100M
FREQUENCY (Hz)
Figure 37. CMRR vs. Frequency, VSY = 5 V
13502-041
0
10
0
13502-038
CMRR (dB)
+PSRR
60
100
1k
100k
10k
FREQUENCY (Hz)
1M
Figure 40. PSRR vs. Frequency, VSY = 5 V
Rev. A | Page 16 of 30
10M
100M
Data Sheet
ADA4622-2
15
50
VSY = ±15V
VSY = ±15V
VIN = ±10V
45
10
40
5
VOLTAGE (V)
30
+OS
–OS
25
20
0
–5
15
10
13502-042
–10
5
0
1
10
100
13502-045
OVERSHOOT (%)
35
–15
1000
0
1
2
3
4
5
6
7
8
9
10
TIME (µs)
LOAD CAPACITANCE (pF)
Figure 41. Small Signal Overshoot (OS) vs. Load Capacitance, VSY = ±15 V
Figure 44. Large Signal Transient Response, VSY = ±15 V
4
50
VSY = ±5V
45
40
VSY = ±5V
VIN = ±3V
2
VOLTAGE (V)
OVERSHOOT (%)
35
30
+OS
–OS
25
20
0
15
–2
5
0
1
10
100
13502-046
13502-043
10
–4
1000
0
1
2
3
4
5
6
7
8
9
10
TIME (µs)
LOAD CAPACITANCE (pF)
Figure 42. Small Signal Overshoot (OS) vs. Load Capacitance, VSY = ±5 V
Figure 45. Large Signal Transient Response, VSY = ±5 V
4
60
VSY = 5V
50
VSY = 5V
VIN = 0.5V TO 3.5V
VOLTAGE (V)
OVERSHOOT (%)
3
40
+OS
–OS
30
2
20
1
0
1
10
100
13502-047
13502-044
10
0
1000
0
1
2
3
4
5
6
7
8
9
TIME (µs)
LOAD CAPACITANCE (pF)
Figure 43. Small Signal Overshoot (OS) vs. Load Capacitance, VSY = 5 V
Rev. A | Page 17 of 30
Figure 46. Large Signal Transient Response, VSY = 5 V
10
ADA4622-2
Data Sheet
3
0.35
VSY = 5V
VIN = 0.2V TO 0.3V
2
VSY = ±2.5V
VIN = ±2V
0.30
VOLTAGE (V)
VOLTAGE (V)
1
0
0.25
–1
0.20
–3
0
1
2
3
4
5
6
7
8
9
13502-051
13502-048
–2
0.15
10
0
1
2
3
4
5
6
7
8
9
10
TIME (µs)
TIME (µs)
Figure 47. Large Signal Transient Response, VSY = ±2.5 V
Figure 50. Small Signal Transient Response, VSY = 5 V
20
5
4
VSY = ±15V
VSY = ±15V
VIN = ±50mV p-p
10
–5
0
–10
13502-049
–2
–4
0
1
2
3
4
5
6
7
8
9
–15
10
OUTPUT VOLTAGE (V)
0
0
–10
0
1
2
3
4
5
6
7
8
9
13502-052
INPUT VOLTAGE (V)
VOLTAGE (V)
2
–20
10
TIME (µs)
TIME (µs)
Figure 48. Small Signal Transient Response, VSY = ±15 V
Figure 51. Negative Overload Recovery, AV = −10, VSY = ±15 V
4
6
1
VSY = ±5V
1
0
0
1
2
3
4
5
6
7
8
9
10
TIME (µs)
0
3
–1
0
–2
–3
–3
0
1
2
3
4
5
6
7
8
9
–6
10
TIME (µs)
Figure 49. Small Signal Transient Response, VSY = ±5 V
Figure 52. Negative Overload Recovery, AV = −10, VSY = ±5 V
Rev. A | Page 18 of 30
13502-053
INPUT VOLTAGE (V)
2
13502-050
VOLTAGE (V)
3
OUTPUT VOLTAGE (V)
VSY = ±5V
VIN = ±50mV p-p
Data Sheet
ADA4622-2
2
0.5
5
0.5
–1.0
–1
–1.5
–2.0
–2
0
1
2
3
4
5
6
7
8
9
–3
10
0
4
–0.5
3
–1.0
2
–1.5
1
–2.0
0
–2.5
2
1
0
5
4
3
7
6
–1
