TLE8458 LIN Transceiver with integrated Voltage Regulator TLE8458G TLE8458GV33 Data Sheet Rev. 1.1, 2014-04-01 Automotive Power TLE8458 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.1 5.2 5.2.1 5.2.2 5.2.2.1 5.2.2.2 5.2.3 5.2.4 5.2.5 5.2.5.1 5.2.5.2 5.2.5.3 5.2.6 5.2.7 5.3 5.4 5.5 Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Operation Mode State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Description of Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Stand-By Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Normal Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Normal Slope Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Software Flash Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Wake-up Events in Sleep and Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Bus Wake-up Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Local Wake-up Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Mode Transition via EN pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Over-Temperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical Characteristics EN and WK Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Power Up, Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6 6.1 6.2 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Description of Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Electrical Characteristics of the Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7 7.1 7.1.1 7.1.2 7.1.3 7.2 LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TxD Time-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LIN Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics of the LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 20 21 22 22 23 8 8.1 8.1.1 8.2 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ESD Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMC Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Compatibility to Stand-Alone LIN transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 28 28 28 9 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 10 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Data Sheet 2 6 6 7 7 Rev. 1.1 2014-04-01 LIN Transceiver with integrated Voltage Regulator LIN-LDO 1 TLE8458 Overview Features • LIN Transceiver compliant to LIN 2.1 • 5 V or 3.3 V Low Drop Voltage Regulator • 50 mA output current capability • Normal, Stop, and Sleep modes • Wake-up via bus from Sleep Mode • Wake-up from Local WK pin • Very low quiescent current in Stop Mode • Very low quiescent current in Sleep Mode • Very high ESD Robustness ± 10 kV according IEC61000-4-2 • Bus short to ground and VBat protection • Software Flash mode • Over-Temperature protection • Pin- and function compatible to single LIN Transceivers, like TLE7259-3GE • Green (RoHS compliant) product • AEC Qualified PG-DSO-8-16 Description The TLE8458G and TLE8458GV33 integrate a low drop voltage regulator and a LIN transceiver on one monolithic circuit. The device is suitable to supply microcontrollers and driving a LIN bus at the same time. The TLE8458 is pin compatible to stand-alone LIN transceivers like the TLE7259-3GE. The combination of a voltage regulator and a LIN transceiver on one circuit decreases the quiescent current for a typical application to a value of 8 μA, while the TLE8458 is still able to wake-up off a LIN bus signal or a signal change on the local wake-up input WK. Compliant to all LIN standards and with a wide operational supply range, the TLE8458 can be used in all automotive applications. Based on the Infineon Smart Power Technology SPT®, the TLE8458 provides excellent ESD robustness together with a very high electro-magnetic immunity (EMI). The TLE8458 reaches a very low level of electro-magnetic emission (EME) within a broad frequency range. The TLE8458 family and the Infineon SPT® technology are AEC qualified and tailored to withstand the harsh conditions in the automotive environment. Type Package Marking Note TLE8458G PG-DSO-8-16 8458G VCC = 5 V TLE8458GV33 PG-DSO-8-16 8458GV3 VCC = 3.3 V Data Sheet 3 Rev. 1.1, 2014-04-01 TLE8458 Block Diagram 2 Block Diagram 8 VCC Overtem perature Shutdow n Bandgap R eference + 1 - VS C harge Pum p 7 Supply RBUS LIN Output Stage 6 D river M ode C ontrol T em p.Protection C urrent Lim it 2 EN R EN T xD Input 4 TxD T im eout R TxD R eceiver F ilter Vcc 1 W ake and Bus C om parator WK F ilter 5 3 Figure 1 Data Sheet RxD GND Block Diagram 4 Rev. 1.1, 2014-04-01 TLE8458 Pin Configuration 3 Pin Configuration 3.1 Pin Assignments RxD 1 8 VC C EN 2 7 VS WK 3 6 LIN TxD 4 5 GND Figure 2 Pin Configuration 3.2 Pin Definitions and Functions Table 1 Pin Definition Pin Symbol Function 1 RxD Receive Data Output; Low in dominant state, active low after a Wake-up event on BUS or WK pin. 2 EN Enable Input; Integrated pull-down resistor, device set to normal operation mode when HIGH. 3 WK Wake-up Input; Active LOW, negative edge triggered, internal pull-up. 4 TxD Transmit Data Input; Integrated pull-down resistor, LOW in dominant state. Active LOW after Wake-up via WK pin. 5 GND Ground 6 LIN Bus Output / Input; LIN bus input / Output, LOW in dominant state, Internal termination and pull-up current source. 