PDF Data Sheet Rev. E

PIN CONFIGURATIONS
Low noise: 1.1 nV/√Hz at 1 kHz
Low distortion: −120 dB THD at 1 kHz
Input noise, 0.1 Hz to 10 Hz: <76 nV p-p
Slew rate: 14 V/μs
Wide bandwidth: 10 MHz
Supply current: 4.8 mA/amp typical
Low offset voltage: 10 μV typical
CMRR: 120 dB
Unity-gain stable
±15 V operation
NC 1
–IN 2
AD8597
+IN 3
TOP VIEW
V– 4 (Not to Scale)
8
NC
7
V+
6
OUT
5
NC
NC = NO CONNECT
06274-060
FEATURES
Figure 1. AD8597 8-Lead SOIC (R-8)
APPLICATIONS
PIN 1
INDICATOR
8 NC
–IN 2
AD8597
7 V+
+IN 3
TOP VIEW
6 OUT
5 NC
V– 4
Professional audio preamplifiers
ATE/precision testers
Imaging systems
Medical/physiological measurements
Precision detectors/instruments
Precision data conversion
NOTES
1. NC = NO CONNECT.
2. IT IS RECOMMENDED THAT THE
EXPOSED PAD BE CONNECTED
TO V–.
06274-061
NC 1
Figure 2. AD8597 8-Lead LFCSP (CP-8-2)
OUT A 1
–IN A 2
AD8599
+IN A 3
TOP VIEW
–V 4 (Not to Scale)
8
+V
7
OUT B
6
–IN B
5
+IN B
06274-054
Data Sheet
Single and Dual, Ultralow
Distortion, Ultralow Noise Op Amps
AD8597/AD8599
Figure 3. AD8599 8-Lead SOIC (R-8)
GENERAL DESCRIPTION
The AD8597/AD8599 are very low noise, low distortion operational amplifiers ideal for use as preamplifiers. The low noise of
1.1 nV/√Hz and low harmonic distortion of −120 dB (or better)
at audio bandwidths give the AD8597/AD8599 the wide dynamic
range necessary for preamplifiers in audio, medical, and instrumentation applications. The excellent slew rate of 14 V/μs and
10 MHz gain bandwidth make them highly suitable for medical
applications. The low distortion and fast settling time make
them ideal for buffering of high resolution data converters.
Rev. E
The AD8597 is available in 8-lead SOIC and LFCSP packages,
while the AD8599 is available in an 8-lead SOIC package. They
are both specified over a −40°C to +125°C temperature range.
The AD8597 and AD8599 are members of a growing series of
low noise op amps offered by Analog Devices, Inc. (see Table 1).
Table 1. Low Noise Op Amps
Package
Single
Dual
Quad
0.9 nV
AD797
1.1 nV
AD8597
AD8599
1.8 nV
ADA4004-1
ADA4004-2
ADA4004-4
2.8 nV
AD8675
AD8676
3.8 nV
AD8671
AD8672
AD8674
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2007–2013 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
AD8597/AD8599
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
ESD Caution...................................................................................5
Applications ....................................................................................... 1
Typical Performance Characteristics ..............................................6
Pin Configurations ........................................................................... 1
Functional Operation..................................................................... 15
General Description ......................................................................... 1
Input Voltage Range ................................................................... 15
Revision History ............................................................................... 2
Output Phase Reversal ............................................................... 15
Specifications..................................................................................... 3
Noise and Source Impedance Considerations ........................... 15
Absolute Maximum Ratings............................................................ 5
Outline Dimensions ....................................................................... 17
Thermal Resistance ...................................................................... 5
Ordering Guide .......................................................................... 17
Power Sequencing ........................................................................ 5
REVISION HISTORY
10/13—Rev. D to Rev. E
Change to Figure 15 Caption .......................................................... 7
Changes to Figure 23 and Figure 26 ............................................... 9
Changes to Figure 30 and Figure 33 ............................................. 10
Changes to Figure 46 through Figure 50 ..................................... 13
Changes to Figure 53 and Figure 54 ............................................. 14
2/13—Rev. C to Rev. D
Changes to Figure 44 ...................................................................... 12
Changes to Figure 46 and Figure 49 ............................................. 13
12/09—Rev. B to Rev. C
Changes to Table 1 ............................................................................ 1
10/08—Rev. A to Rev. B
Added AD8597 ................................................................... Universal
Added LFCSP_VD ............................................................. Universal
Added Table 1.................................................................................... 1
Changes to Specifications Section .................................................. 3
Changes to Absolute Maximum Ratings Section ......................... 5
Changes to Typical Performance Characteristics Section ...........6
Added Figure 12 and Figure 15 .......................................................7
Added Figure 18 and Figure 19 .......................................................8
Added Figure 30 and Figure 33 .................................................... 10
Added Figure 34 to Figure 38 ....................................................... 11
Added Figure 42 and Figure 45 .................................................... 12
Added Figure 52, Figure 55, Figure 57 ........................................ 14
Added Functional Operation Section .......................................... 15
Added Figure 58 ............................................................................. 15
Updated Outline Dimensions ....................................................... 17
Changes to Ordering Guide .......................................................... 17
4/07—Rev. 0 to Rev. A
Updated Layout .................................................................................5
Changes to Figure 45 Caption ...................................................... 12
Added Figure 48 ............................................................................. 12
Changes to Figure 51 Caption ...................................................... 13
2/07—Revision 0: Initial Version
Rev. E | Page 2 of 20
Data Sheet
AD8597/AD8599
SPECIFICATIONS
VSY = ±5 V, VCM = 0 V, VO = 0 V, TA = 25°C, unless otherwise specified.