10
9
8
13502-057
0
INPUT VOLTAGE (V)
–0.5
OUTPUT VOLTAGE (V)
1
13502-054
INPUT VOLTAGE (V)
0
OUTPUT VOLTAGE (V)
VSY = ±2.5V
VSY = ±2.5V
TIME (µs)
TIME (µs)
Figure 53. Negative Overload Recovery, AV = −10, VSY = ±2.5 V
Figure 56. Positive Overload Recovery, AV = −10, VSY = ±2.5 V
35
5
0.09
10
VSY = ±15V
–10
–15
5
0
1
2
3
4
5
6
7
8
9
–5
10
0
0.07
-5
0.06
–10
0.05
–15
0.04
–20
0.03
–25
13502-058
15
INPUT VOLTAGE (V)
–5
OUTPUT VOLTAGE (V)
25
13502-055
INPUT VOLTAGE (V)
0
VSY = ±15V
VIN = ±5V
OUTPUT VOLTAGE (V)
0.08
5
0.02
0
1
2
3
5
4
6
7
8
9
10
TIME (µs)
TIME (µs)
Figure 54. Positive Overload Recovery, AV = −10, VSY = ±15 V
Figure 57. Positive Settling Time, AV = −10, VSY = ±15 V
0.09
8
12
1
VSY = ±5V
–3
0
–4
0
1
2
3
4
5
6
7
8
9
–3
10
0.07
–4
0.06
–8
0.05
–12
0.04
–16
0.03
–20
0.02
0
1
2
3
4
5
6
7
8
9
10
TIME (µs)
TIME (µs)
Figure 55. Positive Overload Recovery, AV = −10, VSY = ±5 V
Figure 58. Positive Settling Time, AV = −10, VSY = ±5 V
Rev. A | Page 19 of 30
13502-059
3
0
INPUT VOLTAGE (V)
–2
OUTPUT VOLTAGE (V)
6
13502-056
INPUT VOLTAGE (V)
–1
VSY = ±5V
VIN = ±4V
OUTPUT VOLTAGE (V)
0.08
4
9
0
ADA4622-2
Data Sheet
–2
0.03
–6
0.02
–8
0.01
–10
–12
OUTPUT VOLTAGE (V)
–4
0
0
1
2
3
4
5
6
7
8
–0.01
10
9
0.01
VSY = 5V
VIN = –0.5V TO –4.5V
–4
0
–6
–0.01
–8
–0.02
–10
–0.03
–12
0
1
2
3
TIME (µs)
–10
–0.05
–15
–0.06
–20
–0.07
–0.08
3
4
5
6
7
8
9
VOLTAGE NOISE DENSITY (nV/√Hz)
–0.04
OUTPUT VOLTAGE (V)
–5
13502-061
INPUT VOLTAGE (V)
–0.03
2
8
9
–0.04
10
100
–0.02
0
1
7
10
13502-064
VSY = ±15V
VIN = ±5V
0
6
Figure 62. Negative Setting Time, AV = −10, VSY = 5 V
–0.01
10
–25
5
TIME (µs)
Figure 59. Positive Settling Time, AV = −10, VSY = 5 V
5
4
1
1
10
10
TIME (µs)
100
1k
100k
10k
FREQUENCY (Hz)
Figure 60. Negative Setting Time, AV = −10, VSY = ±15 V
8
Figure 63. Voltage Noise Density, VSY = ±15 V
0
CH1 p-p = 776.0mV
VSY = ±5V
VIN = ±4V
–0.02
–4
–0.03
–8
–0.04
–12
–0.05
–16
–0.06
–20
–0.07
0
1
2
3
4
5
6
7
8
9
1
10
13502-065
0
OUTPUT VOLTAGE (V)
–0.01
13502-062
INPUT VOLTAGE (V)
4
CH1 200mV
M1.00ms
A CH1
–3.80MV
TIME (µs)
Figure 61. Negative Setting Time, AV = −10, VSY = ±5 V
Figure 64. 0.1 Hz to 10 Hz Noise, VSY = ±15 V
Rev. A | Page 20 of 30
OUTPUT VOLTAGE (V)
0.04
VSY = 5V
VIN = –0.5V TO –4.5V
0.02
13502-063
0
13502-060
INPUT VOLTAGE (V)
–2
0.05
INPUT VOLTAGE (V)
0
Data Sheet
ADA4622-2
100
1.6
VSY = ±15V
10
1.2
–40°C
+25°C
+85°C
+125°C
1
1
THD + N (%)
