STM32F446xC/E ARM® Cortex®-M4 32b MCU+FPU, 225DMIPS, up to 512kB Flash/128+4KB RAM, USB OTG HS/FS, 17 TIMs, 3 ADCs, 20 comm. interfaces Datasheet - production data Features &"'! • Core: ARM® 32-bit Cortex®-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait state execution from Fl ash memory, frequency up to 180 MHz, MPU, 225 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions • Memories – 512 kB of Flash memory – 128 KB of SRAM – Flexible external memory controller with up to 16-bit data bus: SRAM,PSRAM,SDRAM/LPSDR SDRAM, Flash NOR/NAND memories – Dual mode Quad SPI interface • LCD parallel interface, 8080/6800 modes • Clock, reset and supply management – 1.7 V to 3.6 V application supply and I/Os – POR, PDR, PVD and BOR – 4-to-26 MHz crystal oscillator – Internal 16 MHz factory-trimmed RC (1% accuracy) – 32 kHz oscillator for RTC with calibration – Internal 32 kHz RC with calibration • Low power – Sleep, Stop and Standby modes – VBAT supply for RTC, 20×32 bit backup registers + optional 4 KB backup SRAM • 3×12-bit, 2.4 MSPS ADC: up to 24 channels and 7.2 MSPS in triple interleaved mode • 2×12-bit D/A converters • General-purpose DMA: 16-stream DMA controller with FIFOs and burst support • Up to 17 timers: 2x watchdog, 1x SysTick timer and up to twelve 16-bit and two 32-bit timers up to 180 MHz, each with up to 4 IC/OC/PWM or pulse counter • Debug mode – SWD & JTAG interfaces – Cortex®-M4 Trace Macrocell™ November 2015 This is information on a product in full production. LQFP64 (10 × 10mm) LQFP100 (14 × 14mm) UFBGA144 (7 x 7 mm) LQFP144 (20 x 20 mm) UFBGA144 (10 x 10 mm) WLCSP 81 • Up to 114 I/O ports with interrupt capability – Up to 111 fast I/Os up to 90 MHz – Up to 112 5 V-tolerant I/Os • Up to 20 communication interfaces – SPDIF-Rx – Up to 4 × I2C interfaces (SMBus/PMBus) – Up to 4 USARTs/2 UARTs (11.25 Mbit/s, ISO7816 interface, LIN, IrDA, modem control) – Up to 4 SPIs (45 Mbits/s), 3 with muxed I2S for audio class accuracy via internal audio PLL or external clock – 2 x SAI (serial audio interface) – 2 × CAN (2.0B Active) – SDIO interface – Consumer electronics control (CEC) I/F • Advanced connectivity – USB 2.0 full-speed device/host/OTG controller with on-chip PHY – USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI – Dedicated USB power rail enabling on-chip PHYs operation throughout the entire MCU power supply range • 8- to 14-bit parallel camera interface up to 54 Mbytes/s • CRC calculation unit • RTC: subsecond accuracy, hardware calendar • 96-bit unique ID Table 1. Device summary Reference STM32F446xC/E DocID027107 Rev 5 Part number STM32F446MC, STM32F446ME, STM32F446RC, STM32F446RE, STM32F446VC, STM32F446VE, STM32F446ZC, STM32F446ZE. 1/201 www.st.com Contents STM32F446xC/E Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 ARM® Cortex®-M4 with FPU and embedded Flash and SRAM . . . . . . . 17 3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 17 3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 18 3.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.9 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.10 Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.11 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 21 3.12 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.13 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.15 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.16 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17 2/201 Compatibility with STM32F4 family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.16.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.16.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.17.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.17.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.17.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 27 3.18 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 28 3.19 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.20 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.21 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DocID027107 Rev 5 STM32F446xC/E Contents 3.21.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.21.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.21.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.21.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.21.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.21.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.22 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.23 Universal synchronous/asynchronous receiver transmitters (USART) . . 34 3.24 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.25 HDMI (high-definition multimedia interface) consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.26 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.27 SPDIF-RX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . 35 3.28 Serial Audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.29 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.30 Serial Audio Interface PLL(PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.31 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 36 3.32 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.33 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 37 3.34 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 37 3.35 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.36 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.37 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.38 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.39 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.40 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.41 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 DocID027107 Rev 5 3/201 5 Contents 4/201 STM32F446xC/E 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.2 VCAP_1/VCAP_2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 79 6.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 79 6.3.5 Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . 80 6.3.6 Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.8 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.3.12 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 110 6.3.13 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3.14 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.3.15 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 116 6.3.16 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.3.17 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.3.18 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3.19 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3.20 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3.21 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.3.24 Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.3.25 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.3.26 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.3.27 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 171 6.3.28 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 172 6.3.29 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 DocID027107 Rev 5 STM32F446xC/E 7 8 Contents Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.1 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.2 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 7.3 LQFP144 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7.4 UFBGA144 7 x 7 mm package information . . . . . . . . . . . . . . . . . . . . . . 185 7.5 UFBGA144 10 x 10 mm package information . . . . . . . . . . . . . . . . . . . . 188 7.6 WLCSP81 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7.7 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 9 A.1 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 196 A.2 USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 198 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 DocID027107 Rev 5 5/201 5 List of figures STM32F446xC/E List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. 6/201 Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Compatible board for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 STM32F446xC/E block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 STM32F446xC/E and Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 VDDUSB connected to an external independent power supply . . . . . . . . . . . . . . . . . . . . . 23 Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 24 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Startup in regulator OFF: slow VDD slope power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 27 Startup in regulator OFF mode: fast VDD slope power-down reset risen before VCAP_1/VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . . 27 STM32F446xC/xE LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 STM32F446xC/xE LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 STM32F446xC LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 STM32F446xC/xE WLCSP81 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 STM32F446xC/xE UFBGA144 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Typical VBAT current consumption (RTC ON/backup RAM OFF and LSE in low power mode) . . . . . . . . . . . . . . . . . . . . . . . . 91 Typical VBAT current consumption (RTC ON/backup RAM OFF and LSE in high drive mode). . . . . . . . . . . . . . . . . . . . . . . . . 92 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 LACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 FMPI2C timing diagram and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 USB OTG full speed timings: definition of data signal rise and fall time . . . . . . . . . . . . . . 138 ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 DocID027107 Rev 5 STM32F446xC/E Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. Figure 87. Figure 88. List of figures ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 146 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 147 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 152 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 154 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 155 Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 157 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 163 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 167 NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 167 SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 LQFP64-10x10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 175 LQFP64 Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 178 LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 181 LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 UQFP144 7 x 7 mm marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . 187 UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 UQFP144 10 x 10 mm marking example (package top view). . . . . . . . . . . . . . . . . . . . . . 190 WLCSP81 - 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 WLCSP81- 81-pin, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 WLCSP81 10 x 10 mm marking example (package top view) . . . . . . . . . . . . . . . . . . . . . 193 USB controller configured as peripheral-only and used in Full speed mode . . . . . . . . . . 196 USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 196 USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 197 USB controller configured as peripheral, host, or dual-mode and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 DocID027107 Rev 5 7/201 7 List of tables STM32F446xC/E List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. 8/201 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F446xC/E features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 25 Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 27 Voltage regulator modes in stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 STM32F446xx pin and ball descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Alternate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 STM32F446xC/E register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 78 VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Operating conditions at power-up/power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . . 79 Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 79 reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch) or RAM . . . . . . . 83 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled with prefetch) or RAM . . . . . . . . . 84 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 86 Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 89 Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 90 Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 91 Typical current consumption in Run mode, code with data processing running from Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch), VDD=1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Typical current consumption in Run mode, code with data processing running from Flash memory, regulator OFF (ART accelerator enabled except prefetch). . . . . . . . 94 Typical current consumption in Sleep mode, regulator ON, VDD=1.7 V . . . . . . . . . . . . . . 95 Typical current consumption in Sleep mode, regulator OFF. . . . . . . . . . . . . . . . . . . . . . . . 96 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 DocID027107 Rev 5 STM32F446xC/E Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. List of tables Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 PLLISAI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 FMPI2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 QSPI dynamic characteristics in SDR Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 QSPI dynamic characteristics in DDR Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 USB OTG full speed startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 USB OTG full speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 USB OTG full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 ADC static accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 ADC static accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 ADC static accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 143 ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 143 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Asynchronous non-multiplexed SRAM/PSRAM/NOR read NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 154 Asynchronous non-multiplexed SRAM/PSRAM/NOR write NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 156 DocID027107 Rev 5 9/201 10 List of tables Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Table 119. 10/201 STM32F446xC/E Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 158 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 163 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 168 SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 LPSDR SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V. . . . . . . . . . . . . . . 174 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . 175 LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 182 UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 UFBGA144 recommended PCB design rules (0.50 mm pitch BGA) . . . . . . . . . . . . . . . . 186 UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) . . . . . . . . . . . . . . . . 189 WLCSP81- 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 WLCSP81 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 192 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 DocID027107 Rev 5 STM32F446xC/E 1 Introduction Introduction This document provides the description of the STM32F446xC/E products. The STM32F446xC/E document should be read in conjunction with the STM32F4xx reference manual. For information on the Cortex®-M4 core, please refer to the Cortex®-M4 programming manual (PM0214), available from the www.st.com. DocID027107 Rev 5 11/201 40 Description 2 STM32F446xC/E Description The STM32F446xC/E devices are based on the high-performance ARM® Cortex®-M4 32-bit RISC core operating at a frequency of up to 180 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM® single-precision dataprocessing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security. The STM32F446xC/E devices incorporate high-speed embedded memories (Flash memory up to 512 Kbyte, up to 128 Kbyte of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix. All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. They also feature standard and advanced communication interfaces. • Up to four I2Cs; • Four SPIs, three I2Ss full simplex. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization; • Four USARTs plus two UARTs; • An USB OTG full-speed and an USB OTG high-speed with full-speed capability (with the ULPI), both with dedicated power rails allowing to use them throughout the entire power range; • Two CANs; • Two SAIs serial audio interfaces. To achieve audio class accuracy, the SAIs can be clocked via a dedicated internal audio PLL; • An SDIO/MMC interface; • Camera interface; • HDMI-CEC; • SPDIF Receiver (SPDIFRx); • QuadSPI. Advanced peripherals include an SDIO, a flexible memory control (FMC) interface, a camera interface for CMOS sensors. Refer to Table 2: STM32F446xC/E features and peripheral counts for the list of peripherals available on each part number. The STM32F446xC/E devices operates in the –40 to +105 °C temperature range from a 1.7 to 3.6 V power supply. The supply voltage can drop to 1.7 V with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF). A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F446xC/E devices offer devices in 6 packages ranging from 64 pins to 144 pins. The set of included peripherals changes with the device chosen. 12/201 DocID027107 Rev 5 STM32F446xC/E Description These features make the STM32F446xC/E microcontrollers suitable for a wide range of applications: • Motor drive and application control • Medical equipment • Industrial applications: PLC, inverters, circuit breakers • Printers, and scanners • Alarm systems, video intercom, and HVAC • Home audio appliances Table 2. STM32F446xC/E features and peripheral counts Peripherals Flash memory in Kbytes SRAM in Kbytes STM32F44 6MC STM32F44 6ME STM32F44 6RC STM32F44 6RE STM32F44 6VC STM32F44 6VE STM32F44 6ZC STM32F44 6ZE 256 512 256 512 256 512 256 512 System 128 (112+16) Backup 4 FMC memory controller Timers Yes(1) No Generalpurpose 10 Advancedcontrol 2 Basic 2 SPI / I2S 4/3 (simplex)(2) I2C 4/1 FMP + USART/UART 4/2 USB OTG FS Yes (6-Endpoints) USB OTG HS Yes (8-Endpoints) Communication CAN interfaces 2 SAI 2 SDIO Yes SPDIF-Rx 1 HDMI-CEC 1 (3) 1 Quad SPI Camera interface GPIOs 12-bit ADC Number of channels Yes 63 50 114 16 24 3 14 16 12-bit DAC Number of channels Yes 2 Maximum CPU frequency 180 MHz 1.8 to 3.6 V(4) Operating voltage Ambient temperatures: –40 to +85 °C /–40 to +105 °C Operating temperatures Packages 81 Junction temperature: –40 to + 125 °C WLCSP81 LQFP64 DocID027107 Rev 5 LQFP100 LQFP144 UFBGA144 13/201 40 Description STM32F446xC/E 1. For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. 2. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. 3. For the LQFP64 package, the Quad SPI is available with limited features. 4. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF). 2.1 Compatibility with STM32F4 family The STM32F446xC/xV is software and feature compatible with the STM32F4 family. The STM32F446xC/xV can be used as drop-in replacement of the other STM32F4 products but some slight changes have to be done on the PCB board. Figure 1. Compatible board design for LQFP100 package 670)[[ 3%QRWDYDLODEOHDQ\PRUH 5HSODFHGE\9 &$3 3( 3( 3( 3( 3( 3( 3% 9&$3 966 9'' 3' 3' 3' 3' 3% 3% 3% 3% 3( 3( 3( 3( 3( 3( 3% 3% 9&$3 9'' 670)670)OLQH 670)670)OLQH 670)670)OLQH 670)670)OLQH 3' 3' 3' 3' 3% 3% 3% 3% 966 9'' 966 9'' 069 14/201 DocID027107 Rev 5 STM32F446xC/E Description Figure 2. Compatible board for LQFP64 package 670)[[ 3% 9&$3 9'' 3% 3% 9'' 9&$3 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 9'' 966 3%QRWDYDLODEOHDQ\PRUH 5HSODFHGE\9&$3 9'' 966 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 9'' 966 3% 3% 9&$3 966 9'' 3& 3& 3& 3$ 3$ 3& 3& 3& 3$ 3$ 670)670)OLQH 9LQFUHDVHGWRI &$3 (65RUEHORZ 966 9'' 966 9'' 069 Figure 3 shows the STM32F446xx block diagram. DocID027107 Rev 5 15/201 40 Description STM32F446xC/E Figure 3. STM32F446xC/E block diagram '0$ ),)2 ,'9%86 6WUHDPV *3'0$ ),)2 &/.&6D&6E'>@ )/$6+N% 65$0.% 65$0.% $+% 0+] 6WUHDPV 325 $+%0+] ),)2 86% 27*)6 6833/< 683(59,6,21 3253'5 %25 5HVHW ,QW #9''$ *3,23257' 86$570%SV 3( *3,23257( 86$570%SV 3) *3,23257) 86$570%SV 3* *3,23257* 86$570%SV 5(6(7 &/2&. 0$1$*7 &75/ 3+ *3,23257+ 86$570%SV /6 86$570%SV 7,0(53:0 &+DV$) E E :LQ:$7&+'2* VPFDUG 86$57 86$570%SV LU'$ 026,0,62 6&.166DV$) 63,,6 86$570%SV 026,0,62 6&.166DV$) 86$570%SV 63, 6'6&.)6 0&/.DV$) 86$570%SV 6$, ),)2 VPFDUG 86$570%SV 86$57 LU'$ 6$, 86$570%SV 6'6&.)6 0&/.DV$) 9''5()B$'& $,1FRPPRQ WRWKH$'&V $,1FRPPRQ WRWKH$'& $,1WR$'& 7,0(5 7,0(5 E E $'& $'& $'& &+ D V$) 7,0(5 E &+DV$) E &+DV$) 86$57 86$57 VPFDUG LU'$ '$& '$&DV$) 5;7;6&. &76576DV$) 5;7;6&. &76576DV$) 8$57 5;7;DV$) 8$57 5;7;DV$) 63',) 63',)B5;>@DV$) +'0,&(& +'0,B&(&D V$) 63,,6 026,0,626&. 166:60&.DV$) 63,,6 026,0,626&. 166:60&.DV$) 6&/6'$60%$/DV$) ,&60%86 ,&60%86 '$& &+DV$) VPFDUG LU'$ )03,& 6&/6'$60%$/DV$) 6&/6'$60%$/DV$) 6&/6'$60%$/DV$) ,7) E[&$1 E[&$1 16/201 &+(75DV$) 7,0(5 E ,&60%86 #9''$ ,) $/$50B287 67$03 67$03 &+(75DV$) #9''$ 86$570%SV 7(036(1625 WR9 26&B,1 26&B287 &+(75DV$) E ),)2 5;7;6&. &76576DV$) 26&,1 26&287 7,0(5 E 7,0(5 E 7,0(5 86$570%SV 9 '' WR9 966 9&$3 7,0(5 E 7,0(5 7,0(5 86$570%SV &+DV$) 5;7;6&. &76576DV$) .%%.35$0 E 7,0(5 86$570%SV &+DV$) $:8 %.35(* 7,0(5 E $ 3% 0+] 3:03:0 (75%.,1DV$) ;7$/N+] 57& $+%$3% $+%$3% E 7,0(53:0 86$570%SV 9''$ 966$ 9%$7 #9%$7 $3%0+] 3:03:0 (75%.,1DV$) 6',200& 9''86% 729 '' ,'9%86 :'*. *3'0$ $3% 0+] ' &0'&.DV$) *3'0$ (;7,7:.83 86$570%SV #9'' 6WDQGE\LQWHUIDFH &5& ),)2 $) 92/75(* 9729 ;7$/26& 0+] /6 *3,23257& 86$570%SV 3' #9''$ 32:(501*7 3//3//3// *3,23257% 86$570%SV 3& 5&+6 5&/6 3:5&7/ 3% *3,23257$ 86$570%SV )&/. + &/. $3%3 &/. $3%3 &/. $+%3&/. $+ %3&/. 3$ +6<1&96<1& 3,;&.' 15(6(7 39' 'LJ)LOWHU *3'0$ &$0(5$ ,7) 3+< 86% 27*+6 4XDG63, '$&DV$) DocID027107 Rev 5 ),)2 9''86% 729 '' 8/3,&/.' ',56731;7 3+< 6%86 &/.1(>@$>@'>@ 12(11:(11%/>@ 6'&/.(>@6'1(>@ 15$61&$61$'9 1:$,7,171 ),)2 ,%86 '%86 (;70(0&7/)0& 65$0365$0125)/$6+ 1$1')/$6+6'5$0 ),)2 $50 &257(;0 0+] $+%B(0, 038 )38 19,& )/$6+ ,) 75$&(&. 75$&(' -7$*6: (70 $+%%860$75,;60 -7567-7', -7&.6:&/. -7'26:'-7'2 7;5; 7;5; 069 STM32F446xC/E Functional overview 3 Functional overview 3.1 ARM® Cortex®-M4 with FPU and embedded Flash and SRAM The ARM® Cortex®-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The ARM® Cortex®-M4 with FPU core is a 32-bit RISC processor that features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation. The STM32F446xC/E family is compatible with all ARM tools and software. Figure 3 shows the general block diagram of the STM32F446xC/E family. Note: Cortex-M4 with FPU core is binary compatible with the Cortex-M3 core. 3.2 Adaptive real-time memory accelerator (ART Accelerator™) The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard ARM® Cortex®-M4 with FPU processors. It balances the inherent performance advantage of the ARM® Cortex®-M4 with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies. To release the processor full 225 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 180 MHz. 3.3 Memory protection unit The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. DocID027107 Rev 5 17/201 40 Functional overview 3.4 STM32F446xC/E Embedded Flash memory The devices embed a Flash memory of 512KB available for storing programs and data. 3.5 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location. 3.6 Embedded SRAM All devices embed: • Up to 128Kbytes of system SRAM. RAM memory is accessed (read/write) at CPU clock speed with 0 wait states. • 4 Kbytes of backup SRAM This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode. 3.7 Multi-AHB bus matrix The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, USB HS) and the slaves Flash memory, RAM, QuadSPI, FMC, AHB and APB peripherals and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously. 18/201 DocID027107 Rev 5 STM32F446xC/E Functional overview Figure 4. STM32F446xC/E and Multi-AHB matrix 6 6 6 6 86%B+6B0 86%27* +6 '0$B3 *3 '0$ '0$B0(0 '0$B0(0 '0$B3, 6EXV 6 *3 '0$ 6 ,&2'( '&2'( $&&(/ 6 'EXV ,EXV $50 &RUWH[0 )ODVK PHPRU\ 65$0 .E\WH 65$0 .E\WH $+% SHULSKHUDOV $3% $+% SHULSKHUDOV $3% )0&H[WHUQDO 0HP&WO4XDG63, %XVPDWUL[6 -36 3.8 DMA controller (DMA) The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB). The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code. Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent. DocID027107 Rev 5 19/201 40 Functional overview STM32F446xC/E The DMA can be used with the main peripherals: 3.9 • SPI and I2S • I2C • USART • General-purpose, basic and advanced-control timers TIMx • DAC • SDIO • Camera interface (DCMI) • ADC • SAI1/SAI2 • SPDIF Receiver (SPDIFRx) • QuadSPI Flexible memory controller (FMC) All devices embed an FMC. It has seven Chip Select outputs supporting the following modes: SDRAM/LPSDR SDRAM, SRAM, PSRAM, NOR Flash and NAND Flash. With the possibility to remap FMC bank 1 (NOR/PSRAM 1 and 2) and FMC SDRAM bank 1/2 in the Cortex-M4 code area. Functionality overview: • 8-,16-bit data bus width • Read FIFO for SDRAM controller • Write FIFO • Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is 90 MHz. LCD parallel interface The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration. 3.10 Quad SPI memory interface (QUADSPI) All devices embed a Quad SPI memory interface, which is a specialized communication interface targeting Single, Dual or Quad SPI flash memories. It can work in direct mode through registers, external flash status register polling mode and memory mapped mode. Up to 256 Mbytes external flash are memory mapped, supporting 8, 16 and 32-bit access. Code execution is supported. The opcode and the frame format are fully programmable. Communication can be either in Single Data Rate or Dual Data Rate. 20/201 DocID027107 Rev 5 STM32F446xC/E 3.11 Functional overview Nested vectored interrupt controller (NVIC) The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 91 maskable interrupt channels plus the 16 interrupt lines of the Cortex®M4 with FPU core. • Closely coupled NVIC gives low-latency interrupt processing • Interrupt entry vector table address passed directly to the core • Allows early processing of interrupts • Processing of late arriving, higher-priority interrupts • Support tail chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimum interrupt latency. 