Table 2.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Conditions
Min
VOS
Typ
Max
Unit
15
120
180
μV
μV
0.8
40
2.2
210
340
250
340
+2.0
μV/°C
nA
nA
nA
nA
V
dB
dB
dB
dB
−40°C ≤ TA ≤ +125°C
Offset Voltage Drift
Input Bias Current
ΔVOS/ΔT
IB
Input Offset Current
IOS
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
65
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
IVR
CMRR
Large Signal Voltage Gain
AVO
Input Capacitance
Differential Capacitance
Common-Mode Capacitance
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Output Short-Circuit Current
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
−2.0 V ≤ VCM ≤ +2.0 V
−40°C ≤ TA ≤ +125°C
RL ≥ 600 Ω, VO = −11 V to +11 V
−40°C ≤ TA ≤ +125°C
−2.0
120
105
105
100
CDIFF
CCM
VOH
VOL
ISC
ZOUT
PSRR
RL = 600 Ω
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ
−40°C ≤ TA ≤ +125°C
RL = 600 Ω
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ
−40°C ≤ TA ≤ +125°C
3.5
3.3
3.7
3.5
ISY
110
15.4
5.5
pF
pF
3.7
V
V
V
V
V
V
V
V
mA
Ω
3.8
−3.6
−3.7
120
118
140
4.8
−40°C ≤ TA ≤ +125°C
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Peak-to-Peak Noise
Voltage Noise Density
SR
tS
GBP
ΦM
en p-p
en
Correlated Current Noise
Uncorrelated Current Noise
Total Harmonic Distortion + Noise
Channel Separation
THD + N
CS
AV = −1, RL = 2 kΩ
AV = 1, RL = 2 kΩ
To 0.01%, step = 10 V
14
14
2
10
60
0.1 Hz to 10 Hz
f = 1 kHz
f = 10 Hz
f = 1 kHz
f = 10 Hz
f = 1 kHz
f = 10 Hz
G = 1, RL ≥ 1 kΩ, f = 1 kHz, VRMS = 1 V
f = 10 kHz
76
1.07
Rev. E | Page 3 of 20
−3.4
−3.3
−3.5
−3.4
±52
5
At 1 MHz, AV = 1
VSY = ±18 V to ±4.5 V
−40°C ≤ TA ≤ +125°C
135
2.0
4.2
2.4
5.2
−120
−120
5.5
6.5
dB
dB
mA
mA
V/μs
V/μs
μs
MHz
Degrees
1.15
1.5
nV p-p
nV/√Hz
nV/√Hz
pA/√Hz
pA/√Hz
pA/√Hz
pA/√Hz
dB
dB
AD8597/AD8599
Data Sheet
VS = ±15 V, VCM = 0 V, VO = 0 V, TA = +25°C, unless otherwise specified.
