Dual Precision, Rail-to-Rail Output Operational Amplifier AD8698 FEATURES CONNECTION DIAGRAMS OUT A 1 –IN A 2 +IN A 3 AD8698 8-Lead MSOP (RM-8) 8 V+ 7 OUT B 6 –IN B TOP VIEW V– 4 (Not to Scale) 5 +IN B OUT A 1 –IN A 2 +IN A 3 AD8698 8 V+ 7 OUT B 6 –IN B TOP VIEW V– 4 (Not to Scale) 5 +IN B 04807-0-070 8-Lead SOIC (R-8) 04807-0-069 Low offset voltage: 100 µV max Low offset voltage drift: 2 µV/°C max Low input bias current: 700 pA max Low noise: 8 nV/√Hz High common-mode rejection: 118 dB min Wide operating temperature: −40°C to +85°C No phase reversal Figure 1. APPLICATIONS Photodiode amplifier Sensors and controls Multipole filters Integrator GENERAL DESCRIPTION The AD8698 is a high precision, rail-to-rail output, low noise, low input bias current operational amplifier. Offset voltage is a respectable 100 µV max and drift over temperature is below 2 µV/°C, eliminating the need for manual offset trimming. The AD8698 is ideal for high impedance sensors, minimizing offset errors due to input bias and offset currents. The rail-to-rail output maximizes dynamic range in a variety of applications, such as photodiode amplifiers, DAC I/V amplifiers, filters, and ADC input amplifiers. The AD8698 dual amplifiers are offered in 8-lead MSOP and narrow 8-lead SOIC packages. The MSOP version is available in tape and reel only. Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved. AD8698 TABLE OF CONTENTS Specifications .................................................................................... 3 Instrumentation Amplifier ....................................................... 15 Absolute Maximum Ratings ........................................................... 5 Composite Amplifier ................................................................. 15 Thermal Resistance ...................................................................... 5 Low Noise Applications ............................................................ 16 ESD Caution.................................................................................. 5 Driving ADCs ............................................................................. 16 Typical Performance Characteristics............................................. 6 Using the AD8698 in Active Filter Designs ........................... 16 Applications .................................................................................... 14 Outline Dimensions....................................................................... 17 Input Overvoltage Protection................................................... 14 Ordering Guide .......................................................................... 17 Driving Capacitive Loads .......................................................... 