SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 DS0134 Datasheet SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Device Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Product Briefs and Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 2 4.1. Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4.2. Overshoot/Undershoot Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.3. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.3.1 4.3.2 4.3.3 4.3.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theta-JA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theta-JB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theta-JC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6 7 7 5. Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5.1. Quiescent Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5.2. Programming Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6. Average Fabric Temperature and Voltage Derating Factors . . . . . . . . . . . . . . . . . . . . . . . . . 9 7. Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 8. User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 8.1. Input Buffer and AC Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2. Output Buffer and AC Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3. Tristate Buffer and AC Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4. I/O Speeds ................................................................ 8.5. Detailed I/O Characteristics ................................................. 8.6. Single-Ended I/O Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6.1 8.6.2 8.6.3 8.6.4 8.6.5 8.6.6 8.6.7 Low Voltage Complementary Metal Oxide Semiconductor (LVCMOS) . . . . . . . . . . . . . . . . . . . . . . . 3.3 V LVCMOS/LVTTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 V LVCMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 V LVCMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 V LVCMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 V LVCMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 V PCI/PCIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 13 14 15 17 17 17 18 20 23 26 30 32 8.7. Memory Interface and Voltage Referenced I/O Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.7.1 8.7.2 8.7.3 8.7.4 8.7.5 8.7.6 High-Speed Transceiver Logic (HSTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stub-Series Terminated Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stub-Series Terminated Logic 2.5 V (SSTL2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stub-Series Terminated Logic 1.8 V (SSTL18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stub-Series Terminated Logic 1.5 V (SSTL15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low Power Double Data Rate (LPDDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 36 36 39 41 43 8.8. Differential I/O Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8.8.1 8.8.2 8.8.3 8.8.4 8.8.5 8.8.6 LVDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-LVDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-LVDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mini-LVDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RSDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LVPECL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 2 48 50 51 53 54 56 i SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table of Contents 8.9. I/O Register Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8.9.1 Input Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8.9.2 Output/Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.10. DDR Module Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8.10.1 8.10.2 8.10.3 8.10.4 8.10.5 Input DDR Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input DDR Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output DDR Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 62 63 64 66 9. Logic Element Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9.1. 4-input LUT (LUT-4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9.1.1 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9.2. Sequential Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9.2.1 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 10. Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 11. FPGA Fabric SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 11.1. FPGA Fabric Large SRAM (LSRAM) 11.2. FPGA Fabric Micro SRAM (uSRAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 12. Embedded NVM (eNVM) Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13. Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14. On-Chip Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15. Clock Conditioning Circuits (CCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16. JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17. DEVRST_N Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18. System Controller SPI Characteristics ...................................... 19. Mathblock Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20. Flash*Freeze Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21. DDR Memory Interface Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22. SFP Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23. PCIe Electrical and Timing AC and DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 24. SmartFusion2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 87 89 89 91 91 92 93 95 95 96 96 98 24.1. MSS Clock Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 24.2. SmartFusion2 Inter-Integrated Circuit (I2C) Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 24.3. Serial Peripheral Interface (SPI) Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 25. CAN Controller Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 26. USB Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 27. IGLOO2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 27.1. HPMS Clock Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 27.2. IGLOO2 Serial Peripheral Interface (SPI) Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 28. List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Revision 2 ii SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table of Contents 29. Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 29.1. Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.2. Product Brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.3. Advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.4. Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.5. Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 107 107 107 107 30. Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . 108 31. Microsemi Corporate Headquarters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Revision 2 iii Refer to Table 1 for Device Specific Status List of Figures Figure 1. Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 2. Input Buffer AC Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 3. Output Buffer AC Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 4. Tristate Buffer for Enable Path Test Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 5. Timing Model for Input Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Figure 6. I/O Register Input Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Figure 7. Timing Model for Output/Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 8. I/O Register Output Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Figure 9. Input DDR Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 10. Input DDR Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Figure 11. Output DDR Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure 12. Output DDR Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Figure 13. LUT-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Figure 14. Sequential Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Figure 15. Sequential Module Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Figure 16. I2C Timing Parameter Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Figure 17. SPI Timing for a Single Frame Transfer in Motorola Mode (SPH = 1) . . . . . . . . . . . . . . . . . 102 Figure 18. SPI Timing for a Single Frame Transfer in Motorola Mode (SPH = 1) . . . . . . . . . . . . . . . . . 105 Revision 2 i Refer to Table 1 for Device Specific Status List of Tables Table 1. IGLOO2 FPGA and SmartFusion2 SoC FPGA Device Status .................................................1 Table 2. Absolute Maximum Ratings ......................................................................................................2 Table 3. Recommended Operating Conditions ......................................................................................3 Table 4. FPGA Operating Limits .............................................................................................................4 Table 5. Embedded Flash Limits ............................................................................................................5 Table 6. Device Storage Temperature and Retention ............................................................................5 Table 7. Package Thermal Resistance ...................................................................................................6 Table 8. Quiescent Supply Current Characteristics ................................................................................7 Table 9. SmartFusion2 and IGLOO2 Quiescent Supply Current – Typical Process ..............................8 Table 10. SmartFusion2 and IGLOO2 Quiescent Supply Current – Worst-Case Process .....................8 Table 11. Currents During Program Cycle, 0°C < = TJ <= 85°C, Typical Process .................................9 Table 12. Currents During Verify Cycle, 0°C <= TJ <= 85°C, Typical Process .......................................9 Table 13. Inrush Currents at Power up, -40°C <= TJ <=125°C, Typical Process ...................................9 Table 14. Average Temperature and Voltage Derating Factors for Fabric Timing Delays .....................9 Table 15. Timing Model Parameters ....................................................................................................11 Table 16. Maximum Data Rate Summary for Worst-Case Automotive Grade 2 Conditions ................15 Table 17. Maximum Frequency Summary for Worst-Case Automotive Grade 2 Conditions ...............16 Table 18. Input Capacitance .................................................................................................................17 Table 19. I/O Weak Pull-Up/Pull-Down Resistance Values for DDRIO, MSIO, and MSIOD Banks .....17 Table 20. Schmitt Trigger Input Hysteresis ..........................................................................................17 Table 21. LVTTL/LVCMOS 3.3 V DC Voltage Specification (Applicable to MSIO I/O Bank Only) .......18 Table 22. LVTTL/LVCMOS 3.3 V Maximum Switching Speeds (Applicable to MSIO I/O Bank Only) .18 Table 23. LVTTL/LVCMOS 3.3 V AC Test Parameter Specifications (Applicable to MSIO Bank Only) 18 Table 24. LVTTL/LVCMOS 3.3 V Receiver Characteristics for MSIO I/O Banks (Input Buffers) .........19 Table 25. LVTTL/LVCMOS 3.3 V Transmitter Characteristics for MSIO I/O Bank (Output and Tristate Buffers) ......................................................................................................................................................19 Table 26. LVTTL/LVCMOS 3.3 V Transmitter Drive Strength Specifications (Applicable to MSIO Bank* Only) .........................................................................................................19 Table 27. LVCMOS 2.5 V DC Voltage Specification ............................................................................20 Table 28. LVCMOS 2.5 V Maximum AC Switching Speeds .................................................................20 Table 29. LVCMOS 2.5 V AC Test Parameters and Driver Impedance Specifications ........................20 Table 30. LVCMOS 2.5 V AC Switching Characteristics for Receiver (Input Buffers) ..........................21 Table 31. LVCMOS 2.5 V AC Switching Characteristics for Transmitter (Output and Tristate Buffers) 21 Table 32. LVCMOS 2.5 V Transmitter Drive Strength Specifications ...................................................21 Table 33. LVCMOS 1.8 V DC Voltage Specification ............................................................................23 Table 34. LVCMOS 1.8 V Maximum AC Switching Speeds .................................................................23 Table 35. LVCMOS 1.8 V Transmitter Drive Strength Specifications ...................................................23 Table 36. LVCMOS 1.8 V Transmitter Drive Strength Specifications ...................................................24 Table 37. LVCMOS 1.8 V AC Test Parameters and Driver Impedance Specifications ........................24 Table 38. LVCMOS 1.8 V AC Switching Characteristics for Receiver (Input Buffers) ..........................25 Table 39. LVCMOS 1.8 V AC Switching Characteristics for Transmitter (Output and Tristate Buffers) 25 Table 40. LVCMOS 1.5 V Minimum and Maximum DC Input and Output Levels ................................26 Table 41. LVCMOS 1.5 V Maximum AC Switching Speeds .................................................................27 Table 42. LVCMOS 1.5 V AC Test Parameters and Driver Impedance Specifications ........................27 Table 43. LVCMOS 