3.12 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 114 GPIOs can be connected to the 16 external interrupt lines. 3.13 Clocks and startup On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails). Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 180 MHz while the maximum frequency of the high-speed APB domains is 90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz. The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio class performance. In this case, the I2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz. DocID027107 Rev 5 21/201 40 Functional overview 3.14 STM32F446xC/E Boot modes At startup, boot pins are used to select one out of three boot options: • Boot from user Flash • Boot from system memory • Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial (UART, I2C, CAN, SPI and USB) communication interface. Refer to application note AN2606 for details. 3.15 Note: Power supply schemes • VDD = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through VDD pins. • VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode versus device operating mode to identify the packages supporting this option. • VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. • VDDUSB can be connected either to VDD or an external independent power supply (3.0 to 3.6V) for USB transceivers. For example, when device is powered at 1.8V, an independent power supply 3.3V can be connected to VDDUSB. When the VDDUSB is connected to a separated power supply, it is independent from VDD or VDDA but it must be the last supply to be provided and the first to disappear. The following conditions VDDUSB must be respected: – During power-on phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD – During power-down phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD – VDDUSB rising and falling time rate specifications must be respected. – In operating mode phase, VDDUSB could be lower or higher than VDD: – If USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by VDDUSB are operating between VDDUSB_MIN and VDDUSB_MAX.The VDDUSB supply both USB transceiver (USB OTG_HS and USB OTG_FS). – If only one USB transceiver is used in the application, the GPIOs associated to the other USB transceiver are still supplied by VDDUSB. – If USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered by VDDUSB are operating between VDD_MIN and VDD_MAX. 22/201 DocID027107 Rev 5 STM32F446xC/E Functional overview Figure 5. VDDUSB connected to an external independent power supply 9''86%B0$; 86% IXQFWLRQDODUHD 9''86% 9''86%B0,1 86%QRQ IXQFWLRQDO DUHD 9'' 9''$ 86%QRQ IXQFWLRQDO DUHD 2SHUDWLQJPRGH 3RZHUGRZQ 9''B0,1 3RZHURQ WLPH 069 3.16 Power supply supervisor 3.16.1 Internal reset ON On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled. The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for an external reset circuit. The device also features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.16.2 Internal reset OFF This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin. An external power supply supervisor should monitor VDD and should maintain the device in reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to VSS, to allows device to operate down to 1.7v. Refer to Figure 6: Power supply supervisor interconnection with internal reset OFF. DocID027107 Rev 5 23/201 40 Functional overview STM32F446xC/E Figure 6. Power supply supervisor interconnection with internal reset OFF s ^dDϯϮ&ϰϰϲdž ƉƉůŝĐĂƚŝŽŶƌĞƐĞƚ ƐŝŐŶĂů;ŽƉƚŝŽŶĂůͿ sd WZͺKE s^^ WZŶŽƚĂĐƚŝǀĞ͗ϭ͘ϳǀфsфϯ͘ϲǀ D^ϯϯϴϰϰsϭ The VDD specified threshold, below which the device must be maintained under reset, is 1.7 V. A comprehensive set of power-saving mode allows to design low-power applications. When the internal reset is OFF, the following integrated features are no more supported: • The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled • The brownout reset (BOR) circuitry must be disabled • The embedded programmable voltage detector (PVD) is disabled • VBAT functionality is no more available and VBAT pin should be connected to VDD. All packages, except for the LQFP100/LQFP64, allow to disable the internal reset through the PDR_ON signal. 3.17 Voltage regulator The regulator has four operating modes: • • 3.17.1 Regulator ON – Main regulator mode (MR) – Low power regulator (LPR) – Power-down Regulator OFF Regulator ON On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled. 24/201 DocID027107 Rev 5 STM32F446xC/E Functional overview There are three power modes configured by software when the regulator is ON: • MR mode used in Run/sleep modes or in Stop modes – In Run/Sleep mode The MR mode is used either in the normal mode (default mode) or the over-drive mode (enabled by software). Different voltages scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. The over-drive mode allows operating at a higher frequency than the normal mode for a given voltage scaling. – In Stop modes The MR can be configured in two ways during stop mode: MR operates in normal mode (default mode of MR in stop mode) MR operates in under-drive mode (reduced leakage mode). • LPR is used in the Stop modes: The LP regulator mode is configured by software when entering Stop mode. Like the MR mode, the LPR can be configured in two ways during stop mode: • – LPR operates in normal mode (default mode when LPR is ON) – LPR operates in under-drive mode (reduced leakage mode). Power-down is used in Standby mode. The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost. Refer to Table 3 for a summary of voltage regulator modes versus device operating modes. Two external ceramic capacitors should be connected on VCAP_1 and VCAP_2 pin. All packages have the regulator ON feature. Table 3. Voltage regulator configuration mode versus device operating mode(1) Voltage regulator configuration Run mode Sleep mode Stop mode Standby mode Normal mode MR MR MR or LPR - Over-drive mode(2) MR MR - - Under-drive mode - - MR or LPR - Power-down mode - - - Yes 1. ‘-’ means that the corresponding configuration is not available. 2. The over-drive mode is not available when VDD = 1.7 to 2.1 V. 3.17.2 Regulator OFF This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V12 voltage source through VCAP_1 and VCAP_2 pins. DocID027107 Rev 5 25/201 40 Functional overview STM32F446xC/E Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors. When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain. In regulator OFF mode, the following features are no more supported: • PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power domain which is not reset by the NRST pin. • As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required. • The over-drive and under-drive modes are not available. Figure 7. Regulator OFF 9 ([WHUQDO9&$3BSRZHU $SSOLFDWLRQUHVHW VXSSO\VXSHUYLVRU ([WUHVHWFRQWUROOHUDFWLYH VLJQDORSWLRQDO ZKHQ9&$3B0LQ9 9'' 3$ 9'' 1567 %<3$66B5(* 9 9&$3B 9&$3B DL9 The following conditions must be respected: Note: 26/201 • VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains. • If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for VDD to reach 1.7 V, then PA0 should be kept low to cover both conditions: until VCAP_1 and VCAP_2 reach V12 minimum value and until VDD reaches 1.7 V (see Figure 8). • Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower than the time for VDD to reach 1.7 V, then PA0 could be asserted low externally (see Figure 9). • If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.7 V, then a reset must be asserted on PA0 pin. The minimum value of V12 depends on the maximum frequency targeted in the application. DocID027107 Rev 5 STM32F446xC/E Functional overview Figure 8. Startup in regulator OFF: slow VDD slope power-down reset risen after VCAP_1/VCAP_2 stabilization 9'' 3'5 9RU9 9 0LQ9 9&$3B9&$3B WLPH 1567 WLPH DLI 1. This figure is valid whatever the internal reset mode (ON or OFF). Figure 9. Startup in regulator OFF mode: fast VDD slope power-down reset risen before VCAP_1/VCAP_2 stabilization 9'' 3'5 9RU9 9&$3B9&$3B 9 0LQ9 1567 WLPH 3$DVVHUWHGH[WHUQDOO\ WLPH DLH 1. This figure is valid whatever the internal reset mode (ON or OFF). 3.17.3 Regulator ON/OFF and internal reset ON/OFF availability Table 4. Regulator ON/OFF and internal reset ON/OFF availability Package LQFP64 LQFP100 Regulator ON Regulator OFF Yes No DocID027107 Rev 5 Internal reset ON Internal reset OFF Yes No 27/201 40 Functional overview STM32F446xC/E Table 4. Regulator ON/OFF and internal reset ON/OFF availability Package Regulator ON Regulator OFF Yes No LQFP144 UFBGA144 WLCSP81 3.18 Yes BYPASS_REG set to Vss Yes BYPASS_REG set to VDD Internal reset ON Internal reset OFF Yes PDR_ON set to VDD Yes PDR_ON set to VSS Real-time clock (RTC), backup SRAM and backup registers The backup domain includes: • The real-time clock (RTC) • 4 Kbytes of backup SRAM • 20 backup registers The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binarycoded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is also available in binary format. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours. A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data which need to be retained in VBAT and standby mode. This memory area is disabled by default to minimize power consumption (see Section 3.19: Low-power modes). It can be enabled by software. The backup registers are 32-bit registers used to store 80 bytes of user application data when VDD power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 3.19: Low-power modes). Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date. Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the VDD supply when present or from the VBAT pin. 28/201 DocID027107 Rev 5 STM32F446xC/E 3.19 Functional overview Low-power modes The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Stop mode The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator modes in stop mode): – Normal mode (default mode when MR or LPR is enabled) – Under-drive mode. The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup). Table 5. Voltage regulator modes in stop mode • Voltage regulator configuration Main regulator (MR) Low-power regulator (LPR) Normal mode MR ON LPR ON Under-drive mode MR in under-drive mode LPR in under-drive mode Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected. The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs. The standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power. 3.20 VBAT operation The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from VDD when no external battery and an external supercapacitor are present. VBAT operation is activated when VDD is not present. The VBAT pin supplies the RTC, the backup registers and the backup SRAM. DocID027107 Rev 5 29/201 40 Functional overview Note: STM32F446xC/E When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation. When PDR_ON pin is not connected to VDD (Internal Reset OFF), the VBAT functionality is no more available and VBAT pin should be connected to VDD. 30/201 DocID027107 Rev 5 STM32F446xC/E 3.21 Functional overview Timers and watchdogs The devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers. All timer counters can be frozen in debug mode. Table 6 compares the features of the advanced-control, general-purpose and basic timers. Table 6. Timer feature comparison Timer type Advancedcontrol General purpose Basic Timer Counter resolution Counter type Prescaler factor DMA request generation Capture/ compare channels Complementary output Max interface clock (MHz) Max timer clock (MHz)(1) TIM1, TIM8 16-bit Up, Down, Up/down Any integer between 1 and 65536 Yes 4 Yes 90 180 TIM2, TIM5 32-bit Up, Down, Up/down Any integer between 1 and 65536 Yes 4 No 45 90/180 TIM3, TIM4 16-bit Up, Down, Up/down Any integer between 1 and 65536 Yes 4 No 45 90/180 TIM9 16-bit Up Any integer between 1 and 65536 No 2 No 90 180 TIM10, TIM11 16-bit Up Any integer between 1 and 65536 No 1 No 90 180 TIM12 16-bit Up Any integer between 1 and 65536 No 2 No 45 90/180 TIM13, TIM14 16-bit Up Any integer between 1 and 65536 No 1 No 45 90/180 TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No 45 90/180 1. The maximum timer clock is either 90 or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register. DocID027107 Rev 5 31/201 40 Functional overview 3.21.1 STM32F446xC/E Advanced-control timers (TIM1, TIM8) The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for: • Input capture • Output compare • PWM generation (edge- or center-aligned modes) • One-pulse mode output If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0100%). The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. TIM1 and TIM8 support independent DMA request generation. 3.21.2 General-purpose timers (TIMx) There are ten synchronized general-purpose timers embedded in the STM32F446xC/E devices (see Table 6 for differences). • TIM2, TIM3, TIM4, TIM5 The STM32F446xC/E include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages. The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining. Any of these general-purpose timers can be used to generate PWM outputs. TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors. • TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases. 3.21.3 Basic timers TIM6 and TIM7 These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base. TIM6 and TIM7 support independent DMA request generation. 32/201 DocID027107 Rev 5 STM32F446xC/E 3.21.4 Functional overview Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. 3.21.5 Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.21.6 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features: 3.22 • A 24-bit downcounter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0 • Programmable clock source. Inter-integrated circuit interface (I2C) Four I²C bus interfaces can operate in multimaster and slave modes. Three I²C can support the standard (up to 100 KHz) and fast (up to 400 KHz) modes. One I²C can support the standard (up to 100 KHz), fast (up to 400 KHz) and fast mode plus (up to 1MHz) modes. They (all I²C) support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded. They can be served by DMA and they support SMBus 2.0/PMBus. The devices also include programmable analog and digital noise filters (see Table 7). Table 7. Comparison of I2C analog and digital filters Pulse width of suppressed spikes Analog filter ≥ 50 ns DocID027107 Rev 5 Digital filter Programmable length from 1 to 15 I2C peripheral clocks 33/201 40 Functional overview 3.23 STM32F446xC/E Universal synchronous/asynchronous receiver transmitters (USART) The devices embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and four universal asynchronous receiver transmitters (UART4, and UART5). These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate at up to 5.62 bit/s. USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller. Table 8. USART feature comparison(1) USART name SPI Standard Modem LIN maste features (RTS/CTS) r irD A Smartcard (ISO 7816) Max. baud rate in Mbit/s (oversamplin g by 16) Max. baud rate in Mbit/s (oversamplin g by 8) APB mapping USART1 X X X X X X 5.62 11.25 APB2 (max. 90 MHz) USART2 X X X X X X 2.81 5.62 APB1 (max. 45 MHz) USART3 X X X X X X 2.81 5.62 APB1 (max. 45 MHz) UART4 X X X - X - 2.81 5.62 APB1 (max. 45 MHz) UART5 X X X - X - 2.81 5.62 APB1 (max. 45 MHz) USART6 X X X X X X 5.62 11.25 APB2 (max. 90 MHz) 1. X = feature supported. 3.24 Serial peripheral interface (SPI) The devices feature up to four SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, and SPI4 can communicate at up to 45 Mbits/s, SPI2 and SPI3 can communicate at up to 22.5 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller. 34/201 DocID027107 Rev 5 STM32F446xC/E Functional overview The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode. 3.25 HDMI (high-definition multimedia interface) consumer electronics control (CEC) The devices embeds a HDMI-CEC controller that provides hardware support of consumer electronics control (CEC) (Appendix supplement 1 to the HDMI standard). This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. 3.26 Inter-integrated sound (I2S) Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They can be operated in master or slave mode, in simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I2Sx can be served by the DMA controller. 3.27 SPDIF-RX Receiver Interface (SPDIFRX) The SPDIF-RX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1). The main features of the SPDIF-RX are the following: • Up to 4 inputs available • Automatic symbol rate detection • Maximum symbol rate: 12.288 MHz • Stereo stream from 32 to 192 kHz supported • Supports Audio IEC-60958 and IEC-61937, consumer applications • Parity bit management • Communication using DMA for audio samples • Communication using DMA for control and user channel information • Interrupt capabilities The SPDIF-RX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream. The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIF-RX will re-sample the incoming signal, decode the Manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and associated status flags. DocID027107 Rev 5 35/201 40 Functional overview STM32F446xC/E The SPDIF-RX also offers a signal named spdifrx_frame_sync, which toggles at the S/PDIF sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms. 3.28 Serial Audio interface (SAI) The devices feature two serial audio interfaces (SAI1 and SAI2). Each serial audio interfaces based on two independent audio sub blocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub blocks can be configured in master or in slave mode. The SAIs use a PLL to achieve audio class accuracy. In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency. The two sub blocks can be configured in synchronous mode when full-duplex mode is required. SAI1 and SA2 can be served by the DMA controller. 3.29 Audio PLL (PLLI2S) The devices feature an additional dedicated PLL for audio I2S and SAI applications. It allows to achieve error-free I2S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals. The PLLI2S configuration can be modified to manage an I2S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces. The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz. In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S/SAI flow with an external PLL (or Codec output). 3.30 Serial Audio Interface PLL(PLLSAI) An additional PLL dedicated to audio and USB is used for SAI1 and SAI2 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously. The PLLSAI is also used to generate the 48MHz clock for USB FS and SDIO in case the system PLL is programmed with factors not multiple of 48MHz. 3.31 Secure digital input/output interface (SDIO) An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory Card Specification Version 2.0. 36/201 DocID027107 Rev 5 STM32F446xC/E Functional overview The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit. The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous. 3.32 Controller area network (bxCAN) The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN. 3.33 Universal serial bus on-the-go full-speed (OTG_FS) The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The USB has dedicated power rails allowing its use throughout the entire power range. The major features are: 3.34 • Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing • Supports the session request protocol (SRP) and host negotiation protocol (HNP) • 6 bidirectional endpoints • 12 host channels with periodic OUT support • HNP/SNP/IP inside (no need for any external resistor) • For OTG/Host modes, a power switch is needed in case bus-powered devices are connected Universal serial bus on-the-go high-speed (OTG_HS) The devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required. The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The USB has dedicated power rails allowing its use throughout the entire power range. DocID027107 Rev 5 37/201 40 Functional overview STM32F446xC/E The major features are: 3.35 • Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing • Supports the session request protocol (SRP) and host negotiation protocol (HNP) • 8 bidirectional endpoints • 16 host channels with periodic OUT support • Internal FS OTG PHY support • External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output. • Internal USB DMA • HNP/SNP/IP inside (no need for any external resistor) • for OTG/Host modes, a power switch is needed in case bus-powered devices are connected Digital camera interface (DCMI) The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 94.5 Mbyte/s (in 14-bit mode) at 54 MHz. Its features: 3.36 • Programmable polarity for the input pixel clock and synchronization signals • Parallel data communication can be 8-, 10-, 12- or 14-bit • Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG) • Supports continuous mode or snapshot (a single frame) mode • Capability to automatically crop the image black & white. General-purpose input/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission. The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers. Fast I/O handling allowing maximum I/O toggling up to 90 MHz. 3.37 Analog-to-digital converters (ADCs) Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs. 38/201 DocID027107 Rev 5 STM32F446xC/E Functional overview Additional logic functions embedded in the ADC interface allow: • Simultaneous sample and hold • Interleaved sample and hold The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer. 3.38 Temperature sensor The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as VBAT, ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and VBAT conversion are enabled at the same time, only VBAT conversion is performed. As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used. 3.39 Digital-to-analog converter (DAC) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. This dual digital Interface supports the following features: • two DAC converters: one for each output channel • 8-bit or 10-bit monotonic output • left or right data alignment in 12-bit mode • synchronized update capability • noise-wave generation • triangular-wave generation • dual DAC channel independent or simultaneous conversions • DMA capability for each channel • external triggers for conversion • input voltage reference VREF+ Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams. 3.40 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. DocID027107 Rev 5 39/201 40 Functional overview STM32F446xC/E Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 3.41 Embedded Trace Macrocell™ The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F446xx through a small number of ETM pins to an external hardware trace port analyser (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors. The Embedded Trace Macrocell operates with third party debugger software tools. 40/201 DocID027107 Rev 5 STM32F446xC/E Pinout and pin description 9%$7 3& 3&26&B,1 3&26&B287 3+26&B,1 3+26&B287 1567 3& 3& 3& 3& 966$95() 9''$95() 3$ 3$ 3$ 3% 3% %227 3% 3% 3% 3% 3% 3' 3& 3& 3& 3$ 3$ 966 9'' Figure 10. STM32F446xC/xE LQFP64 pinout /4)3 9'' 966 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 3$ 966 9'' 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 3% 9&$3B 966 9'' 4 Pinout and pin description 069 1. The above figure shows the package top view. DocID027107 Rev 5 41/201 66 Pinout and pin description STM32F446xC/E 6$$ 633 0% 0% 0" 0" "//4 0" 0" 0" 0" 0" 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0# 0# 0# 0! 0! Figure 11. STM32F446xC/xE LQFP100 pinout ,1&0 6$$ 633 6#!0? 0! 0! 0! 0! 0! 0! 0# 0# 0# 0# 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0" 0" 0" 0" 0! 633 6$$ 0! 0! 0! 0! 0# 0# 0" 0" 0" 0% 0% 0% 0% 0% 0% 0% 0% 0% 0" 6#!0? 633 6$$ 0% 0% 0% 0% 0% 6"!4 0# 0#/3#?). 0#/3#?/54 633 6$$ 0(/3#?). 0(/3#?/54 .234 0# 0# 0# 0# 6$$ 633!62%& 62%& 6$$! 0! 0! 0! -36 1. The above figure shows the package top view. 42/201 DocID027107 Rev 5 STM32F446xC/E Pinout and pin description /4)3 9 '' 9 66 9 &$3B 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 9 ''86% 9 66 3* 3* 3* 3* 3* 3* 3* 3' 3' 9 '' 9 66 3' 3' 3' 3' 3' 3' 3% 3% 3% 3% 9 &$3B 9 '' 9 5() 9 ''$ 3$ 3$ 3$ 3$ 9 66 9 '' 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 3) 3) 9 66 9 '' 3) 3) 3) 3* 3* 3( 3( 3( 9 66 9 '' 3( 3( 3( 3( 3( 3( 3% 3% 3( 3( 3( 3( 3( 9%$7 3& 3& 3& 3) 3) 3) 3) 3) 3) 9 66 9 '' 3) 3) 3) 3) 3) 3+ 3+ 15 67 3& 3& 3& 3& 9 '' 9 66$ 9 '' 3'5B21 3( 3( 3% 3% %22 7 3% 3% 3% 3% 3% 3* 9 '' 9 66 3* 3* 3* 3* 3* 3* 3' 3' 9 '' 9 66 3' 3' 3' 3' 3' 3' 3& 3& 3& 3$ 3$ Figure 12. STM32F446xC LQFP144 pinout DLF 1. The above figure shows the package top view. DocID027107 Rev 5 43/201 66 Pinout and pin description STM32F446xC/E Figure 13. STM32F446xC/xE WLCSP81 ballout $ 9'' 3& 3' 3' 3% 3% %227 9'' 3( % 966 3$ 3' 3' 3% 3% 966 3'5B 21 9%$7 & 3$ 9&$3B 3$ 3' 3% 3% 3% 3& 3& ' 3& 3$ 3& 3& 3' 3( 3( 15(6(7 3& ( 9'' 86% 3$ 3$ 3$ 3$ 3$ 3$ 3& 3+ ) 3& 3& 3& 3$ 3% 3$ 966$ 3& 3+ * 3' 3' 3% 3% 3( 3$ 3$ 966 3& + 3' 3% 966 3% 3( 3% 3$ 9''$ 9'' - 3% 9'' 9&$3B 3( 3( 3% 3& %<3$66B 5(* 3$ 06Y9 1. The above figure shows the package top view. 44/201 DocID027107 Rev 5 STM32F446xC/E Pinout and pin description Figure 14. STM32F446xC/xE UFBGA144 ballout $ 3& 3( 3( 3( 3( 3% 3% 3' 3' 3$ 3$ 3$ % 3& 3( 3( 3( 3% 3% 3* 3* 3' 3& 3& 3$, & 3& 9%$7 3) 3) 3% 3% 3* 3* 3' 3& 9'' 86% 3$ ' 3+ 966 9'' 3) %227 3% 3* 3* 3' 3' 3$ 3$ ( 3+ 3) 3) 3) 3'5B 21 966 966 3* 3' 3' 3& 3$ ) 1567 3) 3) 9'' 9'' 9'' 9'' 9'' 9'' 9'' 3& 3& * 3) 3) 3) 966 9'' 9'' 9'' 966 9&$3B 966 3* 3& + 3& 3& 3& 3& %<3$66 B5(* 966 9&$3B 3( 3' 3* 3* 3* - 966$ 3$ 3$ 3& 3% 3* 3( 3( 3' 3* 3* 3* . 