7 VS Battery Supply Input 8 VCC Output Voltage; Decouple to GND with a capacitor CVcc ≥ 470 nF, ESR < 6 Ω at 10 kHz, Active during Normal Mode, disabled in Sleep Mode. Data Sheet 5 Rev. 1.1, 2014-04-01 TLE8458 General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Table 2 Absolute Maximum Ratings 1) All voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. -0.3 – 40 V LIN2.1 Param 11 P_4.1.1 Input Voltage on LIN, WK pin versus VLIN,G GND -40 – 40 V – P_4.1.2 Logic Voltages at EN, TxD, RxD pin VL,max -0.3 – 5.5 V – P_4.1.3 Output Voltage at VCC pin VCC -0.3 – 5.5 V Static P_4.1.4 Junction Temperature Tj -40 – 150 °C – P_4.1.5 Storage Temperature Tstg -55 – 150 °C – P_4.1.6 – 2 kV HBM2) P_4.1.7 2) P_4.1.8 P_4.1.9 Voltages Supply Voltage on VS pin VS Temperatures ESD Resistivity ESD all pins ESD VS, WK, LIN versus GND VESD,HBM -2 VESD,HBM -8 ESD Resistivity all pins versus GND VESD,CDM -750 – 8 kV HBM – 750 V CDM3) 1) Not subject to production test; specified by design. 2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001 (1.5 kΩ, 100pF) 3) ESD susceptibility, Charged Device Model “CDM” EIA / JESD 22-C101 or ESDA STM5.3.1 Notes 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 6 Rev. 1.1, 2014-04-01 TLE8458 General Product Characteristics 4.2 Functional Range Table 3 Functional Range Symbol Parameter Values Min. Typ. Max. Unit Note / Test Condition Number Extended Supply Range VS(EXT) 5.5 – 40 V Parameter deviations possible P_4.2.1 Supply Voltage for Normal Operation VS(Nor) 7 – 27 V LIN 2.1 Param. 11 P_4.2.3 Junction Temperature Tj -40 – 150 °C – P_4.2.2 Note: Within the functional range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Thermal Characteristics Table 4 Thermal Resistance Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number P_4.3.1 Thermal Resistance Junction to Case PG-DSO-8-16 RthJC,G – 55 – K/W 1) Junction to Ambient PG-DSO-8-16 RthJA,G – 120 – K/W 1) 2) P_4.3.2 150 – 200 °C 3) P_4.3.5 P_4.3.6 , Thermal Shutdown Junction Temperature VCC Shutdown Temperature TSD,Vcc VCC Thermal Shutdown Hysteresis ∆TSD,Vcc – 35 – K 3) LIN Shutdown Temperature TSD,LIN – 200 °C 3) P_4.3.7 K 3) P_4.3.8 LIN Thermal Shutdown Hysteresis ∆TSD,LIN 150 – 10 – 1) Not subject to production test. Simulated thermal resistance 2) The RthJA values are according to Jedec JESD51-2,-7 at natural convection on 2s2p board for 1 W. Package was simulated on a 76.2 × 114.3 × 1.5 mm³ board with 2 inner copper layers (70 µm thick). 3) Not subject to production test, specified by design. Data Sheet 7 Rev. 1.1, 2014-04-01 TLE8458 Mode Control 5 Mode Control 5.1 Operation Mode State Diagram Start Up Power Up Wake-Up Source indication on the Pins RxD, TxD in Stand-By Mode RxD TxD 0 0 11) 0 1 0 1 11) Standby Mode Vcc on BUS off Wake Source WK pin LIN Bus Power-up - 1) weak pull-down, to see high signal a external pull-up resistor is required EN Go to Normal trmode EN Normal Operation Mode Normal Slope Mode EN TxD Vcc on BUS on EN Software Flash Mode Vcc on BUS on EN EN TxD Go to Sleep tmode EN TxD Go to Stop tmode EN EN TxD Sleep Mode Vcc off BUS off EN Figure 3 Data Sheet TxD Go to Sleep tmode WK pin or Wake Up BUS Stop Mode TxD Vcc on BUS off EN WK pin or Wake Up BUS Operation Mode State Diagram 8 Rev. 1.1, 2014-04-01 TLE8458 Mode Control 5.2 Description of Mode Control The TLE8458 has 4 major operation modes: • Normal Operation Mode • Stand-By Mode • Sleep Mode • Stop Mode The Normal Operation mode contains 2 sub-operation modes, which differentiate by the slew rate control of the LIN Bus signal (see Figure 3). Sub-operation modes with different slew rates on the BUS pin: • Normal Slope Mode, for data transmission rates up to 20 kBaud • Software Flash mode, for programming of the external microcontroller The operation mode of the TLE8458 is selected by the EN pin and the TxD pin. (see Table 5, see Figure 4). Table 5 Operation Modes Mode EN TxD RxD VCC LIN Bus Termination Comments Normal Operation HIGH Mode LOW LOW HIGH1) HIGH ON 30 kΩ (typical) TxD drives the data to the bus, RxD indicates the data on the bus. Stand-By Mode LOW LOW LOW HIGH2) HIGH ON 30 kΩ (typical) In Stand-By Mode the RxD and TxD pins indicate the Wake-up source Sleep Mode LOW HIGH Float OFF High Impedance For Sleep Mode TxD needs to be HIGH for the time tmode1 Stop Mode LOW LOW Float ON High Impedance For Stop Mode TxD needs to be LOW for the time tmode1 1) The TxD pin acts as an input 2) The TxD pin acts as an output and indicates the Wake-up source.The TxD input needs an external termination to indicate a HIGH or a LOW signal. The external termination could be a pull-up resistor or an active microcontroller output. Data Sheet 9 Rev. 1.1, 2014-04-01 TLE8458 Mode Control Stand-By Mode to Normal Operation Mode tMode_NO EN ttorec TxD Don’t Care Data Transmission Stand-by Mode Normal Operation Mode Normal Operation Mode1) to Sleep Mode tmode1 EN TxD Data Transmission Don’t Care Normal Operation Mode1) Sleep Mode Normal Operation Mode1) to Stop Mode EN tmode2 tmode3 TxD tmode1 Data Transmission Normal Operation Mode1) Stop Mode Stop Mode