14 REVISION HISTORY 4/04—Revision 0: Initial Version Rev. 0 | Page 2 of 20 AD8698 SPECIFICATIONS VS = ±15 V, VCM = 0 V (@TA = 25oC, unless otherwise noted.) Table 1. Parameter Symbol Conditions Min Typ Max Unit 20 100 300 µV µV INPUT CHARACTERISTICS Offset Voltage VOS Offset Voltage Drift Input Bias Current ∆VOS/∆T IB Input Offset Current IOS Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Input Capacitance IVR CMRR AVO CDIFF CCM −40°C < TA < +85°C −40°C < TA < +85°C 0.6 −40°C < TA < +85°C OUTPUT CHARACTERISTICS Output Voltage Swing (Ref. to GND) (Ref. to GND) POWER SUPPLY Power Supply Rejection Ratio Supply Current Supply Voltage DYNAMIC PERFORMANCE Slew Rate 132 1450 6.5 4.6 VOH IL = 1 mA, −40°C < TA < +85°C 14.85 14.93 V IL = 5 mA, −40°C < TA < +85°C 14.6 14.8 V VOL IL = 1 mA, −40°C < TA < +85°C −14.93 −14.6 V VOL IL = 5 mA, −40°C < TA < +85°C −14.82 −14.5 V PSRR ISY ±2.5 V < VS < ±15 V VO = 0 V VS −40°C < TA < +85°C −40°C < TA < +85°C 3.2 3.8 ±15 dB mA mA V SR RL = 2 kΩ GBP Phase Margin ØO Input Voltage Noise Density RL = 2 kΩ, VO = ±13.5 V −13.5V 118 900 µV/°C pA pA pA pA V dB V/mV pF pF VOH Gain Bandwidth Product NOISE PERFORMANCE Input Noise Voltage −40°C < TA < +85°C −40°C < TA < +85°C VCM = ±13.5 V 2 700 1500 700 1500 13.5 114 132 2.8 ±2.5 0.4 V/µs 1 MHz 60 Degrees en p-p 0.1 Hz < f < 10 Hz 0.6 µV p-p en f = 10 Hz 15 nV/√Hz Input Voltage Noise Density en f = 1 kHz 8 nV/√Hz Current Noise Density in f = 1 kHz 0.2 pA/√Hz Rev. 0 | Page 3 of 20 AD8698 VS = ±2.5 V, VCM = 0 V (@TA = 25oC, unless otherwise noted.) Table 2. Parameter Symbol Conditions Min Typ Max Unit 20 100 µV INPUT CHARACTERISTICS Offset Voltage VOS Offset Voltage Drift Input Bias Current ∆VOS/∆T IB Input Offset Current IOS −40°C < TA < +85°C 300 µV −40°C < TA < +85°C 2 µV/°C 700 1500 700 1500 +1.5 120 1200 6.4 4.6 pA pA pA pA V dB V/mV pF pF 2.44 2.29 V V −40°C < TA < +85°C Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Input Capacitance OUTPUT CHARACTERISTICS Output Voltage Swing (Ref. to GND) (Ref. to GND) IVR CMRR AVO CDIFF CCM VOH VOH −40°C < TA < +85°C −40°C < TA < +85°C VCM = ±13.5 V RL = 2 kΩ, VO = ±13.5 V −1.5 105 600 IL = 1 mA, −40°C < TA < +85°C IL = 5 mA, −40°C < TA < +85°C 2.35 2.1 VOL IL = 1 mA, −40°C < TA < +85°C −2.43 −2.2 V VOL IL = 5 mA, TA = 25°C −2.15 −1.9 V IL= 5mA, −40°C<TA<+85°C POWER SUPPLY Power Supply Rejection Ratio Supply Current Supply Voltage DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Input Noise Voltage PSRR ISY ±2.5 V < VS < ±15 V VO = 0 V Vs −40°C < TA < +85°C −40°C < TA < +85°C SR GBP RL = 2 kΩ Øo −1.6 114 132 2.3 ±2.5 2.8 3.3 ±15 dB mA mA V 0.4 1 V/µs MHz 60 Degrees en p-p 0.1 Hz < f < 10Hz 0.6 µV p-p Input Voltage Noise Density en f = 10 Hz 15 nV/√Hz Input Voltage Noise Density en f =1 kHz 8 nV/√Hz Current Noise Density in f = 1 kHz 0.2 pA/√Hz Rev. 0 | Page 4 of 20 AD8698 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 3. Parameter Supply Voltage Input Voltage Differential Input Voltage Output Short-Circuit Duration to Gnd Storage Temperature Range R, RM Packages Operating Temperature Range Junction Temperature Range R, RM Packages Lead Temperature Range (Soldering, 60 Sec) θJA is specified for the worst-case conditions, i.e., θJA is specified for devices soldered in circuit boards for surface-mount packages. Rating ±15 V ±VS ±VS Indefinite Table 4. Thermal Resistance Package Type −65°C to +150°C MSOP-8 (RM) SOIC-8 (R) −40°C to +85°C −65°C to +150°C θJA 210 158 +300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 1000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. 