SUPPLY CURRENT (mA)
1.4
0.8
0.6
0.1
BW = 500kHz
0.01
BW = 80kHz
0.4
13502-066
0
0
±2
±4
±6
±8
±10
±12
±14
±16
0.0001
0.001
±18
13502-069
0.001
0.2
100
VSY
VSY
VSY
VSY
1.5
= +5V
= ±2.5V
= ±5V
= ±15V
VSY = ±5V
10
1
1.3
0.1
1.2
0.01
1.1
0.001
–25
–10
5
20
35
50
65
80
95
110
BW = 500kHz
BW = 80kHz
0.0001
0.001
125
13502-070
THD + N (%)
1.4
13502-067
SUPPLY CURRENT (mA)
10
Figure 68. THD + Noise vs. Amplitude, VSY = ±15 V
1.6
0.01
0.1
1
10
AMPLITUDE (V rms)
TEMPERATURE (°C)
Figure 66. Supply Current (ISY) vs. Temperature for Various Supply Voltages
Figure 69. THD + Noise vs. Amplitude, VSY = ±5 V
0
100
VSY = ±15V
VIN = 20V p-p
VSY = 5V
–20
10
–40
THD + N (%)
1
–60
–80
0.1
BW = 500kHz
0.01
BW = 80kHz
–100
–140
100
1k
10k
100k
0.0001
0.001
13502-071
0.001
–120
13502-068
CHANNEL SEPARATION (dB)
1
AMPLITUDE (V rms)
Figure 65. Supply Current (ISY) vs. Supply Voltage (VSY) for Various
Temperatures
1.0
–40
0.1
0.01
SUPPLY VOLTAGE (V)
0.01
0.1
1
AMPLITUDE (V rms)
FREQUENCY (Hz)
Figure 67. Channel Separation vs. Frequency, VSY = ±15 V
Figure 70. THD + Noise vs. Amplitude, VSY = 5 V
Rev. A | Page 21 of 30
10
ADA4622-2
Data Sheet
0.1
0.1
VSY = 5V
VSY = ±15V
THD + N (%)
THD + N (%)
0.01
0.001
BW = 500kHz
0.01
BW = 500kHz
0.0001
BW = 80kHz
0.00001
10
100
1k
10k
100k
Figure 71. THD + Noise vs. Frequency, VSY = ±15 V
VSY = ±5V
0.001
BW = 500kHz
BW = 80kHz
13502-073
THD + N (%)
0.01
0.00001
100
1k
1k
10k
Figure 73. THD + Noise vs. Frequency, VSY = 5 V
0.1
10
100
FREQUENCY (Hz)
FREQUENCY (Hz)
0.0001
0.001
10
13502-074
13502-072
BW = 80kHz
10k
100k
FREQUENCY (Hz)
Figure 72. THD + Noise vs. Frequency, VSY = ±5 V
Rev. A | Page 22 of 30
100k
Data Sheet
ADA4622-2
THEORY OF OPERATION
V–
R3
ED1
R4
R7
ED2
ED5
R1
+IN x
SLEW
ENHANCEMENT
CIRCUIT
Q2
Q1
Q3
C1
R2
J1
–IN x
J2
OUT x
R5
Q5
Q4
ED3
RR
OUTPUT
STAGE
R6
VBIAS
ED4
ED6
IMAGIC
CURRENT
OUT1
OUT2
R8
R9
R10
13502-075
IN
CURRENT MIRROR
V+
Figure 74. Simplified Circuit Diagram
INPUT CHARACTERISTICS
The ADA4622-2 input stage consists of N-channel, JFETs
that provide low offset, low noise, and high impedance. The
minimum input common-mode voltage extends from −0.2 mV
below V− to 1 V less than V+. Driving the input closer to the
positive rail causes loss of amplifier bandwidth and increased
common-mode voltage error. Figure 75 shows the rounding of
the output due to the loss of bandwidth. The input and output
are superimposed.