to Sleep Mode EN TxD tmode1 Stop Mode 1) Figure 4 Data Sheet Don’t Care Sleep Mode Normal Operation Mode can be either Normal Slope Mode or Software Flash Mode Mode Transition 10 Rev. 1.1, 2014-04-01 TLE8458 Mode Control 5.2.1 Stand-By Mode The Stand-By Mode is an idle operation mode, which disables the communication to the LIN bus. The TLE8458 enters automatically the Stand-By Mode after a Power-up. By setting the EN pin to HIGH, the operation mode changes to Normal Operation Mode, regardless of the signal applied to the TxD pin. The TLE8458 can be transferred to Stand-By mode by the following options: • After Power-up on the supply VS, the TLE8458 starts in Stand-By Mode. • From Sleep Mode or from Stop Mode the TLE8458 changes to Stand-By Mode if a Wake-up event occurs on the LIN bus. • From Sleep Mode or from Stop Mode the TLE8458 changes to Stand-By Mode if a Wake-up event occurs on the local Wake input WK. • In case of an undervoltage event on VS, the TLE8458 changes to Stand-By Mode regardless of selected operation mode. In Stand-By mode the external power supply VCC is active and LIN bus output stage is disabled. The TLE8458 provides the following functionality in Stand-By Mode: • The power supply VCC is active and functional. • The LIN transceiver output stage is disabled, no communication to the LIN bus is possible. • The LIN transceiver bus input receiver is disabled. • The LIN bus is terminated by the 30 kΩ. • Both digital pins, the TxD pin and the RxD pin act as output pins and indicate a Wake-up or a Power-up event2). • The EN input pin is active. By setting the EN pin to HIGH the TLE8458 changes the operation mode to Normal Operation Mode (see Figure 3). • The Wake-up logic is disabled. Wake-up events don’t trigger an operation mode change. Table 6 Logic table for Wake-up monitoring1) Power-up Wake-up event RxD TxD2) Comments Yes No HIGH LOW Power Up event No Via LIN Bus LOW HIGH Wake-up via LIN Bus No Via WK Pin LOW LOW Wake-up via local Wake pin WK 1) The Wake-up monitor is only active in Stand-By Mode 2) The TxD input needs an external termination to indicate a “High” or a “Low” signal. The external termination could be a pullup resistor or an active microcontroller output. 5.2.2 Normal Operation Mode The TLE8458 enters the Normal Operation Mode after the microcontroller sets EN to “High” (see Figure 4). In Normal Operation mode the LIN bus receiver and the LIN bus transmitter are active. The TLE8458 converts the logical HIGH and LOW signals on the TxD input pin to DOMINANT and RECESSIVE signals to the LIN bus. Simultaneously the input receiver of the TLE8458 converts the DOMINANT and RECESSIVE signals on the LIN bus to HIGH and LOW signals to the RxD output. In Normal Operation mode the output voltage VCC is active and the bus termination is set to 30 kΩ. Normal Slope Mode and the Software Flash Mode are Normal Operation Modes. In these two sub-modes the behavior of the power supply VCC and the bus termination are the same. Per default the TLE8458 always enters into Normal Slope Mode, either from Sleep Mode, Stop Mode or from Stand-By Mode. The Software Flash Mode can only be entered from Normal Slope mode. Data Sheet 11 Rev. 1.1, 2014-04-01 TLE8458 Mode Control In order to avoid any bus disturbance during a mode change, the output stage of the TLE8458 is disabled and set to recessive state during the mode change procedure. To release the TLE8458 for data communication on the LIN bus, the TxD pin needs to be set to HIGH for the time ttorec after the operation mode change. 5.2.2.1 Normal Slope Mode In Normal Slope Mode the maximum data transmission rate of the LIN transceiver is limited by the slope control mechanism of LIN output signal. The limitation of the slew rate of the LIN output signal results in an optimized radiated emission fulfilling automotive EMC requirements. The data transmission rate of the TLE8458G and the TLE8458GV33 is limited to 20 kBaud in Normal Operation Mode and the devices are compliant to the specification LIN2.1. 5.2.2.2 Software Flash Mode Software Flash Mode is a Normal Operation Mode and it is possible to transmit data to the LIN bus and receive data from the LIN bus. The slope control mechanism of the LIN transmitter output stage is disabled and therefore it is possible to reach higher data transmission rates, disregarding the EMC limitation of the LIN network. The Software Flash Mode can be used for programming the external microcontroller via the LIN bus, got example during the production flow of the ECU. The Software Flash Mode can only be entered from Normal Slope Mode (see Figure 3). By setting the EN pin to low for the time tfl1 and by generating a falling and a rising edge at the TxD pin with the time tfl2 and tfl3 during the low phase of the EN pin, the TLE8458 changes to the Software Flash Mode (see Figure 5). Vice versa, the TLE8458 changes from Software Flash Mode to Normal Slope Mode by applying the same sequence to the EN pin and the TxD pin. In any case, regardless if the device is in Normal Slope Mode or in Software Flash Mode, a LOW signal on the EN pin changes the operation mode to Sleep