0 | Page 5 of 20 θJC 45 43 Unit °C/W °C/W AD8698 TYPICAL PERFORMANCE CHARACTERISTICS 225 100 80 VS = ±15V 80 180 60 135 40 90 20 45 0 0 50 40 30 20 –45 –20 10 0.2 0.4 0.6 0.8 1.0 1.2 TCVOS (µV/°C) –40 10k 100k –90 10M 1M FREQUENCY (Hz) Figure 2. Input Offset Voltage Drift Distribution Figure 5. Open-Loop Gain and Phase vs. Frequency 80 50 VS = ±15V VS = ±15V 40 AV = 100 60 CLOSED-LOOP GAIN (dB) NUMBER OF AMPLIFIERS 70 50 40 30 20 20 AV = 10 10 0 AV = 1 –10 10 –60 –40 –20 0 20 40 60 80 100 VOS (µV) –20 04807-0-058 0 –100 –80 30 1k 10k 100k 1M 10M FREQUENCY (Hz) Figure 3. Offset Voltage Distribution 04807-0-009 0 04807-0-034 0 04807-0-001 60 GAIN (dB) NUMBER OF AMPLIFIERS 70 PHASE MARGIN (Degrees) VS = ±15V Figure 6. Closed-Loop Gain vs. Frequency 60 70 VS = ±15V VS = ±15V OUTPUT IMPEDANCE (Ω) 50 40 30 20 45 30 AV = 100 AV = 10 15 0 –400 –320 –240 –160 –80 0 80 160 240 IB (pA) 320 400 Figure 4. Input Bias Distribution 0 10 100 1k 10k 100k FREQUENCY (Hz) Figure 7. Output Impedance vs. Frequency Rev. 0 | Page 6 of 20 1M 04807-0-007 AV = 1 10 04807-0-060 NUMBER OF AMPLIFIERS 60 AD8698 VOLTAGE (1V/DIV) VOLTAGE (mV) VS = ±15V VIN = 4V p-p CL = 1nF 0 VIN –200 15 VOLTAGE (V) VOUT 04807-0-037 TIME (100µs/DIV) 04807-0-041 VS = ±15V VIN = 200mV p-p AV = –100 0 TIME (10µs/DIV) Figure 8. Large Signal Transient Response Figure 11. Positive Overvoltage Recovery VOLTAGE (100mV/DIV) VOLTAGE (mV) VS = ±15V VIN = 200mV p-p CL = 1nF VS = ±15V VIN = 200mV AV = –100 200 VIN 0 VOLTAGE (V) 0 –15 TIME (100µs/DIV) TIME (400µs/DIV) Figure 9. Small Signal Transient Response Figure 12. Negative Overvoltage Recovery 50 120 VS = ±15V VIN = 200mV AV = 1 VS = ±15V 100 80 CMRR (dB) 30 20 60 40 10 0 500 1000 1500 2000 2500 CAPACITIVE LOAD (pF) 3000 Figure 10. Overshoot vs. Load Capacitance 0 1k 10k 100k 1M FREQUENCY (Hz) Figure 13. CMRR vs. Frequency Rev. 0 | Page 7 of 20 10M 04807-0-003 0 20 04807-0-013 OVERSHOOT (%) 04807-0-040 04807-0-044 VOUT AD8698 100 100 VS = ±15V CURRENT NOISE DENSITY (nV/√Hz) VS = ±15V 60 +PSRR –PSRR 40 0 10 100 1k 10k 100k 1M FREQUENCY (Hz) 1 0.1 0.1 04807-0-005 20 10 1 10 100 1k FREQUENCY (Hz) 04807-0-033 80 Figure 17. Current Noise Density vs. Frequency Figure 14. PSRR vs. Frequency 20 –ISC VS = ±15V SHORT-CIRCUIT CURRENT (mA) 10 0 –10 –20 +ISC –40 –60 –20 0 20 40 60 80 100 TEMPERATURE (°C) Figure 18. Short-Circuit Current vs. Temperature Figure 15. Input Voltage Noise 14.96 100 VS = ±15V VS = ±15V IL = 1mA 14.95 OUTPUT SWING (V) 14.94 10 14.93 14.92 VOH 14.91 14.90 14.89 1 0.1 1 10 100 FREQUENCY (Hz) 1k 14.87 –60 Figure 16. Voltage Noise Density vs. Frequency –40 –20 0 20 40 60 80 TEMPERATURE (°C) Figure 19. Output Swing vs. Temperature Rev. 0 | Page 8 of 20 100 04807-0-019 –VOL 14.88 04807-0-032 