95() 3$ 3$ 3& 3) 3* 3( 3( 3' 3' 3' 3' / 95() 3$ 3$ 3% 3) 3) 3( 3( 3' 3' 3% 3% 0 9''$ 3$ 3$ 3% 3) 3) 3( 3( 3% 3% 3% 3% 06Y9 1. The above picture shows the package top view. DocID027107 Rev 5 45/201 66 Pinout and pin description STM32F446xC/E Table 9. Legend/abbreviations used in the pinout table Name Abbreviation Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O FTf 5V tolerant IO, I2C FM+ option TTa 3.3 V tolerant I/O directly connected to ADC B Dedicated BOOT0 pin RST Bidirectional reset pin with weak pull-up resistor Pin type I/O structure Notes Definition Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers Table 10. STM32F446xx pin and ball descriptions D7 A3 1 PE2 I/O FT - - 2 D6 A2 2 PE3 I/O FT - TRACED0, SAI1_SD_B, FMC_A19, EVENTOUT - - 3 A9 B2 3 PE4 I/O FT - TRACED1, SPI4_NSS, SAI1_FS_A, FMC_A20, DCMI_D4, EVENTOUT - - TRACED2, TIM9_CH1, SPI4_MISO, SAI1_SCK_A, FMC_A21, DCMI_D6, EVENTOUT - - 46/201 4 - B3 LQFP144 1 WLCSP 81 - TRACECLK, SPI4_SCK, SAI1_MCLK_A, QUADSPI_BK1_IO2, FMC_A23, EVENTOUT LQFP100 Alternate functions LQFP64 Notes I/O structure Pin type UFBGA144 Pin Number 4 Pin name (function after reset) PE5 I/O FT DocID027107 Rev 5 Additional functions - STM32F446xC/E Pinout and pin description Table 10. STM32F446xx pin and ball descriptions (continued) I/O FT Notes I/O structure Pin name (function after reset) Pin type LQFP144 UFBGA144 WLCSP 81 LQFP100 LQFP64 Pin Number Alternate functions Additional functions - TRACED3, TIM9_CH2, SPI4_MOSI, SAI1_SD_A, FMC_A22, DCMI_D7, EVENTOUT - - - - - 5 - B4 5 PE6 1 6 B9 C2 6 VBAT 2 7 C8 A1 7 PC13 I/O FT - EVENTOUT TAMP_1/WKUP1 3 8 C9 B1 8 PC14OSC32_IN(PC14) I/O FT - EVENTOUT OSC32_IN 4 9 D9 C1 9 PC15OSC32_OUT(PC15) I/O FT - EVENTOUT OSC32_OUT - - - C3 10 PF0 I/O FT - I2C2_SDA, FMC_A0, EVENTOUT - - - - C4 11 PF1 I/O FT - I2C2_SCL, FMC_A1, EVENTOUT - - - - D4 12 PF2 I/O FT - I2C2_SMBA, FMC_A2, EVENTOUT - - - - E2 13 PF3 I/O FT - FMC_A3, EVENTOUT ADC3_IN9 - - - E3 14 PF4 I/O FT - FMC_A4, EVENTOUT ADC3_IN14 - - - E4 15 PF5 I/O FT - FMC_A5, EVENTOUT ADC3_IN15 - 10 - D2 16 VSS S - - - - - 11 - D3 17 VDD S - - - - - - - F3 18 PF6 - TIM10_CH1, SAI1_SD_B, QUADSPI_BK1_IO3, EVENTOUT ADC3_IN4 ADC3_IN5 S - I/O FT - - - F2 19 PF7 I/O FT - TIM11_CH1, SAI1_MCLK_B, QUADSPI_BK1_IO2, EVENTOUT - - - G3 20 PF8 I/O FT - SAI1_SCK_B, TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT ADC3_IN6 - - - G2 21 PF9 I/O FT - SAI1_FS_B, TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT ADC3_IN7 - - - G1 22 PF10 I/O FT - DCMI_D11, EVENTOUT ADC3_IN8 5 12 E9 D1 23 PH0-OSC_IN(PH0) I/O FT - EVENTOUT OSC_IN DocID027107 Rev 5 47/201 66 Pinout and pin description STM32F446xC/E Table 10. STM32F446xx pin and ball descriptions (continued) UFBGA144 LQFP144 F9 E1 24 PH1OSC_OUT(PH1) 7 14 D8 F1 25 NRST 8 15 G9 H1 26 Notes WLCSP 81 13 Alternate functions I/O FT - EVENTOUT OSC_OUT RS T - - - - SAI1_MCLK_B, OTG_HS_ULPI_STP, FMC_SDNWE, EVENTOUT ADC123_IN10 ADC123_IN11 I/O PC0 I/O structure LQFP100 6 Pin name (function after reset) Pin type LQFP64 Pin Number I/O FT Additional functions 9 16 - H2 27 PC1 I/O FT - SPI3_MOSI/I2S3_SD, SAI1_SD_A, SPI2_MOSI/I2S2_SD, EVENTOUT 10 17 E8 H3 28 PC2 I/O FT - SPI2_MISO, OTG_HS_ULPI_DIR, FMC_SDNE0, EVENTOUT ADC123_IN12 - SPI2_MOSI/I2S2_SD, OTG_HS_ULPI_NXT, FMC_SDCKE0, EVENTOUT ADC123_IN13 11 18 F8 H4 29 PC3 - 19 H9 - 30 VDD S - - - - - - G8 - - VSS S - - - - 12 20 F7 J1 31 VSSA S - - - - - - - K1 - VREF- S - - - - - 21 - L1 32 VREF+ S - - - - 13 22 H8 M1 33 VDDA S - - - - - TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, USART2_CTS, UART4_TX, EVENTOUT ADC123_IN0, WKUP0/TAMP_2 ADC123_IN1 ADC123_IN2 14 23 J9 J2 34 I/O FT PA0-WKUP(PA0) I/O FT 15 24 G7 K2 35 PA1 I/O FT - TIM2_CH2, TIM5_CH2, USART2_RTS, UART4_RX, QUADSPI_BK1_IO3, SAI2_MCLK_B, EVENTOUT 16 25 E7 L2 36 PA2 I/O FT - TIM2_CH3, TIM5_CH3, TIM9_CH1, USART2_TX, SAI2_SCK_B, EVENTOUT 48/201 DocID027107 Rev 5 STM32F446xC/E Pinout and pin description Table 10. STM32F446xx pin and ball descriptions (continued) Alternate functions Additional functions - TIM2_CH4, TIM5_CH4, TIM9_CH2, SAI1_FS_A, USART2_RX, OTG_HS_ULPI_D0, EVENTOUT ADC123_IN3 17 26 E6 M2 37 PA3 18 27 - G4 38 VSS S - - - - - - J8 H5 - BYPASS_REG I FT - - - 19 28 - F4 39 VDD S - - - - - SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, OTG_HS_SOF, DCMI_HSYNC, EVENTOUT ADC12_IN4, DAC_OUT1 - TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK/I2S1_CK, OTG_HS_ULPI_CK, EVENTOUT ADC12_IN5, DAC_OUT2 - TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO, I2S2_MCK, TIM13_CH1, DCMI_PIXCLK, EVENTOUT ADC12_IN6 ADC12_IN7 20 21 22 29 30 31 H7 F6 G6 J3 K3 L3 40 41 42 PA4 PA5 PA6 I/O FT Notes I/O structure Pin name (function after reset) Pin type LQFP144 UFBGA144 WLCSP 81 LQFP100 LQFP64 Pin Number I/O TC I/O TC I/O FT 23 32 E5 M3 43 PA7 I/O FT - TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI/I2S1_SD, TIM14_CH1, FMC_SDNWE, EVENTOUT 24 33 J7 J4 44 PC4 I/O FT - I2S1_MCK, SPDIFRX_IN2, FMC_SDNE0, EVENTOUT ADC12_IN14 - USART3_RX, SPDIFRX_IN3, FMC_SDCKE0, EVENTOUT ADC12_IN15 25 34 - K4 45 PC5 I/O FT DocID027107 Rev 5 49/201 66 Pinout and pin description STM32F446xC/E Table 10. STM32F446xx pin and ball descriptions (continued) 27 35 36 H6 L4 M4 46 47 PB0 PB1 I/O structure Pin type LQFP144 UFBGA144 WLCSP 81 F5 Pin name (function after reset) I/O FT I/O FT Notes 26 LQFP100 LQFP64 Pin Number Alternate functions Additional functions - TIM1_CH2N, TIM3_CH3, TIM8_CH2N, SPI3_MOSI/I2S3_SD, UART4_CTS, OTG_HS_ULPI_D1, SDIO_D1, EVENTOUT ADC12_IN8 - TIM1_CH3N, TIM3_CH4, TIM8_CH3N, OTG_HS_ULPI_D2, SDIO_D2, EVENTOUT ADC12_IN9 - 28 37 J6 J5 48 PB2-BOOT1 (PB2) I/O FT - TIM2_CH4, SAI1_SD_A, SPI3_MOSI/I2S3_SD, QUADSPI_CLK, OTG_HS_ULPI_D4, SDIO_CK, EVENTOUT - - - M5 49 PF11 I/O FT - SAI2_SD_B, FMC_SDNRAS, DCMI_D12, EVENTOUT - - - - L5 50 PF12 I/O FT - FMC_A6, EVENTOUT - - - - - 51 VSS S - - - - - - - G5 52 VDD S - - - - - - - K5 53 PF13 I/O FT - FMPI2C1_SMBA, FMC_A7, EVENTOUT - - - - M6 54 PF14 I/O FTf - FMPI2C1_SCL, FMC_A8, EVENTOUT - - - - L6 55 PF15 I/O FTf - FMPI2C1_SDA, FMC_A9, EVENTOUT - - - - K6 56 PG0 I/O FT - FMC_A10, EVENTOUT - - - - J6 57 PG1 I/O FT - FMC_A11, EVENTOUT - - 38 J5 M7 58 PE7 I/O FT - TIM1_ETR, UART5_RX, QUADSPI_BK2_IO0, FMC_D4, EVENTOUT - - 39 H5 L7 59 PE8 I/O FT - TIM1_CH1N, UART5_TX, QUADSPI_BK2_IO1, FMC_D5, EVENTOUT - - 40 G5 K7 60 PE9 I/O FT - TIM1_CH1, QUADSPI_BK2_IO2, FMC_D6, EVENTOUT - 50/201 DocID027107 Rev 5 STM32F446xC/E Pinout and pin description Table 10. STM32F446xx pin and ball descriptions (continued) LQFP64 LQFP100 WLCSP 81 UFBGA144 LQFP144 Pin name (function after reset) Pin type I/O structure Notes Pin Number Alternate functions - - - H6 61 VSS S - - - - - - - G6 62 VDD S - - - - - 41 J4 J7 63 PE10 I/O FT - TIM1_CH2N, QUADSPI_BK2_IO3, FMC_D7, EVENTOUT - - 42 - H8 64 PE11 I/O FT - TIM1_CH2, SPI4_NSS, SAI2_SD_B, FMC_D8, EVENTOUT - - 43 - J8 65 PE12 I/O FT - TIM1_CH3N, SPI4_SCK, SAI2_SCK_B, FMC_D9, EVENTOUT - - 44 - K8 66 PE13 I/O FT - TIM1_CH3, SPI4_MISO, SAI2_FS_B, FMC_D10, EVENTOUT - - 45 - L8 67 PE14 I/O FT - TIM1_CH4, SPI4_MOSI, SAI2_MCLK_B, FMC_D11, EVENTOUT - - 46 - M8 68 PE15 I/O FT - TIM1_BKIN, FMC_D12, EVENTOUT - - Additional functions 29 47 H4 M9 69 PB10 I/O FT - TIM2_CH3, I2C2_SCL, SPI2_SCK/I2S2_CK, SAI1_SCK_A, USART3_TX, OTG_HS_ULPI_D3, EVENTOUT - - - M10 70 PB11 I/O FT - TIM2_CH4, I2C2_SDA, USART3_RX, SAI2_SD_A, EVENTOUT - 30 48 J3 H7 71 VCAP_1 S - - - - 31 49 H3 - - VSS S - - - - 32 50 J2 G7 72 VDD S - - - - - TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, SAI1_SCK_B, USART3_CK, CAN2_RX, OTG_HS_ULPI_D5, OTG_HS_ID, EVENTOUT - 33 51 G4 M11 73 PB12 I/O FT DocID027107 Rev 5 51/201 66 Pinout and pin description STM32F446xC/E Table 10. STM32F446xx pin and ball descriptions (continued) 35 52 53 J1 M12 L11 74 75 PB13 PB14(1) I/O structure Pin type LQFP144 UFBGA144 WLCSP 81 H2 Pin name (function after reset) I/O FT I/O FT Notes 34 LQFP100 LQFP64 Pin Number Alternate functions Additional functions - TIM1_CH1N, SPI2_SCK/I2S2_CK, USART3_CTS, CAN2_TX, OTG_HS_ULPI_D6, EVENTOUT OTG_HS_VBUS - TIM1_CH2N, TIM8_CH2N, SPI2_MISO, USART3_RTS, TIM12_CH1, OTG_HS_DM, EVENTOUT - - 36 54 G3 L12 76 PB15(1) I/O FT - RTC_REFIN, TIM1_CH3N, TIM8_CH3N, SPI2_MOSI/I2S2_SD, TIM12_CH2, OTG_HS_DP, EVENTOUT - 55 - L9 77 PD8 I/O FT - USART3_TX, SPDIFRX_IN1, FMC_D13, EVENTOUT - - 56 - K9 78 PD9 I/O FT - USART3_RX, FMC_D14, EVENTOUT - - 57 - J9 79 PD10 I/O FT - USART3_CK, FMC_D15, EVENTOUT - - FMPI2C1_SMBA, USART3_CTS, QUADSPI_BK1_IO0, SAI2_SD_A, FMC_A16, EVENTOUT - - TIM4_CH1, FMPI2C1_SCL, USART3_RTS, QUADSPI_BK1_IO1, SAI2_FS_A, FMC_A17, EVENTOUT - - TIM4_CH2, FMPI2C1_SDA, QUADSPI_BK1_IO3, SAI2_SCK_A, FMC_A18, EVENTOUT - - - 58 59 H1 G2 H9 L10 80 81 PD11 PD12 I/O FT I/O FTf - 60 G1 K10 82 PD13 - - - G8 83 VSS S - - - - - - - F8 84 VDD S - - - - 52/201 I/O FTf DocID027107 Rev 5 STM32F446xC/E Pinout and pin description Table 10. STM32F446xx pin and ball descriptions (continued) - K11 85 PD14 I/O FTf - - 62 - K12 86 PD15 I/O FTf - TIM4_CH4, FMPI2C1_SDA, FMC_D1, EVENTOUT - - - - J12 87 PG2 I/O FT - FMC_A12, EVENTOUT - - - - J11 88 PG3 I/O FT - FMC_A13, EVENTOUT - - - - J10 89 PG4 I/O FT - FMC_A14/FMC_BA0, EVENTOUT - - - - H12 90 PG5 I/O FT - FMC_A15/FMC_BA1, EVENTOUT - - - - H11 91 PG6 I/O FT - QUADSPI_BK1_NCS, DCMI_D12, EVENTOUT - - - - H10 92 PG7 I/O FT - USART6_CK, FMC_INT, DCMI_D13, EVENTOUT - - - - G11 93 PG8 I/O FT - SPDIFRX_IN2, USART6_RTS, FMC_SDCLK, EVENTOUT - - - - - 94 VSS S - - - - - - - F10 - VDD S - - - - - - E1 C11 95 VDDUSB S - - - - - TIM3_CH1, TIM8_CH1, FMPI2C1_SCL, I2S2_MCK, USART6_TX, SDIO_D6, DCMI_D0, EVENTOUT - - TIM3_CH2, TIM8_CH2, FMPI2C1_SDA, SPI2_SCK/I2S2_CK, I2S3_MCK, SPDIFRX_IN1, USART6_RX, SDIO_D7, DCMI_D1, EVENTOUT - - TRACED0, TIM3_CH3, TIM8_CH3, UART5_RTS, USART6_CK, SDIO_D0, DCMI_D2, EVENTOUT - 37 38 39 63 64 65 F1 F2 F3 G12 F12 F11 LQFP144 61 WLCSP 81 - TIM4_CH3, FMPI2C1_SCL, SAI2_SCK_A, FMC_D0, EVENTOUT LQFP100 Alternate functions LQFP64 Notes I/O structure Pin type UFBGA144 Pin Number 96 97 98 Pin name (function after reset) PC6 PC7 PC8 I/O FTf I/O FTf I/O FT DocID027107 Rev 5 Additional functions - 53/201 66 Pinout and pin description STM32F446xC/E Table 10. STM32F446xx pin and ball descriptions (continued) 41 66 67 E2 E11 E12 99 100 PC9 PA8 I/O structure Pin type LQFP144 UFBGA144 WLCSP 81 D1 Pin name (function after reset) I/O FT I/O FT Notes 40 LQFP100 LQFP64 Pin Number Alternate functions Additional functions - MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S_CKIN, UART5_CTS, QUADSPI_BK1_IO0, SDIO_D1, DCMI_D3, EVENTOUT - - MCO1, TIM1_CH1, I2C3_SCL, USART1_CK, OTG_FS_SOF, EVENTOUT - OTG_FS_VBUS 42 68 F4 D12 101 PA9 I/O FT - TIM1_CH2, I2C3_SMBA, SPI2_SCK/I2S2_CK, SAI1_SD_B, USART1_TX, DCMI_D0, EVENTOUT 43 69 E3 D11 102 PA10 I/O FT - TIM1_CH3, USART1_RX, OTG_FS_ID, DCMI_D1, EVENTOUT - 44 70 C1 C12 103 PA11(1) I/O FT - TIM1_CH4, USART1_CTS, CAN1_RX, OTG_FS_DM, EVENTOUT - 45 71 E4 B12 104 PA12(1) I/O FT - TIM1_ETR, USART1_RTS, SAI2_FS_B, CAN1_TX, OTG_FS_DP, EVENTOUT - 46 72 D2 A12 105 PA13(JTMS-SWDIO) I/O FT - JTMS-SWDIO, EVENTOUT - - 73 C2 G9 106 47 74 B1 G10 107 48 75 A1 F9 108 49 76 C3 A11 109 PA14(JTCK-SWCLK) I/O FT 50 77 54/201 B2 A10 110 VCAP_2 S - - - - VSS S - - - - VDD S - - - - - JTCK-SWCLK, EVENTOUT - - JTDI, TIM2_CH1/TIM2_ETR, HDMI_CEC, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, UART4_RTS, EVENTOUT - PA15(JTDI) I/O FT DocID027107 Rev 5 STM32F446xC/E Pinout and pin description Table 10. STM32F446xx pin and ball descriptions (continued) 52 53 78 79 80 D4 A2 B11 B10 C10 111 112 113 PC10 PC11 PC12 I/O structure Pin type LQFP144 UFBGA144 WLCSP 81 D3 Pin name (function after reset) I/O FT I/O FT I/O FT Notes 51 LQFP100 LQFP64 Pin Number Alternate functions Additional functions - SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, QUADSPI_BK1_IO1, SDIO_D2, DCMI_D8, EVENTOUT - - SPI3_MISO, USART3_RX, UART4_RX, QUADSPI_BK2_NCS, SDIO_D3, DCMI_D4, EVENTOUT - - I2C2_SDA, SPI3_MOSI/I2S3_SD, USART3_CK, UART5_TX, SDIO_CK, DCMI_D9, EVENTOUT - - - 81 B3 E10 114 PD0 I/O FT - SPI4_MISO, SPI3_MOSI/I2S3_SD, CAN1_RX, FMC_D2, EVENTOUT - 82 C4 D10 115 PD1 I/O FT - SPI2_NSS/I2S2_WS, CAN1_TX, FMC_D3, EVENTOUT - 54 83 D5 E9 116 PD2 I/O FT - TIM3_ETR, UART5_RX, SDIO_CMD, DCMI_D11, EVENTOUT - - - 84 - D9 117 PD3 I/O FT - TRACED1, SPI2_SCK/I2S2_CK, USART2_CTS, QUADSPI_CLK, FMC_CLK, DCMI_D5, EVENTOUT - 85 A3 C9 118 PD4 I/O FT - USART2_RTS, FMC_NOE, EVENTOUT - - 86 - B9 119 PD5 I/O FT - USART2_TX, FMC_NWE, EVENTOUT - - - - E7 120 VSS S - - - - - - - F7 121 VDD S - - - - DocID027107 Rev 5 55/201 66 Pinout and pin description STM32F446xC/E Table 10. STM32F446xx pin and ball descriptions (continued) B4 A8 122 PD6 I/O FT - - 88 A4 A9 123 PD7 I/O FT - USART2_CK, SPDIFRX_IN0, FMC_NE1, EVENTOUT - - LQFP144 87 WLCSP 81 - SPI3_MOSI/I2S3_SD, SAI1_SD_A, USART2_RX, FMC_NWAIT, DCMI_D10, EVENTOUT LQFP100 Alternate functions LQFP64 Notes I/O structure Pin type UFBGA144 Pin Number Pin name (function after reset) Additional functions - - - - E8 124 PG9 I/O FT - SPDIFRX_IN3, USART6_RX, QUADSPI_BK2_IO2, SAI2_FS_B, FMC_NE2/FMC_NCE3, DCMI_VSYNC, EVENTOUT - - - D8 125 PG10 I/O FT - SAI2_SD_B, FMC_NE3, DCMI_D2, EVENTOUT - - - - C8 126 PG11 I/O FT - SPI4_SCK, SPDIFRX_IN0, DCMI_D3, EVENTOUT - - - - - B8 127 PG12 I/O FT - SPI4_MISO, SPDIFRX_IN1, USART6_RTS, FMC_NE4, EVENTOUT - - - D7 128 PG13 I/O FT - TRACED2, SPI4_MOSI, USART6_CTS, FMC_A24, EVENTOUT - - TRACED3, SPI4_NSS, USART6_TX, QUADSPI_BK2_IO3, FMC_A25, EVENTOUT - - - - C7 129 PG14 - - - - 130 VSS S - - - - - - - F6 131 VDD S - - - - - - - B7 132 PG15 - USART6_CTS, FMC_SDNCAS, DCMI_D13, EVENTOUT - - JTDO/TRACESWO, TIM2_CH2, I2C2_SDA, SPI1_SCK/I2S1_CK, SPI3_SCK/I2S3_CK, EVENTOUT - 55 89 56/201 A5 A7 133 I/O FT I/O FT PB3(JTDO/TRACES WO) I/O FT DocID027107 Rev 5 STM32F446xC/E Pinout and pin description Table 10. STM32F446xx pin and ball descriptions (continued) 57 58 90 91 92 A6 C5 A6 B6 C6 134 135 136 PB4(NJTRST) PB5 PB6 59 93 B6 D6 137 PB7 60 94 A7 D5 138 BOOT0 61 62 95 96 C6 C7 C5 B5 139 140 PB8 PB9 I/O structure Pin type LQFP144 UFBGA144 WLCSP 81 B5 Pin name (function after reset) I/O FT I/O FT I/O FT I/O FT I B I/O FT I/O FT Notes 56 LQFP100 LQFP64 Pin Number Alternate functions Additional functions - NJTRST, TIM3_CH1, I2C3_SDA, SPI1_MISO, SPI3_MISO, SPI2_NSS/I2S2_WS, EVENTOUT - - TIM3_CH2, I2C1_SMBA, SPI1_MOSI/I2S1_SD, SPI3_MOSI/I2S3_SD, CAN2_RX, OTG_HS_ULPI_D7, FMC_SDCKE1, DCMI_D10, EVENTOUT - - TIM4_CH1, HDMI_CEC, I2C1_SCL, USART1_TX, CAN2_TX, QUADSPI_BK1_NCS, FMC_SDNE1, DCMI_D5, EVENTOUT - - TIM4_CH2, I2C1_SDA, USART1_RX, SPDIFRX_IN0, FMC_NL, DCMI_VSYNC, EVENTOUT - - - VPP - TIM2_CH1/TIM2_ETR, TIM4_CH3, TIM10_CH1, I2C1_SCL, CAN1_RX, SDIO_D4, DCMI_D6, EVENTOUT - - TIM2_CH2, TIM4_CH4, TIM11_CH1, I2C1_SDA, SPI2_NSS/I2S2_WS, SAI1_FS_B, CAN1_TX, SDIO_D5, DCMI_D7, EVENTOUT - - - - 97 - A5 141 PE0 I/O FT - TIM4_ETR, SAI2_MCLK_A, FMC_NBL0, DCMI_D2, EVENTOUT - 98 - A4 142 PE1 I/O FT - FMC_NBL1, DCMI_D3, EVENTOUT DocID027107 Rev 5 57/201 66 Pinout and pin description STM32F446xC/E Table 10. STM32F446xx pin and ball descriptions (continued) LQFP64 LQFP100 WLCSP 81 UFBGA144 LQFP144 Pin name (function after reset) Pin type I/O structure Notes Pin Number Alternate functions 63 99 B7 E6 - VSS S - - - - - - B8 E5 143 PDR_ON S - - - - 64 100 A8 F5 144 VDD S - - - - 1. PA11, PA12, PB14 and PB15 I/Os are supplied by VDDUSB 58/201 DocID027107 Rev 5 Additional functions AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3 /4/CEC SPI1/2/3/ 4 Port AF6 AF7 AF8 AF9 SPI2/3/ SAI/ CAN1/2 USART1/ SPI2/3/4/ USART6/ TIM12/13/ 2/3/UART SAI1 UART4/5/ 14/ 5/SPDIFR SPDIFRX QUADSPI X AF10 AF11 AF12 AF13 AF14 AF15 SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS OTG1_FS FMC/ SDIO/ OTG2_FS DCMI - SYS DocID027107 Rev 5 TIM1/2 TIM3/4/5 PA0 - TIM2_CH1/ TIM2_ETR TIM5_CH1 TIM8_ETR - - - USART2_ CTS UART4_ TX - - - - - - EVENT OUT PA1 - TIM2_CH2 TIM5_CH2 - - - - USART2_ RTS UART4_ RX QUADSPI_ BK1_IO3 SAI2_ MCLK_B - - - - EVENT OUT PA2 - TIM2_CH3 TIM5_CH3 TIM9_CH1 - - - USART2_ TX SAI2_ SCK_B - - - - - - EVENT OUT PA3 - TIM2_CH4 TIM5_CH4 TIM9_CH2 - - SAI1_ FS_A USART2_ RX - - OTG_HS_ ULPI_D0 - - - - EVENT OUT PA4 - - - - - SPI1_NSS/I 2S1_WS SPI3_NSS / I2S3_WS USART2_ CK - - - - OTG_HS_ SOF DCMI_ HSYNC - EVENT OUT PA5 - TIM2_CH1/ TIM2_ETR - TIM8_ CH1N - SPI1_SCK/I 2S1_CK - - - - OTG_HS_ ULPI_CK - - - - EVENT OUT PA6 - TIM1_ BKIN TIM3_CH1 TIM8_ BKIN - SPI1_MISO I2S2_ MCK - - TIM13_CH1 - - - DCMI_ PIXCLK - EVENT OUT PA7 - TIM1_ CH1N TIM3_CH2 TIM8_ CH1N - SPI1_MOSI / I2S1_SD - - - TIM14_CH1 - - FMC_ SDNWE - - EVENT OUT PA8 MCO1 TIM1_CH1 - - I2C3_ SCL - - USART1_ CK - - OTG_FS_ SOF - - - - EVENT OUT PA9 - TIM1_CH2 - - I2C3_ SMBA SPI2_SCK /I2S2_CK SAI1_ SD_B USART1_ TX - - - - - DCMI_D0 - EVENT OUT PA10 - TIM1_CH3 - - - - - USART1_ RX - - OTG_FS_ ID - - DCMI_D1 - EVENT OUT PA11 - TIM1_CH4 - - - - - USART1_ CTS - CAN1_RX OTG_FS_ DM - - - - EVENT OUT PA12 - TIM1_ETR - - - - - USART1_ RTS SAI2_ FS_B CAN1_TX OTG_FS_ DP - - - - EVENT OUT PA13 JTMSSWDIO - - - - - - - - - - - - - - EVENT OUT PA14 JTCKSWCLK - - - - - - - - - - - - - - EVENT OUT PA15 JTDI TIM2_CH1/ TIM2_ETR - - HDMI_ CEC SPI1_NSS/ I2S1_WS SPI3_ NSS/ I2S3_WS - UART4_RT S - - - - - - EVENT OUT Port A Pinout and pin description 59/201 SYS TIM8/9/ 10/11/ CEC STM32F446xC/E Table 11. Alternate function AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3 /4/CEC SPI1/2/3/ 4 Port DocID027107 Rev 5 Port B AF6 AF7 AF8 AF9 SPI2/3/ SAI/ CAN1/2 USART1/ SPI2/3/4/ USART6/ TIM12/13/ 2/3/UART SAI1 UART4/5/ 14/ 5/SPDIFR SPDIFRX QUADSPI X AF10 AF11 AF12 AF13 AF14 AF15 SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS OTG1_FS FMC/ SDIO/ OTG2_FS DCMI - SYS TIM1/2 TIM3/4/5 PB0 - TIM1_CH2N TIM3_CH3 TIM8_ CH2N - - - SPI3_MOS I/ I2S3_SD UART4_ CTS - OTG_HS_ ULPI_D1 - SDIO_D1 - - EVENT OUT PB1 - TIM1_CH3N TIM3_CH4 TIM8_ CH3N - - - - - - OTG_HS_ ULPI_D2 - SDIO_D2 - - EVENT OUT PB2 - TIM2_CH4 - - - - SAI1_ SD_A SPI3_MOS I/ I2S3_SD - QUADSPI_ CLK OTG_HS_ ULPI_D4 - SDIO_CK - - EVENT OUT PB3 JTDO/ TRACES WO TIM2_CH2 - - I2C2_ SDA SPI1_SCK /I2S1_CK SPI3_SCK / I2S3_CK - - - - - - - - EVENT OUT PB4 NJTRST - TIM3_CH1 - I2C3_ SDA SPI1_MISO SPI3_ MISO SPI2_NSS/ I2S2_WS - - - - - - - EVENT OUT PB5 - - TIM3_CH2 - I2C1_ SMBA SPI1_MOSI /I2S1_SD SPI3_ MOSI/ I2S3_SD - - CAN2_RX OTG_HS_ ULPI_D7 - FMC_ SDCKE1 DCMI_ D10 - EVENT OUT PB6 - - TIM4_CH1 HDMI_ CEC I2C1_ SCL - - USART1_ TX - CAN2_TX QUADSPI_ BK1_NCS - FMC_ SDNE1 DCMI_D5 - EVENT OUT PB7 - - TIM4_CH2 - I2C1_ SDA - - USART1_ RX SPDIF_ RX0 - - - FMC_NL DCMI_ VSYNC - EVENT OUT PB8 - TIM2_CH1/ TIM2_ETR TIM4_CH3 TIM10_ CH1 I2C1_ SCL - - - - CAN1_RX - - SDIO_D4 DCMI_D6 - EVENT OUT PB9 - TIM2_ CH2 TIM4_CH4 TIM11_ CH1 I2C1_ SDA SPI2_NSS/ I2S2_WS SAI1_ FS_B - - CAN1_TX - - SDIO_D5 DCMI_D7 - EVENT OUT PB10 - TIM2_CH3 - - I2C2_ SCL SPI2_SCK/ I2S2_CK SAI1_ SCK_A USART3_ TX - - OTG_HS_ ULPI_D3 - - - - EVENT OUT PB11 - TIM2_CH4 - - I2C2_ SDA - - USART3_ RX SAI2_ SD_A - - - - - - EVENT OUT PB12 - TIM1_BKIN - - I2C2_ SMBA SPI2_NSS/ I2S2_WS SAI1_ SCK_B USART3_ CK - CAN2_RX OTG_HS_ ULPI_D5 - OTG_ HS_ID - - EVENT OUT PB13 - TIM1_CH1N - - - SPI2_SCK/ I2S2_CK - USART3_ CTS - CAN2_TX OTG_HS_ ULPI_D6 - - - - EVENT OUT PB14 - TIM1_CH2N - TIM8_ CH2N - SPI2_MISO - USART3_ RTS - TIM12_CH1 - - OTG_ HS_DM - - EVENT OUT PB15 RTC_ REFIN TIM1_CH3N - TIM8_ CH3N - SPI2_MOSI /I2S2_SD - - - TIM12_CH2 - - OTG_ HS_DP - - EVENT OUT STM32F446xC/E SYS TIM8/9/ 10/11/ CEC Pinout and pin description 60/201 Table 11. Alternate function (continued) AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3 /4/CEC SPI1/2/3/ 4 Port AF6 AF7 AF8 AF9 SPI2/3/ SAI/ CAN1/2 USART1/ SPI2/3/4/ USART6/ TIM12/13/ 2/3/UART SAI1 UART4/5/ 14/ 5/SPDIFR SPDIFRX QUADSPI X AF10 AF11 AF12 AF13 AF14 AF15 SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS OTG1_FS FMC/ SDIO/ OTG2_FS DCMI - SYS DocID027107 Rev 5 TIM1/2 TIM3/4/5 PC0 - - - - - - SAI1_ MCLK_B - - - OTG_HS_ ULPI_STP - FMC_ SDNWE - - EVENT OUT PC1 - - - - - SPI3_MOSI /I2S3_SD SAI1_ SD_A SPI2_MOS I /I2S2_SD - - - - - - - EVENT OUT PC2 - - - - - SPI2_MISO - - - - OTG_HS_ ULPI_DIR - FMC_ SDNE0 - - EVENT OUT PC3 - - - - - SPI2_MOSI / I2S2_SD - - - - OTG_HS_ ULPI_NXT - FMC_ SDCKE0 - - EVENT OUT PC4 - - - - - I2S1_MCK - - SPDIF_ RX2 - - - FMC_ SDNE0 - - EVENT OUT PC5 - - - - - - - USART3_ RX SPDIF_ RX3 - - - FMC_ SDCKE0 - - EVENT OUT PC6 - - TIM3_CH1 TIM8_CH1 FMPI2C1 _SCL I2S2_MCK - - USART6_T X - - - SDIO_D6 DCMI_D0 - EVENT OUT PC7 - - TIM3_CH2 TIM8_CH2 FMPI2C1 _SDA SPI2_SCK/ I2S2_CK I2S3_MCK SPDIF_ RX1 USART6_R X - - - SDIO_D7 DCMI_D1 - EVENT OUT PC8 TRACE D0 - TIM3_CH3 TIM8_CH3 - - - UART5_ RTS USART6_C K - - - SDIO_D0 DCMI_D2 - EVENT OUT PC9 MCO2 - TIM3_CH4 TIM8_CH4 I2C3_ SDA I2S_CKIN - UART5_ CTS - QUADSPI_ BK1_IO0 - - SDIO_D1 DCMI_D3 - EVENT OUT PC10 - - - - - - SPI3_SCK / I2S3_CK USART3_ TX UART4_TX QUADSPI_ BK1_IO1 - - SDIO_D2 DCMI_D8 - EVENT OUT PC11 - - - - - - SPI3_ MISO USART3_ RX UART4_RX QUADSPI_ BK2_NCS - - SDIO_D3 DCMI_D4 - EVENT OUT PC12 - - - - I2C2_ SDA - SPI3_ MOSI/ I2S3_SD USART3_ CK UART5_TX - - - SDIO_CK DCMI_D9 - EVENT OUT PC13 - - - - - - - - - - - - - - - EVENT OUT PC14 - - - - - - - - - - - - - - - EVENT OUT PC15 - - - - - - - - - - - - - - - EVENT OUT Port C Pinout and pin description 61/201 SYS TIM8/9/ 10/11/ CEC STM32F446xC/E Table 11. Alternate function (continued) AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3 /4/CEC SPI1/2/3/ 4 Port DocID027107 Rev 5 Port D AF6 AF7 AF8 AF9 SPI2/3/ SAI/ CAN1/2 USART1/ SPI2/3/4/ USART6/ TIM12/13/ 2/3/UART SAI1 UART4/5/ 14/ 5/SPDIFR SPDIFRX QUADSPI X AF10 AF11 AF12 AF13 AF14 AF15 SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS OTG1_FS FMC/ SDIO/ OTG2_FS DCMI - SYS TIM1/2 TIM3/4/5 PD0 - - - - - SPI4_MISO SPI3_ MOSI/ I2S3_SD - - CAN1_RX - - FMC_D2 - - EVENT OUT PD1 - - - - - - - SPI2_NSS/ I2S2_WS - CAN1_TX - - FMC_D3 - - EVENT OUT PD2 - - TIM3_ETR - - - - - UART5_RX - - - SDIO_CMD DCMI_ D11 - EVENT OUT PD3 TRACE D1 - - - - SPI2_SCK/ I2S2_CK - USART2_ CTS - QUADSPI_ CLK - - FMC_CLK DCMI_ D5 - EVENT OUT PD4 - - - - - - - USART2_ RTS - - - - FMC_NOE - - EVENT OUT PD5 - - - - - - - USART2_ TX - - - - FMC_NWE - - EVENT OUT PD6 - - - - - SPI3_ MOSI/ I2S3_SD SAI1_ SD_A USART2_ RX - - - - FMC_ NWAIT DCMI_ D10 - EVENT OUT PD7 - - - - - - - USART2_ CK SPDIF_ RX0 - - - FMC_NE1 - - EVENT OUT PD8 - - - - - - - USART3_ TX SPDIF_ RX1 - - - FMC_D13 - - EVENT OUT PD9 - - - - - - - USART3_ RX - - - - FMC_D14 - - EVENT OUT PD10 - - - - - - - USART3_ CK - - - - FMC_D15 - - EVENT OUT PD11 - - - - FMPI2C1 _SMBA - - USART3_ CTS - QUADSPI_ BK1_IO0 SAI2_SD_A - FMC_A16 - - EVENT OUT PD12 - - TIM4_CH1 - FMPI2C1 _SCL - - USART3_ RTS - QUADSPI_ BK1_IO1 SAI2_FS_A - FMC_A17 - - EVENT OUT PD13 - - TIM4_CH2 - FMPI2C1 _SDA - - - - QUADSPI_ BK1_IO3 SAI2_SCK_A - FMC_A18 - - EVENT OUT PD14 - - TIM4_CH3 - FMPI2C1 _SCL - - - SAI2_ SCK_A - - - FMC_D0 - - EVENT OUT PD15 - - TIM4_CH4 - FMPI2C1 _SDA - - - - - - - FMC_D1 - - EVENT OUT STM32F446xC/E SYS TIM8/9/ 10/11/ CEC Pinout and pin description 62/201 Table 11. Alternate function (continued) AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3 /4/CEC SPI1/2/3/ 4 Port AF6 AF7 AF8 AF9 SPI2/3/ SAI/ CAN1/2 USART1/ SPI2/3/4/ USART6/ TIM12/13/ 2/3/UART SAI1 UART4/5/ 14/ 5/SPDIFR SPDIFRX QUADSPI X AF10 AF11 AF12 AF13 AF14 AF15 SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS OTG1_FS FMC/ SDIO/ OTG2_FS DCMI - SYS DocID027107 Rev 5 TIM1/2 TIM3/4/5 PE0 - - TIM4_ETR - - - - - - - SAI2_ MCLK_A - FMC_ NBL0 DCMI_D2 - EVENT OUT PE1 - - - - - - - - - - - - FMC_ NBL1 DCMI_D3 - EVENT OUT PE2 TRACE CLK - - - - SPI4_SCK SAI1_ MCLK_A - - QUADSPI_ BK1_IO2 - - FMC_A23 - - EVENT OUT PE3 TRACE D0 - - - - - SAI1_ SD_B - - - - - FMC_A19 - - EVENT OUT PE4 TRACE D1 - - - - SPI4_NSS SAI1_ FS_A - - - - - FMC_A20 DCMI_D4 - EVENT OUT PE5 TRACE D2 - - TIM9_CH1 - SPI4_MISO SAI1_ SCK_A - - - - - FMC_A21 DCMI_D6 - EVENT OUT PE6 TRACE D3 - - TIM9_CH2 - SPI4_MOSI SAI1_ SD_A - - - - - FMC_A22 DCMI_D7 - EVENT OUT PE7 - TIM1_ETR - - - - - - UART5_RX - QUADSPI_ BK2_IO0 - FMC_D4 - - EVENT OUT PE8 - TIM1_CH1N - - - - - - UART5_TX - QUADSPI_ BK2_IO1 - FMC_D5 - - EVENT OUT PE9 - TIM1_CH1 - - - - - - - - QUADSPI_ BK2_IO2 - FMC_D6 - - EVENT OUT PE10 - TIM1_CH2N - - - - - - - - QUADSPI_ BK2_IO3 - FMC_D7 - - EVENT OUT PE11 - TIM1_CH2 - - - SPI4_NSS - - - - - FMC_D8 - - EVENT OUT PE12 - TIM1_CH3N - - - SPI4_SCK - - - - SAI2_ SCK_B - FMC_D9 - - EVENT OUT PE13 - TIM1_CH3 - - - SPI4_MISO - - - - SAI2_ FS_B - FMC_D10 - - EVENT OUT PE14 - TIM1_CH4 - - - SPI4_MOSI - - - - SAI2_ MCLK_B - FMC_D11 - - EVENT OUT PE15 - TIM1_BKIN - - - - - - - - - - FMC_D12 - - EVENT OUT Port E SAI2_ SD_B 63/201 Pinout and pin description SYS TIM8/9/ 10/11/ CEC STM32F446xC/E Table 11. Alternate function (continued) AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3 /4/CEC SPI1/2/3/ 4 Port AF6 AF7 AF8 AF9 SPI2/3/ SAI/ CAN1/2 USART1/ SPI2/3/4/ USART6/ TIM12/13/ 2/3/UART SAI1 UART4/5/ 14/ 5/SPDIFR SPDIFRX QUADSPI X AF10 AF11 AF12 AF13 AF14 AF15 SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS OTG1_FS FMC/ SDIO/ OTG2_FS DCMI - SYS DocID027107 Rev 5 SYS TIM1/2 TIM3/4/5 TIM8/9/ 10/11/ CEC PF0 - - - - I2C2_ SDA - - - - - - - FMC_A0 - - EVENT OUT PF1 - - - - I2C2_ SCL - - - - - - - FMC_A1 - - EVENT OUT PF2 - - - - I2C2_ SMBA - - - - - - - FMC_A2 - - EVENT OUT PF3 - - - - - - - - - - - - FMC_A3 - - EVENT OUT PF4 - - - - - - - - - - - - FMC_A4 - - EVENT OUT PF5 - - - - - - - - - - - - FMC_A5 - - EVENT OUT PF6 - - - TIM10_ CH1 - - SAI1_ SD_B - - QUADSPI_ BK1_IO3 - - - - - EVENT OUT PF7 - - - TIM11_ CH1 - - SAI1_ MCLK_B - - QUADSPI_ BK1_IO2 - - - - - EVENT OUT PF8 - - - - - - SAI1_ SCK_B - - TIM13_CH1 QUADSPI_ BK1_IO0 - - - - EVENT OUT PF9 - - - - - - SAI1_ FS_B - - TIM14_CH1 QUADSPI_ BK1_IO1 - - - - EVENT OUT PF10 - - - - - - - - - - - - - DCMI_ D11 - EVENT OUT PF11 - - - - - - - - - - SAI2_SD_B - FMC_ SDNRAS DCMI_ D12 - EVENT OUT PF12 - - - - - - - - - - - - FMC_A6 - - EVENT OUT PF13 - - - - FMPI2C1 _SMBA - - - - - - - FMC_A7 - - EVENT OUT PF14 - - - - FMPI2C1 _SCL - - - - - - - FMC_A8 - - EVENT OUT PF15 - - - - FMPI2C1 _SDA - - - - - - - FMC_A9 - - EVENT OUT Pinout and pin description 64/201 Table 11. Alternate function (continued) Port F STM32F446xC/E AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3 /4/CEC SPI1/2/3/ 4 Port DocID027107 Rev 5 Port G AF6 AF7 AF8 AF9 SPI2/3/ SAI/ CAN1/2 USART1/ SPI2/3/4/ USART6/ TIM12/13/ 2/3/UART SAI1 UART4/5/ 14/ 5/SPDIFR SPDIFRX QUADSPI X AF10 AF11 AF12 AF13 AF14 AF15 SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS OTG1_FS FMC/ SDIO/ OTG2_FS DCMI - SYS TIM1/2 TIM3/4/5 PG0 - - - - - - - - - - - - FMC_A10 - - EVENT OUT PG1 - - - - - - - - - - - - FMC_A11 - - EVENT OUT PG2 - - - - - - - - - - - - FMC_A12 - - EVENT OUT PG3 - - - - - - - - - - - - FMC_A13 - - EVENT OUT PG4 - - - - - - - - - - - - FMC_A14/ FMC_BA0 - - EVENT OUT PG5 - - - - - - - - - - - - FMC_A15/ FMC_BA1 - - EVENT OUT PG6 - - - - - - - - - - QUADSPI_ BK1_NCS - - DCMI_ D12 - EVENT OUT PG7 - - - - - - - - USART6_C K - - - FMC_INT DCMI_ D13 - EVENT OUT PG8 - - - - - - - SPDIFRX_ IN2 USART6_R TS - - - FMC_ SDCLK - - EVENT OUT PG9 - - - - - - - SPDIFRX_ IN3 USART6_R X QUADSPI_ BK2_IO2 SAI2_FS_B - FMC_NE2/ FMC_NCE3 DCMI_ VSYNC(1) - EVENT OUT PG10 - - - - - - - - - - SAI2_SD_B - FMC_NE3 DCMI_D2 - EVENT OUT PG11 - - - - - - SPI4_ SCK SPDIFRX_ IN0 - - - - - DCMI_D3 - EVENT OUT PG12 - - - - - - SPI4_ MISO SPDIFRX_ IN1 USART6_R TS - - - FMC_NE4 - - EVENT OUT PG13 TRACE D2 - - - - - SPI4_ MOSI - USART6_C TS - - - FMC_A24 - - EVENT OUT PG14 TRACE D3 - - - - - SPI4_ NSS - USART6_T X QUADSPI_ BK2_IO3 - - FMC_A25 - - EVENT OUT PG15 - - - - - - - - USART6_C TS - - - FMC_ SDNCAS DCMI_ D13 - EVENT OUT 65/201 Pinout and pin description SYS TIM8/9/ 10/11/ CEC STM32F446xC/E Table 11. Alternate function (continued) AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3 /4/CEC SPI1/2/3/ 4 Port AF6 AF7 AF8 AF9 SPI2/3/ SAI/ CAN1/2 USART1/ SPI2/3/4/ USART6/ TIM12/13/ 2/3/UART SAI1 UART4/5/ 14/ 5/SPDIFR SPDIFRX QUADSPI X AF10 AF11 AF12 AF13 AF14 AF15 SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS OTG1_FS FMC/ SDIO/ OTG2_FS DCMI - SYS SYS TIM1/2 TIM3/4/5 TIM8/9/ 10/11/ CEC PH0 - - - - - - - - - - - - - - - EVENT OUT PH1 - - - - - - - - - - - - - - - EVENT OUT Port H 1. Pinout and pin description 66/201 Table 11. Alternate function (continued) The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3. DocID027107 Rev 5 STM32F446xC/E STM32F446xC/E 5 Memory mapping Memory mapping The memory map is shown in Figure 15 Figure 15. Memory map [)))))))) 5HVHUYHG [([)))))))) &RUWH[0LQWHUQDO SHULSKHUDOV [([())))) $+% [['))))))) 5HVHUYHG [&[))))))) [%)) $+% 0E\WH %ORFN &RUWH[0 ,QWHUQDO SHULSKHUDOV 5HVHUYHG [ [[))))))) [)))) [( ['))))))) 0E\WH %ORFN )0& [' [&))))))) $+% 0E\WH %ORFN )0&4XDG63, [$ [))))))) [ [))))))) 0E\WH %ORFN )0&EDQN DQG4XDG63, [ 5HVHUYHG [&[)))) [%)) 0E\WH %ORFN )0&EDQN [ [))))))) $3% 0E\WH %ORFN 3HULSKHUDOV [ [))))))) 0E\WH %ORFN 65$0 [ [))))))) 0E\WH %ORFN 65$0 [ 5HVHUYHG [[))))))) 5HVHUYHG [[)))) 65$0.