1.5 V Transmitter Drive Strength Specifications ...................................................27 Table 44. LVCMOS 1.5 V AC Switching Characteristics for Receiver (Input Buffers) ..........................28 Table 45. LVCMOS 1.5 V AC Switching Characteristics for Transmitter (Output and Tristate Buffers) 28 Table 46. LVCMOS 1.2 V Minimum and Maximum DC Input and Output Levels ................................30 Table 47. LVCMOS 1.2 V Maximum AC Switching Speeds .................................................................30 Revision 2 i SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 48. LVCMOS 1.2 V AC Calibrated Impedance and Test Parameters Specifications .................30 Table 49. LVCMOS 1.2 V AC Switching Characteristics for Receiver (Input Buffers) ..........................31 Table 50. LVCMOS 1.2 V AC Switching Characteristics for Transmitter (Output and Tristate Buffers) 31 Table 51. LVCMOS 1.2 V Transmitter Drive Strength Specifications ...................................................31 Table 52. PCI/PCI-X DC Voltage Specification (Applicable to MSIO Bank Only ..................................32 Table 53. PCI/PCIX AC Switching Characteristics for Receiver (Input Buffers) ...................................33 Table 54. PCI/PCIX AC Switching Characteristics for Transmitter (Output and Tristate Buffers) ........33 Table 55. PCI/PCI-X AC Specifications (Applicable to MSIO Bank Only) ............................................33 Table 56. HSTL DC Voltage Specification (Applicable to DDRIO I/O Bank Only) ................................34 Table 57. HSTL15 AC Switching Characteristics for Receiver (Input Buffers) .....................................35 Table 58. HSTL 15 AC Switching Characteristics for Transmitter (Output and Tristate Buffers) .........35 Table 59. HSTL AC Specifications (Applicable to DDRIO Bank Only) .................................................35 Table 60. DDR1/SSTL2 Minimum and Maximum DC Input and Output Levels ...................................36 Table 61. DDR1/SSTL2 AC Switching Characteristics for Receiver (Input Buffers) ............................37 Table 62. DDR1/SSTL2 AC Specifications ...........................................................................................37 Table 63. DDR1/SSTL2 AC Switching Characteristics for Transmitter (Output and Tristate Buffers) ..38 Table 64. DDR2/SSTL18 AC/DC Minimum and Maximum Input and Output Levels Specification ......39 Table 65. DDR2/SSTL18 AC Switching Characteristics for Receiver (Input Buffers) ..........................40 Table 66. DDR2/SSTL18 AC Specifications (Applicable to DDRIO Bank Only) ..................................40 Table 67. DDR2/SSTL18 AC Switching Characteristics for Transmitter (Output and Tristate Buffers) 41 Table 68. DDR3 SSTL15 DC Voltage Specification (for DDRIO I/O Bank Only) .................................41 Table 69. DDR3/STTL15 AC Switching Characteristics for Receiver (Input Buffers) ...........................42 Table 70. DDR3/SSTL15 AC Specifications .........................................................................................42 Table 71. DDR3/SSTL15 AC Switching Characteristics for Transmitter (Output and Tristate Buffers) 43 Table 72. LPDDR AC/DC Specifications (for DDRIO IO Bank Only) ...................................................43 Table 73. LPDDR AC Switching Characteristics for Receiver (Input Buffers) ......................................44 Table 74. LPDDR Maximum AC Switching Speeds (for DDRIO I/O Bank Only) ..................................44 Table 75. LPDDR AC Specifications (for DDRIO IO Bank Only) ..........................................................44 Table 76. LPDDR AC Switching Characteristics for Transmitter (Output and Tristate Buffers) ...........45 Table 77. LPDDR-LVCMOS 1.8 V Mode, Minimum and Maximum DC Input and Output Levels (Applicable to DDRIO I/O Bank Only) ...................................................................................................45 Table 78. LPDDR-LVCMOS 1.8 V Maximum AC Switching Speeds (Applicable to DDRIO I/O Bank Only) ...............................................................................................................................................................45 Table 79. LPPDR - LVCMOS 1.8 V AC Switching Characteristics for Receiver (Input Buffers) ..........46 Table 80. LPDDR-LVCMOS 1.8 V AC Test Parameters and Driver Impedance Specifications (Applicable to DDRIO I/O Bank Only) .........................................................................................................................46 Table 81. LPDDR-LVCMOS 1.8 V Mode Transmitter Drive Strength Specification (Applicable to DDRIO I/O Bank Only) ............................................................................................................................................46 Table 82. LPDDR - LVCMOS 1.8 V AC Switching Characteristics for Transmitter DDRIO I/O Bank (Output and Tristate Buffers) .............................................................................................................................47 Table 83. LVDS DC Voltage Specification ...........................................................................................48 Table 84. LVDS AC Specifications .......................................................................................................48 Table 85. LVDS25 Receiver Characteristics ........................................................................................49 Table 86. LVDS25 Transmitter Characteristics ....................................................................................49 Table 87. LVDS33 Receiver Characteristics ........................................................................................49 Table 88. LVDS33 Transmitter Characteristics ....................................................................................49 Table 89. B-LVDS DC Voltage Specification ........................................................................................50 Table 90. B-LVDS AC Specifications ...................................................................................................50 Table 91. B-LVDS AC Switching Characteristics for Receiver (Input Buffers) .....................................51 Table 92. B-LVDS AC Switching Characteristics for Transmitter (Output and Tristate Buffers) ..........51 Table 93. M-LVDS DC Voltage Specification .......................................................................................51 Table 94. M-LVDS AC Switching Characteristics for Receiver (Input Buffers) .....................................52 Table 95. M-LVDS AC Switching Characteristics for Transmitter (Output and Tristate Buffers) ..........52 Revision 2 ii SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 96. M-LVDS AC Specifications ...................................................................................................52 Table 97. Mini-LVDS DC Voltage Specification ....................................................................................53 Table 98. Mini-LVDS AC Specifications ...............................................................................................53 Table 99. Mini-LVDS AC Switching Characteristics for Receiver (Input Buffers) .................................54 Table 100. Mini-LVDS AC Switching Characteristics for Transmitter (Output and Tristate Buffers) ....54 Table 101. RSDS DC Voltage Specification .........................................................................................54 Table 102. RSDS AC Switching Characteristics for Receiver (Input Buffers) ......................................55 Table 103. RSDS AC Specifications ....................................................................................................55 Table 104. RSDS AC Switching Characteristics for Transmitter (Output and Tristate Buffers) ...........56 Table 105. LVPECL DC Voltage Specification (Applicable to MSIO I/O Banks Only) ..........................56 Table 106. LVPECL Maximum AC Switching Speeds (Applicable to MSIO I/O Banks Only) ..............56 Table 107. LVPECL Receiver Characteristics ......................................................................................56 Table 108. Input Data Register Propagation Delays ............................................................................58 Table 109. Output/Enable Data Register Propagation Delays .............................................................60 Table 110. Input DDR Propagation Delays ..........................................................................................63 Table 111. Output DDR Propagation Delays ........................................................................................66 Table 112. Combinatorial Cell Propagation Delays ..............................................................................67 Table 113. Register Delays ..................................................................................................................69 Table 114. M2S090T Device Global Resource ....................................................................................69 Table 115. M2S025T Device Global Resource ....................................................................................69 Table 116. M2S010T Device Global Resource ....................................................................................70 Table 117. M2S005T Device Global Resource ....................................................................................70 Table 118. RAM1K18 – Dual-Port Mode for Depth × Width Configuration 1Kx18 ...............................71 Table 119. RAM1K18 – Dual-Port Mode for Depth × Width Configuration 2Kx9 .................................72 Table 120. RAM1K18 – Dual-Port Mode for Depth × Width Configuration 4Kx4 .................................73 Table 121. RAM1K18 – Dual-Port Mode for Depth × Width Configuration 8Kx2 .................................74 Table 122. RAM1K18 – Dual-Port Mode for Depth × Width Configuration 16Kx1 ...............................75 Table 123. RAM1K18 – Two-Port Mode for Depth × Width Configuration 512x36 ..............................77 Table 124. uSRAM (RAM64x18) in 64x18 Mode .................................................................................78 Table 125. uSRAM (RAM64x16) in 64x16 Mode .................................................................................79 Table 126. uSRAM (RAM128x9) in 128x9 Mode .................................................................................80 Table 127. uSRAM (RAM128x8) in 128x8 Mode .................................................................................82 Table 128. uSRAM (RAM256x4) in 256x4 Mode .................................................................................83 Table 129. uSRAM (RAM512x2) in 512x2 Mode .................................................................................84 Table 130. uSRAM (RAM1024x1) in 1024x1 Mode .............................................................................85 Table 131. eNVM Read Performance ..................................................................................................87 Table 132. eNVM Page Programming ..................................................................................................87 Table 133. Electrical Characteristics of the Crystal Oscillator – High Gain Mode (20 MHz) ................87 Table 134. Electrical Characteristics of the Crystal Oscillator – Medium Gain Mode (2 MHz) .............88 Table 135. Electrical Characteristics of the Crystal Oscillator – Low Gain Mode (32 kHz) ..................88 Table 136. Electrical Characteristics of the 50 MHz RC Oscillator .......................................................89 Table 137. Electrical Characteristics of the 1 MHz RC Oscillator .........................................................89 Table 138. IGLOO2 and SmartFusion2 SoC FPGAs CCC/PLL Specification ......................................89 Table 139. IGLOO2 and SmartFusion2 SoC FPGAs CCC/PLL Jitter Specifications ...........................90 Table 140. JTAG 1532 .........................................................................................................................91 Table 141. DEVRST_N Characteristics ................................................................................................91 Table 142. System Controller SPI Characteristics ...............................................................................92 Table 143. Supported I/O Configurations for System Controller SPI (for MSIO Bank Only) ................92 Table 144. Mathblocks With All Registers Used ...................................................................................93 Table 145. Mathblock With Input Bypassed and Output Registers Used .............................................93 Table 146. Mathblock With Input Register Used and Output in Bypass Mode .....................................94 Table 147. Mathblock With Input and Output in Bypass Mode .............................................................94 Table 148. Flash*Freeze Entry and Exit Times ....................................................................................95 Revision 2 iii SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 149. DDR Memory Interface Characteristics ..............................................................................95 Table 150. SFP Transceiver Electrical Characteristics ........................................................................96 Table 151. Transmitter Parameters ......................................................................................................96 Table 152. Receiver Parameters ..........................................................................................................97 Table 153. SERDES Reference Clock AC Specifications ....................................................................97 Table 154. HCSL Minimum and Maximum DC Input Levels (Applicable to SERDES REFCLK Only) .97 Table 155. Maximum Frequency for MSS Main Clock .........................................................................98 Table 156. I2C Characteristics .............................................................................................................98 Table 157. HCSL Maximum AC Switching Speeds (Applicable to SERDES REFCLK Only) ..............98 Table 158. I2C Switching Characteristics .............................................................................................99 Table 159. SPI Characteristics ...........................................................................................................100 Table 160. CAN Controller Characteristics .........................................................................................102 Table 161. USB Characteristics .........................................................................................................102 Table 162. Maximum Frequency for HPMS Main Clock .....................................................................103 Table 163. SPI Characteristics ...........................................................................................................103 Revision 2 iv SmartFusion2 and IGLOO2 Automotive Grade 2 AC/DC Electrical Characteristics 1. Introduction Microsemi®'s automotive grade SmartFusion®2 system-on-chip (SoC) field programmable gate array (FPGA) and IGLOO®2 FPGA families offer the best-in-class security, industry leading high reliability and lowest static power in a flash-based fabric. With a strong heritage of supplying to Military and Aviation customers, Microsemi automotive grade devices are ideally suited to meet the demands of the automotive industry providing the lowest total-cost-of-ownership. These next-generation devices integrate an industry standard 4-input lookup table-based (LUT) FPGA fabric with integrated mathblocks, multiple embedded memory blocks, high-performance SERDES communications interfaces on a single chip with extended temperature support. Automotive grade SmartFusion2 and IGLOO2 devices offer up to 90 K Logic Elements, up to 5 MB of embedded RAM, up to 4 SERDES lanes, up to 2 PCIe endpoints and integrated hard DDR3 memory controllers with single error correct and double error detect. IGLOO2 automotive grade devices integrate a high-performance memory subsystem (HPMS) with on-chip flash, 32 kbyte embedded SRAM, and multiple DMA controllers. SmartFusion2 automotive grade SoC FPGAs provide a low-power real time microcontroller subsystem (MSS) with an embedded ARM® Cortex™-M3 encapsulating the benefits of HPMS along with a rich set of industry standard peripherals including Ethernet, USB, and CAN. SmartFusion2 and IGLOO2 FPGAs are the best alternative to ASICs and SRAM based FPGAs with their advantages of Zero FIT reliability, tamper-free advanced security, industry's lowest static power and supply assurance for long product lifetime support. 2. Device Status The following SmartFusion2 and IGLOO2 devices are available. For more information on device status, refer to the "Datasheet Categories". Table 1 • IGLOO2 FPGA and SmartFusion2 SoC FPGA Device Status Design Security Device Densities Status 005S Production 010TS Production 025TS Production 060TS Preliminary 090TS Production 3. Product Briefs and Pin Descriptions The product brief and pin descriptions are published separately: • PB0135: Automotive Grade IGLOO2 FPGAs Product Brief • DS0124: IGLOO2 Pin Descriptions • PB0136: Automotive Grade SmartFusion2 SoC FPGAs Product Brief • DS0115: SmartFusion2 Pin Descriptions Revision 2 1 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 4. General Specifications 4.1 Operating Conditions Stresses beyond those listed in Table 2 may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute maximum ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the recommended operating conditions specified in Table 2 is not implied. Table 2 • Absolute Maximum Ratings Limits Symbol Parameter Min Max Units Notes VDD DC core supply voltage. Must always power this –0.3 pin. 1.32 V – VPP Power supply for charge pumps (for normal operation and programming). Must always power –0.3 this pin. 3.63 V – MSS_MDDR_PLL_VDDA Analog power pad for MDDR PLL –0.3 3.63 V – HPMS_MDDR_PLL_VDDA Analog power pad for MDDR PLL –0.3 3.63 V – FDDR_PLL_VDDA Analog power pad for FDDR PLL –0.3 3.63 V – PLL0_PLL1_MSS_MDDR_VDDA Analog power pad for MDDR PLL –0.3 3.63 V – PLL0_PLL1_HPMS_MDDR_VDDA Analog power pad for MDDR PLL –0.3 3.63 V – CCC_XX[01]_PLL_VDDA Analog power pad for PLL0–5 –0.3 3.63 V – SERDES_[01]_PLL_VDDA High supply voltage for PLL SERDES[01] –0.3 3.63 V – Analog power for SERDES[01] PLL lane0 to lane3. SERDES_[01]_L[0123]_VDDAPLL –0.3 This is a +2.5 V SERDES internal PLL supply. 2.75 V – SERDES_[01]_L[0123]_VDDAIO TX/RX analog I/O voltage. Low voltage power for the lanes of SERDESIF0. This is a +1.2 V SERDES –0.3 PMA supply. 1.32 V – SERDES_[01]_VDD PCIe®/PCS power supply –0.3 1.32 V – DC FPGA I/O buffer supply voltage for MSIO I/O –0.3 Bank 3.63 V – DC FPGA I/O buffer supply voltage for MSIOD/DDRIO I/O Banks –0.3 2.75 V – I/O Input voltage for MSIO I/O Bank –0.3 3.63 V – I/O Input voltage for MSIOD/DDRIO I/O Bank –0.3 2.75 V – VPPNVM Analog sense circuit supply of embedded nonvolatile memory (eNVM). Must be shorted to VPP. –0.3 3.63 V – TSTG Storage temperature –65 150 °C * TJ Junction temperature – 135 °C – VDDIx VI Note: * For flash programming and retention maximum limits, refer to Table 4 on page 4. For recommended operating conditions, refer to Table 3 on page 3. Revision 2 2 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 3 • Recommended Operating Conditions Symbol Parameter Operating Junction Temperature Tj VDD VPP MSS_MDDR_PLL_VDDA HPMS_MDDR_PLL_VDDA FDDR_PLL_VDDA PLL0_PLL1_MSS_MDDR_VDDA PLL0_PLL1_HPMS_MDDR_VDDA CCC_XX[01]_PLL_VDDA SERDES_[01]_PLL_VDDA Conditions Min Typ Max Automotive Grade 2 -40 25 125 °C – – 0 25 85 °C – – -40 25 100 °C 1 – 1.14 1.2 1.26 V – 2.5 V Range 2.375 2.5 2.625 V – 3.3 V Range 3.15 3.3 3.45 V – 3.3 V Range 3.15 3.3 3.45 V – 2.5 V Range 2.375 2.5 2.625 V – 3.3 V Range 3.15 3.3 3.45 V – 2.5 V Range 2.375 2.5 2.625 V – 3.3 V Range 3.15 3.3 3.45 V – 2.5 V Range 2.375 2.5 2.625 V – 3.3 V Range 3.15 3.3 3.45 V – 2.5 V Range 2.375 2.5 2.625 V – 3.3 V Range 3.15 3.3 3.45 V – 2.5 V Range 2.375 2.5 2.625 V – 3.3 V Range 3.15 3.3 3.45 V – 2.5 V Range 2.375 2.5 2.625 V – 3.3 V Range 3.15 3.3 3.45 V – 2.5 V Range 2.375 2.5 2.625 V 2 3.3 V Range 3.15 3.3 3.45 V 2 Programming Junction Temperature DC core supply voltage. Must always power this pin. Power Supply for Charge Pumps (for Normal Operation and Programming) for 010 and 025 Devices Power Supply for Charge Pumps (for Normal Operation and Programming) for 090 devices Analog power pad for MDDR PLL Analog power pad for MDDR PLL Analog power pad for FDDR PLL Analog power pad for MDDR PLL Analog power pad for MDDR PLL Analog power pad for PLL0-5 High supply voltage for PLL SERDES[01] Revision 2 Units Notes 3 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 3 • Recommended Operating Conditions (continued) Symbol Parameter Conditions Min Typ Max SERDES_[01]_L[0123]_VDDAPLL Analog power for SERDES[01] PLL lanes 0-3. It is a +2.5 V SERDES internal PLL supply. – 2.375 2.5 2.625 V – SERDES_[01]_L[0123]_VDDAIO TX/RX analog I/O voltage. Low voltage power for the lanes of SERDESIF0. It is a +1.2 V SERDES PMA supply. – 1.14 1.2 1.26 V – SERDES_[01]_VDD PCIe/PCS Power supply – 1.14 1.2 1.26 V – 1.2 V DC supply voltage – 1.14 1.2 1.26 V – 1.5 V DC supply voltage – 1.425 1.5 1.575 V – 1.8 V DC supply voltage – 1.71 1.8 1.89 V – 2.5 V DC supply voltage – 2.375 2.5 2.625 V – 3.3 V DC supply voltage – 3.15 3.3 3.45 V – LVDS differential I/O – 2.375 2.5 3.45 V – BLVDS, MLVDS, MiniLVDS, RSDS differential I/O – 2.375 2.5 2.625 V – LVPECL differential I/O – 3.15 3.3 3.45 V – VREFx Reference Voltage Supply for FDDR (Bank0) and MDDR(Bank5) – 0.49 × 0.5 × 0.51 × VDDIx VDDIx VDDIx V – 2.5 V Range 2.375 2.5 2.625 V – VPPNVM Analog sense circuit supply of embedded nonvolatile memory (eNVM). Must be shorted to VPP 3.3 V Range 3.15 3.3 3.45 V – VDDIx Units Notes Notes: 1. Programming at this temperature range is available only with VPP in 3.3 V Range 2. Power supply ramps must all be strictly monotonic, without plateaus. Table 4 • FPGA Operating Limits Product Grade Automotive Grade 2 Element FPGA Programming Temperature Operating Temperature Programming Retention Cycles (Biased/Unbiased) Note Min TJ = 0°C Max TJ = 85°C Min TJ = -40°C Max TJ = 125°C 500 10 Years – Min TJ = -40°C Max TJ = 100°C Min TJ = -40°C Max TJ = 125°C 500 10 Years * Note: * Programming at Industrial temperature range is available only with VPP in 3.3V Range. Revision 2 4 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 5 • Embedded Flash Limits Product Grade Automotive Grade 2 Table 6 • Element Programming Temperature Embedded flash Min TJ = -40°C Max TJ = 125°C Maximum Operating Temperature Programming Cycles Retention (Biased/Unbiased) < 10,000 cycles Min TJ = -40°C per pages, up to Max TJ = 125°C one million cycles per eNVM array 10 Years Device Storage Temperature and Retention Product Grade Storage Temperature (Tstg) Retention Min TJ = -40°C Max TJ = 125°C 10 Years Automotive Grade 2 4.2 Overshoot/Undershoot Limits For AC signals, the input signal may undershoot during transitions to -1.0 V for no longer than 10% or the period. The current during the transition must not exceed 100mA. For AC signals, the input signal may overshoot during transitions to VCCI + 1.0 V for no longer than 10% of the period. The current during the transition must not exceed 100mA. Note: The above specification does not apply to the PCI standard. The IGLOO2 and SmartFusion2 PCI I/Os are compliant to the PCI standard including the PCI overshoot/undershoot specifications. 4.3 Thermal Characteristics 4.3.1 Introduction The temperature variable in the Microsemi SoC Products Group Designer software refers to the junction temperature, not the ambient, case, or board temperatures. This is an important distinction because dynamic and static power consumption will cause the chip's junction temperature to be higher than the ambient, case, or board temperatures. EQ 1 through EQ 3 give the relationship between thermal resistance, temperature gradient, and power. TJ – TA JA = -----------------P EQ 1 JB TJ – TB = -----------------P JC TJ – TC = -----------------P EQ 2 EQ 3 where JA = Junction-to-air thermal resistance JB = Junction-to-board thermal resistance JC = Junction-to-case thermal resistance TJ = Junction temperature TA = Ambient temperature TB = Board temperature (measured 1.0 mm away from the package edge) TC = Case temperature P = Total power dissipated by the device Revision 2 5 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 7 • Package Thermal Resistance JA Still Air Product M2GL/M2S 1.0 m/s 2.5 m/s JB JC Units 005 FGG484 19.36 15.81 14.63 9.74 5.27 °C/W VFG256 41.30 38.16 35.30 28.41 3.94 °C/W VFG400 20.19 16.94 15.41 8.86 4.95 °C/W 010 FGG484 18.22 14.83 13.62 8.83 4.92 °C/W VFG256 37.36 34.26 31.45 24.84 7.89 °C/W VFG400 19.40 15.75 14.22 8.11 4.22 °C/W 025 FGG484 17.03 13.66 12.45 7.66 4.18 °C/W VFG256 33.85 30.59 27.85 21.63 6.13 °C/W VFG400 18.36 14.89 13.36 7.12 3.41 °C/W 060 FGG484 15.40 12.06 10.85 6.14 3.15 °C/W VFG400 17.45 14.01 12.47 6.22 2.69 °C/W FGG676 15.49 12.21 11.06 7.07 3.87 °C/W FGG484 14.64 11.37 10.16 5.43 2.77 °C/W FGG676 14.52 11.19 10.37 6.17 3.24 °C/W 090 4.3.2 Theta-JA Junction-to-ambient thermal resistance (JA) is determined under standard conditions specified by JEDEC (JESD-51), but it has little relevance in actual performance of the product. It should be used with caution, but it is useful for comparing the thermal performance of one package to another. The maximum power dissipation allowed is calculated using EQ 4. T J(MAX) – T A(MAX) Maximum Power Allowed = ------------------------------------------- JA EQ 4 The absolute maximum junction temperature is 125°C. EQ 5 shows a sample calculation of the absolute maximum power dissipation allowed for the M2GL060TS-1FGG484 package at Automotive Grade 2 temperature and in still air, where: JA = 15.4°C/W (taken from Table 7 on page 6). TA = 105°C – 105°C- = 1.3 W Maximum Power Allowed = 125°C --------------------------------------15.4°C/W EQ 5 The power consumption of a device can be calculated using the Microsemi SoC Products Group power calculator. The device's power consumption must be lower than the calculated maximum power dissipation by the package. Revision 2 6 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 If the power consumption is higher than the device's maximum allowable power dissipation, a heat sink can be attached on top of the case, or the airflow inside the system must be increased. 