VOLTAGE NOISE DENSITY (nV/√Hz) –40 04807-0-030 –30 04807-0-035 VOLTAGE (200nV/DIV) TIME (1s/DIV) VS = ±15V AD8698 140 14.90 VS = ±15V IL = 5mA VS = ±15V 138 14.80 PSRR (dB) VOH 14.75 136 134 14.70 –VOL 14.60 –60 –40 –20 0 20 40 60 132 80 100 TEMPERATURE (°C) 130 –60 –40 –20 0 20 40 60 80 100 TEMPERATURE (°C) Figure 20. Output Voltage Swing vs. Temperature 04807-0-029 14.65 04807-0-020 OUTPUT VOLTAGE SWING (V) 14.85 Figure 23. PSRR vs. Temperature 30 100 VS = ±15V VS = ±15V ∆ INPUT BIAS CURRENT (pA) ∆ OFFSET VOLTAGE (µV) 20 10 0 –10 50 0 –50 –40 –20 0 20 40 60 80 100 TEMPERATURE (°C) –100 –60 04807-0-023 –40 –20 0 20 40 60 Figure 21. ∆ Offset Voltage vs. Temperature 6 VS = ±15V VS = ±15V 150 5 ∆ OUTPUT SWING (V) 145 140 135 130 VOL 4 3 2 1 125 –40 –20 0 20 40 60 TEMPERATURE (°C) 80 100 04807-0-027 CMRR (dB) 100 Figure 24. ∆ Input Bias Current vs. Temperature 155 120 –60 80 TEMPERATURE (°C) 0 VOH 0 5 10 15 20 LOAD CURRENT (mA) Figure 25. ∆ Output Voltage Swing from Rails vs. Load Current Figure 22. CMRR vs. Temperature Rev. 0 | Page 9 of 20 04807-0-015 –30 –60 04807-0-025 –20 AD8698 3.5 225 100 2.5 2.0 80 180 60 135 40 90 20 45 0 0 –45 –20 –40 –20 0 20 40 60 80 100 TEMPERATURE (°C) –40 10k 04807-0-017 1.5 –60 100k –90 10M 1M FREQUENCY (Hz) Figure 26. Supply Current vs. Temperature 04807-0-002 GAIN (dB) SUPPLY CURRENT (mA) 3.0 PHASE MARGIN (Degrees) VS = ±2.5V VS = ±15V Figure 29. Open-Loop Gain and Phase vs. Frequency 60 0 VS = ±15V VS = ±2.5V OUTPUT IMPEDANCE (Ω) –40 –60 –80 –100 45 30 AV = 10 AV = 100 15 AV = 1 –120 10k 100k 1M 10M FREQUENCY (Hz) 0 10 04807-0-010 –140 1k 100 1k 10k 100k FREQUENCY (Hz) Figure 27. Channel Separation 1M 04807-0-008 CHANNEL SEPARATION (dB) –20 Figure 30. Output Impedance vs. Frequency 70 VS = ±2.5V VS = ±2.5V VIN = 2V p-p CL = 1nF VOLTAGE (500mV/DIV) 50 40 30 20 0 0 –100 –80 –60 –40 –20 0 20 40 60 80 VOS (µV) 100 Figure 28. Offset Voltage Distribution TIME (100µs/DIV) Figure 31. Large Signal Transient Response Rev. 0 | Page 10 of 20 04807-0-038 10 04807-0-059 NUMBER OF AMPLIFIERS 60 VOLTAGE (mV) AD8698 VOLTAGE (100mV/DIV) VS = ±2.5V VIN = 200mV p-p CL = 1nF VS = ±2.5V VIN = 200mV p-p AV = –100 200 VIN 0 VOLTAGE (V) 0 –2.5 TIME (100µs/DIV) TIME (4µs/DIV) Figure 32. Small Signal Transient Response Figure 35. Negative Overvoltage Recovery 50 120 VS = ±2.5V VIN = 200mV AV = 1 40 VS = ±2.5V 100 80 30 CMRR (dB) 20 60 40 10 0 500 1000 1500 2000 2500 CAPACITIVE LOAD (pF) 3000 0 04807-0-014 0 20 1k 10k 100k 1M 10M FREQUENCY (Hz) Figure 33. Overshoot vs. Load Capacitance 04807-0-004 OVERSHOOT (%) 04807-0-042 04807-0-045 VOUT Figure 36. CMRR vs. Frequency VS = ±2.5V 0 80 VIN PSRR (dB) –200 VOUT 0 +PSRR –PSRR 40 20 VS = ±2.5V VIN = 200mV p-p AV = –100 TIME (4µs/DIV) 04807-0-043 VOLTAGE (V) 2.5 60 0 10 100 1k 10k FREQUENCY (Hz) Figure 37. PSRR vs. Frequency Figure 34. Positive Overvoltage Recovery Rev. 0 | Page 11 of 20 100k 1M 04807-0-006 VOLTAGE (mV) 100 AD8698 20 30 VS = ±2.5V VS = ±2.5V 20 ∆ OFFSET VOLTAGE (µV) 10 0 –10 +ISC –20 0 –10 –40 –20 0 