Mode or Stop Mode. The slope control mechanism will be activated, when the device changes to the Normal Operation Mode again. Software Flash Mode Normal Mode tfl1 EN TxD Normal Mode tfl2 tfl3 tfl1 tfl2 tfl3 tfl3 tfl3 TO20070515.vsd Figure 5 Data Sheet Software Flash Mode 12 Rev. 1.1, 2014-04-01 TLE8458 Mode Control 5.2.3 Stop Mode The Stop Mode is a Low Power Mode, meaning the quiescent current of the TLE8458 is reduced to a minimum, while the device is still able to recognized Wake-up events. The following functions are available in Stop Mode: • The power supply VCC is active and functional. • The LIN transceiver output stage is disabled, no communication to the LIN bus is possible. • The LIN transceiver input receiver is disabled. • The internal LIN bus termination is switched off. • The TxD input and the RxD output is inactive. • The EN input is active. A HIGH signal on the EN pin changes the operation mode to Normal Operation Mode. • The LIN bus Wake-up receiver is active, a Wake-up event on the LIN bus changes the operation mode to Stand-By Mode. • The wake input WK is active, a Wake-up event on the WK pin changes the operation mode to Stand-By Mode. Entering Stop Mode is only possible from the Normal Operation Mode, regardless if the device is in Normal Slope Mode or Software Flash Mode. Setting the signal on the EN pin to LOW, followed by a LOW signal on the TxD pin for the time tMode1 changes the operation mode to Stop Mode (see Figure 4). 5.2.4 Sleep Mode The Sleep Mode is a Low Power Mode as well, in comparison to the Stop Mode, the quiescent current of the TLE8458 is even further reduced. In Sleep Mode the TLE8458 is able as well to recognized Wake-up events. The Wake-up behavior in Sleep Mode is the same as in Stop Mode. The only difference between Sleep Mode and Stop Mode is, that in Stop Mode the output voltage VCC is active, in Sleep Mode the output voltage VCC is disabled. Sleep Mode can be entered from Normal Operation Mode by setting the EN pin to LOW and simultaneously setting the TxD pin to HIGH for the time tMode1 (see Figure 4). The Sleep Mode can be also entered from Stop Mode, by setting the signal on the TxD pin to HIGH for the time tMode1. 5.2.5 Wake-up Events in Sleep and Stop Mode A Wake-up event in Sleep Mode or Stop Mode changes the operation mode of the TLE8458 to Stand-By Mode. There are 3 different options to Wake-up the TLE8458 from Sleep Mode or Stop Mode: • A bus Wake-up event, caused by a message on the LIN bus. • A local Wake-up event, caused by a logical LOW signal on the WK pin. • A signal change to logical HIGH on the EN pin. Data Sheet 13 Rev. 1.1, 2014-04-01 TLE8458 Mode Control 5.2.5.1 Bus Wake-up Event A falling edge on the LIN bus, followed by a dominant bus signal for the time t > twk,Bus causes a bus Wake-up or also called remote Wake-up. The mode change becomes active with the following rising edge on the LIN bus (see Figure 6). In Stand-By Mode the Wake-up source is indicated by the TxD and RxD pins (see Table 6). LIN BUS Signal VBUS VBUS,wk VBUS,dom tWK,Bus Sleep Mode Stand-By Mode Stop Mode Stand-By Mode VCC VCC Note: In Sleep Mode the Output Voltage VCC is disabled and will be actived by a mode change to Stand-By Mode. In Stop Mode the Output Voltage VCC is active and remains active after the mode change to Stand-By Mode. Figure 6 Bus Wake-up 5.2.5.2 Local Wake-up Event A Wake-up via LOW signal on the pin WK is called local Wake-up. A falling edge of the signal on the pin WK followed by a LOW signal for the time t > tWK change the operation mode from Sleep Mode or Stop Mode to StandBy Mode. In the case the LOW signal is shorter then the time t < tWk, the Wake-up is ignored and the TLE8458 remains in Sleep Mode or Stop Mode. In Stand-By Mode the Wake-up source is indicated by the TxD and RxD pins (see Table 6). In order to avoid unintended Wake-up´s via the local wake pin Wk, the Wk pin should get connected by a serial resistor to the power supply Vs (see Figure 15). Before the TLE8458 enters into Sleep Mode it is required to set the Voltage on the WK pin to the Vs power supply. Data Sheet 14 Rev. 1.1, 2014-04-01 TLE8458 Mode Control WK Signal VWK VWK,L tWK Sleep Mode Stand-By Mode Stop Mode Stand-By Mode VCC Note: In Sleep Mode the Output Voltage VCC is disabled and will be actived by a mode change to Stand-By Mode. In Stop Mode the Output Voltage VCC is active and remains active after the mode change to Stand-By Mode. VCC Figure 7 Local Bus Wake-up 5.2.5.3 Mode Transition via EN pin The EN pin is used for the mode selection. In case the power supply VCC is present, like in Stop Mode or Sleep Mode, the TLE8458 can be directly transferred into Normal Operation Mode by setting the EN pin to HIGH. An integrated pull-down resistor at the EN pin avoids mode changes due to floating signals on the EN input. The TLE8458 changes the operation mode to Normal Operation Mode, from Stop Mode or from Sleep Mode if the EN pin is HIGH for the time t > tMode1 (see Figure 8). An integrated hysteresis on the EN pin avoids bit toggling. The mode transition via the EN pin will not be indicated in Stand-By Mode. EN Signal