stm32f427vg

STM32F427xx
STM32F429xx
ARM Cortex-M4 32b MCU+FPU, 225DMIPS, up to 2MB Flash/256+4KB RAM, USB
OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
Datasheet - production data
Features
&"'!
• Core: ARM® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Flash memory, frequency up to 180 MHz,
MPU, 225 DMIPS/1.25 DMIPS/MHz
(Dhrystone 2.1), and DSP instructions
• Memories
– Up to 2 MB of Flash memory organized into
two banks allowing read-while-write
– Up to 256+4 KB of SRAM including 64-KB
of CCM (core coupled memory) data RAM
– Flexible external memory controller with up
to 32-bit data bus:
SRAM,PSRAM,SDRAM/LPSDR SDRAM ,
Compact Flash/NOR/NAND memories
• LCD parallel interface, 8080/6800 modes
• LCD-TFT controller up to XGA resolution with
dedicated Chrom-ART Accelerator™ for
enhanced graphic content creation (DMA2D)
• Clock, reset and supply management
– 1.7 V to 3.6 V application supply and I/Os
– POR, PDR, PVD and BOR
– 4-to-26 MHz crystal oscillator
– Internal 16 MHz factory-trimmed RC (1%
accuracy)
– 32 kHz oscillator for RTC with calibration
– Internal 32 kHz RC with calibration
•
Low power
– Sleep, Stop and Standby modes
– VBAT supply for RTC, 20×32 bit backup
registers + optional 4 KB backup SRAM
• 3×12-bit, 2.4 MSPS ADC: up to 24 channels
and 7.2 MSPS in triple interleaved mode
• 2×12-bit D/A converters
• General-purpose DMA: 16-stream DMA
controller with FIFOs and burst support
• Up to 17 timers: up to twelve 16-bit and two 32bit timers up to 180 MHz, each with up to 4
IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input
• Debug mode
– SWD & JTAG interfaces
– Cortex-M4 Trace Macrocell™
January 2016
This is information on a product in full production.
LQFP100 (14 × 14 mm)
LQFP144 (20 × 20 mm) UFBGA169 (7 × 7 mm)
LQFP176 (24 × 24 mm) UFBGA176 (10 x 10 mm)
LQFP208 (28 x 28 mm) TFBGA216 (13 x 13 mm)
WLCSP143
• Up to 168 I/O ports with interrupt capability
– Up to 164 fast I/Os up to 90 MHz
– Up to 166 5 V-tolerant I/Os
• Up to 21 communication interfaces
– Up to 3 × I2C interfaces (SMBus/PMBus)
– Up to 4 USARTs/4 UARTs (11.25 Mbit/s,
ISO7816 interface, LIN, IrDA, modem
control)
– Up to 6 SPIs (45 Mbits/s), 2 with muxed
full-duplex I2S for audio class accuracy via
internal audio PLL or external clock
– 1 x SAI (serial audio interface)
– 2 × CAN (2.0B Active) and SDIO interface
• Advanced connectivity
– USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
– USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI
– 10/100 Ethernet MAC with dedicated DMA:
supports IEEE 1588v2 hardware, MII/RMII
• 8- to 14-bit parallel camera interface up to
54 Mbytes/s
• True random number generator
• CRC calculation unit
• RTC: subsecond accuracy, hardware calendar
• 96-bit unique ID
Table 1. Device summary
Reference
Part number
STM32F427xx
STM32F427VG, STM32F427ZG, STM32F427IG,
STM32F427AG, STM32F427VI, STM32F427ZI,
STM32F427II, STM32F427AI
STM32F429xx
STM32F429VG, STM32F429ZG, STM32F429IG,
STM32F429BG, STM32F429NG, STM32F429AG,
STM32F429VI, STM32F429ZI, STM32F429II,,
STM32F429BI, STM32F429NI,STM32F429AI,
STM32F429VE, STM32F429ZE, STM32F429IE,
STM32F429BE, STM32F429NE
DocID024030 Rev 8
1/233
www.st.com
Contents
STM32F427xx STM32F429xx
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1
ARM® Cortex®-M4 with FPU and embedded Flash and SRAM . . . . . . . 19
3.2
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 19
3.3
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 20
3.6
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9
Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10
LCD-TFT controller (available only on STM32F429xx) . . . . . . . . . . . . . . 22
3.11
Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.12
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 23
3.13
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.15
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.16
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.18
2/233
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.17.1
Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17.2
Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.18.1
Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.18.2
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.18.3
Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 30
3.19
Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 30
3.20
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.21
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DocID024030 Rev 8
STM32F427xx STM32F429xx
3.22
Contents
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.22.1
Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.22.2
General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.22.3
Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.22.4
Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.22.5
Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.22.6
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.23
Inter-integrated circuit interface ( I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.24
Universal synchronous/asynchronous receiver transmitters (USART) . . 35
3.25
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.26
Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.27
Serial Audio interface (SAI1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.28
Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.29
Audio and LCD PLL(PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.30
Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 38
3.31
Ethernet MAC interface with dedicated DMA and IEEE 1588 support . . . 38
3.32
Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.33
Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 39
3.34
Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 39
3.35
Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.36
Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.37
General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.38
Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.39
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.40
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.41
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.42
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
DocID024030 Rev 8
3/233
5
Contents
4/233
STM32F427xx STM32F429xx
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.2
VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.3
Operating conditions at power-up / power-down (regulator ON) . . . . . . 96
6.3.4
Operating conditions at power-up / power-down (regulator OFF) . . . . . 96
6.3.5
reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . 97
6.3.6
Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.7
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.8
Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3.9
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.10
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.11
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.12
PLL spread spectrum clock generation (SSCG) characteristics . . . . . 125
6.3.13
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.14
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.15
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 131
6.3.16
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.17
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.18
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.3.19
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3.20
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3.21
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.22
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3.23
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.3.24
Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.3.25
DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.3.26
FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3.27
Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 189
6.3.28
LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 190
6.3.29
SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 192
DocID024030 Rev 8
STM32F427xx STM32F429xx
6.3.30
7
8
Contents
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.1
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.2
WLCSP143 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.3
LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.4
LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.5
LQFP208 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.6
UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
7.7
UFBGA176+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
7.8
TFBGA216 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.9
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Appendix A Recommendations when using internal reset OFF . . . . . . . . . . . 222
A.1
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Appendix B Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9
B.1
USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 223
B.2
USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 225
B.3
Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
DocID024030 Rev 8
5/233
5
List of tables
STM32F427xx STM32F429xx
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
6/233
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F427xx and STM32F429xx features and peripheral counts . . . . . . . . . . . . . . . . . . 14
Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 27
Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 30
Voltage regulator modes in stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
STM32F427xx and STM32F429xx pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . 51
FMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
STM32F427xx and STM32F429xx alternate function mapping . . . . . . . . . . . . . . . . . . . . . 73
STM32F427xx and STM32F429xx register boundary addresses. . . . . . . . . . . . . . . . . . . . 85
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 95
VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 96
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 96
reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled except prefetch) or RAM . . . . . . 100
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . 101
Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . 102
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . 103
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . 103
Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . 104
Typical current consumption in Run mode, code with data processing running from
Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch),
VDD=1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Typical current consumption in Run mode, code with data processing running
from Flash memory, regulator OFF (ART accelerator enabled except prefetch). . . . . . . 107
Typical current consumption in Sleep mode, regulator ON, VDD=1.7 V . . . . . . . . . . . . . 108
Tyical current consumption in Sleep mode, regulator OFF. . . . . . . . . . . . . . . . . . . . . . . . 109
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
DocID024030 Rev 8
STM32F427xx STM32F429xx
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
List of tables
PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
PLLISAI (audio and LCD-TFT PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
USB OTG full speed startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
USB OTG full speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
USB OTG full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 151
Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 152
Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 153
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
ADC static accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
ADC static accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
ADC static accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 156
ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 156
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Asynchronous non-multiplexed SRAM/PSRAM/NOR read NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 167
Asynchronous non-multiplexed SRAM/PSRAM/NOR write NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 169
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 170
DocID024030 Rev 8
7/233
8
List of tables
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
8/233
STM32F427xx STM32F429xx
Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 171
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 175
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Switching characteristics for PC Card/CF read and write cycles
in attribute/common space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Switching characteristics for PC Card/CF read and write cycles
in I/O space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 185
SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
LPSDR SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
LQPF100 100-pin, 14 x 14 mm low-profile quad flat package mechanical data. . . . . . . . 195
WLCSP143 - 143-pin, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
WLCSP143 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . 199
LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
UFBGA169 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 213
UFBGA176+25 - 201-ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch
ball grid array mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . . 216
TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 222
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
DocID024030 Rev 8
STM32F427xx STM32F429xx
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Compatible board design STM32F10xx/STM32F2xx/STM32F4xx
for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx
for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Compatible board design between STM32F2xx and STM32F4xx
for LQFP176 and UFBGA176 packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
STM32F427xx and STM32F429xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
STM32F427xx and STM32F429xx Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 25
PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 29
Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 29
STM32F42x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
STM32F42x WLCSP143 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
STM32F42x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
STM32F42x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
STM32F42x LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
STM32F42x UFBGA169 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
STM32F42x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
STM32F42x TFBGA216 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF) . . . . . . . . . . . 104
Typical VBAT current consumption (LSE and RTC ON/backup RAM ON) . . . . . . . . . . . . 105
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
HSI deviation vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
DocID024030 Rev 8
9/233
11
List of figures
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
10/233
STM32F427xx STM32F429xx
SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
USB OTG full speed timings: definition of data signal rise and fall time . . . . . . . . . . . . . . 148
ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 159
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 160
12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 165
Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 167
Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 168
Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 170
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 175
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 178
PC Card/CompactFlash controller waveforms for common memory write access . . . . . . 178
PC Card/CompactFlash controller waveforms for attribute memory
read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
PC Card/CompactFlash controller waveforms for attribute memory
write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 180
PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 181
NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 184
NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 184
SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
LQFP100 -100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . . 194
LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
WLCSP143 - 143-pin, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
WLCSP143 - 143-pin, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
WLCSP143 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
LQFP144-144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . . 200
LQPF144- 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package outline . . . . . . . . . . . . . . 204
DocID024030 Rev 8
STM32F427xx STM32F429xx
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.
Figure 97.
Figure 98.
Figure 99.
Figure 100.
Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.
List of figures
LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint. . . . . . . . . 206
LQFP176 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline . . . . . . . . . . . . . . 208
LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
LQFP208 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch
ball grid array recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
UFBGA169 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
UFBGA176+25 - 201-ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch
ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch
ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
UFBGA176+25 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
TFBGA176 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
USB controller configured as peripheral-only and used
in Full speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 223
USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 224
USB controller configured as peripheral, host, or dual-mode
and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
DocID024030 Rev 8
11/233
11
Introduction
1
STM32F427xx STM32F429xx
Introduction
This datasheet provides the description of the STM32F427xx and STM32F429xx line of
microcontrollers. For more details on the whole STMicroelectronics STM32 family, please
refer to Section 2.1: Full compatibility throughout the family.
The STM32F427xx and STM32F429xx datasheet should be read in conjunction with the
STM32F4xx reference manual.
For information on the Cortex®-M4 core, please refer to the Cortex®-M4 programming
manual (PM0214), available from www.st.com.
12/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
2
Description
Description
The STM32F427xx and STM32F429xx devices are based on the high-performance ARM®
Cortex®-M4 32-bit RISC core operating at a frequency of up to 180 MHz. The Cortex-M4
core features a Floating point unit (FPU) single precision which supports all ARM® singleprecision data-processing instructions and data types. It also implements a full set of DSP
instructions and a memory protection unit (MPU) which enhances application security.
The STM32F427xx and STM32F429xx devices incorporate high-speed embedded
memories (Flash memory up to 2 Mbyte, up to 256 kbytes of SRAM), up to 4 Kbytes of
backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two
APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.
They also feature standard and advanced communication interfaces.
•
Up to three I2Cs
•
Six SPIs, two I2Ss full duplex. To achieve audio class accuracy, the I2S peripherals can
be clocked via a dedicated internal audio PLL or via an external clock to allow
synchronization.
•
Four USARTs plus four UARTs
•
An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the
ULPI),
•
Two CANs
•
One SAI serial audio interface
•
An SDIO/MMC interface
•
Ethernet and camera interface
•
LCD-TFT display controller
•
Chrom-ART Accelerator™.
Advanced peripherals include an SDIO, a flexible memory control (FMC) interface, a
camera interface for CMOS sensors. Refer to Table 2: STM32F427xx and STM32F429xx
features and peripheral counts for the list of peripherals available on each part number.
The STM32F427xx and STM32F429xx devices operates in the –40 to +105 °C temperature
range from a 1.7 to 3.6 V power supply.
The supply voltage can drop to 1.7 V with the use of an external power supply supervisor
(refer to Section 3.17.2: Internal reset OFF). A comprehensive set of power-saving mode
allows the design of low-power applications.
The STM32F427xx and STM32F429xx devices offer devices in 8 packages ranging from
100 pins to 216 pins. The set of included peripherals changes with the device chosen.
DocID024030 Rev 8
13/233
42
•
Motor drive and application control
•
Medical equipment
•
Industrial applications: PLC, inverters, circuit breakers
•
Printers, and scanners
•
Alarm systems, video intercom, and HVAC
•
Home audio appliances
Description
14/233
These features make the STM32F427xx and STM32F429xx microcontrollers suitable for a wide range of applications:
Figure 4 shows the general block diagram of the device family.
Table 2. STM32F427xx and STM32F429xx features and peripheral counts
Peripherals
DocID024030 Rev 8
Flash memory in Kbytes
SRAM in
Kbytes
System
Backup
FMC memory controller
Ethernet
Timers
STM32F427
Vx
1024
2048
STM32F429Vx
512
1024 2048
STM32F427
Zx
1024
2048
STM32F429Zx
STM32F427 STM32F429 STM32F427
Ax
Ax
Ix
512 1024 2048 1024 2048
1024
2048
1024 2048
STM32F429Ix
512
1024 2048
STM32F429Bx
STM32F429Nx
512 1024 2048 512 1024 2048
256(112+16+64+64)
4
Yes(1)
Yes
10
Advanced
-control
2
Basic
2
Random number generator
Yes
STM32F427xx STM32F429xx
Generalpurpose
Peripherals
SPI / I2S
STM32F427
Vx
STM32F429Vx
STM32F427
Zx
STM32F429Zx
STM32F427 STM32F429 STM32F427
Ax
Ax
Ix
4/2 (full duplex)(2)
I C
4/4
USB OTG
Communication FS
interfaces
USB OTG
HS
Yes
Yes
CAN
2
SAI
1
SDIO
Yes
DocID024030 Rev 8
Camera interface
Yes
No
Yes
No
Yes
Chrom-ART Accelerator™
12-bit ADC
Number of channels
No
Yes
No
Yes
Yes
82
114
130
140
168
3
16
24
12-bit DAC
Number of channels
Yes
2
Maximum CPU frequency
180 MHz
1.8 to 3.6 V(3)
Operating voltage
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Operating temperatures
Packages
STM32F429Nx
3
USART/
UART
GPIOs
STM32F429Bx
6/2 (full duplex)(2)
2
LCD-TFT (STM32F429xx
only)
STM32F429Ix
STM32F427xx STM32F429xx
Table 2. STM32F427xx and STM32F429xx features and peripheral counts (continued)
Junction temperature: –40 to + 125 °C
LQFP100
WLCSP143
LQFP144
UFBGA169
UFBGA176
LQFP176
LQFP208
TFBGA216
For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit
NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. For UFBGA169 package, only SDRAM, NAND and multiplexed
static memories are supported.
2.
The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
3.
VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset
OFF).
Description
15/233
1.
Description
2.1
STM32F427xx STM32F429xx
Full compatibility throughout the family
The STM32F427xx and STM32F429xx devices are part of the STM32F4 family. They are
fully pin-to-pin, software and feature compatible with the STM32F2xx devices, allowing the
user to try different memory densities, peripherals, and performances (FPU, higher
frequency) for a greater degree of freedom during the development cycle.
The STM32F427xx and STM32F429xx devices maintain a close compatibility with the
whole STM32F10xx family. All functional pins are pin-to-pin compatible. The STM32F427xx
and STM32F429xx, however, are not drop-in replacements for the STM32F10xx devices:
the two families do not have the same power scheme, and so their power pins are different.
Nonetheless, transition from the STM32F10xx to the STM32F42x family remains simple as
only a few pins are impacted.
Figure 1, Figure 2, and Figure 3, give compatible board designs between the STM32F4xx,
STM32F2xx, and STM32F10xx families.
Figure 1. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx
for LQFP100 package
633
633
633
633
6$$ 6
33
4WO :RESISTORSCONNECTEDTO
6$$ 633
6 33FORTHE34-&XX
6 33FORTHE34-&XX
6 336 $$OR.#FORTHE34-&XX
16/233
:RESISTORORSOLDERINGBRIDGE
ª PRESENTFORTHE34-&XXX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION
633
DocID024030 Rev 8
6 33FOR34-&XX
6 $$FOR34-&XX
AIC
STM32F427xx STM32F429xx
Description
Figure 2. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx
for LQFP144 package
966
ŸUHVLVWRURUVROGHULQJEULGJH
SUHVHQWIRUWKH670)[[
FRQILJXUDWLRQQRWSUHVHQWLQWKH
670)[[FRQILJXUDWLRQ
966
966
6LJQDOIURP
H[WHUQDOSRZHU
VXSSO\
VXSHUYLVRU
1RWSRSXODWHGZKHQŸ
UHVLVWRURUVROGHULQJ
EULGJHSUHVHQW
3'5B21
966
9'' 966
1RWSRSXODWHGIRU670)[[
7ZRŸUHVLVWRUVFRQQHFWHGWR
966IRU670)[[
966IRUWKH670)[[
9''
966
9''IRU670)[[
9669''RU1&IRUWKH670)[[
9''RUVLJQDOIURPH[WHUQDOSRZHUVXSSO\VXSHUYLVRUIRUWKH670)[[
DLG
Figure 3. Compatible board design between STM32F2xx and STM32F4xx
for LQFP176 and UFBGA176 packages
*1'IRU670)[[
%<3$66B5(*IRU670)[[
6LJQDOIURPH[WHUQDO
SRZHUVXSSO\
VXSHUYLVRU
3'5B21
9'' 966
7ZRŸUHVLVWRUVFRQQHFWHGWR
9669''RU1&IRUWKH670)[[
9''RUVLJQDOIURPH[WHUQDOSRZHUVXSSO\VXSHUYLVRUIRUWKH670)[[
069
DocID024030 Rev 8
17/233
42
Description
STM32F427xx STM32F429xx
Figure 4. STM32F427xx and STM32F429xx block diagram
##-DATA2!-+"
*4!'37
-05
.6)#
%4-
,#$?2;=,#$?';=,#$?";=
,#$?(39.#,#$?639.#,#$?$%
,#$?#,+
$-!
3TREAMS
&)&/
$-!
3TREAMS
&)&/
,#$4&4
2.'
-"&LASH
32!-+"
32!-+"
32!-+"
!("-(Z
!("-(Z
6OLTAGE
REGULATOR
TO6
'0)/0/24!
0";=
'0)/0/24"
0#;=
'0)/0/24#
2#(3
0/2
RESET
2#,3
)NT
0,,
$0
$)$6"533/&
6$$TO6
633
6#!06#!0
6$$
6$$!
&)&/
0!;=
53"
/4'&3
0OWERMANAGMT
6$$
&)&/
#(2/-!24
$-!$
(39.#639.#
05)8#,+$;=
#AMERA
INTERFACE
0(9
$-!
&)&/
-"&LASH
&)&/ &)&/
53"
/4'(3
!24!##%,
#!#(%
3"53
%THERNET-!# $-!
&)&/
0(9
$0$5,0)#+$;=$)2340.84
)$6"533/&
32!-3$2!-032!-
./2&LASH0##ARD
.!.$&LASH
$"53
!2-#ORTEX-
-(Z
)"53
&05
-))OR2-))AS!&
-$)/AS!&
#,+.%;=!;=
$;=./%..7%.
.",;=3$#,+%;=3$.%;=
3$.7%.,
.2!3.#!3.!$6
.7!)4.)/2$.2%'#$
).42
%XTERNALMEMORYCONTROLLER&-#
!("
!("BUSMATRIX3
.*4234*4$)
*4#+37#,+
*4$/37$*4$/
42!#%#,+
42!#%$;=
3UPPLY
SUPERVISION
0/20$2
"/2
06$
6$$!633!
.234
6$$
6$$!
84!,/3#
-(Z
/3#?).
/3#?/54
0$;=
'0)/0/24$
0%;=
'0)/0/24%
0&;=
'0)/0/24&
0';=
'0)/0/24'
0(;=
'0)/0/24(
0);=
'0)/0/24)
0*;=
'0)/0/24*
+""+032!-
'0)/0/24+
4)-
B
CHANNELS%42AS!&
4)-
B
CHANNELS%42AS!&
4)-
B
CHANNELS%42AS!&
CHANNELS
,3
4)-07-B
4)-
B
4)-
B
2848#+
#43243AS!&
SMCARD
53!24
IR$!
2848#+
#43243AS!&
SMCARD
53!24
IR$!
-/3)-)3/
3#+.33AS!&
-/3)-)3/
3#+.33AS!&
-/3)-)3/
3#+.33AS!&
-/3)-)3/
3#+.33AS!&
30)
30)
30)
3!)
77$'
B
4)-
B
ANALOGINPUTSFOR!$#
$!#
!$#
!$#
!$#
6$$!
B
B
CHANNELSAS!&
4)-
B
CHANNELAS!&
B
CHANNELAS!&
SMCARD
2848AS!&
#43243AS!&
SMCARD
2848AS!&
#43243AS!&
5!24
2848AS!&
5!24
2848AS!&
5!24
2848AS!&
30)3
-/3)3$-)3/3$?EXT3#+#+
.3373-#+AS!&
30)3
-/3)3$-)3/3$?EXT3#+#+
.3373-#+AS!&
)#3-"53
)4&
$!#
)&
2848AS!&
5!24
)#3-"53
53!24-"PS
4EMPERATURESENSOR
24#?!&
24#?!&
24#?(:
4)-
53!24 IR$!
4)-
/3#?).
/3#?/54
4)-
4)-
6$$!
ANALOGINPUTSCOMMON
TOTHE!$#S
ANALOGINPUTSCOMMON
TOTHE!$#
24#
!75
"ACKUPREGISTER
53!24 IR$!
30)
3$3#+&3-#,+AS!&
84!,K(Z
)#3-"53
BX#!.
BX#!.
$IGITALFILTER
CHANNELAS!&
B
!0"-(Z
!0"-(ZMAX
CHANNELAS!&
6$$2%&?!$#
,3
0#,+X
(#,+X
4)-07- B
4)-
6"!4TO6
6"!4
3#,3$!3-"!AS!&
&)&/
3$)/--#
3TANDBY
INTERFACE
!("!0" !("!0"
!0"-(Z
COMPLCHAN4)-?#(;=.
CHAN4)-?#(;=%42
"+).AS!&
COMPLCHAN4)-?#(;=.
CHAN4)-?#(;=%42
"+).AS!&
CHANNELSAS!&
%84)47+50
!0"-(Z
$;=
#-$#+AS!&
)7$'
$-!
$-!
&)&/
!&
&)&/
0+;=
2ESET
CLOCK
-!.!'4
CONTROL
4828
3#,3$!3-"!AS!&
3#,3$!3-"!AS!&
4828
$!#?/54 $!#?/54
AS!&
AS!&
-36
1. The timers connected to APB2 are clocked from TIMxCLK up to 180 MHz, while the timers connected to APB1 are clocked
from TIMxCLK either up to 90 MHz or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.
2. The LCD-TFT is available only on STM32F429xx devices.
18/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Functional overview
3
Functional overview
3.1
ARM® Cortex®-M4 with FPU and embedded Flash and SRAM
The ARM® Cortex®-M4 with FPU processor is the latest generation of ARM processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The ARM® Cortex®-M4 with FPU core is a 32-bit RISC processor that features exceptional
code-efficiency, delivering the high-performance expected from an ARM core in the memory
size usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
The STM32F42x family is compatible with all ARM tools and software.
Figure 4 shows the general block diagram of the STM32F42x family.
Note:
Cortex-M4 with FPU core is binary compatible with the Cortex-M3 core.
3.2
Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard ARM® Cortex®-M4 with FPU processors. It balances the inherent performance
advantage of the ARM® Cortex®-M4 with FPU over Flash memory technologies, which
normally requires the processor to wait for the Flash memory at higher frequencies.
To release the processor full 225 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 180 MHz.
3.3
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
DocID024030 Rev 8
19/233
42
Functional overview
3.4
STM32F427xx STM32F429xx
Embedded Flash memory
The devices embed a Flash memory of up to 2 Mbytes available for storing programs and
data.
3.5
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
3.6
Embedded SRAM
All devices embed:
•
Up to 256Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory)
data RAM
RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
•
4 Kbytes of backup SRAM
This area is accessible only from the CPU. Its content is protected against possible
unwanted write accesses, and is retained in Standby or VBAT mode.
3.7
Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB
HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM, FMC, AHB and APB
peripherals) and ensures a seamless and efficient operation even when several high-speed
peripherals work simultaneously.
20/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Functional overview
Figure 5. STM32F427xx and STM32F429xx Multi-AHB matrix
&KURP$57$FFHOHUDWRU
'0$'
,&2'(
'&2'(
$&&(/
'0$'
/&'7)7B0
86%B+6B0
0$&
86%27* /&'7)7
(WKHUQHW
+6
(7+(51(7B0
'0$B3
*3
'0$
'0$B0(0
'0$B0(0
*3
'0$
'0$B3,
6EXV
'EXV
$50
&RUWH[0
,EXV
.E\WH
&&0GDWD5$0
)ODVK
PHPRU\
65$0
.E\WH
65$0
.E\WH
65$0
.E\WH
$+%
SHULSKHUDOV
$3%
$+%
SHULSKHUDOV
)0&H[WHUQDO
0HP&WO
$3%
%XVPDWUL[6
-36
3.8
DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
DocID024030 Rev 8
21/233
42
Functional overview
STM32F427xx STM32F429xx
The DMA can be used with the main peripherals:
3.9
•
SPI and I2S
•
I2C
•
USART
•
General-purpose, basic and advanced-control timers TIMx
•
DAC
•
SDIO
•
Camera interface (DCMI)
•
ADC
•
SAI1.
Flexible memory controller (FMC)
All devices embed an FMC. It has four Chip Select outputs supporting the following modes:
PCCard/Compact Flash, SDRAM/LPSDR SDRAM, SRAM, PSRAM, NOR Flash and NAND
Flash.
Functionality overview:
•
8-,16-, 32-bit data bus width
•
Read FIFO for SDRAM controller
•
Write FIFO
•
Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is 90 MHz.
LCD parallel interface
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
3.10
LCD-TFT controller (available only on STM32F429xx)
The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue)
and delivers all signals to interface directly to a broad range of LCD and TFT panels up to
XGA (1024x768) resolution with the following features:
22/233
•
2 displays layers with dedicated FIFO (64x32-bit)
•
Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
•
Up to 8 Input color formats selectable per layer
•
Flexible blending between two layers using alpha value (per pixel or constant)
•
Flexible programmable parameters for each layer
•
Color keying (transparency color)
•
Up to 4 programmable interrupt events.
DocID024030 Rev 8
STM32F427xx STM32F429xx
3.11
Functional overview
Chrom-ART Accelerator™ (DMA2D)
The Chrom-Art Accelerator™ (DMA2D) is a graphic accelerator which offers advanced bit
blitting, row data copy and pixel format conversion. It supports the following functions:
•
Rectangle filling with a fixed color
•
Rectangle copy
•
Rectangle copy with pixel format conversion
•
Rectangle composition with blending and pixel format conversion.
Various image format coding are supported, from indirect 4bpp color mode up to 32bpp
direct color. It embeds dedicated memory to store color lookup tables.
An interrupt can be generated when an operation is complete or at a programmed
watermark.
All the operations are fully automatized and are running independently from the CPU or the
DMAs.
3.12
Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 91 maskable interrupt channels plus the 16 interrupt lines of the Cortex®M4 with FPU core.
•
Closely coupled NVIC gives low-latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Allows early processing of interrupts
•
Processing of late arriving, higher-priority interrupts
•
Support tail chaining
•
Processor state automatically saved
•
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
3.13
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 23 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 168 GPIOs can be connected
to the 16 external interrupt lines.
3.14
Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full
temperature range. The application can then select as system clock either the RC oscillator
or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is
DocID024030 Rev 8
23/233
42
Functional overview
STM32F427xx STM32F429xx
detected, the system automatically switches back to the internal RC oscillator and a
software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing
to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL
clock entry is available when necessary (for example if an indirectly used external oscillator
fails).
Several prescalers allow the configuration of the two AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB
buses is 180 MHz while the maximum frequency of the high-speed APB domains is
90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.
The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio
class performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
3.15
Boot modes
At startup, boot pins are used to select one out of three boot options:
•
Boot from user Flash
•
Boot from system memory
•
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory
through a serial interface. Refer to application note AN2606 for details.
3.16
Power supply schemes
•
VDD = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.
•
VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset
blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
•
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Note:
VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply
supervisor (refer to Section 3.17.2: Internal reset OFF). Refer to Table 3: Voltage regulator
configuration mode versus device operating mode to identify the packages supporting this
option.
3.17
Power supply supervisor
3.17.1
Internal reset ON
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by
holding PDR_ON high. On the other package, the power supply supervisor is always
enabled.
The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
24/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Functional overview
reached, the option byte loading process starts, either to confirm or modify default BOR
thresholds, or to disable BOR permanently. Three BOR thresholds are available through
option bytes. The device remains in reset mode when VDD is below a specified threshold,
VPOR/PDR or VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
3.17.2
Internal reset OFF
This feature is available only on packages featuring the PDR_ON pin. The internal power-on
reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.
An external power supply supervisor should monitor VDD and should maintain the device in
reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to
this external power supply supervisor. Refer to Figure 6: Power supply supervisor
interconnection with internal reset OFF.
Figure 6. Power supply supervisor interconnection with internal reset OFF
9''
([WHUQDO9''SRZHUVXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYHZKHQ
9''9
3'5B21
1567
$SSOLFDWLRQUHVHW
VLJQDORSWLRQDO
9''
069
The VDD specified threshold, below which the device must be maintained under reset, is
1.7 V (see Figure 7).
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no more supported:
•
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
•
The brownout reset (BOR) circuitry must be disabled
•
The embedded programmable voltage detector (PVD) is disabled
•
VBAT functionality is no more available and VBAT pin should be connected to VDD.
All packages, except for the LQFP100, allow to disable the internal reset through the
PDR_ON signal.
DocID024030 Rev 8
25/233
42
Functional overview
STM32F427xx STM32F429xx
Figure 7. PDR_ON control with internal reset OFF
9 ''
3'5 9
WLPH
5HVHWE\RWKHUVRXUFHWKDQ
SRZHUVXSSO\VXSHUYLVRU
1567
3'5B21
3'5B21
WLPH
069
3.18
Voltage regulator
The regulator has four operating modes:
•
•
3.18.1
Regulator ON
–
Main regulator mode (MR)
–
Low power regulator (LPR)
–
Power-down
Regulator OFF
Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when the regulator is ON:
•
MR mode used in Run/sleep modes or in Stop modes
–
In Run/Sleep mode
The MR mode is used either in the normal mode (default mode) or the over-drive
mode (enabled by software). Different voltages scaling are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
26/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Functional overview
The over-drive mode allows operating at a higher frequency than the normal mode
for a given voltage scaling.
–
In Stop modes
The MR can be configured in two ways during stop mode:
MR operates in normal mode (default mode of MR in stop mode)
MR operates in under-drive mode (reduced leakage mode).
•
LPR is used in the Stop modes:
The LP regulator mode is configured by software when entering Stop mode.
Like the MR mode, the LPR can be configured in two ways during stop mode:
•
–
LPR operates in normal mode (default mode when LPR is ON)
–
LPR operates in under-drive mode (reduced leakage mode).
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost.
Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.
Two external ceramic capacitors should be connected on VCAP_1 and VCAP_2 pin. Refer to
Figure 22: Power supply scheme and Table 19: VCAP1/VCAP2 operating conditions.
All packages have the regulator ON feature.
Table 3. Voltage regulator configuration mode versus device operating mode(1)
Voltage regulator
configuration
Run mode
Sleep mode
Stop mode
Standby mode
Normal mode
MR
MR
MR or LPR
-
Over-drive
mode(2)
MR
MR
-
-
Under-drive mode
-
-
MR or LPR
-
Power-down
mode
-
-
-
Yes
1. ‘-’ means that the corresponding configuration is not available.
2. The over-drive mode is not available when VDD = 1.7 to 2.1 V.
3.18.2
Regulator OFF
This feature is available only on packages featuring the BYPASS_REG pin. The regulator is
disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply
externally a V12 voltage source through VCAP_1 and VCAP_2 pins.
Since the internal voltage scaling is not managed internally, the external voltage value must
be aligned with the targeted maximum frequency. Refer to Table 17: General operating
conditions.The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling
capacitors. Refer to Figure 22: Power supply scheme.
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
DocID024030 Rev 8
27/233
42
Functional overview
STM32F427xx STM32F429xx
In regulator OFF mode, the following features are no more supported:
•
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power
domain which is not reset by the NRST pin.
•
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As
a consequence, PA0 and NRST pins must be managed separately if the debug
connection under reset or pre-reset is required.
•
The over-drive and under-drive modes are not available.
•
The Standby mode is not available.
Figure 8. Regulator OFF
9
([WHUQDO9&$3BSRZHU
$SSOLFDWLRQUHVHW
VXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYH VLJQDORSWLRQDO
ZKHQ9&$3B0LQ9
9''
3$
9''
1567
%<3$66B5(*
9
9&$3B
9&$3B
DL9
The following conditions must be respected:
Note:
28/233
•
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
•
If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for
VDD to reach 1.7 V, then PA0 should be kept low to cover both conditions: until VCAP_1
and VCAP_2 reach V12 minimum value and until VDD reaches 1.7 V (see Figure 9).
•
Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower
than the time for VDD to reach 1.7 V, then PA0 could be asserted low externally (see
Figure 10).
•
If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.7 V, then a
reset must be asserted on PA0 pin.
The minimum value of V12 depends on the maximum frequency targeted in the application
(see Table 17: General operating conditions).
DocID024030 Rev 8
STM32F427xx STM32F429xx
Functional overview
Figure 9. Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization
9''
3'5 9RU9
9
0LQ9
9&$3B9&$3B
WLPH
1567
WLPH
DLI
1. This figure is valid whatever the internal reset mode (ON or OFF).
Figure 10. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization
9''
3'5 9RU9
9&$3B9&$3B
9
0LQ9
1567
WLPH
3$DVVHUWHGH[WHUQDOO\
WLPH
DLH
1. This figure is valid whatever the internal reset mode (ON or OFF).
DocID024030 Rev 8
29/233
42
Functional overview
3.18.3
STM32F427xx STM32F429xx
Regulator ON/OFF and internal reset ON/OFF availability
Table 4. Regulator ON/OFF and internal reset ON/OFF availability
Package
Regulator ON
Regulator OFF
LQFP100
Yes
LQFP144,
LQFP208
WLCSP143,
LQFP176,
UFBGA169,
UFBGA176,
TFBGA216
3.19
Internal reset ON Internal reset OFF
Yes
No
Yes
PDR_ON set to
VDD
Yes
PDR_ON
connected to an
external power
supply supervisor
No
Yes
Yes
BYPASS_REG set BYPASS_REG set
to VDD
to VSS
Real-time clock (RTC), backup SRAM and backup registers
The backup domain includes:
•
The real-time clock (RTC)
•
4 Kbytes of backup SRAM
•
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binarycoded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC provides a programmable alarm and programmable
periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is
also available in binary format.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data
which need to be retained in VBAT and standby mode. This memory area is disabled by
default to minimize power consumption (see Section 3.20: Low-power modes). It can be
enabled by software.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 3.20: Low-power
modes).
30/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Functional overview
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
Like backup SRAM, the RTC and backup registers are supplied through a switch that is
powered either from the VDD supply when present or from the VBAT pin.
3.20
Low-power modes
The devices support three low-power modes to achieve the best compromise between low
power consumption, short startup time and available wakeup sources:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled.
The voltage regulator can be put either in main regulator mode (MR) or in low-power
mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator
modes in stop mode):
–
Normal mode (default mode when MR or LPR is enabled)
–
Under-drive mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).
Table 5. Voltage regulator modes in stop mode
•
Voltage regulator
configuration
Main regulator (MR)
Low-power regulator (LPR)
Normal mode
MR ON
LPR ON
Under-drive mode
MR in under-drive mode
LPR in under-drive mode
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event
occurs.
The standby mode is not supported when the embedded voltage regulator is bypassed
and the 1.2 V domain is controlled by an external power.
DocID024030 Rev 8
31/233
42
Functional overview
3.21
STM32F427xx STM32F429xx
VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note:
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
When PDR_ON pin is not connected to VDD (Internal Reset OFF), the VBAT functionality is
no more available and VBAT pin should be connected to VDD.
3.22
Timers and watchdogs
The devices include two advanced-control timers, eight general-purpose timers, two basic
timers and two watchdog timers.
All timer counters can be frozen in debug mode.
Table 6 compares the features of the advanced-control, general-purpose and basic timers.
32/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Functional overview
Table 6. Timer feature comparison
Timer
type
Max
Max
DMA
Capture/
timer
Counter Counter Prescaler
Complementary interface
Timer
request
compare
clock
resolution
type
factor
output
clock
generation channels
(MHz)
(MHz)
(1)
Advanced TIM1,
-control
TIM8
TIM2,
TIM5
TIM3,
TIM4
TIM9
16-bit
Any
Up,
integer
Down, between 1
Up/down
and
65536
Yes
4
Yes
90
180
32-bit
Any
Up,
integer
Down, between 1
Up/down
and
65536
Yes
4
No
45
90/180
16-bit
Any
Up,
integer
Down, between 1
Up/down
and
65536
Yes
4
No
45
90/180
16-bit
Up
Any
integer
between 1
and
65536
No
2
No
90
180
Up
Any
integer
between 1
and
65536
No
1
No
90
180
Up
Any
integer
between 1
and
65536
No
2
No
45
90/180
Up
Any
integer
between 1
and
65536
No
1
No
45
90/180
Up
Any
integer
between 1
and
65536
Yes
0
No
45
90/180
General
purpose
TIM10
,
TIM11
TIM12
TIM13
,
TIM14
Basic
TIM6,
TIM7
16-bit
16-bit
16-bit
16-bit
1. The maximum timer clock is either 90 or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.
DocID024030 Rev 8
33/233
42
Functional overview
3.22.1
STM32F427xx STM32F429xx
Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (edge- or center-aligned modes)
•
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
3.22.2
General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32F42x devices
(see Table 6 for differences).