13502-077
1
CH1 1.00V CH2 1.00V
M2.00µs
A CH1
3.84V
Figure 76. No Phase Reversal
Because the input stage uses N-channel JFETs, the input current
during normal operation is negative. However, the input bias
current changes direction as the input voltage approaches V+
due to internal junctions becoming forward biased (see Figure 77).
1
13502-076
4
A CH1
3.00V
Figure 75. Bandwidth Limiting due to Headroom Requirements
The ADA4622-2 does not exhibit phase reversal for input voltages
up to V+. For input voltages greater than V+, a 10 kΩ resistor in
series with the noninverting input prevents phase reversal at the
expense of higher noise (see Figure 76).
2
1
0
–1
–2
–3
–5
13502-078
M2.00µs
INPUT BIAS CURRENT (pA)
CH1 1.00V CH2 1.00V
3
–4
–3
–2
–1
0
1
2
3
4
5
COMMON-MODE VOLTAGE (V)
Figure 77. Input Bias Current vs. Common-Mode Voltage with ±5 V Supply
Rev. A | Page 23 of 30
ADA4622-2
Data Sheet
The ADA4622-2 is designed for 12 nV/√Hz wideband input
voltage noise density and maintains low noise performance at
low frequencies (see Figure 78). This noise performance, along
with the low input current as well as low current noise, means
that the ADA4622-2 contributes negligible noise for applications
with a source resistance greater than 10 kΩ and at signal
bandwidths greater than 1 kHz.
100
80
EMIRR (dB)
COMPETITOR 1
COMPETITOR 2
ADA4622-2
100k
40
0
10M
13502-080
20
100M
1G
FREQUENCY (Hz)
10k
Figure 79. EMI Rejection Ratio (EMIRR) vs. Frequency
OUTPUT CHARACTERISTICS
100
1k
10k
100k
FREQUENCY (Hz)
Figure 78. Total Noise vs. Source Resistance
Input Overvoltage Protection
The ADA4622-2 has internal protective circuitry that allows
voltages as high as 0.3 V beyond the supplies applied at the input
of either terminal without causing damage. Use a current
limiting resistor in series with the input of the ADA4622-2 if
the input voltage exceeds 0.3 V beyond the amplifier supply
rails. If the overvoltage condition persists for more than a few
seconds, the amplifier can be damaged.
For higher input voltages, determine the resistor value by
VIN − VSY
≤ 10 mA
RS
where:
VIN is the input voltage.
VSY is the voltage of either the V+ pin or the V− pin.
RS is the series resistor.
The ADA4622-2 unique bipolar rail-to-rail output stage swings
within 10 mV of the supplies with no external resistive load.
The ADA4622-2 approximate output saturation resistance is
24 Ω, sourcing or sinking. Use the output impedance to estimate
the output saturation voltage when driving heavier loads. As an
example, when driving 5 mA, the saturation voltage from either
rail is roughly 120 mV.
If the ADA4622-2 output drives hard against the output saturation
voltage, it recovers within 1.2 µs of the input, returning to the linear
operating region of the amplifier (see Figure 51 and Figure 54).
Capacitive Load Drive Capability
Direct capacitive loads interact with the effective output impedance
of the ADA4622-2 to form an additional pole in the amplifier
feedback loop, which causes excessive peaking on the pulse
response or loss of stability. The worst case condition is when the
device uses a single 5 V supply in a unity-gain configuration.
Figure 80 shows the pulse response of the ADA4622-2
driving 500 pF directly.
With a very low input bias current of ±1.5 nA maximum up to
125°C, higher resistor values can be used in series with the inputs
without introducing large offset errors. A 1 kΩ series resistor
allows the ADA4622-2 to withstand 10 V of continuous
overvoltage and increases the noise by a negligible amount. A
5 kΩ resistor protects the inputs from voltages as high as 25 V
beyond the supplies and adds less than 10 µV to the amplifier
offset voltage.
EMI Rejection Ratio
1
13502-081
1k
10
13502-079
RESISTANCE (Ω)
ADA4622-2 VOLTAGE AND CURRENT NOISE
RS NOISE
TOTAL NOISE
60
CH1 50.0mV BW
Figure 79 shows the electromagnetic interference rejection ratio
(EMIRR) vs. frequency for the ADA4622-2.