Table 3.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Conditions
Min
VOS
Typ
Max
Unit
10
120
180
μV
μV
0.8
2.2
μV/°C
25
200
300
200
300
+12.5
nA
nA
nA
nA
V
dB
dB
dB
dB
−40°C ≤ TA ≤ +125°C
Offset Voltage Drift
ΔVOS/ΔT
Input Bias Current
IB
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
50
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
IVR
CMRR
Large Signal Voltage Gain
AVO
Input Capacitance
Differential Capacitance
Common-Mode Capacitance
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Output Short-Circuit Current
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
−12.5 V ≤ VCM ≤ +12.5 V
−40°C ≤ TA ≤ +125°C
RL ≥ 600 Ω, VO = −11 V to +11 V
−40°C ≤ TA ≤ +125°C
−12.5
120
115
110
106
CDIFF
CCM
VOH
VOL
ISC
ZOUT
PSRR
RL = 600 Ω
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ
−40°C ≤ TA ≤ +125°C
RL = 600 Ω
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ
−40°C ≤ TA ≤ +125°C
13.1
12.8
13.5
13.2
ISY
116
12.1
5.1
pF
pF
13.4
V
V
V
V
V
V
V
V
mA
Ω
13.7
−13.2
−13.5
120
118
140
5.0
−40°C ≤ TA ≤ +125°C
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Peak-to-Peak Noise
Voltage Noise Density
SR
ts
GBP
ΦM
en p-p
en
Correlated Current Noise
Uncorrelated Current Noise
Total Harmonic Distortion + Noise
Channel Separation
THD + N
CS
AV = −1, RL = 2 kΩ
AV = 1, RL = 2 kΩ
To 0.01%, step = 10 V
16
15
2
10
65
0.1 Hz to 10 Hz
f = 1 kHz
f = 10 Hz
f = 1 kHz
f = 10 Hz
f = 1 kHz
f = 10 Hz
G = 1, RL ≥ 1 kΩ, f = 1 kHz, VRMS = 3 V
f = 10 kHz
76
1.07
Rev. E | Page 4 of 20
−12.9
−12.8
−13.4
−13.3
±52
5
At 1 MHz, AV = 1
VSY = ±18 V to ±4.5 V
−40°C ≤ TA ≤ +125°C
135
1.9
4.3
2.3
5.3
−120
−120
5.7
6.75
dB
dB
mA
mA
V/μs
V/μs
μs
MHz
Degrees
nV p-p
1.15
1.5
nV/√Hz
nV/√Hz
pA/√Hz
pA/√Hz
pA/√Hz
pA/√Hz
dB
dB
Data Sheet
AD8597/AD8599
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 4.
Parameter
Supply Voltage
Input Voltage
Differential Input Voltage1
Output Short-Circuit to GND
Storage Temperature Range
Operating Temperature Range
Lead Temperature Range (Soldering 60 sec)
Junction Temperature
1
Rating
±18 V
−V ≤ VIN ≤ +V
±1 V
Indefinite
−65°C to +150°C
−40°C to +125°C
300°C
150°C
θJA is specified with the device soldered on a circuit board with
its exposed paddle soldered to a pad (if applicable) on a 4-layer
JEDEC standard PCB with zero air flow.
Table 5.
Package Type
8-Lead LFCSP_VD (CP-8-2)
8-Lead SOIC (R-8) (AD8597)
8-Lead SOIC (R-8) (AD8599)
θJA
78
140
120
θJC
20
39
36
Unit
°C/W
°C/W
°C/W
POWER SEQUENCING
If the differential input voltage exceeds 1 V, limit the current to 5 mA.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Apply the op amp supplies simultaneously. The op amp supplies
must be stable before any input signals are applied. In any case,
the input current must be limited to 5 mA.
ESD CAUTION
Rev. E | Page 5 of 20
AD8597/AD8599
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25°C, unless otherwise noted.
70
50
AD8599
MEAN = 7.91
STDEV = 21.89
MIN = –63.02
MAX = 57.5
VSY = ±15V
60
NUMBER OF AMPLIFIERS
60
40
30
20
50
40
30
20
10
10
0
–75 –65 –55 –45 –35 –25 –15 –5 5 15 25 35 45 55 65 75
VOS (µV)
06274-001
0
–75 –65 –55 –45 –35 –25 –15 –5 5 15 25 35 45 55 65 75
VOS (µV)
Figure 4. Input Offset Voltage Distribution
60
45
AD8599
MEAN = 0.765
STDEV = 0.234
MIN = 0.338
MAX = 1.709
VSY = ±15V
40
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