•
TIM2, TIM3, TIM4, TIM5
The STM32F42x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3,
and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload
up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent
channels for input capture/output compare, PWM or one-pulse mode output. This gives
up to 16 input capture/output compare/PWMs on the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
•
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9
and TIM12 have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5
full-featured general-purpose timers. They can also be used as simple time bases.
3.22.3
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
TIM6 and TIM7 support independent DMA request generation.
34/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
3.22.4
Functional overview
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
3.22.5
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.22.6
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
3.23
•
A 24-bit downcounter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source.
Inter-integrated circuit interface ( I2C)
Up to three I²C bus interfaces can operate in multimaster and slave modes. They can
support the standard (up to 100 KHz), and fast (up to 400 KHz) modes. They support the
7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC
generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
The devices also include programmable analog and digital noise filters (see Table 7).
Table 7. Comparison of I2C analog and digital filters
Analog filter
Pulse width of
suppressed spikes
3.24
≥ 50 ns
Digital filter
Programmable length from 1 to 15
I2C peripheral clocks
Universal synchronous/asynchronous receiver transmitters
(USART)
The devices embed four universal synchronous/asynchronous receiver transmitters
(USART1, USART2, USART3 and USART6) and four universal asynchronous receiver
transmitters (UART4, UART5, UART7, and UART8).
These six interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
DocID024030 Rev 8
35/233
42
Functional overview
STM32F427xx STM32F429xx
communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate
at up to 5.62 bit/s.
USART1, USART2, USART3 and USART6 also provide hardware management of the CTS
and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication
capability. All interfaces can be served by the DMA controller.
Table 8. USART feature comparison(1)
USART
name
Standard
Modem
SPI
LIN
irDA
features (RTS/CTS)
master
Smartcard
(ISO 7816)
Max. baud
Max. baud
rate in Mbit/s rate in Mbit/s
(oversampling (oversampling
by 16)
by 8)
APB
mapping
USART1
X
X
X
X
X
X
5.62
11.25
APB2
(max.
90 MHz)
USART2
X
X
X
X
X
X
2.81
5.62
APB1
(max.
45 MHz)
USART3
X
X
X
X
X
X
2.81
5.62
APB1
(max.
45 MHz)
UART4
X
-
X
-
X
-
2.81
5.62
APB1
(max.
45 MHz)
UART5
X
-
X
-
X
-
2.81
5.62
APB1
(max.
45 MHz)
USART6
X
X
X
X
X
X
5.62
11.25
APB2
(max.
90 MHz)
UART7
X
-
X
-
X
-
2.81
5.62
APB1
(max.
45 MHz)
UART8
X
-
X
-
X
-
2.81
5.62
APB1
(max.
45 MHz)
1. X = feature supported.
3.25
Serial peripheral interface (SPI)
The devices feature up to six SPIs in slave and master modes in full-duplex and simplex
communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to 45 Mbits/s,
SPI2 and SPI3 can communicate at up to 22.5 Mbit/s. The 3-bit prescaler gives 8 master
mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the
DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
36/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
3.26
Functional overview
Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be
operated in master or slave mode, in full duplex and simplex communication modes, and
can be configured to operate with a 16-/32-bit resolution as an input or output channel.
Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of
the I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
Note:
For I2S2 full-duplex mode, I2S2_CK and I2S2_WS signals can be used only on GPIO Port
B and GPIO Port D.
3.27
Serial Audio interface (SAI1)
The serial audio interface (SAI1) is based on two independent audio sub-blocks which can
operate as transmitter or receiver with their FIFO. Many audio protocols are supported by
each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF
output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub-blocks
can be configured in master or in slave mode.
In master mode, the master clock can be output to the external DAC/CODEC at 256 times of
the sampling frequency.
The two sub-blocks can be configured in synchronous mode when full-duplex mode is
required.
SAI1 can be served by the DMA controller.
3.28
Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S and SAI applications. It allows
to achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
The PLLI2S configuration can be modified to manage an I2S/SAI sample rate change
without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 KHz to 192 KHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the
I2S/SAI flow with an external PLL (or Codec output).
3.29
Audio and LCD PLL(PLLSAI)
An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the
PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or
11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.
The PLLSAI is also used to generate the LCD-TFT clock.
DocID024030 Rev 8
37/233
42
Functional overview
3.30
STM32F427xx STM32F429xx
Secure digital input/output interface (SDIO)
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital
protocol Rev1.1.
3.31
Ethernet MAC interface with dedicated DMA and IEEE 1588
support
The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for
ethernet LAN communications through an industry-standard medium-independent interface
(MII) or a reduced medium-independent interface (RMII). The microcontroller requires an
external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair,
fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals
for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.
The devices include the following features:
3.32
•
Supports 10 and 100 Mbit/s rates
•
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors (see the STM32F4xx reference manual for details)
•
Tagged MAC frame support (VLAN support)
•
Half-duplex (CSMA/CD) and full-duplex operation
•
MAC control sublayer (control frames) support
•
32-bit CRC generation and removal
•
Several address filtering modes for physical and multicast address (multicast and
group addresses)
•
32-bit status code for each transmitted or received frame
•
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the
receive FIFO are both 2 Kbytes.
•
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
•
Triggers interrupt when system time becomes greater than target time
Controller area network (bxCAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
38/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Functional overview
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). 256 bytes of SRAM are allocated for each CAN.
3.33
Universal serial bus on-the-go full-speed (OTG_FS)
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and
with the OTG 1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator. The major features are:
3.34
•
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
•
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
•
4 bidirectional endpoints
•
8 host channels with periodic OUT support
•
HNP/SNP/IP inside (no need for any external resistor)
•
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
Universal serial bus on-the-go high-speed (OTG_HS)
The devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral.
The USB OTG HS supports both full-speed and high-speed operations. It integrates the
transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI)
for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an
external PHY device connected to the ULPI is required.
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG
1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator.
The major features are:
•
Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
•
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
•
6 bidirectional endpoints
•
12 host channels with periodic OUT support
•
Internal FS OTG PHY support
•
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
•
Internal USB DMA
•
HNP/SNP/IP inside (no need for any external resistor)
•
for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
DocID024030 Rev 8
39/233
42
Functional overview
3.35
STM32F427xx STM32F429xx
Digital camera interface (DCMI)
The devices embed a camera interface that can connect with camera modules and CMOS
sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera
interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:
3.36
•
Programmable polarity for the input pixel clock and synchronization signals
•
Parallel data communication can be 8-, 10-, 12- or 14-bit
•
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
•
Supports continuous mode or snapshot (a single frame) mode
•
Capability to automatically crop the image
Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.
3.37
General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 90 MHz.
3.38
Analog-to-digital converters (ADCs)
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16
external channels, performing conversions in the single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
•
Simultaneous sample and hold
•
Interleaved sample and hold
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.
40/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
3.39
Functional overview
Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally
connected to the same input channel as VBAT, ADC1_IN18, which is used to convert the
sensor output voltage into a digital value. When the temperature sensor and VBAT
conversion are enabled at the same time, only VBAT conversion is performed.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
3.40
Digital-to-analog converter (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
This dual digital Interface supports the following features:
•
two DAC converters: one for each output channel
•
8-bit or 10-bit monotonic output
•
left or right data alignment in 12-bit mode
•
synchronized update capability
•
noise-wave generation
•
triangular-wave generation
•
dual DAC channel independent or simultaneous conversions
•
DMA capability for each channel
•
external triggers for conversion
•
input voltage reference VREF+
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA streams.
3.41
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.42
Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F42x through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
DocID024030 Rev 8
41/233
42
Functional overview
STM32F427xx STM32F429xx
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
42/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Pinouts and pin description
6$$
633
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
Figure 11. STM32F42x LQFP100 pinout
,1&0
6$$
633
6#!0?
0! 0! 0! 0! 0! 0! 0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
0%
0%
0%
0%
0%
6"!4
0#
0#
0#
633
6$$
0(
0(
.234
0#
0#
0#
0#
6$$
633!
62%&
6$$!
0!
0!
0!
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
0"
6#!0?
6$$
4
Pinouts and pin description
AIC
1. The above figure shows the package top view.
DocID024030 Rev 8
43/233
83
Pinouts and pin description
STM32F427xx STM32F429xx
Figure 12. STM32F42x WLCSP143 ballout
$
3'5
B21
3(
3%
3%
3*
3*
3'
3'
%
3(
3(
3%
3%
3%
3*
3'
&
9%$7
3(
%227
3%
3%
3*
'
3&
3&
3(
3(
9''
(
3&
9''
3)
3(
)
3)
3)
3)
*
3)
3)
+
3)
-
3'
3&
9''
3'
3'
3&
3$
9''
3'
3&
3$
9''
3*
3$
3$
3$
966
9&$3
B
966
9''
3*
3&
3&
3$
3$
3)
3)
3*
966
3'
3&
3&
3$
3)
3)
9''
3*
3*
3*
3*
3*
9''
3+
1567
3&
966
3'
3'
3'
966
966
3+
3&
3&
9''
9''
9''
9''
3(
3%
3'
3*
.
3&
966$
3$
3$
3%
3)
3*
3(
3%
3'
3'
/
95()
9''$
3$
3$
3%
3)
3(
3(
3(
3'
9''
0
3$
3$
3$
3&
3)
3)
3(
3%
3%
3'
1
%<3$66B
5(*
3$
3&
3%
3)
3*
3(
3%
9&$3
B
3%
3(
3(
3*
069
1. The above figure shows the package bump view.
44/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Pinouts and pin description
6$$
0$2?/.
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6$$
633
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0#
0#
0#
0! 0! Figure 13. STM32F42x LQFP144 pinout
,1&0
6$$
633
6#!0?
0! 0! 0! 0! 0! 0! 0#
0#
0#
0#
6$$
633
0'
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
6#!0?
6$$
0! 633
6$$
0! 0! 0! 0! 0#
0#
0"
0"
0"
0&
0&
633
6$$
0&
0&
0&
0'
0'
0%
0%
0%
633
6$$
0%
0%
0%
0%
0%
0%
0"
0"
0%
0%
0%
0%
0%
6"!4
0#
0#
0#
0&
0&
0&
0&
0&
0&
633
6$$
0&
0&
0&
0&
0&
0(
0(
.234
0#
0#
0#
0#
6$$
633!
62%&
6$$!
0! 0! 0! AIB
1. The above figure shows the package top view.
DocID024030 Rev 8
45/233
83
Pinouts and pin description
STM32F427xx STM32F429xx
0$2?/.
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6$$
633
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
6$$
633
0)
0)
0)
0)
0)
0)
6
$$
Figure 14. STM32F42x LQFP176 pinout
,1&0
0)
0)
0(
0(
0(
6$$
633
6#!0?
0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
6$$
633
0'
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
6$$
633
0(
6#!0?
6$$
0(
0(
0(
0(
0(
0(
633
6$$
0&
0&
0&
0'
0'
0%
0%
0%
633
6$$
0%
0%
0%
0%
0%
0%
0"
0"
0(
0(
0!
"90!33?2%'
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0&
0&
0%
0%
0%
0%
0%
6"!4
0)
0#
0#
0#
0)
0)
0)
633
6$$
0&
0&
0&
0&
0&
0&
633
6$$
0&
0&
0&
0&
0&
0(
0(
.234
0#
0#
0#
0#
6$$
633!
62%&
6$$!
0!
0!
0!
0(
0(
-36
1. The above figure shows the package top view.
46/233
DocID024030 Rev 8
0)
0)
0)
0)
6$$
0$2?/.
633
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
0+
0+
0+
0+
0+
6$$
633
0'
0'
0'
0'
0'
0'
0*
0*
0*
0*
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
6$$
0)
STM32F427xx STM32F429xx
Figure 15. STM32F42x LQFP208 pinout
0)
0)
0)
0(
0(
0(
6$$
633
6#!0
0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
6$$
633
0& 0& 0& 0'
0'
0'
0'
0'
0'
0'
0+
0+
0+
633
6$$
0*
0*
0*
0*
0*
0*
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0"
0"
0"
633
6$$
0&
0&
0&
0&
0&
0(
0(
.234
0#
0#
0#
0#
6$$
633!
62%&
6$$!
0!
0!
0!
0(
0(
0(
0(
0!
633
6$$
,1&0
0!
0!
0!
0!
0#
0#
6$$
633
0"
0"
0"
0)
0*
0*
0*
0*
0*
0&
0&
633
6$$
0&
0&
0&
0'
0'
0%
0%
0%
633
6$$
0%
0%
0%
0%
0%
0%
0"
0"
6#!0
633
6$$
0*
0(
0(
0(
0(
0(
0(
0(
6$$
0"
47/233
1. The above figure shows the package top view.
-36
Pinouts and pin description
DocID024030 Rev 8
0%
0%
0%
0%
0%
6"!4
0)
0#
0#
0#
0)
0)
0)
633
6$$
0&
0&
0&
0)
0)
0)
Pinouts and pin description
STM32F427xx STM32F429xx
Figure 16. STM32F42x UFBGA169 ballout
0)
0)
0%
"//4
0"
0'
0$
0$
0#
0!
0)
0)
0%
0)
0%
0"
0"
0'
0$
0$
0#
0!
0)
0)
0%
0%
0$2
?/.
0"
0"
0'
0'
0$
0$
0#
0)
0(
0(
$
0%
0%
6$$
0"
0"
6$$
633
0$
0$
6$$
633
6#!0
?
0(
%
0#
0)
0)
0#
6"!4
6$$
633
0!
0!
0!
0!
0!
0!
&
0#
0&
0&
6$$
633
633
6$$
6$$
0#
0#
0#
0#
0'
'
0(
0(
0&
0&
0&
0#
633
6$$
633
6$$
0'
0'
0'
0&
.234
0&
6$$
0#
0#
0#
6$$
0%
0$
0$
0'
0'
*
633!
62%&
62%&
6$$!
0!
633
633
0%
0%
633
6$$
0$
0$
+
0!
0!
0!
0!
0"
6$$
0&
0%
0%
0(
0$
0$
0$
,
0(
0(
0(
0#
0"
6$$
0&
0%
0"
0(
0(
0$
0"
-
"90!33
?2%'
0(
0!
0#
0&
0&
0'
0%
0"
0(
0(
0"
0"
0!
0!
0"
0&
0'
0%
0%
6#!0
?
0(
0(
0"
!
"
#
(
.
-36
1. The above figure shows the package top view.
2. The 4 corners balls, A1,A13, N1 and N13, are not bonded internally and should be left not connected on the PCB.
48/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Pinouts and pin description
Figure 17. STM32F42x UFBGA176 ballout
!
0%
0%
"
0%
#
0%
0%
0"
0"
0'
0'
0"
0%
0%
0"
0"
0"
0'
0'
6"!4
0)
0)
0)
6$$
0$2?/. 6$$
$
0#
0)
0)
0)
633
633
%
0#
0&
0)
0)
&
0#
633
6$$
0(
633
633
633
633
'
0(
633
6$$
0(
633
633
633
(
0(
0&
0&
0(
633
633
*
.234
0&
0&
0(
633
+
0&
0&
0&
6$$
633
,
0&
0&
0&
"90!33?
2%'
-
633!
0#
0#
0#
0#
0"
0'
633
633
.
62%&
0!
0!
0!
0#
0&
0'
6$$
6$$
0
62%&
0!
0!
0!
0#
0&
0&
0%
2
6$$!
0! 0!
0"
0"
0&
0&
0%
"//4
0"
0$
0#
0!
0!
0!
0'
0'
0$
0$
0#
0#
0!
6$$
6$$
0'
0$
0$
0)
0)
0!
633
633
0$
0$
0$
0(
0)
0!
0(
0(
0)
0! 633
633
6#!0
0#
0! 633
633
633
6$$
0#
0#
633
633
633
633
6$$
0'
0#
633
633
633
633
6$$
6$$
0'
0'
633
633
633
633
0(
0'
0'
0'
0(
0(
0$
0'
0(
0(
0(
0$
0$
6$$
0%
0(
0$
0$
0$
0%
0%
0%
0"
0"
0$
0$
0%
0%
0%
0"
0"
0"
0"
6#!0?
AIC
1. The above figure shows the package top view.
DocID024030 Rev 8
49/233
83
Pinouts and pin description
STM32F427xx STM32F429xx
Figure 18. STM32F42x TFBGA216 ballout
!
0%
0%
0%
0'
0%
0%
0"
0"
0"
0"
0$
"
0%
0%
0'
0"
0"
0"
0'
0'
0*
0*
#
6"!4
0)
0)
0+
0+
0+
0'
0'
0*
$
0#
0&
0)
0)
0)
0)
0+
0+
%
0#
0&
0)
0)
0$2?
/.
"//4 6$$
&
0#
633
0)
6$$
6$$
633
633
'
0(
0&
0)
0)
6$$
(
0(
0&
0)
0(
*
.234
0&
0(
+
0&
0&
0#
0!
0!
0!
0$
0$
0#
0#
0!
0$
0$
0$
0)
0) 0!
0'
0*
0$
0$
0(
0) 0!
6$$
6$$
6$$
6#!0
0(
0(
0) 0!
633
633
633
6$$
0+
0+
0#
0!
633
633
6$$
0*
0+
0#
0#
6$$
633
633
6$$
0*
0*
0'
0#
0(
6$$
633
633
6$$
0*
0*
0'
0&
0(
6$$
633
633
633
633
633
6$$
0*
0$
0"
0&
0&
0&
0#
"90!33
633
2%'
6$$
6$$
6$$
6$$
6#!0
0$
0"
0$
-
633!
0#
0#
0#
0"
0&
0'
0&
0*
0$
0$
0'
0'
0*
.
62%&
0!
0!
0!
0#
0&
0'
0*
0%
0$
0'
0'
0(
0(
0
62%&
0!
0!
0!
0#
0&
0*
0&
0%
0%
0%
0"
0(
0(
2
6$$!
0!
0!
0"
0"
0*
0*
0%
0%
0%
0%
0%
0"
0"
,
0'
0$
0$
0(
0(
0(
0"
-36
1. The above figure shows the package top view.
50/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Pinouts and pin description
Table 9. Legend/abbreviations used in the pinout table
Name
Pin name
Abbreviation
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
TTa
3.3 V tolerant I/O directly connected to ADC
B
Dedicated BOOT0 pin
RST
Bidirectional reset pin with weak pull-up resistor
Pin type
I/O structure
Notes
Definition
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
Table 10. STM32F427xx and STM32F429xx pin and ball definitions
Notes
I / O structure
Pin name
(function after
reset)(1)
Pin type
TFBGA216
LQFP208
WLCSP143
LQFP176
UFBGA176
UFBGA169
LQFP144
LQFP100
Pin number
Alternate functions
1
1
B2
A2
1
D8
1
A3
PE2
I/O FT
TRACECLK,
SPI4_SCK,
SAI1_MCLK_A,
ETH_MII_TXD3,
FMC_A23, EVENTOUT
2
2
C1
A1
2
C10
2
A2
PE3
I/O FT
TRACED0,
SAI1_SD_B, FMC_A19,
EVENTOUT
I/O FT
TRACED1, SPI4_NSS,
SAI1_FS_A, FMC_A20,
DCMI_D4, LCD_B0,
EVENTOUT
3
3
C2
B1
3
B11
3
A1
PE4
DocID024030 Rev 8
Additional
functions
51/233
83
Pinouts and pin description
STM32F427xx STM32F429xx
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
4
4
D1
B2
4
D9
4
B1
PE5
Notes
I / O structure
Pin name
(function after
reset)(1)
Pin type
TFBGA216
LQFP208
WLCSP143
LQFP176
UFBGA176
UFBGA169
LQFP144
LQFP100
Pin number
I/O FT
TRACED2, TIM9_CH1,
SPI4_MISO,
SAI1_SCK_A,
FMC_A21, DCMI_D6,
LCD_G0, EVENTOUT
I/O FT
TRACED3, TIM9_CH2,
SPI4_MOSI,
SAI1_SD_A, FMC_A22,
DCMI_D7, LCD_G1,
EVENTOUT
5
5
D2
B3
5
E8
5
B2
PE6
-
-
-
-
-
-
-
G6
VSS
S
-
-
-
-
-
-
-
F5
VDD
S
6
6
E5
C1
6
C11
6
C1
VBAT
S
-
-
(2)
D2
7
-
7
C2
PI8
I/O FT (4)
7
7
E4
D1
8
D10
8
D1
PC13
I/O FT (4)
8
8
E1
E1
9
D11
9
E1
PC14OSC32_IN
(PC14)
I/O FT (4)
9
9
F1
F1
10
E11
10
F1
PC15OSC32_OUT
(PC15)
I/O FT (4)
-
-
-
-
-
-
-
G5
VDD
-
-
E2
D3
11
-
11
E4
PI9
(3)
EVENTOUT
TAMP_2
EVENTOUT
TAMP_1
(3)
EVENTOUT
(3)
EVENTOUT
S
I/O FT
CAN1_RX, FMC_D30,
LCD_VSYNC,
EVENTOUT
E3
12
-
12
D5
PI10
I/O FT
(2)
E4
13
-
13
F3
PI11
I/O FT
OTG_HS_ULPI_DIR,
EVENTOUT
-
F6
F2
14
E7
14
F2
VSS
S
-
F4
F3
15
E10
15
F4
VDD
S
-
-
-
-
E3
NC
Additional
functions
(3)
ETH_MII_RX_ER,
FMC_D31,
LCD_HSYNC,
EVENTOUT
-
52/233
NC
Alternate functions
DocID024030 Rev 8
OSC32_IN
(5)
OSC32_
OUT(5)
STM32F427xx STM32F429xx
Pinouts and pin description
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
Pin name
(function after
reset)(1)
-
10
F2
E2
16
F11
16
D2
PF0
I/O FT
I2C2_SDA, FMC_A0,
EVENTOUT
-
11
F3
H3
17
E9
17
E2
PF1
I/O FT
I2C2_SCL, FMC_A1,
EVENTOUT
-
12
G5
H2
18
F10
18
G2
PF2
I/O FT
I2C2_SMBA, FMC_A2,
EVENTOUT
-
-
-
-
-
-
19
E3
PI12
I/O FT
LCD_HSYNC,
EVENTOUT
-
-
-
-
-
-
20
G3
PI13
I/O FT
LCD_VSYNC,
EVENTOUT
-
-
-
-
-
-
21
H3
PI14
I/O FT
Notes
LQFP144
I / O structure
LQFP100
Pin type
Pin number
Alternate functions
Additional
functions
LCD_CLK, EVENTOUT
(5)
FMC_A3, EVENTOUT
ADC3_IN9
-
13
G4
J2
19
G11
22
H2
PF3
I/O FT
-
14
G3
J3
20
F9
23
J2
PF4
I/O FT (5)
FMC_A4, EVENTOUT
ADC3_
IN14
-
15
H3
K3
21
F8
24
K3
PF5
I/O FT (5)
FMC_A5, EVENTOUT
ADC3_
IN15
10
16
G7
G2
22
H7
25
H6
VSS
S
11
17
G8
G3
23
-
26
H5
VDD
S
I/O FT (5)
TIM10_CH1,
SPI5_NSS,
SAI1_SD_B,
UART7_Rx,
FMC_NIORD,
EVENTOUT
ADC3_IN4
I/O FT (5)
TIM11_CH1,
SPI5_SCK,
SAI1_MCLK_B,
UART7_Tx,
FMC_NREG,
EVENTOUT
ADC3_IN5
I/O FT (5)
SPI5_MISO,
SAI1_SCK_B,
TIM13_CH1,
FMC_NIOWR,
EVENTOUT
ADC3_IN6
-
-
-
18
19
20
NC
(2)
NC
(2)
NC
(2)
K2
K1
L3
24
25
26
G10
F7
H11
27
28
29
K2
K1
L3
PF6
PF7
PF8
DocID024030 Rev 8
53/233
83
Pinouts and pin description
STM32F427xx STM32F429xx
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
-
21
-
NC
Notes
I / O structure
Pin name
(function after
reset)(1)
Pin type
TFBGA216
LQFP208
WLCSP143
LQFP176
UFBGA176
UFBGA169
LQFP144
LQFP100
Pin number
(5)
Alternate functions
Additional
functions
SPI5_MOSI,
SAI1_FS_B,
ADC3_IN7
TIM14_CH1, FMC_CD,
EVENTOUT
(2)
L2
27
G8
30
L2
PF9
I/O FT
22
H1
L1
28
G9
31
L1
PF10
I/O FT (5)
12
23
G2
G1
29
J11
32
G1
PH0-OSC_IN
(PH0)
13
24
G1
H1
30
H10
33
H1
PH1OSC_OUT
(PH1)
14
25
H2
J1
31
H9
34
J1
NRST
15
26
G6
M2
32
H8
35
M2
PC0
I/O FT (5)
OTG_HS_ULPI_STP,
FMC_SDNWE,
EVENTOUT
ADC123_
IN10
16
27
H5
M3
33
K11
36
M3
PC1
I/O FT (5)
ETH_MDC,
EVENTOUT
ADC123_
IN11
I/O FT (5)
SPI2_MISO,
I2S2ext_SD,
OTG_HS_ULPI_DIR,
ETH_MII_TXD2,
FMC_SDNE0,
EVENTOUT
ADC123_
IN12
I/O FT (5)
SPI2_MOSI/I2S2_SD,
OTG_HS_ULPI_NXT,
ETH_MII_TX_CLK,
FMC_SDCKE0,
EVENTOUT
ADC123_
IN13
17
28
H6
M4
34
J10
37
M4
PC2
FMC_INTR,
DCMI_D11, LCD_DE,
EVENTOUT
ADC3_IN8
I/O FT
EVENTOUT
OSC_IN(5)
I/O FT
EVENTOUT
I/O
18
29
H7
M5
35
J9
38
L4
PC3
19
30
-
-
36
G7
39
J5
VDD
S
-
-
-
-
-
-
-
J6
VSS
S
20
31
J1
M1
37
K10
40
M1
VSSA
S
-
-
J2
N1
-
-
-
N1
VREF–
S
21
32
J3
P1
38
L11
41
P1
VREF+
S
54/233
DocID024030 Rev 8
OSC_OUT
(5)
RS
T
STM32F427xx STM32F429xx
Pinouts and pin description
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
33
J4
R1
39
L10
42
R1
VDDA
23
24
34
35
J5
K1
N3
N2
40
41
K9
K8
43
44
N3
N2
PA0-WKUP
(PA0)
S
Notes
UFBGA169
22
I / O structure
LQFP144
Pin name
(function after
reset)(1)
Pin type
LQFP100
Pin number
Alternate functions
TIM2_CH1/TIM2_ETR,
TIM5_CH1, TIM8_ETR,
ADC123_
USART2_CTS,
I/O FT (6)
IN0/WKUP
UART4_TX,
(5)
ETH_MII_CRS,
EVENTOUT
PA1
TIM2_CH2, TIM5_CH2,
USART2_RTS,
UART4_RX,
(5)
I/O FT
ETH_MII_RX_CLK/ETH
_RMII_REF_CLK,
EVENTOUT
ADC123_
IN1
ADC123_
IN2
25
36
K2
P2
42
L9
45
P2
PA2
TIM2_CH3, TIM5_CH3,
TIM9_CH1,
I/O FT (5)
USART2_TX,
ETH_MDIO,
EVENTOUT
-
-
L2
F4
43
-
46
K4
PH2
I/O FT
ETH_MII_CRS,
FMC_SDCKE0,
LCD_R0, EVENTOUT
-
-
L1
G4
44
-
47
J4
PH3
I/O FT
ETH_MII_COL,
FMC_SDNE0, LCD_R1,
EVENTOUT
-
-
M2
H4
45
-
48
H4
PH4
I/O FT
I2C2_SCL,
OTG_HS_ULPI_NXT,
EVENTOUT
-
-
L3
J4
46
-
49
J3
PH5
I/O FT
I2C2_SDA, SPI5_NSS,
FMC_SDNWE,
EVENTOUT
TIM2_CH4, TIM5_CH4,
TIM9_CH2,
USART2_RX,
I/O FT (5)
OTG_HS_ULPI_D0,
ETH_MII_COL,
LCD_B5, EVENTOUT
26
37
K3
R2
27
38
-
-
47
Additional
functions
M11
50
R2
PA3
-
51
K6
VSS
ADC123_
IN3
S
DocID024030 Rev 8
55/233
83
Pinouts and pin description
STM32F427xx STM32F429xx
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
Pin type
I / O structure
Pin number
-
-
M1
L4
48
N11
-
L5
BYPASS_
REG
I
FT
28
39
J11
K4
49
J8
52
K5
VDD
S
30
31
40
41
42
N2
M3
N3
N4
P4
P3
50
51
52
M10 53
M9
N10
54
55
N4
P4
P3
Notes
29
Pin name
(function after
reset)(1)
Alternate functions
PA4
I/O TTa (5)
SPI1_NSS,
SPI3_NSS/I2S3_WS,
USART2_CK,
OTG_HS_SOF,
DCMI_HSYNC,
LCD_VSYNC,
EVENTOUT
PA5
TIM2_CH1/TIM2_ETR,
TIM8_CH1N,
SPI1_SCK,
I/O TTa (5)
OTG_HS_ULPI_CK,
EVENTOUT
PA6
I/O FT (5)
TIM1_BKIN,
TIM3_CH1,
TIM8_BKIN,
SPI1_MISO,
TIM13_CH1,
DCMI_PIXCLK,
LCD_G2, EVENTOUT
Additional
functions
ADC12_
IN4 /DAC_
OUT1
ADC12_
IN5/DAC_
OUT2
ADC12_
IN6
32
43
K4
R3
53
L8
56
R3
PA7
TIM1_CH1N,
TIM3_CH2,
TIM8_CH1N,
SPI1_MOSI,
I/O FT (5)
TIM14_CH1,
ETH_MII_RX_DV/ETH_
RMII_CRS_DV,
EVENTOUT
33
44
L4
N5
54
M8
57
N5
PC4
I/O FT (5)
ETH_MII_RXD0/ETH_
RMII_RXD0,
EVENTOUT
ADC12_
IN14
34
45
M4
P5
55
N9
58
P5
PC5
I/O FT (5)
ETH_MII_RXD1/ETH_
RMII_RXD1,
EVENTOUT
ADC12_
IN15
-
-
-
-
-
J7
59
L7
VDD
S
-
-
-
-
-
-
60
L6
VSS
S
56/233
DocID024030 Rev 8
ADC12_
IN7
STM32F427xx STM32F429xx
Pinouts and pin description
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
35
46
N4
R5
56
N8
61
R5
Notes
I / O structure
Pin name
(function after
reset)(1)
Pin type
TFBGA216
LQFP208
WLCSP143
LQFP176
UFBGA176
UFBGA169
LQFP144
LQFP100
Pin number
Alternate functions
Additional
functions
PB0
TIM1_CH2N,
TIM3_CH3,
TIM8_CH2N, LCD_R3,
(5)
I/O FT
OTG_HS_ULPI_D1,
ETH_MII_RXD2,
EVENTOUT
ADC12_
IN8
TIM1_CH3N,
TIM3_CH4,
TIM8_CH3N, LCD_R6,
(5)
I/O FT
OTG_HS_ULPI_D2,
ETH_MII_RXD3,
EVENTOUT
ADC12_
IN9
36
47
K5
R4
57
K7
62
R4
PB1
37
48
L5
M6
58
L7
63
M5
PB2-BOOT1
(PB2)
I/O FT
EVENTOUT
-
-
-
-
-
-
64
G4
PI15
I/O FT
LCD_R0, EVENTOUT
-
-
-
-
-
-
65
R6
PJ0
I/O FT
LCD_R1, EVENTOUT
-
-
-
-
-
-
66
R7
PJ1
I/O FT
LCD_R2, EVENTOUT
-
-
-
-
-
-
67
P7
PJ2
I/O FT
LCD_R3, EVENTOUT
-
-
-
-
-
-
68
N8
PJ3
I/O FT
LCD_R4, EVENTOUT
-
-
-
-
-
-
69
M9
PJ4
I/O FT
LCD_R5, EVENTOUT
-
49
M5
R6
59
M7
70
P8
PF11
I/O FT
SPI5_MOSI,
FMC_SDNRAS,
DCMI_D12,
EVENTOUT
-
50
N5
P6
60
N7
71
M6
PF12
I/O FT
FMC_A6, EVENTOUT
-
51
G9
M8
61
-
72
K7
VSS
S
-
52
D10
N8
62
-
73
L8
VDD
S
-
53
M6
N6
63
K6
74
N6
PF13
I/O FT
FMC_A7, EVENTOUT
-
54
K7
R7
64
L6
75
P6
PF14
I/O FT
FMC_A8, EVENTOUT
-
55
L7
P7
65
M6
76
M8
PF15
I/O FT
FMC_A9, EVENTOUT
-
56
N6
N7
66
N6
77
N7
PG0
I/O FT
FMC_A10, EVENTOUT
-
57
M7
M7
67
K5
78
M7
PG1
I/O FT
FMC_A11, EVENTOUT
DocID024030 Rev 8
57/233
83
Pinouts and pin description
STM32F427xx STM32F429xx
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
Pin name
(function after
reset)(1)
38
58
N7
R8
68
L5
79
R8
PE7
I/O FT
TIM1_ETR, UART7_Rx,
FMC_D4, EVENTOUT
39
59
J8
P8
69
M5
80
N9
PE8
I/O FT
TIM1_CH1N,
UART7_Tx, FMC_D5,
EVENTOUT
40
60
K8
P9
70
N5
81
P9
PE9
I/O FT
TIM1_CH1, FMC_D6,
EVENTOUT
-
61
J6
M9
71
H3
82
K8
VSS
S
-
62
G10
N9
72
J5
83
L9
VDD
S
41
63
L8
R9
73
J4
84
R9
PE10
I/O FT
TIM1_CH2N, FMC_D7,
EVENTOUT
42
64
M8
P10
74
K4
85
P10
PE11
I/O FT
TIM1_CH2, SPI4_NSS,
FMC_D8, LCD_G3,
EVENTOUT
43
65
N8
R10
75
L4
86
R10
PE12
I/O FT
TIM1_CH3N,
SPI4_SCK, FMC_D9,
LCD_B4, EVENTOUT
44
66
H9
N11