%DOLDVHG %\ELWEDQGLQJ 65$0.%DOLDVHG %\ELWEDQGLQJ [&[)))) 5HVHUYHG [)))&[))))))) 2SWLRQ%\WHV [)))&[)))&) 5HVHUYHG 6\VWHPPHPRU\ 5HVHUYHG 2SWLRQE\WHV [)))$[)))))) [)))[)))$) [))(&[))()))) [))(&[))(&) [ [[)))) [))) [[%))) 5HVHUYHG [[))(%))) 5HVHUYHG [[)))) 5HVHUYHG [[))))))) )ODVKPHPRU\ [[))))) 5HVHUYHG $OLDVHGWR)ODVKV\VWHP PHPRU\RU65$0GHSHQGLQJ RQWKH%227SLQV 5HVHUYHG $3% [[)))))) [ [[))))) DocID027107 Rev 5 069 67/201 71 Memory mapping STM32F446xC/E Table 12. STM32F446xC/E register boundary addresses(1) Bus Boundary address - 0xE00F FFFF - 0xFFFF FFFF Reserved Cortex-M4 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals 0xD000 0000 - 0xDFFF FFFF FMC bank 6 0xC000 0000 - 0xCFFF FFFF FMC bank 5 AHB3 0xA000 2000 - 0x0xBFFF FFFF Reserved 0xA000 1000 - 0x0xA000 1FFF QuadSPI control register 0xA000 0000 - 0xA000 0FFF FMC control register 0x9000 0000 - 0x9FFF FFFF QuadSPI 0x8000 0000 - 0x8FFF FFFF FMC bank 3 0x7000 0000 - 0x0x7FFF FFFF - AHB2 68/201 Peripheral Reserved 0x6000 0000 - 0x6FFF FFFF FMC bank 1 0x5006 0C00- 0x5FFF FFFF Reserved 0x5006 0800- 0x500F 07FF Reserved 0x5005 0400 - 0x5006 07FF Reserved 0x5005 0000 - 0x5005 03FF DCMI 0x5004 0000- 0x5004 FFFF Reserved 0x5000 0000 - 0X5003 FFFF USB OTG FS DocID027107 Rev 5 STM32F446xC/E Memory mapping Table 12. STM32F446xC/E register boundary addresses(1) (continued) Bus Boundary address Peripheral - 0x4008 0000- 0x4FFF FFFF Reserved 0x4004 0000 - 0x4007 FFFF USB OTG HS 0x4002 BC00- 0x4003 FFFF 0x4002 B000 - 0x4002 BBFF 0x4002 9400 - 0x4002 AFFF 0x4002 9000 - 0x4002 93FF 0x4002 8C00 - 0x4002 8FFF Reserved 0x4002 8800 - 0x4002 8BFF 0x4002 8400 - 0x4002 87FF 0x4002 8000 - 0x4002 83FF 0x4002 6800 - 0x4002 7FFF AHB1 0x4002 6400 - 0x4002 67FF DMA2 0x4002 6000 - 0x4002 63FF DMA1 0X4002 5000 - 0X4002 5FFF Reserved 0x4002 4000 - 0x4002 4FFF BKPSRAM 0x4002 3C00 - 0x4002 3FFF Flash interface register 0x4002 3800 - 0x4002 3BFF RCC 0X4002 3400 - 0X4002 37FF Reserved 0x4002 3000 - 0x4002 33FF CRC 0x4002 2C00 - 0x4002 2FFF 0x4002 2800 - 0x4002 2BFF 0x4002 2400 - 0x4002 27FF Reserved 0x4002 2000 - 0x4002 23FF 0x4002 1C00 - 0x4002 1FFF GPIOH 0x4002 1800 - 0x4002 1BFF GPIOG 0x4002 1400 - 0x4002 17FF GPIOF 0x4002 1000 - 0x4002 13FF GPIOE 0X4002 0C00 - 0x4002 0FFF GPIOD 0x4002 0800 - 0x4002 0BFF GPIOC 0x4002 0400 - 0x4002 07FF GPIOB 0x4002 0000 - 0x4002 03FF GPIOA DocID027107 Rev 5 69/201 71 Memory mapping STM32F446xC/E Table 12. STM32F446xC/E register boundary addresses(1) (continued) Bus Boundary address - 0x4001 6C00- 0x4001 FFFF 0x4001 6800 - 0x4001 6BFF Peripheral Reserved 0x4001 5C00 - 0x4001 5FFF SAI2 0x4001 6000 - 0x4001 67FF Reserved 0x4001 5800 - 0x4001 5BFF SAI1 0x4001 5400 - 0x4001 57FF 0x4001 5000 - 0x4001 53FF Reserved 0x4001 4C00 - 0x4001 4FFF APB2 70/201 0x4001 4800 - 0x4001 4BFF TIM11 0x4001 4400 - 0x4001 47FF TIM10 0x4001 4000 - 0x4001 43FF TIM9 0x4001 3C00 - 0x4001 3FFF EXTI 0x4001 3800 - 0x4001 3BFF SYSCFG 0x4001 3400 - 0x4001 37FF SPI4 0x4001 3000 - 0x4001 33FF SPI1 0x4001 2C00 - 0x4001 2FFF SDIO 0x4001 2400 - 0x4001 2BFF Reserved 0x4001 2000 - 0x4001 23FF ADC1 - ADC2 - ADC3 0x4001 1800 - 0x4001 1FFF Reserved 0x4001 1400 - 0x4001 17FF USART6 0x4001 1000 - 0x4001 13FF USART1 0x4001 0800 - 0x4001 0FFF Reserved 0x4001 0400 - 0x4001 07FF TIM8 0x4001 0000 - 0x4001 03FF TIM1 DocID027107 Rev 5 STM32F446xC/E Memory mapping Table 12. STM32F446xC/E register boundary addresses(1) (continued) Bus Boundary address - 0x4000 8000- 0x4000 FFFF 0x4000 7C00 - 0x4000 7FFF Peripheral Reserved 0x4000 7800 - 0x4000 7BFF APB1 0x4000 7400 - 0x4000 77FF DAC 0x4000 7000 - 0x4000 73FF PWR 0x4000 6C00 - 0x4000 6FFF HDMI-CEC 0x4000 6800 - 0x4000 6BFF CAN2 0x4000 6400 - 0x4000 67FF CAN1 0x4000 6000 - 0x4000 63FF FMPI2C1 0x4000 5C00 - 0x4000 5FFF I2C3 0x4000 5800 - 0x4000 5BFF I2C2 0x4000 5400 - 0x4000 57FF I2C1 0x4000 5000 - 0x4000 53FF UART5 0x4000 4C00 - 0x4000 4FFF UART4 0x4000 4800 - 0x4000 4BFF USART3 0x4000 4400 - 0x4000 47FF USART2 0x4000 4000 - 0x4000 43FF SPDIFRX 0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3 0x4000 3800 - 0x4000 3BFF SPI2 / I2S2 0x4000 3400 - 0x4000 37FF Reserved 0x4000 3000 - 0x4000 33FF IWDG 0x4000 2C00 - 0x4000 2FFF WWDG 0x4000 2800 - 0x4000 2BFF RTC & BKP Registers 0x4000 2400 - 0x4000 27FF Reserved 0x4000 2000 - 0x4000 23FF TIM14 0x4000 1C00 - 0x4000 1FFF TIM13 0x4000 1800 - 0x4000 1BFF TIM12 0x4000 1400 - 0x4000 17FF TIM7 0x4000 1000 - 0x4000 13FF TIM6 0x4000 0C00 - 0x4000 0FFF TIM5 0x4000 0800 - 0x4000 0BFF TIM4 0x4000 0400 - 0x4000 07FF TIM3 0x4000 0000 - 0x4000 03FF TIM2 1. The grey color is used for reserved boundary addresses. DocID027107 Rev 5 71/201 71 Electrical characteristics STM32F446xC/E 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the 1.7 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 16. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 17. Figure 16. Pin loading conditions Figure 17. Pin input voltage -#5PIN -#5PIN #P& 6). -36 72/201 DocID027107 Rev 5 -36 STM32F446xC/E 6.1.6 Electrical characteristics Power supply scheme Figure 18. Power supply scheme 9%$7 9%$7 WR9 *3,2V ,1 î) 9&$3B 9&$3B 9'' îQ) î) 966 9''86% %<3$66B5(* 9ROWDJH UHJXODWRU )ODVKPHPRU\ 27* )6 3+< Q) ) 5HVHW FRQWUROOHU 3'5B21 9''$ 95() Q) ) ,2 /RJLF .HUQHOORJLF &38GLJLWDO 5$0 9''86% 9'' /HYHOVKLIWHU 287 9'' %DFNXSFLUFXLWU\ 26&.57& :DNHXSORJLF %DFNXSUHJLVWHUV EDFNXS5$0 3RZHU VZLWFK Q) ) 95() $'& 95() $QDORJ 5&V 3// 966$ 06Y9 1. VDDA and VSSA must be connected to VDDand VSS, respectively. 2. VDDUSB is a dedicated independent USB power supply for the on-chip full-speed OTG PHY module and associated DP/DM GPIOs. Its value is independent from the VDD and VDDA values, but must be the last supply to be provided and the first to disappear. If VDD is different from VDDUSB and only one on-chip OTG PHY is used, the second OTG PHY GPIOs (DP/DM) are still supplied at VDDUSB (3.3V). 3. VDDUSB is available only on WLCSP81, UFBGA144 and LQFP144 packages. For packages where VDDUSB pin is not available, it is internally connected to VDD. 4. VCAP_2 pad is not available on LQFP64. Caution: Each power supply pair (VDD/VSS, VDDA/VSSA...) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device. DocID027107 Rev 5 73/201 174 Electrical characteristics 6.1.7 STM32F446xC/E Current consumption measurement Figure 19. Current consumption measurement scheme ,''B9%$7 9%$7 ,'' 9'' 9''$ 9''86% 06Y9 6.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 13: Voltage characteristics, Table 14: Current characteristics, and Table 15: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 13. Voltage characteristics Symbol VDD–VSS VIN Ratings Min Max –0.3 4.0 Input voltage on FT & FTf pins(2) VSS–0.3 VDD+4.0 Input voltage on TTa pins VSS–0.3 4.0 Input voltage on any other pin VSS–0.3 4.0 VSS 9.0 Variations between different VDD power pins - 50 Variations between all the different ground pins - 50 External main supply voltage (including VDDA, VDD, VDDUSB and VBAT)(1) Input voltage on BOOT0 pin |ΔVDDx| |VSSX −VSS| VESD(HBM) Electrostatic discharge voltage (human body model) Unit V mV see Section 6.3.15: Absolute maximum ratings (electrical sensitivity) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum value must always be respected. Refer to Table 14 for the values of the maximum allowed injected current. 74/201 DocID027107 Rev 5 - STM32F446xC/E Electrical characteristics Table 14. Current characteristics Symbol Ratings Max. ΣIVDD Total current into sum of all VDD power lines (source)(1) Σ IVSS (1) Σ IVDDUSB 25 Maximum current into each VDD power pin (source)(1) IVSS (1) ΣIIO ΣIINJ(PIN) 100 - 100 Output current sunk by any I/O and control pin 25 Output current sourced by any I/Os and control pin - 25 Total output current sunk by sum of all I/Os and control pins (2) 120 Total output current sunk by sum of all USB I/Os 25 Total output current sourced by sum of all I/Os and control IINJ(PIN) - 240 Total current into VDDUSB power line (source) IVDD IIO 240 Total current out of sum of all VSS ground lines (sink) Maximum current out of each VSS ground pin (sink) Unit pins(2) Injected current on FT, FTf, RST and B pins mA -120 –5/+0(3) Injected current on TTa pins ±5(4) Total injected current (sum of all I/O and control pins)(5) ±25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages. 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to Table 13 for the maximum allowed input voltage value. 5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 15. Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Maximum junction temperature DocID027107 Rev 5 Value Unit –65 to +150 °C 125 °C 75/201 174 Electrical characteristics STM32F446xC/E 6.3 Operating conditions 6.3.1 General operating conditions Table 16. General operating conditions Symbol Parameter Conditions(1) Power Scale 3 (VOS[1:0] bits in PWR_CR register = 0x01), Regulator ON, over-drive OFF fHCLK Internal AHB clock frequency fPCLK1 Internal APB1 clock frequency fPCLK2 Internal APB2 clock frequency 76/201 Overdrive Power Scale 2 (VOS[1:0] bits OFF in PWR_CR register = 0x10), OverRegulator ON drive ON Min Typ Max 0 - 120 - 144 - 168 - 168 - 180 0 Overdrive Power Scale 1 (VOS[1:0] bits OFF in PWR_CR register= 0x11), OverRegulator ON drive ON 0 Over-drive OFF 0 - 42 Over-drive ON 0 - 45 Over-drive OFF 0 - 84 Over-drive ON 0 - 90 DocID027107 Rev 5 Unit MHz STM32F446xC/E Electrical characteristics Table 16. General operating conditions (continued) Symbol VDD (3)(4) VDDA VBAT Typ Max (2) - 3.6 1.7(2) - 2.4 2.4 - 3.6 - 1.65 - 3.6 USB not used 1.7 - 3.6 3 - 3.6 Power Scale 3 ((VOS[1:0] bits in PWR_CR register = 0x01), 120 MHz HCLK max frequency 1.08 1.14 1.20 Power Scale 2 ((VOS[1:0] bits in PWR_CR register = 0x10), 144 MHz HCLK max frequency with over-drive OFF or 168 MHz with over-drive ON 1.20 1.26 1.32 Power Scale 1 ((VOS[1:0] bits in PWR_CR register = 0x11), 168 MHz HCLK max frequency with over-drive OFF or 180 MHz with over-drive ON 1.26 1.32 1.40 Regulator OFF: 1.2 V external voltage must be supplied from external regulator on VCAP_1/VCAP_2 pins(6) Max frequency 120 MHz 1.10 1.14 1.20 Max frequency 144 MHz 1.20 1.26 1.32 Max frequency 168 MHz 1.26 1.32 1.38 Input voltage on RST, FTf and FT pins(7) 2 V ≤VDD ≤3.6 V –0.3 - 5.5 1.7 V ≤ VDD ≤ 2 V –0.3 - 5.2 Input voltage on TTa pins - –0.3 - VDDA+0.3 Input voltage on BOOT0 pin - 0 - 9 LQFP64 - - 345 WLCSP81 - - 417 LQFP100 - - 476 LQFP 144 - - 606 UFBGA144 (7x7) - - 392 UFBGA144(10x10) - - 417 Ambient temperature for 6 suffix Maximum power dissipation version Low power dissipation(9) –40 - 85 –40 - 105 Ambient temperature for 7 suffix Maximum power dissipation version Low power dissipation(9) –40 - 105 –40 - 125 6 suffix version –40 - 105 7 suffix version –40 - 125 Standard operating voltage Analog operating voltage (ADC limited to 1.2 M samples) Analog operating voltage (ADC limited to 2.4 M samples) Backup operating voltage USB supply voltage (supply VDDUSB voltage for PA11,PA12, PB14 and PB15 pins) Regulator ON: 1.2 V internal voltage on VCAP_1/VCAP_2 pins V12 VIN PD TA TJ Conditions(1) Parameter Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix 7(8) Junction temperature range Min - 1.7 Must be the same potential as VDD (5) USB used DocID027107 Rev 5 Unit V V mW °C °C °C 77/201 174 Electrical characteristics STM32F446xC/E 1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V. 2. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF). 3. When the ADC is used, refer to Table 74: ADC characteristics. 4. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V. 5. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up and power-down operation. 6. The over-drive mode is not supported when the internal regulator is OFF. 7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled 8. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. 9. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax. Table 17. Limitations depending on the operating power supply range Operating power supply range ADC operation VDD =1.7 to 2.1 V(3) Conversion time up to 1.2 Msps VDD = 2.1 to 2.4 V Maximum Flash Maximum HCLK memory access frequency vs Flash frequency with memory wait states no wait states (1)(2) (fFlashmax) I/O operation Possible Flash memory operations 20 MHz(4) 168 MHz with 8 wait – No I/O states and over-drive compensation OFF 8-bit erase and program operations only Conversion time up to 1.2 Msps 22 MHz 180 MHz with 8 wait – No I/O states and over-drive compensation ON 16-bit erase and program operations VDD = 2.4 to 2.7 V Conversion time up to 2.4 Msps 24 MHz 180 MHz with 7 wait – I/O states and over-drive compensation ON works 16-bit erase and program operations VDD = 2.7 to 3.6 V(5) Conversion time up to 2.4 Msps 30 MHz 180 MHz with 5 wait – I/O states and over-drive compensation ON works 32-bit erase and program operations 1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required. 2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution. 3. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF). 4. Prefetch is not available. 5. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V. 6.3.2 VCAP_1/VCAP_2 external capacitor Stabilization for the main regulator is achieved by connecting external capacitor CEXT to the VCAP_1 and VCAP_2 pin. For packages supporting only 1 VCAP pin, the 2 CEXT capacitors are replaced by a single capacitor. CEXT is specified in Table 18. 78/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Figure 20. External capacitor CEXT & (65 5/HDN 069 1. Legend: ESR is the equivalent series resistance. Table 18. VCAP_1/VCAP_2 operating conditions(1) Symbol Parameter Conditions CEXT Capacitance of external capacitor 2.2 µF ESR ESR of external capacitor <2Ω CEXT Capacitance of external capacitor with a single VCAP pin available 4.7 µF ESR ESR of external capacitor with a single VCAP pin available <1Ω 1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be replaced by two 100 nF decoupling capacitors. 6.3.3 Operating conditions at power-up / power-down (regulator ON) Subject to general operating conditions for TA. Table 19. Operating conditions at power-up/power-down (regulator ON) Symbol tVDD 6.3.4 Parameter Min Max VDD rise time rate 20 ∞ VDD fall time rate 20 ∞ Operating conditions at power-up / power-down (regulator OFF) Subject to general operating conditions for TA. Table 20. Operating conditions at power-up / power-down (regulator OFF)(1) Symbol tVDD tVCAP Parameter Conditions Min Max VDD rise time rate Power-up 20 ∞ VDD fall time rate Power-down 20 ∞ VCAP_1 and VCAP_2 rise time rate Power-up 20 ∞ VCAP_1 and VCAP_2 fall time rate Power-down 20 ∞ Unit µs/V 1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below 1.08 V. DocID027107 Rev 5 79/201 174 Electrical characteristics 6.3.5 STM32F446xC/E Reset and power control block characteristics The parameters given in Table 21 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 16. Table 21. reset and power control block characteristics Symbol Parameter Conditions Programmable voltage detector level selection VPVD VPVDhyst(1) PVD hysteresis Typ Max Unit PLS[2:0]=000 (rising edge) 2.09 2.14 2.19 V PLS[2:0]=000 (falling edge) 1.98 2.04 2.08 V PLS[2:0]=001 (rising edge) 2.23 2.30 2.37 V PLS[2:0]=001 (falling edge) 2.13 2.19 2.25 V PLS[2:0]=010 (rising edge) 2.39 2.45 2.51 V PLS[2:0]=010 (falling edge) 2.29 2.35 2.39 V PLS[2:0]=011 (rising edge) 2.54 2.60 2.65 V PLS[2:0]=011 (falling edge) 2.44 2.51 2.56 V PLS[2:0]=100 (rising edge) 2.70 2.76 2.82 V PLS[2:0]=100 (falling edge) 2.59 2.66 2.71 V PLS[2:0]=101 (rising edge) 2.86 2.93 2.99 V PLS[2:0]=101 (falling edge) 2.65 2.84 3.02 V PLS[2:0]=110 (rising edge) 2.96 3.03 3.10 V PLS[2:0]=110 (falling edge) 2.85 2.93 2.99 V PLS[2:0]=111 (rising edge) 3.07 3.14 3.21 V PLS[2:0]=111 (falling edge) 2.95 3.03 3.09 V - 100 - - mV Power-on/power-down reset threshold Falling edge 1.60 1.68 1.76 V Rising edge 1.64 1.72 1.80 V PDR hysteresis - - 40 VBOR1 Brownout level 1 threshold Falling edge 2.13 2.19 2.24 V Rising edge 2.23 2.29 2.33 V VBOR2 Brownout level 2 threshold Falling edge 2.44 2.50 2.56 V Rising edge 2.53 2.59 2.63 V VBOR3 Brownout level 3 threshold Falling edge 2.75 2.83 2.88 V Rising edge 2.85 2.92 2.97 V VBORhyst(1) BOR hysteresis - - 100 TRSTTEMPO POR reset temporization - 0.5 1.5 VPOR/PDR VPDRhyst (1)(2) 80/201 Min (1) DocID027107 Rev 5 - mV - mV 3.0 ms STM32F446xC/E Electrical characteristics Table 21. reset and power control block characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit IRUSH(1) InRush current on voltage regulator poweron (POR or wakeup from Standby) - 160 200 mA ERUSH(1) InRush energy on voltage regulator power- VDD = 1.7 V, TA = 105 °C, on (POR or wakeup IRUSH = 171 mA for 31 µs from Standby) - - 5.4 µC 1. Guaranteed based on test during characterization. 2. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant when first instruction is read by the user application code. 6.3.6 Over-drive switching characteristics When the over-drive mode switches from enabled to disabled or disabled to enabled, the system clock is stalled during the internal voltage set-up. The over-drive switching characteristics are given in Table 22. They are sbject to general operating conditions for TA. Table 22. Over-drive switching characteristics(1) Symbol Tod_swen Tod_swdis Parameter Over_drive switch enable time Conditions Min Typ Max HSI - 45 - HSE max for 4 MHz and min for 26 MHz 45 - 100 External HSE 50 MHz - 40 - HSI - 20 - 20 - 80 - 15 - HSE max for 4 MHz Over_drive switch and min for 26 MHz. disable time External HSE 50 MHz Unit µs 1. Guaranteed based on test during characterization. 6.3.7 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 19: Current consumption measurement scheme. All the run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code. DocID027107 Rev 5 81/201 174 Electrical characteristics STM32F446xC/E Typical and maximum current consumption The MCU is placed under the following conditions: 82/201 • All I/O pins are in input mode with a static value at VDD or VSS (no load). • All peripherals are disabled except if it is explicitly mentioned. • The Flash memory access time is adjusted both to fHCLK frequency and VDD range (see Table 17: Limitations depending on the operating power supply range). • Regulator ON • The voltage scaling and over-drive mode are adjusted to fHCLK frequency as follows: – Scale 3 for fHCLK ≤120 MHz – Scale 2 for 120 MHz < fHCLK ≤144 MHz – Scale 1 for 144 MHz < fHCLK ≤180 MHz. The over-drive is only ON at 180 MHz. • The system clock is HCLK, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2. • External clock frequency is 8 MHz and PLL is ON when fHCLK is higher than 16 MHz. • Flash is enabled except if explicitly mentioned as disable. • The maximum values are obtained for VDD = 3.6 V and a maximum ambient temperature (TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified. DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Table 23. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch) or RAM(1) Max(2) Symbol Parameter Conditions fHCLK (MHz) Typ 180 External clock, PLL ON, all peripherals enabled(3)(4) HSI, PLL OFF, all peripherals enabled IDD Supply current in RUN mode External clock, PLL ON, all Peripherals disabled(3) HSI, PLL OFF, all peripherals disabled(3) TA = 25 °C TA = 85 °C TA = 105 °C 72 83.0(5) 100.0 110.0(5) 168 65 71.0 95.3 101.0 150 59 63.6 85.4 100.8 144(6) 54 58.4 78.8 91.2 120 40 44.9 62.1 73.2 90 30 35.3 50.7 60.0 60 21 25.5 39.2 46.8 30 12 16.2 28.1 36.0 25 10 14.41 26.17 32.4 16 6 11.4 23.1 25.2 8 3 9.5 20.3 22.5 4 2.3 8.3 18.9 21.1 2 1.8 7.7 18.1 20.5 180 32 42.0(5) 59.0 75.0(5) 168 29 35.5 51.4 55.7 150 26 31.5 47.8 51.9 144(6) 24 29.2 44.7 48.6 120 18 23.3 36.8 40.4 90 14 19.0 31.8 35.1 60 10 14.7 26.9 29.9 30 6 10.7 22.1 24.9 25 5 9.96 21.24 24.02 16 3 8.7 18.9 21.9 8 2 8.1 17.8 20.9 4 1.7 7.64 17.23 20.32 2 1.4 7.4 16.94 20.03 Unit mA 1. Code and data processing running from SRAM1 using boot pins. 2. Guaranteed based on test during characterization. 3. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered. 4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part. 5. Tested in production. 6. Overdrive OFF DocID027107 Rev 5 83/201 174 Electrical characteristics STM32F446xC/E Table 24. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled with prefetch) or RAM(1) Max(2) Symbol Parameter Conditions fHCLK (MHz) Typ 180 168(5) External clock, PLL ON, all peripherals enabled(3)(4) HSI, PLL OFF, all peripherals enabled(3)(4) IDD Supply current in RUN mode External clock, PLL ON, all Peripherals disabled(3) TA = 25 °C TA = 85 °C TA = 105 °C 86 93.0 115.0 125.0 79 85.1 111.2 117.7 150 73 79.6 104.8 111.2 144(5) 68 73.5 97.3 103.3 120 54 59.3 79.7 84.7 90 42 47.23 65.50 70.10 60 29 33.7 49.5 53.4 30 16 20.8 34.0 37.4 25 13 18.4 31.2 34.5 16 8 13.8 25.0 28.3 8 5 10.8 21.1 24.2 4 3.0 9.1 18.9 22.0 2 2.1 8.1 17.8 20.9 180 46 55.0 75.0 86.0 168 43 49.6 67.5 72.6 150 41 48.2 65.8 70.8 38 43.6 61.9 66.8 120 32 37.3 53.7 58.0 90 26 30.7 46.0 50.0 60 18 22.8 36.4 40.1 30 10 14.9 27.1 30.2 25 9 13.55 25.40 28.54 16 5 11.1 21.8 25.0 8 3 9.5 19.4 22.5 4 2.4 8.34 18.10 21.17 2 1.8 7.77 17.39 20.50 144 HSI, PLL OFF, all peripherals disabled(3) (5) Unit mA 1. Code and data processing running from SRAM1 using boot pins. 2. Guaranteed based on test during characterization. 3. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered. 4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part. 5. Overdrive OFF 84/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Table 25. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) Max(1) Symbol Parameter Conditions External clock, PLL ON, all peripherals enabled(2)(3) IDD Supply current in RUN mode External clock, PLL ON, all Peripherals disabled(2)(3) fHCLK (MHz) Typ 180 81 89.0 110.0 120.0 168(4) 74 80.2 105.7 112.0 150 69 74.9 99.5 105.6 144(4) 63 69.3 92.4 98.1 120 51 56.3 76.1 81.1 90 40 45.32 63.19 67.63 60 28 33.1 48.7 52.6 30 16 20.8 34.0 37.4 25 13 18.4 31.2 34.5 16 8 13.8 25.0 28.2 8 5 10.8 21.1 24.2 4 3.0 9.1 19.0 22.0 2 2.1 8.1 17.9 20.9 180 41 47.0 69.0 79.0 168 38 43.2 61.9 67.1 150 37 41.8 60.3 65.4 34 39.3 56.9 61.6 120 29 34.3 50.2 54.4 90 24 28.8 43.6 47.5 60 17 22.0 35.6 39.2 30 10 14.8 27.0 30.1 25 8 13.51 25.36 28.47 16 5 11.1 21.8 24.9 8 3 9.5 19.4 22.5 4 2.3 8.35 18.12 21.17 2 1.8 7.78 17.42 20.51 144 HSI, PLL OFF, all peripherals disabled(3) HSI, PLL OFF, all Peripherals disabled(3) (4) TA= 25 °C Unit TA=85 °C TA=105 °C mA 1. Guaranteed based on test during characterization unless otherwise specified. 2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered. 3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part. 4. Overdrive OFF DocID027107 Rev 5 85/201 174 Electrical characteristics STM32F446xC/E Table 26. Typical and maximum current consumption in Sleep mode(1) Max Symbol Parameter Conditions fHCLK (MHz) Typ 180 TA = 25 °C TA = 25 °C TA = 25 °C 51.2 59.00 77.25 102.00 46.8 53.94 66.48 79.40 150 42.2 49.26 60.84 73.41 144(2) 38.6 45.37 55.47 66.96 120 29.3 35.70 42.49 51.46 90 22.8 29.17 34.78 43.12 60 16.3 22.41 27.12 34.83 30 10.1 16.03 19.72 26.86 25 9.0 14.92 18.41 25.38 16 6.5 13.10 15.1 22.3 8 5.2 12.31 13.5 20.4 4 4.5 11.63 12.5 19.3 2 4.1 11.23 12.0 18.8 (2) 168 IDD Supply current in Sleep mode all peripherals enabled External clock, PLL ON, Flash on HSI, PLL off, Flash on 86/201 DocID027107 Rev 5 Unit mA STM32F446xC/E Electrical characteristics Table 26. Typical and maximum current consumption in Sleep mode(1) (continued) Max Symbol Parameter Conditions fHCLK (MHz) Typ 180 TA = 25 °C TA = 25 °C TA = 25 °C 11.36 17.59 28.2 51.6 168(2) 10.20 16.19 22.0 31.8 150 9.53 15.59 21.1 30.9 8.90 14.87 19.7 28.4 120 7.35 13.24 16.5 23.3 90 6.39 12.40 15.3 21.9 60 5.28 11.17 14.1 20.7 30 4.43 10.31 13.1 19.6 25 4.23 10.12 12.85 19.30 180 8.3 13.44 30.72 37.20 7.3 12.25 25.16 28.80 150 6.7 11.60 24.27 27.84 144(2) 6.1 11.08 23.25 26.28 120 4.7 9.64 20.95 23.72 90 3.8 8.80 19.77 22.57 60 2.8 7.74 18.69 21.32 30 2.0 6.89 17.66 20.40 25 1.8 6.70 17.43 20.17 180 8.3 13.44 30.72 37.20 7.3 12.25 25.16 28.80 150 6.7 11.60 24.27 27.84 144(2) 6.1 11.08 23.25 26.28 120 4.7 9.64 20.95 23.72 90 3.8 8.80 19.77 22.57 60 2.8 7.74 18.69 21.32 30 2.0 6.89 17.66 20.40 25 1.8 6.70 17.43 20.17 (2) 144 Flash on (2) 168 IDD Supply current in Sleep mode External clock, PLL on all peripherals disabled Flash in Deep Power Down mode (2) 168 Flash in STOP mode DocID027107 Rev 5 Unit mA 87/201 174 Electrical characteristics STM32F446xC/E Table 26. Typical and maximum current consumption in Sleep mode(1) (continued) Max Symbol Parameter Conditions Flash on IDD Supply current in Sleep mode Flash in HSI, PLL Deep off, all Power peripherals Down disabled mode Flash in STOP mode fHCLK (MHz) Typ 16 TA = 25 °C TA = 25 °C TA = 25 °C 3.89 4.93 11.72 18.54 8 2.45 3.29 11.66 18.46 4 1.69 2.56 11.60 18.40 2 1.28 2.22 11.57 18.37 16 1.0 6.65 16.54 19.50 8 0.9 6.93 16.48 19.45 4 0.9 6.90 16.43 19.39 2 0.9 6.88 16.41 19.37 16 1.0 6.7 16.5 19.5 8 0.9 6.9 16.5 19.5 4 0.9 6.9 16.4 19.4 2 0.9 6.9 16.4 19.4 1. Guaranteed based on test during characterization unless otherwise specified. 