Figure 7. Input Offset Voltage Distribution
AD8599
MEAN = 0.346
STDEV = 0.218
MIN = 0.010
MAX = 1.155
VSY = ±5V
50
06274-002
NUMBER OF AMPLIFIERS
70
AD8599
MEAN = 8.23
STDEV = 24.47
MIN = –72.62
MAX = 62.09
VSY = ±5V
40
30
20
35
30
25
20
15
10
10
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
TCVOS (µV)
2.2 2.4
0
06274-004
0
60
60
AD8599
MEAN = 0.461
STDEV = 0.245
MIN = 0.026
MAX = 1.26
VSY = ±5V
40
AD8599
MEAN = 0.342
STDEV = 0.221
MIN = 0.013
MAX = 1.239
VSY = ±15V
50
NUMBER OF AMPLIFIERS
50
30
20
40
30
20
10
10
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
TCVOS (µV)
2.2 2.4
0
06274-006
NUMBER OF AMPLIFIERS
2.2 2.4
Figure 8. TCVOS Distribution, −40°C ≤ TA ≤ +125°C
Figure 5. TCVOS Distribution, −40°C ≤ TA ≤ +125°C
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
TCVOS (µV)
Figure 6. TCVOS Distribution, −40°C ≤ TA ≤ +85°C
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
TCVOS (µV)
2.2 2.4
Figure 9. TCVOS Distribution, −40°C ≤ TA ≤ +85°C
Rev. E | Page 6 of 20
06274-005
0
06274-007
5
Data Sheet
AD8597/AD8599
75
50
25
25
VOS (µV)
50
0
0
–25
–25
–50
–50
–75
–75
–100
–5.0
–2.5
AD8599
VSY = ±15V
75
0
VCM (V)
2.5
5.0
–100
–15
06274-009
–10
Figure 10. Offset Voltage vs. VCM
0
VCM (V)
10
5
15
Figure 13. Offset Voltage vs. VCM
350
350
AD8599
VSY = ±5V
VCM = 0V
300
250
250
200
200
150
150
100
100
50
50
0
0
–50
–50
–100
–100
–150
–150
–25
0
25
50
TEMPERATURE (°C)
75
100
125
–200
–50
06274-011
–200
–50
AD8599
VSY = ±15V
VCM = 0V
300
IB (nA)
IB (nA)
–5
Figure 11. Input Bias Current vs. Temperature
–25
0
25
50
TEMPERATURE (°C)
125
100
75
06274-012
VOS (µV)
100
AD8599
VSY = ±5V
06274-010
100
Figure 14. Input Bias Current vs. Temperature
350
50
AD8597
300
40
AD8597
VSY = ±15V
250
30
200
20
150
TA = –40°C
IB (nA)
0
–10
±15V
50
TA = +25°C
0
TA = +85°C
–50
–100
–20
±5V
–200
–30
–250
–25
0
25
50
75
100
125
06274-063
–40
–50
–50
TA = +125°C
–150
06274-062
VOS (µV)
100
10
–300
–350
–12 –10
150
–8
–6
–4
–2
0
2
4
6
8
10
12
VCM (V)
TEMPERATURE (°C)
Figure 12. Input Offset Voltage vs. Temperature
Figure 15. Input Bias Current vs. Common-Mode Voltage (VCM) Over
Temperature
Rev. E | Page 7 of 20
AD8597/AD8599
Data Sheet
150
80
AD8597
AD8599
70
100
60
50
IB (nA)
IOS (nA)
50
40
IOS @ VSY = ±5V
±15V
0
±5V
30
–50
20
IOS @ VSY = ±15V
06274-065
–100
10
–25
0
75
25
50
TEMPERATURE (°C)
100
125
–150
–50
06274-013
0
–50
0
–25
25
Figure 16. Input Offset Current vs. Temperature
75
100
125
Figure 19. Input Offset Current vs. Temperature
114
120
AD8599
VSY = ±5V
112
AD8599
VSY = ±15V
118
110
RL = 2kΩ, VO = ±11V
RL = 2kΩ, VO = ±2V
108
AVO (dB)
AVO (dB)
50
TEMPERATURE (°C)
RL = 600Ω, VO = ±2V
106
116
RL = 600Ω, VO = ±11V
114
104
112
–25
0
25
50
75
TEMPERATURE (°C)
100
125
150
110
–50
06274-015
100
–50
Figure 17. Large Signal Voltage Gain vs. Temperature
8
–25
0
75
50
25
TEMPERATURE (°C)
100
125
150
06274-016
102
Figure 20. Large Signal Voltage Gain vs. Temperature
350
AD8597
300
7
TA = +125°C
6
250
TA = +85°C
AD8599
VSY = ±15V
TA = –40°C
200
150
TA = +25°C
100
4
IB (nA)
TA = –40°C
3
TA = +25°C
50
0
TA = +85°C
–50
–100
–150
2
TA = +125°C
–200
–250
0
0
2
4
6
–300
–350
–12 –10
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
VSY (V)
Figure 18. Supply Current vs. Supply Voltage
–8
–6
–4
–2
0
2
VCM (V)
4
6
Figure 21. Input Bias Current vs. VCM
Rev. E | Page 8 of 20
8
10
12
06274-014
1
06274-064