76
N4
87
R12
PE13
I/O FT
TIM1_CH3,
SPI4_MISO, FMC_D10,
LCD_DE, EVENTOUT
45
67
J9
P11
77
M4
88
P11
PE14
I/O FT
TIM1_CH4,
SPI4_MOSI, FMC_D11,
LCD_CLK, EVENTOUT
46
68
K9
R11
78
L3
89
R11
PE15
I/O FT
TIM1_BKIN, FMC_D12,
LCD_R7, EVENTOUT
I/O FT
TIM2_CH3, I2C2_SCL,
SPI2_SCK/I2S2_CK,
USART3_TX,
OTG_HS_ULPI_D3,
ETH_MII_RX_ER,
LCD_G4, EVENTOUT
I/O FT
TIM2_CH4, I2C2_SDA,
USART3_RX,
OTG_HS_ULPI_D4,
ETH_MII_TX_EN/ETH_
RMII_TX_EN, LCD_G5,
EVENTOUT
47
48
69
70
58/233
L9
M9
R12
R13
79
80
M3
N3
90
91
P12
R13
PB10
PB11
DocID024030 Rev 8
Notes
LQFP144
I / O structure
LQFP100
Pin type
Pin number
Alternate functions
Additional
functions
STM32F427xx STM32F429xx
Pinouts and pin description
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
Pin name
(function after
reset)(1)
49
71
N9
M10
81
N2
92
L11
VCAP_1
S
-
-
-
-
-
H2
93
K9
VSS
S
50
72
F8
N10
82
J6
94
L10
VDD
S
-
-
-
-
-
-
95
M14
PJ5
I/O
LCD_R6, EVENTOUT
I/O FT
I2C2_SMBA,
SPI5_SCK,
TIM12_CH1,
ETH_MII_RXD2,
FMC_SDNE1,
DCMI_D8, EVENTOUT
-
-
N10
M11
83
-
96
P13
PH6
Notes
LQFP144
I / O structure
LQFP100
Pin type
Pin number
Alternate functions
-
-
M10 N12
84
-
97
N13
PH7
I/O FT
I2C3_SCL, SPI5_MISO,
ETH_MII_RXD3,
FMC_SDCKE1,
DCMI_D9, EVENTOUT
-
-
L10
85
-
98
P14
PH8
I/O FT
I2C3_SDA, FMC_D16,
DCMI_HSYNC,
LCD_R2, EVENTOUT
M12
-
-
K10
M13
86
-
99
N14
PH9
I/O FT
I2C3_SMBA,
TIM12_CH2,
FMC_D17, DCMI_D0,
LCD_R3, EVENTOUT
-
-
N11
L13
87
-
100 P15
PH10
I/O FT
TIM5_CH1, FMC_D18,
DCMI_D1, LCD_R4,
EVENTOUT
-
-
M11
L12
88
-
101 N15
PH11
I/O FT
TIM5_CH2, FMC_D19,
DCMI_D2, LCD_R5,
EVENTOUT
-
-
L11
K12
89
-
102 M15
PH12
I/O FT
TIM5_CH3, FMC_D20,
DCMI_D3, LCD_R6,
EVENTOUT
-
-
E7
H12
90
-
-
-
H8
J12
91
-
K10
VSS
S
103 K11
VDD
S
-
DocID024030 Rev 8
Additional
functions
59/233
83
Pinouts and pin description
STM32F427xx STM32F429xx
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
51
52
53
73
74
75
N12
M12
P12
P13
M13 R14
92
93
94
M2 104 L13
N1
K3
105 K14
106 R14
PB12
PB13
PB14
Notes
I / O structure
Pin name
(function after
reset)(1)
Pin type
TFBGA216
LQFP208
WLCSP143
LQFP176
UFBGA176
UFBGA169
LQFP144
LQFP100
Pin number
Alternate functions
I/O FT
TIM1_BKIN,
I2C2_SMBA,
SPI2_NSS/I2S2_WS,
USART3_CK,
CAN2_RX,
OTG_HS_ULPI_D5,
ETH_MII_TXD0/ETH_R
MII_TXD0,
OTG_HS_ID,
EVENTOUT
I/O FT
TIM1_CH1N,
SPI2_SCK/I2S2_CK,
USART3_CTS,
OTG_HS_
CAN2_TX,
VBUS
OTG_HS_ULPI_D6,
ETH_MII_TXD1/ETH_R
MII_TXD1, EVENTOUT
I/O FT
TIM1_CH2N,
TIM8_CH2N,
SPI2_MISO,
I2S2ext_SD,
USART3_RTS,
TIM12_CH1,
OTG_HS_DM,
EVENTOUT
54
76
L13
R15
95
J3
107 R15
PB15
I/O FT
RTC_REFIN,
TIM1_CH3N,
TIM8_CH3N,
SPI2_MOSI/I2S2_SD,
TIM12_CH2,
OTG_HS_DP,
EVENTOUT
55
77
L12
P15
96
L2
108 L15
PD8
I/O FT
USART3_TX,
FMC_D13, EVENTOUT
56
78
K13
P14
97
M1 109 L14
PD9
I/O FT
USART3_RX,
FMC_D14, EVENTOUT
57
79
K11
N15
98
H4
PD10
I/O FT
USART3_CK,
FMC_D15, LCD_B3,
EVENTOUT
60/233
110 K15
Additional
functions
DocID024030 Rev 8
STM32F427xx STM32F429xx
Pinouts and pin description
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
UFBGA176
LQFP176
WLCSP143
LQFP208
80
H10
N14
99
K2
111 N10
PD11
I/O FT
USART3_CTS,
FMC_A16, EVENTOUT
59
81
J13
N13 100
H6
112 M10
PD12
I/O FT
TIM4_CH1,
USART3_RTS,
FMC_A17, EVENTOUT
60
82
K12
M15 101
H5
113 M11
PD13
I/O FT
TIM4_CH2, FMC_A18,
EVENTOUT
-
83
-
-
102
-
114
J10
VSS
S
-
84
F7
J13
103
L1
115
J11
VDD
S
61
85
H11
M14 104
J2
116
L12
PD14
I/O FT
TIM4_CH3, FMC_D0,
EVENTOUT
62
86
J12
L14
105
K1
117 K13
PD15
I/O FT
TIM4_CH4, FMC_D1,
EVENTOUT
-
-
-
-
-
-
118 K12
PJ6
I/O FT
LCD_R7, EVENTOUT
-
-
-
-
-
-
119
J12
PJ7
I/O FT
LCD_G0, EVENTOUT
-
-
-
-
-
-
120 H12
PJ8
I/O FT
LCD_G1, EVENTOUT
-
-
-
-
-
-
121
J13
PJ9
I/O FT
LCD_G2, EVENTOUT
-
-
-
-
-
-
122 H13
PJ10
I/O FT
LCD_G3, EVENTOUT
-
-
-
-
-
-
123 G12
PJ11
I/O FT
LCD_G4, EVENTOUT
-
-
-
-
-
-
124 H11
VDD
I/O FT
-
-
-
-
-
-
125 H10
VSS
I/O FT
-
-
-
-
-
-
126 G13
PK0
I/O FT
LCD_G5, EVENTOUT
-
-
-
-
-
-
127 F12
PK1
I/O FT
LCD_G6, EVENTOUT
-
-
-
-
-
-
128 F13
PK2
I/O FT
LCD_G7, EVENTOUT
-
87
H13
L15
106
J1
129 M13
PG2
I/O FT
FMC_A12, EVENTOUT
-
88
(2)
K15 107
G3
130 M12
PG3
I/O FT
FMC_A13, EVENTOUT
-
89
H12
K14 108
G5
131 N12
PG4
I/O FT
FMC_A14/FMC_BA0,
EVENTOUT
-
90
G13
K13 109
G6
132 N11
PG5
I/O FT
FMC_A15/FMC_BA1,
EVENTOUT
NC
DocID024030 Rev 8
Notes
UFBGA169
I / O structure
LQFP144
58
TFBGA216
LQFP100
Pin name
(function after
reset)(1)
Pin type
Pin number
Alternate functions
Additional
functions
61/233
83
Pinouts and pin description
STM32F427xx STM32F429xx
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
Pin name
(function after
reset)(1)
-
91
G11
J15
110
G4
133
J15
PG6
I/O FT
FMC_INT2, DCMI_D12,
LCD_R7, EVENTOUT
-
92
G12
J14
111
H1
134
J14
PG7
I/O FT
USART6_CK,
FMC_INT3, DCMI_D13,
LCD_CLK, EVENTOUT
I/O FT
SPI6_NSS,
USART6_RTS,
ETH_PPS_OUT,
FMC_SDCLK,
EVENTOUT
-
93
F13
H14 112
G2
135 H14
PG8
-
94
J7
G12 113
D2
136 G10
VSS
S
-
95
E6
H13 114
G1
137 G11
VDD
S
63
64
65
66
67
96
97
98
99
F9
F10
F11
F12
100 E13
62/233
H15 115
G15 116
G14 117
F14
F15
118
119
F2
F3
E4
E3
F1
138 H15
139 G15
140 G14
141 F14
142 F15
PC6
PC7
PC8
PC9
PA8
Notes
LQFP144
I / O structure
LQFP100
Pin type
Pin number
Alternate functions
I/O FT
TIM3_CH1, TIM8_CH1,
I2S2_MCK,
USART6_TX,
SDIO_D6, DCMI_D0,
LCD_HSYNC,
EVENTOUT
I/O FT
TIM3_CH2, TIM8_CH2,
I2S3_MCK,
USART6_RX,
SDIO_D7, DCMI_D1,
LCD_G6, EVENTOUT
I/O FT
TIM3_CH3, TIM8_CH3,
USART6_CK,
SDIO_D0, DCMI_D2,
EVENTOUT
I/O FT
MCO2, TIM3_CH4,
TIM8_CH4, I2C3_SDA,
I2S_CKIN, SDIO_D1,
DCMI_D3, EVENTOUT
I/O FT
MCO1, TIM1_CH1,
I2C3_SCL,
USART1_CK,
OTG_FS_SOF,
LCD_R6, EVENTOUT
DocID024030 Rev 8
Additional
functions
STM32F427xx STM32F429xx
Pinouts and pin description
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
68
69
70
101
102
E8
E9
103 E10
E15 120
D15 121
C15 122
E2
D5
D4
143 E15
144 D15
145 C15
PA9
PA10
PA11
Notes
I / O structure
Pin name
(function after
reset)(1)
Pin type
TFBGA216
LQFP208
WLCSP143
LQFP176
UFBGA176
UFBGA169
LQFP144
LQFP100
Pin number
Alternate functions
Additional
functions
I/O FT
TIM1_CH2,
I2C3_SMBA,
USART1_TX,
DCMI_D0, EVENTOUT
OTG_FS_
VBUS
I/O FT
TIM1_CH3,
USART1_RX,
OTG_FS_ID,
DCMI_D1, EVENTOUT
I/O FT
TIM1_CH4,
USART1_CTS,
CAN1_RX, LCD_R4,
OTG_FS_DM,
EVENTOUT
71
104 E11
B15 123
E1
146 B15
PA12
I/O FT
TIM1_ETR,
USART1_RTS,
CAN1_TX, LCD_R5,
OTG_FS_DP,
EVENTOUT
72
105 E12
A15 124
D3
147 A15
PA13
(JTMSSWDIO)
I/O FT
JTMS-SWDIO,
EVENTOUT
73
106 D12
F13
125
D1
148 E11
VCAP_2
S
74
107
J10
F12
126
D2
149 F10
VSS
S
75
108
H4
G13 127
C1
150 F11
VDD
S
-
-
D13
E12 128
-
151 E12
PH13
I/O FT
TIM8_CH1N,
CAN1_TX, FMC_D21,
LCD_G2, EVENTOUT
-
-
C13
E13 129
-
152 E13
PH14
I/O FT
TIM8_CH2N,
FMC_D22, DCMI_D4,
LCD_G3, EVENTOUT
-
-
C12
D13 130
-
153 D13
PH15
I/O FT
TIM8_CH3N,
FMC_D23, DCMI_D11,
LCD_G4, EVENTOUT
I/O FT
TIM5_CH4,
SPI2_NSS/I2S2_WS(7),
FMC_D24, DCMI_D13,
LCD_G5, EVENTOUT
-
-
B13
E14 131
-
154 E14
PI0
DocID024030 Rev 8
63/233
83
Pinouts and pin description
STM32F427xx STM32F429xx
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
-
-
-
-
C11
B12
D14 132
C14 133
-
-
-
-
A12
C13 134
-
-
D11
D9
135
F5
-
-
D3
C9
136
A1
A14 137
B1
76
77
78
79
109 A11
110
B11
111 C10
112 B10
A13 138
B14 139
B13 140
-
C2
A2
B2
155 D14
156 C14
157 C13
PI1
PI2
PI3
I/O FT
TIM8_CH4,
SPI2_MISO,
I2S2ext_SD, FMC_D26,
DCMI_D9, LCD_G7,
EVENTOUT
I/O FT
TIM8_ETR,
SPI2_MOSI/I2S2_SD,
FMC_D27, DCMI_D10,
EVENTOUT
158 E10
VDD
S
159 A14
PA14
(JTCKSWCLK)
160 A13
161 B14
162 B13
PA15
(JTDI)
PC10
PC11
Notes
I/O FT
S
F9
Alternate functions
SPI2_SCK/I2S2_CK(7),
FMC_D25, DCMI_D8,
LCD_G6, EVENTOUT
VSS
-
I / O structure
Pin name
(function after
reset)(1)
Pin type
TFBGA216
LQFP208
WLCSP143
LQFP176
UFBGA176
UFBGA169
LQFP144
LQFP100
Pin number
I/O FT
JTCK-SWCLK/
EVENTOUT
I/O FT
JTDI,
TIM2_CH1/TIM2_ETR,
SPI1_NSS,
SPI3_NSS/I2S3_WS,
EVENTOUT
I/O FT
SPI3_SCK/I2S3_CK,
USART3_TX,
UART4_TX, SDIO_D2,
DCMI_D8, LCD_R2,
EVENTOUT
I/O FT
I2S3ext_SD,
SPI3_MISO,
USART3_RX,
UART4_RX, SDIO_D3,
DCMI_D4, EVENTOUT
80
113 A10
A12 141
C3
163 A12
PC12
I/O FT
SPI3_MOSI/I2S3_SD,
USART3_CK,
UART5_TX, SDIO_CK,
DCMI_D9, EVENTOUT
81
114
B12 142
B3
164 B12
PD0
I/O FT
CAN1_RX, FMC_D2,
EVENTOUT
64/233
D9
DocID024030 Rev 8
Additional
functions
STM32F427xx STM32F429xx
Pinouts and pin description
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
83
116
B9
D12 144
A3
166 D12
PD1
PD2
Notes
165 C12
I / O structure
C4
Pin name
(function after
reset)(1)
Pin type
C12 143
TFBGA216
UFBGA176
C9
LQFP208
UFBGA169
115
WLCSP143
LQFP144
82
LQFP176
LQFP100
Pin number
Alternate functions
I/O FT
CAN1_TX, FMC_D3,
EVENTOUT
I/O FT
TIM3_ETR,
UART5_RX,
SDIO_CMD,
DCMI_D11,
EVENTOUT
84
117
A9
D11 145
B4
167 C11
PD3
I/O FT
SPI2_SCK/I2S2_CK,
USART2_CTS,
FMC_CLK, DCMI_D5,
LCD_G7, EVENTOUT
85
118
D8
D10 146
B5
168 D11
PD4
I/O FT
USART2_RTS,
FMC_NOE,
EVENTOUT
86
119
C8
C11 147
A4
169 C10
PD5
I/O FT
USART2_TX,
FMC_NWE,
EVENTOUT
-
120
-
D8
148
-
170
F8
VSS
S
-
121
D6
C8
149
C5
171
E9
VDD
S
87
122
B8
B11
150
F4
172 B11
PD6
I/O FT
SPI3_MOSI/I2S3_SD,
SAI1_SD_A,
USART2_RX,
FMC_NWAIT,
DCMI_D10, LCD_B2,
EVENTOUT
88
123
A8
A11
151
A5
173 A11
PD7
I/O FT
USART2_CK,
FMC_NE1/FMC_NCE2,
EVENTOUT
-
-
-
-
-
-
174 B10
PJ12
I/O FT
LCD_B0, EVENTOUT
-
-
-
-
-
-
175
B9
PJ13
I/O FT
LCD_B1, EVENTOUT
-
-
-
-
-
-
176
C9
PJ14
I/O FT
LCD_B2, EVENTOUT
-
-
-
-
-
-
177 D10
PJ15
I/O FT
LCD_B3, EVENTOUT
I/O FT
USART6_RX,
FMC_NE2/FMC_NCE3,
DCMI_VSYNC(8),
EVENTOUT
-
124
NC
(2)
C10 152
E5
178
D9
PG9
DocID024030 Rev 8
Additional
functions
65/233
83
Pinouts and pin description
STM32F427xx STM32F429xx
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
-
-
-
-
125
126
127
128
-
129
-
C7
B7
A7
NC
(2)
NC
B10 153
B9
B8
A8
154
155
156
C6
B6
A6
D6
179
180
181
182
C8
B8
C7
B3
PG10
PG11
PG12
PG13
Notes
I / O structure
Pin name
(function after
reset)(1)
Pin type
TFBGA216
LQFP208
WLCSP143
LQFP176
UFBGA176
UFBGA169
LQFP144
LQFP100
Pin number
Alternate functions
I/O FT
LCD_G3,
FMC_NCE4_1/FMC_N
E3, DCMI_D2,
LCD_B2, EVENTOUT
I/O FT
ETH_MII_TX_EN/ETH_
RMII_TX_EN,
FMC_NCE4_2,
DCMI_D3, LCD_B3,
EVENTOUT
I/O FT
SPI6_MISO,
USART6_RTS,
LCD_B4, FMC_NE4,
LCD_B1, EVENTOUT
I/O FT
SPI6_SCK,
USART6_CTS,
ETH_MII_TXD0/ETH_R
MII_TXD0, FMC_A24,
EVENTOUT
I/O FT
SPI6_MOSI,
USART6_TX,
ETH_MII_TXD1/ETH_R
MII_TXD1, FMC_A25,
EVENTOUT
(2)
A7
157
F6
183
A4
PG14
130
D7
D7
158
-
184
F7
VSS
S
-
131
L6
C7
159
E6
185
E8
VDD
S
-
-
-
-
-
-
186
D8
PK3
I/O FT
LCD_B4, EVENTOUT
-
-
-
-
-
-
187
D7
PK4
I/O FT
LCD_B5, EVENTOUT
-
-
-
-
-
-
188
C6
PK5
I/O FT
LCD_B6, EVENTOUT
-
-
-
-
-
-
189
C5
PK6
I/O FT
LCD_B7, EVENTOUT
-
-
-
-
-
-
190
C4
PK7
I/O FT
LCD_DE, EVENTOUT
I/O FT
USART6_CTS,
FMC_SDNCAS,
DCMI_D13,
EVENTOUT
-
132
66/233
C6
B7
160
A7
191
B7
PG15
DocID024030 Rev 8
Additional
functions
STM32F427xx STM32F429xx
Pinouts and pin description
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
90
91
92
134
135
136
A6
D5
C5
A10 161
A9
A6
B6
162
163
164
C7
C8
A8
193
194
195
A9
A8
B6
PB4
(NJTRST)
PB5
PB6
93
137
B5
B5
165
B8
196
B5
PB7
94
138
A5
D6
166
C9
197
E6
BOOT0
95
139
D4
A5
167
A9
198
A7
PB8
Notes
I / O structure
Pin type
B7
PB3
192 A10 (JTDO/TRACE I/O FT
SWO)
TFBGA216
LQFP176
UFBGA176
UFBGA169
B6
LQFP208
133
Pin name
(function after
reset)(1)
WLCSP143
89
LQFP144
LQFP100
Pin number
Alternate functions
JTDO/TRACESWO,
TIM2_CH2, SPI1_SCK,
SPI3_SCK/I2S3_CK,
EVENTOUT
I/O FT
NJTRST, TIM3_CH1,
SPI1_MISO,
SPI3_MISO,
I2S3ext_SD,
EVENTOUT
I/O FT
TIM3_CH2,
I2C1_SMBA,
SPI1_MOSI,
SPI3_MOSI/I2S3_SD,
CAN2_RX,
OTG_HS_ULPI_D7,
ETH_PPS_OUT,
FMC_SDCKE1,
DCMI_D10,
EVENTOUT
I/O FT
TIM4_CH1, I2C1_SCL,
USART1_TX,
CAN2_TX,
FMC_SDNE1,
DCMI_D5, EVENTOUT
I/O FT
TIM4_CH2, I2C1_SDA,
USART1_RX, FMC_NL,
DCMI_VSYNC,
EVENTOUT
I
B
I/O FT
DocID024030 Rev 8
Additional
functions
VPP
TIM4_CH3,
TIM10_CH1,
I2C1_SCL, CAN1_RX,
ETH_MII_TXD3,
SDIO_D4, DCMI_D6,
LCD_B6, EVENTOUT
67/233
83
Pinouts and pin description
STM32F427xx STM32F429xx
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
96
140
C4
B4
168
B9
199
B4
PB9
Notes
I / O structure
Pin name
(function after
reset)(1)
Pin type
TFBGA216
LQFP208
WLCSP143
LQFP176
UFBGA176
UFBGA169
LQFP144
LQFP100
Pin number
Alternate functions
I/O FT
TIM4_CH4,
TIM11_CH1,
I2C1_SDA,
SPI2_NSS/I2S2_WS,
CAN1_TX, SDIO_D5,
DCMI_D7, LCD_B7,
EVENTOUT
97
141
B4
A4
169 B10 200
A6
PE0
I/O FT
TIM4_ETR,
UART8_RX,
FMC_NBL0, DCMI_D2,
EVENTOUT
98
142
A4
A3
170 A10 201
A5
PE1
I/O FT
UART8_Tx,
FMC_NBL1, DCMI_D3,
EVENTOUT
99
-
F5
D5
202
F6
VSS
S
-
143
C3
C6
171 A11 203
E5
PDR_ON
S
100 144
K6
C5
172
D7
204
E7
VDD
S
B3
D4
173
-
205
C3
PI4
-
-
-
-
I/O FT
TIM8_BKIN,
FMC_NBL2, DCMI_D5,
LCD_B4, EVENTOUT
-
-
A3
C4
174
-
206
D3
PI5
I/O FT
TIM8_CH1,
FMC_NBL3,
DCMI_VSYNC,
LCD_B5, EVENTOUT
-
-
A2
C3
175
-
207
D6
PI6
I/O FT
TIM8_CH2, FMC_D28,
DCMI_D6, LCD_B6,
EVENTOUT
-
-
B1
C2
176
-
208
D4
PI7
I/O FT
TIM8_CH3, FMC_D29,
DCMI_D7, LCD_B7,
EVENTOUT
Additional
functions
1. Function availability depends on the chosen device.
2. NC (not-connected) pins are not bonded. They must be configured by software to output push-pull and forced to 0 in the
output data register to avoid extra current consumption in low power modes.
3. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
68/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Pinouts and pin description
4. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website:
www.st.com.
5. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
6. If the device is delivered in an WLCSP143, UFBGA169, UFBGA176, LQFP176 or TFBGA216 package, and the
BYPASS_REG pin is set to VDD (Regulator OFF/internal reset ON mode), then PA0 is used as an internal Reset (active low).
7. PI0 and PI1 cannot be used for I2S2 full-duplex mode.
8. The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.
DocID024030 Rev 8
69/233
83
Pinouts and pin description
STM32F427xx STM32F429xx
Table 11. FMC pin definition
70/233
Pin name
CF
NOR/PSRAM/
SRAM
NOR/PSRAM
Mux
PF0
A0
A0
A0
PF1
A1
A1
A1
PF2
A2
A2
A2
PF3
A3
A3
A3
PF4
A4
A4
A4
PF5
A5
A5
A5
PF12
A6
A6
A6
PF13
A7
A7
A7
PF14
A8
A8
A8
PF15
A9
A9
A9
PG0
A10
A10
A10
PG1
A11
A11
PG2
A12
A12
PG3
A13
PG4
A14
BA0
PG5
A15
BA1
PD11
A16
A16
CLE
PD12
A17
A17
ALE
PD13
A18
A18
PE3
A19
A19
PE4
A20
A20
PE5
A21
A21
PE6
A22
A22
PE2
A23
A23
PG13
A24
A24
PG14
A25
A25
NAND16
SDRAM
PD14
D0
D0
DA0
D0
D0
PD15
D1
D1
DA1
D1
D1
PD0
D2
D2
DA2
D2
D2
PD1
D3
D3
DA3
D3
D3
PE7
D4
D4
DA4
D4
D4
PE8
D5
D5
DA5
D5
D5
PE9
D6
D6
DA6
D6
D6
PE10
D7
D7
DA7
D7
D7
DocID024030 Rev 8
STM32F427xx STM32F429xx
Pinouts and pin description
Table 11. FMC pin definition (continued)
Pin name
CF
NOR/PSRAM/
SRAM
NOR/PSRAM
Mux
NAND16
SDRAM
PE11
D8
D8
DA8
D8
D8
PE12
D9
D9
DA9
D9
D9
PE13
D10
D10
DA10
D10
D10
PE14
D11
D11
DA11
D11
D11
PE15
D12
D12
DA12
D12
D12
PD8
D13
D13
DA13
D13
D13
PD9
D14
D14
DA14
D14
D14
PD10
D15
D15
DA15
D15
D15
PH8
D16
D16
PH9
D17
D17
PH10
D18
D18
PH11
D19
D19
PH12
D20
D20
PH13
D21
D21
PH14
D22
D22
PH15
D23
D23
PI0
D24
D24
PI1
D25
D25
PI2
D26
D26
PI3
D27
D27
PI6
D28
D28
PI7
D29
D29
PI9
D30
D30
PI10
D31
D31
PD7
NE1
NE1
NCE2
PG9
NE2
NE2
NCE3
NE3
NE3
PG12
NE4
NE4
PD3
CLK
CLK
PG10
NCE4_1
PG11
NCE4_2
PD4
NOE
NOE
NOE
NOE
PD5
NWE
NWE
NWE
NWE
PD6
NWAIT
NWAIT
NWAIT
NWAIT
NL(NADV)
NL(NADV)
PB7
DocID024030 Rev 8
71/233
83
Pinouts and pin description
STM32F427xx STM32F429xx
Table 11. FMC pin definition (continued)
72/233
Pin name
CF
PF6
NIORD
PF7
NREG
PF8
NIOWR
PF9
CD
PF10
INTR
NOR/PSRAM/
SRAM
NOR/PSRAM
Mux
NAND16
PG6
INT2
PG7
INT3
SDRAM
PE0
NBL0
NBL0
NBL0
PE1
NBL1
NBL1
NBL1
PI4
NBL2
NBL2
PI5
NBL3
NBL3
PG8
SDCLK
PC0
SDNWE
PF11
SDNRAS
PG15
SDNCAS
PH2
SDCKE0
PH3
SDNE0
PH6
SDNE1
PH7
SDCKE1
PH5
SDNWE
PC2
SDNE0
PC3
SDCKE0
PB5
SDCKE1
PB6
SDNE1
DocID024030 Rev 8
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF11
AF12
AF13
AF14
AF15
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
PA0
-
TIM2_
CH1/TIM2
_ETR
TIM5_
CH1
TIM8_
ETR
-
-
-
USART2_
UART4_TX
CTS
-
-
ETH_MII_
CRS
-
-
-
EVEN
TOUT
PA1
-
TIM2_
CH2
TIM5_
CH2
-
-
-
-
USART2_
UART4_RX
RTS
-
-
ETH_MII_
RX_CLK/E
TH_RMII_
REF_CLK
-
-
-
EVEN
TOUT
PA2
-
TIM2_
CH3
TIM5_
CH3
TIM9_
CH1
-
-
-
USART2_
TX
-
-
-
ETH_
MDIO
-
-
-
EVEN
TOUT
PA3
-
TIM2_
CH4
TIM5_
CH4
TIM9_
CH2
-
-
-
USART2_
RX
-
-
OTG_HS_
ULPI_D0
ETH_MII_
COL
-
-
LCD_B5
EVEN
TOUT
PA4
-
-
-
-
-
SPI1_
NSS
SPI3_
USART2_
NSS/
CK
I2S3_WS
-
-
-
-
OTG_HS_
SOF
DCMI_
HSYNC
LCD_
VSYNC
EVEN
TOUT
PA5
-
TIM2_
CH1/TIM2
_ETR
-
TIM8_
CH1N
-
SPI1_
SCK
-
-
-
-
OTG_HS_
ULPI_CK
-
-
-
-
EVEN
TOUT
PA6
-
TIM1_
BKIN
TIM3_
CH1
TIM8_
BKIN
-
SPI1_
MISO
-
-
-
TIM13_CH1
-
-
-
DCMI_
PIXCLK
LCD_G2
EVEN
TOUT
PA7
-
TIM1_
CH1N
TIM3_
CH2
TIM8_
CH1N
-
SPI1_
MOSI
-
-
-
TIM14_CH1
-
ETH_MII_
RX_DV/
ETH_RMII
_CRS_DV
-
-
-
EVEN
TOUT
PA8
MCO1
TIM1_
CH1
-
-
I2C3_
SCL
-
-
USART1_
CK
-
-
OTG_FS_
SOF
-
-
-
LCD_R6
EVEN
TOUT
PA9
-
TIM1_
CH2
-
-
I2C3_
SMBA
-
-
USART1_
TX
-
-
-
-
-
DCMI_
D0
-
EVEN
TOUT
PA10
-
TIM1_
CH3
-
-
-
-
-
USART1_
RX
-
-
OTG_FS_
ID
-
-
DCMI_
D1
-
EVEN
TOUT
PA11
-
TIM1_
CH4
-
-
-
-
-
USART1_
CTS
-
CAN1_RX
OTG_FS_
DM
-
-
-
LCD_R4
EVEN
TOUT
PA12
-
TIM1_
ETR
-
-
-
-
-
USART1_
RTS
-
CAN1_TX
OTG_FS_
DP
-
-
-
LCD_R5
EVEN
TOUT
Port
DocID024030 Rev 8
Port A
AF8
AF9
AF10
USART6/
CAN1/2/
OTG2_HS
UART4/5/7 TIM12/13/14
/OTG1_
/8
/LCD
FS
73/233
Pinouts and pin description
AF0
STM32F427xx STM32F429xx
Table 12. STM32F427xx and STM32F429xx alternate function mapping
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF11
AF12
AF13
AF14
AF15
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
PA13
JTMSSWDI
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PA14
JTCKSWCL
K
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PA15
JTDI
TIM2_
CH1/TIM2
_ETR
-
-
-
SPI1_
NSS
SPI3_
NSS/
I2S3_WS
-
-
-
-
-
-
-
-
EVEN
TOUT
PB0
-
TIM1_
CH2N
TIM3_
CH3
TIM8_
CH2N
-
-
-
-
-
LCD_R3
OTG_HS_
ULPI_D1
ETH_MII_
RXD2
-
-
-
EVEN
TOUT
PB1
-
TIM1_
CH3N
TIM3_
CH4
TIM8_
CH3N
-
-
-
-
-
LCD_R6
OTG_HS_
ULPI_D2
ETH_MII_
RXD3
-
-
-
EVEN
TOUT
PB2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PB3
JTDO/
TRAC
ESWO
TIM2_
CH2
-
-
-
SPI1_
SCK
SPI3_
SCK/
I2S3_CK
-
-
-
-
-
-
-
-
EVEN
TOUT
PB4
NJTR
ST
-
TIM3_
CH1
-
-
SPI1_
MISO
SPI3_
MISO
I2S3ext_
SD
-
-
-
-
-
-
-
EVEN
TOUT
PB5
-
-
TIM3_
CH2
-
I2C1_
SMBA
SPI1_
MOSI
SPI3_
MOSI/
I2S3_SD
-
-
CAN2_RX
OTG_HS_
ULPI_D7
ETH_PPS
_OUT
FMC_
SDCKE1
DCMI_
D10
-
EVEN
TOUT
PB6
-
-
TIM4_
CH1
-
I2C1_
SCL
-
-
USART1_
TX
-
CAN2_TX
-
-
FMC_
SDNE1
DCMI_
D5
-
EVEN
TOUT
PB7
-
-
TIM4_
CH2
-
I2C1_
SDA
-
-
USART1_
RX
-
-
-
-
FMC_NL
DCMI_
VSYNC
-
EVEN
TOUT
PB8
-
-
TIM4_
CH3
TIM10_
CH1
I2C1_
SCL
-
-
-
-
CAN1_RX
-
ETH_MII_
TXD3
SDIO_D4
DCMI_
D6
LCD_B6
EVEN
TOUT
PB9
-
-
TIM4_
CH4
TIM11_
CH1
I2C1_
SDA
SPI2_
NSS/I2
S2_WS
-
-
-
CAN1_TX
-
-
SDIO_D5
DCMI_
D7
LCD_B7
EVEN
TOUT
PB10
-
TIM2_
CH3
-
-
I2C2_
SCL
SPI2_
SCK/I2
S2_CK
-
USART3_
TX
-
-
OTG_HS_
ULPI_D3
ETH_MII_
RX_ER
-
-
LCD_G4
EVEN
TOUT
Port
Port A
DocID024030 Rev 8
Port B
AF8
AF9
AF10
USART6/
CAN1/2/
OTG2_HS
UART4/5/7 TIM12/13/14
/OTG1_
/8
/LCD
FS
STM32F427xx STM32F429xx
AF0
Pinouts and pin description
74/233
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF11
AF12
AF13
AF14
AF15
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
PB11
-
TIM2_
CH4
-
-
I2C2_
SDA
-
-
USART3_
RX
-
-
OTG_HS_
ULPI_D4
ETH_MII_
TX_EN/
ETH_RMII
_TX_EN
-
-
LCD_G5
EVEN
TOUT
PB12
-
TIM1_
BKIN
-
-
I2C2_
SMBA
SPI2_
NSS/I2
S2_WS
-
USART3_
CK
-
CAN2_RX
OTG_HS_
ULPI_D5
ETH_MII_
TXD0/ETH
_RMII_
TXD0
OTG_HS_
ID
-
-
EVEN
TOUT
PB13
-
TIM1_
CH1N
-
-
-
SPI2_
SCK/I2
S2_CK
-
USART3_
CTS
-
CAN2_TX
OTG_HS_
ULPI_D6
ETH_MII_
TXD1/ETH
_RMII_TX
D1
-
-
-
EVEN
TOUT
PB14
-
TIM1_
CH2N
-
TIM8_
CH2N
-
SPI2_
MISO
I2S2ext_
SD
USART3_
RTS
-
TIM12_CH1
-
-
OTG_HS_
DM
-
-
EVEN
TOUT
PB15
RTC_
REFIN
TIM1_
CH3N
-
TIM8_
CH3N
-
SPI2_
MOSI/I2
S2_SD
-
-
-
TIM12_CH2
-
-
OTG_HS_
DP
-
-
EVEN
TOUT
PC0
-
-
-
-
-
-
-
-
-
-
OTG_HS_
ULPI_STP
-
FMC_SDN
WE
-
-
EVEN
TOUT
PC1
-
-
-
-
-
-
-
-
-
-
-
ETH_MDC
-
-
-
EVEN
TOUT
PC2
-
-
-
-
-
SPI2_
MISO
I2S2ext_
SD
-
-
-
OTG_HS_
ULPI_DIR
ETH_MII_
TXD2
FMC_
SDNE0
-
-
EVEN
TOUT
PC3
-
-
-
-
-
SPI2_
MOSI/I2
S2_SD
-
-
-
-
OTG_HS_
ULPI_NXT
ETH_MII_
TX_CLK
FMC_
SDCKE0
-
-
EVEN
TOUT
PC4
-
-
-
-
-
-
-
-
-
-
-
ETH_MII_
RXD0/ETH
_RMII_
RXD0
-
-
-
EVEN
TOUT
PC5
-
-
-
-
-
-
-
-
-
-
-
ETH_MII_
RXD1/ETH
_RMII_
RXD1
-
-
-
EVEN
TOUT
PC6
-
-
TIM3_
CH1
TIM8_
CH1
-
I2S2_
MCK
-
-
USART6_
TX
-
-
-
SDIO_D6
DCMI_
D0
LCD_
HSYNC
EVEN
TOUT
PC7
-
-
TIM3_
CH2
TIM8_
CH2
-
-
I2S3_
MCK
-
USART6_
RX
-
-
-
SDIO_D7
DCMI_
D1
LCD_G6
EVEN
TOUT
Port
Port B
DocID024030 Rev 8
Port
C
AF8
AF9
AF10
USART6/
CAN1/2/
OTG2_HS
UART4/5/7 TIM12/13/14
/OTG1_
/8
/LCD
FS
75/233
Pinouts and pin description
AF0
STM32F427xx STM32F429xx
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
Port
C
DocID024030 Rev 8
Port
D
AF9
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
PC8
-
-
TIM3_
CH3
TIM8_
CH3
-
-
-
-
USART6_
CK
-
PC9
MCO2
-
TIM3_
CH4
TIM8_
CH4
I2C3_
SDA
I2S_
CKIN
-
-
-
PC10
-
-
-
-
-
-
SPI3_
SCK/I2S
3_CK
PC11
-
-
-
-
-
I2S3ext
_SD
PC12
-
-
-
-
-
PC13
-
-
-
-
PC14
-
-
-
PC15
-
-
PD0
-
PD1
AF10
AF12
AF13
AF14
AF15
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
-
-
SDIO_D0
DCMI_
D2
-
EVEN
TOUT
-
-
-
SDIO_D1
DCMI_
D3
-
EVEN
TOUT
USART3_
UART4_TX
TX
-
-
-
SDIO_D2
DCMI_
D8
LCD_R2
EVEN
TOUT
SPI3_
MISO
USART3_
UART4_RX
RX
-
-
-
SDIO_D3
DCMI_
D4
-
EVEN
TOUT
-
SPI3_
MOSI/I2
S3_SD
USART3_
UART5_TX
CK
-
-
-
SDIO_CK
DCMI_
D9
-
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
-
-
-
-
-
-
-
-
CAN1_RX
-
-
FMC_D2
-
-
EVEN
TOUT
-
-
-
-
-
-
-
-
-
CAN1_TX
-
-
FMC_D3
-
-
EVEN
TOUT
PD2
-
-
TIM3_
ETR
-
-
-
-
-
UART5_RX
-
-
-
SDIO_
CMD
DCMI_
D11
-
EVEN
TOUT
PD3
-
-
-
-
-
SPI2_S
CK/I
2S2_CK
-
USART2_
CTS
-
-
-
-
FMC_CLK
DCMI_
D5
LCD_G7
EVEN
TOUT
PD4
-
-
-
-
-
-
-
USART2_
RTS
-
-
-
-
FMC_NOE
-
-
EVEN
TOUT
PD5
-
-
-
-
-
-
-
USART2_
TX
-
-
-
-
FMC_NWE
-
-
EVEN
TOUT
PD6
-
-
-
-
-
SPI3_
MOSI/I2
S3_SD
SAI1_
SD_A
USART2_
RX
-
-
-
-
FMC_
NWAIT
DCMI_
D10
LCD_B2
EVEN
TOUT
USART6/
CAN1/2/
OTG2_HS
UART4/5/7 TIM12/13/14
/OTG1_
/8
/LCD
FS
STM32F427xx STM32F429xx
AF11
Port
AF8
Pinouts and pin description
76/233
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
Port
D
DocID024030 Rev 8
Port E
AF9
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
PD7
-
-
-
-
-
-
-
USART2_
CK
-
-
PD8
-
-
-
-
-
-
-
USART3_
TX
-
PD9
-
-
-
-
-
-
-
USART3_
RX
PD10
-
-
-
-
-
-
-
PD11
-
-
-
-
-
-
PD12
-
-
TIM4_
CH1
-
-
PD13
-
-
TIM4_
CH2
-
PD14
-
-
TIM4_
CH3
PD15
-
-
PE0
-
PE1
AF10
AF12
AF13
AF14
AF15
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
-
-
FMC_NE1/
FMC_
NCE2
-
-
EVEN
TOUT
-
-
-
FMC_D13
-
-
EVEN
TOUT
-
-
-
-
FMC_D14
-
-
EVEN
TOUT
USART3_
CK
-
-
-
-
FMC_D15
-
LCD_B3
EVEN
TOUT
-
USART3_
CTS
-
-
-
-
FMC_A16
-
-
EVEN
TOUT
-
-
USART3_
RTS
-
-
-
-
FMC_A17
-
-
EVEN
TOUT
-
-
-
-
-
-
-
-
FMC_A18
-
-
EVEN
TOUT
-
-
-
-
-
-
-
-
-
FMC_D0
-
-
EVEN
TOUT
TIM4_
CH4
-
-
-
-
-
-
-
-
-
FMC_D1
-
-
EVEN
TOUT
-
TIM4_
ETR
-
-
-
-
-
UART8_Rx
-
-
-
FMC_
NBL0
DCMI_
D2
-
EVEN
TOUT
-
-
-
-
-
-
-
-
UART8_Tx
-
-
-
FMC_
NBL1
DCMI_
D3
-
EVEN
TOUT
PE2
TRAC
ECLK
-
-
-
-
SPI4_
SCK
SAI1_
MCLK_A
-
-
-
-
ETH_MII_
TXD3
FMC_A23
-
-
EVEN
TOUT
PE3
TRAC
ED0
-
-
-
-
-
SAI1_
SD_B
-
-
-
-
-
FMC_A19
-
-
EVEN
TOUT
PE4
TRAC
ED1
-
-
-
-
SPI4_
NSS
SAI1_
FS_A
-
-
-
-
-
FMC_A20
DCMI_
D4
LCD_B0
EVEN
TOUT
PE5
TRAC
ED2
-
-
TIM9_
CH1
-
SPI4_M
ISO
SAI1_
SCK_A
-
-
-
-
-
FMC_A21
DCMI_
D6
LCD_G0
EVEN
TOUT
PE6
TRAC
ED3
-
-
TIM9_
CH2
-
SPI4_
MOSI
SAI1_
SD_A
-
-
-
-
-
FMC_A22
DCMI_
D7
LCD_G1
EVEN
TOUT
USART6/
CAN1/2/
OTG2_HS
UART4/5/7 TIM12/13/14
/OTG1_
/8
/LCD
FS
77/233
Pinouts and pin description
AF11
Port
AF8
STM32F427xx STM32F429xx
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF11
AF12
AF13
AF14
AF15
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
PE7
-
TIM1_
ETR
-
-
-
-
-
-
UART7_Rx
-
-
-
FMC_D4
-
-
EVEN
TOUT
PE8
-
TIM1_
CH1N
-
-
-
-
-
-
UART7_Tx
-
-
-
FMC_D5
-
-
EVEN
TOUT
PE9
-
TIM1_
CH1
-
-
-
-
-
-
-
-
-
-
FMC_D6
-
-
EVEN
TOUT
PE10
-
TIM1_
CH2N
-
-
-
-
-
-
-
-
-
-
FMC_D7
-
-
EVEN
TOUT
PE11
-
TIM1_
CH2
-
-
-
SPI4_
NSS
-
-
-
-
-
-
FMC_D8
-
LCD_G3
EVEN
TOUT
PE12
-
TIM1_
CH3N
-
-
-
SPI4_
SCK
-
-
-
-
-
-
FMC_D9
-
LCD_B4
EVEN
TOUT
PE13
-
TIM1_
CH3
-
-
-
SPI4_
MISO
-
-
-
-
-
-
FMC_D10
-
LCD_DE
EVEN
TOUT
PE14
-
TIM1_
CH4
-
-
-
SPI4_
MOSI
-
-
-
-
-
-
FMC_D11
-
LCD_
CLK
EVEN
TOUT
PE15
-
TIM1_
BKIN
-
-
-
-
-
-
-
-
-
FMC_D12
-
LCD_R7
EVEN
TOUT
PF0
-
-
-
-
I2C2_
SDA
-
-
-
-
-
-
-
FMC_A0
-
-
EVEN
TOUT
PF1
-
I2C2_
SCL
-
-
-
-
-
-
-
FMC_A1
-
-
EVEN
TOUT
PF2
-
-
-
-
I2C2_
SMBA
-
-
-
-
-
-
-
FMC_A2
-
-
EVEN
TOUT
PF3
-
-
-
-
-
-
-
-
-
-
-
FMC_A3
-
-
EVEN
TOUT
PF4
-
-
-
-
-
-
-
-
-
-
-
FMC_A4
-
-
EVEN
TOUT
PF5
-
-
-
-
-
-
-
-
-
-
-
FMC_A5
-
-
EVEN
TOUT
PF6
-
-
-
TIM10_
CH1
-
SPI5_
NSS
SAI1_
SD_B
-
UART7_Rx
-
-
-
FMC_
NIORD
-
-
EVEN
TOUT
PF7
-
-
-
TIM11_
CH1
-
SPI5_
SCK
SAI1_
MCLK_B
-
UART7_Tx
-
-
-
FMC_
NREG
-
-
EVEN
TOUT
Port
Port E
AF8
AF9
AF10
USART6/
CAN1/2/
OTG2_HS
UART4/5/7 TIM12/13/14
/OTG1_
/8
/LCD
FS
DocID024030 Rev 8
Port F
STM32F427xx STM32F429xx
AF0
Pinouts and pin description
78/233
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF12
AF13
AF14
AF15
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
PF8
-
-
-
-
-
SPI5_
MISO
SAI1_
SCK_B
-
-
TIM13_CH1
-
-
FMC_
NIOWR
-
-
EVEN
TOUT
PF9
-
-
-
-
-
SPI5_
MOSI
SAI1_
FS_B
-
-
TIM14_CH1
-
-
FMC_CD
-
-
EVEN
TOUT
PF10
-
-
-
-
-
-
-
-
-
-
-
-
FMC_INTR
DCMI_
D11
LCD_DE
EVEN
TOUT
PF11
-
-
-
-
-
SPI5_
MOSI
-
-
-
-
-
-
FMC_
SDNRAS
DCMI_
D12
-
EVEN
TOUT
PF12
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A6
-
-
EVEN
TOUT
PF13
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A7
-
-
EVEN
TOUT
PF14
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A8
-
-
EVEN
TOUT
PF15
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A9
-
-
EVEN
TOUT
PG0
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A10
-
-
EVEN
TOUT
PG1
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A11
-
-
EVEN
TOUT
PG2
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A12
-
-
EVEN
TOUT
PG3
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A13
-
-
EVEN
TOUT
PG4
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A14/
FMC_BA0
-
-
EVEN
TOUT
PG5
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A15/
FMC_BA1
-
-
EVEN
TOUT
PG6
-
-
-
-
-
-
-
-
-
-
-
-
FMC_INT2
DCMI_
D12
LCD_R7
EVEN
TOUT
PG7
-
-
-
-
-
-
-
-
USART6_
CK
-
-
-
FMC_INT3
DCMI_
D13
LCD_
CLK
EVEN
TOUT
PG8
-
-
-
-
-
SPI6_
NSS
-
-
USART6_
RTS
-
-
ETH_PPS
_OUT
FMC_SDC
LK
-
-
EVEN
TOUT
Port F
DocID024030 Rev 8
Port
G
AF9
AF10
USART6/
CAN1/2/
OTG2_HS
UART4/5/7 TIM12/13/14
/OTG1_
/8
/LCD
FS
79/233