20 40 60 80 100 TEMPERATURE (°C) –30 –60 –40 –20 0 20 40 60 80 100 TEMPERATURE (°C) 04807-0-024 –30 –60 10 –20 04807-0-031 SHORT-CIRCUIT CURRENT (mA) –ISC Figure 41. ∆ Offset Voltage vs. Temperature Figure 38. Short-Circuit Current vs. Temperature 134 2.46 VS = ±2.5V IL = 1mA 2.45 VS = ±2.5V 2.43 CMRR (dB) OUTPUT VOLTAGE (V) 132 2.44 VOH 2.42 2.41 130 128 –VOL 2.40 126 –40 –20 0 20 40 60 80 100 TEMPERATURE (°C) 124 –60 04807-0-021 –40 –20 0 20 40 60 Figure 39. Output Swing vs. Temperature –20 VS = ±2.5V IL = 5mA VS = ±2.5V ∆ INPUT OFFSET CURRENT (pA) 2.3 VOH 2.1 –VOL 1.9 1.7 –40 –20 0 20 40 60 80 TEMPERATURE (°C) 100 04807-0-022 OUTPUT VOLTAGE SWING (V) 100 Figure 42. CMRR vs. Temperature 2.5 1.5 –60 80 TEMPERATURE (°C) –30 –40 –50 –60 –70 –80 –60 –40 –20 0 20 40 60 80 TEMPERATURE (°C) Figure 43. ∆ Input Bias Current vs. Temperature Figure 40. Output Voltage Swing vs. Temperature Rev. 0 | Page 12 of 20 100 04807-0-026 2.38 –60 04807-0-028 2.39 AD8698 3.0 2500 VS = ±2.5V 2.5 SUPPLY CURRENT (mA) 1500 VOL 1000 VOH 2.0 1.5 1.0 500 5 10 15 20 LOAD CURRENT (mA) 0 0 5 10 15 20 25 Figure 44. ∆ Output Voltage Swing from Rails vs. Load Current 0 VS = ±2.5V VS = ±2.5V –20 CHANNEL SEPARATION (dB) 2.5 SUPPLY CURRENT (mA) 35 Figure 47. Supply Current vs. Supply Voltage 3.0 2.0 1.5 1.0 0.5 –40 –60 –80 –100 –120 –40 –20 0 20 40 60 80 TEMPERATURE (°C) 100 04807-0-018 0 –60 30 SUPPLY VOLTAGE (V) 04807-0-012 0 04807-0-016 0 0.5 –140 1k Figure 45. Supply Current vs. Temperature 100k 1M FREQUENCY (Hz) Figure 48. Channel Separation 04807-0-039 VOLTAGE (2V/DIV) VS = ±5V VIN = 11.4V p-p TIME (400µs/DIV) 10k Figure 46. No Phase Reversal Rev. 0 | Page 13 of 20 10M 04807-0-011 ∆ OUTPUT SWING (mV) 2000 AD8698 APPLICATIONS The AD8698 has internal protective circuitry which allows voltages at either input to exceed the supply voltage. However, if voltages applied at either input exceed the supply voltage by more than 2 V, it is recommended to use a resistor in series with the inputs to limit the input current and prevent damaging the device. VOLTAGE (100mV/DIV) INPUT OVERVOLTAGE PROTECTION VS = ±15V CL = 68nF RS = 30Ω CS = 5nF AV = 1 VIN − VS ≤ 5 mA RS + 500 04807-0-061 The value of the resistor can be calculated from the following formula: TIME (10µs/DIV) Figure 50. Compensated Capacitive Load Drive with Snubber DRIVING CAPACITIVE LOADS The snubber network consists of a simple RC network whose values are determined empirically. V– V+ RS + – CS 400mV CL 04807-0-063 The AD8698 is stable even when driving heavy capacitive loads in any configuration. Although the AD8698 will safely drive capacitive loads well over 10 nF, it is recommended to use external compensation should the amplifier be subjected to driving a load exceeding 50 nF. This is particularly important in positive unity gain configurations, the worst case for stability. Figure 49 shows the output of the AD8698 with a 68 nF load in response to a 400 mV signal at its positive input; the overshoot is less than 25% without any external