Rev. A | Page 24 of 30
M2.00µs
A CH1
108mV
Figure 80. Pulse Response with 500 pF Load Capacitance
Data Sheet
ADA4622-2
APPLICATIONS INFORMATION
RECOMMENDED POWER SOLUTION
ADP7118
+15V
ADP7182
–15V
Description
DC-to-DC switching regulator with independent
positive and negative outputs
20 V, 200 mA, low noise, CMOS LDO regulator
−28 V, −200 mA, low noise, linear regulator
The maximum power the ADA4622-2 can safely dissipate is
limited by the associated rise in junction temperature. For plastic
packages, the maximum safe junction temperature is 150°C. If
this maximum temperature is exceeded, reduce the die temperature to restore proper circuit operation. Leaving the device in
the overheated condition for an extended period can result in
device burnout. To ensure proper operation, it is important to
observe the Absolute Maximum Ratings and Thermal Resistance
specifications.
SECOND-ORDER LOW-PASS FILTER
Figure 82 shows the ADA4622-2 configured as a second-order,
Butterworth, low-pass filter. With the values as shown, the corner
frequency equals 200 kHz. Component selection is shown in the
following equations:
R1 = R2 = User Selected (Typical Values: 10 kΩ to 100 kΩ)
C2 
VOUT
50pF
C4
0.1µF
A plot of the filter is shown in Figure 83; greater than 35 dB of
high frequency rejection is achieved.
MAXIMUM POWER DISSIPATION
C1 
AD4622-2
–5V
Table 8. Recommended Power Management Devices
ADP7118
ADP7182
1/2
C1
28pF
Figure 82. Second-Order, Butterworth, Low-Pass Filter
Figure 81. Power Solution Configuration for the ADA4622-2
Product
ADP5070
VIN
50
40
30
20
10
0
–10
–20
–30
13502-084
–16V
R2
20kΩ
–40
–50
100
1k
10k
100k
1M
FREQUENCY (Hz)
10M
100M
Figure 83. Frequency Response of the Filter
WIDEBAND PHOTODIODE PREAMPLIFIER
The ADA4622-2 is an excellent choice for photodiode preamplifier
application. The low input bias current minimizes the dc error
at the preamplifier output. In addition, the high gain bandwidth
product and low input capacitance maximizes the signal bandwidth
of the photodiode preamplifier. Figure 84 shows the ADA4622-2 as
a current to voltage (I to V) converter with an electrical model
of a photodiode.
CF
1.414
2πf CUTOFF  R1
RF
0.707
2πf CUTOFF  R1
–
CM
IPHOTO
CS
RSH =
+
VB
VOUT
CD
1011Ω
CM
AD4622-2
Figure 84. Wideband Photodiode Preamplifier
Rev. A | Page 25 of 30
13502-085
ADP5070
R1
20kΩ
AMPLITUDE (dB)
+12V
+5V
C3
0.1µF
13502-082
+16V
C2
56pF
13502-083
The ADA4622-2 can be operated from ±2.5 V to ±15 volt dual
supply or 5 V to 30 V single supply.The ADP7118 and ADP7182
are recommended to generate the clean positive and negative
rails for the ADA4622-2. Both low dropout regulators (LDOs)
are available in fixed output voltage or adjustable output voltage
versions. To generate the input voltages for the LDOs, the
ADP5070 dc-to-dc switching regulator is recommended.
Figure 81 shows the recommended power solution
configuration for the ADA4622-2.
ADA4622-2
Data Sheet
The transimpedance gain of the photodiode preamplifier is
described by the following basic transfer function:
I PHOTO × RF
1 + sCF RF
where
IPHOTO is the output current of the photodiode.
The parallel combination of RF and CF sets the signal bandwidth
(see the I to V gain curve in Figure 86).
s refers to the s-plane.