Pinouts and pin description
AF11
Port
AF8
STM32F427xx STM32F429xx
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF11
AF12
AF13
AF14
AF15
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
PG9
-
-
-
-
-
-
-
-
USART6_
RX
-
-
-
FMC_NE2/
FMC_
NCE3
DCMI_
VSYNC
-
EVEN
TOUT
PG10
-
-
-
-
-
-
-
-
-
LCD_G3
-
-
FMC_
NCE4_1/
FMC_NE3
DCMI_
D2
LCD_B2
EVEN
TOUT
PG11
-
-
-
-
-
-
-
-
-
-
-
ETH_MII_
TX_EN/
ETH_RMII
_TX_EN
FMC_
NCE4_2
DCMI_
D3
LCD_B3
EVEN
TOUT
PG12
-
-
-
-
-
SPI6_
MISO
-
-
USART6_
RTS
LCD_B4
-
-
FMC_NE4
-
LCD_B1
EVEN
TOUT
PG13
-
-
-
-
-
SPI6_
SCK
-
-
USART6_
CTS
-
-
ETH_MII_
TXD0/
ETH_RMII
_TXD0
FMC_A24
-
-
EVEN
TOUT
PG14
-
-
-
-
-
SPI6_
MOSI
-
-
USART6_
TX
-
-
ETH_MII_
TXD1/
ETH_RMII
_TXD1
FMC_A25
-
-
EVEN
TOUT
PG15
-
-
-
-
-
-
-
-
USART6_
CTS
-
-
-
FMC_
SDNCAS
DCMI_
D13
-
EVEN
TOUT
PH0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PH1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PH2
-
-
-
-
-
-
-
-
-
-
-
ETH_MII_
CRS
FMC_
SDCKE0
-
LCD_R0
EVEN
TOUT
PH3
-
-
-
-
-
-
-
-
-
-
-
ETH_MII_
COL
FMC_SDN
E0
-
LCD_R1
EVEN
TOUT
PH4
-
-
-
-
I2C2_
SCL
-
-
-
-
-
OTG_HS_
ULPI_NXT
-
-
-
-
EVEN
TOUT
PH5
-
-
-
-
I2C2_
SDA
SPI5_N
SS
-
-
-
-
-
-
FMC_SDN
WE
-
-
EVEN
TOUT
PH6
-
-
-
-
I2C2_
SMBA
SPI5_
SCK
-
-
-
TIM12_CH1
-
-
FMC_
SDNE1
DCMI_
D8
-
-
Port
Port
G
DocID024030 Rev 8
Port
H
AF8
AF9
AF10
USART6/
CAN1/2/
OTG2_HS
UART4/5/7 TIM12/13/14
/OTG1_
/8
/LCD
FS
(1)
STM32F427xx STM32F429xx
AF0
Pinouts and pin description
80/233
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
Port
H
AF12
AF13
AF14
AF15
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
PH7
-
-
-
-
I2C3_
SCL
SPI5_
MISO
-
-
-
-
-
ETH_MII_
RXD3
FMC_
SDCKE1
DCMI_
D9
-
-
PH8
-
-
-
-
I2C3_
SDA
-
-
-
-
-
-
-
FMC_D16
DCMI_
HSYNC
LCD_R2
EVEN
TOUT
PH9
-
-
-
-
I2C3_
SMBA
-
-
-
-
TIM12_CH2
-
-
FMC_D17
DCMI_
D0
LCD_R3
EVEN
TOUT
PH10
-
-
TIM5_
CH1
-
-
-
-
-
-
-
-
-
FMC_D18
DCMI_
D1
LCD_R4
EVEN
TOUT
PH11
-
-
TIM5_
CH2
-
-
-
-
-
-
-
-
-
FMC_D19
DCMI_
D2
LCD_R5
EVEN
TOUT
PH12
-
-
TIM5_
CH3
-
-
-
-
-
-
-
-
-
FMC_D20
DCMI_
D3
LCD_R6
EVEN
TOUT
PH13
-
-
-
TIM8_
CH1N
-
-
-
-
-
CAN1_TX
-
-
FMC_D21
-
LCD_G2
EVEN
TOUT
PH14
-
-
-
TIM8_
CH2N
-
-
-
-
-
-
-
-
FMC_D22
DCMI_
D4
LCD_G3
EVEN
TOUT
PH15
-
-
-
TIM8_
CH3N
-
-
-
-
-
-
-
-
FMC_D23
DCMI_
D11
LCD_G4
EVEN
TOUT
PI0
-
-
TIM5_
CH4
-
-
SPI2_
NSS/I2
S2_WS
-
-
-
-
-
-
FMC_D24
DCMI_
D13
LCD_G5
EVEN
TOUT
PI1
-
-
-
-
-
SPI2_
SCK/I2
S2_CK
-
-
-
-
-
-
FMC_D25
DCMI_
D8
LCD_G6
EVEN
TOUT
PI2
-
-
-
TIM8_
CH4
-
SPI2_
MISO
I2S2ext_
SD
-
-
-
-
-
FMC_D26
DCMI_
D9
LCD_G7
EVEN
TOUT
PI3
-
-
-
TIM8_
ETR
-
SPI2_M
OSI/I2S
2_SD
FMC_D27
DCMI_D
10
PI4
-
-
-
TIM8_
BKIN
-
-
-
-
-
-
-
-
FMC_
NBL2
DCMI_D
5
LCD_B4
EVEN
TOUT
PI5
-
-
-
TIM8_
CH1
-
-
-
-
-
-
-
-
FMC_
NBL3
DCMI_
VSYNC
LCD_B5
EVEN
TOUT
PI6
-
-
-
TIM8_
CH2
-
-
-
-
-
-
-
-
FMC_D28
DCMI_
D6
LCD_B6
EVEN
TOUT
DocID024030 Rev 8
Port I
AF9
AF10
USART6/
CAN1/2/
OTG2_HS
UART4/5/7 TIM12/13/14
/OTG1_
/8
/LCD
FS
EVEN
TOUT
81/233
Pinouts and pin description
AF11
Port
AF8
STM32F427xx STM32F429xx
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
Port I
AF9
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
PI7
-
-
-
TIM8_
CH3
-
-
-
-
-
-
PI8
-
-
-
-
-
-
-
-
-
PI9
-
-
-
-
-
-
-
-
PI10
-
-
-
-
-
-
-
PI11
-
-
-
-
-
-
PI12
-
-
-
-
-
PI13
-
-
-
-
PI14
-
-
-
PI15
-
-
PJ0
-
PJ1
AF10
AF12
AF13
AF14
AF15
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
-
-
FMC_D29
DCMI_
D7
LCD_B7
EVEN
TOUT
-
-
-
-
-
-
EVEN
TOUT
-
CAN1_RX
-
-
FMC_D30
-
LCD_
VSYNC
EVEN
TOUT
-
-
-
-
ETH_MII_
RX_ER
FMC_D31
-
LCD_
HSYNC
EVEN
TOUT
-
-
-
-
OTG_HS_
ULPI_DIR
-
-
-
-
EVEN
TOUT
-
-
-
-
-
-
-
-
-
LCD_
HSYNC
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
LCD_
VSYNC
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
-
LCD_
CLK
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R0
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R1
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R2
EVEN
TOUT
PJ2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R3
EVEN
TOUT
PJ3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R4
EVEN
TOUT
PJ4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R5
EVEN
TOUT
PJ5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R6
EVEN
TOUT
PJ6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R7
EVEN
TOUT
PJ7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G0
EVEN
TOUT
USART6/
CAN1/2/
OTG2_HS
UART4/5/7 TIM12/13/14
/OTG1_
/8
/LCD
FS
DocID024030 Rev 8
Port J
STM32F427xx STM32F429xx
AF11
Port
AF8
Pinouts and pin description
82/233
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF9
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
PJ8
-
-
-
-
-
-
-
-
-
-
PJ9
-
-
-
-
-
-
-
-
-
PJ10
-
-
-
-
-
-
-
-
PJ11
-
-
-
-
-
-
-
PJ12
-
-
-
-
-
-
PJ13
-
-
-
-
-
PJ14
-
-
-
-
PJ15
-
-
-
PK0
-
-
PK1
-
PK2
AF10
AF12
AF13
AF14
AF15
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
-
-
-
-
LCD_G1
EVEN
TOUT
-
-
-
-
-
LCD_G2
EVEN
TOUT
-
-
-
-
-
-
LCD_G3
EVEN
TOUT
-
-
-
-
-
-
-
LCD_G4
EVEN
TOUT
-
-
-
-
-
-
-
-
LCD_B0
EVEN
TOUT
-
-
-
-
-
-
-
-
-
LCD_B1
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
LCD_B2
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
-
LCD_B3
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G5
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G6
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G7
EVEN
TOUT
PK3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B4
EVEN
TOUT
PK4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B5
EVEN
TOUT
PK5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B6
EVEN
TOUT
PK6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B7
EVEN
TOUT
PK7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_DE
EVEN
TOUT
USART6/
CAN1/2/
OTG2_HS
UART4/5/7 TIM12/13/14
/OTG1_
/8
/LCD
FS
Port J
DocID024030 Rev 8
Port K
83/233
1. The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.
Pinouts and pin description
AF11
Port
AF8
STM32F427xx STM32F429xx
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
Memory mapping
5
STM32F427xx STM32F429xx
Memory mapping
The memory map is shown in Figure 19.
Figure 19. Memory map
[))))))))
5HVHUYHG
[([))))))))
&RUWH[0LQWHUQDO
SHULSKHUDOV
[([()))))
$+%
[[')))))))
5HVHUYHG
[&[)))))))
[%))
$+%
0E\WH
%ORFN
&RUWH[0
,QWHUQDO
SHULSKHUDOV
5HVHUYHG
[
[[)))))))
[))))
[(
[')))))))
0E\WH
%ORFN
)0&
['
[&)))))))
$+%
0E\WH
%ORFN
)0&
[$
[)))))))
[
[)))))))
0E\WH
%ORFN
)0&EDQNWR
EDQN
[
5HVHUYHG
[&[))))
[%))
0E\WH
%ORFN
)0&EDQNWR
EDQN
[
[)))))))
$3%
0E\WH
%ORFN
3HULSKHUDOV
[
[)))))))
0E\WH
%ORFN
65$0
[
[)))))))
0E\WH
%ORFN
65$0
[
5HVHUYHG
65$0.%DOLDVHG
%\ELWEDQGLQJ
65$0.%DOLDVHG
%\ELWEDQGLQJ
65$0.%DOLDVHG
%\ELWEDQGLQJ
[[)))))))
5HVHUYHG
[)))&)[)))))))
2SWLRQ%\WHV
[)))&[)))&
5HVHUYHG
6\VWHPPHPRU\
5HVHUYHG
2SWLRQE\WHV
[)))$[))))))
[)))[)))$)
[))(&)[))())))
[))(&[))(&
5HVHUYHG
[&[))))
[
[[))))
[)))
[[%)))
5HVHUYHG
[[))(%)))
&&0GDWD5$0
.%GDWD65$0
5HVHUYHG
[[))))
[[)))))))
)ODVKPHPRU\
[[)))))
5HVHUYHG
$OLDVHGWR)ODVKV\VWHP
PHPRU\RU65$0GHSHQGLQJ
RQWKH%227SLQV
84/233
[[))))
$3%
[[))))))
[
[[)))))
DocID024030 Rev 8
069
STM32F427xx STM32F429xx
Memory mapping
Table 13. STM32F427xx and STM32F429xx register boundary addresses
Bus
Cortex-M4
AHB3
AHB2
Boundary address
Peripheral
0xE00F FFFF - 0xFFFF FFFF
Reserved
0xE000 0000 - 0xE00F FFFF
Cortex-M4 internal peripherals
0xD000 0000 - 0xDFFF FFFF
FMC bank 6
0xC000 0000 - 0xCFFF FFFF
FMC bank 5
0xA000 1000 - 0xBFFF FFFF
Reserved
0xA000 0000- 0xA000 0FFF
FMC control register
0x9000 0000 - 0x9FFF FFFF
FMC bank 4
0x8000 0000 - 0x8FFF FFFF
FMC bank 3
0x7000 0000 - 0x7FFF FFFF
FMC bank 2
0x6000 0000 - 0x6FFF FFFF
FMC bank 1
0x5006 0C00- 0x5FFF FFFF
Reserved
0x5006 0800 - 0X5006 0BFF
RNG
0x5005 0400 - X5006 07FF
Reserved
0x5005 0000 - 0X5005 03FF
DCMI
0x5004 0000- 0x5004 FFFF
Reserved
0x5000 0000 - 0X5003 FFFF
USB OTG FS
DocID024030 Rev 8
85/233
88
Memory mapping
STM32F427xx STM32F429xx
Table 13. STM32F427xx and STM32F429xx register boundary addresses (continued)
Bus
Boundary address
Peripheral
0x4008 0000- 0x4FFF FFFF
Reserved
0x4004 0000 - 0x4007 FFFF
USB OTG HS
0x4002 BC00- 0x4003 FFFF
Reserved
0x4002 B000 - 0x4002 BBFF
DMA2D
0x4002 9400 - 0x4002 AFFF
Reserved
0x4002 9000 - 0x4002 93FF
0x4002 8C00 - 0x4002 8FFF
0x4002 8800 - 0x4002 8BFF
ETHERNET MAC
0x4002 8400 - 0x4002 87FF
0x4002 8000 - 0x4002 83FF
AHB1
86/233
0x4002 6800 - 0x4002 7FFF
Reserved
0x4002 6400 - 0x4002 67FF
DMA2
0x4002 6000 - 0x4002 63FF
DMA1
0X4002 5000 - 0X4002 5FFF
Reserved
0x4002 4000 - 0x4002 4FFF
BKPSRAM
0x4002 3C00 - 0x4002 3FFF
Flash interface register
0x4002 3800 - 0x4002 3BFF
RCC
0X4002 3400 - 0X4002 37FF
Reserved
0x4002 3000 - 0x4002 33FF
CRC
0x4002 2C00 - 0x4002 2FFF
Reserved
0x4002 2800 - 0x4002 2BFF
GPIOK
0x4002 2400 - 0x4002 27FF
GPIOJ
0x4002 2000 - 0x4002 23FF
GPIOI
0x4002 1C00 - 0x4002 1FFF
GPIOH
0x4002 1800 - 0x4002 1BFF
GPIOG
0x4002 1400 - 0x4002 17FF
GPIOF
0x4002 1000 - 0x4002 13FF
GPIOE
0X4002 0C00 - 0x4002 0FFF
GPIOD
0x4002 0800 - 0x4002 0BFF
GPIOC
0x4002 0400 - 0x4002 07FF
GPIOB
0x4002 0000 - 0x4002 03FF
GPIOA
DocID024030 Rev 8
STM32F427xx STM32F429xx
Memory mapping
Table 13. STM32F427xx and STM32F429xx register boundary addresses (continued)
Bus
APB2
Boundary address
Peripheral
0x4001 6C00- 0x4001 FFFF
Reserved
0x4001 6800 - 0x4001 6BFF
LCD-TFT
0x4001 5C00 - 0x4001 67FF
Reserved
0x4001 5800 - 0x4001 5BFF
SAI1
0x4001 5400 - 0x4001 57FF
SPI6
0x4001 5000 - 0x4001 53FF
SPI5
0x4001 5400 - 0x4001 57FF
SPI6
0x4001 5000 - 0x4001 53FF
SPI5
0x4001 4C00 - 0x4001 4FFF
Reserved
0x4001 4800 - 0x4001 4BFF
TIM11
0x4001 4400 - 0x4001 47FF
TIM10
0x4001 4000 - 0x4001 43FF
TIM9
0x4001 3C00 - 0x4001 3FFF
EXTI
0x4001 3800 - 0x4001 3BFF
SYSCFG
0x4001 3400 - 0x4001 37FF
SPI4
0x4001 3000 - 0x4001 33FF
SPI1
0x4001 2C00 - 0x4001 2FFF
SDIO
0x4001 2400 - 0x4001 2BFF
Reserved
0x4001 2000 - 0x4001 23FF
ADC1 - ADC2 - ADC3
0x4001 1800 - 0x4001 1FFF
Reserved
0x4001 1400 - 0x4001 17FF
USART6
0x4001 1000 - 0x4001 13FF
USART1
0x4001 0800 - 0x4001 0FFF
Reserved
0x4001 0400 - 0x4001 07FF
TIM8
0x4001 0000 - 0x4001 03FF
TIM1
DocID024030 Rev 8
87/233
88
Memory mapping
STM32F427xx STM32F429xx
Table 13. STM32F427xx and STM32F429xx register boundary addresses (continued)
Bus
APB1
88/233
Boundary address
Peripheral
0x4000 8000- 0x4000 FFFF
Reserved
0x4000 7C00 - 0x4000 7FFF
UART8
0x4000 7800 - 0x4000 7BFF
UART7
0x4000 7400 - 0x4000 77FF
DAC
0x4000 7000 - 0x4000 73FF
PWR
0x4000 6C00 - 0x4000 6FFF
Reserved
0x4000 6800 - 0x4000 6BFF
CAN2
0x4000 6400 - 0x4000 67FF
CAN1
0x4000 6000 - 0x4000 63FF
Reserved
0x4000 5C00 - 0x4000 5FFF
I2C3
0x4000 5800 - 0x4000 5BFF
I2C2
0x4000 5400 - 0x4000 57FF
I2C1
0x4000 5000 - 0x4000 53FF
UART5
0x4000 4C00 - 0x4000 4FFF
UART4
0x4000 4800 - 0x4000 4BFF
USART3
0x4000 4400 - 0x4000 47FF
USART2
0x4000 4000 - 0x4000 43FF
I2S3ext
0x4000 3C00 - 0x4000 3FFF
SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF
SPI2 / I2S2
0x4000 3400 - 0x4000 37FF
I2S2ext
0x4000 3000 - 0x4000 33FF
IWDG
0x4000 2C00 - 0x4000 2FFF
WWDG
0x4000 2800 - 0x4000 2BFF
RTC & BKP Registers
0x4000 2400 - 0x4000 27FF
Reserved
0x4000 2000 - 0x4000 23FF
TIM14
0x4000 1C00 - 0x4000 1FFF
TIM13
0x4000 1800 - 0x4000 1BFF
TIM12
0x4000 1400 - 0x4000 17FF
TIM7
0x4000 1000 - 0x4000 13FF
TIM6
0x4000 0C00 - 0x4000 0FFF
TIM5
0x4000 0800 - 0x4000 0BFF
TIM4
0x4000 0400 - 0x4000 07FF
TIM3
0x4000 0000 - 0x4000 03FF
TIM2
DocID024030 Rev 8
STM32F427xx STM32F429xx
6
6.1
Electrical characteristics
Electrical characteristics
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.7 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 20.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 21.
Figure 20. Pin loading conditions
Figure 21. Pin input voltage
-#5PIN
-#5PIN
#P&
6).
-36
DocID024030 Rev 8
-36
89/233
193
Electrical characteristics
6.1.6
STM32F427xx STM32F429xx
Power supply scheme
Figure 22. Power supply scheme
9%$7
9%$7
WR9
*3,2V
,1
9&$3B
9&$3B
î—)
9''
îQ)
î—)
966
/HYHOVKLIWHU
287
9''
%DFNXSFLUFXLWU\
26&.57&
:DNHXSORJLF
%DFNXSUHJLVWHUV
EDFNXS5$0
3RZHU
VZLWFK
,2
/RJLF
.HUQHOORJLF
&38GLJLWDO
5$0
9ROWDJH
UHJXODWRU
)ODVKPHPRU\
%<3$66B5(*
3'5B21
9''
9''$
95()
Q)
—)
5HVHW
FRQWUROOHU
Q)
—)
95()
95()
$'&
$QDORJ
5&V
3//
966$
069
1. To connect BYPASS_REG and PDR_ON pins, refer to Section 3.17: Power supply supervisor and Section 3.18: Voltage
regulator
2. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is
OFF.
3. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
4. VDDA=VDD and VSSA=VSS.
Caution:
90/233
Each power supply pair (VDD/VSS, VDDA/VSSA ...) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure good operation of the
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.
This might cause incorrect operation of the device.
DocID024030 Rev 8
STM32F427xx STM32F429xx
6.1.7
Electrical characteristics
Current consumption measurement
Figure 23. Current consumption measurement scheme
)$$?6"!4
6"!4
)$$
6$$
6$$!
AI
6.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 14: Voltage characteristics,
Table 15: Current characteristics, and Table 16: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 14. Voltage characteristics
Symbol
Ratings
Min
Max
VDD–VSS
External main supply voltage (including VDDA, VDD and
VBAT)(1)
− 0.3
4.0
Input voltage on FT pins(2)
VSS − 0.3
VDD+4.0
Input voltage on TTa pins
VSS − 0.3
4.0
Input voltage on any other pin
VSS − 0.3
4.0
VSS
9.0
Variations between different VDD power pins
-
50
Variations between all the different ground pins
including VREF-
-
50
VIN
Input voltage on BOOT0 pin
|ΔVDDx|
|VSSX −VSS|
VESD(HBM)
Electrostatic discharge voltage (human body model)
Unit
V
mV
see Section 6.3.15:
Absolute maximum
ratings (electrical
sensitivity)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. VIN maximum value must always be respected. Refer to Table 15 for the values of the maximum allowed
injected current.
DocID024030 Rev 8
91/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 15. Current characteristics
Symbol
Ratings
Max.
ΣIVDD
Total current into sum of all VDD_x power lines (source)(1)
Σ IVSS
(1)
Total current out of sum of all VSS_x ground lines (sink)
Maximum current into each VDD_x power line (source)
IVSS
Maximum current out of each VSS_x ground line (sink)(1)
IIO
ΣIIO
ΣIINJ(PIN)(5)
− 270
100
− 100
Output current sunk by any I/O and control pin
25
− 25
Output current sourced by any I/Os and control pin
Total output current sunk by sum of all I/O and control pins
(2)
mA
120
Total output current sourced by sum of all I/Os and control pins(2)
Injected current on FT pins
IINJ(PIN) (3)
270
(1)
IVDD
Unit
− 120
(4)
− 5/+0
Injected current on NRST and BOOT0 pins (4)
Injected current on TTa pins(5)
±5
Total injected current (sum of all I/O and control pins)(6)
±25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.21: 12-bit ADC characteristics.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be
exceeded. Refer to Table 14 for the values of the maximum allowed input voltage.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 16. Thermal characteristics
Symbol
TSTG
TJ
92/233
Ratings
Storage temperature range
Maximum junction temperature
DocID024030 Rev 8
Value
Unit
− 65 to +150
°C
125
°C
STM32F427xx STM32F429xx
Electrical characteristics
6.3
Operating conditions
6.3.1
General operating conditions
Table 17. General operating conditions
Symbol
Parameter
Conditions(1)
Power Scale 3 (VOS[1:0] bits in
PWR_CR register = 0x01), Regulator
ON, over-drive OFF
fHCLK
Internal AHB clock frequency
fPCLK1
Internal APB1 clock frequency
fPCLK2
Internal APB2 clock frequency
Overdrive
Power Scale 2 (VOS[1:0] bits in OFF
PWR_CR register = 0x10),
OverRegulator ON
drive
ON
Min
Typ
Max
0
-
120
-
144
-
168
-
168
-
180
0
Overdrive
Power Scale 1 (VOS[1:0] bits in OFF
PWR_CR register= 0x11),
OverRegulator ON
drive
ON
0
Over-drive OFF
0
-
42
Over-drive ON
0
-
45
Over-drive OFF
0
-
84
Over-drive ON
0
-
90
DocID024030 Rev 8
Unit
MHz
93/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 17. General operating conditions (continued)
Symbol
VDD
(3)
VDDA
(4)
VBAT
Conditions(1)
Parameter
Typ
Max
Standard operating voltage
1.7
(2)
-
3.6
Analog operating voltage
(ADC limited to 1.2 M samples)
1.7(2)
-
2.4
2.4
-
3.6
1.65
-
3.6
1.08
1.14
1.20
Analog operating voltage
(ADC limited to 2.4 M samples)
Must be the same potential as
Min
VDD(5)
Backup operating voltage
Power Scale 3 ((VOS[1:0] bits in
PWR_CR register = 0x01), 120 MHz
HCLK max frequency
Power Scale 2 ((VOS[1:0] bits in
PWR_CR register = 0x10), 144 MHz
HCLK max frequency with over-drive
OFF or 168 MHz with over-drive ON
1.20
1.26
1.32
Power Scale 1 ((VOS[1:0] bits in
PWR_CR register = 0x11), 168 MHz
HCLK max frequency with over-drive
OFF or 180 MHz with over-drive ON
1.26
1.32
1.40
Regulator OFF: 1.2 V external
voltage must be supplied from
external regulator on
VCAP_1/VCAP_2 pins(6)
Max frequency 120 MHz
1.10
1.14
1.20
Max frequency 144 MHz
1.20
1.26
1.32
Max frequency 168 MHz
1.26
1.32
1.38
Input voltage on RST and FT
pins(7)
2 V ≤ VDD ≤ 3.6 V
− 0.3
-
5.5
VDD ≤ 2 V
− 0.3
-
5.2
− 0.3
-
VDDA+
0.3
0
-
9
LQFP100
-
-
465
WLCSP143
-
-
641
LQFP144
-
-
500
UFBGA169
-
-
385
LQFP176
-
-
526
UFBGA176
-
-
513
LQFP208
-
-
1053
TFBGA216
-
-
690
Regulator ON: 1.2 V internal
voltage on VCAP_1/VCAP_2 pins
V12
VIN
Input voltage on TTa pins
Input voltage on BOOT0 pin
PD
TA
94/233
Power dissipation at TA = 85 °C
for suffix 6 or TA = 105 °C for
suffix 7(8)
V
Ambient temperature for 6 suffix Maximum power dissipation
version
Low power dissipation(9)
− 40
85
− 40
105
Ambient temperature for 7 suffix Maximum power dissipation
version
Low power dissipation(9)
− 40
105
− 40
125
DocID024030 Rev 8
Unit
V
mW
°C
°C
STM32F427xx STM32F429xx
Electrical characteristics
Table 17. General operating conditions (continued)
Symbol
TJ
Conditions(1)
Parameter
Junction temperature range
Min
Typ
Max
6 suffix version
− 40
105
7 suffix version
− 40
125
Unit
°C
1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.
2. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2:
Internal reset OFF).
3. When the ADC is used, refer to Table 74: ADC characteristics.
4. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
5. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
6. The over-drive mode is not supported when the internal regulator is OFF.
7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
8. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
9. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
Table 18. Limitations depending on the operating power supply range
Maximum Flash
Maximum HCLK
memory access
frequency vs Flash
frequency with
memory wait states
no wait states
(1)(2)
(fFlashmax)
Possible Flash
memory
operations
Operating
power supply
range
ADC operation
VDD =1.7 to
2.1 V(3)
Conversion time
up to 1.2 Msps
20 MHz(4)
168 MHz with 8 wait
No I/O
states and over-drive
compensation
OFF
8-bit erase and
program
operations only
VDD = 2.1 to
2.4 V
Conversion time
up to 1.2 Msps
22 MHz
180 MHz with 8 wait
No I/O
states and over-drive
compensation
ON
16-bit erase and
program
operations
VDD = 2.4 to
2.7 V
Conversion time
up to 2.4 Msps
24 MHz
180 MHz with 7 wait
I/O compensation
states and over-drive
works
ON
16-bit erase and
program
operations
VDD = 2.7 to
3.6 V(5)
Conversion time
up to 2.4 Msps
30 MHz
180 MHz with 5 wait
I/O compensation
states and over-drive
works
ON
32-bit erase and
program
operations
I/O operation
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is
required.
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
3. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2:
Internal reset OFF).
4. Prefetch is not available.
5. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+
pins will be degraded between 2.7 and 3 V.
DocID024030 Rev 8
95/233
193
Electrical characteristics
6.3.2
STM32F427xx STM32F429xx
VCAP1/VCAP2 external capacitor
Stabilization for the main regulator is achieved by connecting an external capacitor CEXT to
the VCAP1/VCAP2 pins. CEXT is specified in Table 19.
Figure 24. External capacitor CEXT
&
(65
5/HDN
069
1. Legend: ESR is the equivalent series resistance.
Table 19. VCAP1/VCAP2 operating conditions(1)
Symbol
Parameter
Conditions
CEXT
Capacitance of external capacitor
2.2 µF
ESR
ESR of external capacitor
<2Ω
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be
replaced by two 100 nF decoupling capacitors.
6.3.3
Operating conditions at power-up / power-down (regulator ON)
Subject to general operating conditions for TA.
Table 20. Operating conditions at power-up / power-down (regulator ON)
Symbol
tVDD
6.3.4
Parameter
Min
Max
VDD rise time rate
20
∞
VDD fall time rate
20
∞
Unit
µs/V
Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Table 21. Operating conditions at power-up / power-down (regulator OFF)(1)
Symbol
tVDD
tVCAP
Parameter
Conditions
Min
Max
VDD rise time rate
Power-up
20
∞
VDD fall time rate
Power-down
20
∞
VCAP_1 and VCAP_2 rise time rate
Power-up
20
∞
VCAP_1 and VCAP_2 fall time rate
Power-down
20
∞
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below
1.08 V.
96/233
DocID024030 Rev 8
Unit
µs/V
STM32F427xx STM32F429xx
6.3.5
Electrical characteristics
reset and power control block characteristics
The parameters given in Table 22 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 17.
Table 22. reset and power control block characteristics
Symbol
Parameter
Conditions
Programmable voltage
detector level selection
VPVD
Min
Typ
Max
Unit
PLS[2:0]=000 (rising edge)
2.09
2.14
2.19
V
PLS[2:0]=000 (falling edge)
1.98
2.04
2.08
V
PLS[2:0]=001 (rising edge)
2.23
2.30
2.37
V
PLS[2:0]=001 (falling edge)
2.13
2.19
2.25
V
PLS[2:0]=010 (rising edge)
2.39
2.45
2.51
V
PLS[2:0]=010 (falling edge)
2.29
2.35
2.39
V
PLS[2:0]=011 (rising edge)
2.54
2.60
2.65
V
PLS[2:0]=011 (falling edge)
2.44
2.51
2.56
V
PLS[2:0]=100 (rising edge)
2.70
2.76
2.82
V
PLS[2:0]=100 (falling edge)
2.59
2.66
2.71
V
PLS[2:0]=101 (rising edge)
2.86
2.93
2.99
V
PLS[2:0]=101 (falling edge)
2.65
2.84
2.92
V
PLS[2:0]=110 (rising edge)
2.96
3.03
3.10
V
PLS[2:0]=110 (falling edge)
2.85
2.93
2.99
V
PLS[2:0]=111 (rising edge)
3.07
3.14
3.21
V
PLS[2:0]=111 (falling edge)
2.95
3.03
3.09
V
-
100
-
mV
Falling edge
1.60
1.68
1.76
V
Rising edge
1.64
1.72
1.80
V
-
40
-
mV
VPVDhyst(1) PVD hysteresis
VPOR/PDR
VPDRhyst
(1)
Power-on/power-down
reset threshold
PDR hysteresis
VBOR1
Brownout level 1
threshold
Falling edge
2.13
2.19
2.24
V
Rising edge
2.23
2.29
2.33
V
VBOR2
Brownout level 2
threshold
Falling edge
2.44
2.50
2.56
V
Rising edge
2.53
2.59
2.63
V
VBOR3
Brownout level 3
threshold
Falling edge
2.75
2.83
2.88
V
Rising edge
2.85
2.92
2.97
V
VBORhyst(1)
BOR hysteresis
-
100
-
mV
TRSTTEMPO
POR reset temporization
0.5
1.5
3.0
ms
(1)(2)
DocID024030 Rev 8
97/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 22. reset and power control block characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
IRUSH(1)
InRush current on
voltage regulator poweron (POR or wakeup
from Standby)
-
160
200
mA
ERUSH(1)
InRush energy on
voltage regulator power- VDD = 1.7 V, TA = 105 °C,
IRUSH = 171 mA for 31 µs
on (POR or wakeup
from Standby)
-
-
5.4
µC
1. Guaranteed by design.
2. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant
when first instruction is read by the user application code.
6.3.6
Over-drive switching characteristics
When the over-drive mode switches from enabled to disabled or disabled to enabled, the
system clock is stalled during the internal voltage set-up.
The over-drive switching characteristics are given in Table 23. They are sbject to general
operating conditions for TA.
Table 23. Over-drive switching characteristics(1)
Symbol
Tod_swen
Parameter
Conditions
Min
Typ
Max
HSI
-
45
-
45
-
100
-
40
-
-
20
-
20
-
80
-
15
-
HSE max for 4 MHz
Over_drive switch
and min for 26 MHz
enable time
External HSE
50 MHz
HSI
Tod_swdis
HSE max for 4 MHz
Over_drive switch
and min for 26 MHz.
disable time
External HSE
50 MHz
Unit
µs
1. Guaranteed by design.
6.3.7
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 23: Current consumption
measurement scheme.
All the run-mode current consumption measurements given in this section are performed
with a reduced code that gives a consumption equivalent to CoreMark code.
98/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Typical and maximum current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in input mode with a static value at VDD or VSS (no load).
•
All peripherals are disabled except if it is explicitly mentioned.
•
The Flash memory access time is adjusted both to fHCLK frequency and VDD range
(see Table 18: Limitations depending on the operating power supply range).
•
Regulator ON
•
The voltage scaling and over-drive mode are adjusted to fHCLK frequency as follows:
–
Scale 3 for fHCLK ≤ 120 MHz
–
Scale 2 for 120 MHz < fHCLK ≤ 144 MHz
–
Scale 1 for 144 MHz < fHCLK ≤ 180 MHz. The over-drive is only ON at 180 MHz.
•
The system clock is HCLK, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2.
•
External clock frequency is 4 MHz and PLL is ON when fHCLK is higher than 25 MHz.
•
The maximum values are obtained for VDD = 3.6 V and a maximum ambient
temperature (TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless
otherwise specified.
DocID024030 Rev 8
99/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 24. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled except prefetch) or RAM(1)
Max(2)
Symbol
Parameter
Conditions
All
Peripherals
enabled(3)(4)
IDD
Supply
current in
RUN mode
All
Peripherals
disabled(3)
fHCLK (MHz)
Typ
180
TA =
25 °C
TA =
85 °C
TA =
105 °C
98
104(5)
123
141(5)
168
89
98(5)
116
133(5)
150
75
84
100
115
144
72
81
96
112
120
54
58
72
85
90
43
45
56
66
60
29
30
38
45
30
16
20
34
46
25
13
16
30
43
16
11
13
27
39
8
5
9
23
36
4
4
8
21
34
2
2
7
20
33
180
44
47(5)
69
87(5)
168
41
45(5)
66
83(5)
150
36
39
57
73
144
33
37
56
72
120
25
29
43
56
90
20
21
32
41
60
14
15
22
28
30
8
8
12
26
25
7
7
10
24
16
7
9
22
35
8
3
7
21
34
4
3
6
20
33
2
2
6
20
33
Unit
mA
1. Code and data processing running from SRAM1 using boot pins.
2. Guaranteed by characterization.
3. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC
for the analog part.