compensation. Using a simple “snubber” network reduces the overshoot to less than 10% as shown in Figure 50. Figure 51. Snubber Network Table 5 provides a few starting values for optimum compensation. Table 5. Compensation Values VS = ±15V CL = 68nF AV = 1 CL (nF) VOLTAGE (100mV/DIV) 47 68 100 RS (Ω) 20 30 50 CS (nF) 7 5 3 TIME (10µs/DIV) 04807-0-057. The use of the snubber network does not recover the loss of bandwidth incurred by the load capacitance. The AD8698 maintains a unity gain bandwidth of 1 MHz with load capacitances of up to 1 nF. Figure 49. Heavy Capacitive Load Drive without Compensation Rev. 0 | Page 14 of 20 AD8698 10M R1 1kΩ V+ R2 10kΩ V– 1/2 AD8698 1M R3 9kΩ R4 2kΩ 100k V+ V– R5 10kΩ 10k OP184 R3 9kΩ 1k 1 10 100 LOAD CAPACITANCE (nF) 04807-0-062 V– Figure 52. Unity Gain Bandwidth vs. Load Capacitance V+ V2 R1 9.8kΩ 1/2 AD8698 R7 400Ω 04807-0-064 UNITY GAIN BANDWIDTH (MHz) V1 Figure 53. Three Op Amp In-Amp COMPOSITE AMPLIFIER Figure 52 shows the unity gain bandwidth as a function of load capacitance. INSTRUMENTATION AMPLIFIER Instrumentation amplifiers are used in applications requiring precision, accuracy, and high CMRR. One popular application is signal conditioning in process control, test automation, and measurement instrumentation, where the amplifier is used to amplify small signals. The triple op amp implementation uses the AD8698 at the front end with the OP184 for optimum accuracy. The circuit in Figure 53 enjoys a high overall gain, excellent dc performance, high CMRR, as well as the benefit of an output that swings to the supplies. The CMRR of the in-amp will be limited by the choice of resistor tolerance. R5 is an optional potentiometer that can be used to calibrate the circuit for maximum gain. R7 can be trimmed for optimum CMRR. The dc accuracy of the AD8698 and the ac performance of the OP184 are combined in the circuit shown in Figure 54. The composite amplifier provides a higher bandwidth, a lower offset voltage, and a higher loop, thereby reducing the gain error substantially. The circuit shown exhibits a total output rms noise of less than 500 µV, corresponding to less than 3 mV of peak-to-peak noise over approximately a 3 MHz bandwidth. Cf is used to minimize peaking. The circuit has an inverting gain of 10. In applications with higher closed-loop gains, Cf is necessary to maintain a sufficient phase margin and ensure stability. This results in a narrower closed-loop bandwidth. R2 10kΩ R1 1kΩ Cf 20pF VIN V– The output voltage is given by: V+ V– OP184 2R3 ⎞⎛ R 2 ⎞ VO =VIN ⎛⎜1 + ⎟⎜ ⎟ R 4 ⎠⎝ R1 ⎠ ⎝ 1/2 AD8698 04807-0-065 V+ Figure 54. Composite Amplifier Circuit Rev. 0 | Page 15 of 20 AD8698 LOW NOISE APPLICATIONS In some applications, it is critical to minimize the noise, and although the AD8698 has a low noise of typically 8 nV/√Hz at 1 kHz, paralleling the two amplifiers within the same package reduces the total noise referred to the input to approximately 5.5 nV/√Hz. This simple technique is depicted in Figure 55. V+ R3 100Ω R2 10kΩ In