ISY (mA)
5
Data Sheet
AD8597/AD8599
80
80
AD8599
VSY = ±5V
60
AD8599
VSY = ±15V
60
OUTPUT CURRENT (mA)
20
0
–20
–40
ISOURCE
ISINK
40
20
0
–20
–40
ISOURCE
–60
–25
0
25
50
75
TEMPERATURE (°C)
100
125
150
–80
–50
06274-017
–80
–50
–25
0
Figure 22. ISC vs. Temperature
10
OUTPUT DROPOUT VOLTAGE (V OUT – VS) (V)
AD8599
VSY = ±5V
ISINK
1
ISOURCE
0.1
0.001
0.01
0.1
1
100
125
150
Figure 25. ISC vs. Temperature
100
10
IL (mA)
AD8599
VSY = ±15V
ISINK
1
ISOURCE
0.1
0.001
06274-021
OUTPUT DROPOUT VOLTAGE (VOUT – VS) (V)
10
75
25
50
TEMPERATURE (°C)
06274-018
–60
0.01
0.1
1
10
100
IL (mA)
06274-022
OUTPUT CURRENT (mA)
ISINK
40
Figure 26. Output Dropout Voltage vs. Current Load
Figure 23. Output Dropout Voltage vs. Current Load
2.5
2.5
AD8599
VSY = ±15V
AD8599
VSY = ±5V
2.0
2.0
VCC – VOH (V)
1.5
VCC – VOH @ RL = 600Ω
1.0
VCC – VOH @ RL = 2kΩ
1.5
VCC – VOH @ RL = 2kΩ
1.0
0
–50
–25
0
75
25
50
TEMPERATURE (°C)
100
125
150
0
–50
–25
0
25
50
75
TEMPERATURE (°C)
100
125
Figure 27. Output Saturation Voltage vs. Temperature
Figure 24. Output Saturation Voltage vs. Temperature
Rev. E | Page 9 of 20
150
06274-029
0.5
0.5
06274-027
VCC – VOH (V)
VCC – VOH @ RL = 600Ω
AD8597/AD8599
Data Sheet
0
0
AD8599
VSY = ±5V
AD8599
VSY = ±15V
–0.5
–1.0
VEE – VOL @ RL = 2kΩ
–1.5
VEE – VOL @ RL = 600Ω
–2.0
–1.0
VEE – VOL @ RL = 2kΩ
–1.5
VEE – VOL @ RL = 600Ω
–2.0
–25
0
25
50
75
TEMPERATURE (°C)
100
125
150
–2.5
–50
06274-028
–2.5
–50
Figure 28. Output Saturation Voltage vs. Temperature
–13.0
–25
0
25
50
75
TEMPERATURE (°C)
100
125
150
06274-030
VEE – VOL (V)
VEE – VOL (V)
–0.5
Figure 31. Output Saturation Voltage vs. Temperature
15.0
VOL @ RL = 600Ω
14.8
AD8599
VSY = ±15V
14.6
–13.5
14.4
VOL @ RL = 2kΩ
VOH (V)
VOL (V)
14.2
–14.0
14.0
VOH @ RL = 2kΩ
13.8
13.6
–14.5
13.4
150
13.0
–50
50
TEMPERATURE (°C)
100
150
Figure 32. Output Voltage High vs. Temperature
120
100
80
100
80
60
60
80
60
40
40
60
40
CL = 20pF
20
20
0
0
–20
–20
CL = 200pF
–40
–60
–60
–80
–100
10
–40
GAIN (dB)
100
80
PHASE MARGIN (Degrees)
100
AD8597
VSY = ±5V
RL = 2kΩ
–80
100
1k
10k
FREQUENCY (kHz)
–100
50k
40
Figure 30. Gain and Phase vs. Frequency
20
CL = 20pF
0
20
–20
0
–40
–20
CL = 200pF
–40
06274-066
GAIN (dB)
Figure 29. Output Voltage Low vs. Temperature
0
06274-031
100
AD8597
–60 V = ±15V
SY
RL = 2kΩ
–80
1
10
–60
–80
100
1k
10k
FREQUENCY (kHz)
Figure 33. Gain and Phase vs. Frequency
Rev. E | Page 10 of 20
PHASE MARGIN (Degrees)
50
TEMPERATURE (°C)
–100
50k
06274-067
0
06274-032
–15.0
–50
VOH @ RL = 600Ω
13.2
AD8599
VSY = ±15V
Data Sheet
AD8597/AD8599
50
50
40
40
AV = 100
AV = 100
30
30
20
AV = 10
GAIN (dB)
10
0
AV = 1
AV = 10
10
0
AV = 1
–10
–10
–20
–30
06274-068
AD8597
VSY = ±5V
RL = 2kΩ
–40
1
10
100
1k
10k
AD8597
VSY = ±15V
RL = 2kΩ
–30
06274-071
–20
–40
1
50k
10
Figure 34. Closed-Loop Gain vs. Frequency
1k
50k
100
AV = –100
AV = –100
10
10
AV = –10
AV = –10
AV = +1
ZOUT (Ω)
AV = +1
1
0.1
1
0.01
10
100
1k
10k
06274-072
06274-069
0.1
AD8597
VSY = ±5V
AD8597
VSY = ±15V
0.01
10
100k
100
1k
10k
100k
FREQUENCY (kHz)
FREQUENCY (kHz)
Figure 35. Closed-Loop Output Impedance vs. Frequency
Figure 38. Closed-Loop Output Impedance vs. Frequency
110
120
AD8599
±5V ≤ VSY ≤ ±15V
100
100
PSRR+ (dB)
PSRR– (dB)
90
80
PSRR (dB)
80
70
60
AD8597
VSY = ±5V, ±15V
60
40
50
20
40
06274-070
CMRR (dB)
10k
Figure 37. Closed-Loop Gain vs. Frequency
100
ZOUT (Ω)