5. Guaranteed by test in production.
100/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Table 25. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled)
Max(1)
Symbol
Parameter
Conditions
All Peripherals
enabled(2)(3)
IDD
Supply
current in
RUN mode
All Peripherals
disabled(3)
fHCLK (MHz)
Typ
180
103
112
140
151
168
98
107
126
144
150
87
95
112
128
144
85
92
108
124
120
66
71
85
99
90
54
58
69
80
60
37
39
47
55
30
20
24
39
51
25
17
21
35
48
16
12
16
30
42
8
7
11
24
37
4
5
8
22
35
2
3
7
21
34
180
57
62
87
106
168
50
54
76
93
150
46
50
70
86
144
45
49
68
84
120
36
41
56
69
90
29
34
46
57
60
21
24
33
41
30
13
17
31
44
25
11
15
28
41
16
8
12
25
38
8
5
9
23
35
4
4
7
21
34
2
3
6.5
20
33
TA=
25 °C
Unit
TA=85 °C TA=105 °C
mA
1. Guaranteed by characterization unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for
the analog part.
DocID024030 Rev 8
101/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 26. Typical and maximum current consumption in Sleep mode
Max(1)
Symbol
Parameter
Conditions
fHCLK (MHz)
Typ
180
All
Peripherals
enabled(2)
IDD
Supply
current in
Sleep mode
All
Peripherals
disabled
TA =
25 °C
TA =
85 °C
TA =
105 °C
78
89(3)
110
130(3)
168
66
75(3)
93
110(3)
150
56
61
80
96
144
54
58
78
94
120
40
44
59
72
90
32
34
46
56
60
22
23
31
38
30
10
16
30
43
25
9
14
28
40
16
5
12
25
40
8
3
8
22
35
4
3
7
21
34
2
2
6.5
20
33
(3)
54
76(3)
180
21
26
168
16
20(3)
41
58(3)
150
14
17
36
52
144
13
16.5
35
51
120
10
14
28
41
90
8
13
26
37
60
6
9
17
25
30
5
8
22
35
25
3
7
21
34
16
3
7
21
34
8
2
6
20
33
4
2
6
20
33
2
2
6
20
33
Unit
mA
1. Guaranteed by characterization unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. Based on characterization, tested in production.
102/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Table 27. Typical and maximum current consumptions in Stop mode
Max(1)
Typ
Symbol
Parameter
VDD = 3.6 V
Conditions
Supply current in Stop
mode with voltage
regulator in main
regulator mode
IDD_STOP_NM
(normal mode)
Supply current in Stop
mode with voltage
regulator in Low Power
regulator mode
Supply current in Stop
mode with voltage
regulator in main
regulator and underIDD_STOP_UDM drive mode
(under-drive
Supply current in Stop
mode)
mode with voltage
regulator in Low Power
regulator and underdrive mode
Unit
TA =
25 °C
TA =
25 °C
TA =
TA =
85 °C 105 °C
Flash memory in Stop mode, all
oscillators OFF, no independent
watchdog
0.40
1.50
14.00
25.00
Flash memory in Deep power
down mode, all oscillators OFF, no
independent watchdog
0.35
1.50
14.00
25.00
Flash memory in Stop mode, all
oscillators OFF, no independent
watchdog
0.29
1.10
10.00
18.00
Flash memory in Deep power
down mode, all oscillators OFF, no
independent watchdog
0.23
1.10
10.00
18.00
Flash memory in Deep power
down mode, main regulator in
under-drive mode, all oscillators
OFF, no independent watchdog
0.19
0.50
6.00
9.00
Flash memory in Deep power
down mode, Low Power regulator
in under-drive mode, all oscillators
OFF, no independent watchdog
0.10
0.40
4.00
7.00
mA
1. Data based on characterization, tested in production.
Table 28. Typical and maximum current consumptions in Standby mode
Typ(1)
Symbol
Parameter
Max(2)
TA =
25 °C
TA = 25 °C
Conditions
Backup SRAM ON, low-speed
oscillator (LSE) and RTC ON
Backup SRAM OFF, lowSupply current speed oscillator (LSE) and
RTC ON
IDD_STBY in Standby
mode
Backup SRAM ON, RTC and
LSE OFF
Backup SRAM OFF, RTC and
LSE OFF
TA =
85 °C
TA =
105 °C
VDD =
1.7 V
VDD=
2.4 V
VDD =
3.3 V
2.80
3.00
3.60
7.00
19.00
36.00
2.30
2.60
3.10
6.00
16.00
31.00
Unit
VDD = 3.6 V
µA
2.30
2.50
2.90
6.00(3) 18.00(3) 35.00(3)
1.70
1.90
2.20
5.00(3) 15.00(3) 30.00(3)
DocID024030 Rev 8
103/233
193
Electrical characteristics
STM32F427xx STM32F429xx
1. The typical current consumption values are given with PDR OFF (internal reset OFF). When the PDR is OFF (internal reset
OFF), the typical current consumption is reduced by additional 1.2 µA.
2. Based on characterization, not tested in production unless otherwise specified.
3. Based on characterization, tested in production.
Table 29. Typical and maximum current consumptions in VBAT mode
Max(2)
Typ
Symbol
TA = 25 °C
Conditions(1)
Parameter
TA = 85 °C
VBAT = VBAT= VBAT =
1.7 V 2.4 V 3.3 V
Backup SRAM ON, low-speed
oscillator (LSE) and RTC ON
Backup SRAM OFF, low-speed
Backup
oscillator (LSE) and RTC ON
IDD_VBAT domain supply
Backup SRAM ON, RTC and
current
LSE OFF
Backup SRAM OFF, RTC and
LSE OFF
TA =
105 °C
Unit
VBAT = 3.6 V
1.28
1.40
1.62
6
11
0.66
0.76
0.97
3
5
0.70
0.72
0.74
5
10
0.10
0.10
0.10
2
4
µA
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Guaranteed by characterization results.
Figure 25. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF)
)$$?6"!4—!
6
6
6
6
6
6
6
6
6
#
#
#
#
#
4EMPERATURE
-36
104/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Figure 26. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON)
)$$?6"!4—!
6
6
6
6
6
6
6
6
6
#
#
#
#
#
4EMPERATURE
-36
Additional current consumption
The MCU is placed under the following conditions:
•
All I/O pins are configured in analog mode.
•
The Flash memory access time is adjusted to fHCLK frequency.
•
The voltage scaling is adjusted to fHCLK frequency as follows:
–
Scale 3 for fHCLK ≤ 120 MHz,
–
Scale 2 for 120 MHz < fHCLK ≤ 144 MHz
–
Scale 1 for 144 MHz < fHCLK ≤ 180 MHz. The over-drive is only ON at 180 MHz.
•
The system clock is HCLK, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2.
•
HSE crystal clock frequency is 25 MHz.
•
When the regulator is OFF, V12 is provided externally as described in Table 17:
General operating conditions
•
TA= 25 °C .
DocID024030 Rev 8
105/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 30. Typical current consumption in Run mode, code with data processing running from
Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch),
VDD=1.7 V(1)
Symbol
Parameter
Conditions
fHCLK (MHz)
Typ
168
88.2
150
74.3
144
71.3
120
52.9
90
42.6
60
28.6
30
15.7
25
12.3
168
40.6
150
30.6
144
32.6
120
24.7
90
19.7
60
13.6
30
7.7
25
6.7
All Peripheral
enabled
IDD
Supply current in
RUN mode from
VDD supply
All Peripheral
disabled
Unit
mA
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherls (such as ADC, or
DAC) is not included.
106/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Table 31.
Electrical characteristics
Typical current consumption in Run mode, code with data processing running
from Flash memory, regulator OFF (ART accelerator enabled except prefetch)(1)
Symbol
Parameter
Conditions
All Peripherals
enabled
IDD12 / IDD
Supply current in
RUN mode from
V12 and VDD
supply
All Peripherals
disabled
fHCLK
(MHz)
VDD=3.3 V
VDD=1.7 V
Unit
IDD12
IDD
IDD12
IDD
168
77.8
1.3
76.8
1.0
150
70.8
1.3
69.8
1.0
144
64.5
1.3
63.6
1.0
120
49.9
1.2
49.3
0.9
90
39.2
1.3
38.7
1.0
60
27.2
1.2
26.8
0.9
30
15.6
1.2
15.4
0.9
25
13.6
1.2
13.5
0.9
168
38.2
1.3
37.0
1.0
150
34.6
1.3
33.4
1.0
144
31.3
1.3
30.3
1.0
120
24.0
1.2
23.2
0.9
90
18.1
1.4
18.0
1.0
60
12.9
1.2
12.5
0.9
30
7.2
1.2
6.9
0.9
25
6.3
1.2
6.1
0.9
mA
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC,
or DAC) is not included.
DocID024030 Rev 8
107/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 32. Typical current consumption in Sleep mode, regulator ON, VDD=1.7 V(1)
Symbol
Parameter
Conditions
All Peripherals
enabled
IDD
Supply current in
Sleep mode from
VDD supply
All Peripherals
disabled
fHCLK (MHz)
Typ
168
65.5
150
55.5
144
53.5
120
39.0
90
31.6
60
21.7
30
9.8
25
8.8
168
15.7
150
13.7
144
12.7
120
9.7
90
7.7
60
5.7
30
4.7
25
2.8
Unit
mA
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals
(such as ADC, or DAC) is not included.
108/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Table 33. Tyical current consumption in Sleep mode, regulator OFF(1)
VDD=3.3 V
Symbol
Parameter
Conditions
All Peripherals
enabled
IDD12/IDD
Supply current
in Sleep mode
from V12 and
VDD supply
All Peripherals
disabled
fHCLK (MHz)
VDD=1.7 V
IDD12
IDD
IDD12
IDD
180
61.5
1.4
-
-
168
59.4
1.3
59.4
1.0
150
53.9
1.3
53.9
1.0
144
49.0
1.3
49.0
1.0
120
38.0
1.2
38.0
0.9
90
29.3
1.4
29.3
1.1
60
20.2
1.2
20.2
0.9
30
11.9
1.2
11.9
0.9
25
10.4
1.2
10.4
0.9
180
14.9
1.4
-
-
168
14.0
1.3
14.0
1.0
150
12.6
1.3
12.6
1.0
144
11.5
1.3
11.5
1.0
120
8.7
1.2
8.7
0.9
90
7.1
1.4
7.1
1.1
60
5.0
1.2
5.0
0.9
30
3.1
1.2
3.1
0.9
25
2.8
1.2
2.8
0.9
Unit
mA
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC,
or DAC) is not included.
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 56: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
DocID024030 Rev 8
109/233
193
Electrical characteristics
Caution:
STM32F427xx STM32F429xx
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 35: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
I SW = V DD × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
Table 34. Switching output I/O current consumption(1)
I/O toggling
Symbol
Parameter
Conditions
VDD = 3.3 V
C= CINT(2)
IDDIO
I/O switching
Current
VDD = 3.3 V
CEXT = 0 pF
C = CINT + CEXT
+ CS
110/233
DocID024030 Rev 8
frequency
(fsw)
Typ
2 MHz
0.0
8 MHz
0.2
25 MHz
0.6
50 MHz
1.1
60 MHz
1.3
84 MHz
1.8
90 MHz
1.9
2 MHz
0.1
8 MHz
0.4
25 MHz
1.23
50 MHz
2.43
60 MHz
2.93
84 MHz
3.86
90 MHz
4.07
Unit
mA
STM32F427xx STM32F429xx
Electrical characteristics
Table 34. Switching output I/O current consumption(1) (continued)
I/O toggling
Symbol
Parameter
Conditions
VDD = 3.3 V
CEXT = 10 pF
C = CINT + CEXT
+ CS
IDDIO
I/O switching
Current
VDD = 3.3 V
CEXT = 22 pF
C = CINT + CEXT
+ CS
VDD = 3.3 V
CEXT = 33 pF
C = CINT + Cext
+ CS
frequency
(fsw)
Typ
2 MHz
0.18
8 MHz
0.67
25 MHz
2.09
50 MHz
3.6
60 MHz
4.5
84 MHz
7.8
90 MHz
9.8
2 MHz
0.26
8 MHz
1.01
25 MHz
3.14
50 MHz
6.39
60 MHz
10.68
2 MHz
0.33
8 MHz
1.29
25 MHz
4.23
50 MHz
11.02
Unit
mA
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).
2. This test is performed by cutting the LQFP176 package pin (pad removal).
On-chip peripheral current consumption
The MCU is placed under the following conditions:
•
At startup, all I/O pins are in analog input configuration.
•
All peripherals are disabled unless otherwise mentioned.
•
I/O compensation cell enabled.
•
The ART accelerator is ON.
•
Scale 1 mode selected, internal digital voltage V12 = 1.32 V.
•
HCLK is the system clock. fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2.
The given value is calculated by measuring the difference of current consumption
•
–
with all peripherals clocked off
–
with only one peripheral clocked on
–
fHCLK = 180 MHz (Scale1 + over-drive ON), fHCLK = 144 MHz (Scale 2),
fHCLK = 120 MHz (Scale 3)"
Ambient operating temperature is 25 °C and VDD=3.3 V.
DocID024030 Rev 8
111/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 35. Peripheral current consumption
IDD( Typ)(1)
Peripheral
AHB1
(up to
180 MHz)
AHB2
(up to
180 MHz)
AHB3
(up to
180 MHz)
Scale 2
Scale 3
GPIOA
2.50
2.36
2.08
GPIOB
2.56
2.36
2.08
GPIOC
2.44
2.29
2.00
GPIOD
2.50
2.36
2.08
GPIOE
2.44
2.29
2.00
GPIOF
2.44
2.29
2.00
GPIOG
2.39
2.22
2.00
GPIOH
2.33
2.15
1.92
GPIOI
2.39
2.22
2.00
GPIOJ
2.33
2.15
1.92
GPIOK
2.33
2.15
1.92
OTG_HS+ULPI
27.00
24.86
21.92
CRC
0.44
0.42
0.33
BKPSRAM
0.78
0.69
0.58
DMA1
25.33
23.26
20.50
DMA2
24.72
22.71
20.00
DMA2D
28.50
26.32
23.33
ETH_MAC
ETH_MAC_TX
ETH_MAC_RX
ETH_MAC_PTP
21.56
20.07
17.75
OTG_FS
25.67
26.67
23.58
DCMI
3.72
3.40
3.00
RNG
2.28
2.36
2.17
FMC
21.39
19.79
17.50
µA/MHz
14.06
13.19
11.75
µA/MHz
Bus matrix(2)
112/233
Unit
Scale 1
DocID024030 Rev 8
µA/MHz
µA/MHz
STM32F427xx STM32F429xx
Electrical characteristics
Table 35. Peripheral current consumption (continued)
IDD( Typ)(1)
Peripheral
APB1
(up to
45 MHz)
Unit
Scale 1
Scale 2
Scale 3
TIM2
17.56
16.42
14.47
TIM3
14.22
13.36
11.80
TIM4
14.89
13.64
12.13
TIM5
17.33
16.42
14.47
TIM6
2.89
2.53
2.47
TIM7
3.11
2.81
2.47
TIM12
7.33
6.97
6.13
TIM13
4.89
4.47
4.13
TIM14
5.56
5.31
4.80
PWR
11.11
10.31
9.13
USART2
4.22
3.92
3.47
USART3
4.44
4.19
3.80
UART4
4.00
3.92
3.47
UART5
4.00
3.92
3.47
UART7
4.00
3.92
3.47
UART8
3.78
3.92
3.47
I2C1
4.00
3.92
3.47
I2C2
4.00
3.92
3.47
I2C3
4.00
3.92
3.47
SPI2(3)
3.11
3.08
2.80
SPI3(3)
3.56
3.36
3.13
I2S2
2.89
2.81
2.47
I2S3
3.33
3.08
2.80
CAN1
6.89
6.42
5.80
CAN2
6.67
6.14
5.47
(4)
DAC
2.89
2.25
2.13
WWDG
0.89
0.86
0.80
DocID024030 Rev 8
µA/MHz
113/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 35. Peripheral current consumption (continued)
IDD( Typ)(1)
Peripheral
APB2
(up to
90 MHz)
Unit
Scale 1
Scale 2
Scale 3
SDIO
8.11
8.75
7.83
TIM1
17.11
15.97
14.17
TIM8
17.33
16.11
14.33
TIM9
7.22
6.67
6.00
TIM10
4.56
4.31
3.83
TIM11
4.78
4.44
4.00
ADC1(5)
4.67
4.31
3.83
ADC2(5)
4.78
4.44
4.00
ADC3(5)
4.56
4.17
3.67
SPI1
1.44
1.39
1.17
USART1
4.00
3.75
3.33
USART6
4.00
3.75
3.33
SPI4
1.44
1.39
1.17
SPI5
1.44
1.39
1.17
SPI6
1.44
1.39
1.17
SYSCFG
0.78
0.69
0.67
LCD_TFT
39.89
37.22
33.17
SAI1
3.78
3.47
3.17
µA/MHz
1. When the I/O compensation cell is ON, IDD typical value increases by 0.22 mA.
2. The BusMatrix is automatically active when at least one master is ON.
3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.
4. When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of
0.8 mA per DAC channel for the analog part.
5. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of
1.6 mA per ADC for the analog part.
114/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
6.3.8
Electrical characteristics
Wakeup time from low-power modes
The wakeup times given in Table 36 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
•
For Stop or Sleep modes: the wakeup event is WFE.
•
WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD=3.3 V.
Table 36. Low-power mode wakeup timings
Symbol
tWUSLEEP(2)
Parameter
Wakeup from Sleep
Conditions
Typ(1)
Max(1)
Unit
-
6
-
CPU
clock
cycle
13.6
-
93
111
22
32
103
126
105
128
125
155
318
412
Main regulator is ON
Main regulator is ON and Flash
memory in Deep power down mode
tWUSTOP(2)
Wakeup from Stop mode
with MR/LP regulator in
normal mode
Low power regulator is ON
Low power regulator is ON and Flash
memory in Deep power down mode
tWUSTOP(2)
Main regulator in under-drive mode
(Flash memory in Deep power-down
Wakeup from Stop mode mode)
with MR/LP regulator in Low power regulator in under-drive
Under-drive mode
mode
(Flash memory in Deep power-down
mode )
tWUSTDBY Wakeup from Standby
(2)(3)
mode
µs
1. Guaranteed by characterization results.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first
3. tWUSTDBY maximum value is given at –40 °C.
DocID024030 Rev 8
115/233
193
Electrical characteristics
6.3.9
STM32F427xx STM32F429xx
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 56: I/O static characteristics. However, the
recommended clock input waveform is shown in Figure 27.
The characteristics given in Table 37 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 17.
Table 37. High-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1
-
50
MHz
fHSE_ext
External user clock source
frequency(1)
VHSEH
OSC_IN input pin high level voltage
0.7VDD
-
VDD
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3VDD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
5
-
-
tr(HSE)
tf(HSE)
Cin(HSE)
ns
OSC_IN rise or fall
time(1)
OSC_IN input capacitance(1)
DuCy(HSE) Duty cycle
IL
V
OSC_IN Input leakage current
VSS ≤ VIN ≤ VDD
-
-
10
-
5
-
pF
45
-
55
%
-
-
±1
µA
1. Guaranteed by design.
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 56: I/O static characteristics. However, the
recommended clock input waveform is shown in Figure 28.
The characteristics given in Table 38 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 17.
116/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Table 38. Low-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-
32.768
1000
kHz
0.7VDD
-
VDD
fLSE_ext
User External clock source
frequency(1)
VLSEH
OSC32_IN input pin high level
voltage
VLSEL
OSC32_IN input pin low level voltage
VSS
-
0.3VDD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1)
450
-
-
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1)
-
-
50
OSC32_IN input capacitance(1)
-
5
-
pF
30
-
70
%
-
-
±1
µA
Cin(LSE)
DuCy(LSE)
IL
V
ns
Duty cycle
VSS ≤ VIN ≤ VDD
OSC32_IN Input leakage current
1. Guaranteed by design.
Figure 27. High-speed external clock source AC timing diagram
6(3%(
6(3%,
TR(3%
TF(3%
T7(3% T
T7(3%
4(3%
%XTERNAL
CLOCKSOURCE
F(3%?EXT
/3#?).
),
34-&
AI
DocID024030 Rev 8
117/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Figure 28. Low-speed external clock source AC timing diagram
9/6(+
9/6(/
WU/6(
WI/6(
W:/6(
26&B,1
,/
W:/6( W
7/6(
I/6(BH[W
([WHUQDO
FORFNVRXUFH
670)
DL
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 39. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 39. HSE 4-26 MHz oscillator characteristics (1)
Symbol
Parameter
fOSC_IN
RF
IDD
Min
Typ
Max
Unit
Oscillator frequency
4
-
26
MHz
Feedback resistor
-
200
-
kΩ
VDD=3.3 V,
ESR= 30 Ω,
CL=5 pF@25 MHz
-
450
-
VDD=3.3 V,
ESR= 30 Ω,
CL=10 pF@25 MHz
-
530
-
− 500
-
500
ppm
Startup
-
-
1
mA/V
VDD is stabilized
-
2
-
ms
HSE current consumption
ACCHSE(2)
Conditions
HSE accuracy
Gm_crit_max Maximum critical crystal gm
tSU(HSE
(3)
Startup time
µA
1. Guaranteed by design.
2. This parameter depends on the crystal used in the application. The minimum and maximum values must
be respected to comply with USB standard specifications.
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is based on characterization and not tested in production. It is measured
for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
118/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 29). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 29. Typical application with an 8 MHz crystal
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
&/
I+6(
26&B,1
0+]
UHVRQDWRU
5(;7
&/
%LDV
FRQWUROOHG
JDLQ
5)
26&B28 7
670)
DL
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 40. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
RF
Feedback resistor
-
18.4
-
MΩ
IDD
LSE current consumption
-
-
1
µA
− 500
-
500
ppm
Startup
-
-
0.56
µA/V
VDD is stabilized
-
2
-
s
ACCLSE(2)
LSE accuracy
Gm_crit_max Maximum critical crystal gm
tSU(LSE)(3)
startup time
1. Guaranteed by design.
2. This parameter depends on the crystal used in the application. Refer to application note AN2867.
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is based on characterization and not tested in production. It is
measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
DocID024030 Rev 8
119/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Figure 30. Typical application with a 32.768 kHz crystal
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
&/
I/6(
26&B,1
%LDV
5) FRQWUROOHG
JDLQ
N+ ]
UHVRQDWRU
26&B28 7
&/
670)
DL
6.3.10
Internal clock source characteristics
The parameters given in Table 41 and Table 42 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 17.
High-speed internal (HSI) RC oscillator
Table 41. HSI oscillator characteristics (1)
Symbol
fHSI
Parameter
Min
Typ
Max
Unit
-
-
16
-
MHz
Frequency
HSI user-trimming step
ACCHSI
tsu(HSI)
Conditions
(2)
IDD(HSI)(2)
(2)
-
-
1
%
TA = –40 to 105
°C(3)
−8
-
4.5
%
TA = –10 to 85
°C(3)
−4
-
4
%
TA = 25 °C(4)
−1
-
1
%
HSI oscillator startup time
-
-
2.2
4
µs
HSI oscillator power
consumption
-
-
60
80
µA
Accuracy of the HSI oscillator
-
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by design.
3. Guaranteed by characterization results.
4. Factory calibrated, parts not soldered.
120/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Figure 31. HSI deviation vs. temperature
HSI deviation versus temperature (1)
1.5%
Deviation
1.0%
0.5%
0.0%
-40°C
0°C
25°C
85°C
105°C
TA(°C)
-0.5%
Min
Max
Typical
-1.0%
-1.5%
1. Guaranteed by characterization results.
Low-speed internal (LSI) RC oscillator
Table 42. LSI oscillator characteristics (1)
Symbol
fLSI(2)
tsu(LSI)(3)
IDD(LSI)
(3)
Parameter
Min
Typ
Max
Unit
17
32
47
kHz
LSI oscillator startup time
-
15
40
µs
LSI oscillator power consumption
-
0.4
0.6
µA
Frequency
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by characterization results.
3. Guaranteed by design.
DocID024030 Rev 8
121/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Figure 32. ACCLSI versus temperature
MAX
AVG
MIN
.ORMALIZEDDEVIATI ON
4EMPERAT URE #
-36
6.3.11
PLL characteristics
The parameters given in Table 43 and Table 44 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 17.
Table 43. Main PLL characteristics
Symbol
Parameter
fPLL_IN
PLL input clock(1)
fPLL_OUT
PLL multiplier output clock
fPLL48_OUT
48 MHz PLL multiplier output
clock
fVCO_OUT
PLL VCO output
tLOCK
PLL lock time
122/233
Conditions
Min
Typ
Max
Unit
0.95(2)
1
2.10
MHz
24
-
180
MHz
-
48
75
MHz
100
-
432
MHz
VCO freq = 100 MHz
75
-
200
VCO freq = 432 MHz
100
-
300
DocID024030 Rev 8
µs
STM32F427xx STM32F429xx
Electrical characteristics
Table 43. Main PLL characteristics (continued)
Symbol
Parameter
Conditions
RMS
Cycle-to-cycle jitter
System clock
120 MHz
RMS
peak
to
peak
Period Jitter
Jitter
peak
to
peak
(3)
Min
Typ
Max
-
25
-
-
±150
-
-
15
-
-
±200
-
Unit
ps
Main clock output (MCO) for
RMII Ethernet
Cycle to cycle at 50 MHz
on 1000 samples
-
32
-
Main clock output (MCO) for MII
Ethernet
Cycle to cycle at 25 MHz
on 1000 samples
-
40
-
Bit Time CAN jitter
Cycle to cycle at 1 MHz
on 1000 samples
-
330
-
IDD(PLL)(4)
PLL power consumption on VDD
VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45
-
0.40
0.75
mA
IDDA(PLL)(4)
PLL power consumption on
VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55
-
0.40
0.85
mA
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design.
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.
4. Guaranteed by characterization results.
Table 44. PLLI2S (audio PLL) characteristics
Symbol
Parameter
fPLLI2S_IN
PLLI2S input clock(1)
fPLLI2S_OUT
PLLI2S multiplier output clock
fVCO_OUT
PLLI2S VCO output
tLOCK
PLLI2S lock time
Conditions
Min
Typ
Max
Unit
0.95(2)
1
2.10
MHz
-
-
216
MHz
100
-
432
MHz
VCO freq = 100 MHz
75
-
200
VCO freq = 432 MHz
100
-
300
RMS
-
90
-
peak
to
peak
-
±280
-
ps
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-
90
-
ps
Cycle to cycle at 48 KHz
on 1000 samples
-
400
-
ps
Cycle to cycle at
12.288 MHz on
48KHz period,
N=432, R=5
Master I2S clock jitter
(3)
Jitter
WS I2S clock jitter
DocID024030 Rev 8
µs
123/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 44. PLLI2S (audio PLL) characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
IDD(PLLI2S)(4)
PLLI2S power consumption on
VDD
VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45
-
0.40
0.75
mA
IDDA(PLLI2S)(4)
PLLI2S power consumption on
VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55
-
0.40
0.85
mA
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design.
3. Value given with main PLL running.
4. Guaranteed by characterization results.
Table 45. PLLISAI (audio and LCD-TFT PLL) characteristics
Symbol
Parameter
Min
Typ
Max
Unit
0.95(2)
1
2.10
MHz
-
-
216
MHz
100
-
432
MHz
VCO freq = 100 MHz
75
-
200
VCO freq = 432 MHz
100
-
300
RMS
-
90
-
peak
to
peak
-
±280
-
ps
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-
90
-
ps
FS clock jitter
Cycle to cycle at 48 KHz
on 1000 samples
-
400
-
ps
IDD(PLLSAI)(4)
PLLSAI power consumption on
VDD
VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45
-
0.40
0.75
mA
IDDA(PLLSAI)(4)
PLLSAI power consumption on
VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55
-
0.40
0.85
mA
fPLLSAI_IN
PLLSAI input clock(1)
fPLLSAI_OUT
PLLSAI multiplier output clock
fVCO_OUT
PLLSAI VCO output
tLOCK
PLLSAI lock time
Conditions
Cycle to cycle at
12.288 MHz on
48KHz period,
N=432, R=5
Main SAI clock jitter
(3)
Jitter
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design.
3. Value given with main PLL running.
4. Guaranteed by characterization results.
124/233
DocID024030 Rev 8
µs
STM32F427xx STM32F429xx
6.3.12
Electrical characteristics
PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 52: EMI characteristics). It is available only on the main PLL.
Table 46. SSCG parameters constraint
Symbol
Parameter
Min
Typ
Max(1)
Unit
fMod
Modulation frequency
-
-
10
KHz
md
Peak modulation depth
0.25
-
2
%
MODEPER * INCSTEP
-
-
215
−1
-
1. Guaranteed by design.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
MODEPER = round [ f PLL_IN ⁄ ( 4 × fMod ) ]
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
6
3
MODEPER = round [ 10 ⁄ ( 4 × 10 ) ] = 250
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
INCSTEP = round [ ( ( 2
15
– 1 ) × md × PLLN ) ⁄ ( 100 × 5 × MODEPER ) ]
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
INCSTEP = round [ ( ( 2
15
– 1 ) × 2 × 240 ) ⁄ ( 100 × 5 × 250 ) ] = 126md(quantitazed)%
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
md quantized % = ( MODEPER × INCSTEP × 100 × 5 ) ⁄ ( ( 2
15
– 1 ) × PLLN )
As a result:
md quantized % = ( 250 × 126 × 100 × 5 ) ⁄ ( ( 2
DocID024030 Rev 8
15
– 1 ) × 240 ) = 2.002%(peak)
125/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Figure 33 and Figure 34 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 33. PLL output clock waveforms in center spread mode
&REQUENCY0,,?/54
MD
&
MD
TMODE
4IME
XTMODE
AI
Figure 34. PLL output clock waveforms in down spread mode
)UHTXHQF\3//B287
)
[PG
WPRGH
[WPRGH
7LPH
DLE
126/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
6.3.13
Electrical characteristics
Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
Table 47. Flash memory characteristics
Symbol
IDD
Parameter
Supply current
Conditions
Min
Typ
Max
Write / Erase 8-bit mode, VDD = 1.7 V
-
5
-
Write / Erase 16-bit mode, VDD = 2.1 V
-
8
-
Write / Erase 32-bit mode, VDD = 3.3 V
-
12
-
Unit
mA
Table 48. Flash memory programming
Symbol
tprog
Parameter
Word programming time
tERASE16KB Sector (16 KB) erase time
tERASE64KB Sector (64 KB) erase time
tERASE128KB Sector (128 KB) erase time
tME
Mass erase time
Conditions
Min(1)
Typ
Max(1) Unit
Program/erase parallelism
(PSIZE) = x 8/16/32
-
16
100(2)
Program/erase parallelism
(PSIZE) = x 8
-
400
800
Program/erase parallelism
(PSIZE) = x 16
-
300
600
Program/erase parallelism
(PSIZE) = x 32
-
250
500
Program/erase parallelism
(PSIZE) = x 8
-
1200
2400
Program/erase parallelism
(PSIZE) = x 16
-
700
1400
Program/erase parallelism
(PSIZE) = x 32
-
550
1100
Program/erase parallelism
(PSIZE) = x 8
-
2
4
Program/erase parallelism
(PSIZE) = x 16
-
1.3
2.6
Program/erase parallelism
(PSIZE) = x 32
-
1
2
Program/erase parallelism
(PSIZE) = x 8
-
16
32
Program/erase parallelism
(PSIZE) = x 16
-
11
22
Program/erase parallelism
(PSIZE) = x 32
-
8
16
DocID024030 Rev 8
µs
ms
ms
s
s
127/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 48. Flash memory programming (continued)
Symbol
tBE
Vprog
Parameter
Bank erase time
Programming voltage
Conditions
Min(1)
Typ
Max(1) Unit
Program/erase parallelism
(PSIZE) = x 8
-
16
32
Program/erase parallelism
(PSIZE) = x 16
-
11
22
Program/erase parallelism
(PSIZE) = x 32
-
8
16
32-bit program operation
2.7
-
3.6
V
16-bit program operation
2.1
-
3.6
V
8-bit program operation
1.7
-
3.6
V
s
1. Guaranteed by characterization results.
2. The maximum programming time is measured after 100K erase operations.
Table 49. Flash memory programming with VPP
Symbol
Parameter
tprog
Double word programming
tERASE16KB
Sector (16 KB) erase time
tERASE64KB
Sector (64 KB) erase time
tERASE128KB Sector (128 KB) erase time
Conditions
Min(1)
Typ
Max(1)
Unit
-
16
100(2)
µs
-
230
-
-
490
-
-
875
-
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
tME
Mass erase time
-
6.9
-
s
tBE
Bank erase time
-
6.9
-
s
2.7
-
3.6
V
Vprog
Programming voltage
VPP
VPP voltage range
7
-
9
V
IPP
Minimum current sunk on
the VPP pin
10
-
-
mA
-
-
1
hour
tVPP(3)
Cumulative time during
which VPP is applied
1. Guaranteed by design.
2. The maximum programming time is measured after 100K erase operations.
3. VPP should only be connected during programming/erasing.
128/233
ms
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Table 50. Flash memory endurance and data retention
Value
Symbol
NEND
tRET
Parameter
Endurance
Data retention
Conditions
Min(1)
TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions)
10
1 kcycle(2) at TA = 85 °C
30
1 kcycle
(2)
10 kcycles
at TA = 105 °C
10
(2)
20
at TA = 55 °C
Unit
kcycles
Years
1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.
6.3.14
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 51. They are based on the EMS levels and classes
defined in application note AN1709.
Table 51. EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
VDD = 3.3 V, LQFP176, TA = +25 °C,
Voltage limits to be applied on any I/O pin to
fHCLK = 168 MHz, conforms to
induce a functional disturbance
IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP176, TA =+25 °C,
fHCLK = 168 MHz, conforms to
IEC 61000-4-2
4A
When the application is exposed to a noisy environment, it is recommended to avoid pin
exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1,
PA2, PH2, PH3, PH4, PH5, PA3, PA4, PA5, PA6, PA7, PC4, and PC5.
As a consequence, it is recommended to add a serial resistor (1 kΏ) located as close as
possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm
on PCB).
DocID024030 Rev 8
129/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC? code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
Table 52. EMI characteristics
Symbol Parameter
Conditions
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, ART ON, all peripheral
clocks enabled, clock dithering
disabled.
SEMI
Peak level
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, ART ON, all peripheral
clocks enabled, clock dithering
enabled
130/233
Max vs.
Max vs.
Monitored
[fHSE/fCPU] [fHSE/fCPU]
frequency band
25/168 MHz 25/180 MHz
0.1 to 30 MHz
16
19
30 to 130 MHz
23
23
130 MHz to
1GHz
25
22
SAE EMI Level
4
4
0.1 to 30 MHz
17
16
30 to 130 MHz
8
10
130 MHz to
1GHz
11
16
SAE EMI level
3.5
3.5
DocID024030 Rev 8
Unit
dBµV
-
dBµV
-
STM32F427xx STM32F429xx
6.3.15
Electrical characteristics
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESD S5.3.1 standards.
Table 53. ESD absolute maximum ratings
Symbol
Ratings
Electrostatic discharge
VESD(HBM) voltage (human body
model)
Electrostatic discharge
VESD(CDM) voltage (charge device
model)
Class
Maximum
value(1)
2
2000
TA = +25 °C conforming to ANSI/ESD S5.3.1,
LQFP100/144/176, UFBGA169/176,
TFBGA176 and WLCSP143 packages
C3
250
TA = +25 °C conforming to ANSI/ESD S5.3.1,
LQFP208 package
C3
250
Conditions
TA = +25 °C conforming to
ANSI/ESDA/JEDEC JS-001
Unit
V
1. Guaranteed by characterization results.
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
•
A supply overvoltage is applied to each power supply pin
•
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
Table 54. Electrical sensitivities
Symbol
LU
6.3.16
Parameter
Static latch-up class
Conditions
TA = +105 °C conforming to JESD78A
Class
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
DocID024030 Rev 8
131/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –
5 µA/+0 µA range), or other functional failure (for example reset, oscillator frequency
deviation).
Negative induced leakage current is caused by negative injection and positive induced
leakage current by positive injection.
The test results are given in Table 55.
Table 55. I/O current injection susceptibility(1)
Functional susceptibility
Symbol
IINJ
Description
Negative
injection
Positive
injection
Injected current on BOOT0 pin
−0
NA
Injected current on NRST pin
−0
NA
Injected current on PA0, PA1, PA2, PA3, PA6, PA7, PB0,
PC0, PC1, PC2, PC3, PC4, PC5, PH1, PH2, PH3, PH4, PH5
−0
NA
Injected current on TTa pins: PA4 and PA5
−0
+5
Injected current on any other FT pin
−5
NA
Unit
mA
1. NA = not applicable.
Note:
It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
6.3.17
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 56: I/O static characteristics are
derived from tests performed under the conditions summarized in Table 17. All I/Os are
CMOS and TTL compliant.
Table 56. I/O static characteristics
Symbol
Parameter
FT, TTa and NRST I/O input
low level voltage
VIL
BOOT0 I/O input low level
voltage
132/233
Conditions
Min
Typ
Max
Unit
0.35VDD − 0.04
1.7 V≤ VDD≤ 3.6 V
-
-
(1)
0.3VDD(2)
1.75 V≤ VDD ≤ 3.6 V,
–40 °C≤ TA ≤ 105 °C
-
1.7 V≤ VDD ≤ 3.6 V,
0 °C≤ TA ≤ 105 °C
-
DocID024030 Rev 8
V
0.1VDD+0.1(1)
-
STM32F427xx STM32F429xx
Electrical characteristics
Table 56. I/O static characteristics (continued)
Symbol
Parameter
FT, TTa and NRST I/O input
high level voltage(5)
VIH
BOOT0 I/O input high level
voltage
FT, TTa and NRST I/O input
hysteresis
VHYS
BOOT0 I/O input hysteresis
RPU
RPD
CIO(8)
Max
1.7 V≤ VDD≤ 3.6 V
1.75 V≤ VDD ≤ 3.6 V,
–40 °C≤ TA ≤ 105 °C
1.7 V≤ VDD ≤ 3.6 V,
0 °C≤ TA ≤ 105 °C
0.45VDD+0.3
0.7VDD(2)
-
-
0.17VDD+0.7(1)
-
-
10%VDD(3)
-
-
1.7 V≤ VDD≤ 3.6 V
1.75 V≤ VDD ≤ 3.6 V,
–40 °C≤ TA ≤ 105 °C
V
VSS ≤ VIN ≤ VDD
-
-
±1
VIN = 5 V
-
-
3
30
40
50
PA10/PB12
(OTG_FS_ID
,OTG_HS_ID
)
7
10
14
All pins
except for
PA10/PB12
(OTG_FS_ID
,OTG_HS_ID
)
30
40
50
7
10
14
-
5
-
All pins
except for
PA10/PB12
(OTG_FS_ID
,OTG_HS_ID
)
1.7 V≤ VDD ≤ 3.6 V,
0 °C≤ TA ≤ 105 °C
µA
VIN = VSS
kΩ
VIN = VDD
PA10/PB12
(OTG_FS_ID
,OTG_HS_ID
)
I/O pin capacitance
Unit
V
-
I/O FT input leakage current
Weak pulldown
equivalent
resistor(7)
Typ
(1)
-
(5)
Weak pull-up
equivalent
resistor(6)
Min
0.1
I/O input leakage current (4)
Ilkg
Conditions
-
pF
1. Guaranteed by design.
2. Tested in production.
3. With a minimum of 200 mV.
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 55: I/O
current injection susceptibility
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 55: I/O current injection
susceptibility
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the
series resistance is minimum (~10% order).