VEN VEN,ON EN Hysteresis VEN,OFF tMode_NO Stop Mode / Stand-By Mode Figure 8 Data Sheet tMode1 Normal Operation Mode Sleep Mode Mode Transition via EN pin 15 Rev. 1.1, 2014-04-01 TLE8458 Mode Control 5.2.6 Power Up After a Power-up the device enters per default into Stand-By Mode. Above VS,PU the VCC output voltage follows the supply VS closely. In Stand-By Mode, the Power-up is indicated by a HIGH signal on the RxD pin and a LOW signal on the TxD pin. Power Down Stand-by Mode Power Down VS VS VCC VS,PU VCC RxD VS,PU VRxD,H TxD EN Figure 9 Power-up Level 5.2.7 Over-Temperature Protection The TLE8458 is protected against thermal over-heating. Over-heating could be caused by a short circuit on the VCC power supply or by a permanent short on the LIN bus combined with a high ambient temperature. In case of an over-temperature event, the TLE8458 eliminates the root cause of the over-temperature event. Two different temperature sensors are implemented inside the TLE8458. One temperature sensor protects the voltage regulator and controls the output voltage VCC, the second temperature sensor protects the LIN transmitter output stage. In case the junction temperature on the LIN output stage raises above the threshold T > TSD,LIN, the temperature sensor disables the LIN output stage. The TLE8458 is still able to receive data from the LIN bus. If the temperature falls below the threshold, T < TSD,LIN, the output stage will be enabled and the communication can start again. An integrated hysteresis on the temperature sensor avoids toggling during over-temperature events. An overtemperature event on the LIN bus will not cause any operation mode change. In case the junction temperature on the VCC power output stage raises above the threshold T > TSD,VCC, the temperature sensor shuts down the output voltage VCC. If the junction temperature falls below the threshold, T > TSD,VCC, the power supply VCC will be enabled again. An integrated hysteresis on the temperature sensor avoids toggling during over-temperature events. Data Sheet 16 Rev. 1.1, 2014-04-01 TLE8458 Mode Control 5.3 Current Consumption Table 7 Electrical Characteristics: Current Consumption VS = 13.5 V, Tj = -40 °C +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Current Consumption Current Consumption in Normal Mode at VS in LIN Recessive State IS_rec – 1.3 2.2 mA Recessive state, without RL; VTxD = VCC; ICC = 100 µA P_5.3.1 Current Consumption in Normal Mode at VS in LIN Dominant State IS_dom – 1.8 3.2 mA Dominant state, without RL; VTxD = 0 V; ICC = 100 µA P_5.3.2 Current Consumption at VS in Sleep Mode IS_sleep – 8 12 µA P_5.3.3 Sleep Mode, -40 °C < Tj < 85 °C; VLIN = VS; VCC = 0 V Current Consumption at VS in Stop Mode IS_stop – – 40 µA Stop Mode; P_5.3.4 -40 °C < Tj < 85 °C; VLIN = VS; no load on VCC 40 72 µA Sleep Mode, VLIN = 0 V VCC = 0 V IS_sleep_short 6 Current Consumption in Sleep Mode, Bus Shorted to Ground Data Sheet 17 P_5.3.5 Rev. 1.1, 2014-04-01 TLE8458 Mode Control 5.4 Electrical Characteristics EN and WK Pins Table 8 Electrical Characteristics: Mode Pins 7 V < VS < 27 V, Tj = -40 °C +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number EN Pin HIGH Level Input Voltage VEN,H 2 – – V – P_5.4.6 LOW Level Input Voltage VEN,L – – 0.8 V – P_5.4.7 EN Input Hysteresis VEN,hys – 0.3 – V – P_5.4.8 EN pull-down Resistance REN 20 40 80 kΩ – P_5.4.9 Filter Time for Mode Change tmode1 50 – 150 µs – P_5.4.10 TxD low delay time tmode2 0 – 50 µs Stop Mode transfer P_5.4.11 TxD high time tmode3 10 – – µs Stop Mode transfer P_5.4.12 10 – µs 1) – 50 µs 1) µs 1) P_5.4.14 µs 1) P_5.4.15 Time for Mode Change from Stop or tMode_NO – Sleep Mode to Normal Operation Mode tfl1 Time for Flash Mode activation TxD Time for Flash Mode activation 25 tfl2 5 – – Transfer to Normal P_5.4.1 Operation Mode EN pin low P_5.4.13 tfl3 10 High Level Input Voltage VWK,H VS - 1 – VS + 3 V VS = 13.5 V P_5.4.16 Low Level Input Voltage VWK,L -0.3 – VS - 4 V VS = 13.5 V P_5.4.17 Pull-up Current IWK,PU -60 -30 -3 µA VWK = 0V VS = 13.5 V P_5.4.18 High Level Leakage Current IWK,L -5 – 5 µA VS = 0 V; VWK = 40 V P_5.4.19 Dominant Time for Wake-up tWK 30 – 150 µs – P_5.4.20 TxD Time for Flash Mode activation – – WK Pin 1) Not subject to production test, specified by design 5.5 Power Up, Power Down Table 9 Electrical Characteristics: Power-up Tj = -40 °C +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. – – 3.5 Unit Note / Test Condition Number V ICC = 40 mA, VCC > 3.0 V P_5.5.21 Vs Pin VS Power-up Voltage Threshold VS,PU Data Sheet 18 Rev. 1.1, 2014-04-01 TLE8458 Voltage Regulator 6 Voltage Regulator 6.1 Description of Voltage Regulator The TLE8458G has a monolithic integrated voltage regulator dedicated for microcontroller supplies under harsh automotive environment conditions. Due to its ultra low current consumption, the TLE8458 is perfectly suited for applications permanently connected to a battery. Additionally, the regulator is switched off in Sleep Mode to achieve a very low quiescent current. The TLE8458 is equipped with protection functions against overloading, short circuits, and over temperature. 