4.3.3 Theta-JB Junction-to-board thermal resistance (JB) measures the ability of the package to dissipate heat from the surface of the chip to the PCB. As defined by the JEDEC (JESD-51) standard, the thermal resistance from junction to board uses an isothermal ring cold plate zone concept. The ring cold plate is simply a means to generate an isothermal boundary condition at the perimeter. The cold plate is mounted on a JEDEC standard board with a minimum distance of 5.0 mm away from the package edge. 4.3.4 Theta-JC Junction-to-case thermal resistance (JC) measures the ability of a device to dissipate heat from the surface of the chip to the top or bottom surface of the package. It is applicable for packages used with external heat sinks. Constant temperature is applied to the surface in consideration and acts as a boundary condition. This only applies to situations where all or nearly all of the heat is dissipated through the surface in consideration. 5. Power Consumption 5.1 Quiescent Supply Current Table 8 • Quiescent Supply Current Characteristics Modes and Configurations Power Supplies/Blocks Non-Flash*Freeze Mode Flash*Freeze Mode Notes FPGA Core On Off – VDD / SERDES_[01]_VDD On On 1 VPP / VPPNVM On On – MDDR_PLL_VDDA CCC_XX[01]_PLL_VDDA PLL0_PLL1_MDDR_VDDA FDDR_PLL_VDDA 0V 0V – SERDES_[01]_PLL_VDDA 0V 0V 3 SERDES_[01]_L[0123]_VDDAPLL / VDD_2V5 On On 3 SERDES_[01]_L[0123]_VDDAIIO On On 3 VDDIx On On 2, 4 VREFx On On – 32 kHz 32 kHz – On Sleep state – HPMS Controller 50 MHz 50 MHz – 50 MHz Oscillator (enable/disable) Enabled Disabled – 1 MHz Oscillator (enable/disable) Disabled Disabled – MSSDDR CLK RAM Revision 2 7 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 8 • Quiescent Supply Current Characteristics (continued) Modes and Configurations Power Supplies/Blocks Non-Flash*Freeze Mode Flash*Freeze Mode Notes Crystal Oscillator (enable/disable) Disabled Disabled – Notes: 1. SERDES_[01]_VDD Power Supply is shorted to VDD. 2. VDDIx has been set to ON for test conditions as described. Banks on the east side should always be powered with the appropriate VDDI Bank supplies. For details on bank power supplies, refer to the “Recommendation for Unused Bank Supplies” table in the AC393: SmartFusion2 and IGLOO2 Board Design Guidelines Application Note. 3. SERDES and DDR blocks to be unused. 4. No Differential (that is to say, LVDS) I/O’s or ODT attributes to be used. Table 9 • Parameter IDC1 IDC2 SmartFusion2 and IGLOO2 Quiescent Supply Current – Typical Process Modes NonFlash*Freeze Flash*Freeze 005 010 025 090 VDD=1.2 V VDD=1.2 V VDD=1.2 V VDD=1.2 V Units Typical (TJ = 25°C) 6.2 6.9 8.9 15.4 mA Automotive Grade 2 (TJ = 125°C) 60.9 73.0 106.4 217.5 mA Typical (TJ = 25°C) 1.4 2.6 3.7 5.1 mA Automotive Grade 2 (TJ = 125°C) 33.5 55.6 74.2 99.5 mA Conditions Table 10 • SmartFusion2 and IGLOO2 Quiescent Supply Current – Worst-Case Process Parameter Modes Conditions 005 010 025 090 VDD=1.26 V VDD=1.26 V VDD=1.26 V VDD=1.26 V Units IDC1 NonFlash*Freeze Automotive Grade 2 (TJ = 125°C) 114.9 151.5 227.4 443.1 mA IDC2 Flash*Freeze Automotive Grade 2 (TJ = 125°C) 81.1 127.2 144.2 195.0 mA Revision 2 8 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 5.2. Programming Currents The tables below represent programming, verify and Inrush currents for SmartFusion2 SoC and IGLOO2 FPGA devices. Table 11 • Currents During Program Cycle, 0°C < = TJ <= 85°C, Typical Process Power Supplies Voltage (V) 005 010 025 090 Units Notes VDD 1.26 46 53 55 42 mA – VPP 3.46 8 11 6 12 mA – VPPNVM 3.46 1 2 2 3 mA * 2.62 31 16 17 12 mA – 3.46 62 31 36 17 mA – 7 8 8 9 – – VDDI Number of banks Note: * VPP and VPPNVM are internally shorted. Table 12 • Currents During Verify Cycle, 0°C <= TJ <= 85°C, Typical Process Power Supplies Voltage (V) 005 010 025 090 Units Notes VDD 1.26 44 53 55 41 mA – VPP 3.46 6 5 3 11 mA – VPPNVM 3.46 1 0 0 1 mA * 2.62 31 16 17 11 mA – 3.46 61 32 36 17 mA – 7 8 8 9 – – VDDI Number of banks Note: * VPP and VPPNVM are internally shorted. Table 13 • Inrush Currents at Power up, -40°C <= TJ <=125°C, Typical Process Power Supplies Voltage (V) 005 010 025 090 Units VDD 1.26 36 53 78 98 mA VPP 3.46 35 57 50 36 mA VDDI 2.62 134 141 161 283 mA 7 8 8 9 – Number of banks 6. Average Fabric Temperature and Voltage Derating Factors Table 14 • Average Temperature and Voltage Derating Factors for Fabric Timing Delays (Normalized to TJ = 125°C, Worst-Case VDD = 1.14 V) Core Voltage VDD (V) Junction Temperature (°C) –55°C –40°C 0°C 25°C 70°C 85°C 100°C 125°C 1.14 0.91 0.91 0.93 0.94 0.96 0.97 0.98 1.00 1.2 0.82 0.83 0.84 0.85 0.87 0.87 0.88 0.90 1.26 0.75 0.75 0.77 0.77 0.79 0.80 0.81 0.75 Revision 2 9 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 7. Timing Model * ( &RPELQDWLRQDO&HOO ) &RPELQDWLRQDO&HOO < %XIIHU + ,20RGXOH 1RQ5HJLVWHUHG < &RPELQDWLRQDO&HOO /9'6 ,20RGXOH 1RQ5HJLVWHUHG %XIIHU , < /9&0269 2XWSXWGULYHVWUHQJWK P$ 06,2,2%DQN ,20RGXOH 1RQ5HJLVWHUHG &RPELQDWLRQDO&HOO < %XIIHU . ,20RGXOH 5HJLVWHUHG ''5 /9&0269 2XWSXWGULYHVWUHQJWK P$ 06,2,2%DQN $ % ' 4 0 &RPELQDWLRQDO&HOO ,20RGXOH 1RQ5HJLVWHUHG 3 < /9&0269 2XWSXWGULYHVWUHQJWK P$ ''5,2,2%DQN ,QSXW &ORFN & 5HJLVWHU&HOO /9&0269 / 0 ' < 4 ,20RGXOH 5HJLVWHUHG 5HJLVWHU&HOO &RPELQDWLRQDO&HOO %XIIHU / 2 1 ' 4 ' 4 667/ &ODVV, ,20RGXOH ' 1RQ5HJLVWHUHG /9'6 & & ,QSXW &ORFN ,QSXW &ORFN /9&0269 /9&0269 Figure 1 • Timing Model Revision 2 10 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 15 • Timing Model Parameters Index Parameter A Description Speed Grade –1 Units Notes tPY Propagation Delay of DDR3 Receiver 1.672 ns Refer to page 42 for more information tICLKQ Clock-to-Q of the Input Data Register 0.165 ns Refer to page 58 for more information tISUD Setup Time of the Input Data Register 0.369 ns Refer to page 58 for more information tRCKH Input High Delay for Global Clock 1.55 ns Refer to page 69 - 69 for more information tRCKL Input Low Delay for Global Clock 0.861 ns Refer to page 69 - 69 for more information 3.061 ns Refer to page 49 for more information B C D tPY Input Propagation Receiver Delay of LVDS E tDP Propagation Delay of a three input AND Gate 0.217 ns Refer to page 67 for more information F tDP Propagation Delay of a OR Gate 0.17 ns Refer to page 67 for more information G tDP Propagation Delay of a LVDS Transmitter 2.299 ns Refer to page 49 for more information H tDP Propagation Delay of a three input XOR Gate 0.236 ns Refer to page 67 for more information I tDP Propagation Delay of LVCMOS 2.5 V Transmitter, Drive strength of 16mA on the MSIO Bank 2.717 ns Refer to page 21 for more information J tDP Propagation Delay of a two input NAND Gate 0.17 ns Refer to page 67 for more information K tDP Propagation Delay of LVCMOS 2.5 V Transmitter, Drive strength of 8mA on the MSIO Bank 2.594 ns Refer to page 21 for more information tCLKQ Clock-to-Q of the Data Register 0.112 ns Refer to page 58 for more information tSUD Setup Time of the Data Register 0.262 ns Refer to page 58 for more information tDP Propagation Delay of a two input AND gate 0.17 ns Refer to page 67 for more information tOCLKQ Clock-to-Q of the Output Data Register 0.272 ns Refer to page 60 for more information tOSUD Setup Time of the Output Data Register 0.196 ns Refer to page 60 for more information L M N Revision 2 11 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 15 • Timing Model Parameters (continued) Index Parameter Description Speed Grade –1 Units Notes O tDP Propagation Delay of SSTL2, Class I Transmitter on the MSIO Bank 2.283 ns Refer to page 38 for more information P tDP Propagation Delay of LVCMOS 1.5 V Transmitter, Drive strength of 12mA, fast slew on the DDRIO Bank 3.703 ns Refer to page 28 for more information 8. User I/O Characteristics There are three types of I/Os supported in the IGLOO2 FPGA and SmartFusion2 SoC FPGA families: MSIO, MSIOD, and DDRIO I/O banks. The I/O standards supported by the different I/O banks is described in the “I/Os” section of the UG0445: IGLOO2 FPGA and SmartFusion2 SoC FPGA Fabric User Guide. 8.1 Input Buffer and AC Loading tPY tPYS PAD Y IN tPY = MAX(tPY(R), tPY(F)) tPYS = MAX(tPYS(R), tPYS(F)) VIH Vtrip IN Vtrip VIL VDD 50% 50% Y GND tPY tPY (R) (F) tPYS (R) tPYS (F) Figure 2 • Input Buffer AC Loading Revision 2 12 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.2. Output Buffer and AC Loading Single-Ended I/O Test Setup HSTL/PCI Test Setup tDP tDP PAD OUT D VTT/VDDI PAD OUT D Rtt_test Cload Cload tDP = MAX(tDP(R), tDP(F)) tDP = MAX(tDP(R), tDP(F)) Voltage-Referenced, Singled-Ended I/O Test Setup tDP D VTT OUT PAD Rtt_test Cload tDP = MAX(tDP(R), tDP(F)) Differential I/O Test Setup tDP OUT tPY PAD_P PAD_P D IN PAD_N PAD_N tPY = MAX(tPY(R), tPY(F)) tDP = MAX(tDP(R), tDP(F)) tPYS = MAX(tPYS(R), tPYS(F)) Figure 3 • Output Buffer AC Loading Revision 2 13 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.3. Tristate Buffer and AC Loading The tristate path for enable path loadings is described in the respective specifications. The methodology of characterization is illustrated by the enable path test point shown in Figure 4. tZL, tZH, tHZ, tLZ E OUT D Rent to VDDI for tZL, tLZ PAD Cent tZL, tLZ, tZH, tHZ Rent to GND for tZH, tHZ Data (D) Enable (E) 50% tZL PAD 50% 50% tHZ tZH 50% tLZ 90% VDDI 90% VDDI 10% VDDI 10% VDDI Figure 4 • Tristate Buffer for Enable Path Test Point Revision 2 14 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.4 I/O Speeds Table 16 • Maximum Data Rate Summary for Worst-Case Automotive Grade 2 Conditions Single-Ended I/O MSIO MSIOD DDRIO Units PCI 3.3 V 560 – – Mbps LVTTL 3.3 V 540 – – Mbps LVCMOS 3.3 V 540 – – Mbps LVCMOS 2.5 V 360 370 360 Mbps LVCMOS 1.8 V 260 360 360 Mbps LVCMOS 1.5 V 140 190 210 Mbps LVCMOS 1.2 V 100 140 180 Mbps – – 360 Mbps MSIO MSIOD DDRIO Units LPDDR – – 360 Mbps HSTL1.5 V – – 360 Mbps SSTL 2.5 V 450 480 360 Mbps SSTL 1.8 V – – 600 Mbps MSIO MSIOD DDRIO Units – – 600 Mbps MSIO MSIOD DDRIO Units LVPECL (input only) 810 – – Mbps LVDS 3.3 V 480 480 – Mbps LVDS 2.5 V 480 480 – Mbps RSDS 460 480 – Mbps BLVDS 450 – – Mbps MLVDS 450 – – Mbps Mini-LVDS 460 480 – Mbps LPDDR – LVCMOS 1.8 V Mode Voltage-Referenced I/O Voltage-Referenced I/O SSTL 1.5 V Differential I/O Revision 2 15 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 17 • Maximum Frequency Summary for Worst-Case Automotive Grade 2 Conditions Single-Ended I/O MSIO MSIOD DDRIO Units PCI 3.3 V 280 – – MHz LVTTL 3.3 V 270 – – MHz LVCMOS 3.3 V 270 – – MHz LVCMOS 2.5 V 180 185 180 MHz LVCMOS 1.8 V 130 180 180 MHz LVCMOS 1.5 V 70 95 105 MHz LVCMOS 1.2 V 50 70 90 MHz LPDDR - LVCMOS 1.8 V mode – – 180 MHz MSIO MSIOD DDRIO Units LPDDR – – 180 MHz HSTL1.5 V – – 180 MHz SSTL 2.5 V 225 240 180 MHz SSTL 1.8 V – – 300 MHz SSTL 1.5 V – – 300 MHz MSIO MSIOD DDRIO Units LVPECL (input only) 405 – – MHz LVDS 3.3 V 240 240 – MHz LVDS 2.5 V 240 240 – MHz RSDS 230 240 – MHz BLVDS 225 – – MHz MLVDS 225 – – MHz Mini-LVDS 230 240 – MHz Voltage-Referenced I/O Differential I/O Revision 2 16 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.5 Detailed I/O Characteristics Table 18 • Input Capacitance Symbol CIN Definition Min Max Units Input Capacitance – 10 pF Table 19 • I/O Weak Pull-Up/Pull-Down Resistance Values for DDRIO, MSIO, and MSIOD Banks Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values at VOH/VOL Level VDDI Domain DDRIO I/O Bank MSIO I/O Bank R(WEAK R(WEAK PULL-UP) at VOH () MSIOD I/O Bank R(WEAK R(WEAK R(WEAK R(WEAK PULL-DOWN) PULL-UP) at VOL () at VOH () PULL-DOWN) PULL-UP) PULL-DOWN) at VOL () at VOH () at VOL () Min Max Min Max Min Max Min Max Min Max Min Max 3.3 V N/A N/A N/A N/A 9.9K 14.5K 9.98K 14.9K N/A N/A N/A N/A 2.5 V 10K 15.1K 9.98K 15.3K 10K 15K 10.1K 15.6K 9.6K 14.1K 9.5K 13.9K 1,2 1.8 V 10.3K 16.2K 10.3K 16.6K 10.4K 16.2K 10.4K 17.3K 9.7K 14.7K 9.7K 14.5K 1,2 1.5 V 10.6K 17.2K 10.6K 17.9K 10.7K 17.3K 10.8K 18.9K 9.9K 15.3K 9.8K 15K 1,2 1.2 V 11.1K 19.3K 11.3K 19.7K 11.5K 22.7K 10.3K 16.7K 16.2K 1,2 11.2K 20.9K 10K Notes Notes: 1. R(WEAK PULL-DOWN) = (VOLspec)/I(WEAK PULL-DOWN MAX) 2. R(WEAK PULL-UP) = (VDDImax - VOHspec)/I(WEAK PULL-UP MIN) Table 20 • Schmitt Trigger Input Hysteresis Hysteresis Voltage Value for Schmitt Trigger Mode Input Buffers Input Buffer Configuration Hysteresis Value (Typical, unless otherwise noted) 3.3 V LVTTL / LVCMOS / PCI / PCI-X 0.05 × VDDI (Worst-case) 2.5 V LVCMOS 0.05 × VDDI (Worst-case) 1.8 V LVCMOS 0.1 × VDDI (Worst-case) 1.5 V LVCMOS 60 mV 1.2 V LVCMOS 20 mV 8.6 Single-Ended I/O Standards 8.6.1 Low Voltage Complementary Metal Oxide Semiconductor (LVCMOS) LVCMOS is a widely used switching standard implemented in CMOS transistors. This standard is defined by JEDEC (JESD 8-5). The LVCMOS standards supported in IGLOO2 FPGAs and SmartFusion2 SoC FPGAs are: LVCMOS12, LVCMOS15, LVCMOS18, LVCMOS25, and LVCMOS33. Revision 2 17 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.6.2 3.3 V LVCMOS/LVTTL LVCMOS 3.3 V or Low-Voltage Transistor-Transistor Logic (LVTTL) is a general standard for 3.3 V applications. 