DocID024030 Rev 8
133/233
193
Electrical characteristics
STM32F427xx STM32F429xx
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the
series resistance is minimum (~10% order).
8.
Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements for FT I/Os is shown in Figure 35.
Figure 35. FT I/O input characteristics
9,/9,+9
'
9'
L
P
,+
Q
9
QW
H
P
LUH 77/UHTXLUHPHQW
U
9,+PLQ 9
26
0
&
'
9'
Q
R
WL
XF
Q
PL
RG
,+
SU
9
V
LQ
LRQ
HG
ODW
VW
PX
L
7H
V
LJQ
HV
$UHDQRW
Q'
R
G
VH
GHWHUPLQHG
''
%D
9
D[
,/P
QV9
XODWLR
LP
V
VLJQ
Q'H
HGR
77/UHTXLUHPHQW9,/PD[
%DV
9
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,/PD[ 9''
X
HT
9''9
069
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14, PC15 and PI8 which
can sink or source up to ±3mA. When using the PC13 to PC15 and PI8 GPIOs in output
mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2. In particular:
134/233
•
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 15).
•
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 15).
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Output voltage levels
Unless otherwise specified, the parameters given in Table 57 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 17. All I/Os are CMOS and TTL compliant.
Table 57. Output voltage characteristics
Symbol
Parameter
VOL(1)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL (1)
Output low level voltage for an I/O pin
VOH (3)
Output high level voltage for an I/O pin
VOL(1)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL(1)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL(1)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
Conditions
(2)
CMOS port
IIO = +8 mA
2.7 V ≤ VDD ≤ 3.6 V
TTL port(2)
IIO =+ 8mA
2.7 V ≤ VDD ≤ 3.6 V
Min
Max
-
0.4
VDD − 0.4
-
-
0.4
2.4
-
IIO = +20 mA
2.7 V ≤ VDD ≤ 3.6 V VDD −1.3(4)
1.3(4)
IIO = +6 mA
1.8 V ≤ VDD ≤ 3.6 V VDD −0.4(4)
0.4(4)
IIO = +4 mA
1.7 V ≤ VDD ≤ 3.6V VDD −0.4(5)
0.4(5)
Unit
V
V
V
-
V
-
V
-
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 15.
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 15 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
4. Based on characterization data.
5. Guaranteed by design.
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 36 and
Table 58, respectively.
Unless otherwise specified, the parameters given in Table 58 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 17.
DocID024030 Rev 8
135/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 58. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] bit
value(1)
Symbol
fmax(IO)out
Parameter
Maximum frequency
(3)
00
tf(IO)out/
tr(IO)out
fmax(IO)out
Output high to low level fall
time and output low to high
level rise time
Maximum frequency(3)
01
tf(IO)out/
tr(IO)out
fmax(IO)out
Output high to low level fall
time and output low to high
level rise time
Maximum frequency(3)
10
tf(IO)out/
tr(IO)out
136/233
Output high to low level fall
time and output low to high
level rise time
Conditions
Min
Typ
Max
CL = 50 pF, VDD ≥ 2.7 V
-
-
4
CL = 50 pF, VDD ≥ 1.7 V
-
-
2
CL = 10 pF, VDD ≥ 2.7 V
-
-
8
CL = 10 pF, VDD ≥ 1.8 V
-
-
4
CL = 10 pF, VDD ≥ 1.7 V
-
-
3
CL = 50 pF, VDD = 1.7 V to
3.6 V
-
-
100
CL = 50 pF, VDD≥ 2.7 V
-
-
25
CL = 50 pF, VDD≥ 1.8 V
-
-
12.5
CL = 50 pF, VDD≥ 1.7 V
-
-
10
CL = 10 pF, VDD ≥ 2.7 V
-
-
50
CL = 10 pF, VDD≥ 1.8 V
-
-
20
CL = 10 pF, VDD≥ 1.7 V
-
-
12.5
CL = 50 pF, VDD ≥ 2.7 V
-
-
10
CL = 10 pF, VDD ≥ 2.7 V
-
-
6
CL = 50 pF, VDD ≥ 1.7 V
-
-
20
CL = 10 pF, VDD ≥ 1.7 V
-
-
10
CL = 40 pF, VDD ≥ 2.7 V
-
-
50(4)
CL = 10 pF, VDD ≥ 2.7 V
-
-
100(4)
CL = 40 pF, VDD ≥ 1.7 V
-
-
25
CL = 10 pF, VDD ≥ 1.8 V
-
-
50
CL = 10 pF, VDD ≥ 1.7 V
-
-
42.5
CL = 40 pF, VDD ≥2.7 V
-
-
6
CL = 10 pF, VDD ≥ 2.7 V
-
-
4
CL = 40 pF, VDD ≥ 1.7 V
-
-
10
CL = 10 pF, VDD ≥ 1.7 V
-
-
6
DocID024030 Rev 8
Unit
MHz
ns
MHz
ns
MHz
ns
STM32F427xx STM32F429xx
Electrical characteristics
Table 58. I/O AC characteristics(1)(2) (continued)
OSPEEDRy
[1:0] bit
value(1)
Symbol
fmax(IO)out
Parameter
Conditions
Maximum frequency(3)
11
tf(IO)out/
tr(IO)out
-
tEXTIpw
Output high to low level fall
time and output low to high
level rise time
Min
Typ
Max
CL = 30 pF, VDD ≥ 2.7 V
-
-
100(4)
CL = 30 pF, VDD ≥ 1.8 V
-
-
50
CL = 30 pF, VDD ≥ 1.7 V
-
-
42.5
CL = 10 pF, VDD≥ 2.7 V
-
-
180(4)
CL = 10 pF, VDD ≥ 1.8 V
-
-
100
CL = 10 pF, VDD ≥ 1.7 V
-
-
72.5
CL = 30 pF, VDD ≥ 2.7 V
-
-
4
CL = 30 pF, VDD ≥1.8 V
-
-
6
CL = 30 pF, VDD ≥1.7 V
-
-
7
CL = 10 pF, VDD ≥ 2.7 V
-
-
2.5
CL = 10 pF, VDD ≥1.8 V
-
-
3.5
CL = 10 pF, VDD ≥1.7 V
-
-
4
10
-
-
Pulse width of external signals
detected by the EXTI
controller
Unit
MHz
ns
ns
1. Guaranteed by design.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of
the GPIOx_SPEEDR GPIO port output speed register.
3. The maximum frequency is defined in Figure 36.
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.
Figure 36. I/O AC characteristics definition
(;7(51$/
287387
21&/
WU,2RXW
WI,2RXW
7
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI”7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´
DocID024030 Rev 8
DLG
137/233
193
Electrical characteristics
6.3.18
STM32F427xx STM32F429xx
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 56: I/O static characteristics).
Unless otherwise specified, the parameters given in Table 59 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 17.
Table 59. NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
RPU
Weak pull-up equivalent resistor(1)
VIN = VSS
30
40
50
kΩ
-
-
100
ns
VDD > 2.7 V
300
-
-
ns
Internal Reset source
20
-
-
µs
VF(NRST)
(2)
NRST Input filtered pulse
VNF(NRST)(2) NRST Input not filtered pulse
TNRST_OUT
Generated reset pulse duration
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
2. Guaranteed by design.
Figure 37. Recommended NRST pin protection
9''
([WHUQDO
UHVHWFLUFXLW 1567 538
,QWHUQDO5HVHW
)LOWHU
—)
670)
DLF
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 59. Otherwise the reset is not taken into account by the device.
138/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
6.3.19
Electrical characteristics
TIM timer characteristics
The parameters given in Table 60 are guaranteed by design.
Refer to Section 6.3.17: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 60. TIMx characteristics(1)(2)
Symbol
tres(TIM)
fEXT
ResTIM
tMAX_COUNT
Conditions(3)
Min
Max
Unit
AHB/APBx prescaler=1
or 2 or 4, fTIMxCLK =
180 MHz
1
-
tTIMxCLK
AHB/APBx prescaler>4,
fTIMxCLK = 90 MHz
1
-
tTIMxCLK
Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 180 MHz
0
fTIMxCLK/2
MHz
Timer resolution
-
16/32
bit
Maximum possible count
with 32-bit counter
-
65536 ×
65536
tTIMxCLK
Parameter
Timer resolution time
1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.
2. Guaranteed by design.
3. The maximum timer frequency on APB1 or APB2 is up to 180 MHz, by setting the TIMPRE bit in the
RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK =
4x PCLKx.
6.3.20
Communications interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
•
Standard-mode (Sm): with a bit rate up to 100 kbit/s
•
Fast-mode (Fm): with a bit rate up to 400 kbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to RM0090 reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDD is disabled, but is still present. Refer to
Section 6.3.17: I/O port characteristics for more details on the I2C I/O characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
Table 61. I2C analog filter characteristics(1)
Symbol
Parameter
Min
Max
Unit
tAF
Maximum pulse width of spikes
that are suppressed by the analog
filter
50(2)
260(3)
ns
DocID024030 Rev 8
139/233
193
Electrical characteristics
STM32F427xx STM32F429xx
1. Guaranteed by design.
2. Spikes with widths below tAF(min) are filtered.
3. Spikes with widths above tAF(max) are not filtered
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 62 for the SPI interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 17, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 62. SPI dynamic characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Master mode, SPI1/4/5/6,
2.7 V≤VDD≤3.6 V
fSCK
1/tc(SCK)
SPI clock frequency
Slave mode,
SPI1/4/5/6,
2.7 V≤VDD≤3.6 V
Receiver
Slave mode, SPI1/2/3/4/5/6,
1.7 V≤VDD≤3.6 V
Duty(SCK)
Duty cycle of SPI clock
Slave mode
frequency
tw(SCKH)
SCK high and low time
tw(SCKL)
-
50
70
Master mode, SPI presc = 2,
2.7 V≤VDD≤3.6 V
TPCLK − 0.5
TPCLK
TPCLK+0.5
Master mode, SPI presc = 2,
1.7 V≤VDD≤3.6 V
TPCLK − 2
TPCLK
TPCLK+2
-
-
th(NSS)
NSS hold time
Slave mode, SPI presc = 2
2TPCLK
th(SI)
ta(SO)
tdis(SO)
140/233
Data input hold time
Master mode
3
-
-
Slave mode
0
-
-
Master mode
0.5
-
-
Slave mode
2
-
-
0
-
4TPCLK
Slave mode, SPI1/4/5/6,
2.7 V≤VDD≤3.6 V
0
-
8.5
Slave mode, SPI1/2/3/4/5/6 and
1.7 V≤VDD≤3.6 V
0
-
16.5
Data output access time Slave mode, SPI presc = 2
Data output disable time
-
30
4TPCLK
th(MI)
DocID024030 Rev 8
MHz
22.5
Slave mode, SPI presc = 2
tsu(SI)
45
22.5
-
NSS setup time
Data input setup time
-
38(2)
tsu(NSS)
tsu(MI)
Unit
45
Transmitter/
full-duplex
Master mode, SPI1/2/3/4/5/6,
1.7 V≤VDD≤3.6 V
Max
%
ns
STM32F427xx STM32F429xx
Electrical characteristics
Table 62. SPI dynamic characteristics(1) (continued)
Symbol
Parameter
tv(SO)
th(SO)
Conditions
Data output valid/hold
time
Data output valid time
tv(MO)
th(MO)
Data output hold time
Min
Typ
Max
Slave mode (after enable edge),
SPI1/4/5/6 and 2.7V ≤ VDD ≤ 3.6V
-
11
13
Slave mode (after enable edge),
SPI2/3, 2.7 V≤VDD≤3.6 V
-
14
15
Slave mode (after enable edge),
SPI1/4/5/6, 1.7 V≤VDD≤3.6 V
-
15.5
19
Slave mode (after enable edge),
SPI2/3, 1.7 V≤VDD≤3.6 V
-
15.5
17.5
Master mode (after enable edge),
SPI1/4/5/6, 2.7 V≤VDD≤3.6 V
-
-
2.5
Master mode (after enable edge),
SPI1/2/3/4/5/6, 1.7 V≤VDD≤3.6 V
-
-
4.5
Master mode (after enable edge)
0
-
-
Unit
ns
1. Guaranteed by characterization results.
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master
having tsu(MI) = 0 while Duty(SCK) = 50%
Figure 38. SPI timing diagram - slave mode and CPHA = 0
166LQSXW
6&.,QSXW
W68166
&3+$ &32/ &3+$ &32/ WK166
WF6&.
WZ6&.+
WZ6&./
W962
WD62
0,62
287387
WK62
06%287
%,7287
06%,1
%,7,1
WU6&.
WI6&.
WGLV62
/6%287
WVX6,
026,
,1387
/6%,1
WK6,
DLF
DocID024030 Rev 8
141/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Figure 39. SPI timing diagram - slave mode and CPHA = 1(1)
NSS input
SCK Input
tSU(NSS)
CPHA=1
CPOL=0
tc(SCK)
th(NSS)
tw(SCKH)
tw(SCKL)
CPHA=1
CPOL=1
tv(SO)
ta(SO)
MISO
OUT P UT
th(SO)
MS B O UT
tsu(SI)
MOSI
I NPUT
tr(SCK)
tf(SCK)
BI T6 OUT
tdis(SO)
LSB OUT
th(SI)
B I T1 IN
M SB IN
LSB IN
ai14135
Figure 40. SPI timing diagram - master mode(1)
High
NSS input
SCK Input
SCK Input
tc(SCK)
CPHA= 0
CPOL=0
CPHA= 0
CPOL=1
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tsu(MI)
MISO
INP UT
tw(SCKH)
tw(SCKL)
MS BIN
tr(SCK)
tf(SCK)
BI T6 IN
LSB IN
th(MI)
MOSI
OUTUT
M SB OUT
tv(MO)
B I T1 OUT
LSB OUT
th(MO)
ai14136
142/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 63 for the I2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 17, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
Table 63. I2S dynamic characteristics(1)
Symbol
Parameter
fMCK
I2S Main clock output
fCK
I2S clock frequency
DCK
Conditions
Min
Max
Unit
256x8K
256xFs(2)
MHz
Master data: 32 bits
-
64xFs
Slave data: 32 bits
-
64xFs
30
70
-
I2S clock frequency duty cycle Slave receiver
tv(WS)
WS valid time
Master mode
0
6
th(WS)
WS hold time
Master mode
0
-
tsu(WS)
WS setup time
Slave mode
1
-
th(WS)
WS hold time
Slave mode
0
-
Master receiver
7.5
-
Slave receiver
2
-
Master receiver
0
-
Slave receiver
0
-
Slave transmitter (after enable edge)
-
27
Master transmitter (after enable edge)
-
20
Master transmitter (after enable edge)
2.5
tsu(SD_MR)
tsu(SD_SR)
th(SD_MR)
th(SD_SR)
tv(SD_ST)
th(SD_ST)
Data input setup time
Data input hold time
Data output valid time
tv(SD_MT)
th(SD_MT)
Data output hold time
MHz
%
ns
-
1. Guaranteed by characterization results.
2. The maximum value of 256xFs is 45 MHz (APB1 maximum frequency).
Note:
Refer to the I2S section of RM0090 reference manual for more details on the sampling
frequency (FS).
fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these
parameters might be slightly impacted by the source clock precision. DCK depends mainly
on the value of ODD bit. The digital contribution leads to a minimum value of
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS
maximum value is supported for each mode/condition.
DocID024030 Rev 8
143/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Figure 41. I2S slave timing diagram (Philips protocol)(1)
CK Input
tc(CK)
CPOL = 0
CPOL = 1
tw(CKH)
th(WS)
tw(CKL)
WS input
tv(SD_ST)
tsu(WS)
SDtransmit
LSB transmit(2)
MSB transmit
Bitn transmit
tsu(SD_SR)
LSB receive(2)
SDreceive
th(SD_ST)
LSB transmit
th(SD_SR)
MSB receive
Bitn receive
LSB receive
ai14881b
1. .LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 42. I2S master timing diagram (Philips protocol)(1)
tf(CK)
tr(CK)
CK output
tc(CK)
CPOL = 0
tw(CKH)
CPOL = 1
tv(WS)
th(WS)
tw(CKL)
WS output
tv(SD_MT)
SDtransmit
LSB transmit(2)
MSB transmit
LSB receive(2)
LSB transmit
th(SD_MR)
tsu(SD_MR)
SDreceive
Bitn transmit
th(SD_MT)
MSB receive
Bitn receive
LSB receive
ai14884b
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
144/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
SAI characteristics
Unless otherwise specified, the parameters given in Table 64 for SAI are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 17, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C=30 pF
•
Measurement points are performed at CMOS levels: 0.5VDD
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics (SCK,SD,WS).
Table 64. SAI characteristics(1)
Symbol
Parameter
Conditions
Min
Max
Unit
fMCKL
SAI Main clock output
-
256 x 8K
256xFs(2)
MHz
FSCK
SAI clock frequency
Master data: 32 bits
-
64xFs
Slave data: 32 bits
-
64xFs
DSCK
SAI clock frequency duty
cycle
Slave receiver
30
70
tv(FS)
FS valid time
Master mode
8
22
tsu(FS)
FS setup time
Slave mode
2
-
th(FS)
FS hold time
Master mode
8
-
Slave mode
0
-
Master receiver
5
-
Slave receiver
3
-
Master receiver
0
-
Slave receiver
0
-
Slave transmitter (after enable
edge)
-
22
Master transmitter (after enable
edge)
-
20
Master transmitter (after enable
edge)
8
-
tsu(SD_MR)
tsu(SD_SR)
th(SD_MR)
th(SD_SR)
tv(SD_ST)
th(SD_ST)
Data input setup time
Data input hold time
Data output valid time
tv(SD_MT)
th(SD_MT)
Data output hold time
MHz
%
ns
1. Guaranteed by characterization results.
2. 256xFs maximum corresponds to 45 MHz (APB2 xaximum frequency)
DocID024030 Rev 8
145/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Figure 43. SAI master timing waveforms
F3#+
3!)?3#+?8
TH&3
3!)?&3?8
OUTPUT
TV&3
TH3$?-4
TV3$?-4
3!)?3$?8
TRANSMIT
3LOTN
TSU3$?-2
3LOTN
TH3$?-2
3!)?3$?8
RECEIVE
3LOTN
-36
Figure 44. SAI slave timing waveforms
F3#+
3!)?3#+?8
TW#+(?8
3!)?&3?8
INPUT
TW#+,?8
TH&3
TSU&3
TH3$?34
TV3$?34
3!)?3$?8
TRANSMIT
3LOTN
TSU3$?32
3!)?3$?8
RECEIVE
3LOTN
TH3$?32
3LOTN
-36
146/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
USB OTG full speed (FS) characteristics
This interface is present in both the USB OTG HS and USB OTG FS controllers.
Table 65. USB OTG full speed startup time
Symbol
tSTARTUP(1)
Parameter
Max
Unit
USB OTG full speed transceiver startup time
1
µs
1. Guaranteed by design.
Table 66. USB OTG full speed DC electrical characteristics
Symbol
VDD
Input
levels
Parameter
Conditions
USB OTG full speed
transceiver operating
voltage
Min.(1) Typ. Max.(1) Unit
3.0(2)
-
3.6
VDI(3) Differential input sensitivity
I(USB_FS_DP/DM,
USB_HS_DP/DM)
0.2
-
-
VCM(3)
Differential common mode
range
Includes VDI range
0.8
-
2.5
VSE(3)
Single ended receiver
threshold
1.3
-
2.0
VOL
Static output level low
-
-
0.3
2.8
-
3.6
17
21
24
0.65
1.1
2.0
Output
levels
RPD
RPU
VOH
Static output level high
RL of 1.5 kΩ to 3.6 V(4)
RL of 15 kΩ to
PA11, PA12, PB14, PB15
(USB_FS_DP/DM,
USB_HS_DP/DM)
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
VSS(4)
V
V
V
VIN = VDD
kΩ
PA12, PB15 (USB_FS_DP,
USB_HS_DP)
VIN = VSS
1.5
1.8
2.1
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
VIN = VSS
0.25
0.37
0.55
1. All the voltages are measured from the local ground potential.
2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed
electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
3. Guaranteed by design.
4. RL is the load connected on the USB OTG full speed drivers.
Note:
When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state
(floating input), not as alternate function. A typical 200 µA current consumption of the
sensing block (current to voltage conversion to determine the different sessions) can be
observed on PA9 and PB13 when the feature is enabled.
DocID024030 Rev 8
147/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Figure 45. USB OTG full speed timings: definition of data signal rise and fall time
Crossover
points
Differen tial
Data L ines
VCRS
VS S
tr
tf
ai14137
Table 67. USB OTG full speed electrical characteristics(1)
Driver characteristics
Symbol
tr
tf
trfm
Parameter
Rise time(2)
Fall
time(2)
Conditions
Min
Max
Unit
CL = 50 pF
4
20
ns
CL = 50 pF
4
20
ns
tr/tf
90
110
%
1.3
2.0
V
28
44
Ω
Rise/ fall time matching
VCRS
Output signal crossover voltage
ZDRV
Output driver impedance(3)
Driving high or
low
1. Guaranteed by design.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching
impedance is included in the embedded driver.
USB high speed (HS) characteristics
Unless otherwise specified, the parameters given in Table 70 for ULPI are derived from
tests performed under the ambient temperature, fHCLK frequency summarized in Table 69
and VDD supply voltage conditions summarized in Table 68, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10, unless otherwise specified
•
Capacitive load C = 30 pF, unless otherwise specified
•
Measurement points are done at CMOS levels: 0.5VDD.
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output
characteristics.
Table 68. USB HS DC electrical characteristics
Symbol
Input level
Parameter
VDD
USB OTG HS operating voltage
1. All the voltages are measured from the local ground potential.
148/233
DocID024030 Rev 8
Min.(1)
Max.(1)
Unit
1.7
3.6
V
STM32F427xx STM32F429xx
Electrical characteristics
Table 69. USB HS clock timing parameters(1)
Symbol
Parameter
Min
Typ
Max
Unit
fHCLK value to guarantee proper operation of
USB HS interface
30
-
-
MHz
FSTART_8BIT
Frequency (first transition)
54
60
66
MHz
FSTEADY
Frequency (steady state) ±500 ppm
59.97
60
60.03
MHz
DSTART_8BIT
Duty cycle (first transition)
40
50
60
%
DSTEADY
Duty cycle (steady state) ±500 ppm
49.975
50
50.025
%
tSTEADY
Time to reach the steady state frequency and
duty cycle after the first transition
-
-
1.4
ms
Peripheral
-
-
5.6
Host
-
-
-
-
-
-
tSTART_DEV
tSTART_HOST
Clock startup time after the
de-assertion of SuspendM
8-bit ±10%
8-bit ±10%
PHY preparation time after the first transition
of the input clock
tPREP
ms
µs
1. Guaranteed by design.
Figure 46. ULPI timing diagram
#LOCK
#ONTROL)N
5,0)?$)2
5,0)?.84
T3#
T(#
T3$
T($
DATA)N
BIT
T$#
#ONTROLOUT
5,0)?340
DATAOUT
BIT
T$#
T$$
AIC
DocID024030 Rev 8
149/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 70. Dynamic characteristics: USB ULPI(1)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
tSC
Control in (ULPI_DIR, ULPI_NXT) setup time
2
-
-
tHC
Control in (ULPI_DIR, ULPI_NXT) hold time
0.5
-
-
tSD
Data in setup time
1.5
-
-
tHD
Data in hold time
2
-
-
2.7 V < VDD < 3.6 V,
CL = 15 pF and
OSPEEDRy[1:0] = 11
-
9
9.5
2.7 V < VDD < 3.6 V,
CL = 20 pF and
OSPEEDRy[1:0] = 10
-
1.7 V < VDD < 3.6 V,
CL = 15 pF and
OSPEEDRy[1:0] = 11
12
15
-
tDC/tDD
Data/control output delay
1. Guaranteed by characterization results.
150/233
DocID024030 Rev 8
Unit
ns
STM32F427xx STM32F429xx
Electrical characteristics
Ethernet characteristics
Unless otherwise specified, the parameters given in Table 71, Table 72 and Table 73 for
SMI, RMII and MII are derived from tests performed under the ambient temperature, fHCLK
frequency summarized in Table 17 with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF for 2.7 V < VDD < 3.6 V
•
Capacitive load C = 20 pF for 1.71 V < VDD < 3.6 V
•
Measurement points are done at CMOS levels: 0.5VDD.
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output
characteristics.
Table 71 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 47 shows the corresponding timing diagram.
Figure 47. Ethernet SMI timing diagram
W0'&
(7+B0'&
WG0',2
(7+B0',22
WVX0',2
WK0',2
(7+B0',2,
069
Table 71. Dynamics characteristics: Ethernet MAC signals for SMI(1)
Symbol
tMDC
Parameter
MDC cycle time(2.38 MHz)
Min
Typ
Max
411
420
425
Td(MDIO)
Write data valid time
6
10
13
tsu(MDIO)
Read data setup time
12
-
-
th(MDIO)
Read data hold time
0
-
-
Unit
ns
1. Guaranteed by characterization results.
DocID024030 Rev 8
151/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 72 gives the list of Ethernet MAC signals for the RMII and Figure 48 shows the
corresponding timing diagram.
Figure 48. Ethernet RMII timing diagram
RMII_REF_CLK
td(TXEN)
td(TXD)
RMII_TX_EN
RMII_TXD[1:0]
tsu(RXD)
tsu(CRS)
tih(RXD)
tih(CRS)
RMII_RXD[1:0]
RMII_CRS_DV
ai15667
Table 72. Dynamics characteristics: Ethernet MAC signals for RMII(1)
Symbol
Parameter
tsu(RXD)
Receive data setup time
tih(RXD)
Receive data hold time
tsu(CRS)
Carrier sense setup time
tih(CRS)
Carrier sense hold time
td(TXEN)
Transmit enable valid delay
time
td(TXD)
Transmit data valid delay time
Condition
Min
Typ
Max
1.5
-
-
0
-
-
1
-
-
1
-
-
2.7 V < VDD < 3.6 V
8
10.5
12
1.71 V < VDD < 3.6 V
8
10.5
14
2.7 V < VDD < 3.6 V
8
11
12.5
1.71 V < VDD < 3.6 V
8
11
14.5
1.71 V < VDD < 3.6 V
1. Guaranteed by characterization results.
Table 73 gives the list of Ethernet MAC signals for MII and Figure 48 shows the
corresponding timing diagram.
152/233
DocID024030 Rev 8
Unit
ns
STM32F427xx STM32F429xx
Electrical characteristics
Figure 49. Ethernet MII timing diagram
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
tsu(RXD)
tsu(ER)
tsu(DV)
tih(RXD)
tih(ER)
tih(DV)
MII_TX_CLK
td(TXEN)
td(TXD)
MII_TX_EN
MII_TXD[3:0]
ai15668
Table 73. Dynamics characteristics: Ethernet MAC signals for MII(1)
Symbol
Parameter
Condition
Min
Typ
Max
tsu(RXD)
Receive data setup time
9
-
-
tih(RXD)
Receive data hold time
10
-
-
tsu(DV)
Data valid setup time
9
-
-
tih(DV)
Data valid hold time
8
-
-
tsu(ER)
Error setup time
6
-
-
tih(ER)
Error hold time
8
-
-
2.7 V < VDD < 3.6 V
8
10
14
1.71 V < VDD < 3.6 V
8
10
16
2.7 V < VDD < 3.6 V
7.5
10
15
1.71 V < VDD < 3.6 V
7.5
10
17
td(TXEN)
Transmit enable valid delay time
td(TXD)
Transmit data valid delay time
1.71 V < VDD < 3.6 V
Unit
ns
1. Guaranteed by characterization results.
CAN (controller area network) interface
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics (CANx_TX and CANx_RX).
6.3.21
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 74 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 17.
DocID024030 Rev 8
153/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 74. ADC characteristics
Symbol
VDDA
Parameter
Power supply
VREF+
Positive reference voltage
VREF-
Negative reference voltage
Conditions
Min
Typ
Max
1.7(1)
-
3.6
(1)
1.7
-
VDDA
-
0
-
0.6
15
18
MHz
VDDA = 2.4 to 3.6 V
0.6
30
36
MHz
fADC = 30 MHz,
12-bit resolution
-
-
1764
kHz
-
-
17
1/fADC
0
(VSSA or VREFtied to ground)
-
VREF+
V
-
-
50
kΩ
-
-
6
kΩ
-
4
7
pF
-
-
0.100
µs
-
-
3(5)
1/fADC
-
-
0.067
µs
-
-
2(5)
1/fADC
0.100
-
16
µs
3
-
480
1/fADC
-
2
3
µs
fADC = 30 MHz
12-bit resolution
0.50
-
16.40
µs
fADC = 30 MHz
10-bit resolution
0.43
-
16.34
µs
fADC = 30 MHz
8-bit resolution
0.37
-
16.27
µs
fADC = 30 MHz
6-bit resolution
0.30
-
16.20
µs
VDDA − VREF+ < 1.2 V
(1)
fADC
fTRIG(2)
VAIN
RAIN(2)
ADC clock frequency
External trigger frequency
VDDA = 1.7
to 2.4 V
Conversion voltage range(3)
External input impedance
See Equation 1 for
details
RADC(2)(4) Sampling switch resistance
CADC(2)
Internal sample and hold
capacitor
tlat(2)
Injection trigger conversion
latency
fADC = 30 MHz
tlatr(2)
Regular trigger conversion
latency
fADC = 30 MHz
tS(2)
Sampling time
tSTAB(2)
Power-up time
tCONV(2)
Total conversion time (including
sampling time)
fADC = 30 MHz
9 to 492 (tS for sampling +n-bit resolution for successive
approximation)
154/233
DocID024030 Rev 8
Unit
V
1/fADC
STM32F427xx STM32F429xx
Electrical characteristics
Table 74. ADC characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
12-bit resolution
Single ADC
-
-
2
Msps
12-bit resolution
Interleave Dual ADC
mode
-
-
3.75
Msps
12-bit resolution
Interleave Triple ADC
mode
-
-
6
Msps
Sampling rate
fS(2)
(fADC = 30 MHz, and
tS = 3 ADC cycles)
IVREF+(2)
ADC VREF DC current
consumption in conversion
mode
-
300
500
µA
IVDDA(2)
ADC VDDA DC current
consumption in conversion
mode
-
1.6
1.8
mA
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2:
Internal reset OFF).
2. Guaranteed by characterization results.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 74.
Equation 1: RAIN max formula
R AIN
( k – 0.5 )
- – R ADC
= ------------------------------------------------------------N+2
f ADC × C ADC × ln ( 2
)
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
Table 75. ADC static accuracy at fADC = 18 MHz
Symbol
ET
Parameter
Test conditions
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fADC =18 MHz
VDDA = 1.7 to 3.6 V
VREF = 1.7 to 3.6 V
VDDA − VREF < 1.2 V
Typ
Max(1)
±3
±4
±2
±3
±1
±3
±1
±2
±2
±3
Unit
LSB
1. Guaranteed by characterization results.
DocID024030 Rev 8
155/233
193
Electrical characteristics
STM32F427xx STM32F429xx
a
Table 76. ADC static accuracy at fADC = 30 MHz
Symbol
ET
Parameter
Test conditions
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fADC = 30 MHz,
RAIN < 10 kΩ,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V,
VDDA − VREF < 1.2 V
Typ
Max(1)
±2
±5
±1.5
±2.5
±1.5
±3
±1
±2
±1.5
±3
Unit
LSB
1. Guaranteed by characterization results.
Table 77. ADC static accuracy at fADC = 36 MHz
Symbol
Parameter
Test conditions
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
Typ
Max(1)
±4
±7
±2
±3
±3
±6
±2
±3
±3
±6
fADC =36 MHz,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V
VDDA − VREF < 1.2 V
Unit
LSB
1. Guaranteed by characterization results.
Table 78. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1)
Symbol
Parameter
Test conditions
ENOB
Effective number of bits
SINAD
Signal-to-noise and distortion ratio
SNR
Signal-to-noise ratio
THD
Total harmonic distortion
fADC =18 MHz
VDDA = VREF+= 1.7 V
Input Frequency = 20 KHz
Temperature = 25 °C
Min
Typ
Max
Unit
10.3
10.4
-
bits
64
64.2
-
64
65
-
− 67
− 72
-
dB
1. Guaranteed by characterization results.
Table 79. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1)
Symbol
Parameter
Test conditions
ENOB
Effective number of bits
SINAD
Signal-to noise and distortion ratio
SNR
Signal-to noise ratio
THD
Total harmonic distortion
fADC =36 MHz
VDDA = VREF+ = 3.3 V
Input Frequency = 20 KHz
Temperature = 25 °C
Min
Typ
Max
Unit
10.6
10.8
-
bits
66
67
-
64
68
-
− 70
− 72
-
dB
1. Guaranteed by characterization results.
Note:
156/233
ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 6.3.17 does not affect the ADC accuracy.
Figure 50. ADC accuracy characteristics
6 2%&
6 $$!
;,3" )$%!, ORDEPENDINGONPACKAGE=
%'
%4
%/
%,
%$
, 3")$%!,
6 33!
6$$!
AIC
1. See also Table 76.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
DocID024030 Rev 8
157/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Figure 51. Typical connection diagram using the ADC
670)
9''
5$,1 $,1[
9$,1
&SDUDVLWLF
6DPSOHDQGKROG$'&
FRQYHUWHU
97
9
5$'&
97
9
,/“—$
ELW
FRQYHUWHU
& $'&
DL
1. Refer to Table 74 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
158/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 52 or Figure 53,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 52. Power supply and reference decoupling (VREF+ not connected to VDDA)
670)
95()
—)Q)
9''$
—)Q)
966$95()
DLE
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA.
DocID024030 Rev 8
159/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Figure 53. Power supply and reference decoupling (VREF+ connected to VDDA)
670)
95()9''$ —)Q)
95()966$
DLF
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA.
6.3.22
Temperature sensor characteristics
Table 80. Temperature sensor characteristics
Symbol
TL(1)
Parameter
Min
Typ
Max
Unit
-
±1
±2
°C
-
2.5
mV/°C
Voltage at 25 °C
-
0.76
V
Startup time
-
6
10
µs
10
-
-
µs
VSENSE linearity with temperature
Avg_Slope(1) Average slope
V25(1)
tSTART
(2)
TS_temp(2)
ADC sampling time when reading the temperature (1 °C accuracy)
1. Guaranteed by characterization results.
2. Guaranteed by design.
Table 81. Temperature sensor calibration values
Symbol
Parameter
Memory address
TS_CAL1
TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V
0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2
TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V
0x1FFF 7A2E - 0x1FFF 7A2F
160/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
6.3.23
Electrical characteristics
VBAT monitoring characteristics
Table 82. VBAT monitoring characteristics
Symbol
Parameter
Min
Typ
Max
Unit
KΩ
R
Resistor bridge for VBAT
-
50
-
Q
Ratio on VBAT measurement
-
4
-
Error on Q
–1
-
+1
%
ADC sampling time when reading the VBAT
1 mV accuracy
5
-
-
µs
Er
(1)
TS_vbat(2)(2)
1. Guaranteed by design.
2. Shortest sampling time can be determined in the application by multiple iterations.
6.3.24
Reference voltage
The parameters given in Table 83 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 17.
Table 83. internal reference voltage
Symbol
Parameter
Internal reference voltage
VREFINT
Conditions
Min
Typ
Max
Unit
–40 °C < TA < +105 °C
1.18
1.21
1.24
V
10
-
-
µs
-
3
5
mV
ADC sampling time when reading the
internal reference voltage
TS_vrefint(1)
Internal reference voltage spread over the
temperature range
VRERINT_s(2)
VDD = 3V ± 10mV
TCoeff(2)
Temperature coefficient
-
30
50
ppm/°C
tSTART(2)
Startup time
-
6
10
µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design, not tested in production
Table 84. Internal reference voltage calibration values
Symbol
Parameter
VREFIN_CAL
6.3.25
Memory address
Raw data acquired at temperature of 30 °C VDDA = 3.3 V
0x1FFF 7A2A - 0x1FFF 7A2B
DAC electrical characteristics
Table 85. DAC characteristics
Symbol
Parameter
Min
Typ
Max
Unit
VDDA
Analog supply voltage
1.7(1)
-
3.6
V
VREF+
Reference supply voltage
1.7(1)
-
3.6
V
VSSA
Ground
0
-
0
V
DocID024030 Rev 8
Comments
VREF+ ≤ VDDA
161/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 85. DAC characteristics (continued)
Symbol
Parameter
Min
Typ
Max
Unit
Resistive load with buffer ON
5
-
-
kΩ
Impedance output with buffer
OFF
-
-
15
kΩ
When the buffer is OFF, the Minimum
resistive load between DAC_OUT and
VSS to have a 1% accuracy is 1.5 MΩ
Capacitive load
-
-
50
pF
Maximum capacitive load at DAC_OUT
pin (when the buffer is ON).
DAC_OUT Lower DAC_OUT voltage
min(2)
with buffer ON
0.2
-
-
V
DAC_OUT Higher DAC_OUT voltage
max(2)
with buffer ON
-
-
VDDA −
0.2
V
DAC_OUT Lower DAC_OUT voltage
with buffer OFF
min(2)
-
0.5
-
mV
-
-
VREF+ −
1LSB
V
-
170
240
RLOAD
(2)
RO(2)
CLOAD(2)
DAC_OUT Higher DAC_OUT voltage
with buffer OFF
max(2)
IVREF+(4)
DAC DC VREF current
consumption in quiescent
mode (Standby mode)
µA
Comments
It gives the maximum output excursion of
the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ = 3.6 V and
(0x1C7) to (0xE38) at VREF+ = 1.7 V
It gives the maximum output excursion of
the DAC.
With no load, worst code (0x800) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
-
50
75
-
280
380
µA
With no load, middle code (0x800) on the
inputs
-
475
625
µA
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
Differential non linearity
Difference between two
consecutive code-1LSB)
-
-
±0.5
LSB Given for the DAC in 10-bit configuration.
-
-
±2
LSB Given for the DAC in 12-bit configuration.
-
-
±1
LSB Given for the DAC in 10-bit configuration.
INL(4)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
-
-
±4
LSB Given for the DAC in 12-bit configuration.