2. Overdrive OFF 88/201 DocID027107 Rev 5 Unit mA STM32F446xC/E Electrical characteristics Table 27. Typical and maximum current consumptions in Stop mode Max Typ Symbol Parameter TA = 25 °C(1) TA = 85 °C TA = 105 °C(1) 0.234 1.2 10 16 0.205 1 9.5 15 0.15 0.95 8.5 14 0.121 0.9 6 12 Flash memory in Deep power down mode, main regulator in under-drive mode, all oscillators OFF, no independent watchdog 0.119 0.4 3 5 Flash memory in Deep power down mode, Low Power regulator in under-drive mode, all oscillators OFF, no independent watchdog 0.055 0.35 3 5 Supply current in Stop mode with voltage regulator in Flash memory in Deep power main regulator mode down mode, all oscillators OFF, IDD_STOP_NM no independent watchdog (normal Flash memory in Stop mode, all mode) Supply current in oscillators OFF, no independent Stop mode with watchdog voltage regulator in Low Power regulator Flash memory in Deep power down mode, all oscillators OFF, mode no independent watchdog IDD_STOP_UD M(underSupply current in drive mode) Stop mode with voltage regulator in Low Power regulator and under-drive mode Unit TA = 25 °C Flash memory in Stop mode, all oscillators OFF, no independent watchdog Supply current in Stop mode with voltage regulator in main regulator and under-drive mode VDD = 3.6 V Conditions mA 1. Data based on characterization, tested in production. DocID027107 Rev 5 89/201 174 Electrical characteristics STM32F446xC/E Table 28. Typical and maximum current consumptions in Standby mode Typ(1) Symbol Parameter Max(2) TA = 25 °C TA = 25 °C Conditions TA = 105 °C VDD = 1.7 V VDD= 2.4 V VDD = 3.3 V Backup SRAM ON, and LSE oscillator in low power mode 2.43 3.44 4.12 7 20 36 Backup SRAM OFF, RTC ON and LSE oscillator in low power mode 1.81 2.81 3.33 6 17 31 3.32 4.33 4.95 8 21 37 Backup SRAM ON, RTC ON and LSE oscillator in high Supply drive mode IDD_STBY current in Standby mode Backup SRAM OFF, RTC ON and LSE oscillator in high drive mode Unit VDD = 3.3 V µA 2.57 3.59 4.16 7 18 32 Backup SRAM ON, RTC and LSE OFF 2.03 2.73 3.5 6(3) 19 35(3) Backup SRAM OFF, RTC and LSE OFF 1.28 1.97 2.03 5(3) 16 30(3) 1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA. 2. Guaranteed based on test during characterization unless otherwise specified. 3. Tested in production. 90/201 TA = 85 °C DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Table 29. Typical and maximum current consumptions in VBAT mode Max(2) Typ Symbol Parameter Backup domain IDD_VBAT supply current TA = 85 °C TA = 25 °C Conditions(1) TA = 105 °C VBAT = 1.7 V VBAT= 2.4 V VBAT = 3.3 V VBAT = 3.6 V Backup SRAM ON, RTC ON and LSE oscillator in low power mode 1.46 1.62 1.83 6 11 Backup SRAM OFF, RTC ON and LSE oscillator in low power mode 0.72 0.85 1.00 3 5 Backup SRAM ON, RTC ON and LSE oscillator in high drive mode 2.24 2.40 2.64 - - Backup SRAM OFF, RTC ON and LSE oscillator in high drive mode 1.50 1.64 1.86 - - Backup SRAM ON, RTC and LSE OFF 0.74 0.75 0.78 5 10 Backup SRAM OFF, RTC and LSE OFF 0.05 0.05 0.05 2 4 Unit µA 1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values. 2. Guaranteed based on test during characterization. Figure 21. Typical VBAT current consumption (RTC ON/backup RAM OFF and LSE in low power mode) DocID027107 Rev 5 91/201 174 Electrical characteristics STM32F446xC/E Figure 22. Typical VBAT current consumption (RTC ON/backup RAM OFF and LSE in high drive mode) Additional current consumption The MCU is placed under the following conditions: • All I/O pins are configured in analog mode. • The Flash memory access time is adjusted to fHCLK frequency. • The voltage scaling is adjusted to fHCLK frequency as follows: – 92/201 Scale 3 for fHCLK ≤ 120 MHz, – Scale 2 for 120 MHz < fHCLK ≤ 144 MHz – Scale 1 for 144 MHz < fHCLK ≤ 180 MHz. The over-drive is only ON at 180 MHz. • The system clock is HCLK, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2. • HSE crystal clock frequency is 8 MHz. • Flash is enabled except if explicitly mentioned as disable. • When the regulator is OFF, V12 is provided externally as described in Table 16: General operating conditions • TA= 25 °C. DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Table 30. Typical current consumption in Run mode, code with data processing running from Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch), VDD=1.7 V(1) Max Symbol Parameter Conditions All Peripherals enabled IDD Supply current in Run mode from VDD supply All Peripherals disabled fHCLK (MHz) Typ 168 TA = 25 °C TA = 85 °C TA = 105 °C 75.00 79.5 101.6 116.5 150 69.81 73.2 93.4 90.8 144 64.43 68.1 80.5 83.4 120 52.00 59.2 67.5 70.5 90 40.59 45.95 54.65 58.01 60 28.42 33.2 45.7 52.4 30 15.94 19.1 35.6 44.5 25 13.54 14.8 21.8 28.4 168 38.67 42.25 53.6 61.4 150 37.32 41.01 52.9 60.3 144 34.85 38.37 50.4 55.5 120 29.87 36.08 46.0 48.6 90 24.26 32.40 43.8 46.4 60 17.43 22.16 32.7 34.7 30 10.01 11.09 24.7 26.8 25 8.63 9.71 16.57 23.15 Unit mA 1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included. DocID027107 Rev 5 93/201 174 Electrical characteristics STM32F446xC/E Table 31. Typical current consumption in Run mode, code with data processing running from Flash memory, regulator OFF (ART accelerator enabled except prefetch)(1) Symbol Parameter Conditions All Peripherals enabled IDD12 / IDD Supply current in Run mode from V12 and VDD supply All Peripherals disabled fHCLK (MHz) VDD=3.3 V VDD=1.7 V Unit IDD12 IDD IDD12 IDD 168 61.72 1.6 60.15 1.5 150 51.69 1.5 55.46 1.4 144 51.45 1.5 50.94 1.3 120 38.94 1.3 40.66 1.2 90 29.48 1.1 28.18 1.0 60 19.23 1.0 20.05 0.8 30 10.41 0.9 11.26 0.7 25 8.83 0.8 9.56 0.6 168 31.44 1.6 30.06 1.5 150 28.67 1.5 27.38 1.4 144 25.51 1.5 23.37 1.3 120 19.06 1.3 21.73 1.2 90 14.83 1.2 14.74 1.0 60 10.16 1.0 10.30 0.8 30 5.41 0.9 5.64 0.7 25 4.599 0.8 4.80 0.6 mA 1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included. 94/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Table 32. Typical current consumption in Sleep mode, regulator ON, VDD=1.7 V(1) Max Symbol Parameter Conditions All Peripherals enabled Flash on IDD Supply current in Sleep mode from VDD supply All Peripherals disabled, flash on fHCLK (MHz) Typ 168 TA = 25 °C TA = 85 °C TA = 105 °C 43.7 47.5 66.5 79.3 150 39.2 42.7 60.7 73.3 144 35.7 38.8 55.3 66.9 120 26.5 28.6 41.8 51.6 90 20.0 21.91 33.85 43.20 60 13.6 15.2 25.8 34.9 30 7.4 8.5 18.4 27.0 25 6.3 7.5 16.9 25.5 168 7.3 8.6 21.2 31.9 150 6.6 7.94 20.4 31.0 144 6.0 7.3 18.6 28.5 120 4.6 5.5 14.9 23.4 90 3.6 4.6 13.6 22.1 60 2.6 3.4 12.5 20.8 30 1.8 2.7 11.3 19.7 25 1.6 2.49 11.09 19.42 Unit mA 1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included. DocID027107 Rev 5 95/201 174 Electrical characteristics STM32F446xC/E Table 33. Typical current consumption in Sleep mode, regulator OFF(1) VDD=3.3 V Symbol Parameter Conditions All Peripherals enabled IDD12/IDD Supply current in Sleep mode from V12 and VDD supply All Peripherals disabled fHCLK (MHz) VDD=1.7 V IDD12 IDD IDD12 IDD 180 47.605 1.2 NA NA 168 44.35 1.0 41.53 0.8 150 40.58 0.9 39.96 0.8 144 35.68 0.9 34.60 0.7 120 27.30 0.9 29.11 0.7 90 20.69 0.8 19.78 0.6 60 13.88 0.7 13.36 0.6 30 7.66 0.7 7.85 0.6 25 6.49 0.7 6.66 0.5 180 8.71 1.2 NA NA 168 7.00 0.9 8.42 0.8 150 6.88 0.9 7.61 0.8 144 6.29 0.9 6.99 0.7 120 4.87 0.9 5.95 0.7 90 3.78 0.8 3.96 0.6 60 2.66 0.7 2.80 0.6 30 1.65 0.7 1.74 0.6 25 1.45 0.7 1.52 0.5 Unit - mA 1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included. I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 56: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. 96/201 DocID027107 Rev 5 STM32F446xC/E Caution: Electrical characteristics Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption (see Table 35: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DD × f SW × C where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDD is the MCU supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT+ CEXT The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. Table 34. Switching output I/O current consumption(1) I/O toggling Symbol Parameter Conditions VDD = 3.3 V C= CINT(2) IDDIO I/O switching Current VDD = 3.3 V CEXT = 0 pF C = CINT + CEXT + CS DocID027107 Rev 5 frequency (fsw) Typ 2 MHz 0.0 8 MHz 0.2 25 MHz 0.6 50 MHz 1.1 60 MHz 1.3 84 MHz 1.8 90 MHz 1.9 2 MHz 0.1 8 MHz 0.4 25 MHz 1.23 50 MHz 2.43 60 MHz 2.93 84 MHz 3.86 90 MHz 4.07 Unit mA 97/201 174 Electrical characteristics STM32F446xC/E Table 34. Switching output I/O current consumption(1) (continued) I/O toggling Symbol Parameter Conditions VDD = 3.3 V CEXT = 10 pF C = CINT + CEXT + CS IDDIO I/O switching Current VDD = 3.3 V CEXT = 22 pF C = CINT + CEXT + CS VDD = 3.3 V CEXT = 33 pF C = CINT + Cext + CS frequency (fsw) Typ 2 MHz 0.18 8 MHz 0.67 25 MHz 2.09 50 MHz 3.6 60 MHz 4.5 84 MHz 7.8 90 MHz 9.8 2 MHz 0.26 8 MHz 1.01 25 MHz 3.14 50 MHz 6.39 60 MHz 10.68 2 MHz 0.33 8 MHz 1.29 25 MHz 4.23 50 MHz 11.02 Unit mA 1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value). 2. This test is performed by cutting the LQFP144 package pin (pad removal). On-chip peripheral current consumption The MCU is placed under the following conditions: • At startup, all I/O pins are in analog input configuration. • All peripherals are disabled unless otherwise mentioned. • HCLK is the system clock. fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2. The given value is calculated by measuring the difference of current consumption • 98/201 – with all peripherals clocked off – with only one peripheral clocked on – fHCLK = 180 MHz (Scale1 + over-drive ON), fHCLK = 144 MHz (Scale 2), fHCLK = 120 MHz (Scale 3)" Ambient operating temperature is 25 °C and VDD=3.3 V. DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Table 35. Peripheral current consumption IDD(Typ Appli) Peripheral AHB1 AHB2 AHB3 Unit Scale 1 + OverDrive Scale 2 Scale 3 GPIOA 2.29 2.14 1.89 GPIOB 2.29 2.13 1.89 GPIOC 2.33 2.17 1.93 GPIOD 2.34 2.19 1.94 GPIOE 2.39 2.19 1.93 GPIOF 2.31 2.14 1.91 GPIOG 2.36 2.19 1.94 GPIOH 2.13 1.98 1.75 CRC 0.53 0.51 0.46 BKPSRAM 0.76 0.72 0.65 DMA1(1) 2.39N + 4.13 2.23N+3.56 1.97N+3.51 DMA2(1) 2.39N + 4.45 2.19N+3.72 2.00N+3.66 OTG_HS+ULPI 45.45 42.08 37.28 DCMI 3.74 3.42 3.01 OTGFS 30.04 27.88 24.69 FMC 16.15 15.01 13.33 QSPI 16.78 15.60 13.84 DocID027107 Rev 5 µA/MHz µA/MHz µA/MHz 99/201 174 Electrical characteristics STM32F446xC/E Table 35. Peripheral current consumption (continued) IDD(Typ Appli) Peripheral Scale 2 Scale 3 TIM2 18.18 16.92 15.07 TIM3 14.49 13.47 12.00 TIM4 15.18 14.11 12.50 TIM5 16.91 15.69 14.07 TIM6 2.69 2.47 2.20 TIM7 2.56 2.44 2.17 TIM12 7.07 6.56 5.83 TIM13 4.96 4.64 4.07 TIM14 5.09 4.72 4.27 WWDG 1.07 1.00 0.93 (2) 1.89 1.78 1.57 SPI3(2) 1.93 1.81 1.67 SPDIFRX 6.91 6.44 5.80 USART2 4.20 3.83 3.40 USART3 4.22 3.94 3.50 UART4 4.13 3.89 3.40 UART5 4.04 3.78 3.33 I2C1 3.98 3.69 3.33 I2C2 3.91 3.61 3.17 I2C3 3.76 3.53 3.13 FMPI2C1 5.51 5.19 4.57 CAN1 6.58 6.14 5.43 CAN2 5.91 5.56 4.90 CEC 0.71 0.69 0.60 DAC 2.96 2.72 2.40 SPI2 APB1 100/201 Unit Scale 1 + OverDrive DocID027107 Rev 5 µA/MHz STM32F446xC/E Electrical characteristics Table 35. Peripheral current consumption (continued) IDD(Typ Appli) Peripheral APB2 Unit Scale 1 + OverDrive Scale 2 Scale 3 TIM1 17.51 16.28 14.43 TIM8 18.40 17.10 15.22 USART1 4.53 4.21 3.72 USART6 4.53 4.21 3.72 ADC1 4.69 4.35 3.85 ADC2 4.70 4.35 3.87 ADC3 4.66 4.31 3.82 SDIO 9.06 8.38 7.47 SPI1 1.97 1.89 1.67 SPI4 1.88 1.75 1.57 SYSCFG 1.51 1.40 1.23 TIM9 8.17 7.64 6.77 TIM10 5.07 4.75 4.22 TIM11 5.37 5.06 4.50 SAI1 3.89 3.64 3.17 SAI2 3.74 3.49 3.10 8.15 8.10 7.13 Bus Matrix µA/MHz 1. N = Number of strean enable (1..8) 2. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register. 6.3.8 Wakeup time from low-power modes The wakeup times given in Table 36 are measured starting from the wakeup event trigger up to the first instruction executed by the CPU: • For Stop or Sleep modes: the wakeup event is WFE. • WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes. All timings are derived from tests performed under ambient temperature and VDD=3.3 V. DocID027107 Rev 5 101/201 174 Electrical characteristics STM32F446xC/E Table 36. Low-power mode wakeup timings Symbol Parameter tWUSLEEP(2) TWUSLEEPFDSM (1) tWUSTOP(2) tWUSTOP(2) tWUSTDBY(2)(3) Conditions Typ(1) Max(1) Unit CPU clock cycle Wakeup from Sleep - 6 6 Wakeup from Sleep with Flash memory in Deep power down mode - 33.5 50 Main regulator is ON 12.8 15 Main regulator is ON and Flash memory in Deep power down mode 104.9 115 Low power regulator is ON 20.6 28 Low power regulator is ON and Flash memory in Deep power down mode 112.8 120 Main regulator in under-drive mode (Flash memory in Deep powerdown mode) 110 140 114.4 128 325 400 Wakeup from Stop mode with MR/LP regulator in normal mode Wakeup from Stop mode with MR/LP regulator in Under-drive Low power regulator in under-drive mode mode (Flash memory in Deep powerdown mode) Wakeup from Standby mode - µs 1. Guaranteed based on test during characterization. 2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction. 3. tWUSTDBY maximum value is given at –40 °C. 6.3.9 External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the Table 56: I/O static characteristics. However, the recommended clock input waveform is shown in Figure 23. The characteristics given in Table 37 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 16. 102/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Table 37. High-speed external user clock characteristics Symbol Parameter Conditions fHSE_ext External user clock source frequency(1) VHSEH OSC_IN input pin high level voltage VHSEL OSC_IN input pin low level voltage tw(HSE) tw(HSE) OSC_IN high or low time(1) Min Typ Max Unit 1 - 50 MHz 0.7VDD - VDD VSS - 0.3VDD 5 - - - V ns tr(HSE) tf(HSE) OSC_IN rise or fall time (1) - - 10 - - 5 - pF - 45 - 55 % VSS ≤ VIN ≤ VDD - - ±1 µA OSC_IN input capacitance(1) Cin(HSE) DuCy(HSE) Duty cycle OSC_IN Input leakage current IL 1. Guaranteed by design. Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the Table 56: I/O static characteristics. However, the recommended clock input waveform is shown in Figure 24. The characteristics given in Table 38 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 16. Table 38. Low-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit - 32.768 1000 kHz 0.7VDD - VDD VSS - 0.3VDD fLSE_ext User External clock source frequency(1) VLSEH OSC32_IN input pin high level voltage VLSEL OSC32_IN input pin low level voltage tw(LSE) tf(LSE) OSC32_IN high or low time(1) 450 - - tr(LSE) tf(LSE) OSC32_IN rise or fall time(1) - - 200 Cin(LSE) DuCy(LSE) IL - V ns OSC32_IN input capacitance(1) - - 5 - pF Duty cycle - 30 - 70 % VSS ≤ VIN ≤ VDD - - ±1 µA OSC32_IN Input leakage current 1. Guaranteed by design. DocID027107 Rev 5 103/201 174 Electrical characteristics STM32F446xC/E Figure 23. High-speed external clock source AC timing diagram 6(3%( 6(3%, TR(3% TF(3% T7(3% T T7(3% 4(3% %XTERNAL CLOCKSOURCE F(3%?EXT /3#?). ), 34-& AI Figure 24. Low-speed external clock source AC timing diagram 9/6(+ 9/6(/ WU/6( WI/6( W:/6( 26&B,1 ,/ W:/6( W 7/6( ([WHUQDO FORFNVRXUFH I/6(BH[W 670) DL High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 39. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). 104/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Table 39. HSE 4-26 MHz oscillator characteristics (1) Symbol Parameter fOSC_IN RF IDD Conditions Min Typ Max Unit Oscillator frequency - 4 - 26 MHz Feedback resistor - - 200 - kΩ VDD=3.3 V, ESR= 30 Ω, CL=5 pF@25 MHz - 450 - VDD=3.3 V, ESR= 30 Ω, CL=10 pF@25 MHz - 530 - - -500 - 500 ppm Startup - - 1 mA/V VDD is stabilized - 2 - ms HSE current consumption ACCHSE(2) HSE accuracy Gm_crit_max Maximum critical crystal gm tSU(HSE (3) Startup time µA 1. Guaranteed by design. 2. This parameter depends on the crystal used in the application. The minimum and maximum values must be respected to comply with USB standard specifications. 3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is Guaranteed based on test during characterization. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 25). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 25. Typical application with an 8 MHz crystal 5HVRQDWRUZLWK LQWHJUDWHGFDSDFLWRUV &/ 0+] UHVRQDWRU &/ I+6( 26&B,1 5(;7 5) 26&B28 7 %LDV FRQWUROOHG JDLQ 670) DL 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 40. In the application, the resonator and the load capacitors have to be placed as close as DocID027107 Rev 5 105/201 174 Electrical characteristics STM32F446xC/E possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz) (1) Symbol Parameter RF IDD ACCLSE (2) Gm_crit_max tSU(LSE)(3) Conditions Min Typ Max Unit Feedback resistor - - 18.4 - MΩ LSE current consumption - - - 1 µA LSE accuracy - -500 - 500 ppm Startup low-power mode - - 0.56 Startup high-drive mode - - 1.5 VDD is stabilized - 2 - Maximum critical crystal gm startup time µA/V s 1. Guaranteed by design. 2. This parameter depends on the crystal used in the application. Refer to application note AN2867. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is guaranteed based on test during characterization. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 26. Typical application with a 32.768 kHz crystal 5HVRQDWRUZLWK LQWHJUDWHGFDSDFLWRUV &/ %LDV 5) FRQWUROOHG JDLQ N+ ] UHVRQDWRU &/ I/6( 26&B,1 26&B28 7 670) DL 6.3.10 Internal clock source characteristics The parameters given in Table 41 and Table 42 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 16. High-speed internal (HSI) RC oscillator Table 41. HSI oscillator characteristics (1) Symbol fHSI 106/201 Parameter Frequency Conditions Min Typ Max Unit - - 16 - MHz DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Table 41. HSI oscillator characteristics (1) Symbol Parameter Conditions Min Typ Max Unit - - 1 % TA = –40 to 105 °C(3) –8 - 4.5 % TA = –10 to 85 °C(3) –4 - 4 % TA = 25 °C –1 - 1 % User-trimmed with the RCC_CR register(2) Accuracy of the HSI oscillator Factorycalibrated ACCHSI tsu(HSI)(2) HSI oscillator startup time - - 2.2 4 µs IDD(HSI)(2) HSI oscillator power consumption - - 60 80 µA 1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design. 3. Guaranteed based on test during characterization. Figure 27. LACCHSI versus temperature !##(3) 4! # -IN -AX 4YPICAL -36 1. Guaranteed based on test during characterization. Low-speed internal (LSI) RC oscillator Table 42. LSI oscillator characteristics (1) Symbol fLSI(2) tsu(LSI) Parameter Frequency Min Typ Max Unit 17 32 47 kHz (3) LSI oscillator startup time - 15 40 µs (3) LSI oscillator power consumption - 0.4 0.6 µA IDD(LSI) 1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed based on test during characterization.. 3. Guaranteed by design. DocID027107 Rev 5 107/201 174 Electrical characteristics STM32F446xC/E Figure 28. ACCLSI versus temperature MAX AVG MIN .ORMALIZEDDEVIATI ON 4EMPERAT URE # -36 6.3.11 PLL characteristics The parameters given in Table 43 and Table 44 are derived from tests performed under temperature and VDD supply voltage conditions summarized in Table 16. Table 43. Main PLL characteristics Symbol Parameter Conditions Min Typ Max Unit fPLL_IN PLL input clock(1) - 0.95(2) 1 2.10 MHz fPLL_OUT PLL multiplier output clock - 12.5 - 180 MHz fPLL48_OUT 48 MHz PLL multiplier output clock - - 48 75 MHz fVCO_OUT PLL VCO output - 100 - 432 MHz tLOCK PLL lock time VCO freq = 100 MHz 75 - 200 VCO freq = 432 MHz 100 - 300 - 25 - - ±150 - - 15 - peak to peak - ±200 - Cycle to cycle at 1 MHz on 1000 samples - 330 - RMS Cycle-to-cycle jitter System clock 120 MHz Jitter(3) Period Jitter Bit Time CAN jitter 108/201 DocID027107 Rev 5 peak to peak RMS µs ps STM32F446xC/E Electrical characteristics Table 43. Main PLL characteristics (continued) Symbol Parameter Conditions IDD(PLL)(4) PLL power consumption on VDD IDDA(PLL)(4) PLL power consumption on VDDA Min Typ Max Unit VCO freq = 100 MHz VCO freq = 432 MHz 0.15 0.45 - 0.40 0.75 mA VCO freq = 100 MHz VCO freq = 432 MHz 0.30 0.55 - 0.40 0.85 mA 1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S. 2. Guaranteed by design. 3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%. 4. Guaranteed based on test during characterization. Table 44. PLLI2S (audio PLL) characteristics Symbol Parameter Conditions Min Typ Max Unit fPLLI2S_IN PLLI2S input clock(1) - 0.95(2) 1 2.10 MHz fPLLI2S_OUT PLLI2S multiplier output clock - - - 216 MHz fVCO_OUT PLLI2S VCO output - 100 - 432 MHz tLOCK PLLI2S lock time VCO freq = 100 MHz 75 - 200 VCO freq = 432 MHz 100 - 300 RMS - 90 - - peak to peak - ±280 - ps Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples - 90 - ps WS I2S clock jitter Cycle to cycle at 48 KHz on 1000 samples - 400 - ps IDD(PLLI2S)(4) PLLI2S power consumption on VDD VCO freq = 100 MHz VCO freq = 432 MHz 0.15 0.45 - 0.40 0.75 mA IDDA(PLLI2S)(4) PLLI2S power consumption on VDDA VCO freq = 100 MHz VCO freq = 432 MHz - 0.40 0.85 mA Cycle to cycle at 12.288 MHz on 48KHz period, N=432, R=5 Master I2S clock jitter (3) Jitter 0.30 0.55 µs 1. Take care of using the appropriate division factor M to have the specified PLL input clock values. 2. Guaranteed by design. 3. Value given with main PLL running. 4. Guaranteed based on test during characterization. DocID027107 Rev 5 109/201 174 Electrical characteristics STM32F446xC/E Table 45. PLLISAI characteristics Symbol Parameter Conditions Min Typ Max Unit fPLLSAI_IN PLLSAI input clock(1) - 0.95(2) 1 2.10 MHz fPLLSAI_OUT PLLSAI multiplier output clock - - - 216 MHz fVCO_OUT PLLSAI VCO output - 100 - 432 MHz tLOCK PLLSAI lock time VCO freq = 100 MHz 75 - 200 VCO freq = 432 MHz 100 - 300 RMS - 90 - - peak to peak - ±280 - ps Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples - 90 - ps FS clock jitter Cycle to cycle at 48 KHz on 1000 samples - 400 - ps IDD(PLLSAI)(4) PLLSAI power consumption on VDD VCO freq = 100 MHz VCO freq = 432 MHz 0.15 0.45 - 0.40 0.75 mA IDDA(PLLSAI)(4) PLLSAI power consumption on VDDA VCO freq = 100 MHz VCO freq = 432 MHz 0.30 0.55 - 0.40 0.85 mA Cycle to cycle at 12.288 MHz on 48KHz period, N=432, R=5 Main SAI clock jitter Jitter(3) µs 1. Take care of using the appropriate division factor M to have the specified PLL input clock values. 2. Guaranteed by design. 3. Value given with main PLL running. 4. Guaranteed based on test during characterization. 6.3.12 PLL spread spectrum clock generation (SSCG) characteristics The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see Table 52: EMI characteristics). It is available only on the main PLL. Table 46. SSCG parameters constraint Symbol Parameter Min Typ Max(1) Unit fMod Modulation frequency - - 10 KHz md Peak modulation depth 0.25 - 2 % MODEPER * INCSTEP - - - 215− 1 - 1. Guaranteed by design. Equation 1 The frequency modulation period (MODEPER) is given by the equation below: MODEPER = round [ f PLL_IN ⁄ ( 4 × f Mod ) ] 110/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics fPLL_IN and fMod must be expressed in Hz. As an example: If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by equation 1: 6 3 MODEPER = round [ 10 ⁄ ( 4 × 10 ) ] = 250 Equation 2 Equation 2 allows to calculate the increment step (INCSTEP): INCSTEP = round [ ( ( 2 15 – 1 ) × md × PLLN ) ⁄ ( 100 × 5 × MODEPER ) ] fVCO_OUT must be expressed in MHz. With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz): INCSTEP = round [ ( ( 2 15 – 1 ) × 2 × 240 ) ⁄ ( 100 × 5 × 250 ) ] = 126md(quantitazed)% An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula: md quantized % = ( MODEPER × INCSTEP × 100 × 5 ) ⁄ ( ( 2 15 – 1 ) × PLLN ) As a result: md quantized % = ( 250 × 126 × 100 × 5 ) ⁄ ( ( 2 15 – 1 ) × 240 ) = 2.002%(peak) Figure 29 and Figure 30 show the main PLL output clock waveforms in center spread and down spread modes, where: F0 is fPLL_OUT nominal. Tmode is the modulation period. md is the modulation depth. DocID027107 Rev 5 111/201 174 Electrical characteristics STM32F446xC/E Figure 29. PLL output clock waveforms in center spread mode &REQUENCY0,,?/54 MD & MD TMODE 4IME XTMODE AI Figure 30. PLL output clock waveforms in down spread mode )UHTXHQF\3//B287 ) [PG WPRGH 7LPH [WPRGH DLE 6.3.13 Memory characteristics Flash memory The characteristics are given at TA = - 40 to 105 °C unless otherwise specified. The devices are shipped to customers with the Flash memory erased. Table 47. Flash memory characteristics Symbol IDD 112/201 Parameter Supply current Conditions Min Typ Max Write / Erase 8-bit mode, VDD = 1.7 V - 5 - Write / Erase 16-bit mode, VDD = 2.1 V - 8 - Write / Erase 32-bit mode, VDD = 3.3 V - 12 - DocID027107 Rev 5 Unit mA STM32F446xC/E Electrical characteristics Table 48. Flash memory programming Symbol tprog Word programming time tERASE16KB Sector (16 KB) erase time tERASE64KB Sector (64 KB) erase time tERASE128KB Sector (128 KB) erase time tME Vprog Conditions Min(1) Typ Max(1) Unit Program/erase parallelism (PSIZE) = x 8/16/32 - 16 100(2) Program/erase parallelism (PSIZE) = x 8 - 400 800 Program/erase parallelism (PSIZE) = x 16 - 300 600 Program/erase parallelism (PSIZE) = x 32 - 250 500 Program/erase parallelism (PSIZE) = x 8 - 1200 2400 Program/erase parallelism (PSIZE) = x 16 - 700 1400 Program/erase parallelism (PSIZE) = x 32 - 550 1100 Program/erase parallelism (PSIZE) = x 8 - 2 4 Program/erase parallelism (PSIZE) = x 16 - 1.3 2.6 Program/erase parallelism (PSIZE) = x 32 - 1 2 Program/erase parallelism (PSIZE) = x 8 - 8 16 Program/erase parallelism (PSIZE) = x 16 - 5.5 11 Program/erase parallelism (PSIZE) = x 32 - 8 16 32-bit program operation 2.7 - 3.6 V 16-bit program operation 2.1 - 3.6 V 8-bit program operation 1.7 - 3.6 V Parameter Mass erase time Programming voltage µs ms ms s s 1. Guaranteed based on test during characterization. 