8.6.2.1 Minimum and Maximum AC/DC Input and Output Levels Specification Table 21 • LVTTL/LVCMOS 3.3 V DC Voltage Specification (Applicable to MSIO I/O Bank Only) Symbol Parameters Conditions Min Typ Max Units Notes 3.15 3.3 3.45 V – VIH (DC) DC input logic High 2.0 – 3.45 V – VIL (DC) DC input logic Low –0.3 – 0.8 V – IIH (DC) Input current High – – 10 µA – IIL (DC) Input current Low – – 10 µA – LVTTL/LVCMOS 3.3 V Recommended DC Operating Conditions VDDI Supply voltage LVTTL/LVCMOS 3.3 V DC Input Voltage Specification LVCMOS 3.3 V DC Output Voltage Specification VOH DC output logic High 2.4 – – V * VOL DC output logic Low – – 0.4 V * LVTTL 3.3 V DC Output Voltage Specification VOH DC output logic High 2.4 – – V – VOL DC output logic Low – – 0.4 V – Note: * The VOH/VOL test points selected ensure compliance with LVCMOS 3.3 V JESD8-B requirements. Table 22 • LVTTL/LVCMOS 3.3 V Maximum Switching Speeds (Applicable to MSIO I/O Bank Only) Symbol Parameters Conditions Min Typ Max Units – – 540 Mbps LVTTL/LVCMOS 3.3 V Maximum Switching Speed Dmax Maximum data rate (for MSIO I/O Bank) AC loading: 17 pF load, maximum drive/slew Table 23 • LVTTL/LVCMOS 3.3 V AC Test Parameter Specifications (Applicable to MSIO Bank Only) LVTTL/LVCMOS 3.3 V AC Test Parameter Specifications Symbol Parameters Conditions Min Typ Max Units Vtrip Measuring/trip point for data path – 1.4 – V Rent Resistance for enable path (tZH, tZL, tHZ, tLZ) – 2k – Cent Capacitive loading for enable path (tZH, tZL, tHZ, tLZ) – 5 – pF Cload Capacitive loading for data path (tDP) – 5 – pF Revision 2 18 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 24 • LVTTL/LVCMOS 3.3 V Transmitter Drive Strength Specifications (Applicable to MSIO Bank* Only) Output Drive Selection VOH (V) VOL (V) IOH (at VOH) mA IOL (at VOL) mA 2 mA 2.4 0.4 2 2 4 mA 2.4 0.4 4 4 8 mA 2.4 0.4 8 8 12 mA 2.4 0.4 12 12 16 mA 2.4 0.4 16 16 20 mA 2.4 0.4 18 18 Note: * Software Configurator GUI displays the Commercial/Industrial numeric values. The actual drive capability at temperature is defined in Table 24. 8.6.2.2 AC Switching Characteristics Worst-case Automotive Grade 2 conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 3.15 V AC Switching Characteristics for Receiver (Input Buffers) Table 25 • LVTTL/LVCMOS 3.3 V Receiver Characteristics for MSIO I/O Banks (Input Buffers) Worst-case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 3.15 V LVTTL/LVCMOS 3.3 V (for MSIO I/O Bank) Speed Grade –1 On-Die Termination (ODT) in tPY tPYS Units None 2.416 2.443 ns AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Table 26 • LVTTL/LVCMOS 3.3 V Transmitter Characteristics for MSIO I/O Bank (Output and Tristate Buffers) Worst-case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 3.15 V Speed Grade –1 Output Drive Selection Slew Control tDP tZL tZH tHZ tLZ Units 2 mA slow 3.515 3.826 3.242 2.024 3.636 ns 4 mA slow 2.565 2.948 2.774 3.339 4.896 ns 8 mA slow 2.349 2.568 2.528 5.013 5.329 ns 12 mA slow 2.261 2.324 2.386 6.389 6.05 ns 16 mA slow 2.274 2.287 2.369 6.671 6.256 ns 20 mA slow 2.372 2.206 2.306 6.976 6.541 ns Revision 2 19 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.6.3 2.5 V LVCMOS LVCMOS 2.5 V is a general standard for 2.5 V applications and is supported in IGLOO2 FPGA and SmartFusion2 SoC FPGAs in compliance to the JEDEC specification JESD8-5A. 8.6.3.1 Minimum and Maximum AC/DC Input and Output Levels Specification Table 27 • LVCMOS 2.5 V DC Voltage Specification Symbol Parameters Min Typ Max Units Notes 2.375 2.5 2.625 V – LVCMOS 2.5 V Recommended DC Operating Conditions VDDI Supply voltage LVCMOS 2.5 V DC Input Voltage Specification VIH (DC) DC input logic High (for MSIOD and DDRIO I/O Bank) 1.7 – 2.625 V – VIH (DC) DC input logic High (for MSIO I/O Bank) 1.7 – 2.75 V – VIL (DC) DC input logic Low –0.3 – 0.7 V – IIH (DC) Input current High – – 10 µA – IIL (DC) Input current Low – – 10 µA – LVCMOS 2.5 V DC Output Voltage Specification VOH DC output logic High 1.7 – – V * VOL DC output logic Low – – 0.7 V * Note: * The VOH/VOL test points selected ensure compliance with LVCMOS 2.5 V JEDEC8-5A requirements. Table 28 • LVCMOS 2.5 V Maximum AC Switching Speeds Symbol Parameters Conditions Min Typ Max Units Dmax Maximum data rate (for DDRIO I/O Bank) AC loading: 17 pF load, maximum drive/slew – – 360 Mbps Dmax Maximum data rate (for MSIO I/O Bank) AC loading: 17 pF load, maximum drive/slew – – 360 Mbps Dmax Maximum data rate (for MSIOD I/O Bank) AC loading: 17 pF load, maximum drive/slew – – 370 Mbps Table 29 • LVCMOS 2.5 V AC Test Parameters and Driver Impedance Specifications Symbols Parameters Min Typ Max Units – 75, 60, 50, 33, 25, 20 – LVCMOS 2.5 V Calibrated Impedance Option Rodt_cal Supported output driver calibrated impedance (for DDRIO I/O Bank) LVCMOS 2.5 V AC Test Parameters Specifications Vtrip Measuring/trip point for data path – 1.2 – V Rent Resistance for enable path (tZH, tZL, tHZ, tLZ) – 2k – Cent Capacitive loading for enable path (tZH, tZL, tHZ, tLZ) – 5 – pF Cload Capacitive loading for data path (tDP) – 5 – pF Revision 2 20 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 30 • LVCMOS 2.5 V Transmitter Drive Strength Specifications Output Drive Selection MSIOD I/O Bank DDRIO I/O Bank (With Software Default Fixed Code) VOH (V) Min VOL (V) Max IOH (at VOH) mA IOL (at VOL) mA 2 mA 2 mA 2 mA 1.7 0.7 2 2 4 mA 4 mA 4 mA 1.7 0.7 4 4 6 mA 6 mA 6 mA 1.7 0.7 6 6 MSIO I/O Bank 8 mA 8 mA 8 mA 1.7 0.7 8 8 12 mA 12 mA 12 mA 1.7 0.7 12 12 16 mA N/A 16 mA 1.7 0.7 16 16 Note: For board design considerations, output slew rates extraction, detailed output buffer resistances and I/V Curve use the corresponding IBIS models located at: http://www.microsemi.com/products/fpga-soc/design-resources/ibis-models. 8.6.3.2 AC Switching Characteristics AC Switching Characteristics for Receiver (Input Buffers) Table 31 • LVCMOS 2.5 V AC Switching Characteristics for Receiver (Input Buffers) Worst-case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 2.375 V Speed Grade –1 On-Die Termination (ODT) in tPY tPYS Units LVCMOS 2.5 V (for DDRIO I/O Bank) None 1.903 2.021 ns LVCMOS 2.5 V (for MSIO I/O Bank) None 2.689 2.698 ns LVCMOS 2.5 V (for MSIOD I/O Bank) None 2.447 2.46 ns AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Table 32 • LVCMOS 2.5 V AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 2.375 V Output Drive Selection Speed Grade –1 tDP tZL tZH tHZ tLZ Units slow 3.967 3.664 3.986 4.172 3.811 ns medium 3.625 3.38 3.647 3.882 3.458 ns medium_fast 3.485 3.259 3.507 3.747 3.327 ns fast 3.458 3.253 3.48 3.74 3.31 ns slow 3.371 2.942 3.362 5.148 4.71 ns medium 3.063 2.701 3.059 4.874 4.381 ns medium_fast 2.925 2.566 2.92 4.686 4.248 ns fast 2.91 2.559 2.905 4.683 4.238 ns Slew Control LVCMOS 2.5 V (for DDRIO I/O Bank with Fixed Code) 2 mA 4 mA Revision 2 21 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 32 • LVCMOS 2.5 V AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 2.375 V (continued) Output Drive Selection 6 mA 8 mA 12 mA 16 mA Speed Grade –1 Slew Control tDP tZL tZH tHZ tLZ Units slow 3.189 2.716 3.169 5.56 5.092 ns medium 2.886 2.473 2.876 5.273 4.752 ns medium_fast 2.749 2.355 2.738 5.127 4.167 ns fast 2.731 2.345 2.72 5.115 4.6 ns slow 3.132 2.646 3.109 5.686 5.207 ns medium 2.832 2.407 2.82 5.402 4.864 ns medium_fast 2.698 2.292 2.685 5.262 4.732 ns fast 2.684 2.282 2.671 5.252 4.724 ns slow 3.013 2.504 2.984 5.918 5.416 ns medium 2.72 2.284 2.707 5.657 5.074 ns medium_fast 2.592 2.176 2.578 5.537 4.949 ns fast 2.58 2.166 2.566 5.529 4.946 ns slow 2.936 2.415 2.902 6.136 5.577 ns medium 2.66 2.206 2.645 5.901 5.261 ns medium_fast 2.536 2.102 2.519 5.815 5.142 ns fast 2.523 2.093 2.506 5.81 5.137 ns LVCMOS 2.5 V (for MSIO I/O Bank) 2 mA slow 3.933 4.352 4.22 2.358 3.838 ns 4 mA slow 2.905 3.423 3.508 4.681 5.262 ns 6 mA slow 2.687 2.995 3.155 5.561 5.73 ns 8 mA slow 2.594 2.877 3.07 6.602 6.248 ns 12 mA slow 2.623 2.732 2.944 6.974 6.478 ns 16 mA slow 2.717 2.617 2.84 7.455 6.824 ns LVCMOS 2.5 V (for MSIOD I/O Bank) 2 mA slow 2.403 2.922 2.89 5.397 5.202 ns 4 mA slow 1.998 2.446 2.468 5.936 5.665 ns 6 mA slow 1.861 2.329 2.375 6.391 6.068 ns 8 mA slow 1.781 2.145 2.208 6.884 6.44 ns 12 mA slow 1.804 2.039 2.108 7.23 6.685 ns Revision 2 22 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.6.4 1.8 V LVCMOS LVCMOS 1.8 is a general standard for 1.8 V applications and is supported in IGLOO2 FPGAs and SmartFusion2 SoC FPGAs in compliance to the JEDEC specification JESD8-7A. 8.6.4.1 Minimum and Maximum AC/DC Input and Output Levels Table 33 • LVCMOS 1.8 V DC Voltage Specification Symbols Parameters Min Typ Max Units 1.710 1.8 1.89 V Recommended DC Operating Conditions VDDI Supply Voltage LVCMOS 1.8 V DC Input Voltage Specification VIH(DC) DC input Logic HIGH (for MSIOD and 0.65 x VDDI DDRIO I/O Banks) – 1.89 V VIH(DC) DC input Logic HIGH (for MSIO I/O 0.65 x VDDI Bank) – 2.75 V VIL(DC) DC input Logic LOW -0.3 – 0.35 × VDDI V IIH(DC) Input Current HIGH – – 10 uA IIL(DC) Input Current LOW – – 10 uA LVCMOS 1.8 V DC Output Voltage Specification VOH DC output Logic HIGH VDDI - 0.45 – – V VOL DC output Logic LOW – – 0.45 V Table 34 • LVCMOS 1.8 V Maximum AC Switching Speeds Symbols Parameters Conditions Min Typ Max Units LVCMOS 1.8 V Maximum AC Switching Speed Dmax Maximum data rate (for DDRIO I/O Bank) AC loading: 17 pF load, maximum drive/slew – – 360 Mbps Dmax Maximum data rate (for MSIO I/O Bank) AC loading: 17 pF load, maximum drive/slew – – 260 Mbps Dmax Maximum data rate (for MSIOD I/O Bank) AC loading: 17 pF load, maximum drive/slew – – 360 Mbps Note: * Maximum data rate applies for drive strength 8mA and above, all slews Table 35 • LVCMOS 1.8 V Transmitter Drive Strength Specifications Output Drive Selection VOH (V) VOL (V) MSIOD I/O Bank Min Max IOH (at VOH) mA IOL (at VOL) mA 2 mA 2 mA VDDI – 0.45 0.45 2 2 4 mA 4 mA VDDI – 0.45 0.45 4 4 6 mA 6 mA VDDI – 0.45 0.45 6 6 8 mA 8 mA VDDI – 0.45 0.45 8 8 10 mA 10 mA VDDI – 0.45 0.45 10 10 12 mA N/A VDDI – 0.45 0.45 12 12 MSIO I/O Bank Revision 2 23 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 36 • LVCMOS 1.8 V Transmitter Drive Strength Specifications Output Drive Selection VOH (V) VOL (V) DDRIO Bank* Min Max 2 mA VDDI – 0.45 0.45 2 2 – 4 mA VDDI – 0.45 0.45 4 4 – 6 mA VDDI – 0.45 0.45 6 6 ** 8 mA VDDI – 0.45 0.45 6 6 ** 10 mA VDDI – 0.45 0.45 8 8 – 12 mA VDDI – 0.45 0.45 10 10 – 16 mA VDDI – 0.45 0.45 12 12 – IOH (at VOH) mA IOL (at VOL) mA Notes Notes: * Software Configurator GUI will display the Commercial/Industrial numeric values. The actual drive capability at temperature is defined by Table 36. ** DDRIO has two 6mA drive strength settings. The setting that corresponds to Output Drive Selection value of 8mA has a shorter propagation delay. Table 37 • LVCMOS 1.8 V AC Test Parameters and Driver Impedance Specifications LVCMOS 1.8 V AC Calibrated Impedance Option Symbols Rodt_cal Parameters Supported output driver calibrated impedance (for DDRIO I/O Bank) Min Typ Max Units – 75, 60, 50, 33, 25, 20 – LVCMOS 1.8 V AC Test Parameters Specifications Vtrip Measuring/trip point for data path – 0.9 – V Rent Resistance for enable path (tZH, tZL, tHZ, tLZ) – 2k – Cent Capacitive loading for enable path (tZH, tZL, tHZ, tLZ) – 5 – pF Cload Capacitive loading for data path (tDP) – 5 – pF Revision 2 24 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.6.4.2 AC Switching Characteristics AC Switching Characteristics for Receiver (Input Buffers) Table 38 • LVCMOS 1.8 V AC Switching Characteristics for Receiver (Input Buffers) Worst-case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 1.71 V Speed Grade –1 tPYS tPY ODT (On Die Termination) in LVCMOS 1.8 V (for DDRIO I/O Bank with Fixed Codes) LVCMOS 1.8 V (for MSIO I/O Bank) LVCMOS 1.8 V (for MSIOD I/O Bank) Units None 2.071 2.213 ns None 3.185 3.171 ns 50 3.394 3.397 ns 75 3.322 3.316 ns 150 3.252 3.239 ns None 2.827 2.813 ns 50 3.043 3.053 ns 75 2.968 2.963 ns 150 2.898 2.886 ns AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Table 39 • LVCMOS 1.8 V AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 1.71 V Output Drive Selection Slew Control tDP LVCMOS 1.8 V (for DDRIO I/O Bank with Fixed Codes) slow 4.681 2 mA 4 mA 6 mA 8 mA 10 mA tZL Speed Grade –1 tZH tHZ tLZ Units 4.017 4.69 5.388 4.852 ns medium 4.211 3.599 4.219 5.058 4.488 ns medium_fast 3.978 3.392 3.986 4.874 4.327 ns fast 3.953 3.373 3.961 4.858 4.316 ns slow 4.355 3.657 4.346 5.967 5.399 ns medium 3.886 3.246 3.879 5.628 5.01 ns medium_fast 3.656 3.05 3.647 5.461 4.845 ns fast 3.635 3.033 3.626 5.447 4.838 ns slow 4.105 3.422 4.092 6.221 5.599 ns medium 3.68 3.05 3.668 5.9 5.257 ns medium_fast 3.477 2.867 3.463 5.739 5.118 ns fast 3.451 2.849 3.437 5.72 5.104 ns slow 4.015 3.32 3.998 6.458 5.808 ns medium 3.59 2.947 3.574 6.129 5.449 ns medium_fast 3.383 2.761 3.366 5.963 5.304 ns fast 3.357 2.746 3.34 5.954 5.289 ns slow 3.888 3.18 3.864 6.739 6.045 ns medium 3.485 2.822 3.467 6.422 5.7 ns medium_fast 3.281 2.642 3.26 6.277 5.553 ns fast 3.258 2.627 3.238 6.27 5.546 ns Revision 2 25 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 39 • LVCMOS 1.8 V AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 1.71 V (continued) Output Drive Selection 12 mA Slew Control slow tDP 3.795 Speed Grade –1 tZL tZH tHZ 3.096 3.773 6.773 medium 3.408 2.764 3.389 6.47 tLZ 6.067 Units ns 5.743 ns medium_fast 3.215 2.599 3.194 6.346 5.61 ns fast 3.196 2.584 3.175 6.335 5.604 ns slow 3.744 3.035 3.719 6.944 6.207 ns medium 3.358 2.712 3.339 6.657 5.868 ns medium_fast 3.175 2.546 3.153 6.547 5.751 ns fast 3.156 2.531 3.133 6.541 5.747 ns LVCMOS 1.8 V (for MSIO I/O Bank) 2 mA slow 3.957 4.784 5.023 5.643 5.866 ns 4 mA slow 3.668 4.162 4.485 6.543 6.382 ns 6 mA slow 3.586 3.994 4.358 7.622 6.941 ns 16 mA 8 mA slow 3.616 3.782 4.162 7.988 7.161 ns 