-
-
±10
mV Given for the DAC in 12-bit configuration
Offset(4)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value =
VREF+/2)
-
-
±3
LSB
Given for the DAC in 10-bit at VREF+ =
3.6 V
-
-
±12
LSB
Given for the DAC in 12-bit at VREF+ =
3.6 V
Gain error
-
-
±0.5
%
IDDA(4)
DNL(4)
Gain
error(4)
162/233
DAC DC VDDA current
consumption in quiescent
mode(3)
DocID024030 Rev 8
Given for the DAC in 12-bit configuration
STM32F427xx STM32F429xx
Electrical characteristics
Table 85. DAC characteristics (continued)
Symbol
Parameter
Settling time (full scale: for a
10-bit input code transition
between the lowest and the
(4)
tSETTLING
highest input codes when
DAC_OUT reaches final
value ±4LSB
Min
Typ
Max
Unit
Comments
-
3
6
µs
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
THD(4)
Total Harmonic Distortion
Buffer ON
-
-
-
dB
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
Update
rate(2)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-
-
1
MS/s
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
Wakeup time from off state
tWAKEUP(4) (Setting the ENx bit in the
DAC Control register)
-
6.5
10
µs
CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
input code between lowest and highest
possible ones.
Power supply rejection ratio
PSRR+ (2) (to VDDA) (static DC
measurement)
-
–67
–40
dB
No RLOAD, CLOAD = 50 pF
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2:
Internal reset OFF).
2. Guaranteed by design.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic
consumption occurs.
4. Guaranteed by characterization.
Figure 54. 12-bit buffered /non-buffered DAC
%XIIHUHGQRQEXIIHUHG'$&
%XIIHU
5/2$'
ELW
GLJLWDOWR
DQDORJ
FRQYHUWHU
'$&[B287
&/2$'
DLD
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
DocID024030 Rev 8
163/233
193
Electrical characteristics
6.3.26
STM32F427xx STM32F429xx
FMC characteristics
Unless otherwise specified, the parameters given in Table 86 to Table 101 for the FMC
interface are derived from tests performed under the ambient temperature, fHCLK frequency
and VDD supply voltage conditions summarized in Table 17, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10 except at VDD range 1.7 to 2.1V where
OSPEEDRy[1:0] = 11
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output
characteristics.
Asynchronous waveforms and timings
Figure 55 through Figure 58 represent asynchronous waveforms and Table 86 through
Table 93 provide the corresponding timings. The results shown in these tables are obtained
with the following FMC configuration:
164/233
•
AddressSetupTime = 0x1
•
AddressHoldTime = 0x1
•
DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)
•
BusTurnAroundDuration = 0x0
•
For SDRAM memories, VDD ranges from 2.7 to 3.6 V and maximum frequency
FMC_SDCLK = 90 MHz
•
For Mobile LPSDR SDRAM memories, VDD ranges from 1.7 to 1.95 V and maximum
frequency FMC_SDCLK = 84 MHz
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
TW.%
&-#?.%
TV./%?.%
T W./%
T H.%?./%
&-#?./%
&-#?.7%
TV!?.%
&-#?!;=
T H!?./%
!DDRESS
TV",?.%
T H",?./%
&-#?.",;=
T H$ATA?.%
T SU$ATA?./%
TH$ATA?./%
T SU$ATA?.%
$ATA
&-#?$;=
T V.!$6?.%
TW.!$6
&-#?.!$6
&-#?.7!)4
TH.%?.7!)4
TSU.7!)4?.%
-36
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2)
Symbol
Min
Max
Unit
2THCLK − 0.5
2 THCLK+0.5
ns
0
1
ns
2THCLK
2THCLK+ 0.5
ns
FMC_NOE high to FMC_NE high hold time
0
-
ns
FMC_NEx low to FMC_A valid
-
2
ns
th(A_NOE)
Address hold time after FMC_NOE high
0
-
ns
tv(BL_NE)
FMC_NEx low to FMC_BL valid
-
2
ns
th(BL_NOE)
FMC_BL hold time after FMC_NOE high
0
-
ns
tsu(Data_NE)
Data to FMC_NEx high setup time
THCLK + 2.5
-
ns
THCLK +2
-
ns
tw(NE)
tv(NOE_NE)
tw(NOE)
th(NE_NOE)
tv(A_NE)
tsu(Data_NOE)
Parameter
FMC_NE low time
FMC_NEx low to FMC_NOE low
FMC_NOE low time
Data to FMC_NOEx high setup time
DocID024030 Rev 8
165/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2) (continued)
Symbol
Parameter
Min
Max
Unit
th(Data_NOE)
Data hold time after FMC_NOE high
0
-
ns
th(Data_NE)
Data hold time after FMC_NEx high
0
-
ns
tv(NADV_NE)
FMC_NEx low to FMC_NADV low
-
0
ns
FMC_NADV low time
-
THCLK +1
ns
tw(NADV)
1. CL = 30 pF.
2. Guaranteed by characterization results.
Table 87. Asynchronous non-multiplexed SRAM/PSRAM/NOR read NWAIT timings(1)(2)
Symbol
Min
Max
FMC_NE low time
7THCLK+0.5
7THCLK+1
FMC_NWE low time
5THCLK − 1.5
5THCLK +2
tsu(NWAIT_NE)
FMC_NWAIT valid before FMC_NEx high
5THCLK+1.5
-
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid
4THCLK+1
-
tw(NE)
tw(NOE)
Parameter
1. CL = 30 pF.
2. Guaranteed by characterization results.
166/233
DocID024030 Rev 8
Unit
ns
STM32F427xx STM32F429xx
Electrical characteristics
Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
TW.%
&-#?.%X
&-#?./%
TV.7%?.%
TW.7%
T H.%?.7%
&-#?.7%
TV!?.%
&-#?!;=
TH!?.7%
!DDRESS
TV",?.%
&-#?.",;=
TH",?.7%
.",
TV$ATA?.%
TH$ATA?.7%
$ATA
&-#?$;=
T V.!$6?.%
&-#?.!$6 TW.!$6
&-#?.7!)4
TH.%?.7!)4
TSU.7!)4?.%
-36
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
Symbol
tw(NE)
tv(NWE_NE)
tw(NWE)
th(NE_NWE)
tv(A_NE)
Parameter
FMC_NE low time
FMC_NEx low to FMC_NWE low
FMC_NWE low time
FMC_NWE high to FMC_NE high hold time
FMC_NEx low to FMC_A valid
th(A_NWE)
Address hold time after FMC_NWE high
tv(BL_NE)
FMC_NEx low to FMC_BL valid
Min
Max
Unit
3THCLK
3THCLK+1
ns
THCLK − 0.5
THCLK+ 0.5
ns
THCLK
THCLK+ 0.5
ns
THCLK +1.5
-
ns
-
0
ns
THCLK+0.5
-
ns
-
1.5
ns
THCLK+0.5
-
ns
th(BL_NWE)
FMC_BL hold time after FMC_NWE high
tv(Data_NE)
Data to FMC_NEx low to Data valid
-
THCLK+ 2
ns
th(Data_NWE)
Data hold time after FMC_NWE high
THCLK+0.5
-
ns
tv(NADV_NE)
FMC_NEx low to FMC_NADV low
-
0.5
ns
FMC_NADV low time
-
THCLK+ 0.5
ns
tw(NADV)
1. CL = 30 pF.
2. Guaranteed by characterization results.
DocID024030 Rev 8
167/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write NWAIT timings(1)(2)
Symbol
Parameter
Min
Max
Unit
FMC_NE low time
8THCLK+1
8THCLK+2
ns
FMC_NWE low time
6THCLK − 1
6THCLK+2
ns
tsu(NWAIT_NE)
FMC_NWAIT valid before FMC_NEx high
6THCLK+1.5
-
ns
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid
tw(NE)
tw(NWE)
4THCLK+1
ns
1. CL = 30 pF.
2. Guaranteed by characterization results.
Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms
TW.%
&-#? .%
TV./%?.%
T H.%?./%
&-#?./%
T W./%
&-#?.7%
TH!?./%
TV!?.%
&-#? !;=
!DDRESS
TV",?.%
TH",?./%
&-#? .",;=
.",
TH$ATA?.%
TSU$ATA?.%
T V!?.%
&-#? !$;=
TSU$ATA?./%
TH$ATA?./%
$ATA
!DDRESS
TH!$?.!$6
T V.!$6?.%
TW.!$6
&-#?.!$6
&-#?.7!)4
TH.%?.7!)4
TSU.7!)4?.%
-36
168/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Table 90. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)
Symbol
tw(NE)
tv(NOE_NE)
ttw(NOE)
th(NE_NOE)
tv(A_NE)
tv(NADV_NE)
tw(NADV)
Parameter
Min
Max
Unit
3THCLK − 1
3THCLK+0.5
ns
2THCLK − 0.5
2THCLK
ns
THCLK − 1
THCLK+1
ns
FMC_NOE high to FMC_NE high hold time
1
-
ns
FMC_NEx low to FMC_A valid
-
2
ns
FMC_NEx low to FMC_NADV low
0
2
ns
THCLK − 0.5
THCLK+0.5
ns
FMC_NE low time
FMC_NEx low to FMC_NOE low
FMC_NOE low time
FMC_NADV low time
th(AD_NADV)
FMC_AD(address) valid hold time after
FMC_NADV high)
0
-
ns
th(A_NOE)
Address hold time after FMC_NOE high
THCLK − 0.5
-
ns
th(BL_NOE)
FMC_BL time after FMC_NOE high
0
-
ns
FMC_NEx low to FMC_BL valid
-
2
ns
tv(BL_NE)
tsu(Data_NE)
Data to FMC_NEx high setup time
THCLK+1.5
-
ns
tsu(Data_NOE)
Data to FMC_NOE high setup time
THCLK+1
-
ns
th(Data_NE)
Data hold time after FMC_NEx high
0
-
ns
th(Data_NOE)
Data hold time after FMC_NOE high
0
-
ns
1. CL = 30 pF.
2. Guaranteed by characterization results.
Table 91. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1)(2)
Symbol
tw(NE)
tw(NOE)
Parameter
Min
Max
Unit
FMC_NE low time
8THCLK+0.5
8THCLK+2
ns
FMC_NWE low time
5THCLK − 1
5THCLK +1.5
ns
5THCLK +1.5
-
ns
tsu(NWAIT_NE)
FMC_NWAIT valid before FMC_NEx high
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid
4THCLK+1
ns
1. CL = 30 pF.
2. Guaranteed by characterization results.
DocID024030 Rev 8
169/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms
TW.%
&-#? .%X
&-#?./%
TV.7%?.%
TW.7%
T H.%?.7%
&-#?.7%
TH!?.7%
TV!?.%
&-#? !;=
!DDRESS
TV",?.%
TH",?.7%
&-#? .",;=
.",
T V!?.%
&-#? !$;=
T V$ATA?.!$6
!DDRESS
TH$ATA?.7%
$ATA
TH!$?.!$6
T V.!$6?.%
TW.!$6
&-#?.!$6
&-#?.7!)4
TH.%?.7!)4
TSU.7!)4?.%
-36
Table 92. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)
Symbol
tw(NE)
tv(NWE_NE)
tw(NWE)
th(NE_NWE)
tv(A_NE)
tv(NADV_NE)
tw(NADV)
th(AD_NADV)
170/233
Parameter
Min
Max
Unit
4THCLK
4THCLK+0.5
ns
THCLK − 1
THCLK+0.5
ns
FMC_NWE low time
2THCLK
2THCLK+0.5
ns
FMC_NWE high to FMC_NE high hold time
THCLK
-
ns
-
0
ns
0.5
1
ns
THCLK − 0.5
THCLK+ 0.5
ns
THCLK − 2
-
ns
FMC_NE low time
FMC_NEx low to FMC_NWE low
FMC_NEx low to FMC_A valid
FMC_NEx low to FMC_NADV low
FMC_NADV low time
FMC_AD(adress) valid hold time after
FMC_NADV high)
th(A_NWE)
Address hold time after FMC_NWE high
THCLK
-
ns
th(BL_NWE)
FMC_BL hold time after FMC_NWE high
THCLK − 2
-
ns
tv(BL_NE)
FMC_NEx low to FMC_BL valid
-
2
ns
tv(Data_NADV)
FMC_NADV high to Data valid
-
THCLK +1.5
ns
th(Data_NWE)
Data hold time after FMC_NWE high
THCLK +0.5
-
ns
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
1. CL = 30 pF.
2. Guaranteed by characterization results.
Table 93. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1)(2)
Symbol
tw(NE)
tw(NWE)
Parameter
Min
Max
Unit
FMC_NE low time
9THCLK
9THCLK+0.5
ns
FMC_NWE low time
7THCLK
7THCLK+2
ns
6THCLK+1.5
-
ns
4THCLK–1
-
ns
tsu(NWAIT_NE)
FMC_NWAIT valid before FMC_NEx high
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid
1. CL = 30 pF.
2. Guaranteed by characterization results.
Synchronous waveforms and timings
Figure 59 through Figure 62 represent synchronous waveforms and Table 94 through
Table 97 provide the corresponding timings. The results shown in these tables are obtained
with the following FMC configuration:
•
BurstAccessMode = FMC_BurstAccessMode_Enable;
•
MemoryType = FMC_MemoryType_CRAM;
•
WriteBurst = FMC_WriteBurst_Enable;
•
CLKDivision = 1; (0 is not supported, see the STM32F4xx reference manual : RM0090)
•
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
In all timing tables, the THCLK is the HCLK clock period (with maximum
FMC_CLK = 90 MHz).
DocID024030 Rev 8
171/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Figure 59. Synchronous multiplexed NOR/PSRAM read timings
"53452.
TW#,+
TW#,+
&-#?#,+
$ATALATENCY
TD#,+,.%X,
&-#?.%X
T D#,+,.!$6,
TD#,+(.%X(
TD#,+,.!$6(
&-#?.!$6
TD#,+,!6
TD#,+(!)6
&-#?!;=
TD#,+,./%,
TD#,+(./%(
&-#?./%
T D#,+,!$6
&-#?!$;=
TD#,+,!$)6
TSU!$6#,+(
!$;=
TH#,+(!$6
TSU!$6#,+(
$
TSU.7!)46#,+(
&-#?.7!)4
7!)4#&'B
7!)40/,B
TSU.7!)46#,+(
&-#?.7!)4
7!)4#&'B
7!)40/,B
TSU.7!)46#,+(
TH#,+(!$6
$
TH#,+(.7!)46
TH#,+(.7!)46
TH#,+(.7!)46
-36
Table 94. Synchronous multiplexed NOR/PSRAM read timings(1)(2)
Symbol
tw(CLK)
172/233
Parameter
FMC_CLK period
Min
Max
Unit
2THCLK − 1
-
ns
-
0
ns
THCLK
-
ns
td(CLKL-NExL)
FMC_CLK low to FMC_NEx low (x=0..2)
td(CLKH_NExH)
FMC_CLK high to FMC_NEx high (x= 0…2)
td(CLKL-NADVL)
FMC_CLK low to FMC_NADV low
-
0
ns
td(CLKL-NADVH)
FMC_CLK low to FMC_NADV high
0
-
ns
td(CLKL-AV)
FMC_CLK low to FMC_Ax valid (x=16…25)
-
0
ns
td(CLKH-AIV)
FMC_CLK high to FMC_Ax invalid (x=16…25)
0
-
ns
td(CLKL-NOEL)
FMC_CLK low to FMC_NOE low
-
THCLK+0.5
ns
td(CLKH-NOEH)
FMC_CLK high to FMC_NOE high
THCLK − 0.5
-
ns
td(CLKL-ADV)
FMC_CLK low to FMC_AD[15:0] valid
-
0.5
ns
td(CLKL-ADIV)
FMC_CLK low to FMC_AD[15:0] invalid
0
-
ns
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Table 94. Synchronous multiplexed NOR/PSRAM read timings(1)(2) (continued)
Symbol
Parameter
Min
Max
Unit
tsu(ADV-CLKH)
FMC_A/D[15:0] valid data before FMC_CLK
high
5
-
ns
th(CLKH-ADV)
FMC_A/D[15:0] valid data after FMC_CLK high
0
-
ns
tsu(NWAIT-CLKH)
FMC_NWAIT valid before FMC_CLK high
4
-
ns
th(CLKH-NWAIT)
FMC_NWAIT valid after FMC_CLK high
0
-
ns
1. CL = 30 pF.
2. Guaranteed by characterization results.
Figure 60. Synchronous multiplexed PSRAM write timings
"53452.
TW#,+
TW#,+
&-#?#,+
$ATALATENCY
TD#,+,.%X,
TD#,+(.%X(
&-#?.%X
TD#,+,.!$6,
TD#,+,.!$6(
&-#?.!$6
TD#,+(!)6
TD#,+,!6
&-#?!;=
TD#,+(.7%(
TD#,+,.7%,
&-#?.7%
TD#,+,!$)6
TD#,+,!$6
&-#?!$;=
TD#,+,$ATA
TD#,+,$ATA
!$;=
$
$
&-#?.7!)4
7!)4#&'B
7!)40/,B
TSU.7!)46#,+(
TH#,+(.7!)46
TD#,+(.",(
&-#?.",
-36
DocID024030 Rev 8
173/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 95. Synchronous multiplexed PSRAM write timings(1)(2)
Symbol
Min
Max
Unit
2THCLK − 1
-
ns
-
1.5
ns
THCLK
-
ns
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low
-
0
ns
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high
0
-
ns
-
0
ns
THCLK
-
ns
-
0
ns
THCLK −0.5
-
ns
tw(CLK)
Parameter
FMC_CLK period, VDD range= 2.7 to 3.6 V
td(CLKL-NExL)
FMC_CLK low to FMC_NEx low (x=0..2)
td(CLKH-NExH)
FMC_CLK high to FMC_NEx high (x= 0…2)
td(CLKL-AV)
FMC_CLK low to FMC_Ax valid (x=16…25)
td(CLKH-AIV)
FMC_CLK high to FMC_Ax invalid (x=16…25)
td(CLKL-NWEL)
FMC_CLK low to FMC_NWE low
t(CLKH-NWEH)
FMC_CLK high to FMC_NWE high
td(CLKL-ADV)
FMC_CLK low to FMC_AD[15:0] valid
-
3
ns
td(CLKL-ADIV)
FMC_CLK low to FMC_AD[15:0] invalid
0
-
ns
td(CLKL-DATA)
FMC_A/D[15:0] valid data after FMC_CLK low
-
3
ns
td(CLKL-NBLL)
FMC_CLK low to FMC_NBL low
0
-
ns
td(CLKH-NBLH)
FMC_CLK high to FMC_NBL high
THCLK −0.5
-
ns
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high
4
-
ns
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high
0
-
ns
1. CL = 30 pF.
2. Guaranteed by characterization results.
174/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings
TW#,+
TW#,+
&-#?#,+
TD#,+,.%X,
TD#,+(.%X(
$ATALATENCY
&-#?.%X
TD#,+,.!$6,
TD#,+,.!$6(
&-#?.!$6
TD#,+(!)6
TD#,+,!6
&-#?!;=
TD#,+,./%,
TD#,+(./%(
&-#?./%
TSU$6#,+(
TH#,+($6
TSU$6#,+(
&-#?$;=
TH#,+($6
$
&-#?.7!)4
7!)4#&'B
7!)40/,B
TSU.7!)46#,+(
TH#,+(.7!)46
TSU.7!)46#,+(
&-#?.7!)4
7!)4#&'B
7!)40/,B
$
TSU.7!)46#,+(
T H#,+(.7!)46
TH#,+(.7!)46
-36
Table 96. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)
Symbol
Min
Max
Unit
2THCLK − 1
-
ns
-
0.5
ns
THCLK
-
ns
FMC_CLK low to FMC_NADV low
-
0
ns
FMC_CLK low to FMC_NADV high
0
-
ns
td(CLKL-AV)
FMC_CLK low to FMC_Ax valid (x=16…25)
-
0
ns
td(CLKH-AIV)
FMC_CLK high to FMC_Ax invalid (x=16…25)
THCLK − 0.5
-
ns
-
THCLK+2
ns
THCLK − 0.5
-
ns
5
-
ns
tw(CLK)
t(CLKL-NExL)
td(CLKHNExH)
td(CLKLNADVL)
td(CLKLNADVH)
Parameter
FMC_CLK period
FMC_CLK low to FMC_NEx low (x=0..2)
FMC_CLK high to FMC_NEx high (x= 0…2)
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low
td(CLKHNOEH)
FMC_CLK high to FMC_NOE high
tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high
DocID024030 Rev 8
175/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 96. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2) (continued)
Symbol
Parameter
th(CLKH-DV)
FMC_D[15:0] valid data after FMC_CLK high
t(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high
th(CLKH-
Max
Unit
0
-
ns
4
FMC_NWAIT valid after FMC_CLK high
NWAIT)
Min
0
1. CL = 30 pF.
2. Guaranteed by characterization results.
Figure 62. Synchronous non-multiplexed PSRAM write timings
TW#,+
TW#,+
&-#?#,+
TD#,+,.%X,
TD#,+(.%X(
$ATALATENCY
&-#?.%X
TD#,+,.!$6,
TD#,+,.!$6(
&-#?.!$6
TD#,+(!)6
TD#,+,!6
&-#?!;=
TD#,+,.7%,
TD#,+(.7%(
&-#?.7%
TD#,+,$ATA
TD#,+,$ATA
$
&-#?$;=
$
&-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
TD#,+(.",(
TH#,+(.7!)46
&-#?.",
-36
Table 97. Synchronous non-multiplexed PSRAM write timings(1)(2)
Symbol
Min
Max
Unit
2THCLK − 1
-
ns
-
0.5
ns
THCLK
-
ns
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low
-
0
ns
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high
0
-
ns
-
0
ns
t(CLK)
FMC_CLK period
td(CLKL-NExL)
FMC_CLK low to FMC_NEx low (x=0..2)
t(CLKH-NExH)
FMC_CLK high to FMC_NEx high (x= 0…2)
td(CLKL-AV)
176/233
Parameter
FMC_CLK low to FMC_Ax valid (x=16…25)
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Table 97. Synchronous non-multiplexed PSRAM write timings(1)(2) (continued)
Symbol
td(CLKH-AIV)
td(CLKL-NWEL)
Parameter
Min
Max
Unit
FMC_CLK high to FMC_Ax invalid (x=16…25)
0
-
ns
FMC_CLK low to FMC_NWE low
-
0
ns
THCLK −0.5
-
ns
td(CLKH-NWEH) FMC_CLK high to FMC_NWE high
td(CLKL-Data)
FMC_D[15:0] valid data after FMC_CLK low
-
2.5
ns
td(CLKL-NBLL)
FMC_CLK low to FMC_NBL low
0
-
ns
td(CLKH-NBLH)
FMC_CLK high to FMC_NBL high
THCLK −0.5
-
ns
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high
4
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high
0
1. CL = 30 pF.
2. Guaranteed by characterization results.
PC Card/CompactFlash controller waveforms and timings
Figure 63 through Figure 68 represent synchronous waveforms, and Table 98 and Table 99
provide the corresponding timings. The results shown in this table are obtained with the
following FMC configuration:
•
COM.FMC_SetupTime = 0x04;
•
COM.FMC_WaitSetupTime = 0x07;
•
COM.FMC_HoldSetupTime = 0x04;
•
COM.FMC_HiZSetupTime = 0x00;
•
ATT.FMC_SetupTime = 0x04;
•
ATT.FMC_WaitSetupTime = 0x07;
•
ATT.FMC_HoldSetupTime = 0x04;
•
ATT.FMC_HiZSetupTime = 0x00;
•
IO.FMC_SetupTime = 0x04;
•
IO.FMC_WaitSetupTime = 0x07;
•
IO.FMC_HoldSetupTime = 0x04;
•
IO.FMC_HiZSetupTime = 0x00;
•
TCLRSetupTime = 0;
•
TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
DocID024030 Rev 8
177/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Figure 63. PC Card/CompactFlash controller waveforms for common memory read
access
&-#?.#%?
&-#?.#%?
TH.#%X!)
TV.#%X!
&-#?!;=
TH.#%X.2%'
TH.#%X.)/2$
TH.#%X.)/72
TD.2%'.#%X
TD.)/2$.#%X
&-#?.2%'
&-#?.)/72
&-#?.)/2$
&-#?.7%
TD.#%?./%
&-#?./%
TW./%
TSU$./%
TH./%$
&-#?$;=
-36
1. FMC_NCE4_2 remains high (inactive during 8-bit access.
Figure 64. PC Card/CompactFlash controller waveforms for common memory write
access
&-#?.#%?
&-#?.#%?
(IGH
TV.#%?!
TH.#%?!)
&-#?!;=
TH.#%?.2%'
TH.#%?.)/2$
TH.#%?.)/72
TD.2%'.#%?
TD.)/2$.#%?
&-#?.2%'
&-#?.)/72
&-#?.)/2$
TD.#%?.7%
TW.7%
TD.7%.#%?
&-#?.7%
&-#?./%
-%-X():
TD$.7%
TV.7%$
TH.7%$
&-#?$;=
-36
178/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Figure 65. PC Card/CompactFlash controller waveforms for attribute memory
read access
&-#?.#%?
TV.#%?!
&-#?.#%?
TH.#%?!)
(IGH
&-#?!;=
&-#?.)/72
&-#?.)/2$
TD.2%'.#%?
TH.#%?.2%'
&-#?.2%'
&-#?.7%
TD.#%?./%
TW./%
TD./%.#%?
&-#?./%
TSU$./%
TH./%$
&-#?$;=
-36
1. Only data bits 0...7 are read (bits 8...15 are disregarded).
DocID024030 Rev 8
179/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Figure 66. PC Card/CompactFlash controller waveforms for attribute memory
write access
&-#?.#%?
&-#?.#%?
(IGH
TV.#%?!
TH.#%?!)
&-#?!;=
&-#?.)/72
&-#?.)/2$
TD.2%'.#%?
TH.#%?.2%'
&-#?.2%'
TD.#%?.7%
TW.7%
&-#?.7%
TD.7%.#%?
&-#?./%
TV.7%$
&-#?$;=
-36
1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).
Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access
&-#?.#%?
&-#?.#%?
TH.#%?!)
TV.#%X!
&-#?!;=
&-#?.2%'
&-#?.7%
&-#?./%
&-#?.)/72
TW.)/2$
TD.)/2$.#%?
&-#?.)/2$
TSU$.)/2$
TD.)/2$$
&-#?$;=
-36
180/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access
&-#?.#%?
&-#?.#%?
TV.#%X!
TH.#%?!)
&-#?!;=
&-#?.2%'
&-#?.7%
&-#?./%
&-#?.)/2$
T D.#%?.)/72
TW.)/72
&-#?.)/72
!44X():
TV.)/72$
TH.)/72$
&-#?$;=
-36
Table 98. Switching characteristics for PC Card/CF read and write cycles
in attribute/common space(1)(2)
Symbol
Parameter
Min
Max
Unit
tv(NCEx-A)
FMC_Ncex low to FMC_Ay valid
-
0
ns
th(NCEx_AI)
FMC_NCEx high to FMC_Ax invalid
0
-
ns
td(NREG-NCEx)
FMC_NCEx low to FMC_NREG valid
-
1
ns
th(NCEx-NREG)
FMC_NCEx high to FMC_NREG invalid
THCLK − 2
-
ns
td(NCEx-NWE)
FMC_NCEx low to FMC_NWE low
-
5THCLK
ns
8THCLK − 0.5
8THCLK+0.5
ns
tw(NWE)
FMC_NWE low width
td(NWE_NCEx)
FMC_NWE high to FMC_NCEx high
5THCLK+1
-
ns
tV(NWE-D)
FMC_NWE low to FMC_D[15:0] valid
-
0
ns
th(NWE-D)
FMC_NWE high to FMC_D[15:0] invalid
9THCLK − 0.5
-
ns
td(D-NWE)
FMC_D[15:0] valid before FMC_NWE high
13THCLK − 3
td(NCEx-NOE)
tw(NOE)
td(NOE_NCEx)
tsu (D-NOE)
th(NOE-D)
FMC_NCEx low to FMC_NOE low
FMC_NOE low width
FMC_NOE high to FMC_NCEx high
FMC_D[15:0] valid data before FMC_NOE high
FMC_NOE high to FMC_D[15:0] invalid
ns
-
5THCLK
ns
8 THCLK − 0.5
8 THCLK+0.5
ns
5THCLK − 1
-
ns
THCLK
-
ns
0
-
ns
1. CL = 30 pF.
2. Guaranteed by characterization results.
DocID024030 Rev 8
181/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 99. Switching characteristics for PC Card/CF read and write cycles
in I/O space(1)(2)
Symbol
Parameter
tw(NIOWR)
FMC_NIOWR low width
tv(NIOWR-D)
FMC_NIOWR low to FMC_D[15:0] valid
th(NIOWR-D)
FMC_NIOWR high to FMC_D[15:0] invalid
Min
Max
Unit
8THCLK − 0.5
-
ns
-
0
ns
9THCLK − 2
-
ns
-
5THCLK
ns
5THCLK
-
ns
-
5THCLK
ns
6THCLK+2
-
ns
8THCLK − 0.5
8THCLK+0.5
ns
THCLK
-
ns
0
-
ns
td(NCE4_1-NIOWR) FMC_NCE4_1 low to FMC_NIOWR valid
th(NCEx-NIOWR)
FMC_NCEx high to FMC_NIOWR invalid
td(NIORD-NCEx)
FMC_NCEx low to FMC_NIORD valid
th(NCEx-NIORD)
FMC_NCEx high to FMC_NIORD) valid
tw(NIORD)
FMC_NIORD low width
tsu(D-NIORD)
FMC_D[15:0] valid before FMC_NIORD high
td(NIORD-D)
FMC_D[15:0] valid after FMC_NIORD high
1. CL = 30 pF.
2. Guaranteed by characterization results.
NAND controller waveforms and timings
Figure 69 through Figure 72 represent synchronous waveforms, and Table 100 and
Table 101 provide the corresponding timings. The results shown in this table are obtained
with the following FMC configuration:
•
COM.FMC_SetupTime = 0x01;
•
COM.FMC_WaitSetupTime = 0x03;
•
COM.FMC_HoldSetupTime = 0x02;
•
COM.FMC_HiZSetupTime = 0x01;
•
ATT.FMC_SetupTime = 0x01;
•
ATT.FMC_WaitSetupTime = 0x03;
•
ATT.FMC_HoldSetupTime = 0x02;
•
ATT.FMC_HiZSetupTime = 0x01;
•
Bank = FMC_Bank_NAND;
•
MemoryDataWidth = FMC_MemoryDataWidth_16b;
•
ECC = FMC_ECC_Enable;
•
ECCPageSize = FMC_ECCPageSize_512Bytes;
•
TCLRSetupTime = 0;
•
TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
182/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Figure 69. NAND controller waveforms for read access
&-#?.#%X
!,%&-#?!
#,%&-#?!
&-#?.7%
TD!,%./%
TH./%!,%
&-#?./%.2%
TSU$./%
TH./%$
&-#?$;=
-36
Figure 70. NAND controller waveforms for write access
&-#?.#%X
!,%&-#?!
#,%&-#?!
TH.7%!,%
TD!,%.7%
&-#?.7%
&-#?./%.2%
TV.7%$
TH.7%$
&-#?$;=
-36
DocID024030 Rev 8
183/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Figure 71. NAND controller waveforms for common memory read access
&-#?.#%X
!,%&-#?!
#,%&-#?!
TH./%!,%
TD!,%./%
&-#?.7%
TW./%
&-#?./%
TSU$./%
TH./%$
&-#?$;=
-36
Figure 72. NAND controller waveforms for common memory write access
&-#?.#%X
!,%&-#?!
#,%&-#?!
TD!,%./%
TW.7%
TH./%!,%
&-#?.7%
&-#?. /%
TD$.7%
TV.7%$
TH.7%$
&-#?$;=
-36
Table 100. Switching characteristics for NAND Flash read cycles(1)
Symbol
tw(N0E)
Parameter
FMC_NOE low width
Max
4THCLK − 0.5 4THCLK+0.5
Unit
ns
tsu(D-NOE)
FMC_D[15-0] valid data before FMC_NOE high
9
-
ns
th(NOE-D)
FMC_D[15-0] valid data after FMC_NOE high
0
-
ns
td(ALE-NOE)
FMC_ALE valid before FMC_NOE low
-
3THCLK − 0.5
ns
th(NOE-ALE)
FMC_NWE high to FMC_ALE invalid
3THCLK − 2
-
ns
1. CL = 30 pF.
184/233
Min
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Table 101. Switching characteristics for NAND Flash write cycles(1)
Symbol
tw(NWE)
Parameter
FMC_NWE low width
Min
Max
Unit
4THCLK
4THCLK+1
ns
0
-
ns
tv(NWE-D)
FMC_NWE low to FMC_D[15-0] valid
th(NWE-D)
FMC_NWE high to FMC_D[15-0] invalid
3THCLK − 1
-
ns
td(D-NWE)
FMC_D[15-0] valid before FMC_NWE high
5THCLK − 3
-
ns
-
3THCLK −0.5
ns
3THCLK − 1
-
ns
td(ALE-NWE)
FMC_ALE valid before FMC_NWE low
th(NWE-ALE)
FMC_NWE high to FMC_ALE invalid
1. CL = 30 pF.
SDRAM waveforms and timings
Figure 73. SDRAM read access waveforms (CL = 1)
&-#?3$#,+
TD3$#,+,?!DD#
TH3$#,+,?!DD2
TD3$#,+,?!DD2
&-#?!>@
2OWN
#OL
#OL
#OLI
#OLN
TH3$#,+,?!DD#
TH3$#,+,?3.$%
TD3$#,+,?3.$%
&-#?3$.%;=
TD3$#,+,?.2!3
TH3$#,+,?.2!3
&-#?3$.2!3
TH3$#,+,?.#!3
TD3$#,+,?.#!3
&-#?3$.#!3
&-#?3$.7%
TSU3$#,+(?$ATA
&-#?$;=
TH3$#,+(?$ATA
$ATA
$ATA
$ATAI
$ATAN
-36
DocID024030 Rev 8
185/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 102. SDRAM read timings(1)(2)
Symbol
Parameter
Min
Max
tw(SDCLK)
FMC_SDCLK period
2THCLK − 0.5
2THCLK+0.5
tsu(SDCLKH _Data)
Data input setup time
2
-
th(SDCLKH_Data)
Data input hold time
0
-
td(SDCLKL_Add)
Address valid time
-
1.5
td(SDCLKL- SDNE)
Chip select valid time
-
0.5
th(SDCLKL_SDNE)
Chip select hold time
0
-
td(SDCLKL_SDNRAS)
SDNRAS valid time
-
0.5
th(SDCLKL_SDNRAS)
SDNRAS hold time
0
-
td(SDCLKL_SDNCAS)
SDNCAS valid time
-
0.5
th(SDCLKL_SDNCAS)
SDNCAS hold time
0
-
Unit
ns
1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.
2. Guaranteed by characterization results.
Table 103. LPSDR SDRAM read timings(1)(2)
Symbol
Parameter
Min
Max
tW(SDCLK)
FMC_SDCLK period
2THCLK − 0.5
2THCLK+0.5
tsu(SDCLKH_Data)
Data input setup time
2.5
-
th(SDCLKH_Data)
Data input hold time
0
-
td(SDCLKL_Add)
Address valid time
-
1
td(SDCLKL_SDNE)
Chip select valid time
-
1
th(SDCLKL_SDNE)
Chip select hold time
1
-
td(SDCLKL_SDNRAS
SDNRAS valid time
-
1
th(SDCLKL_SDNRAS)
SDNRAS hold time
1
-
td(SDCLKL_SDNCAS)
SDNCAS valid time
-
1
th(SDCLKL_SDNCAS)
SDNCAS hold time
1
-
1. CL = 10 pF.
2. Guaranteed by characterization results.
186/233
DocID024030 Rev 8
Unit
ns
STM32F427xx STM32F429xx
Electrical characteristics
Figure 74. SDRAM write access waveforms
&-#?3$#,+
TD3$#,+,?!DD#
TH3$#,+,?!DD2
TD3$#,+,?!DD2
&-#?!>@
2OWN
#OL
#OL
#OLI
#OLN
TH3$#,+,?!DD#
TH3$#,+,?3.$%
TD3$#,+,?3.$%
&-#?3$.%;=
TH3$#,+,?.2!3
TD3$#,+,?.2!3
&-#?3$.2!3
TD3$#,+,?.#!3
TH3$#,+,?.#!3
TD3$#,+,?.7%
TH3$#,+,?.7%
&-#?3$.#!3
&-#?3$.7%
TD3$#,+,?$ATA
&-#?$;=
TD3$#,+,?.",
$ATA
$ATA
$ATAI
$ATAN
TH3$#,+,?$ATA
&-#?.",;=
-36
DocID024030 Rev 8
187/233
193
Electrical characteristics
STM32F427xx STM32F429xx
Table 104. SDRAM write timings(1)(2)
Symbol
Parameter
Min
Max
tw(SDCLK)
FMC_SDCLK period
2THCLK − 0.5
2THCLK+0.5
td(SDCLKL _Data)
Data output valid time
-
3.5
th(SDCLKL _Data)
Data output hold time
0
-
td(SDCLKL_Add)
Address valid time
-
1.5
td(SDCLKL_SDNWE)
SDNWE valid time
-
1
th(SDCLKL_SDNWE)
SDNWE hold time
0
-
td(SDCLKL_ SDNE)
Chip select valid time
-
0.5
th(SDCLKL-_SDNE)
Chip select hold time
0
-
td(SDCLKL_SDNRAS)
SDNRAS valid time
-
2
th(SDCLKL_SDNRAS)
SDNRAS hold time
0
-
td(SDCLKL_SDNCAS)
SDNCAS valid time
-
0.5
td(SDCLKL_SDNCAS)
SDNCAS hold time
0
-
td(SDCLKL_NBL)
NBL valid time
-
0.5
th(SDCLKL_NBL)
NBLoutput time
0
-
Unit
ns
1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.