Note that RF must be set so the maximum attainable output voltage
corresponds to the maximum diode output current, IPHOTO,
which allows use of the full output swing. The attainable signal
bandwidth with this photodiode preamplifier is a function of RF,
the gain bandwidth product (fGBP) of the amplifier, and the total
capacitance at the amplifier summing junction, including CS
and the amplifier input capacitance, CD and CM. RF and the total
capacitance produce a pole with loop frequency (fP).
fN =
OPEN-LOOP GAIN
1
2πR F C S
fX
G = R2C1s
With the additional pole from the amplifier open-loop response,
the two-pole system results in peaking and instability due to an
insufficient phase margin (see Figure 85).
1
2 π RF C F
G=1
log f
fP
–45°
–90°
where fZ is the zero frequency.
–135°
Setting the zero at the fX frequency maximizes the signal
bandwidth with a 45° phase margin. Because fX is the geometric
mean of fP and fGBP, it can be calculated by
–180°
fX =
f P × f GBP
log f
Figure 85. Gain and Phase Plot of the Transimpedance Amplifier Design,
Without Compensation
Combining these equations, the value of CF that produces fX is
defined by
CF =
fGBP
0°
PHASE (°)
Adding CF creates a zero in the loop transmission that compensates
for the effect of the input pole. This stabilizes the photodiode
preamplifier design because of the increased phase margin. Adding
CF also sets the signal bandwidth (see Figure 86). The signal
bandwidth and the zero frequency are determined by
fZ =
f GBP
(C S + C F ) C F
CS
2π × R F × f GBP
Rev. A | Page 26 of 30
13502-086
fP =
The dominant sources of output noise in the wideband photodiode
preamplifier design are the input voltage noise of the amplifier,
VNOISE, and the resistor noise due to RF. The gray curve in Figure 86
shows the noise gain over frequencies for the photodiode preamplifier. Calculate the noise bandwidth at the fN frequency by
|A| (dB)
VOUT =
The frequency response in this case shows about 2 dB of peaking
and 15% overshoot. Doubling CF and halving the bandwidth
results in a flat frequency response with about 5% transient
overshoot.
Data Sheet
ADA4622-2
Increasing CF to 3 pF completely eliminates the peaking.
However, increasing CF to 3 pF reduces the bandwidth to 1 MHz.
OPEN-LOOP GAIN
|A (s)|
Table 9 shows the noise sources and total output noise for the photodiode preamplifier, where the preamplifier is configured to have a
45° phase margin for maximum bandwidth and fZ = fX = fN in
this case.
fX
I TO V GAIN
fZ
2pF
fN
G = 1 + CS/CF
49.9kΩ
+5V
G = RFCS(s)
G=1
f
fp
fGBP
0.1µF
–5V
VOUT
AD4622-2
0.1µF
45°
100Ω
13502-088
90°
–5V
Figure 87. Photodiode Preamplifier
f
0°
3
2
–45°
1
2pF
–135°
Figure 86. Gain and Phase Plot of the Transimpedance Amplifier Design
with Compensation
Figure 87 shows the ADA4622-2 configured as a transimpedance
photodiode amplifier. The amplifier is used in conjunction with
a photodiode detector with an input capacitance of 5 pF. Figure 88
shows the transimpedance response of the ADA4622-2 when
IPHOTO is 1 μA p-p. The amplifier has a bandwidth of 2 MHz
when it is maximized for a 45° phase margin with CF = 2 pF.
Note that with the PCB parasitics added to CF, the peaking is
only 0.5 dB and the bandwidth is slightly reduced.
–1
3pF
–2
–3
–4
–5
13502-089
13502-087
–90°
AMPLITUDE (dB)
0
–6
–7
10
100
1k
10k
100k
FREQUENCY (Hz)
1M
10M
Figure 88. Photodiode Preamplifier Frequency Response
Table 9. RMS Noise Contributions of the Photodiode Preamplifier
Contributor
RF
VNOISE
Root Sum Square (RSS) Total
1
RMS Noise (μV)1
50.8
Expression
4kT RF  f N 
VNOISE 
π
2
(C S  C M  C F  C D )


 fN
CF
2
131.6
141
RF 2  VNOISE2
RMS noise with RF = 50 kΩ, CS = 5 pF, CF = 2 pF, CM = 3.7 pF, and CD = 0.4 pF.
Rev. A | Page 27 of 30
100M
ADA4622-2
Data Sheet
PEAK DETECTOR
In this application, D3 and D4 act as unidirectional current
switches that open when the output is kept constant in hold mode.