10 mA slow 3.662 3.732 4.121 8.396 7.423 ns 12 mA slow 3.75 3.615 4.006 8.576 7.543 ns LVCMOS 1.8 V (for MSIOD I/O Bank) 2 mA slow 3.048 3.692 3.898 5.818 5.609 ns 3.288 6.421 6.121 ns 4 mA slow 2.5 3.088 6 mA slow 2.225 2.747 2.937 7.18 6.753 ns 8 mA slow 2.233 2.72 2.904 7.49 6.992 ns 10 mA slow 2.263 2.577 2.759 7.851 7.253 ns 8.6.5 1.5 V LVCMOS LVCMOS 1.5 is a general standard for 1.5 V applications and is supported in IGLOO2 FPGAs and SmartFusion2 SoC FPGAs in compliance to the JEDEC specification JESD8-11A. 8.6.5.1 Minimum and Maximum AC/DC Input and Output Levels Specification Table 40 • LVCMOS 1.5 V Minimum and Maximum DC Input and Output Levels Symbols Parameters Min Typ Max Units 1.425 1.5 1.575 V DC input logic High for (MSIOD and DDRIO I/O banks) 0.65 × VDDI – 1.575 V VIH (DC) DC input logic High (for MSIO I/O Bank) 0.65 × VDDI – 2.75 V VIL (DC) DC input logic Low –0.3 – 0.35 × VDDI V IIH (DC) Input current High – – 10 µA IIL (DC Input current Low – – 10 µA LVCMOS 1.5 V Recommended DC Operating Conditions VDDI Supply voltage LVCMOS 1.5 V DC Input Voltage Specification VIH (DC) LVCMOS 1.5 V DC Output Voltage Specification VOH DC output logic High VDDI × 0.75 – – V VOL DC output logic Low – – VDDI × 0.25 V Revision 2 26 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 41 • LVCMOS 1.5 V Maximum AC Switching Speeds Symbols Parameters Conditions Min Typ Max Units LVCMOS 1.5 V Maximum AC Switching Speed Dmax Maximum data rate (for DDRIO I/O Bank) AC loading: 17 pF load, maximum drive/slew – – 210 Mbps Dmax Maximum data rate (for MSIO I/O Bank) AC loading: 17 pF load, maximum drive/slew – – 140 Mbps Dmax Maximum data rate (for MSIOD I/O Bank) AC loading: 17 pF load, maximum drive/slew – – 190 Mbps Table 42 • LVCMOS 1.5 V AC Test Parameters and Driver Impedance Specifications Symbols Parameters Min Typ Max Units – 75, 60, 50, 40 – LVCMOS 1.5 V AC Calibrated Impedance Option Rodt_cal Supported output driver calibrated impedance (for DDRIO I/O Bank) LVCMOS 1.5 V AC Test Parameters Specifications Vtrip Measuring/trip point for data path – 0.75 – V Rent Resistance for enable path (tZH, tZL, tHZ, tLZ) – 2k – Cent Capacitive loading for enable path (tZH, tZL, tHZ, tLZ) – 5 – pF Cload Capacitive loading for data path (tDP) – 5 – pF Table 43 • LVCMOS 1.5 V Transmitter Drive Strength Specifications Output Drive Selection MSIO I/O Bank DDRIO I/O Bank MSIOD I/O Bank (with Fixed Code) VOH (V) VOL (V) Min Max IOH (at VOH) IOL (at VOL) mA mA 2 mA 2 mA 2 mA VDDI × 0.75 VDDI × 0.25 2 2 4 mA 4 mA 4 mA VDDI × 0.75 VDDI × 0.25 4 4 6 mA 6 mA 6 mA VDDI × 0.75 VDDI × 0.25 6 6 8 mA N/A 8 mA VDDI × 0.75 VDDI × 0.25 8 8 N/A N/A 10 mA VDDI × 0.75 VDDI × 0.25 10 10 N/A N/A 12 mA VDDI × 0.75 VDDI × 0.25 12 12 Revision 2 27 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.6.5.2. AC Switching Characteristics AC Switching Characteristics for Receiver (Input Buffers) Table 44 • LVCMOS 1.5 V AC Switching Characteristics for Receiver (Input Buffers) Worst-Case Automotive Grade 2 Conditions: TJ=125°C, VDD=1.14 V, VDDI= 1.425 V Speed Grade –1 ODT (On Die Termination) in tPY tPYS Units None 2.19 2.216 ns None 3.679 3.652 ns 50 4.151 4.126 ns 75 3.984 3.953 ns 150 3.823 3.791 ns None 3.262 3.229 ns 50 3.76 3.739 ns 75 3.555 3.52 ns 150 3.395 3.359 ns LVCMOS 1.5 V (for DDRIO I/O Bank with Fixed Codes) LVCMOS 1.5 V (for MSIO I/O Bank) LVCMOS 1.5 V (for MSIOD I/O Bank) AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Table 45 • LVCMOS 1.5 V AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-Case Automotive Grade 2 Conditions: TJ=125°C, VDD=1.14 V, VDDI=1.425 V Output Drive Selection Speed Grade –1 Slew Control tDP tZL tZH tHZ tLZ Units LVCMOS 1.5 V (for DDRIO I/O Bank with Fixed Codes) 2 mA 4 mA 6 mA slow 5.712 4.796 5.735 5.814 5.138 ns medium 5.094 4.274 5.114 5.484 4.779 ns medium_fast 4.793 4.013 4.81 5.288 4.625 ns fast 4.762 3.98 4.78 5.261 4.615 ns slow 4.966 4.133 4.956 6.763 6.05 ns medium 4.412 3.62 4.401 6.433 5.664 ns medium_fast 4.145 3.358 4.131 6.249 5.507 ns fast 4.116 3.338 4.103 6.238 5.498 ns slow 4.744 3.869 4.728 7.173 6.383 ns medium 4.212 3.382 4.195 6.837 6.004 ns medium_fast 3.951 3.135 3.93 6.668 5.861 ns fast 3.919 3.11 3.899 6.644 5.845 ns Revision 2 28 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 45 • LVCMOS 1.5 V AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-Case Automotive Grade 2 Conditions: TJ=125°C, VDD=1.14 V, VDDI=1.425 V (continued) Output Drive Selection 8 mA 10 mA 12 mA Speed Grade –1 Slew Control tDP tZL tZH tHZ tLZ Units slow 4.603 3.691 4.585 7.397 6.553 ns medium 4.081 3.242 4.062 7.064 6.189 ns medium_fast 3.827 3.015 3.804 6.912 6.051 ns fast 3.804 2.994 3.781 6.903 6.051 ns slow 4.519 3.612 4.499 7.578 6.676 ns medium 4.026 3.177 4.005 7.264 6.335 ns medium_fast 3.775 2.948 3.75 7.11 6.198 ns fast 3.747 2.929 3.721 7.103 6.19 ns slow 4.456 3.562 4.433 7.704 6.795 ns medium 3.965 3.13 3.943 7.388 6.425 ns medium_fast 3.731 2.912 3.704 7.278 6.303 ns fast 3.703 2.893 3.676 7.275 6.294 ns LVCMOS 1.5 V (for MSIO I/O Bank) 2 mA slow 5.118 6.263 6.53 6.524 6.388 ns 4 mA slow 4.657 5.178 5.65 8.57 7.55 ns 6 mA slow 4.693 4.89 5.389 8.928 7.766 ns 8 mA slow 4.876 4.663 5.183 9.59 8.173 ns LVCMOS 1.5 V (for MSIOD I/O Bank) 2 mA slow 3.085 3.795 4.086 6.838 6.477 ns 4 mA slow 2.731 3.365 3.631 7.663 7.165 ns 6 mA slow 2.742 3.162 3.417 8.126 7.52 ns Revision 2 29 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.6.6 1.2 V LVCMOS LVCMOS 1.2 is a general standard for 1.2 V applications and is supported in IGLOO2 FPGAs and SmartFusion2 SoC FPGAs in compliance to the JEDEC specification JESD8-12A. 8.6.6.1 Minimum and Maximum Input and Output Levels Specification Table 46 • LVCMOS 1.2 V Minimum and Maximum DC Input and Output Levels Symbols Parameters Conditions Min Typ Max Units 1.140 1.2 1.26 V VIH (DC) DC input logic High (for MSIOD and DDRIO I/O Banks) 0.65 × VDDI – 1.26 V VIH (DC) DC input logic High (for MSIO I/O Bank) 0.65 × VDDI – 2.75 V LVCMOS 1.2 V Recommended DC Operating Conditions VDDI Supply voltage LVCMOS 1.2 V DC Input Voltage Specification VIL (DC) DC input logic Low –0.3 – 0.35 × VDDI V IIH (DC) Input current High – – 10 µA IIL (DC) Input current Low – – 10 µA LVCMOS 1.2 V DC Output Voltage Specification VOH DC output logic High VDDI × 0.75 – – V VOL DC output logic Low – – VDDI × 0.25 V Min Typ Max Units Table 47 • LVCMOS 1.2 V Maximum AC Switching Speeds Symbols Parameters Conditions LVCMOS 1.2 V Maximum AC Switching Speed Dmax Maximum data rate (for DDRIO I/O Bank) AC loading: 17 pF load, maximum drive/slew – – 180 Mbps Dmax Maximum data rate (for MSIO I/O Bank) AC loading: 17 pF load, maximum drive/slew – – 100 Mbps Dmax Maximum data rate (for MSIOD I/O Bank) AC loading: 17 pF load, maximum drive/slew – – 140 Mbps Table 48 • LVCMOS 1.2 V AC Calibrated Impedance and Test Parameters Specifications Symbols Parameters Conditions Min Typ Max Units – 75, 60, 50, 40 – Measuring/trip point for data path – 0.6 – V Rent Resistance for enable path (tZH, tZL, tHZ, tLZ) – 2k – Cent Capacitive loading for enable path (tZH, tZL, tHZ, tLZ) – 5 – pF Cload Capacitive loading for data path (tDP) – 5 – pF LVCMOS 1.2 V AC Calibrated Impedance Option Rodt_cal Supported output driver calibrated impedance (for DDRIO I/O Bank) LVCMOS 1.2 V AC Test Parameters Specifications Vtrip Revision 2 30 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 49 • LVCMOS 1.2 V Transmitter Drive Strength Specifications Output Drive Selection MSIO I/O Bank VOH (V) VOL (V) Min Max DDRIO I/O Bank MSIOD I/O Bank (with Fixed Code) IOH (at VOH) mA IOL (at VOL) mA 2 mA 2 mA 2 mA VDDI × 0.75 VDDI × 0.25 2 2 4 mA 4 mA 4 mA VDDI × 0.75 VDDI × 0.25 4 4 N/A 6 mA VDDI × 0.75 VDDI × 0.25 6 6 N/A 8.6.6.2 AC Switching Characteristics AC Switching Characteristics for Receiver (Input Buffers) Table 50 • LVCMOS 1.2 V AC Switching Characteristics for Receiver (Input Buffers) Worst-Case Automotive Grade 2 Conditions: TJ=125°C, VDD=1.14 V, VDDI= 1.14 V Speed Grade –1 ODT (On Die Termination) in tPY tPYS Units None 2.539 2.556 ns None 4.888 4.845 ns 50 6.683 6.605 ns 75 5.923 5.847 ns 150 5.29 5.235 ns None 4.281 4.235 ns 50 6.806 6.721 ns 75 5.643 5.564 ns 150 4.813 4.753 ns LVCMOS 1.2 V (for DDRIO I/O Bank with Fixed Codes) LVCMOS 1.2 V (for MSIO I/O Bank) LVCMOS 1.2 V (for MSIOD I/O Bank) AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Table 51 • LVCMOS 1.2 V AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-Case Automotive Grade 2 Conditions: TJ=125°C, VDD=1.14 V, VDDI= 1.14 V Output Drive Selection Speed Grade –1 Slew Control tDP tZL tZH tHZ tLZ Units LVCMOS 1.2 V (for DDRIO I/O Bank with Fixed Code) 2 mA 4 mA slow 6.938 5.599 6.948 7.568 6.612 ns medium 6.11 4.814 6.114 7.201 6.234 ns medium_fast 5.675 4.409 5.676 6.971 6.048 ns fast 5.633 4.379 5.634 6.958 6.037 ns slow 6.328 4.892 6.316 8.339 7.306 ns medium 5.538 4.192 5.521 7.961 6.923 ns medium_fast 5.119 3.832 5.097 7.76 6.741 ns fast 5.072 3.085 5.051 7.752 6.725 ns Revision 2 31 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 51 • LVCMOS 1.2 V AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-Case Automotive Grade 2 Conditions: TJ=125°C, VDD=1.14 V, VDDI= 1.14 V (continued) Speed Grade –1 Output Drive Selection 6 mA Slew Control tDP tZL tZH tHZ tLZ Units slow 6.092 4.681 6.075 8.685 7.589 ns medium 5.342 4.016 5.32 8.33 7.19 ns medium_fast 4.949 3.66 4.922 8.139 7.022 ns fast 4.903 3.622 4.876 8.107 7.006 ns LVCMOS 1.2 V (for MSIO I/O Bank) 2 mA slow 7.051 7.856 8.541 10.387 8.768 ns 4 mA slow 7.385 7.027 7.815 11.547 9.444 ns LVCMOS 1.2 V (for MSIOD I/O Bank) 2 mA slow 4.048 5.123 5.552 8.401 7.824 ns 4 mA slow 3.941 4.406 4.814 9.422 8.656 ns 8.6.7 3.3 V PCI/PCIX Peripheral Component Interface (PCI) for 3.3 V standards specify support for 33 MHz and 66 MHz PCI bus applications. 8.6.7.1 Minimum and Maximum Input and Output Levels Specification Table 52 • PCI/PCI-X DC Voltage Specification (Applicable to MSIO Bank Only Symbols Parameters Conditions Min Typ Max Units 3.15 3.3 3.45 V PCI/PCIX Recommended DC Operating Conditions VDDI Supply voltage PCI/PCIX DC Input Voltage Specification VI DC input voltage 0 – 3.45 V IIH(DC) Input current High – – 10 µA IIL(DC) Input current Low – – 10 µA PCI/PCIX DC Output Voltage Specification VOH DC output logic High Per PCI Specification V VOL DC output logic Low Per PCI Specification V Revision 2 32 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 53 • PCI/PCI-X AC Specifications (Applicable to MSIO Bank Only) Symbols Parameters Conditions Min Typ Max Units – – 560 Mbps PCI/PCI-X AC Specifications Dmax Maximum data rate (MSIO I/O AC Loading: per JEDEC Bank) specifications PCI/PCI-X AC Test Parameters Specifications Vtrip Measuring/trip point for data path (falling edge) – 0.615 × VDDI – V Vtrip Measuring/trip point for data path (rising edge) – 0.285 × VDDI – V Rtt_test Resistance for data test path – 25 – Rent Resistance for enable path (tZH, tZL, tHZ, tLZ) – 2k – Cent Capacitive loading for enable path (tZH, tZL, tHZ, tLZ) – 5 – pF Cload Capacitive loading for data path (tDP) – 10 – pF 8.6.7.2 AC Switching Characteristics AC Switching Characteristics for Receiver (Input Buffers) Table 54 • PCI/PCIX AC Switching Characteristics for Receiver (Input Buffers) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 3.15 V Speed Grade –1 ODT (On Die Termination) in tPY tPYS Units None 2.379 2.387 ns PCI/PCIX (for MSIO I/O Bank) AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Table 55 • PCI/PCIX AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI= 3.15 V Speed Grade –1 PCI/PCIX (for MSIO I/O Bank) tDP tZL tZH tHZ tLZ Units 2.394 2.274 2.316 6.876 6.242 ns Revision 2 33 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.7. Memory Interface and Voltage Referenced I/O Standards 8.7.1 High-Speed Transceiver Logic (HSTL) The High-Speed Transceiver Logic (HSTL) standard is a general purpose high-speed bus standard sponsored by IBM (EIA/JESD8-6). IGLOO2 FPGA and SmartFusion2 SoC FPGA devices support two classes of the 1.5 V HSTL. These differential versions of the standard require a differential amplifier input buffer and a push-pull output buffer. 