100
FREQUENCY (kHz)
FREQUENCY (kHz)
30
20
1
10
100
1k
0
–20
100
10k
FREQUENCY (kHz)
Figure 36. Common-Mode Rejection Ratio vs. Frequency
1k
10k
100k
FREQUENCY (Hz)
1M
Figure 39. Power Supply Rejection Ratio vs. Frequency
Rev. E | Page 11 of 20
10M
06274-038
GAIN (dB)
20
AD8597/AD8599
Data Sheet
600
90
AD8599
MEAN = 1.30
STDEV = 0.09
MIN = 1.1
MAX = 1.5
±5V ≤ VSY ≤ ±15V
70
AD8599
MEAN = 1.07
STDEV = 0.02
MIN = 1.05
MAX = 1.15
±5V ≤ VSY ≤ ±15V
500
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
80
60
50
40
30
400
300
200
20
100
10
1.1
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
VOLTAGE NOISE DENSITY (nV/ Hz)
2.0
0
0.95
1.19
100
100
AD8599
±5V ≤ VSY ≤ ±15V
10
1
10
100
FREQUENCY (Hz)
1k
1
10
1
1
1
0.1
0.1
THD + N (%)
RL = 600Ω
0.01
AD8597
VSY = ±5V
AV = +1
0.001
1
06274-073
RL = 100kΩ
0.1
10k
0.01
AD8597
VSY = ±15V
AV = +1
RL = 600Ω
0.001
0.01
1k
Figure 44. Current Noise Density vs. Frequency
Figure 41. Voltage Noise Density vs. Frequency
0.0001
0.001
100
FREQUENCY (Hz)
10
V rms (V)
0.0001
0.001
RL = 100kΩ
0.01
0.1
1
V rms (V)
Figure 42. THD + N vs. Amplitude
Figure 45. THD + N vs. Amplitude
Rev. E | Page 12 of 20
10
06274-074
1
06274-041
0.1
10
06274-042
CURRTENT NOISE DENSITY (pA/ Hz)
AD8599
±5V ≤ VSY ≤ ±15V
VOLTAGE NOISE DENSITY (nV/ Hz)
1.01 1.04 1.07 1.10 1.13 1.16
VOLTAGE NOISE DENSITY (nV/ Hz)
Figure 43. Voltage Noise Density at 1 kHz
Figure 40. Voltage Noise Density at 10 Hz
THD + N (%)
0.98
06274-040
1.0
06274-039
0
Data Sheet
AD8597/AD8599
0.1
0.1
AD8599
VSY = ±15V
VIN = 3V rms
VIN = 3V rms
VIN = 5V rms
VIN = 7V rms
0.01
THD + N (%)
THD + N (%)
0.01
AD8599
VSY = ±15V
RL = 600Ω
0.001
0.001
100
1k
FREQUENCY (Hz)
10k
100k
0.0001
10
100
Figure 46. THD + N vs. Frequency
100k
Figure 49. THD + N vs. Frequency
VSY = ±15V
VIN = 20V p-p
AV = 1
RF = 1kΩ
RL = 2kΩ
15
10
AMPLITUDE (V)
10
5
0
–5
5
0
–5
–10
–15
–15
–4.6
–0.6
3.4
7.4
11.4 15.4
TIME (µs)
19.4
23.4
27.4
31.4
06274-047
–10
–20
–8.6
VSY = ±15V
VIN = 20V p-p
AV = –1
RF = 2kΩ
RS = 2kΩ
CL = 0pF
AD8599
15
–20
–8.6
–4.6
–0.6
3.4
7.4
11.4 15.4
TIME (µs)
19.4
23.4
27.4
31.4
06274-048
AD8599
Figure 50. Large Signal Response
Figure 47. Large Signal Response
80
45
AD8599
40
60
35
OVERSHOOT (%)
40
20
0
–20
VSY = ±15V, ±5V
VIN = 100mV p-p
AV = 1
EXTERNAL CL = 100pF
EXTERNAL RL = 10kΩ
–60
–80
–800 –400
0
400
800
1200 1600 2000 2400 2800 3200
TIME (ns)
30
25
20
15
10
5
06274-046
–40
AD8599
±5V ≤ VSY ≤ ±15V
AV = 1
RL = 10kΩ
0
10
100
CAPACITANCE (pF)
Figure 51. Overshoot vs. Capacitance
Figure 48. Small Signal Response
Rev. E | Page 13 of 20
1k
06274-049
AMPLITUDE (V)
10k
20
20
AMPLITUDE (mV)
1k
FREQUENCY (Hz)
06274-044
0.0001
10
06274-043
RL = 2kΩ
AD8597/AD8599
Data Sheet
45
45
AD8597
VSY = ±5V
40
AD8597
VSY = ±15V
40
35
35
30
30
OVERSHOOT (%)
OVERSHOOT (%)
OS–
25
20
OS–
15
25
20
15
OS+
10
5
0
10
100
OS+
06247-078
06247-077
10
5
0
10
1k
100
Figure 52. Overshoot vs. Capacitive Load
Figure 55. Overshoot vs. Capacitive Load
15.0
10kΩ
VCC
VCC
AD8599
1kΩ
–40
12.5
VEE
2kΩ
2kΩ
CH A
–60
VEE
CH B,
CH C,
CH D
ISY (mA)
10V p-p
–80
10.0
VSY = ±15V
–100
VSY = ±5V
–120
7.5
–140
1k
10k
FREQUENCY (Hz)
1M
100k
5.0
–50
–25
Figure 53. Channel Separation vs. Frequency
400
25
50
TEMPERATURE (°C)
75
100
125
Figure 56. Supply Current vs. Temperature
6.0
AD8599
±5V ≤ VSY ≤ ±15V
AD8597
5.5
200
ISY (mA)
VSY = ±15V
0
5.0
VSY = ±5V
–400
0
1
2