2. Guaranteed by characterization results.
Table 105. LPSDR SDRAM write timings(1)(2)
Symbol
Parameter
Min
Max
tw(SDCLK)
FMC_SDCLK period
2THCLK − 0.5
2THCLK+0.5
td(SDCLKL _Data)
Data output valid time
-
5
th(SDCLKL _Data)
Data output hold time
2
-
td(SDCLKL_Add)
Address valid time
-
2.8
td(SDCLKL-SDNWE)
SDNWE valid time
-
2
th(SDCLKL-SDNWE)
SDNWE hold time
1
-
td(SDCLKL- SDNE)
Chip select valid time
-
1.5
th(SDCLKL- SDNE)
Chip select hold time
1
-
td(SDCLKL-SDNRAS)
SDNRAS valid time
-
1.5
th(SDCLKL-SDNRAS)
SDNRAS hold time
1.5
-
td(SDCLKL-SDNCAS)
SDNCAS valid time
-
1.5
td(SDCLKL-SDNCAS)
SDNCAS hold time
1.5
-
td(SDCLKL_NBL)
NBL valid time
-
1.5
th(SDCLKL-NBL)
NBL output time
1.5
-
1. CL = 10 pF.
188/233
DocID024030 Rev 8
Unit
ns
STM32F427xx STM32F429xx
Electrical characteristics
2. Guaranteed by characterization results.
6.3.27
Camera interface (DCMI) timing specifications
Unless otherwise specified, the parameters given in Table 106 for DCMI are derived
from tests performed under the ambient temperature, fHCLK frequency and VDD supply
voltage summarized in Table 17, with the following configuration:
•
DCMI_PIXCLK polarity: falling
•
DCMI_VSYNC and DCMI_HSYNC polarity: high
•
Data formats: 14 bits
Table 106. DCMI characteristics
Symbol
Parameter
Min
Max
-
0.4
-
54
MHz
Pixel clock input duty cycle
30
70
%
tsu(DATA)
Data input setup time
2
-
th(DATA)
Data input hold time
2.5
-
tsu(HSYNC)
tsu(VSYNC)
DCMI_HSYNC/DCMI_VSYNC input setup time
0.5
-
th(HSYNC)
th(VSYNC)
DCMI_HSYNC/DCMI_VSYNC input hold time
1
-
Frequency ratio DCMI_PIXCLK/fHCLK
DCMI_PIXCLK Pixel clock input
DPixel
Unit
ns
Figure 75. DCMI timing diagram
'&0,B3,;&/.
'&0,B3,;&/.
WVX+6<1&
WK+6<1&
'&0,B+6<1&
WVX96<1&
WK+6<1&
'&0,B96<1&
WVX'$7$ WK'$7$
'$7$>@
069
DocID024030 Rev 8
189/233
193
Electrical characteristics
6.3.28
STM32F427xx STM32F429xx
LCD-TFT controller (LTDC) characteristics
Unless otherwise specified, the parameters given in Table 107 for LCD-TFT are derived
from tests performed under the ambient temperature, fHCLK frequency and VDD supply
voltage summarized in Table 17, with the following configuration:
•
LCD_CLK polarity: high
•
LCD_DE polarity : low
•
LCD_VSYNC and LCD_HSYNC polarity: high
•
Pixel formats: 24 bits
Table 107. LTDC characteristics
Symbol
Parameter
Min
Max
Unit
fCLK
LTDC clock output frequency
-
42
MHz
DCLK
LTDC clock output duty cycle
45
55
%
tw(CLKH)
tw(CLKL)
Clock High time, low time
tv(DATA)
Data output valid time
-
3.5
th(DATA)
Data output hold time
1.5
-
HSYNC/VSYNC/DE output valid
time
-
2.5
HSYNC/VSYNC/DE output hold
time
2
-
tv(HSYNC)
tv(VSYNC)
tw(CLK)/2 − 0.5 tw(CLK)/2+0.5
tv(DE)
th(HSYNC)
th(VSYNC)
th(DE)
190/233
DocID024030 Rev 8
ns
STM32F427xx STM32F429xx
Electrical characteristics
Figure 76. LCD-TFT horizontal timing diagram
W&/.
/&'B&/.
/&'B96<1&
WY+6<1&
WY+6<1&
/&'B+6<1&
WK'(
WY'(
/&'B'(
WY'$7$
/&'B5>@
/&'B*>@
/&'B%>@
1JYFM 1JYFM
1JYFM
/
WK'$7$
+6<1& +RUL]RQWDO
ZLGWK EDFNSRUFK
$FWLYHZLGWK
+RUL]RQWDO
EDFNSRUFK
2QHOLQH
069
Figure 77. LCD-TFT vertical timing diagram
W&/.
/&'B&/.
WY96<1&
WY96<1&
/&'B96<1&
/&'B5>@
/&'B*>@
/&'B%>@
-LINESDATA
96<1& 9HUWLFDO
ZLGWK EDFNSRUFK
$FWLYHZLGWK
9HUWLFDO
EDFNSRUFK
2QHIUDPH
069
DocID024030 Rev 8
191/233
193
Electrical characteristics
6.3.29
STM32F427xx STM32F429xx
SD/SDIO MMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Table 108 for the SDIO/MMC interface
are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDD
supply voltage conditions summarized in Table 17, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output
characteristics.
Figure 78. SDIO high-speed mode
TF
TR
T#
T7#+(
T7#+,
#+
T/6
T/(
$#-$
OUTPUT
T)35
T)(
$#-$
INPUT
AI
Figure 79. SD default mode
#+
T/6$
T/($
$#-$
OUTPUT
AI
192/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Electrical characteristics
Table 108. Dynamic characteristics: SD / MMC characteristics(1)(2)
Symbol
Parameter
Conditions
Min
fPP
Clock frequency in data transfer mode
0
-
SDIO_CK/fPCLK2 frequency ratio
-
tW(CKL)
Clock low time
fpp =48 MHz
tW(CKH)
Clock high time
fpp =48 MHz
Typ
Max
Unit
48
MHz
-
8/3
-
8.5
9
-
8.3
10
-
ns
CMD, D inputs (referenced to CK) in MMC and SD HS mode
tISU
Input setup time HS
fpp =48 MHz
3.5
-
-
tIH
Input hold time HS
fpp =48 MHz
0
-
-
ns
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV
Output valid time HS
fpp =48 MHz
-
4.5
7
tOH
Output hold time HS
fpp =48 MHz
3
-
-
ns
CMD, D inputs (referenced to CK) in SD default mode
tISUD
Input setup time SD
fpp =24 MHz
1.5
-
-
tIHD
Input hold time SD
fpp =24 MHz
0.5
-
-
ns
CMD, D outputs (referenced to CK) in SD default mode
tOVD
Output valid default time SD
fpp =24 MHz
-
4.5
6.5
tOHD
Output hold default time SD
fpp =24 MHz
3.5
-
-
ns
1. Guaranteed by characterization results.
2. VDD = 2.7 to 3.6 V.
6.3.30
RTC characteristics
Table 109. RTC characteristics
Symbol
Parameter
-
fPCLK1/RTCCLK frequency ratio
Conditions
Any read/write operation
from/to an RTC register
DocID024030 Rev 8
Min
Max
4
-
193/233
193
Package information
7
STM32F427xx STM32F429xx
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1
LQFP100 package information
Figure 80. LQFP100 -100-pin, 14 x 14 mm low-profile quad flat package outline
MM
C
!
!
!
3%!4).'0,!.%
#
'!5'%0,!.%
$
,
$
!
+
CCC #
,
$
0).
)$%.4)&)#!4)/.
E
1. Drawing is not to scale.
194/233
%
%
%
B
DocID024030 Rev 8
,?-%?6
STM32F427xx STM32F429xx
Package information
Table 110. LQPF100 100-pin, 14 x 14 mm low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
15.800
16.000
16.200
0.6220
0.6299
0.6378
D1
13.800
14.000
14.200
0.5433
0.5512
0.5591
D3
-
12.000
-
-
0.4724
-
E
15.800
16.000
16.200
0.6220
0.6299
0.6378
E1
13.800
14.000
14.200
0.5433
0.5512
0.5591
E3
-
12.000
-
-
0.4724
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0.0°
3.5°
7.0°
0.0°
3.5°
7.0°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID024030 Rev 8
195/233
227
Package information
STM32F427xx STM32F429xx
Figure 81. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint
AIC
1. Dimensions are expressed in millimeters.
Device marking for LQFP100
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 82. LQFP100 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ
45.'
5HYLVLRQFRGH
7*53
'DWHFRGH \HDUZHHN
:88
3LQ
LGHQWLILHU
67ORJR
DLG
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
196/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Package information
Samples to run qualification activity.
7.2
WLCSP143 package information
Figure 83. WLCSP143 - 143-pin, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
package outline
$EDOOORFDWLRQ
H
EEE
)
*
'HWDLO$
H
H
H
$
$
$
%RWWRPYLHZ
%XPSVLGH
6LGHYLHZ
'
%XPS
$
HHH
$
(
E
FFF
GGG
$RULHQWDWLRQ
UHIHUHQFH
7RSYLHZ
:DIHUEDFNVLGH
= ;<
=
6HDWLQJ
SODQH
'HWDLO$
5RWDWHGƒ
DDD
$:(B0(B9
1. Drawing is not to scale.
DocID024030 Rev 8
197/233
227
Package information
STM32F427xx STM32F429xx
Table 111. WLCSP143 - 143-pin, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.525
0.555
0.585
0.0207
0.0219
0.0230
A1
0.155
0.175
0.195
-
0.0069
-
A2
-
0.380
-
-
0.0150
-
-
0.025
-
-
0.0010
-
b(3)
0.220
0.250
0.280
0.0087
0.0098
0.0110
D
4.486
4.521
4.556
0.1766
0.1780
0.1794
E
5.512
5.547
5.582
0.2170
0.2184
0.2198
e
-
0.400
-
-
0.0157
-
e1
-
4.000
-
-
0.1575
-
e2
-
4.800
-
-
0.1890
-
F
-
0.2605
-
-
0.0103
-
G
-
0.3735
-
-
0.0147
-
aaa
-
-
0.100
-
-
0.0039
bbb
-
-
0.100
-
-
0.0039
ccc
-
-
0.100
-
-
0.0039
ddd
-
-
0.050
-
-
0.0020
eee
-
-
0.050
-
-
0.0020
A3
(2)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating.
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Figure 84. WLCSP143 - 143-pin, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
recommended footprint
'SDG
'VP
198/233
DocID024030 Rev 8
069
STM32F427xx STM32F429xx
Package information
Table 112. WLCSP143 recommended PCB design rules (0.4 mm pitch)
Dimension
Recommended values
Pitch
0.4
260 µm max. (circular)
Dpad
220 µm recommended
Dsm
300 µm min. (for 260 µm diameter pad)
PCB pad design
Non-solder mask defined via underbump allowed.
Device marking for WLCSP143
The following figure gives an example of topside marking orientation versus ball A 1
identifier location.
Figure 85. WLCSP143 marking example (package top view)
EDOO$
3URGXFW
LGHQWLILFDWLRQ
(6)=,<
'DWHFRGH <HDU:HHN
< ::
5
5HYLVLRQFRGH
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
DocID024030 Rev 8
199/233
227
Package information
7.3
STM32F427xx STM32F429xx
LQFP144 package information
Figure 86. LQFP144-144-pin, 20 x 20 mm low-profile quad flat package outline
6($7,1*
3/$1(
F
$
$
$
&
PP
*$8*(3/$1(
'
/
'
.
$
FFF &
/
'
(
3,1
(
(
E
,'(17,),&$7,21
H
$B0(B9
1. Drawing is not to scale.
200/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Package information
Table 113. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
21.800
22.000
22.200
0.8583
0.8661
0.874
D1
19.800
20.000
20.200
0.7795
0.7874
0.7953
D3
-
17.500
-
-
0.689
-
E
21.800
22.000
22.200
0.8583
0.8661
0.8740
E1
19.800
20.000
20.200
0.7795
0.7874
0.7953
E3
-
17.500
-
-
0.6890
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID024030 Rev 8
201/233
227
Package information
STM32F427xx STM32F429xx
Figure 87. LQPF144- 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint
DLH
1. Dimensions are expressed in millimeters.
202/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Package information
Device marking for LQFP144
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 88. LQFP144 marking example (package top view)
5HYLVLRQFRGH
3URGXFW
LGHQWLILFDWLRQ
3
';&5
'DWHFRGH <HDU:HHN
:88
3LQ
DLG
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
DocID024030 Rev 8
203/233
227
Package information
7.4
STM32F427xx STM32F429xx
LQFP176 package information
Figure 89. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package outline
C
!
!
!
# 3EATINGPLANE
MM
GAUGEPLANE
K
!
,
($
0).
)$%.4)&)#!4)/.
,
$
:%
%
(%
E
:$
B
4?-%?6
1. Drawing is not to scale.
Table 114. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
-
1.450
0.0531
-
0.0571
b
0.170
-
0.270
0.0067
-
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
23.900
-
24.100
0.9409
-
0.9488
HD
25.900
-
26.100
1.0197
-
1.0276
204/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Package information
Table 114. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package
mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
ZD
-
1.250
-
-
0.0492
-
E
23.900
-
24.100
0.9409
-
0.9488
HE
25.900
-
26.100
1.0197
-
1.0276
ZE
-
1.250
-
-
0.0492
-
e
-
0.500
-
-
0.0197
-
0.450
-
0.750
0.0177
-
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
-
7°
0°
-
7°
ccc
-
-
0.080
-
-
0.0031
(2)
L
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.
DocID024030 Rev 8
205/233
227
Package information
STM32F427xx STM32F429xx
Figure 90. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended
footprint
4?&0?6
1. Dimensions are expressed in millimeters.
206/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Package information
Device marking for LQFP176
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 91. LQFP176 marking (package top view)
3URGXFW
LGHQWLILFDWLRQ
(6),,7
5HYLVLRQFRGH
<::
'DWHFRGH <HDUZHHN
5
3LQ
LGHQWLILHU
DLF
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
DocID024030 Rev 8
207/233
227
Package information
7.5
STM32F427xx STM32F429xx
LQFP208 package information
Figure 92. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline
6($7,1*
3/$1(
F
$
$
$
&
FFF &
PP
$
*$8*(3/$1(
.
/
'
/
'
'
3,1
,'(17,),&$7,21
(
(
(
E
H
6)@.&@7
1. Drawing is not to scale.
208/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Package information
Table 115. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
--
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
29.800
30.000
30.200
1.1732
1.1811
1.1890
D1
27.800
28.000
28.200
1.0945
1.1024
1.1102
D3
-
25.500
-
-
1.0039
-
E
29.800
30.000
30.200
1.1732
1.1811
1.1890
E1
27.800
28.000
28.200
1.0945
1.1024
1.1102
E3
-
25.500
-
-
1.0039
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7.0°
0°
3.5°
7.0°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID024030 Rev 8
209/233
227
Package information
STM32F427xx STM32F429xx
Figure 93. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package
recommended footprint
8+B)3B9
1. Dimensions are expressed in millimeters.
210/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Package information
Device marking for LQFP208
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 94. LQFP208 marking example (package top view)
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
5
(6)%,7
3LQ
LGHQWLILHU
'DWHFRGH \HDUZHHN
<::
069
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
DocID024030 Rev 8
211/233
227
Package information
7.6
STM32F427xx STM32F429xx
UFBGA169 package information
Figure 95. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array
package outline
= 6HDWLQJSODQH
$
$
GGG =
$
$
$
E
6,'(9,(:
$EDOO
LGHQWLILHU
$EDOO
LQGH[DUHD
;
(
(
H
)
$
)
'
'
H
<
1
%277209,(:
7239,(:
‘EEDOOV
‘ HHH 0 = ; <
‘ III 0 =
$<9B0(B9
1. Drawing is not to scale.
Table 116. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data
inches(1)
millimeters
Symbol
212/233
Min
Typ
Max
Min
Typ
Max
A
0.460
0.530
0.600
0.0181
0.0209
0.0236
A1
0.050
0.080
0.110
0.0020
0.0031
0.0043
A2
0.400
0.450
0.500
0.0157
0.0177
0.0197
A3
-
0.130
-
-
0.0051
-
A4
0.270
0.320
0.370
0.0106
0.0126
0.0146
b
0.230
0.280
0.330
0.0091
0.0110
0.0130
D
6.950
7.000
7.050
0.2736
0.2756
0.2776
D1
5.950
6.000
6.050
0.2343
0.2362
0.2382
E
6.950
7.000
7.050
0.2736
0.2756
0.2776
E1
5.950
6.000
6.050
0.2343
0.2362
0.2382
e
-
0.500
-
-
0.0197
-
DocID024030 Rev 8
STM32F427xx STM32F429xx
Package information
Table 116. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
F
0.450
0.500
0.550
0.0177
0.0197
0.0217
ddd
-
-
0.100
-
-
0.0039
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.050
-
-
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 96. UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch
ball grid array recommended footprint
'SDG
'VP
069
Table 117. UFBGA169 recommended PCB design rules (0.5 mm pitch BGA)
Dimension
Recommended values
Pitch
0.5
Dpad
0.27 mm
Dsm
0.35 mm typ. (depends on the soldermask
registration tolerance)
Solder paste
0.27 mm aperture diameter.
Note:
Non-solder mask defined (NSMD) pads are recommended.
Note:
4 to 6 mils solder paste screen printing process.
DocID024030 Rev 8
213/233
227
Package information
STM32F427xx STM32F429xx
Device marking for UFBGA169
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Figure 97. UFBGA169 marking example (package top view)
%DOO$
LGHQWLILHU
670)
3URGXFW
LGHQWLILFDWLRQ
$,+
'DWHFRGH <HDUZHHN
< ::
5HYLVLRQ
FRGH
5
069
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
214/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
7.7
Package information
UFBGA176+25 package information
Figure 98. UFBGA176+25 - 201-ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch
ball grid array package outline
&
^ĞĂƚŝŶŐƉůĂŶĞ
ϰ
ĚĚĚ Ϯ
$
ϭ
ď
$EDOO
LGHQWLILHU
(
Ğ
$EDOO
LQGH[
DUHD
$


'
Ğ
Z
ϭϱ
ϭ
‘EEDOOV
KddKDs/t
dKWs/t
‘ HHH 0 & $ ‘ III 0 &
$(B0(B9
1. Drawing is not to scale.
Table 118. UFBGA176+25 - 201-ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch
ball grid array mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
0.600
-
-
0.0236
A1
-
-
0.110
-
-
0.0043
A2
-
0.450
-
-
0.0177
-
A3
-
0.130
-
-
0.0051
-
b
0.240
0.290
0.340
0.0094
0.0114
0.0134
D
9.850
10.000
10.150
0.3878
0.3937
0.3996
D1
-
9.100
-
-
0.3583
-
E
9.850
10.000
10.150
0.3878
0.3937
0.3996
E1
-
9.100
-
-
0.3583
-
e
-
0.650
-
-
0.0256
-
Z
-
0.450
-
-
0.0177
-
ddd
-
-
0.080
-
-
0.0031
DocID024030 Rev 8
215/233
227
Package information
STM32F427xx STM32F429xx
Table 118. UFBGA176+25 - 201-ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch
ball grid array mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 99. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch
ball grid array package recommended footprint
'SDG
'VP
Ϭϳͺ&Wͺsϭ
Table 119. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)
Dimension
216/233
Recommended values
Pitch
0.65 mm
Dpad
0.300 mm
Dsm
0.400 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening
0.300 mm
Stencil thickness
Between 0.100 mm and 0.125 mm
Pad trace width
0.100 mm
DocID024030 Rev 8
STM32F427xx STM32F429xx
Package information
Device marking for UFBGA176+25
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Figure 100. UFBGA176+25 marking example (package top view)
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
5
670)
,,+8
'DWHFRGH \HDUZHHN
< ::
%DOO
LQGHQWLILHU
069
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
DocID024030 Rev 8
217/233
227
Package information
7.8
STM32F427xx STM32F429xx
TFBGA216 package information
Figure 101. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid
array
package outline
= 6HDWLQJSODQH
GGG =
$
$ $
'
H
$EDOO
$EDOO
LGHQWLILHU LQGH[DUHD
)
;
'
$
*
(
H
(
<
5
%277209,(:
‘EEDOOV
‘ HHH 0 = < ;
‘ III 0 =
7239,(:
$/B0(B9
1. Drawing is not to scale.
Table 120. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array
package mechanical data
inches(1)
millimeters
Symbol
218/233
Min
Typ
Max
Min
Typ
Max
A
-
-
1.100
-
-
0.0433
A1
0.150
-
-
0.0059
-
-
A2
-
0.760
-
-
0.0299
-
b
0.350
0.400
0.450
0.0138
0.0157
0.0177
D
12.850
13.000
13.150
0.5118
0.5118
0.5177
D1
-
11.200
-
-
0.4409
-
E
12.850
13.000
13.150
0.5118
0.5118
0.5177
E1
-
11.200
-
-
0.4409
-
e
-
0.800
-
-
0.0315
-
F
-
0.900
-
-
0.0354
-
ddd
-
-
0.100
-
-
0.0039
DocID024030 Rev 8
STM32F427xx STM32F429xx
Package information
Table 120. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array
package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Device marking for TFBGA176
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Figure 102. TFBGA176 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ
670)
5HYLVLRQFRGH
1,+
5
%DOO$LGHQWLILHU
'DWHFRGH \HDUZHHN
< ::
069
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
DocID024030 Rev 8
219/233
227
Package information
7.9
STM32F427xx STM32F429xx
Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
•
TA max is the maximum ambient temperature in °C,
•
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
•
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
•
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 121. Package thermal characteristics
Symbol
ΘJA
Parameter
Value
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch
43
Thermal resistance junction-ambient
WLCSP143
31.2
Thermal resistance junction-ambient
LQFP144 - 20 × 20 mm / 0.5 mm pitch
40
Thermal resistance junction-ambient
LQFP176 - 24 × 24 mm / 0.5 mm pitch
38
Thermal resistance junction-ambient
LQFP208 - 28 × 28 mm / 0.5 mm pitch
19
Thermal resistance junction-ambient
UFBGA169 - 7 × 7mm / 0.5 mm pitch
52
Thermal resistance junction-ambient
UFBGA176 - 10× 10 mm / 0.5 mm pitch
39
Thermal resistance junction-ambient
TFBGA216 - 13 × 13 mm / 0.8 mm pitch
29
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
220/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
8
Part numbering
Part numbering
Table 122. Ordering information scheme
Example:
STM32
F
429 V I
T
6
xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
427= STM32F427xx, USB OTG FS/HS, camera interface,
Ethernet
429= STM32F429xx, USB OTG FS/HS, camera interface,
Ethernet, LCD-TFT
Pin count
V = 100 pins
Z = 143 and 144 pins
A = 169 pins
I = 176 pins
B = 208 pins
N = 216 pins
Flash memory size
E = 512 Kbytes of Flash memory
G = 1024 Kbytes of Flash memory
I = 2048 Kbytes of Flash memory
Package
T = LQFP
H = BGA
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Options
xxx = programmed parts
TR = tape and reel
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
DocID024030 Rev 8
221/233
227
Recommendations when using internal reset OFF
Appendix A
STM32F427xx STM32F429xx
Recommendations when using internal reset
OFF
When the internal reset is OFF, the following integrated features are no longer supported:
A.1
•
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
•
The brownout reset (BOR) circuitry must be disabled.
•
The embedded programmable voltage detector (PVD) is disabled.
•
VBAT functionality is no more available and VBAT pin should be connected to VDD.
•
The over-drive mode is not supported.
Operating conditions
Table 123. Limitations depending on the operating power supply range
Operating
power
supply
range
ADC
operation
Maximum
Flash
memory
access
frequency
with no wait
states
(fFlashmax)
VDD =1.7 to
2.1 V(3)
Conversion
time up to
1.2 Msps
20 MHz(4)
Maximum Flash
memory access
frequency with
wait states (1)(2)
168 MHz with 8
wait states and
over-drive OFF
I/O operation
Possible Flash
memory
operations
8-bit erase and
– No I/O
program
compensation
operations only
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no
wait state is required.
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does
not impact the execution speed from Flash memory since the ART accelerator allows to achieve a
performance equivalent to 0 wait state program execution.
3. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to
Section 3.17.1: Internal reset ON).
4. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and
power.
222/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Appendix B
Application block diagrams
USB OTG full speed (FS) interface solutions
Figure 103. USB controller configured as peripheral-only and used
in Full speed mode
6$$
6TO6$$
6OLATGEREGULATOR 6"53
$-
/3#?).
0!0"
$0
0!0"
633
/3#?/54
53"3TD"CONNECTOR
34-&XX
-36
1. External voltage regulator only needed when building a VBUS powered device.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
Figure 104. USB controller configured as host-only and used in full speed mode
6$$
%.
'0)/
'0)/)21
34-&XX
/VERCURRENT
#URRENTLIMITER
POWERSWITCH 60WR
6"53
/3#?).
0!0"
0!0"
$$0
633
/3#?/54
53"3TD!CONNECTOR
B.1
Application block diagrams
-36
1. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
DocID024030 Rev 8
223/233
227
Application block diagrams
STM32F427xx STM32F429xx
Figure 105. USB controller configured in dual mode and used in full speed mode
6$$
6TO6$$
VOLTAGEREGULATOR 6$$
'0)/)21
/VERCURRENT
#URRENTLIMITER
POWERSWITCH 60WR
34-&XX
0!0"
0!0"
/3#?).
/3#?/54
0!0"
0!0"
6"53
$$0
)$
633
53"MICRO!"CONNECTOR
'0)/
%.
-36
1. External voltage regulator only needed when building a VBUS powered device.
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
3. The ID pin is required in dual role only.
4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
224/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
B.2
Application block diagrams
USB OTG high speed (HS) interface solutions
Figure 106. USB controller configured as peripheral, host, or dual-mode
and used in high speed mode
34-&XX
&30(9
53"(3
/4'#TRL
$0
$-
NOTCONNECTED
$0
5,0)?#,+
$-
5,0)?$;=
5,0)
)$
5,0)?$)2
6"53
5,0)?340
53"
CONNECTOR
633
5,0)?.84
(IGHSPEED
/4'0(9
0,,
84
OR-(Z84
-#/OR-#/
8)
-36
1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F42x
with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible
connection.
2. The ID pin is required in dual role only.
DocID024030 Rev 8
225/233
227
Application block diagrams
B.3
STM32F427xx STM32F429xx
Ethernet interface solutions
Figure 107. MII mode using a 25 MHz crystal
34-
-#5
-))?48?#,+
-))?48?%.
-))?48$;=
-))?#23
-))?#/,
%THERNET
-!#
(#,+
%THERNET
0(9
-))
PINS
-))?28?#,+
-))?28$;=
-))?28?$6
-))?28?%2
)%%%040
4IMER
INPUT
TRIGGER 4IMESTAMP
4)-
COMPARATOR
-))-$#
PINS
-$)/
-$#
003?/54
84!,
-(Z
/3#
(#,+
0,,
0(9?#,+-(Z
-#/-#/
84
-36
1. fHCLK must be greater than 25 MHz.
2. Pulse per second when using IEEE1588 PTP optional signal.
Figure 108. RMII with a 50 MHz oscillator
34-
-#5
%THERNET
0(9
2-))?48?%.
%THERNET
-!#
2-))?48$;=
2-))?28$;=
(#,+
2-))?#28?$6
2-))?2%&?#,+
)%%%040
4IMER
INPUT
TRIGGER 4IMESTAMP
4)-
COMPARATOR
2-))
PINS
2-))-$#
PINS
-$)/
-$#
OR
OR-(Z SYNCHRONOUS -(Z
/3#
-(Z
(#,+
0,,
0(9?#,+-(Z
84
-(Z
-36
1. fHCLK must be greater than 25 MHz.
226/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
Application block diagrams
Figure 109. RMII with a 25 MHz crystal and PHY with PLL
34-&
-#5
%THERNET
0(9
2-))?48?%.
%THERNET
-!#
2-))?48$;=
2-))?28$;=
(#,+
)%%%040
2-))?#28?$6
2-))?2%&?#,+
2-))
PINS
2%&?#,+
-$)/
4IMER
INPUT
TRIGGER 4IMESTAMP
4)-
COMPARATOR
2-))-$#
PINS
-$#
OR
OR-(Z SYNCHRONOUS -(Z
84!,
-(Z
/3#
0,,
(#,+
0,,
-#/-#/
0(9?#,+-(Z 84
-36
1. fHCLK must be greater than 25 MHz.
2. The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block.
DocID024030 Rev 8
227/233
227
Revision history
9
STM32F427xx STM32F429xx
Revision history
Table 124. Document revision history
Date
Revision
19-Mar-2013
1
Initial release.
2
Added STM32F429xx part numbers and related informations.
STM32F427xx part numbers:
Replaced FSMC by FMC added Chrom-ART Accelerator and SAI
interface.
Increased core, timer, GPIOs, SPI maximum frequencies
Updated Figure 8.Updated Figure 9.
Removed note in Section ·: Standby mode.
Updated Figure 18.
Updated Table 10: STM32F427xx and STM32F429xx pin and ball
definitions and Table 12: STM32F427xx and STM32F429xx alternate
function mapping..
Modified Figure 19: Memory map.
Updated Table 17: General operating conditions, Table 18: Limitations
depending on the operating power supply range. Removed note 1 in
Table 22: reset and power control block characteristics. Added
Table 23: Over-drive switching characteristics.
Updated Section : Typical and maximum current consumption,
Table 34: Switching output I/O current consumption, Table 35:
Peripheral current consumption and Section : On-chip peripheral
current consumption.
Updated Table 36: Low-power mode wakeup timings.
Modified Section : High-speed external user clock generated from an
external source, Section : Low-speed external user clock generated
from an external source, and Section 6.3.10: Internal clock source
characteristics.
Updated Table 43: Main PLL characteristics and Table 45: PLLISAI
(audio and LCD-TFT PLL) characteristics.
Updated Table 52: EMI characteristics.
Updated Table 57: Output voltage characteristics and Table 58: I/O AC
characteristics.
Updated Table 60: TIMx characteristics, Table 61: I2C characteristics,
Table 62: SPI dynamic characteristics, Section : SAI characteristics.
Updated Table 102: SDRAM read timings and Table 104: SDRAM write
timings.
10-Sep-2013
228/233
Changes
DocID024030 Rev 8
STM32F427xx STM32F429xx
Revision history
Table 124. Document revision history
Date
24-Jan-2014
Revision
Changes
3
Added STM32F429xE part numbers featuring 512 Mbytes of Flash
memory and UFBGA169 package.
Added LPSDR SDRAM.
Changed INTN into INTR in Figure 4: STM32F427xx and
STM32F429xx block diagram.
Added note 4 in Table 2: STM32F427xx and STM32F429xx features
and peripheral counts.
Updated Section 3.15: Boot modes.
Updated for PA4 and PA5 in Table 10: STM32F427xx and
STM32F429xx pin and ball definitions.
Added VIN for BOOT0 pins in Table 14: Voltage characteristics.
Updated Note 6., added Note 1.,and updated maximum VIN for B pins
in Table 17: General operating conditions.
Updated maximum Flash memory access frequency with wait states
for VDD =1.8 to 2.1 V in Table 18: Limitations depending on the
operating power supply range.
Updated Table 24: Typical and maximum current consumption in Run
mode, code with data processing running from Flash memory (ART
accelerator enabled except prefetch) or RAM and Table 25: Typical
and maximum current consumption in Run mode, code with data
processing running from Flash memory (ART accelerator disabled).
Updated Table 30: Typical current consumption in Run mode, code
with data processing running from Flash memory or RAM, regulator
ON (ART accelerator enabled except prefetch), VDD=1.7 V, Table 31:
Typical current consumption in Run mode, code with data processing
running from Flash memory, regulator OFF (ART accelerator enabled
except prefetch), and Table 32: Typical current consumption in Sleep
mode, regulator ON, VDD=1.7 V.
Updated Table 57: Output voltage characteristics.
Updated Table 58: I/O AC characteristics. Added Figure 35.
Updated th(SDA), tr(SDA) and tr(SCL) and added tSP in Table 61: I2C
characteristics.
Updated fSCK in Table 62: SPI dynamic characteristics.
Updated Table 70: Dynamic characteristics: USB ULPI.
Updated Section 6.3.26: FMC characteristics conditions. Updated
Figure 73: SDRAM read access waveforms (CL = 1) and Figure 74:
SDRAM write access waveforms. Added Table 103: LPSDR SDRAM
read timings and Table 105: LPSDR SDRAM write timings. Updated
Table 102: SDRAM read timings and Table 104: SDRAM write timings
and added note 2.Table 108: Dynamic characteristics: SD / MMC
characteristics.
DocID024030 Rev 8
229/233
232
Revision history
STM32F427xx STM32F429xx
Table 124. Document revision history
Date
24-Apr-2014
230/233
Revision
Changes
4
In the whole document, minimum supply voltage changed to 1.7 V
when external power supply supervisor is used.
Added DCMI_VSYNC alternate function on PG9 and updated note 6.
in Table 10: STM32F427xx and STM32F429xx pin and ball definitions
and Table 12: STM32F427xx and STM32F429xx alternate function
mapping. Added note 2.belowFigure 16: STM32F42x UFBGA169
ballout.
Changed SVGA (800x600) into XGA1024x768) on cover page and in
Section 3.10: LCD-TFT controller (available only on STM32F429xx).
Updated Section 3.18.2: Regulator OFF.
Updated signal corresponding to pin L5 in Figure 12: STM32F42x
WLCSP143 ballout.
Added ACCHSE in Table 39: HSE 4-26 MHz oscillator characteristics
and ACCLSE in Table 40: LSE oscillator characteristics (fLSE = 32.768
kHz).
Updated Table 53: ESD absolute maximum ratings.
Updated VIH in Table 56: I/O static characteristics. Added condition
VDD>1.7 V in Table 58: I/O AC characteristics.
Updated conditions in Table 62: SPI dynamic characteristics.
Added ZDRV in Table 67: USB OTG full speed electrical characteristics
Removed note 3 in Table 80: Temperature sensor characteristics.
Added Figure 82: LQFP100 marking example (package top view),
Figure 85: WLCSP143 marking example (package top view),
Figure 88: LQFP144 marking example (package top view), Figure 91:
LQFP176 marking (package top view), Figure 94: LQFP208 marking
example (package top view), Figure 97: UFBGA169 marking example
(package top view) and Figure 100: UFBGA176+25 marking example
(package top view).
Added Appendix A: Recommendations when using internal reset OFF.
Removed Internal reset OFF hardware connection appendix.
DocID024030 Rev 8
STM32F427xx STM32F429xx
Revision history
Table 124. Document revision history
Date
Revision
Changes
Update SPI/IS2 in Table 2: STM32F427xx and STM32F429xx features
and peripheral counts.
Updated LQFP208 in Table 4: Regulator ON/OFF and internal reset
ON/OFF availability.
Updated Figure 19: Memory map.
Changed PLS[2:0]=101 (falling edge) maximum value in Table 22:
reset and power control block characteristics.
19-Feb-2015
5
Updated current consumption with all peripherals disabled in Table 24:
Typical and maximum current consumption in Run mode, code with
data processing running from Flash memory (ART accelerator
enabled except prefetch) or RAM. Updated note 1. in Table 28: Typical
and maximum current consumptions in Standby mode.
Updated tWUSTOP in Table 36: Low-power mode wakeup timings.
Updated ESD standards and Table 53: ESD absolute maximum
ratings.
Updated Table 56: I/O static characteristics.
Section : I2C interface characteristics: updated section introduction,
removed Table I2C characteristics, Figure I2C bus AC waveforms and
measurement circuit and Table SCL frequency; added Table 61: I2C
analog filter characteristics.
Updated measurement conditions in Table 62: SPI dynamic
characteristics.
Updated Figure 51: Typical connection diagram using the ADC.
Updated Section : Device marking for LQFP100.
Updated Figure 83: WLCSP143 - 143-pin, 4.521x 5.547 mm, 0.4 mm
pitch wafer level chip scale package outline and Table 111: WLCSP143
- 143-pin, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
package mechanical data; added Figure 84: WLCSP143 - 143-pin,
4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale recommended
footprint and Table 112: WLCSP143 recommended PCB design rules
(0.4 mm pitch). Updated Figure 85: WLCSP143 marking example
(package top view) and related note. Updated Section : Device
marking for WLCSP143.
Updated Section : Device marking for LQFP144.
Updated Section : Device marking for LQFP176.
Updated Figure 92: LQFP208 - 208-pin, 28 x 28 mm low-profile quad
flat package outline; Updated Section : Device marking for LQFP208.
Modified UFBGA169 pitch, updated Figure 95: UFBGA169 - 169-ball 7
x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array package outline
and Table 116: UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra
fine pitch ball grid array package mechanical data; updated Section :
Device marking for LQFP208.
updated Section : Device marking for UFBGA169, Section : Device
marking for UFBGA176+25 and Section : Device marking for
TFBGA176.
Updated Z pin count in Table 122: Ordering information scheme.
DocID024030 Rev 8
231/233
232
Revision history
STM32F427xx STM32F429xx
Table 124. Document revision history
Date
Revision
Changes
6
Updated notes related to the minimum and maximum values
guaranteed by design, characterization or test in production.
Updated IDD_STOP_UDM in Table 27: Typical and maximum current
consumptions in Stop mode.
Removed note related to tests in production in Table 24: Typical and
maximum current consumption in Run mode, code with data
processing running from Flash memory (ART accelerator enabled
except prefetch) or RAM and Table 26: Typical and maximum current
consumption in Sleep mode.
Updated Table 41: HSI oscillator characteristics. Figure 31 renamed
HSI deviation vs. temperature and updated.
Updated Figure 38: SPI timing diagram - slave mode and CPHA = 0.
Updated Section : Ethernet characteristics.
Updated Table 43: Main PLL characteristics, Table 44: PLLI2S (audio
PLL) characteristics and Table 45: PLLISAI (audio and LCD-TFT PLL)
characteristics.
Removed note 1 in Table 75: ADC static accuracy at fADC = 18 MHz,
Table 76: ADC static accuracy at fADC = 30 MHz and Table 77: ADC
static accuracy at fADC = 36 MHz.
Updated td(SDCLKL _Data) and th(SDCLKL _Data) in Table 104: SDRAM
write timings.
Added Figure 96: UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra
fine pitch ball grid array recommended footprint and Table 117:
UFBGA169 recommended PCB design rules (0.5 mm pitch BGA).
Added Figure 99: UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm
pitch, ultra fine pitch ball grid array package recommended footprint
and Table 119: UFBGA176+25 recommended PCB design rules
(0.65 mm pitch BGA).
30-Nov-2015
7
Updated |VSSX −VSS| in Table 14: Voltage characteristics to add VREF-.
Updated td(TXEN) and td(TXD) minimum value in Table 72: Dynamics
characteristics: Ethernet MAC signals for RMII and Table 73: Dynamics
characteristics: Ethernet MAC signals for MII.
Added VREF- in Table 74: ADC characteristics.
Added A1 minimum and maximum values in Table 111: WLCSP143 143-pin, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
package mechanical data. Updated Figure 86: LQFP144-144-pin, 20 x
20 mm low-profile quad flat package outline.
Updated Figure 98: UFBGA176+25 - 201-ball 10 x 10 mm, 0.65 mm
pitch ultra thin fine pitch ball grid array package outline and Table 118:
UFBGA176+25 - 201-ball 10 x 10 mm, 0.65 mm pitch ultra thin fine
pitch ball grid array mechanical data. Updated Figure 101: TFBGA216
- 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array
package outline and Table 120: TFBGA216 - 216 ball 13 × 13 mm
0.8 mm pitch thin fine pitch ball grid array package mechanical data.
21-Jan-2016
8
Updated Figure 22: Power supply scheme.
Added td(TXD) values corresponding to 1.71 V < VDD < 3.6 V in
Table 72: Dynamics characteristics: Ethernet MAC signals for RMII.
17-Sep-2015
232/233
DocID024030 Rev 8
STM32F427xx STM32F429xx
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved
DocID024030 Rev 8
233/233
233