8.7.1.1 Minimum and Maximum Input and Output Levels Specification Table 56 • HSTL DC Voltage Specification (Applicable to DDRIO I/O Bank Only) Symbols Parameters Conditions Min Typ Max Units HSTL Recommended DC Operating Conditions VDDI Supply voltage 1.425 1.5 1.575 V VTT Termination voltage 0.698 0.750 0.803 V VREF Input reference voltage 0.698 0.750 0.803 V HSTL DC Input Voltage Specification VIH (DC) DC input logic High VREF + 0.1 – 1.575 V VIL (DC) DC input logic Low –0.3 – VREF – 0.1 V IIH (DC) Input current High – – 10 µA IIL (DC) Input current Low – – 10 µA HSTL DC Output Voltage Specification HSTL Class I VOH DC output logic High VDDI – 0.4 – – V VOL DC output logic Low – – 0.4 V IOH at VOH Output minimum source DC current –7.0 – – mA IOL at VOL 7.0 – – mA VDDI – 0.4 – – V Output minimum sink current HSTL Class II VOH DC output logic High VOL DC output logic Low – – 0.4 V IOH at VOH Output minimum source DC current –15.0 – – mA IOL at VOL 15.0 – – mA 0.2 – – V Output minimum sink current HSTL DC Differential Voltage Specifications VID (DC) DC input differential voltage Revision 2 34 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 57 • HSTL AC Specifications (Applicable to DDRIO Bank Only) Symbols Parameters Conditions Min Typ Max Units HSTL AC Differential Voltage Specifications VDIFF AC input differential voltage 0.4 – – V Vx AC differential cross point voltage 0.68 – 0.9 V – – 360 Mbps HSTL Maximum AC Switching Speed Dmax AC loading: specifications Maximum data rate per JEDEC HSTL Impedance Specification Rref Supported output driver calibrated Reference resistance = 191 impedance (for DDRIO I/O Bank) – 25.5, 47.8 – RTT Effective impedance value (ODT for Reference resistance = 191 DDRIO I/O Bank only) – 47.8 – HSTL AC Test Parameters Specification Vtrip Measuring/trip point for data path – 0.75 – V Rent Resistance for enable path (tZH, tZL, tHZ, tLZ) – 2k – Cent Capacitive loading for enable path (tZH, tZL, tHZ, tLZ) – 5 – pF Rtt_test Reference resistance for data test path for HSTL15 Class I (tDP) – 50 – Rtt_test Reference resistance for data test path for HSTL15 Class II (tDP) – 25 – Cload Capacitive loading for data path (tDP) – 5 – pF 8.7.1.2 AC Switching Characteristics AC Switching Characteristics for Receiver (Input Buffers) Table 58 • HSTL15 AC Switching Characteristics for Receiver (Input Buffers) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 1.425 V tPY ODT (On Die Termination) in Speed Grade –1 Units HSTL (for DDRIO I/O Bank with Fixed Code) Pseudo-Differential None 1.673 ns True-Differential None 1.693 ns AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Table 59 • HSTL 15 AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 1.425 V Speed Grade –1 tDP tZL tZH tHZ tLZ Units Single Ended 2.922 2.91 2.904 3.225 3.218 ns Differential 2.907 2.757 2.755 2.662 2.66 ns HSTL Class I (for DDRIO I/O Bank) HSTL Class II (for DDRIO I/O Bank) Single Ended 2.817 2.735 2.735 2.644 2.644 ns Differential 2.827 2.81 2.803 3.205 3.197 ns Revision 2 35 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.7.2 Stub-Series Terminated Logic Stub-Series Terminated Logic (SSTL) for 2.5 V (SSTL2), 1.8 V (SSTL18), and 1.5 V (SSTL15) is supported in IGLOO2 and SmartFusion2 SoC FPGAs. SSTL2 is defined by JEDEC standard JESD8-9B and SSTL18 is defined by JEDEC standard JESD8-15. IGLOO2 SSTL I/O configurations are designed to meet double data rate standards DDR/2/3 for general purpose memory buses. Double data rate standards are designed to meet their JEDEC specifications as defined by JEDEC standard JESD79F for DDR, JEDEC standard JESD79-2F for DDR, JEDEC standard JESD79-3D for DDR3, and JEDEC standard JESD209A for LPDDR. 8.7.3 Stub-Series Terminated Logic 2.5 V (SSTL2) SSTL2 Class I and Class II are supported in IGLOO2 and SmartFusion2 SoC FPGAs and also comply with reduced and full drive of double data rate (DDR) standards. IGLOO2 and SmartFusion2 SoC FPGA I/Os supports both standards for single-ended signaling and differential signaling for SSTL2. This standard requires a differential amplifier input buffer and a push-pull output buffer. 8.7.3.1 Minimum and Maximum DC Input and Output Levels Specification Table 60 • DDR1/SSTL2 Minimum and Maximum DC Input and Output Levels Symbols Parameters Min Typ Max Units Recommended DC Operating Conditions VDDI Supply voltage 2.375 2.5 2.625 V VTT Termination voltage 1.164 1.250 1.339 V VREF Input reference voltage 1.164 1.250 1.339 V SSTL2 DC Input Voltage Specification VIH (DC) DC input logic High VREF + 0.15 – 2.625 V VIL (DC) DC input logic Low –0.3 – VREF – 0.15 V IIH (DC) Input current High – – 10 µA IIL (DC) Input current Low – – 10 µA SSTL2 DC Output Voltage Specification SSTL2 Class I (DDR Reduced Drive) VOH DC output logic High VTT + 0.608 – – V VOL DC output logic Low – – VTT – 0.608 V IOH at VOH Output current 8.1 – – mA IOL at VOL Output minimum sink current –8.1 – – mA minimum source DC SSTL2 Class II (DDR Full Drive) – Applicable to MSIO and DDRIO I/O Banks Only VOH DC output logic High VTT + 0.81 – – V VOL DC output logic Low – – VTT – 0.81 V IOH at VOH Output current 16.2 – – mA IOL at VOL Output minimum sink current –16.2 – – mA 0.3 – – V minimum source DC SSTL2 DC Differential Voltage Specification VID (DC) DC input differential voltage Revision 2 36 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 61 • DDR1/SSTL2 AC Specifications Symbols Parameters Conditions Min Typ Max Units SSTL2 Maximum AC Switching Speeds Dmax Maximum data rate (for AC loading: per JEDEC DDRIO I/O Bank) specifications – – 360 Mbps Dmax Maximum data rate (for AC loading: 17pF load MSIO I/O Bank) – – 450 Mbps Dmax Maximum data rate (for AC loading: 17pF load MSIOD I/O Bank) – – 480 Mbps 0.7 – – V 0.5 × VDDI - 0.2 – 0.5 × VDDI + 0.2 V – 20, 42 – SSTL2 AC Differential Voltage Specifications VDIFF AC Input Voltage Differential Vx AC Differential Point Voltage Cross SSTL2 Impedance Specifications Supported output driver Reference resistor calibrated impedance (for = 150 DDRIO I/O Bank) SSTL2 AC Test Parameters Specifications Vtrip Measuring/trip point for data path – 1.25 – V Rent Resistance for enable path (tZH, tZL, tHZ, tLZ) – 2k – Cent Capacitive loading for enable path (tZH, tZL, tHZ, tLZ) – 5 – pF Rtt_test Reference resistance for data test path for SSTL2 Class I (tDP) – 50 – Rtt_test Reference resistance for data test path for SSTL2 Class II (tDP) – 25 – Cload Capacitive loading for data path (tDP) – 5 – pF 8.7.3.2 AC Switching Characteristics AC Switching Characteristics for Receiver (Input Buffers) Table 62 • DDR1/SSTL2 AC Switching Characteristics for Receiver (Input Buffers) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI= 2.375 V Speed Grade –1 ODT (On Die Termination) in tPY Units Pseudo-Differential None 1.613 ns True-Differential None 1.647 ns Pseudo-Differential None 3.083 ns True-Differential None 3.028 ns SSTL2 (DDRIO I/O Bank) SSTL2 (MSIO I/O Bank) Revision 2 37 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 62 • DDR1/SSTL2 AC Switching Characteristics for Receiver (Input Buffers) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI= 2.375 V Speed Grade –1 ODT (On Die Termination) in tPY Units Pseudo-Differential None 2.721 ns True-Differential None 2.71 ns SSTL2 (MSIOD I/O Bank) Table 63 • DDR1/SSTL2 AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI= 2.375 V Speed Grade –1 tDP tZL tZH tHZ tLZ Units Single Ended 2.457 2.145 2.137 2.302 2.293 ns Differential 2.454 2.38 2.375 2.589 2.584 ns Single Ended 2.283 2.255 2.243 2.286 2.273 ns Differential 2.434 2.702 2.691 2.39 2.381 ns Single Ended 1.646 1.59 1.589 1.82 1.818 ns Differential 1.774 1.93 1.926 2.012 2.007 ns Single Ended 2.317 2.06 2.053 2.229 2.221 ns Differential 2.32 2.213 2.21 2.57 2.565 ns Single Ended 2.563 2.208 2.19 2.205 2.187 ns Differential 2.703 2.566 2.555 2.363 2.353 ns SSTL2 Class I DDRIO I/O Bank MSIO I/O Bank MSIOD I/O Bank SSTL2 Class II DDRIO I/O Bank MSIO I/O Bank Revision 2 38 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.7.4 Stub-Series Terminated Logic 1.8 V (SSTL18) SSTL18 Class I and Class II are supported in IGLOO2 and SmartFusion2 SoC FPGAs, and also comply with the reduced and full drive double date rate (DDR2) standard. IGLOO2 and SmartFusion2 SoC FPGA I/Os support both standards for single-ended signaling and differential signaling for SSTL18. This standard requires a differential amplifier input buffer and a push-pull output buffer. 8.7.4.1 Minimum and Maximum Input and Output Levels Specification Table 64 • DDR2/SSTL18 AC/DC Minimum and Maximum Input and Output Levels Specification Symbols Parameters Min Typ Max Units Notes Recommended DC Operating Conditions VDDI Supply voltage 1.71 1.8 1.89 V – VTT Termination voltage 0.838 0.900 0.964 V – VREF Input reference voltage 0.838 0.900 0.964 V – SSTL18 DC Input Voltage Specification VIH (DC) DC input logic High VREF + 0.125 – 1.89 V – VIL (DC) DC input logic Low –0.3 – VREF – 0.125 V – IIH (DC) Input current High – – 10 µA – IIL (DC) Input current Low – – 10 µA – SSTL18 DC Output Voltage Specification SSTL18 Class I (DDR2 Reduced Drive) VOH DC output logic High VTT + 0.603 – – V – VOL DC output logic Low – – VTT– 0.603 V – IOH at VOH Output minimum source DC current (DDRIO I/O Bank only) 6.0 – – mA – IOL at VOL Output minimum sink current (DDRIO I/O Bank only) –6.0 – – mA – * SSTL18 Class II (DDR2 Full Drive) VOH DC output logic High VTT + 0.603 – – V – VOL DC output logic Low – – VTT– 0.603 V – IOH at VOH Output minimum source DC current (DDRIO I/O Bank only) 12.0 – – mA – IOL at VOL Output minimum sink current (DDRIO I/O Bank only) –12.0 – – mA – 0.3 – – V – SSTL18 DC Differential Voltage Specification VID (DC) DC input differential voltage Note: *To meet JEDEC Electrical Compliance, use DDR2 Full Drive Transmitter. Revision 2 39 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 65 • DDR2/SSTL18 AC Specifications (Applicable to DDRIO Bank Only) Symbols Parameters Conditions Min Typ Max Units 0.5 – – V 0.5 × VDDI – 0.175 – 0.5 × VDDI + 0.175 V – – 600 Mbps SSTL18 AC Differential Voltage Specification VDIFF (AC) AC input differential voltage Vx (AC) AC differential cross point voltage SSTL18 Maximum AC Switching Speed Dmax Maximum data rate (for AC loading: per DDRIO I/O Bank) JEDEC specification SSTL18 Impedance Specifications Rref Supported output driver Reference resistor calibrated impedance = 150 (for DDRIO I/O Bank) – 20, 42 – RTT Effective impedance Reference resistor value (ODT) = 150 – 50, 75, 150 – SSTL18 AC Test Parameters Specifications Vtrip Measuring/trip point for data path – 0.9 – V Rent Resistance for enable path (tZH, tZL, tHZ, tLZ) – 2k – Cent Capacitive loading for enable path (tZH, tZL, tHZ, tLZ) – 5 – pF Rtt_test Reference resistance for data test path for SSTL18 Class I (tDP) – 50 – Rtt_test Reference resistance for data test path for SSTL18 Class II (tDP) – 25 – Cload Capacitive loading for data path (tDP) – 5 – pF 8.7.4.2 AC Switching Characteristics AC Switching Characteristics for Receiver (Input Buffers) Table 66 • DDR2/SSTL18 AC Switching Characteristics for Receiver (Input Buffers) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 1.71 V Speed Grade –1 On-Die Termination (ODT) in tPY Units SSTL18 (for DDRIO I/O Bank with Fixed Codes) Pseudo differential None 1.633 ns True differential None 1.65 ns Revision 2 40 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Table 67 • DDR2/SSTL18 AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 1.71 V Speed Grade –1 tDP tZL tZH tHZ tLZ Units Single Ended 2.67 3.078 3.072 2.489 2.484 ns Differential 2.645 2.431 2.434 2.396 2.398 ns Single Ended 2.564 2.973 2.965 2.45 2.444 ns Differential 2.532 2.401 2.398 2.368 2.365 ns SSTL18 Class I (for DDRIO I/O Bank) SSTL18 Class II (for DDRIO I/O Bank 8.7.5 Stub-Series Terminated Logic 1.5 V (SSTL15) SSTL15 Class I and Class II are supported in IGLOO2 FPGAs and SmartFusion2 SoC FPGAs, and also comply with the reduced and full drive double data rate (DDR3) standard. IGLOO2 FPGA and SmartFusion2 SoC FPGA I/Os supports both standards for single-ended signaling and differential signaling for SSTL18. This standard requires a differential amplifier input buffer and a push-pull output buffer. 8.7.5.1 Minimum and Maximum AC/DC Input and Output Levels Specification Table 68 • DDR3 SSTL15 DC Voltage Specification (for DDRIO I/O Bank Only) Symbols Parameters Conditions Min Typ Max Units Recommended DC Operating Conditions VDDI Supply voltage 1.425 1.5 1.575 V VTT Termination voltage 0.698 0.750 0.803 V VREF Input reference voltage 0.698 0.750 0.803 V SSTL15 DC Input Voltage Specification VIH(DC) DC input logic High VREF + 0.1 – 1.575 V VIL(DC) DC input logic Low –0.3 – VREF – 0.1 V IIH (DC) Input current High – – 10 µA IIL (DC) Input current Low – – 10 µA SSTL15 DC Output Voltage Specification DDR3/SSTL15 Class I (DDR3 Reduced Drive) VOH DC output logic High 0.8 x VDDI – – V VOL DC output logic Low – – 0.2 x VDDI V IOH at VOH Output minimum source DC current 6.5 – – mA IOL at VOL Output minimum sink current –6.5 – – mA SSTL15 Class II (DDR3 Full Drive) VOH DC output logic High 0.8 × VDDI – – V VOL DC output logic Low – – 0.2 x VDDI V IOH at VOH Output minimum source DC current 7.6 – – mA Revision 2 41 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 68 • DDR3 SSTL15 DC Voltage Specification (for DDRIO I/O Bank Only) (continued) Symbols IOL at VOL Parameters Conditions Output minimum sink current Min Typ Max Units –7.6 – – mA 0.2 – – V SSTL15 Differential Voltage Specification VID DC input differential voltage Note: *To meet JEDEC Electrical Compliance, use DDR3 Full Drive Transmitter. Table 69 • DDR3/SSTL15 AC Specifications Symbols Parameters Conditions Min Typ Max Units 0.3 – – V 0.5 × VDDI – 0.150 – 0.5 × VDDI + 0.150 V – – 600 Mbps SSTL15 AC Differential Voltage Specification VDIFF AC input differential voltage Vx AC differential cross point voltage SSTL15 Maximum AC Switching Speed (for DDRIO I/O Banks Only) Dmax Maximum data rate AC loading: per JEDEC specifications SSTL15 AC Calibrated Impedance Option Rref Supported output driver Reference resistor calibrated impedance = 240 – 34, 40 – RTT Effective impedance value Reference resistor (ODT) = 240 – 20, 30, 40, 60, 120 – SSTL15 AC Test Parameters Specifications Vtrip Measuring/trip point for data path – 0.75 – V Rent Resistance for enable path (tZH, tZL, tHZ, tLZ) – 2k – Cent Capacitive loading for enable path (tZH, tZL, tHZ, tLZ) – 5 – pF Rtt_test Reference resistance for data test path for SSTL15 Class I (tDP) – 50 – Rtt_test Reference resistance for data test path for SSTL15 Class II (tDP) – 25 – Cload Capacitive