2. The maximum programming time is measured after 100K erase operations. Table 49. Flash memory programming with VPP Symbol Parameter tprog Double word programming tERASE16KB Sector (16 KB) erase time tERASE64KB Sector (64 KB) erase time tERASE128KB Sector (128 KB) erase time tME Vprog Conditions TA = 0 to +40 °C VDD = 3.3 V VPP = 8.5 V Mass erase time Programming voltage DocID027107 Rev 5 - Min(1) Typ Max(1) Unit - 16 100(2) µs - 230 - - 490 - - 875 - - 3.5 - s 2.7 - 3.6 V ms 113/201 174 Electrical characteristics STM32F446xC/E Table 49. Flash memory programming with VPP (continued) Symbol Parameter Conditions Min(1) Typ Max(1) Unit VPP VPP voltage range - 7 - 9 V IPP Minimum current sunk on the VPP pin - 10 - - mA Cumulative time during which VPP is applied - - - 1 hour tVPP(3) 1. Guaranteed by design. 2. The maximum programming time is measured after 100K erase operations. 3. VPP should only be connected during programming/erasing. Table 50. Flash memory endurance and data retention Symbol Parameter Value Conditions NEND tRET Endurance Data retention TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 1 kcycle(2) at TA = 85 °C 30 1 kcycle (2) at TA = 105 °C 10 kcycles(2) at TA = 55 °C Unit Min(1) Kcycles 10 Years 20 1. Guaranteed based on test during characterization. 2. Cycling performed over the whole temperature range. 6.3.14 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 51. They are based on the EMS levels and classes defined in application note AN1709. 114/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Table 51. EMS characteristics Symbol Parameter Conditions VFESD VDD = 3.3 V, LQFP144, TA = Voltage limits to be applied on any I/O pin to +25 °C, fHCLK = 168 MHz, conforms induce a functional disturbance to IEC 61000-4-2 VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance Level/ Class 2B VDD = 3.3 V, LQFP144, TA = +25 °C, fHCLK = 168 MHz, conforms to IEC 61000-4-2 4B Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading. DocID027107 Rev 5 115/201 174 Electrical characteristics STM32F446xC/E Table 52. EMI characteristics Symbol Parameter Max vs. [fHSE/fCPU] Monitored frequency band Conditions Unit 8/180 MHz VDD = 3.3 V, TA = 25 °C, LQFP144 package, conforming to SAE J1752/3 EEMBC, ART ON, all peripheral clocks enabled, clock dithering disabled. SEMI Peak level VDD = 3.3 V, TA = 25 °C, LQFP144 package, conforming to SAE J1752/3 EEMBC, ART ON, all peripheral clocks enabled, clock dithering enabled 6.3.15 0.1 to 30 MHz 11 30 to 130 MHz 10 130 MHz to 1GHz 11 SAE EMI Level 3 0.1 to 30 MHz 24 30 to 130 MHz 25 130 MHz to 1GHz 20 SAE EMI level 4 dBµV - dBµV - Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/JEDEC standard. Table 53. ESD absolute maximum ratings Symbol Ratings Electrostatic VESD(HBM) discharge voltage (human body model) Conditions Class Maximum Unit value(1) TA = + 25 °C conforming to ANSI/JEDEC JS-001 2 2000 TA = + 25 °C conforming to ANSI/ESD STM5.3.1, LQFP64, LQFP100, WLCSP81 packages C4 500 C3 250 Electrostatic VESD(CDM) discharge voltage TA = + 25 °C conforming to ANSI/ESD STM5.3.1, (charge device model) LQFP144, UFBGA144 (7 x 7), UFBGA144 (10 x 10) packages 1. Guaranteed based on test during characterization. Static latchup Two complementary static tests are required on six parts to assess the latchup performance: 116/201 • A supply overvoltage is applied to each power supply pin • A current injection is applied to each input, output and configurable I/O pin DocID027107 Rev 5 V STM32F446xC/E Electrical characteristics These tests are compliant with EIA/JESD 78A IC latchup standard. Table 54. Electrical sensitivities Symbol LU 6.3.16 Parameter Static latch-up class Conditions Class TA = +105 °C conforming to JESD78A II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of – 5 µA/+0 µA range), or other functional failure (for example reset, oscillator frequency deviation). Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection. The test results are given in Table 55. Table 55. I/O current injection susceptibility(1) Functional susceptibility Symbol IINJ Description Negative injection Positive injection Injected current on BOOT0 pin –0 NA Injected current on NRST pin –0 NA Injected current on PE2, PE3,PE4, PE5, PE6, PC13, PC14, PF10, PH0, PH1, NRST, PC0, PC1, PC2, PC3, PG15, PB3, PB4, PB5, PB6, PB7, PB8, PB9, PE0, PE1 –0 NA Injected current on any other FT and FTf pins -5 NA Injected current on any other pins –5 +5 Unit mA 1. NA = not applicable. Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. DocID027107 Rev 5 117/201 174 Electrical characteristics 6.3.17 STM32F446xC/E I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 56: I/O static characteristics are derived from tests performed under the conditions summarized in Table 16. All I/Os are CMOS and TTL compliant. Table 56. I/O static characteristics Symbol VIL Parameter - BOOT0 I/O input low level voltage 1.75 V ≤ VDD ≤ 3.6 V, – 40 °C≤ TA ≤ 105 °C - - 1.7 V ≤ VDD ≤ 3.6 V, 0 °C ≤ TA ≤105 °C - BOOT0 I/O input high level voltage BOOT0 I/O input hysteresis I/O input leakage current (3) I/O FT input leakage current (4) Max Unit (1) - VHYS 118/201 Typ 1.7 V≤VDD≤3.6 V FT, FTf, TTa and NRST I/O input hysteresis Ilkg Min FT, FTf, TTa and NRST I/O input low level voltage FT, FTf, TTa and NRST I/O input high level voltage(4) VIH Conditions 1.7 V≤VDD≤3.6 V 1.75 V≤VDD ≤3.6 V, – 40 °C≤TA ≤105 °C 0.35VDD–0.04 0.3VDD(2) V 0.1VDD+0.1(1) 0.45VDD+0.3(1) 0.7VDD(2) - V 0.17VDD+0.7(1) - - 1.7 V≤VDD≤3.6 V - 10%VDD - 1.75 V≤VDD ≤3.6 V, –40 °C≤TA ≤105 °C - 1.7 V≤VDD ≤3.6 V, 0 °C≤TA ≤105 °C - VSS ≤VIN ≤VDD - - ±1 VIN = 5 V - - 3 1.7 V≤VDD ≤3.6 V, 0 °C≤TA ≤105 °C DocID027107 Rev 5 - V 100m - µA STM32F446xC/E Electrical characteristics Table 56. I/O static characteristics (continued) Symbol Parameter RPU All pins except for PA10/PB12 Weak pull-up (OTG_FS_ID, equivalent OTG_HS_ID) resistor(5) PA10/PB12 (OTG_FS_ID, OTG_HS_ID) RPD CIO(7) Weak pulldown equivalent resistor(6) All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID) Conditions Typ Max 30 40 50 7 10 14 Unit VIN = VSS kΩ 30 40 50 7 10 14 - 5 - VIN = VDD PA10/PB12 (OTG_FS_ID, OTG_HS_ID) I/O pin capacitance Min - pF 1. Guaranteed by design. 2. Tested in production. 3. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 55: I/O current injection susceptibility 4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 55: I/O current injection susceptibility 5. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order). 6. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order). 7. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed based on test during characterization. All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in Figure 31. DocID027107 Rev 5 119/201 174 Electrical characteristics STM32F446xC/E Figure 31. FT I/O input characteristics 9,/9,+9 ' 9' L P ,+ Q 9 QW H P LUH 77/UHTXLUHPHQW U 9,+PLQ 9 26 0 & ' 9' Q R WL XF LQ RG +P , SU 9 LQ QV WLR HG VW XOD P L 7H V LJQ HV $UHDQRW Q' R G VH GHWHUPLQHG '' D % 9 D[ ,/P QV9 ODWLR X LP V VLJQ Q'H HGR 77/UHTXLUHPHQW9,/PD[ %DV 9 7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,/PD[ 9'' X HT 9''9 069 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2. In particular: • The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating ΣIVDD (see Table 14). • The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating ΣIVSS (see Table 14). Output voltage levels Unless otherwise specified, the parameters given in Table 57 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 16. All I/Os are CMOS and TTL compliant. 120/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Table 57. Output voltage characteristics Symbol Parameter VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL (1) Output low level voltage for an I/O pin VOH (3) Output high level voltage for an I/O pin VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin Conditions Min Max CMOS port(2) IIO = +8 mA 2.7 V ≤VDD ≤3.6 V - 0.4 VDD–0.4 - - 0.4 2.4 - - 1.3(4) VDD–1.3(4) - - 0.4(4) VDD–0.4(4) - - 0.4(5) VDD–0.4(5) - TTL port(2) IIO =+ 8mA 2.7 V ≤VDD ≤3.6 V IIO = +20 mA 2.7 V ≤VDD ≤3.6 V IIO = +6 mA 1.8 V ≤VDD ≤3.6 V IIO = +4 mA 1.7 V ≤VDD ≤3.6V Unit V V V V V 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 14. and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 14 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 4. Based on characterization data. 5. Guaranteed by design. Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 32 and Table 58, respectively. Unless otherwise specified, the parameters given in Table 58 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 16. Table 58. I/O AC characteristics(1)(2) OSPEEDR y[1:0] bit value(1) Symbol fmax(IO)out Parameter Maximum frequency(3) 00 tf(IO)out/ tr(IO)out Output high to low level fall time and output low to high level rise time Conditions Min Typ Max CL = 50 pF, VDD ≥ 2.7 V - - 4 CL = 50 pF, VDD ≥ 1.7 V - - 2 CL = 10 pF, VDD ≥ 2.7 V - - 8 CL = 10 pF, VDD ≥ 1.8 V - - 4 CL = 10 pF, VDD ≥ 1.7 V - - 3 CL = 50 pF, VDD = 1.7 V to 3.6 V - - 100 DocID027107 Rev 5 Unit MHz ns 121/201 174 Electrical characteristics STM32F446xC/E Table 58. I/O AC characteristics(1)(2) (continued) OSPEEDR y[1:0] bit value(1) Symbol fmax(IO)out Parameter Maximum frequency(3) 01 tf(IO)out/ tr(IO)out fmax(IO)out Output high to low level fall time and output low to high level rise time Maximum frequency(3) 10 tf(IO)out/ tr(IO)out fmax(IO)out Output high to low level fall time and output low to high level rise time Maximum frequency(3) 11 tf(IO)out/ tr(IO)out - 122/201 tEXTIpw Output high to low level fall time and output low to high level rise time Conditions Min Typ Max CL = 50 pF, VDD≥ 2.7 V - - 25 CL = 50 pF, VDD≥ 1.8 V - - 12.5 CL = 50 pF, VDD≥ 1.7 V - - 10 CL = 10 pF, VDD ≥ 2.7 V - - 50 CL = 10 pF, VDD≥ 1.8 V - - 20 CL = 10 pF, VDD≥ 1.7 V - - 12.5 CL = 50 pF, VDD ≥ 2.7 V - - 10 CL = 10 pF, VDD ≥ 2.7 V - - 6 CL = 50 pF, VDD ≥ 1.7 V - - 20 CL = 10 pF, VDD ≥ 1.7 V - - 10 CL = 40 pF, VDD ≥ 2.7 V - - 50(4) CL = 10 pF, VDD ≥ 2.7 V - - 100(4) CL = 40 pF, VDD ≥ 1.7 V - - 25 CL = 10 pF, VDD ≥ 1.8 V - - 50 CL = 10 pF, VDD ≥ 1.7 V - - 42.5 CL = 40 pF, VDD ≥2.7 V - - 6 CL = 10 pF, VDD ≥ 2.7 V - - 4 CL = 40 pF, VDD ≥ 1.7 V - - 10 CL = 10 pF, VDD ≥ 1.7 V - - 6 CL = 30 pF, VDD ≥ 2.7 V - - 100(4) CL = 30 pF, VDD ≥ 1.8 V - - 50 CL = 30 pF, VDD ≥ 1.7 V - - 42.5 CL = 10 pF, VDD≥ 2.7 V - - 180(4) CL = 10 pF, VDD ≥ 1.8 V - - 100 CL = 10 pF, VDD ≥ 1.7 V - - 72.5 CL = 30 pF, VDD ≥ 2.7 V - - 4 CL = 30 pF, VDD ≥1.8 V - - 6 CL = 30 pF, VDD ≥1.7 V - - 7 CL = 10 pF, VDD ≥ 2.7 V - - 2.5 CL = 10 pF, VDD ≥1.8 V - - 3.5 CL = 10 pF, VDD ≥1.7 V - - 4 10 - - Pulse width of external signals detected by the EXTI controller DocID027107 Rev 5 - Unit MHz ns MHz ns MHz ns ns STM32F446xC/E Electrical characteristics 1. Guaranteed by design. 2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register. 3. The maximum frequency is defined in Figure 32. 4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used. Figure 32. I/O AC characteristics definition (;7(51$/ 287387 21&/ WU,2RXW WI,2RXW 7 0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI7DQGLIWKHGXW\F\FOHLV ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´ 6.3.18 DLG NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 56: I/O static characteristics). Unless otherwise specified, the parameters given in Table 59 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 16. Table 59. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit RPU Weak pull-up equivalent resistor(1) VIN = VSS 30 40 50 kΩ - - - 100 ns VDD > 2.7 V 300 - - ns Internal Reset source 20 - - µs VF(NRST)(2) NRST Input filtered pulse VNF(NRST)(2) NRST Input not filtered pulse TNRST_OUT Generated reset pulse duration 1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). 2. Guaranteed by design. DocID027107 Rev 5 123/201 174 Electrical characteristics STM32F446xC/E Figure 33. Recommended NRST pin protection 9'' ([WHUQDO UHVHWFLUFXLW 1567 538 ,QWHUQDO5HVHW )LOWHU ) 670) DLF 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 59. Otherwise the reset is not taken into account by the device. 6.3.19 TIM timer characteristics The parameters given in Table 60 are guaranteed by design. Refer to Section 6.3.17: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 60. TIMx characteristics(1)(2) Symbol tres(TIM) fEXT ResTIM tMAX_COUNT Parameter Timer resolution time Timer external clock frequency on CH1 to CH4 Conditions(3) Min Max Unit AHB/APBx prescaler=1 or 2 or 4, fTIMxCLK = 180 MHz 1 - tTIMxCLK AHB/APBx prescaler>4, fTIMxCLK = 90 MHz 1 - tTIMxCLK 0 fTIMxCLK/2 MHz - 16/32 bit - 65536 × 65536 tTIMxCLK fTIMxCLK = 180 MHz Timer resolution Maximum possible count with 32-bit counter - 1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers. 2. Guaranteed by design. 3. The maximum timer frequency on APB1 or APB2 is up to 180 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK = 4x PCLKx. 6.3.20 Communications interfaces I2C interface characteristics The I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL too are mapped as not “true” 124/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 61. Refer also to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 61. I2C characteristics Symbol Parameter Standard mode I2C(1)(2) Fast mode I2C(1)(2) Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - th(SDA) SDA data hold time - 3450(3) - 900(4) - 3.45 - 0.9 tv(SDA, ACK) Data, ACK valid time µs ns tr(SDA) tr(SCL) SDA and SCL rise time - 1000 - 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) Start condition hold time 4.0 - 0.6 - tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4.0 - 0.6 - μs tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - μs tSP Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode - - 0.05 0.09(5) μs Cb Capacitive load for each bus line - 400 - 400 pF µs 1. Guaranteed based on test during characterization. 2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock. 3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. 4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal. 5. The minimum width of the spikes filtered by the analog filter is above tSP(max). DocID027107 Rev 5 125/201 174 Electrical characteristics STM32F446xC/E Figure 34. I2C bus AC waveforms and measurement circuit s ''B,& s ''B,& 53 53 670)[[ 56 6'$ ,ð&EXV 56 6&/ 67$575(3($7(' 67$57 67$57 WVX67$ 6'$ WI6'$ WU6'$ WK67$ WVX6'$ WZ6&/+ 6723 WK6'$ WZ67267$ 6&/ WZ6&// WU6&/ WI6&/ WVX672 DLF 1. RS = series protection resistor. 2. RP = external pull-up resistor. 3. VDD_I2C is the I2C bus power supply. 126/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics FMPI2C characteristics The FMPI2C characteristics are described in Table 62. Refer also to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 62. FMPI2C characteristics(1) Standard mode - fFMPI2CC Fast mode Fast+ mode Parameter Unit Min Max Min Max Min Max 2 - 8 - 17 16(2) - FMPI2CCLK frequency tw(SCLL) SCL clock low time 4.7 - 1.3 - 0.5 - tw(SCLH) SCL clock high time 4.0 - 0.6 - 0.26 - tsu(SDA) SDA setup time 0.25 - 0.10 - 0.05 - tH(SDA) SDA data hold time 0 - 0 - 0 - - 3.45 - 0.9 - 0.45 tv(SDA,ACK) Data, ACK valid time tr(SDA) tr(SCL) SDA and SCL rise time - 0.100 - 0.30 - 0.12 tf(SDA) tf(SCL) SDA and SCL fall time - 0.30 - 0.30 - 0.12 th(STA) Start condition hold time 4 - 0.6 - 0.26 - tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - 0.26 - tsu(STO) Stop condition setup time 4 - 0.6 - 0.26 - 4.7 - 1.3 - 0.5 - tSP Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode - - 0.05 0.09 0.05 0.09 Cb Capacitive load for each bus Line - 400 - 400 - 550(3) tw(STO:STA) Stop to Start condition time (bus free) us pF 1. Guaranteed based on test during characterization. 2. When tr(SDA,SCL)<=110ns. 3. Can be limited. Maximum supported value can be retrieved by referring to the following formulas: tr(SDA/SCL) = 0.8473 x Rp x Cload Rp(min) = (VDD -VOL(max)) / IOL(max) DocID027107 Rev 5 127/201 174 Electrical characteristics STM32F446xC/E Figure 35. FMPI2C timing diagram and measurement circuit s ''B,& s ''B,& 53 53 670)[[ 56 6'$ ,ð&EXV 56 6&/ 67$575(3($7(' 67$57 67$57 WVX67$ 6'$ WI6'$ WU6'$ WK67$ WVX6'$ WZ6&/+ 6723 WK6'$ WZ67267$ 6&/ WZ6&// WU6&/ WI6&/ WVX672 DLF 128/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics SPI interface characteristics Unless otherwise specified, the parameters given in Table 63 for SPI are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 16, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C=30pF • Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI). Table 63. SPI dynamic characteristics(1) Symbol fSCK 1/tc(SCK) Parameter SPI clock frequency Conditions Min Typ Master full duplex/receiver mode, 2.7 V≤VDD≤3.6 V SPI1/4 45 Master transmitter 1.71V <VDD< 3.6V SPI1/4 45 Master 1.71V <VDD< 3.6V SPI1/2/3/4 22.5 Slave transmitter/ full duplex mode SPI1/4 2.7V <VDD< 3.6V - - Slave mode DocID027107 Rev 5 MHz 45 Slave mode SPI1/2/3/4 1.71V <VDD< 3.6V Duty cycle of SPI clock frequency Unit 45 Slave receiver mode SPI1/4 1.71V <VDD< 3.6V Duty(SCK) Max 22.5(2) 30 50 70 % 129/201 174 Electrical characteristics STM32F446xC/E Table 63. SPI dynamic characteristics(1) (continued) Symbol tw(SCKH) Parameter Conditions Min Typ Max TPCLK TPCLK + 1.5 - - SCK high and low time Master mode, SPI presc = 2 TPCLK - 1.5 tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4TPCLK th(NSS) NSS hold time Slave mode, SPI presc = 2 2TPCLK tw(SCKL) Master mode 4 - - Slave mode 3 - - Master mode 4 - - Slave mode 2 - - ta(SO) Data output access time Slave mode 7 - 21 tdis(SO) Data output disable time Slave mode 5 - 12 Slave mode (after enable edge), 2.7V ≤ VDD ≤ 3.6V - 7.5 22 Slave mode (after enable edge), 1.7 V ≤ VDD ≤ 3.6 V - 7.5 10.5 tsu(MI) tsu(SI) th(MI) th(SI) tv(SO) Data input setup time Data input hold time Data output valid/hold time th(SO) Data output valid/hold time Slave mode (after enable edge) 5 - - tv(MO) Data output valid time Master mode (after enable edge) - 1.5 5 th(MO) Data output hold time Master mode (after enable edge) 0 - - Unit ns 1. Guaranteed based on test during characterization. 2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%. Figure 36. SPI timing diagram - slave mode and CPHA = 0 166LQSXW 6&.,QSXW W68166 &3+$ &32/ &3+$ &32/ WK166 WF6&. WZ6&.+ WZ6&./ W962 WD62 0,62 287387 WK62 06%287 %,7287 06%,1 %,7,1 WU6&. WI6&. WGLV62 /6%287 WVX6, 026, ,1387 /6%,1 WK6, DLF 130/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Figure 37. SPI timing diagram - slave mode and CPHA = 1 166LQSXW &3+$ &32/ &3+$ &32/ WK166 WF6&. WZ6&.+ WZ6&./ WK62 WY62 WD62 0,62 287387 06%287 026, ,1387 WU6&. WI6&. %,7287 WGLV62 /6%287 WK6, WVX6, 06%,1 %,7,1 /6%,1 DLE Figure 38. SPI timing diagram - master mode +LJK 166LQSXW 6&.2XWSXW WF6&. &3+$ &32/ 6&.2XWSXW 6&.LQSXW W68166 &3+$ &32/ &3+$ &32/ &3+$ &32/ WVX0, 0,62 ,13 87 WZ6&.+ WZ6&./ WU6&. WI6&. %,7,1 06%,1 /6%,1 WK0, 026, 287387 06%287 WY02 % , 7287 /6%287 WK02 DLF DocID027107 Rev 5 131/201 174 Electrical characteristics STM32F446xC/E QSPI interface characteristics Unless otherwise specified, the parameters given in Table 64 for QSPI are derived from tests performed under the ambient temperature, fAHB frequency and VDD supply voltage conditions summarized in Table 16, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 11 • Capacitive load C=20pF • Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics. Table 64. QSPI dynamic characteristics in SDR Mode(1) Symbol fSCK 1/tc(SCK) tw(CKH) Parameter QSPI clock frequency Conditions Min Typ Max Write mode 1.71 V≤VDD≤3.6 V Cload = 15 pF - - 90 Read mode 2.7V <VDD< 3.6V Cload = 15 pF - - 90 1.71 V≤VDD≤3.6 V - - 48 (T(CK) / 2) - 2 - T(CK) / 2 T(CK) / 2 - (T(CK) / 2) +2 MHz QSPI clock high and low - ts(IN) Data input setup time - 2 - - th(IN) Data input hold time - 4.5 - - tv(OUT) Data output valid time - - 1.5 3 th(OUT) Data output hold time - 0 - - tw(CKL) Unit ns 1. Guaranteed based on test during characterization. Table 65. QSPI dynamic characteristics in DDR Mode(1) Symbol fSCK 1/tc(SCK) 132/201 Parameter QSPI clock frequency Conditions Min Typ Max Write mode 1.71 V≤VDD≤3.6 V Cload = 15 pF - - 60 Read mode 2.7V <VDD< 3.6V Cload = 15 pF - - 60 1.71 V≤VDD≤3.6 V - - 48 DocID027107 Rev 5 Unit MHz STM32F446xC/E Electrical characteristics Table 65. QSPI dynamic characteristics in DDR Mode(1) (continued) Symbol Parameter Conditions QSPI clock high and low - ts(IN) Data input setup time th(IN) Data input hold time tw(CKH) tw(CKL) tv(OUT) Data output valid time th(OUT) Data output hold time Min Typ Max (T(CK) / 2) - 2 - T(CK) / 2 T(CK) / 2 - (T(CK) / 2) +2 - 0 - - - 5.5 - - 2.7V <VDD< 3.6V - 5.5 6.5 1.71V <VDD< 3.6V - 8 9.5 3.5 - - - Unit ns 1. Guaranteed based on test during characterization. I2S interface characteristics Unless otherwise specified, the parameters given in Table 66 for the I2S interface are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 16, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS). Table 66. I2S dynamic characteristics(1) Symbol fMCK Parameter I2S Main clock output fCK I2S clock frequency DCK I2S clock frequency duty cycle Conditions - Min Max 256 x 8K 256 x Fs(2) Master data - 64 x Fs Slave data - 64 x Fs 30 70 Slave receiver DocID027107 Rev 5 Unit MHz MHz % 133/201 174 Electrical characteristics STM32F446xC/E Table 66. I2S dynamic characteristics(1) (continued) Symbol Parameter Conditions Min Max tv(WS) WS valid time Master mode - 5.5 th(WS) WS hold time Master mode 1 - 1 - PCM short pulse Slave mode 2 - Slave mode 3 - 1.5 - Master receiver 3 - Slave receiver 2.5 - Master receiver 4 - Slave receiver 1 - Slave transmitter (after enable edge) - 16 Master transmitter (after enable edge) - 4.5 Slave transmitter (after enable edge) 5 - Master transmitter (after enable edge) 1 - tsu(WS) th(WS) tsu(SD_MR) tsu(SD_SR) th(SD_MR) th(SD_SR) tv(SD_ST) tv(SD_MT) th(SD_ST) th(SD_MT) WS setup time WS hold time Data input setup time Data input hold time Data output valid time Data output hold time Slave mode (3) PCM short pulse Slave mode(3) Unit ns 1. Guaranteed based on test during characterization. 2. The maximum value of 256xFs is 45 MHz (APB1 maximum frequency). 3. Measurement done with respect to I2S_CK rising edge. Note: Refer to the I2S section of RM0390 reference manual for more details on the sampling frequency (FS). fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. DCK depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS maximum value is supported for each mode/condition. 134/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Figure 39. I2S slave timing diagram (Philips protocol)(1) tc(CK) CK Input CPOL = 0 CPOL = 1 tw(CKH) th(WS) tw(CKL) WS input tv(SD_ST) tsu(WS) SDtransmit LSB transmit(2) MSB transmit Bitn transmit tsu(SD_SR) LSB receive(2) SDreceive th(SD_ST) LSB transmit th(SD_SR) MSB receive Bitn receive LSB receive ai14881b 1. .LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 40. I2S master timing diagram (Philips protocol)(1) tf(CK) tr(CK) CK output tc(CK) CPOL = 0 tw(CKH) CPOL = 1 tv(WS) th(WS) tw(CKL) WS output tv(SD_MT) SDtransmit LSB transmit(2) MSB transmit LSB receive(2) LSB transmit th(SD_MR) tsu(SD_MR) SDreceive Bitn transmit th(SD_MT) MSB receive Bitn receive LSB receive ai14884b 1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. DocID027107 Rev 5 135/201 174 Electrical characteristics STM32F446xC/E SAI characteristics Unless otherwise specified, the parameters given in Table 67 for SAI are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 16, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C=30 pF • Measurement points are performed at CMOS levels: 0.5VDD Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (SCK,SD,WS). Table 67. SAI characteristics(1) (3) Symbol fMCK fCK tv(FS) Parameter SAI Main clock output SAI clock frequency(2) FS valid time Conditions - Min Max Unit 256 x 8K 256 x Fs MHz Fs(3) Master data: 32 bits - 128 x Slave data: 32 bits - 128 x Fs(3) Master mode 2.7 V ≤ VDD ≤3.6 V - 14 Master mode 1.71 V ≤ VDD ≤3.6 V - 17.5 th(FS) FS hold time Master mode 7 - tsu(FS) FS setup time Slave mode 1 - th(FS) FS hold time Slave mode 1 - Master receiver 1 - Slave receiver 1 - Master receiver 5 - Slave receiver 1 - Slave trasmitter (after enable edge 2.7 V ≤ VDD ≤3.6 V - 9.5 Slave transmitter (after enable edge 1.71 V ≤ VDD ≤3.6 V - 16 Slave transmitter (after enable edge 6 - Master transmitter (after enable edge 2.7 V ≤ VDD ≤3.6 V - 15 Master transmitter (after enable edge 1.71 V ≤ VDD ≤3.6 V - 18 Master transmitter (after enable edge 7 - tsu(SD_A_MR) tsu(SD_B_SR) th(SD_A_MR) th(SD_B_SR) tv(SD_B_ST) th(SD_B_ST) tv(SD_B_ST) th(SD_B_ST) Data input setup time Data input hold time Data output valid time Data output hold time Data output valid time Data output hold time 1. Guaranteed based on test during characterization. 2. 256xFs maximum corresponds to 45 MHz (APB2 xaximum frequency) 3. With Fs = 192 KHz 136/201 DocID027107 Rev 5 MHz % ns STM32F446xC/E Electrical characteristics Figure 41. SAI master timing waveforms F3#+ 3!)?3#+?8 TH&3 3!)?&3?8 OUTPUT TV&3 TH3$?-4 TV3$?-4 3!)?3$?8 TRANSMIT 3LOTN TSU3$?-2 3LOTN TH3$?-2 3!)?3$?8 RECEIVE 3LOTN -36 Figure 42. SAI slave timing waveforms F3#+ 3!)?3#+?8 TW#+(?8 3!)?&3?8 INPUT TW#+,?8 TH&3 TSU&3 TH3$?34 TV3$?34 3!)?3$?8 TRANSMIT 3LOTN TSU3$?32 3!)?3$?8 RECEIVE 3LOTN TH3$?32 3LOTN -36 USB OTG full speed (FS) characteristics This interface is present in both the USB OTG HS and USB OTG FS controllers. Table 68. USB OTG full speed startup time Symbol tSTARTUP(1) Parameter Max Unit USB OTG full speed transceiver startup time 1 µs 1. Guaranteed by design. DocID027107 Rev 5 137/201 174 Electrical characteristics STM32F446xC/E Table 69. USB OTG full speed DC electrical characteristics Symbol Parameter Conditions USB OTG full speed VDDUSB transceiver operating voltage Input levels - 3.0(2) - 3.6 0.2 - - VDI(3) Differential input sensitivity VCM(3) Differential common mode Includes VDI range range 0.8 - 2.5 VSE(3) Single ended receiver threshold - 1.3 - 2.0 VOL Static output level low RL of 1.5 kΩ to 3.6 V(4) - - 0.3 2.8 - 3.6 17 21 24 0.65 1.1 2.0 Output levels VOH RPD RPU I(USB_FS_DP/DM, USB_HS_DP/DM) Min.(1) Typ. Max.(1) Unit Static output level high PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM) PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS) RL of 15 kΩ to VSS(4) V V V VIN = VDDUSB kΩ PA12, PB15 (USB_FS_DP, USB_HS_DP) VIN = VSS 1.5 1.8 2.1 PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS) VIN = VSS 0.25 0.37 0.55 1. All the voltages are measured from the local ground potential. 2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range. 3. Guaranteed by design. 