the high-pass filter of Figure 56, the damping factor Q is set to 1/√2 for a maximally flat response (Butterworth). The gain is unity and the bandwidth is 10 kHz with the values shown. VOUT C1 1nF V– R5 100Ω R4 10kΩ R1 11kΩ C2 1nF 04807-0-066 V+ R3 1kΩ VIN V+ V– R2 22kΩ 04807-0-067 V– R1 1kΩ An example of an active filter is the Sallen Key. This topology gives the user the flexibility of implementing a low-pass or a high-pass filter by simply interchanging the resistors and the capacitors. Figure 55. Paralleling Amplifiers DRIVING ADCs Figure 56. Two Pole High-Pass Filter The AD8698 can drive extremely heavy capacitive loads without any compensation. Sometimes capacitors are placed at the output of the amplifier to absorb transient currents while the op amp is interfaced with the ADC. Most op amps need a small resistor with the output to isolate the load capacitance. R1 11kΩ C1 2nF VIN R2 11kΩ V+ This results in a loss of bandwidth and slows the amplifier down substantially. However, the AD8698 maintains a unity gain bandwidth of 1 MHz with loads of up to 1 nF, as shown in Figure 52. C2 1nF V– 04807-0-068 VIN If a higher gain is desired, the corner frequency should be chosen accordingly. For example, if the amplifier is configured with a gain of 10, the corner frequency of the filter should not be more than 10 kHz. Figure 57. Two Pole Low-Pass Filter USING THE AD8698 IN ACTIVE FILTER DESIGNS The AD8698 is recommended for unity gain filter designs with a corner frequency of up to 100 kHz, one tenth of the op amp’s unity gain bandwidth. The circuit of Figure 57 has a bandwidth of 10 kHz and a maximally flat response. In this case, the damping factor is controlled by the ratio of the capacitors and the gain is unity. Rev. 0 | Page 16 of 20 AD8698 OUTLINE DIMENSIONS 5.00 (0.1968) 4.80 (0.1890) 8 5 4.00 (0.1574) 3.80 (0.1497) 1 6.20 (0.2440) 5.80 (0.2284) 4 1.27 (0.0500) BSC 0.50 (0.0196) × 45° 0.25 (0.0099) 1.75 (0.0688) 1.35 (0.0532) 0.25 (0.0098) 0.10 (0.0040) 0.51 (0.0201) COPLANARITY SEATING 0.31 (0.0122) 0.10 PLANE 8° 0.25 (0.0098) 0° 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067) COMPLIANT TO JEDEC STANDARDS MS-012AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN Figure 58. 8-Lead Small Outline IC [SOIC] (R-8)—Dimensions shown in millimeters 3.00 BSC 8 5 4.90 BSC 3.00 BSC 4 PIN 1 0.65 BSC 1.10 MAX 0.15 0.00 0.38 0.22 COPLANARITY 0.10 0.23 0.08 8° 0° 0.80 0.60 0.40 SEATING PLANE COMPLIANT TO JEDEC STANDARDS MO-187AA Figure 59. 8-Lead Small Outline IC [SOIC] (RM-8)—Dimensions shown in millimeters ORDERING GUIDE Model AD8698ARM-R2 AD8698ARM-REEL AD8698AR AD8698AR-REEL AD8698AR-REEL7 Temperature Package –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C Package Description MSOP MSOP SOIC SOIC SOIC Rev. 0 | Page 17 of 20 Package Option RM-8 RM-8 R-8 R-8 R-8 Branding A02 A02 AD8698 NOTES Rev. 0 | Page 18 of 20 AD8698 NOTES Rev. 0 | Page 19 of 20 AD8698 NOTES © 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04807-0-4/04(0) Rev. 0 | Page 20 of 20