3
4
5
6
TIME (Seconds)
7
8
9
10
Figure 54. Peak-to-Peak Noise
4.0
–40
06274-075
4.5
–200
06274-053
AMPLITUDE (nV)
0
06274-020
VIN = 10V p-p
VIN = 20V p-p
–160
100
06274-050
CHANNEL SEPARATION (dB)
0
AD8599
VSY = ±15V
–20 A = 100
V
RL = 1kΩ
1k
CAPACITANCE (pF)
CAPACITANCE (pF)
–25
–10
5
20
35
50
65
80
95
TEMPERATURE (°C)
Figure 57. Supply Current vs. Temperature
Rev. E | Page 14 of 20
110
125
Data Sheet
AD8597/AD8599
FUNCTIONAL OPERATION
The AD8597/AD8599 are not rail-to-rail input amplifiers;
therefore, care is required to ensure that both inputs do not
exceed the input voltage range. Under normal negative feedback
operating conditions, the amplifier corrects its output to ensure
that the two inputs are at the same voltage. However, if either
input exceeds the input voltage range, the loop opens and large
currents begin to flow through the ESD protection diodes in the
amplifier.
These diodes are connected between the inputs and each supply
rail to protect the input transistors against an electrostatic discharge
event and they are normally reverse-biased. However, if the
input voltage exceeds the supply voltage, these ESD diodes can
become forward-biased. Without current limiting, excessive
amounts of current may flow through these diodes, causing
permanent damage to the device. If inputs are subject to overvoltage, insert appropriate series resistors to limit the diode
current to less than 5 mA maximum.
The input stage has two diodes between the input pins to protect
the differential pair. Under high slew rate conditions, when the
op amp is connected as a voltage follower, the diodes may become
forward-biased and the source may try to drive the output.
Place a small resistor in the feedback loop and in the noninverting
input. The noise of a 100 Ω resistor at room temperature is
~1.25 nV/√Hz, which is higher than the AD8597/AD8599.
Thus, there is a tradeoff between noise performance and
protection. If possible, place limiting earlier in the signal path.
For further details, see the Amplifier Input Protection… Friend
or Foe? article at http://www.analog.com/amplifier_input.
Because of the large transistors used to achieve low noise, the
input capacitance may seem rather high. To take advantage of
the low noise performance, impedance around the op amp must
be low, less than 500 Ω. Under these conditions, the pole from
the input capacitance must be greater than 50 MHz, which does
not affect the signal bandwidth.
The AD8597/AD8599 amplifiers are carefully designed to prevent
any output phase reversal if both inputs are maintained within
the specified input voltage range. If one or both inputs exceed
the input voltage range but remain within the supply rails, the
op amp specifications, such as CMRR, are not guaranteed, but
the output remains close to the correct value.
NOISE AND SOURCE IMPEDANCE CONSIDERATIONS
The AD8597/AD8599 ultralow voltage noise of 1.1 nV/√Hz is
achieved with special input transistors running at high collector
current. Therefore, it is important to consider the total inputreferred noise (eN total), which includes contributions from
voltage noise (eN), current noise (iN), and resistor noise
(√4 kTRS).
eN total = [eN2 + 4 kTRS + (iN × RS)2]1/2
(1)
where RS is the total input source resistance.
This equation is plotted for the AD8597/AD8599 in Figure 58.