6.2 Electrical Characteristics of the Voltage Regulator Table 10 Electrical Characteristics: Voltage Regulator VS = 5.5 V to 13.5 V, Tj = -40 °C +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. Output Voltage for TLE8458G VCC,5 4.9 5 5.1 V 1 mA < ICC < 50 mA; 5.5 V < VS < 18 V P_6.2.1 Output Voltage for TLE8458G VCC,5 4.9 5 5.1 V ICC = 10 mA; 5.5 V < VS < 40 V P_6.2.8 Output Voltage for TLE8458GV33 VCC,3.3 3.234 3.3 3.366 V 1 mA < ICC < 50 mA; 5.5 V < VS < 18 V P_6.2.2 Output Voltage for TLE8458GV33 VCC,3.3 3.234 3.3 3.366 V ICC = 10 mA; 5.5 V < VS < 40 V P_6.2.9 Output Current Limitation TLE8458G ICC,lim 60 – – mA VCC,5 > 4.5V VS = 13.5 V P_6.2.3 Output Current Limitation TLE8458GV33 ICC,lim 50 – – mA VCC3,3 > 2.8V VS = 13.5 V P_6.2.10 Output Voltage Drop VDR – 250 500 mV ICC = 40 mA1) P_6.2.4 Load Regulation ∆VCC,LO – 25 50 mV 1 mA < ICC < 50 mA VS =13.5 V P_6.2.5 Line Regulation ∆VCC,LI – 25 50 mV ICC = 1 mA; 6 V < VS < 28 V P_6.2.6 PSRR – f = 100 Hz; Vr = 0.5 Vpp2)3) 1) Measured when the output voltage has dropped 100 mV from the nominal value obtained at VS = 13.5 V Power Supply Ripple Rejection 60 – dB P_6.2.7 2) Voltage of ripple Vr is 0.5 V peak-to-peak 3) Not subject to production test; specified by design. Data Sheet 19 Rev. 1.1, 2014-04-01 TLE8458 LIN Transceiver 7 LIN Transceiver 7.1 Functional Description The LIN Bus is a single wire, bi-directional bus, used for in-vehicle networks. The LIN Transceiver implemented inside the TLE8458 is the interface between the microcontroller and the physical LIN Bus. (see Figure 1 and Figure 15). The digital output data from the microcontroller are driven to the LIN bus via the TxD input pin on the TLE8458. The transmit data stream on the TxD input is converted to a LIN bus signal with optimized slew rate to minimize the EME level of the LIN network. The RxD output sends back the information from the LIN bus to the microcontroller. The receiver has an integrated filter network to suppress noise on the LIN Bus and to increase the EMI (Electro Magnetic Immunity) level of the transceiver. Two logical states are possible on the LIN bus according to the LIN Specification 2.1 (see Figure 10): In dominant state, the voltage on the LIN bus is set close to the GND level. In recessive state, the voltage on the LIN bus is set close to the supply voltage VS. By setting the TxD input of the TLE8458 to LOW the transceiver generates a dominant level on the LIN interface pin. The RxD output reads back the signal on the LIN bus and indicates a dominant LIN bus signal with a logical LOW to the microcontroller. Setting the TxD pin to HIGH the transceiver TLE8458 sets the LIN interface pin LIN to the recessive level, at the same time the recessive level on the LIN bus is indicated by a logical “High” on the RxD output. Every LIN network consists of a master node and one or more slave nodes. To configure the TLE8458 for master node applications, a resistor in the range of 1 kΩ and a reverse diode must be connected between the LIN bus and the power supply VS. (see Figure 15). VCC Recessive Dominant Recessive TxD t VS Recessive Dominant Recessive LIN t VCC Recessive Dominant Recessive RxD t Figure 10 Data Sheet LIN Bus Signals 20 Rev. 1.1, 2014-04-01 TLE8458 LIN Transceiver 7.1.1 Undervoltage Detection A dropping power supply VS on a local ECU can effect the communication of the whole LIN network. To avoid any blocking of the LIN network by a local ECU the TLE8458 has an integrated Power-On reset at the supply VS and an undervoltage detection at the supply VS. In case the supply voltage VS is dropping below the Power-On reset level VS < VS,UV,PON, the TLE8458 changes the operation mode to Stand-By mode. In Stand-By mode the output stage of the TLE8458 is disabled and no communication to the LIN bus is possible. The internal bus termination remains active as well as the VCC output voltage. (see Figure 1 and Figure 11). In Stand-By mode the RxD pin indicates the low power supply condition with a logical HIGH signal. Setting the EN pin to logical HIGH changes the operation mode back to Normal Operation mode. In case the supply voltage VS is dropping below the undervoltage reset level VS < VSUV (see Figure 11), the TLE8458 disables the output and receiver stages. This feature secures the communication on the LIN bus. If the power supply VS reaches a higher level as the undervoltage reset level VS > VSUV the TLE8458 continues with normal operation. A mode change only applies if the power supply VS drops below the power on reset level (VS < VS,UV,PON). Supply voltage Vs Power on reset level VS,UV,PON Blanking time tUV Power On reset Normal Operation Mode Reset and Communication blocked Stand-By Mode Supply voltage Vs Under Voltage level VSUV Under Voltage Detection VS Power on reset level VS,UV,PON Blanking time tUV Normal Operation Mode Figure 11 Data Sheet Normal Operation Mode Communication blocked Under-Voltage Detection 21 Rev. 1.1, 2014-04-01 TLE8458 LIN Transceiver 7.1.2 TxD Time-Out If the TxD signal is dominant for the time t > ttimeout, the TxD time-out function deactivates the LIN transmitter output stage. The device remains