A peak detector captures the peak value of a signal and
produces an output equal to it. By taking advantage of the dc
precision and super low input bias current of the JFET input
amplifiers, such as the ADA4622-2, a highly accurate peak
detector can be built, as shown in Figure 89.
VCC
+
2
8
4
–
VIN
+PEAK
ADA4622-2
U2A
C4
50pF
Feedback from the output of the U2B (positive peak) through
R6 limits the output voltage of U2A. After detecting the peak,
the output of U2A swings low but is clamped by D2. D3 reverses
bias and the common node of D3, D4, and R7 is held to a voltage
equal to positive peak by R7. The voltage across D4 is 0 V;
therefore, the leakage is small. The bias current of U2B is also
small. With almost no leakage, C3 has a long hold time.
5
8
1
D3
1N4148
D4
1N4148
6
C3
1µF
R7
10kΩ
D2
1N448
ADA4622-2
U2B
7
4
VEE
R6
1kΩ
Figure 89. Positive Peak Detector
13502-090
3
To detect a positive peak, U2A drives C3 through D3 and drives
D4 until C3 is charged to a voltage equal to the input peak value.
The ADA4622-2, shown in Figure 89, is a perfect fit for building a
peak detector because U2A requires dc precision and high output
current during fast peaks and U2B requires low input bias current
(IB) to minimize capacitance discharge between peaks. A low
leakage and low dielectric absorption capacitor, such as polystyrene
or polypropylene, is required for C3. Reversing the diode directions
causes the circuit to detect negative peaks.
Rev. A | Page 28 of 30
Data Sheet
ADA4622-2
OUTLINE DIMENSIONS
5.00 (0.1968)
4.80 (0.1890)
8
4.00 (0.1574)
3.80 (0.1497)
5
1
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
6.20 (0.2441)
5.80 (0.2284)
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
COPLANARITY
0.10
SEATING
PLANE
0.50 (0.0196)
0.25 (0.0099)
45°
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
012407-A
COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 90. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
3.20
3.00
2.80
8
3.20
3.00
2.80
1
5.15
4.90
4.65
5
4
PIN 1
IDENTIFIER
0.65 BSC
0.95
0.85
0.75
15° MAX
1.10 MAX
0.40
0.25
6°
0°
0.23
0.09
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 91. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
Rev. A | Page 29 of 30
0.80
0.55
0.40
10-07-2009-B
0.15
0.05
COPLANARITY
0.10
ADA4622-2
Data Sheet
1.84
1.74
1.64
3.10
3.00 SQ
2.90
1.55
1.45
1.35
EXPOSED
PAD
0.50
0.40
0.30
0.80
0.75
0.70
1
4
BOTTOM VIEW
TOP VIEW
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.203 REF
0.30
0.25
0.20
PIN 1
INDICATOR
(R 0.15)
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-229-WEED
12-07-2010-A
PIN 1 INDEX
AREA
SEATING
PLANE
0.50 BSC
8
5
Figure 92. 8-Lead Lead Frame Chip Scale Package [LFCSP]
3 mm × 3 mm Body and 0.75 mm Package Height
(CP-8-13)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADA4622-2ACPZ-R7
ADA4622-2ACPZ-RL
ADA4622-2ARMZ
ADA4622-2ARMZ-R7
ADA4622-2ARMZ-RL
ADA4622-2ARZ
ADA4622-2ARZ-R7
ADA4622-2ARZ-RL
ADA4622-2BRZ
ADA4622-2BRZ-R7
ADA4622-2BRZ-RL
1
Temperature Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Package Description
8-Lead Lead Frame Chip Scale Package [LFCSP]
8-Lead Lead Frame Chip Scale Package [LFCSP]
8-Lead Mini Small Outline Package [MSOP]
8-Lead Mini Small Outline Package [MSOP]
8-Lead Mini Small Outline Package [MSOP]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
Z = RoHS Compliant Part.
©2015–2016 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D13502-0-2/16(A)
Rev. A | Page 30 of 30
Package Option
CP-8-13
CP-8-13
RM-8
RM-8
RM-8
R-8
R-8
R-8
R-8
R-8
R-8
Branding
A3D
A3D
A3D
A3D
A3D