Because optimum dc performance is obtained with matched
source resistances, this case is considered even though it is clear
from Equation 1 that eliminating the balancing source resistance
lowers the total noise by reducing the total RS by a factor of 2.
At a very low source resistance (RS < 50 Ω), the voltage noise of the
amplifier dominates. As source resistance increases, the Johnson
noise of RS dominates until a higher resistance of RS > 2 kΩ is
achieved; the current noise component is larger than the
resistor noise.
100
TOTAL NOISE (nV/ Hz)
INPUT VOLTAGE RANGE
10
TOTAL NOISE
RESISTOR NOISE
ONLY
1
Output phase reversal occurs in some amplifiers when the input
common-mode voltage range is exceeded. As the common-mode
voltage is moved outside the input voltage range, the outputs of
these amplifiers can suddenly jump in the opposite direction to
the supply rail. This is the result of the differential input pair
shutting down that causes a radical shifting of internal voltages
that results in the erratic output behavior.
Rev. E | Page 15 of 20
0.1
10
06274-076
OUTPUT PHASE REVERSAL
100
1k
SOURCE RESISTANCE (Ω)
Figure 58. Noise vs. Source Resistance
10k
AD8597/AD8599
Data Sheet
general noise theory with extensive calculations, see the
AN-358 Application Note, Noise and Operational Amplifier
Circuits. A good selection table for low noise op amps can
be found in AN-940 Application Note, Low Noise Amplifier
Selection Guide for Optimal Noise Performance. An interesting
note on using one section of a monolithic dual to phase compensate the other section is in the AN-107 Application Note, Active
Feedback Improves Amplifier Phase Accuracy.
The AD8597/AD8599 are the optimum choice for low noise
performance if the source resistance is kept < 1 kΩ. At higher
values of source resistance, optimum performance with respect
to only noise is obtained with other amplifiers from Analog
Devices. Both voltage noise and current noise must be considered. For more information on avoiding noise from grounding
problems and inadequate bypassing, see the AN-345 Application
Note, Grounding for Low- and High-Frequency Circuits. For
V+
7
Q36
R18
R19
D1
D31
R31
D2
D34
6
2
INVERTING –
INPUT
Q18 Q19
D39
D41
D40
D42
C1
VB
Q19
OUTPUT
R1
Q20
D3
R32
3
NONINVERTING
+
INPUT
Q32
Q27
Q28
4
V–
Figure 59. Simplified Schematic
Rev. E | Page 16 of 20
06247-079
D2
Data Sheet
AD8597/AD8599
OUTLINE DIMENSIONS
5.00 (0.1968)
4.80 (0.1890)
8
4.00 (0.1574)
3.80 (0.1497)
1
5
6.20 (0.2441)
5.80 (0.2284)
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
SEATING
PLANE
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
0.50 (0.0196)
0.25 (0.0099)
45°
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
012407-A
COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 60. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body (R-8)
Dimensions shown in millimeters and (inches)
0.60 MAX
5
TOP
VIEW
PIN 1
INDICATOR
2.95
2.75 SQ
2.55
8
12° MAX
0.50
0.40
0.30
0.70 MAX
0.65 TYP
0.05 MAX
0.01 NOM
0.30
0.23
0.18
SEATING
PLANE
0.20 REF
1.60
1.45
1.30
EXPOSED
PAD
(BOTTOM VIEW)
4
0.90 MAX
0.85 NOM
0.50
BSC
0.60 MAX
1
1.89
1.74
1.59
PIN 1
INDICATOR
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATIONS
SECTION OF THIS DATA SHEET.
04-04-2012-A
3.25
3.00 SQ
2.75
Figure 61. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]
3 mm × 3 mm Body, Very Thin, Dual Lead
(CP-8-2)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
AD8597ACPZ-R2
AD8597ACPZ-REEL
AD8597ACPZ-REEL7
AD8597ARZ
AD8597ARZ-REEL
AD8597ARZ-REEL7
AD8599ARZ
AD8599ARZ-REEL
AD8599ARZ-REEL7
1
Temperature Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Package Description
8-Lead Lead Frame Chip Scale Package [LFCSP_VD]
8-Lead Lead Frame Chip Scale Package [LFCSP_VD]
8-Lead Lead Frame Chip Scale Package [LFCSP_VD]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
Z = RoHS Complaint Part.
Rev. E | Page 17 of 20
Package Option
CP-8-2
CP-8-2
CP-8-2
R-8
R-8
R-8
R-8
R-8
R-8
Branding
A22
A22
A22
AD8597/AD8599
Data Sheet
NOTES
Rev. E | Page 18 of 20
Data Sheet
AD8597/AD8599
NOTES
Rev. E | Page 19 of 20
AD8597/AD8599
Data Sheet
NOTES
©2007–2013 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D06274-0-10/13(E)
Rev. E | Page 20 of 20