in recessive state. The TxD time-out functions prevents the LIN bus from being blocked by a permanent LOW signal on the TxD pin, caused by a failure. The transmitter output stage is released again, after a rising edge on the TxD pin has been detected (see Figure 12). Recovery of the microcontroller error TxD Time-Out due to microcontroller error Release after TxD Time-out Normal Communication ttimeout ttorec Normal Communication TxD t LIN t Figure 12 TxD Time-Out function 7.1.3 LIN Specifications The LIN network is standardized by international regulations. The devices TLE8458G and the TLE8458GV33 are compliant to the specification LIN 2.1. The physical layer specification LIN 2.1 is a super set of the previous LIN specifications, like LIN 2.0 or LIN 1.3. The TLE8458G and the TLE8458GV33 have been qualified according to the LIN 2.1 standard, conformance test results are available on request. Data Sheet 22 Rev. 1.1, 2014-04-01 TLE8458 LIN Transceiver 7.2 Electrical Characteristics of the LIN Transceiver Table 11 Electrical Characteristics: LIN Transceiver Supply VS = 7 V to 27 V, Tj = -40 °C +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. 4 – 5 Unit Note / Test Condition Number V – P_7.2.1 V 1) P_7.2.52 µs 1) P_7.2.2 Voltage Supply Undervoltage switch-off Power-On Reset Level Blanking Time for UnderVoltage switch-off Vsuv VS,UV,PON 2 tuv – – 4 10 – 1) Not subject to production test; specified by design. Table 12 Electrical Characteristics: LIN Transceiver VS = 7 V to 27 V, Tj = -40 °C +150 °C, RL = 500 Ω, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. VRxD,H 0.8 × – – V IRxD = -1.6 mA; Vbus = VS P_7.2.3 VRxD,L – – 0.2 × V IRxD = 1.6 mA Vbus = 0 V P_7.2.4 VTxD,H 0.7 × V Recessive State P_7.2.5 VTxD,hys – mV – P_7.2.6 VTxD,L – V Dominant State P_7.2.7 TxD Pull-down Resistance RTxD – 300 – kΩ VTxD = 0 V P_7.2.8 TxD Low Level Current (Standby Mode, after Wake-up via WK) ITxD,L 1.5 3 10 mA VTxD = 0.9 V P_7.2.9 Receiver Output (RxD pin) HIGH Level Output Voltage LOW Level Output Voltage VCC VCC Transmission Input (TxD pin) HIGH Level Input Voltage TxD Input Hysteresis LOW Level Input Voltage Data Sheet – – VCC 0.12 × – VCC – 0.3 × VCC 23 Rev. 1.1, 2014-04-01 TLE8458 LIN Transceiver Table 12 Electrical Characteristics: LIN Transceiver (cont’d) VS = 7 V to 27 V, Tj = -40 °C +150 °C, RL = 500 Ω, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Unit Note / Test Condition Number Max. LIN Bus Receiver (LIN Pin) Receiver Threshold Voltage, Recessive to Dominant Edge VBus,rd 0.4 × 0.45 × – VS VS Receiver Dominant State VBus,dom – – Receiver Threshold Voltage, Dominant to Recessive Edge VBus,dr – Receiver Recessive State VBus,rec 0.6 × VBus,c 0.475 × VS VBus,hys 0.07 × 0.1 × Receiver Center Voltage Receiver Hysteresis Wake-up Threshold Voltage Dominant Time for Bus Wake-up 0.4 × V VBus,rec < VBus < 27 V P_7.2.10 V LIN2.1 Param. 17 P_7.2.11 VBus,rec < VBus < 27 V P_7.2.12 VS 0.55 × 0.60 × V VS VS – – V LIN2.1 Param 18 P_7.2.13 0.5 × 0.525 × VS V LIN2.1 Param 19 P_7.2.14 0.175 × VS V Vbus,hys = Vbus,rec - Vbus,dom P_7.2.15 V – P_7.2.16 VS VS VS VS LIN2.1 Param 20 VBus,wk 0.40 × 0.5 × 0.6 × VS VS VS tWK,Bus 30 – 150 µs – P_7.2.17 0.8 × – VS V VTxD = high Level P_7.2.18 LIN Bus Transmitter (LIN Pin) Bus Recessive Output Voltage VBUS,ro VS Bus Dominant Output Voltage VBUS,do – – 1.2 V VTxD = 0 V; 6.0 V ≤ VS ≤ 7.3 V; P_7.2.53 Bus Dominant Output Voltage VBUS,do – – 0.2 x V VTxD = 0 V; 7.3 V ≤ VS ≤ 10.0 V; P_7.2.19 Bus Dominant Output Voltage VBUS,do – – 2.0 V VTxD = 0 V; 10.0 V ≤ VS ≤ 18.0 V; P_7.2.20 100 150 mA VBUS = 13.5 V; LIN2.1 Param 12 P_7.2.23 0 µA VS = 0 V; VBUS = -12 V; P_7.2.24 VS Bus Short Circuit Current IBUS,sc 40 Leakage Current Loss of Ground IBUS,lk -1000 -450 Leakage Current Loss of Battery IBUS,lk Leakage Current IBUS,lk -1 – – mA VS = 18 V; VBUS = 0 V; LIN2.1 Param 13 P_7.2.26 Leakage Current Driver Off IBUS,lk – – 5 µA VS = 8 V; VBUS = 18 V; P_7.2.27 Bus Pull-up Resistance RBUS Data Sheet LIN2.1 Param 15 – – 5 µA VS = 0 V; VBUS = 18 V; P_7.2.25 LIN2.1 Param 16 LIN2.1 Param 14 20 30 47 24 kΩ Normal Mode LIN2.1 Param 26 P_7.2.28 Rev. 1.1, 2014-04-01 TLE8458 LIN Transceiver Table 12 Electrical Characteristics: LIN Transceiver (cont’d) VS = 7 V to 27 V, Tj = -40 °C +150 °C, RL = 500 Ω, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol LIN Output Current IBUS LIN Input Capacitance CBUS Receiver propagation delay bus dominant to RxD LOW td(L),R Receiver propagation delay bus recessive to RxD HIGH td(H),R Receiver delay symmetry tsym,R Values Min. Typ. Max. -60 -30 -5 15 – 1 6 Unit Note / Test Condition Number µA Sleep Mode VS = 12 V; EN = 0 V; VLIN = 0 V P_7.2.29 pF 1) P_7.2.55 µs CRxD = 20 pF; P_7.2.38 LIN2.1 Param 31 – 1 6 µs CRxD = 20 pF; P_7.2.39 LIN2.1 Param 31 -2 – 2 µs tsym,R = td(L),R - td(H),R; P_7.2.40 LIN2.1 Param 32 TxD Dominant Time Out ttimeout 6 12 20 ms VTxD = 0 V P_7.2.44 µs 1) P_7.2.45 TxD Dominant Time Out Recovery Time ttorec – 10 – Duty Cycle D1 (For worst case at 20 kbit/s) LIN2.1 Normal Slope D1 0.396 – – THRec(max) = 0.744 × VS; P_7.2.46 THDom(max) = 0.581 × VS; VS = 7.0 … 18 V; tbit = 50 µs; D1 = tbus_rec(min)/2 tbit; LIN2.1 Param 27 Duty Cycle D2 (for worst case at 20 kbit/s) LIN2.1 Normal Slope D2 – – 0.581 2) 2) THRec(min.) = 0.422 × VS; P_7.2.47 THDom(min.) = 0.284 × VS; VS = 7.6 … 18 V; tbit = 50 µs; D2 = tbus_rec(max)/2 tbit; LIN2.1 Param 28 1) Not subject to production test, specified by design. 