4. RL is the load connected on the USB OTG full speed drivers. Note: When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state (floating input), not as alternate function. A typical 200 µA current consumption of the sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 and PB13 when the feature is enabled. Figure 43. USB OTG full speed timings: definition of data signal rise and fall time &URVVRYHU SRLQWV 'LIIHUHQWLDO GDWDOLQHV 9&56 966 WI WU DL 138/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Table 70. USB OTG full speed electrical characteristics(1) Driver characteristics Symbol Parameter Conditions Min Max Unit CL = 50 pF 4 20 ns CL = 50 pF 4 20 ns Rise/ fall time matching tr/tf 90 110 % VCRS Output signal crossover voltage - 1.3 2.0 V ZDRV Output driver impedance(3) Driving high or low 28 44 Ω Rise time(2) tr Fall time tf trfm (2) 1. Guaranteed by design. 2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). 3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching impedance is included in the embedded driver. USB high speed (HS) characteristics Unless otherwise specified, the parameters given in Table 73 for ULPI are derived from tests performed under the ambient temperature, fHCLK frequency summarized in Table 72 and VDD supply voltage conditions summarized in Table 71, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10, unless otherwise specified • Capacitive load C = 30 pF, unless otherwise specified • Measurement points are done at CMOS levels: 0.5VDD. Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics. Table 71. USB HS DC electrical characteristics Symbol Input level Parameter VDD USB OTG HS operating voltage Min.(1) Max.(1) Unit 1.7 3.6 V 1. All the voltages are measured from the local ground potential. Table 72. USB HS clock timing parameters(1) Symbol Parameter Min Typ Max Unit - fHCLK value to guarantee proper operation of USB HS interface 30 - - MHz FSTART_8BIT Frequency (first transition) 54 60 66 MHz FSTEADY Frequency (steady state) ±500 ppm 59.97 60 60.03 MHz DSTART_8BIT Duty cycle (first transition) 40 50 60 % DSTEADY Duty cycle (steady state) ±500 ppm 49.975 50 50.025 % tSTEADY Time to reach the steady state frequency and duty cycle after the first transition - - 1.4 ms 8-bit ±10% 8-bit ±10% DocID027107 Rev 5 139/201 174 Electrical characteristics STM32F446xC/E Table 72. USB HS clock timing parameters(1) (continued) Symbol tSTART_DEV tSTART_HOST Parameter Clock startup time after the de-assertion of SuspendM Min Typ Max Peripheral - - 5.6 Host - - - - - - PHY preparation time after the first transition of the input clock tPREP Unit ms µs 1. Guaranteed by design. Figure 44. ULPI timing diagram #LOCK #ONTROL)N 5,0)?$)2 5,0)?.84 T3# T(# T3$ T($ DATA)N BIT T$# T$# #ONTROLOUT 5,0)?340 T$$ DATAOUT BIT AIC Table 73. Dynamic characteristics: USB ULPI(1) Symbol Parameter Conditions Min. Typ. Max. tSC Control in (ULPI_DIR, ULPI_NXT) setup time - 1 - - tHC Control in (ULPI_DIR, ULPI_NXT) hold time - 1.5 - - tSD Data in setup time - 1.5 - - tHD Data in hold time - 1.5 - - 2.7 V < VDD < 3.6 V, CL = 20 pF - 6 8.5 1.71 V < VDD < 3.6 V, CL = 15 pF - 6 11.5 tDC/tDD Data/control output delay Unit ns 1. Guaranteed based on test during characterization. CAN (controller area network) interface Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX). 140/201 DocID027107 Rev 5 STM32F446xC/E 6.3.21 Electrical characteristics 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 74 are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 16. Table 74. ADC characteristics Symbol VDDA VREF+ Parameter Min Typ Max Unit 1.7(1) - 3.6 V (1) - VDDA V 0.6 15 18 MHz 0.6 30 36 MHz fADC = 30 MHz, 12-bit resolution - - 1764 kHz - - - 17 1/fADC Conversion voltage range(3) - 0 (VSSA or VREFtied to ground) - VREF+ V External input impedance See Equation 1 for details - - 50 κΩ - - - 6 κΩ - - 4 7 pF fADC = 30 MHz - - 0.100 µs 1/fADC µs Power supply Positive reference voltage Conditions VDDA −VREF+ < 1.2 V (1) fADC fTRIG(2) VAIN RAIN(2) ADC clock frequency External trigger frequency RADC(2)(4) Sampling switch resistance CADC(2) Internal sample and hold capacitor tlat(2) Injection trigger conversion latency tlatr(2) Regular trigger conversion latency tS(2) Sampling time tSTAB(2) Power-up time tCONV(2) VDDA = 1.7 to 2.4 V VDDA = 2.4 to 3.6 V 1.7 - - - 3(5) fADC = 30 MHz - - 0.067 - (5) 1/fADC - - 2 0.100 - 16 µs - 3 - 480 1/fADC - - 2 3 µs fADC = 30 MHz 12-bit resolution 0.50 - 16.40 µs fADC = 30 MHz 10-bit resolution 0.43 - 16.34 µs Total conversion time (including fADC = 30 MHz sampling time) 8-bit resolution 0.37 - 16.27 µs fADC = 30 MHz 6-bit resolution 0.30 - 16.20 µs fADC = 30 MHz 9 to 492 (tS for sampling +n-bit resolution for successive approximation) DocID027107 Rev 5 1/fADC 141/201 174 Electrical characteristics STM32F446xC/E Table 74. ADC characteristics (continued) Symbol fS(2) Parameter Conditions Sampling rate (fADC = 30 MHz, and tS = 3 ADC cycles) Min Typ Max Unit 12-bit resolution Single ADC - - 2 Msps 12-bit resolution Interleave Dual ADC mode - - 3.75 Msps 12-bit resolution Interleave Triple ADC mode - - 6 Msps IVREF+(2) ADC VREF DC current consumption in conversion mode - - 300 500 µA IVDDA(2) ADC VDDA DC current consumption in conversion mode - - 1.6 1.8 mA 1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF). 2. Guaranteed based on test during characterization. 3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA. 4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V. 5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 74. Equation 1: RAIN max formula R AIN ( k – 0.5 ) - – R ADC = --------------------------------------------------------------N+2 f ADC × C ADC × ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register. Table 75. ADC static accuracy at fADC = 18 MHz(1) Symbol Parameter Test conditions ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error fADC =18 MHz VDDA = 1.7 to 3.6 V VREF = 1.7 to 3.6 V VDDA −VREF < 1.2 V Typ Max(2) ±3 ±4 ±2 ±3 ±1 ±3 ±1 ±2 ±2 ±3 1. Better performance could be achieved in restricted VDD, frequency and temperature ranges. 2. Guaranteed based on test during characterization. 142/201 DocID027107 Rev 5 Unit LSB STM32F446xC/E Electrical characteristics Table 76. ADC static accuracy at fADC = 30 MHz(1) a Symbol ET Parameter Test conditions Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error fADC = 30 MHz, RAIN < 10 kΩ, VDDA = 2.4 to 3.6 V, VREF = 1.7 to 3.6 V, VDDA −VREF < 1.2 V Typ Max(2) ±2 ±5 ±1.5 ±2.5 ±1.5 ±3 ±1 ±2 ±1.5 ±3 Unit LSB 1. Better performance could be achieved in restricted VDD, frequency and temperature ranges. 2. Guaranteed based on test during characterization. Table 77. ADC static accuracy at fADC = 36 MHz(1) Symbol Parameter Test conditions ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error Typ Max(2) ±4 ±7 ±2 ±3 ±3 ±6 ±2 ±3 ±3 ±6 fADC =36 MHz, VDDA = 2.4 to 3.6 V, VREF = 1.7 to 3.6 V VDDA −VREF < 1.2 V Unit LSB 1. Better performance could be achieved in restricted VDD, frequency and temperature ranges. 2. Guaranteed based on test during characterization. Table 78. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1) Symbol Parameter Test conditions ENOB Effective number of bits SINAD Signal-to-noise and distortion ratio SNR Signal-to-noise ratio THD Total harmonic distortion fADC =18 MHz VDDA = VREF+= 1.7 V Input Frequency = 20 KHz Temperature = 25 °C Min Typ Max Unit 10.3 10.4 - bits 64 64.2 - 64 65 - -67 -72 - dB 1. Guaranteed based on test during characterization. Table 79. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1) Symbol Parameter Test conditions ENOB Effective number of bits SINAD Signal-to noise and distortion ratio SNR Signal-to noise ratio THD Total harmonic distortion fADC =36 MHz VDDA = VREF+ = 3.3 V Input Frequency = 20 KHz Temperature = 25 °C Min Typ Max Unit 10.6 10.8 - bits 66 67 - 64 68 - -70 -72 - dB 1. Guaranteed based on test during characterization. Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion DocID027107 Rev 5 143/201 174 Electrical characteristics STM32F446xC/E being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.17 does not affect the ADC accuracy. Figure 45. ADC accuracy characteristics 6 2%& 6 $$! ;,3" )$%!, ORDEPENDINGONPACKAGE= %' %4 %/ %, %$ , 3")$%!, 6 33! 6$$! 1. See also Table 76. 2. Example of an actual transfer curve. 3. Ideal transfer curve. 4. End point correlation line. 5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. 144/201 DocID027107 Rev 5 AIC STM32F446xC/E Electrical characteristics Figure 46. Typical connection diagram using the ADC 670) 9'' 5$,1 $,1[ 9$,1 &SDUDVLWLF 6DPSOHDQGKROG$'& FRQYHUWHU 97 9 5$'& 97 9 ,/$ ELW FRQYHUWHU & $'& DL 1. Refer to Table 74 for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this, fADC should be reduced. DocID027107 Rev 5 145/201 174 Electrical characteristics STM32F446xC/E General PCB design guidelines Power supply decoupling should be performed as shown in Figure 47 or Figure 48, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 47. Power supply and reference decoupling (VREF+ not connected to VDDA) 670) 95() )Q) 9''$ )Q) 966$95() DLE 1. VREF+ and VREF– inputs are both available on UFBGA144. VREF+ is also available on LQFP100, LQFP144, and WLCSP81. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA. 146/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Figure 48. Power supply and reference decoupling (VREF+ connected to VDDA) 670) 95()9''$ )Q) 95()966$ DLF 1. VREF+ and VREF– inputs are both available on UFBGA144. VREF+ is also available on LQFP100, LQFP144, and WLCSP81. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA. 6.3.22 Temperature sensor characteristics Table 80. Temperature sensor characteristics Symbol TL(1) Avg_Slope(1) V25(1) tSTART (2) TS_temp(2) Parameter Min Typ Max Unit VSENSE linearity with temperature - ±1 ±2 °C Average slope - 2.5 - mV/°C Voltage at 25 °C - 0.76 - V Startup time - 6 10 µs 10 - - µs ADC sampling time when reading the temperature (1 °C accuracy) 1. Guaranteed based on test during characterization. 2. Guaranteed by design. Table 81. Temperature sensor calibration values Symbol Parameter Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FFF 7A2C - 0x1FFF 7A2D TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F DocID027107 Rev 5 147/201 174 Electrical characteristics 6.3.23 STM32F446xC/E VBAT monitoring characteristics Table 82. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit R Resistor bridge for VBAT - 50 - KΩ Q Ratio on VBAT measurement - 4 - - Error on Q –1 - +1 % ADC sampling time when reading the VBAT 1 mV accuracy 5 - - µs Er (1) TS_vbat(2)(2) 1. Guaranteed by design. 2. Shortest sampling time can be determined in the application by multiple iterations. 6.3.24 Reference voltage The parameters given in Table 83 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 16. Table 83. internal reference voltage Symbol VREFINT TS_vrefint(1) VRERINT_s(2) Parameter Internal reference voltage Conditions Min Typ Max Unit –40 °C < TA < +105 °C 1.18 1.21 1.24 V - 10 - - µs VDD = 3V ± 10mV - 3 5 mV ADC sampling time when reading the internal reference voltage Internal reference voltage spread over the temperature range TCoeff(2) Temperature coefficient - - 30 50 ppm/°C tSTART(2) Startup time - - 6 10 µs 1. Shortest sampling time can be determined in the application by multiple iterations. 2. Guaranteed by design, not tested in production Table 84. Internal reference voltage calibration values Symbol VREFIN_CAL 6.3.25 Parameter Memory address Raw data acquired at temperature of 30 °C VDDA = 3.3 V 0x1FFF 7A2A - 0x1FFF 7A2B DAC electrical characteristics Table 85. DAC characteristics Symbol Parameter Min Typ Max Unit Comments - VDDA Analog supply voltage 1.7(1) - 3.6 V VREF+ Reference supply voltage 1.7(1) - 3.6 V VSSA Ground 0 - 0 V 148/201 DocID027107 Rev 5 VREF+ ≤VDDA - STM32F446xC/E Electrical characteristics Table 85. DAC characteristics (continued) Symbol Min Typ Max Unit Comments Resistive load with buffer ON 5 - - kΩ - Impedance output with buffer OFF - - 15 kΩ When the buffer is OFF, the Minimum resistive load between DAC_OUT and VSS to have a 1% accuracy is 1.5 MΩ Capacitive load - - 50 pF Maximum capacitive load at DAC_OUT pin (when the buffer is ON). DAC_OUT Lower DAC_OUT voltage with buffer ON min(2) 0.2 - - V DAC_OUT Higher DAC_OUT voltage max(2) with buffer ON - - VDDA – 0.2 V DAC_OUT Lower DAC_OUT voltage min(2) with buffer OFF - 0.5 - mV - - VREF+ – 1LSB V - 170 240 RLOAD(2) RO(2) CLOAD(2) Parameter DAC_OUT Higher DAC_OUT voltage with buffer OFF max(2) IVREF+(4) IDDA(4) DNL(4) INL(4) Offset(4) DAC DC VREF current consumption in quiescent mode (Standby mode) DAC DC VDDA current consumption in quiescent mode(3) Differential non linearity Difference between two consecutive code-1LSB) Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023) Offset error (difference between measured value at Code (0x800) and the ideal value = VREF+/2) µA It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VREF+ = 3.6 V and (0x1C7) to (0xE38) at VREF+ = 1.7 V It gives the maximum output excursion of the DAC. With no load, worst code (0x800) at VREF+ = 3.6 V in terms of DC consumption on the inputs With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs - 50 75 - 280 380 µA With no load, middle code (0x800) on the inputs - 475 625 µA With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs - - ±0.5 LSB Given for the DAC in 10-bit configuration. - - ±2 LSB Given for the DAC in 12-bit configuration. - - ±1 LSB Given for the DAC in 10-bit configuration. - - ±4 LSB Given for the DAC in 12-bit configuration. - - ±10 mV Given for the DAC in 12-bit configuration - - ±3 LSB Given for the DAC in 10-bit at VREF+ = 3.6 V - - ±12 LSB Given for the DAC in 12-bit at VREF+ = 3.6 V DocID027107 Rev 5 149/201 174 Electrical characteristics STM32F446xC/E Table 85. DAC characteristics (continued) Symbol Gain error(4) tSETTLING(4) Parameter Min Typ Max Unit Comments Gain error - - ±0.5 % Given for the DAC in 12-bit configuration Total Harmonic Distortion Buffer ON - 3 6 µs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ THD(4) - - - - dB CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ Update rate(2) Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB) - - 1 MS/s CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ tWAKEUP(4) Wakeup time from off state (Setting the ENx bit in the DAC Control register) - 6.5 10 µs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ input code between lowest and highest possible ones. PSRR+ (2) Power supply rejection ratio (to VDDA) (static DC measurement) - –67 –40 dB No RLOAD, CLOAD = 50 pF 1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF). 2. Guaranteed by design. 3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs. 4. Guaranteed based on test during characterization. Figure 49. 12-bit buffered/non-buffered DAC %XIIHUHGQRQEXIIHUHG'$& %XIIHU 5/2$' ELW GLJLWDOWR DQDORJ FRQYHUWHU '$&[B287 &/2$' DLG 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 150/201 DocID027107 Rev 5 STM32F446xC/E 6.3.26 Electrical characteristics FMC characteristics Unless otherwise specified, the parameters given in Table 86 to Table 93 for the FMC interface are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage conditions summarized in Table 15, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitance load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics. Asynchronous waveforms and timings Figure 50 through Figure 53 represent asynchronous waveforms and Table 86 through Table 93 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration: • AddressSetupTime = 0x1 • AddressHoldTime = 0x1 • DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5) • BusTurnAroundDuration = 0x0 In all timing tables, the THCLK is the HCLK clock period. DocID027107 Rev 5 151/201 174 Electrical characteristics STM32F446xC/E Figure 50. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms TW.% &-#?.% TV./%?.% T W./% T H.%?./% &-#?./% &-#?.7% TV!?.% &-#?!;= T H!?./% !DDRESS TV",?.% T H",?./% &-#?.",;= T H$ATA?.% T SU$ATA?./% TH$ATA?./% T SU$ATA?.% $ATA &-#?$;= T V.!$6?.% TW.!$6 &-#?.!$6 &-#?.7!)4 TH.%?.7!)4 TSU.7!)4?.% -36 1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used. 152/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2) Symbol Min Max 2THCLK – 2 2 THCLK + 0.5 0 1 2THCLK - 1 2THCLK + 0.5 FMC_NOE high to FMC_NE high hold time 0 - FMC_NEx low to FMC_A valid - 0.5 th(A_NOE) Address hold time after FMC_NOE high 0 - tv(BL_NE) FMC_NEx low to FMC_BL valid - 2 th(BL_NOE) FMC_BL hold time after FMC_NOE high 0 - tsu(Data_NE) Data to FMC_NEx high setup time THCLK - 2 - tsu(Data_NOE) Data to FMC_NOEx high setup time THCLK - 2 - th(Data_NOE) Data hold time after FMC_NOE high 0 - th(Data_NE) Data hold time after FMC_NEx high 0 - tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0 FMC_NADV low time - THCLK +1 tw(NE) tv(NOE_NE) tw(NOE) th(NE_NOE) tv(A_NE) tw(NADV) Parameter FMC_NE low time FMC_NEx low to FMC_NOE low FMC_NOE low time Unit ns 1. CL = 30 pF. 2. Guaranteed based on test during characterization. Table 87. Asynchronous non-multiplexed SRAM/PSRAM/NOR read NWAIT timings(1)(2) Symbol Min Max FMC_NE low time 7THCLK + 1 7THCLK FMC_NWE low time 5THCLK – 1 5THCLK + 1 FMC_NWAIT low time THCLK – 0.5 - tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5THCLK+ 1.5 - th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4THCLK + 1 - tw(NE) tw(NOE) tw(NWAIT) Parameter Unit ns 1. CL = 30 pF. 2. Guaranteed based on test during characterization. DocID027107 Rev 5 153/201 174 Electrical characteristics STM32F446xC/E Figure 51. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms TW.% &-#?.%X &-#?./% TV.7%?.% TW.7% T H.%?.7% &-#?.7% TV!?.% &-#?!;= TH!?.7% !DDRESS TV",?.% &-#?.",;= TH",?.7% .", TV$ATA?.% TH$ATA?.7% $ATA &-#?$;= T V.!$6?.% &-#?.!$6 TW.!$6 &-#?.7!)4 TH.%?.7!)4 TSU.7!)4?.% -36 1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used. Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2) Symbol tw(NE) tv(NWE_NE) tw(NWE) th(NE_NWE) tv(A_NE) Parameter Min Max FMC_NE low time 3 THCLK - 2 3 THCLK +0.5 FMC_NEx low to FMC_NWE low THCLK – 0.5 THCLK + 0.5 THCLK THCLK+ 0.5 THCLK + 0.5 - - 0 THCLK - 0.5 - - 1 THCLK + 0.5 - FMC_NWE low time FMC_NWE high to FMC_NE high hold time FMC_NEx low to FMC_A valid th(A_NWE) Address hold time after FMC_NWE high tv(BL_NE) FMC_NEx low to FMC_BL valid th(BL_NWE) FMC_BL hold time after FMC_NWE high tv(Data_NE) Data to FMC_NEx low to Data valid - THCLK + 2 th(Data_NWE) Data hold time after FMC_NWE high THCLK + 0.5 - tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0 FMC_NADV low time - THCLK+ 0.5 tw(NADV) 1. CL = 30 pF. 2. Guaranteed based on test during characterization. 154/201 DocID027107 Rev 5 Unit ns STM32F446xC/E Electrical characteristics Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write NWAIT timings(1)(2) Symbol Parameter Min Max FMC_NE low time 8THCLK - 0.5 8THCLK + 1 FMC_NWE low time 6THCLK - 0.5 6THCLK + 1 tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 6THCLK - 0.5 - th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4THCLK + 2 - tw(NE) tw(NWE) Unit ns 1. CL = 30 pF. 2. Guaranteed based on test during characterization. Figure 52. Asynchronous multiplexed PSRAM/NOR read waveforms TW.% &-#? .% TV./%?.% T H.%?./% &-#?./% T W./% &-#?.7% TH!?./% TV!?.% &-#? !;= !DDRESS TV",?.% TH",?./% &-#? .",;= .", TH$ATA?.% TSU$ATA?.% T V!?.% &-#? !$;= TSU$ATA?./% TH$ATA?./% $ATA !DDRESS TH!$?.!$6 T V.!$6?.% TW.!$6 &-#?.!$6 &-#?.7!)4 TH.%?.7!)4 TSU.7!)4?.% -36 DocID027107 Rev 5 155/201 174 Electrical characteristics STM32F446xC/E Table 90. Asynchronous multiplexed PSRAM/NOR read timings(1)(2) Symbol tw(NE) tv(NOE_NE) ttw(NOE) th(NE_NOE) tv(A_NE) tv(NADV_NE) tw(NADV) Parameter Min Max 3THCLK – 2 3THCLK+0.5 2THCLK – 0.5 2THCLK THCLK – 1 THCLK + 0.5 FMC_NOE high to FMC_NE high hold time 0 - FMC_NEx low to FMC_A valid - 2 FMC_NEx low to FMC_NADV low 0 2 THCLK – 0.5 THCLK + 0.5 FMC_NE low time FMC_NEx low to FMC_NOE low FMC_NOE low time FMC_NADV low time th(AD_NADV) FMC_AD(address) valid hold time after FMC_NADV high) 0 - th(A_NOE) Address hold time after FMC_NOE high THCLK – 0.5 - th(BL_NOE) FMC_BL time after FMC_NOE high 0 - FMC_NEx low to FMC_BL valid - 2 tv(BL_NE) tsu(Data_NE) Data to FMC_NEx high setup time THCLK + 1.5 - tsu(Data_NOE) Data to FMC_NOE high setup time THCLK + 1 - th(Data_NE) Data hold time after FMC_NEx high 0 - th(Data_NOE) Data hold time after FMC_NOE high 0 - Unit ns 1. CL = 30 pF. 2. Guaranteed based on test during characterization. Table 91. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1)(2) Symbol tw(NE) tw(NOE) Parameter Min Max FMC_NE low time 8THCLK - 1 8THCLK + 2 FMC_NWE low time 5THCLK – 1 5THCLK + 1 tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5THCLK + 1.5 - th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid - 1. CL = 30 pF. 2. Guaranteed based on test during characterization. 156/201 DocID027107 Rev 5 4THCLK + 1 Unit ns STM32F446xC/E Electrical characteristics Figure 53. Asynchronous multiplexed PSRAM/NOR write waveforms TW.% &-#? .%X &-#?./% TV.7%?.% TW.7% T H.%?.7% &-#?.7% TH!?.7% TV!?.% &-#? !;= !DDRESS TV",?.% &-#? .",;= .", T V!?.% &-#? !$;= TH",?.7% T V$ATA?.!$6 !DDRESS TH$ATA?.7% $ATA TH!$?.!$6 T V.!$6?.% TW.!$6 &-#?.!$6 &-#?.7!)4 TH.%?.7!)4 TSU.7!)4?.% -36 DocID027107 Rev 5 157/201 174 Electrical characteristics STM32F446xC/E Table 92. Asynchronous multiplexed PSRAM/NOR write timings(1)(2) Symbol tw(NE) tv(NWE_NE) tw(NWE) th(NE_NWE) tv(A_NE) tv(NADV_NE) tw(NADV) th(AD_NADV) Parameter Min Max 4THCLK - 2 4THCLK+0.5 FMC_NEx low to FMC_NWE low THCLK THCLK + 0.5 FMC_NWE low time 2THCLK 2THCLK + 0.5 FMC_NWE high to FMC_NE high hold time THCLK - - 0 0.5 1 THCLK – 0.5 THCLK+ 0.5 THCLK – 2 - FMC_NE low time FMC_NEx low to FMC_A valid FMC_NEx low to FMC_NADV low FMC_NADV low time FMC_AD(adress) valid hold time after FMC_NADV high) th(A_NWE) Address hold time after FMC_NWE high THCLK - th(BL_NWE) FMC_BL hold time after FMC_NWE high THCLK–2 - tv(BL_NE) FMC_NEx low to FMC_BL valid - 2 tv(Data_NADV) FMC_NADV high to Data valid - THCLK + 1.5 th(Data_NWE) Data hold time after FMC_NWE high THCLK + 0.5 - Unit ns 1. CL = 30 pF. 2. Guaranteed based on test during characterization. Table 93. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1)(2) Symbol tw(NE) tw(NWE) Parameter Min Max FMC_NE low time 9THCLK 9THCLK + 0.5 FMC_NWE low time 7THCLK 7THCLK + 2 6THCLK + 1.5 - 4THCLK – 1 - tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid Unit ns 1. CL = 30 pF. 2. Guaranteed based on test during characterization. Synchronous waveforms and timings Figure 54 through Figure 57 represent synchronous waveforms and Table 94 through Table 97 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration: 158/201 • BurstAccessMode = FMC_BurstAccessMode_Enable; • MemoryType = FMC_MemoryType_CRAM; • WriteBurst = FMC_WriteBurst_Enable; • CLKDivision = 1; (0 is not supported, see the STM32F446 reference manual: RM0390) • DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM DocID027107 Rev 5 STM32F446xC/E Electrical characteristics In all timing tables, the THCLK is the HCLK clock period (with maximum FMC_CLK = 90 MHz). Figure 54. Synchronous multiplexed NOR/PSRAM read timings "53452. TW#,+ TW#,+ &-#?#,+ $ATALATENCY TD#,+,.%X, &-#?.%X T D#,+,.!$6, TD#,+(.%X( TD#,+,.!$6( &-#?.!$6 TD#,+,!6 TD#,+(!)6 &-#?!;= TD#,+,./%, TD#,+(./%( &-#?./% T D#,+,!$6 &-#?!$;= TD#,+,!$)6 TSU!$6#,+( !$;= TH#,+(!$6 TSU!$6#,+( $ TSU.7!)46#,+( &-#?.7!)4 7!)4#&'B 7!)40/,B &-#?.7!)4 7!)4#&'B 7!)40/,B TSU.7!)46#,+( TSU.7!)46#,+( TH#,+(!$6 $ TH#,+(.7!)46 TH#,+(.7!)46 TH#,+(.7!)46 -36 DocID027107 Rev 5 159/201 174 Electrical characteristics STM32F446xC/E Table 94. Synchronous multiplexed NOR/PSRAM read timings(1)(2) Symbol tw(CLK) Parameter FMC_CLK period Max 2THCLK - - 2.5 THCLK - 0.5 - td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) td(CLKH_NExH) FMC_CLK high to FMC_NEx high (x= 0…2) td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 0 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 - td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2.5 td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) THCLK - - 2 THCLK – 0.5 - td(CLKL-NOEL) FMC_CLK low to FMC_NOE low td(CLKH-NOEH) FMC_CLK high to FMC_NOE high td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 0.5 td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 - tsu(ADV-CLKH) FMC_A/D[15:0] valid data before FMC_CLK high 1 - th(CLKH-ADV) FMC_A/D[15:0] valid data after FMC_CLK high 3.5 - 1 - 3.5 - tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 1. CL = 30 pF. 2. Guaranteed based on test during characterization. 160/201 Min DocID027107 Rev 5 Unit ns STM32F446xC/E Electrical characteristics Figure 55. Synchronous multiplexed PSRAM write timings "53452. TW#,+ TW#,+ &-#?#,+ $ATALATENCY TD#,+,.%X, TD#,+(.%X( &-#?.%X TD#,+,.!$6, TD#,+,.!$6( &-#?.!$6 TD#,+(!)6 TD#,+,!6 &-#?!;= TD#,+(.7%( TD#,+,.7%, &-#?.7% TD#,+,!$)6 TD#,+,!$6 &-#?!$;= TD#,+,$ATA TD#,+,$ATA !$;= $ $ &-#?.7!)4 7!)4#&'B 7!)40/,B TSU.7!)46#,+( TH#,+(.7!)46 TD#,+(.",( &-#?.", -36 DocID027107 Rev 5 161/201 174 Electrical characteristics STM32F446xC/E Table 95. Synchronous multiplexed PSRAM write timings(1)(2) Symbol Min Max 2THCLK - 1 - - 2.5 THCLK + 0.5 - td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 2 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 - - 2 THCLK - - 0 THCLK - 0.5 - tw(CLK) Parameter FMC_CLK period, VDD range= 2.7 to 3.6 V td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) td(CLKL-NWEL) FMC_CLK low to FMC_NWE low t(CLKH-NWEH) FMC_CLK high to FMC_NWE high td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 3 td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 - td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low - 3 td(CLKL-NBLL) FMC_CLK low to FMC_NBL low 0 - td(CLKH-NBLH) FMC_CLK high to FMC_NBL high THCLK - 0.5 - tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 4 - th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 0 - 1. CL = 30 pF. 2. Guaranteed based on test during characterization. 162/201 DocID027107 Rev 5 Unit ns STM32F446xC/E Electrical characteristics Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings TW#,+ TW#,+ &-#?#,+ TD#,+,.%X, TD#,+(.%X( $ATALATENCY &-#?.%X TD#,+,.!$6, TD#,+,.!$6( &-#?.!$6 TD#,+(!)6 TD#,+,!6 &-#?!;= TD#,+,./%, TD#,+(./%( &-#?./% TSU$6#,+( TH#,+($6 TSU$6#,+( &-#?$;= TH#,+($6 $ TSU.7!)46#,+( &-#?.7!)4 7!)4#&'B 7!)40/,B $ TH#,+(.7!)46 TSU.7!)46#,+( &-#?.7!)4 7!)4#&'B 7!)40/,B TSU.7!)46#,+( T H#,+(.7!)46 TH#,+(.7!)46 -36 Table 96. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2) Symbol tw(CLK) t(CLKL-NExL) Parameter FMC_CLK period FMC_CLK low to FMC_NEx low (x=0..2) Min Max 2THCLK - - 2.5 THCLK – 0.5 - td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 0 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 - td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2.5 td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) THCLK - - 2 THCLK – 0.5 - 1 - 3.5 - 1 - 3.5 - td(CLKL-NOEL) FMC_CLK low to FMC_NOE low td(CLKH-NOEH) FMC_CLK high to FMC_NOE high tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high th(CLKH-DV) FMC_D[15:0] valid data after FMC_CLK high tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high DocID027107 Rev 5 Unit ns 163/201 174 Electrical characteristics STM32F446xC/E 1. CL = 30 pF. 2. Guaranteed based on test during characterization. Figure 57. Synchronous non-multiplexed PSRAM write timings TW#,+ TW#,+ &-#?#,+ TD#,+,.%X, TD#,+(.%X( $ATALATENCY &-#?.%X TD#,+,.!$6, TD#,+,.!$6( &-#?.!$6 TD#,+(!)6 TD#,+,!6 &-#?!;= TD#,+,.7%, TD#,+(.7%( &-#?.7% TD#,+,$ATA TD#,+,$ATA $ &-#?$;= $ &-#?.7!)4 7!)4#&'B7!)40/,B TSU.7!)46#,+( TD#,+(.",( TH#,+(.7!)46 &-#?.", -36 164/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Table 97. Synchronous non-multiplexed PSRAM write timings(1)(2) Symbol Min Max 2THCLK – 1 - - 2.5 THCLK – 0.5 - td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 2 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 - tw(CLK) Parameter FMC_CLK period td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2 td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) 0 - FMC_CLK low to FMC_NWE low - 3 THCLK + 1 - td(CLKL-NWEL) td(CLKH-NWEH) FMC_CLK high to FMC_NWE high td(CLKL-Data) FMC_D[15:0] valid data after FMC_CLK low - 2.5 td(CLKL-NBLL) FMC_CLK low to FMC_NBL low 3 - td(CLKH-NBLH) FMC_CLK high to FMC_NBL high THCLK + 1.5 - 1.5 - 0 - tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high Unit ns 1. CL = 30 pF. 2. Guaranteed based on test during characterization. NAND controller waveforms and timings Figure 58 through Figure 61 represent synchronous waveforms, and Table 98 and Table 99 provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration: • COM.FSMC_SetupTime = 0x01; • COM.FMC_WaitSetupTime = 0x03; • COM.FMC_HoldSetupTime = 0x02; • COM.FMC_HiZSetupTime = 0x01; • ATT.FMC_SetupTime = 0x01; • ATT.FMC_WaitSetupTime = 0x03; • ATT.FMC_HoldSetupTime = 0x02; • ATT.FMC_HiZSetupTime = 0x01; • Bank = FMC_Bank_NAND; • MemoryDataWidth = FMC_MemoryDataWidth_16b; • ECC = FMC_ECC_Enable; • ECCPageSize = FMC_ECCPageSize_512Bytes; • TCLRSetupTime = 0; • TARSetupTime = 0. In all timing tables, the THCLK is the HCLK clock period. DocID027107 Rev 5 165/201 174 Electrical characteristics STM32F446xC/E Figure 58. NAND controller waveforms for read access &-#?.#%X !,%&-#?! #,%&-#?! &-#?.7% TD!,%./% TH./%!,% &-#?./%.2% TSU$./% TH./%$ &-#?$;= -36 Figure 59. NAND controller waveforms for write access &-#?.#%X !,%&-#?! #,%&-#?! TH.7%!,% TD!,%.7% &-#?.7% &-#?./%.2% TV.7%$ TH.7%$ &-#?$;= -36 166/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Figure 60. NAND controller waveforms for common memory read access &-#?.#%X !,%&-#?! #,%&-#?! TH./%!,% TD!,%./% &-#?.7% TW./% &-#?./% TSU$./% TH./%$ &-#?$;= -36 Figure 61. NAND controller waveforms for common memory write access &-#?.#%X !,%&-#?! #,%&-#?! TD!,%./% TW.7% TH./%!,% &-#?.7% &-#?. /% TD$.7% TV.7%$ TH.7%$ &-#?$;= -36 Table 98. Switching characteristics for NAND Flash read cycles(1) Symbol tw(N0E) Parameter FMC_NOE low width tsu(D-NOE) FMC_D[15-0] valid data before FMC_NOE high th(NOE-D) FMC_D[15-0] valid data after FMC_NOE high td(ALE-NOE) FMC_ALE valid before FMC_NOE low th(NOE-ALE) FMC_NWE high to FMC_ALE invalid Min Max Unit 4THCLK – 0.5 4THCLK + 0.5 9 - 2.5 - - 3THCLK - 0.5 3THCLK – 2 - ns 1. CL = 30 pF. DocID027107 Rev 5 167/201 174 Electrical characteristics STM32F446xC/E Table 99. Switching characteristics for NAND Flash write cycles(1) Symbol tw(NWE) Parameter FMC_NWE low width Min Max Unit 4THCLK - 2 4THCLK ns 0 - ns tv(NWE-D) FMC_NWE low to FMC_D[15-0] valid th(NWE-D) FMC_NWE high to FMC_D[15-0] invalid 3THCLK – 1 - ns td(D-NWE) FMC_D[15-0] valid before FMC_NWE high 5THCLK – 3 - ns - 3THCLK - 0.5 ns 3THCLK – 2 - ns td(ALE-NWE) FMC_ALE valid before FMC_NWE low th(NWE-ALE) FMC_NWE high to FMC_ALE invalid 1. CL = 30 pF. SDRAM waveforms and timings Figure 62. SDRAM read access waveforms (CL = 1) &-#?3$#,+ TD3$#,+,?!DD# TH3$#,+,?!DD2 TD3$#,+,?!DD2 &-#?!>@ 2OWN #OL #OL #OLI #OLN TH3$#,+,?!DD# TH3$#,+,?3.$% TD3$#,+,?3.$% &-#?3$.%;= TD3$#,+,?.2!3 TH3$#,+,?.2!3 &-#?3$.2!3 TH3$#,+,?.#!3 TD3$#,+,?.#!3 &-#?3$.#!3 &-#?3$.7% TSU3$#,+(?$ATA &-#?$;= TH3$#,+(?$ATA $ATA $ATA $ATAI $ATAN -36 168/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Table 100. SDRAM read timings(1)(2) Symbol Parameter Min Max tw(SDCLK) FMC_SDCLK period 2THCLK-0.5 2THCLK+0.5 tsu(SDCLKH _Data) Data input setup time 1 - th(SDCLKH_Data) Data input hold time 4 - td(SDCLKL_Add) Address valid time - 3 td(SDCLKL_ SDNE) Chip select valid time - 1.5 th(SDCLKL_SDNE) Chip select hold time 0 - td(SDCLKL_SDNRAS) SDNRAS valid time - 1.5 th(SDCLKL_SDNRAS) SDNRAS hold time 0 - td(SDCLKL_SDNCAS) SDNCAS valid time - 0.5 th(SDCLKL_SDNCAS) SDNCAS hold time 0 - Unit ns 1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK. 2. Guaranteed based on test during characterization. Table 101. LPSDR SDRAM read timings(1)(2) Symbol Parameter Min Max tw(SDCLK) FMC_SDCLK period 2THCLK - 0.5 2THCLK + 0.5 tsu(SDCLKH _Data) Data input setup time 1 - th(SDCLKH_Data) Data input hold time 5 - td(SDCLKL_Add) Address valid time - 3 td(SDCLKL_ SDNE) Chip select valid time - 3 th(SDCLKL_SDNE) Chip select hold time 0 - td(SDCLKL_SDNRAS) SDNRAS valid time - 2 th(SDCLKL_SDNRAS) SDNRAS hold time 0 - td(SDCLKL_SDNCAS) SDNCAS valid time - 2 th(SDCLKL_SDNCAS) SDNCAS hold time 0 - Unit ns 1. CL = 10 pF. 2. Guaranteed based on test during characterization. DocID027107 Rev 5 169/201 174 Electrical characteristics STM32F446xC/E Figure 63. SDRAM write access waveforms &-#?3$#,+ TD3$#,+,?!DD# TH3$#,+,?!DD2 TD3$#,+,?!DD2 2OWN &-#?!>@ #OL #OL #OLI #OLN TH3$#,+,?!DD# TH3$#,+,?3.$% TD3$#,+,?3.$% &-#?3$.%;= TH3$#,+,?.2!3 TD3$#,+,?.2!3 &-#?3$.2!3 TD3$#,+,?.#!3 TH3$#,+,?.#!3 TD3$#,+,?.7% TH3$#,+,?.7% &-#?3$.#!3 &-#?3$.7% TD3$#,+,?$ATA $ATA &-#?$;= $ATA $ATAI $ATAN TH3$#,+,?$ATA TD3$#,+,?.", &-#?.",;= -36 Table 102. SDRAM write timings(1)(2) Symbol Parameter Min Unit MHz F(SDCLK) Frequency of operation - 90 tw(SDCLK) FMC_SDCLK period 2THCLK - 0.5 2THCLK + 0.5 td(SDCLKL _Data) Data output valid time - 2 th(SDCLKL _Data) Data output hold time 0.5 - td(SDCLK _Add) Address valid time - 3 td(SDCLKL _SDNWE)) SDNWE valid time - 1.5 th(SDCLKL_SDNWE)) SDNWE hold time 0 - td(SDCLKL_SDNE)) Chip select valid time - 1.5 th(SDCLKL_SDNE) Chip select hold time 0 - td(SDCLKL_SDNRAS) SDNRAS valie time - 1 th(SDCLKL_SDNRAS) SDNRAS hold time 0 - td(SDCLKL_SDNCAS) SDNCAS valid time - 1 th(SDCLKL_SDNCAS) SDNCAS hold time 0 - 1. CL = 10 pF on data and address line. CL=15 pF on FMC_SDCLK. 2. Guaranteed based on test during characterization. 170/201 Max DocID027107 Rev 5 ns STM32F446xC/E Electrical characteristics Table 103. LPSDR SDRAM write timings(1)(2) Symbol Parameter Min Max Unit MHz F(SDCLK) Frequency of operation - 84 tw(SDCLK) FMC_SDCLK period 2THCLK - 0.5 2THCLK + 0.5 td(SDCLKL _Data) Data output valid time - 5 th(SDCLKL _Data) Data output hold time 0.5 - td(SDCLK _Add) Address valid time - 3 td(SDCLKL _SDNWE)) SDNWE valid time - 3 th(SDCLKL_SDNWE)) SDNWE hold time 0 - td(SDCLKL_SDNE)) Chip select valid time - 2.5 th(SDCLKL_ SDNE) Chip select hold time 0 - td(SDCLKL_SDNRAS) SDNRAS valid time - 2 th(SDCLKL_SDNRAS) SDNRAS hold time 0 - td(SDCLKL_SDNCAS) SDNCAS valid time - 2 td(SDCLKL_SDNCAS) SDNCAS hold time 0 - ns 1. CL = 10 pF. 2. Guaranteed based on test during characterization. 6.3.27 Camera interface (DCMI) timing specifications Unless otherwise specified, the parameters given in Table 104 for DCMI are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage summarized in Table 16, with the following configuration: • DCMI_PIXCLK polarity: falling • DCMI_VSYNC and DCMI_HSYNC polarity: high • Data formats: 14 bits Table 104. DCMI characteristics Symbol - Parameter Frequency ratio DCMI_PIXCLK/fHCLK DCMI_PIXCLK Pixel clock input DPixel Pixel clock input duty cycle Min Max - 0.4 - - 54 MHz 30 70 % tsu(DATA) Data input setup time 1 - th(DATA) Data input hold time 3.5 - tsu(HSYNC) tsu(VSYNC) DCMI_HSYNC/DCMI_VSYNC input setup time 2 - th(HSYNC) th(VSYNC) DCMI_HSYNC/DCMI_VSYNC input hold time 0 - DocID027107 Rev 5 Unit ns 171/201 174 Electrical characteristics STM32F446xC/E Figure 64. DCMI timing diagram '&0,B3,;&/. '&0,B3,;&/. WK+6<1& WVX+6<1& '&0,B+6<1& WK+6<1& WVX96<1& '&0,B96<1& WVX'$7$ WK'$7$ '$7$>@ 069 6.3.28 SD/SDIO MMC card host interface (SDIO) characteristics Unless otherwise specified, the parameters given in Table 105 for the SDIO are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDD supply voltage conditions summarized in Table 16, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics. Figure 65. SDIO high-speed mode TF TR T# T7#+( T7#+, #+ T/6 T/( $#-$ OUTPUT T)35 T)( $#-$ INPUT AI 172/201 DocID027107 Rev 5 STM32F446xC/E Electrical characteristics Figure 66. SD default mode #+ T/6$ T/($ $#-$ OUTPUT AI Table 105. Dynamic characteristics: SD / MMC characteristics(1)(2) Symbol Parameter Conditions Min Typ Max Unit fPP Clock frequency in data transfer mode - 0 - 50 MHz - SDIO_CK/fPCLK2 frequency ratio - - - 8/3 - tW(CKL) Clock low time fpp =50MHz 9.5 10.5 - tW(CKH) Clock high time fpp =50MHz 8.5 9.5 - ns CMD, D inputs (referenced to CK) in MMC and SD HS mode tISU Input setup time HS fpp =50MHz 1 - - tIH Input hold time HS fpp =50MHz 4.5 - - ns CMD, D outputs (referenced to CK) in MMC and SD HS mode tOV Output valid time HS fpp =50MHz - 12.5 13 tOH Output hold time HS fpp =50MHz 11 - - ns CMD, D inputs (referenced to CK) in SD default mode tISUD Input setup time SD fpp =25MHz 2.5 - - tIHD Input hold time SD fpp =25MHz 5.5 - - ns CMD, D outputs (referenced to CK) in SD default mode tOVD Output valid default time SD fpp =24MHz - 3.5 4 tOHD Output hold default time SD fpp =24MHz 2 - - ns 1. Guaranteed based on test during characterization. 2. VDD = 2.7 to 3.6 V. DocID027107 Rev 5 173/201 174 Electrical characteristics STM32F446xC/E Table 106. Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V(1)(2) Symbol Parameter Conditions Min Typ Max Unit fPP Clock frequency in data transfer mode - 0 - 50 MHz SDIO_CK/fPCLK2 frequency ratio - - - 8/3 - tW(CKL) Clock low time fpp =50MHz 9.5 10.5 - tW(CKH) Clock high time fpp =50MHz 8.5 9.5 - ns CMD, D inputs (referenced to CK) in eMMC mode tISU Input setup time HS fpp =50MHz 0.5 - - tIH Input hold time HS fpp =50MHz 7.5 - - ns CMD, D outputs (referenced to CK) in eMMC mode tOV Output valid time HS fpp =50MHz - 13.5 14.5 tOH Output hold time HS fpp =50MHz 12 - - ns 1. Guaranteed based on test during characterization. 2. VDD = 2.7 to 3.6 V. 6.3.29 RTC characteristics Table 107. RTC characteristics 174/201 Symbol Parameter - fPCLK1/RTCCLK frequency ratio Conditions Any read/write operation from/to an RTC register DocID027107 Rev 5 Min Max 4 - STM32F446xC/E 7 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 7.1 LQFP64 package information Figure 67. LQFP64-10x10 mm 64 pin low-profile quad flat package outline PP *$8*(3/$1( F $ $ $ 6($7,1*3/$1( & $ FFF & ' ' ' . / / ( ( ( E 3,1 ,'(17,),&$7,21 H :B0(B9 1. Drawing is not to scale Table 108. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 DocID027107 Rev 5 175/201 198 Package information STM32F446xC/E Table 108. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max D 11.800 12.000 12.200 0.4646 0.4724 0.4803 D1 9.800 10.000 10.200 0.3858 0.3937 0.4016 D3 - 7.500 - - 0.2953 - E 11.800 12.000 12.200 0.4646 0.4724 0.4803 E1 9.800 10.000 10.200 0.3858 0.3937 0.4016 E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - K 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 68. LQFP64 Recommended footprint AIC 1. Drawing is not to scale. 2. Dimensions are in millimeters. 176/201 DocID027107 Rev 5 STM32F446xC/E Package information Marking of engineering samples for LQFP64 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 69. LQFP64 marking example (package top view) 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ $ 670) 5(7 < :: 3LQLGHQWLILHU 'DWHFRGH 06Y9 1. Parts marked as “ES”, "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID027107 Rev 5 177/201 198 Package information 7.2 STM32F446xC/E LQFP100 package information Figure 70. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline MM C ! ! ! 3%!4).'0,!.% # '!5'%0,!.% $ , $ ! + CCC # , $ 0). )$%.4)&)#!4)/. % % % B E ,?-%?6 1. Drawing is not to scale. Table 109. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 - 12.000 - - 0.4724 - E 15.800 16.000 16.200 0.6220 0.6299 0.6378 178/201 DocID027107 Rev 5 STM32F446xC/E Package information Table 109. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 - 12.000 - - 0.4724 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 71. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint AIC 1. Dimensions are expressed in millimeters. DocID027107 Rev 5 179/201 198 Package information STM32F446xC/E Device marking for LQFP100 package The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 72. LQFP100 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ 670) 5HYLVLRQFRGH 9&7 $ 'DWHFRGH < :: 3LQLGHQWLILHU 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 180/201 DocID027107 Rev 5 STM32F446xC/E LQFP144 package information. Figure 73. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline PP *$8*(3/$1( C ! F $ ! ! $ 3%!4).' 0,!.% # $ FFF & MM CCC # ' $ ' $ ' $ / + , / , . ! $ '!5'%0,!.% B ( ( % ( % % E 7.3 Package information 0). )$%.4)&)#!4)/. E 3,1 !?-%?6 ,'(17,),&$7,21 H $B0(B9 1. Drawing is not to scale. DocID027107 Rev 5 181/201 198 Package information STM32F446xC/E Table 110. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 21.800 22.000 22.200 0.8583 0.8661 0.874 D1 19.800 20.000 20.200 0.7795 0.7874 0.7953 D3 - 17.500 - - 0.689 - E 21.800 22.000 22.200 0.8583 0.8661 0.8740 E1 19.800 20.000 20.200 0.7795 0.7874 0.7953 E3 - 17.500 - - 0.6890 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 182/201 DocID027107 Rev 5 STM32F446xC/E Package information Figure 74. LQFP144 recommended footprint DLH 1. Dimensions are expressed in millimeters. DocID027107 Rev 5 183/201 198 Package information STM32F446xC/E Device marking for LQFP144 package The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 75. LQFP144 marking example (package top view) 2SWLRQDOJDWHPDUN 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ $ 670)=(7 'DWHFRGH < :: 3LQLGHQWLILHU 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 184/201 DocID027107 Rev 5 STM32F446xC/E 7.4 Package information UFBGA144 7 x 7 mm package information Figure 76. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline = 6HDWLQJSODQH GGG = $ $ $ $ $ ( H $EDOO $EDOO LGHQWLILHU LQGH[DUHD ) ; ( $ ) ' ' H < 0 %277209,(: EEDOOV HHH 0 = < ; III 0 = 7239,(: $$6B0(B9 1. Drawing is not in scale. Table 111. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A 0.460 0.530 0.600 0.0181 0.0209 0.0236 A1 0.050 0.080 0.110 0.0020 0.0031 0.0043 A2 0.400 0.450 0.500 0.0157 0.0177 0.0197 A3 - 0.130 - - 0.0051 - A4 0.270 0.320 0.370 0.0106 0.0126 0.0146 b 0.230 0.280 0.320 0.0091 0.0110 0.0126 D 6.950 7.000 7.050 0.2736 0.2756 0.2776 D1 5.450 5.500 5.550 0.2146 0.2165 0.2185 E 6.950 7.000 7.050 0.2736 0.2756 0.2776 E1 5.450 5.500 5.550 0.2146 0.2165 0.2185 e - 0.500 - - 0.0197 - F 0.700 0.750 0.800 0.0276 0.0295 0.0315 DocID027107 Rev 5 185/201 198 Package information STM32F446xC/E Table 111. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data (continued) inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. ddd - - 0.100 - - 0.0039 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 77. UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint 'SDG 'VP Ϭ^ͺ&Wͺsϭ Table 112. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA) Dimension 186/201 Recommended values Pitch 0.50 mm Dpad 0.280 mm Dsm 0.370 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.280 mm Stencil thickness Between 0.100 mm and 0.125 mm Pad trace width 0.120 mm DocID027107 Rev 5 STM32F446xC/E Package information Device marking for UFBGA144 7 x 7 mm package The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 78. UQFP144 7 x 7 mm marking example (package top view) 3URGXFW LGHQWLILFDWLRQ 670) =(+ 'DWHFRGH < :: %DOO$ LQGHQWLILHU $ $GGLWLRQDO LQIRUPDWLRQ 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID027107 Rev 5 187/201 198 Package information 7.5 STM32F446xC/E UFBGA144 10 x 10 mm package information Figure 79. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package outline & 6HDWLQJSODQH GGG = $ $ $ $ $ ( H $EDOO $EDOO LGHQWLILHU LQGH[DUHD ) $ ( $ ) ' ' H % 0 %277209,(: EEDOOV HHH 0 & $ % III 0 & 7239,(: $<B0(B9 1. Drawing is not to scale. Table 113. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package mechanical data inches(1) millimeters Symbol 188/201 Min. Typ. Max. Min. Typ. Max. A 0.460 0.530 0.600 0.0181 0.0209 0.0236 A1 0.050 0.080 0.110 0.0020 0.0031 0.0043 A2 0.400 0.450 0.500 0.0157 0.0177 0.0197 A3 0.050 0.080 0.110 - 0.0051 - A4 0.270 0.320 0.370 0.0106 0.0126 0.0146 b 0.360 0.400 0.440 0.0091 0.0110 0.0130 D 9.950 10.000 10.050 0.2736 0.2756 0.2776 D1 8.750 8.800 8.850 0.2343 0.2362 0.2382 E 9.950 10.000 10.050 0.2736 0.2756 0.2776 E1 8.750 8.800 8.850 0.2343 0.2362 0.2382 e 0.750 0.800 0.850 - 0.0197 - DocID027107 Rev 5 STM32F446xC/E Package information Table 113. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package mechanical data (continued) inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. F 0.550 0.600 0.650 0.0177 0.0197 0.0217 ddd - - 0.080 - - 0.0039 eee - - 0.150 - - 0.0059 fff - - 0.080 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 80. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package recommended footprint 'SDG 'VP ϬϮzͺ&Wͺsϭ Table 114. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) Dimension Recommended values Pitch 0.80 mm Dpad 0.400 mm Dsm 0.550 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.400 mm Stencil thickness Between 0.100 mm and 0.125 mm Pad trace width 0.120 mm DocID027107 Rev 5 189/201 198 Package information STM32F446xC/E Device marking for UFBGA144 10 x 10 mm package The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 81. UQFP144 10 x 10 mm marking example (package top view) 3URGXFW LGHQWLILFDWLRQ 670) =(- $ $GGLWLRQDO LQIRUPDWLRQ 'DWHFRGH < :: %DOO$ LQGHQWLILHU 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 190/201 DocID027107 Rev 5 STM32F446xC/E 7.6 Package information WLCSP81 package information Figure 82. WLCSP81 - 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale package outline H EEE = $EDOO ORFDWLRQ H $EDOO ORFDWLRQ ' $ H 'HWDLO$ ( H - * %RWWRPYLHZ %XPSVLGH DDD $ ) 7RSYLHZ :DIHUEDFNVLGH $ $ 6LGHYLHZ 'HWDLO$ URWDWHGE\ $ HHH = T FFF0 TGGG0 E =;< = 6HDWLQJSODQH = $7B0(B9 1. Drawing is not to scale. Table 115. WLCSP81- 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 0.600 - - 0.0236 A1 - 0.170 - - 0.0067 - A2 - 0.380 - - 0.0150 - A3(2) - 0.025 - - 0.0010 - b(3) 0.220 0.250 0.280 0.0087 0.0098 0.0110 D 3.658 3.693 3.728 0.1440 0.1454 0.1468 E 3.780 3.815 3.850 0.1488 0.1502 0.1516 e - 0.400 - - 0.0157 - e1 - 3.200 - - 0.1260 - e2 - 3.200 - - 0.1260 - DocID027107 Rev 5 191/201 198 Package information STM32F446xC/E Table 115. WLCSP81- 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max F - 0.2465 - - 0.0097 - G - 0.3075 - - 0.0121 - aaa - - 0.100 - - 0.0039 bbb - - 0.100 - - 0.0039 ccc - - 0.100 - - 0.0039 ddd - - 0.050 - - 0.0020 eee - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Back side coating 3. Dimension is measured at the maximum bump diameter parallel to primary datum Z. Figure 83. WLCSP81- 81-pin, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale package recommended footprint 'SDG 'VP $7B)3B9 Table 116. WLCSP81 recommended PCB design rules (0.4 mm pitch) Dimension 192/201 Recommended values Pitch 0.4 mm Dpad 0.225 mm Dsm 0.290 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.250 mm Stencil thickness 0.100 mm DocID027107 Rev 5 STM32F446xC/E Package information Device marking for WLCSP81 package The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 84. WLCSP81 10 x 10 mm marking example (package top view) 3LQLGHQWLILHU 670) 3URGXFW LGHQWLILFDWLRQ 0&< 'DWHFRGH < :: $ $GGLWLRQDO LQIRUPDWLRQ 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID027107 Rev 5 193/201 198 Package information 7.7 STM32F446xC/E Thermal characteristics The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: • TA max is the maximum ambient temperature in ° C, • ΘJA is the package junction-to-ambient thermal resistance, in ° C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 117. Package thermal characteristics Symbol ΘJA Parameter Value Thermal resistance junction-ambient LQFP64 - 10 × 10 mm 46 Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch 42 Thermal resistance junction-ambient LQFP144 - 20 × 20 mm / 0.5 mm pitch 33 Thermal resistance junction-ambient UFBGA144 - 7 × 7 mm / 0.5 mm pitch 51 Thermal resistance junction-ambient UFBGA144 - 10 × 10 mm / 0.8 mm pitch 48 Thermal resistance junction-ambient WLCSP81 48 Unit °C/W Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. 194/201 DocID027107 Rev 5 STM32F446xC/E 8 Part numbering Part numbering Table 118. Ordering information scheme Example: STM32 F 446 V C T 6 xxx Device family STM32 = ARM-based 32-bit microcontroller Product type F = general-purpose Device subfamily 446= STM32F446xC/E, Pin count M = 81 pins R = 64 pins V = 100 pins Z = 144 pins Flash memory size C=256 Kbytes of Flash memory E=512 Kbytes of Flash memory Package H = UFBGA (7 x 7 mm) J = UFBGA (10 x 10 mm) T = LQFP Y = WLCSP Temperature range 6 = Industrial temperature range, –40 to 85 °C. 7 = Industrial temperature range, –40 to 105 °C. Options xxx = programmed parts TR = tape and reel For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. DocID027107 Rev 5 195/201 198 Application block diagrams Appendix A A.1 STM32F446xC/E Application block diagrams USB OTG full speed (FS) interface solutions Figure 85. USB controller configured as peripheral-only and used in Full speed mode 9''86% 9'' 9%86 '0 3$3% 26&B,1 '3 3$3% 966 26&B287 86%6WG%FRQQHFWRU 9WR9''86% 9ROWDJHUHJXODWRU 06Y9 1. External voltage regulator only needed when building a VBUS powered device. 2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller. Figure 86. USB controller configured as host-only and used in full speed mode 6$$ %. '0)/ '0)/)21 #URRENTLIMITER POWERSWITCH 60WR 6"53 /3#?). 0!0" 0!0" $$0 633 /3#?/54 53"3TD!CONNECTOR 34-&XX /VERCURRENT -36 1. The current limiter is required only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board. 2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller. 196/201 DocID027107 Rev 5 STM32F446xC/E Application block diagrams Figure 87. USB controller configured in dual mode and used in full speed mode 6$$ 6TO6$$ VOLTAGEREGULATOR 6$$ '0)/)21 /VERCURRENT #URRENTLIMITER POWERSWITCH 60WR 34-&XX 0!0" 0!0" /3#?). /3#?/54 0!0" 0!0" 6"53 $$0 )$ 633 53"MICRO!"CONNECTOR '0)/ %. -36 1. External voltage regulator only needed when building a VBUS powered device. 2. The current limiter is required only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board. 3. The ID pin is required in dual role only. 4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller. DocID027107 Rev 5 197/201 198 Application block diagrams A.2 STM32F446xC/E USB OTG high speed (HS) interface solutions Figure 88. USB controller configured as peripheral, host, or dual-mode and used in high speed mode 34-&XX &30(9 53"(3 /4'#TRL $0 $- NOTCONNECTED $0 5,0)?#,+ $- 5,0)?$;= 5,0) )$ 5,0)?$)2 6"53 5,0)?340 53" CONNECTOR 633 5,0)?.84 (IGHSPEED /4'0(9 0,, 84 OR-(Z84 -#/OR-#/ 8) -36 1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F446xx with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible connection. 2. The ID pin is required in dual role only. 198/201 DocID027107 Rev 5 STM32F446xC/E 9 Revision history Revision history Table 119. Document revision history Date Revision 17-Feb-2015 1 Initial release. 2 Added note 2 inside Table 2 Updated Table 11, Table 23, Table 24, Table 25, Table 26, Table 30, Table 51, Table 52, Table 53, and Table 61 Added condition inside Typical and maximum current consumption and Additional current consumption Added FMPI2C characteristics Added Table 62 and Figure 35 3 Updated: – Section 6.3.15: Absolute maximum ratings (electrical sensitivity) – Section 7: Package information – Table 2: STM32F446xC/E features and peripheral counts – Table 13: STM32F446xC/xE WLCSP81 ballout – Figure 53: ESD absolute maximum ratings – Figure 54: Synchronous multiplexed NOR/PSRAM read timings Added: – Figure 78: UQFP144 7 x 7 mm marking example (package top view), – Figure 81: UQFP144 10 x 10 mm marking example (package top view), – Figure 84: WLCSP81 10 x 10 mm marking example (package top view) 16-Mar-2015 29-May-2015 Changes DocID027107 Rev 5 199/201 200 Revision history STM32F446xC/E Table 119. Document revision history (continued) Date 10-Aug-2015 03-Nov-2015 200/201 Revision Changes 4 Updated: – Figure 14: STM32F446xC/xE UFBGA144 ballout – Table 10: STM32F446xx pin and ball descriptions – Table 18: VCAP_1/VCAP_2 operating conditions – Section 3.15: Power supply schemes – Section 6.3.2: VCAP_1/VCAP_2 external capacitor Added: – Figure 5: VDDUSB connected to an external independent power supply – Notes 3 and 4 below Figure 18: Power supply scheme 5 Updated: – Introduction; – Table 2: STM32F446xC/E features and peripheral counts – Table 43: Main PLL characteristics – Title of Table 45: PLLISAI characteristics – Table 109: LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data – Table 118: Ordering information scheme – Figure 10: STM32F446xC/xE LQFP64 pinout – Figure 11: STM32F446xC/xE LQFP100 pinout Added: – Table 77: UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint – Table 111: UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data DocID027107 Rev 5 STM32F446xC/E IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID027107 Rev 5 201/201 201