2) Bus load conditions concerning LIN spec 2.1 CLIN, RLIN = 1 nF, 1 kΩ / 6.8 nF, 660 Ω / 10 nF, 500 Ω Data Sheet 25 Rev. 1.1, 2014-04-01 TLE8458 LIN Transceiver VS TxD 100 nF RxD RLIN CRxD LIN CLIN Figure 13 WK GND Simplified Test Circuit for Dynamic Characteristics tBit tBit tBit TxD (input to transmitting node) tBus_dom(max) VSUP (Transceiver supply of transmitting node) tBus_rec(min) THRec(max) THDom(max) Thresholds of receiving node 1 THRec(min) THDom(min) Thresholds of receiving node 2 tBus_dom(min) tBus_rec(max) RxD (output of receiving node 1) td(L),R(1) td(H),R(1) RxD (output of receiving node 2) t(L),R(2) td(H),r(2) Duty Cycle 1 = tBUS_rec(min) / (2 x tBIT) Duty Cycle 2 = tBUS_rec(max) / (2 x tBIT) Figure 14 Data Sheet Timing Diagram for Dynamic Characteristics 26 Rev. 1.1, 2014-04-01 TLE8458 Application Information 8 Application Information Note: The following information is given as a hint for the implementation of the device only and should not be regarded as a description or warranty of a certain functionality, condition or quality o f the device. VBat LIN Bus Master Node TLE7259 -3GE 100 nF VS EN RxD TxD 1 kΩ 10 kΩ Bus 1 nF INH XC22XX GND INH 100 nF WK VQ 5V e. g. TLE 4263 22 µF 100 nF VI GND 22 µF GND ECU 1 Slave Node VS 22 µF 220 pF TLE8458 G EN RxD TxD 100 nF LIN XC22XX Vcc 10 kΩ WK GND 10 µF 100 nF GND ECU X Figure 15 Application Example Note: This is a simplified example of an application circuit. The function must be verified in the actual application. Data Sheet 27 Rev. 1.1, 2014-04-01 TLE8458 Application Information 8.1 ESD Tests Test for ESD robustness according to IEC61000-4-2 “Gun test” (150 pF, 330 Ω) have been performed. The results and test conditions are available in a separate test report (see Table 13). Table 13 ESD “Gun test” Parameter Symbol Values Min. Typ. Max. – 10 Unit Note / Test Condition Number kV GUN1) P_8.1.1 Performed Test ESD at VS, LIN versus GND VESD,GUN -10 1) ESD at WK PIN VESD,GUN -6 – 6 kV GUN P_8.1.1 1) ESD susceptibility “ESD GUN” according LIN EMC Test Specification, Section 3.4.3 (IEC 61000-4-2:2001-12), tested by external test house (IBEE Zwickau, EMC Test report Nr. 05-12-13a) 8.1.1 EMC Measurement The EMC performance has been qualified by an external test house according to the LIN EMC Test specification Version 1.0 (August 1, 2004). For the DPI measurements according to the LIN EMC Test Specification, Section 4.2 (ISO62132 part 1: 2006, ISO62132 part 4: 2006) the verification limit for the output voltage VCC, was set to a limit of +/- 100 mV. External test reports are available on request. 8.2 Pin Compatibility to Stand-Alone LIN transceivers The TLE8458G is pin - and function compatible to the single LIN transceivers like the TLE7259-3GE (see Figure 16). Instead of the INH output pin on the single LIN transceiver TLE7259-3GE the VCC power supply output can be connected to the external microcontroller. The TLE8458G provides the same operation modes and features as single LIN transceiver TLE7259-3GE. RxD 1 8 VCC RxD 1 8 INH EN 2 7 VS EN 2 7 VS WK 3 6 LIN WK 3 6 LIN TxD 4 5 GND TxD 4 5 GND TLE8458G Figure 16 Data Sheet TLE7259-3GE Pinning of TLE8458G versus the TLE7259-3GE 28 Rev. 1.1, 2014-04-01 TLE8458 Package Outlines 9 Package Outlines 0.1 2) 0.41+0.1 -0.06 0.2 8 5 1 4 5 -0.2 1) M B 0.19 +0.06 C 8 MAX. 1.27 4 -0.21) 1.75 MAX. 0.175 ±0.07 (1.45) 0.35 x 45˚ 0.64 ±0.25 6 ±0.2 A B 8x 0.2 M C 8x A Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Lead width can be 0.61 max. in dambar area GPS01181 Figure 17 PG-DSO-8-16 (SO-8 Standard, Green (RoHS compliant)) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further information on alternative packages, please visit our website: http://www.infineon.com/packages. Data Sheet 29 Dimensions in mm Rev. 1.1, 2014-04-01 TLE8458 Revision History 10 Revision History Revision Date Changes 1.1 2014-04-01 All pages: - Editorial changes, updated with latest Infineon style guide Updated compatibility with stand alone transceiver with TLE7259-3G Updated condition for Parameter P_5.3.4: no load on VCC Removed device versions TLE8458GU and -GUV33, references and description Removed LIN Duty Cycle parameters D3 and D4 (only applicatble to -GU and -GUV33) Chapter 8.1: Updated ESD and EMC references to the latest IBEE test report 1.02 2010-03-08 all pages: Editorial changes table 10: changed Output current limitation min. to 60 mA table 11: changed power on reset values figure 15: deleted 2 resistors 1.01 2009-04-28 Editorial Change to the data sheet Update table 13 on page 30. P_8.1.1 performed test changed from: “ESD at LIN Pin” to: “ESD at VS, LIN versus GND” 1.0 2009-03-23 Initial data sheet Data Sheet 30 Rev. 1.1, 2014-04-01 Edition 2014-04-01 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that lifesupport automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.