loading for data path (tDP) – 5 – pF 8.7.5.2 AC Switching Characteristics AC Switching Characteristics for Receiver (Input Buffers) Table 70 • DDR3/STTL15 AC Switching Characteristics for Receiver (Input Buffers) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 1.425 V Speed Grade –1 ODT (On Die Termination) in tPY Units DDR3/SSTL15 (for DDRIO I/O Bank) – Calibration Mode Only Pseudo-Differential None 1.672 ns True-Differential None 1.694 ns Revision 2 42 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Table 71 • DDR3/SSTL15 AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 1.425 V Speed Grade –1 tDP tZL tZH tHZ tLZ Units DDR3 Reduced Drive/SSTL15 Class I (for DDRIO I/O Bank) Single Ended 2.832 2.766 2.767 2.658 2.659 ns Differential 2.848 3.401 3.393 3.173 3.166 ns DDR3 Full Drive/SSTL15 Class II (for DDRIO I/O Bank) Single Ended 2.832 2.76 2.759 2.655 2.655 ns Differential 2.845 3.397 3.387 3.179 3.171 ns 8.7.6 Low Power Double Data Rate (LPDDR) LPDDR reduced and full drive low power double data rate standards are supported in IGLOO2 FPGA and SmartFusion2 SoC FPGA I/Os. This standard requires a differential amplifier input buffer and a push-pull output buffer. This I/O standard is supported in DDRIO I/O Bank only. 8.7.6.1 Minimum and Maximum AC/DC Input and Output Levels Specification Table 72 • LPDDR AC/DC Specifications (for DDRIO IO Bank Only) Symbols Parameters Min Typ Max Units Notes Recommended DC Operating Conditions VDDI Supply voltage 1.71 1.8 1.89 V – VTT Termination voltage 0.838 0.900 0.964 V – VREF Input reference voltage 0.838 0.900 0.964 V – LPDDR DC Input Voltage Specification VIH (DC) DC input logic High 0.7 × VDDI – 1.89 V – VIL (DC) DC input logic Low –0.3 – 0.3 × VDDI V – IIH (DC) Input current High – – 10 µA – IIL (DC) Input current Low – – 10 µA – LPDDR DC Output Voltage Specification LPDDR Reduced Drive VOH DC output logic High 0.9 × VDDI – – V – VOL DC output logic Low – – 0.1 × VDDI V – IOH at VOH Output minimum source DC current 0.1 – – mA – IOL at VOL Output minimum sink current –0.1 – – mA – * LPDDR Full Drive VOH DC output logic High 0.9 × VDDI – – V – VOL DC output logic Low – – 0.1 × VDDI V – IOH at VOH Output minimum source DC current 0.1 – – mA – Revision 2 43 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 72 • LPDDR AC/DC Specifications (for DDRIO IO Bank Only) Symbols Parameters Output minimum sink current IOL at VOL Min Typ Max Units Notes –0.1 – – mA – 0.4 × VDDI – – V – LPDDR DC Differential Voltage Specification VID (DC) DC input differential voltage Note: *To meet JEDEC Electrical Compliance, use LPDDR Full Drive Transmitter. Table 73 • LPDDR Maximum AC Switching Speeds (for DDRIO I/O Bank Only) Symbols Dmax Parameters Conditions AC loading: specifications Maximum data rate per Min Typ Max Units – – 360 Mbps JEDEC Table 74 • LPDDR AC Specifications (for DDRIO IO Bank Only) Symbols Parameters Conditions Min Typ Max Units VDIFF (AC) AC Input differential voltage – 0.6 × VDDI – – V Vx (AC) – 0.4 × VDDI – 0.6 × VDDI V LPDDR AC Differential Voltage Specification AC Differential Cross Point Voltage LPDDR Impedance Specifications Rref Supported Output Driver Calibrated Impedance Reference Resistor = 150 – 20,42 – RTT Effective impedance Value - ODT Reference Resistor = 150 – 50, 75, 150 – LPDDR AC Test Parameters Specifications Vtrip Measuring/Trip Point for Data Path – – 0.9 – V Rent Resistance for Enable Path (tZH, tZL, tHZ, tLZ) – – 2k – Cent Capacitive Loading for Enable Path (tZH, tZL, tHZ, tLZ) – – 5 – pF Rtt_test Reference resistance for Data Test Path for LPDDR (tDP) – – 50 – Cload Capacitive Loading for Data Path (tDP) – – 5 – pF 8.7.6.2 AC Switching Characteristics Table 75 • LPDDR AC Switching Characteristics for Receiver (Input Buffers) Worst-Case Automotive Grade 2 Conditions: TJ=125°C, VDD=1.14 V, VDDI= 1.71 V Speed Grade –1 ODT (On Die Termination) in tPY Units LPDDR (for DDRIO I/O Bank with Fixed Codes) Pseudo-Differential None 1.633 ns True-Differential None 1.65 ns Revision 2 44 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Table 76 • LPDDR AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-Case Automotive Grade 2 Conditions: TJ=125°C, VDD=1.14 V, VDDI= 1.71 V Speed Grade –1 tDP tZL tZH tHZ tLZ Units Single Ended 2.645 2.431 2.434 2.396 2.398 ns Differential 2.652 3.044 3.038 2.46 2.455 ns Single Ended 2.532 2.401 2.398 2.368 2.365 ns Differential 2.546 2.509 2.503 2.852 2.845 ns LPDDR Reduced Drive (for DDRIO I/O Bank) LPDDR Full Drive (for DDRIO I/O Bank) 8.7.6.3 Minimum and Maximum AC/DC Input and Output Levels Specification using LPDDRLVCMOS 1.8 V Mode Table 77 • LPDDR-LVCMOS 1.8 V Mode, Minimum and Maximum DC Input and Output Levels (Applicable to DDRIO I/O Bank Only) Symbols Parameters Conditions Min Typ Max Units 1.710 1.8 1.89 V LPDDR-LVCMOS 1.8 V Recommended DC Operating Conditions VDDI Supply Voltage – LPDDR-LVCMOS 1.8 V Mode DC Input Voltage Specification VIH(DC) DC input Logic HIGH for (MSIOD and DDRIO I/O Banks) – 0.65 x VDDI – 1.89 V VIH(DC) DC input Logic HIGH (for MSIO I/O Bank) – 0.65 x VDDI – 3.45 V VIL(DC) DC input Logic LOW – -0.3 – 0.35 x VDDI V IIH(DC) Input current HIGH – – – 10 uA IIL(DC) Input current LOW – – – 10 uA LPDDR-LVCMOS 1.8 V Mode DC Output Voltage Specification VOH DC output Logic HIGH – VDDI - 0.45 – – V VOL DC output Logic LOW – – – 0.45 V Table 78 • LPDDR-LVCMOS 1.8 V Maximum AC Switching Speeds (Applicable to DDRIO I/O Bank Only) Symbols Dmax Parameters Maximum Data Rate (for DDRIO I/O Bank) Conditions Min Typ Max Units AC Loading: 17pF Load, 8mA Drive and Above/All Slew – – 360 Mbps Revision 2 45 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 79 • LPDDR-LVCMOS 1.8 V AC Test Parameters and Driver Impedance Specifications (Applicable to DDRIO I/O Bank Only) Symbols Parameters Conditions Min Typ Max Units – 75, 60, 50, 33, 25, 20 – LPDDR - LVCMOS 1.8 V Calibrated Impedance Option Rodt_cal Supported Output Driver Calibrated Impedance (for DDRIO I/O Bank) – LPDDR- LVCMOS 1.8 V AC Test Parameters Specifications Vtrip Measuring/Trip Point for Data Path – – 0.9 – V Rent Resistance for Enable Path (tZH, tZL, tHZ, tLZ) – – 2k – Cent Capacitive Loading for Enable Path (tZH, tZL, tHZ, tLZ) – – 5 – pF Cload Capacitive Loading for Data Path (tDP) – – 5 – pF Table 80 • LPDDR-LVCMOS 1.8 V Mode Transmitter Drive Strength Specification (Applicable to DDRIO I/O Bank Only) Output Drive Selection VOH (V) Min VOL (V) Max IOH (at VOH) mA IOL (at VOL) mA Notes 2 mA VDDI – 0.45 0.45 2 2 – 4 mA VDDI – 0.45 0.45 4 4 – 6 mA VDDI – 0.45 0.45 6 6 – 8 mA VDDI – 0.45 0.45 8 8 – 10 mA VDDI – 0.45 0.45 10 10 – 12 mA VDDI – 0.45 0.45 12 12 – 16 mA VDDI – 0.45 0.45 16 16 * Note: * 16mA Drive Strengths, All Slews, meet LPDDR JEDEC electrical compliance 8.7.6.4 AC Switching Characteristics Table 81 • LPPDR - LVCMOS 1.8 V AC Switching Characteristics for Receiver (Input Buffers) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 1.71 V ODT (On Die Termination) in LPDDR-LVCMOS 1.8 mode (for DDRIO I/O Bank with Fixed Codes) None Revision 2 Speed Grade –1 tPY tPYS Units 2.071 2.213 ns 46 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 AC Switching Characteristics for Transmitter (Output and Tristate Buffers Table 82 • LPDDR - LVCMOS 1.8 V AC Switching Characteristics for Transmitter DDRIO I/O Bank (Output and Tristate Buffers) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 1.71 V Output Drive Selection 2 mA 4 mA 6 mA 8 mA 10 mA 12 mA 16 mA Speed Grade –1 Slew Control tDP tZL tZH tHZ tLZ Units slow 4.681 4.017 4.69 5.388 4.852 ns medium 4.211 3.599 4.219 5.058 4.488 ns medium_fast 3.978 3.392 3.986 4.874 4.327 ns fast 3.953 3.373 3.961 4.858 4.316 ns slow 4.355 3.657 4.346 5.967 5.399 ns medium 3.886 3.246 3.879 5.628 5.01 ns medium_fast 3.656 3.05 3.647 5.461 4.845 ns fast 3.635 3.033 3.626 5.447 4.838 ns slow 4.105 3.422 4.092 6.221 5.599 ns medium 3.68 3.05 3.668 5.9 5.257 ns medium_fast 3.477 2.867 3.463 5.739 5.118 ns fast 3.451 2.849 3.437 5.72 5.104 ns slow 4.015 3.32 3.998 6.458 5.808 ns medium 3.59 2.947 3.574 6.129 5.449 ns medium_fast 3.383 2.761 3.366 5.963 5.304 ns fast 3.357 2.746 3.34 5.954 5.289 ns slow 3.888 3.18 3.864 6.739 6.045 ns medium 3.485 2.822 3.467 6.422 5.7 ns medium_fast 3.281 2.642 3.26 6.277 5.553 ns fast 3.258 2.627 3.238 6.27 5.546 ns slow 3.795 3.096 3.773 6.773 6.067 ns medium 3.408 2.764 3.389 6.47 5.743 ns medium_fast 3.215 2.599 3.194 6.346 5.61 ns fast 3.196 2.584 3.175 6.335 5.604 ns slow 3.744 3.035 3.719 6.944 6.207 ns medium 3.358 2.712 3.339 6.657 5.868 ns medium_fast 3.175 2.546 3.153 6.547 5.751 ns fast 3.156 2.531 3.133 6.541 5.747 ns Revision 2 47 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.8. Differential I/O Standards Configuration of the I/O modules as a differential pair is handled by Microsemi SoC Products Group Libero® Systemon-Chip (SoC) software when the user instantiates a differential I/O macro in the design. Differential I/Os can also be used in conjunction with the embedded Input register (InReg), Output register (OutReg), Enable register (EnReg), and Double Data Rate registers (DDR). 8.8.1 LVDS Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. 8.8.1.1 Minimum and Maximum Input and Output Levels Table 83 • LVDS DC Voltage Specification Symbols Parameters Conditions Min Typ Max Units LVDS Recommended DC Operating Conditions VDDI Supply voltage 2.5 V range 2.375 2.5 2.625 V VDDI Supply voltage 3.3 V range 3.15 3.3 3.45 V LVDS DC Input Voltage Specification VI DC Input voltage 2.5 V range 0 – 2.925 V VI DC input voltage 3.3 V range 0 – 3.45 V IIH (DC) Input current High – – 10 µA IIL (DC) Input current Low – – 10 µA LVDS DC Output Voltage Specification VOH DC output logic High 1.25 1.425 1.6 V VOL DC output logic Low 0.9 1.075 1.25 V 250 350 450 mV LVDS Differential Voltage Specification VOD Differential output voltage swing VOCM Output common mode voltage 1.125 1.25 1.375 V VICM Input common mode voltage 0.05 1.25 2.35 V VID Input differential voltage 100 350 600 mV Table 84 • LVDS AC Specifications Symbols Parameters Conditions Min Typ Max Units – – 480 Mbps – – 480 Mbps – 100 – LVDS Maximum AC Switching Speed Dmax Maximum data rate (for MSIO I/O Bank) AC loading: differential load 12 pF / 100 Dmax Maximum data rate (for MSIOD I/O Bank) AC loading: differential load 10 pF / 100 LVDS Impedance Specification Rt Termination resistance – LVDS AC Test Parameters Specifications Vtrip Measuring/trip point for data path – Cross point – V Rent Resistance for enable path (tZH, tZL, tHZ, tLZ) – 2k – Cent Capacitive loading for enable path (tZH, tZL, tHZ, tLZ) – 5 – pF Revision 2 48 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.8.1.2 LVDS25 AC Switching Characteristics AC Switching Characteristics for Receiver (Input Buffers) Table 85 • LVDS25 Receiver Characteristics Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 2.375 V Speed Grade –1 On-Die Termination (ODT) in tPY Units None 3.061 ns 100 3.057 ns None 2.792 ns 100 2.787 ns LVDS (for MSIO I/O Bank) LVDS (for MSIOD I/O Bank) AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Table 86 • LVDS25 Transmitter Characteristics Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 2.375 V Speed Grade –1 tDP tZL tZH tHZ tLZ Units 2.299 2.602 2.589 2.305 2.32 ns No pre-emphasis 1.656 1.845 1.838 1.992 1.969 ns Min pre-emphasis 1.583 1.868 1.866 2.018 1.998 ns Med pre-emphasis 1.559 1.893 1.886 2.045 2.021 ns LVDS (for MSIO I/O Bank) LVDS (for MSIOD I/O Bank) 8.8.1.3 LVDS33 AC Switching Characteristics AC Switching Characteristics for Receiver (Input Buffers) Table 87 • LVDS33 Receiver Characteristics Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 3.15 V Speed Grade –1 On Die Termination (ODT) in tPY Units None 2.763 ns 100 2.76 ns LVDS33 (for MSIO I/O Bank) AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Table 88 • LVDS33 Transmitter Characteristics Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 3.15 V Speed Grade –1 LVDS33 (for MSIO I/O Bank) tDP tZL tZH tHZ tLZ Units 2.069 2.112 2.106 2.078 2.09 ns Revision 2 49 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.8.2 B-LVDS Bus LVDS (B-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. 8.8.2.1 Minimum and Maximum AC/DC Input and Output Levels Specification Table 89 • B-LVDS DC Voltage Specification Symbols Parameters Conditions Min Typ Max Units 2.375 2.5 2.625 V Bus-LVDS Recommended DC Operating Conditions VDDI Supply voltage Bus-LVDS DC Input Voltage Specification VI DC input voltage 0 – 2.925 V IIH (DC) Input current High – – 10 µA IIL (DC) Input current Low – – 10 µA Bus-LVDS DC Output Voltage Specification (for MSIO I/O Bank only) VOH DC output logic High 1.25 1.425 1.6 V VOL DC output logic Low 0.9 1.075 1.25 V Bus-LVDS Differential Voltage Specification VOD Differential output voltage swing (for MSIO I/O Bank only) 65 – 460 mV VOCM Output common mode voltage (for MSIO I/O Bank only) 1.1 – 1.5 V VICM Input common mode voltage 0.05 – 2.4 V VID Input differential voltage 0.1 – VDDI V Min Typ Max Units – – 450 Mbps – 27 – Table 90 • B-LVDS AC Specifications Symbols Parameters Conditions Bus-LVDS Maximum AC Switching Speed Dmax Maximum data rate (for MSIO I/O Bank) AC loading: differential load 2 pF / 100 Bus-LVDS Impedance Specifications Rt Termination resistance Bus-LVDS AC Test Parameters Specifications Vtrip Measuring/trip point for data path – Cross point – V Rent Resistance for enable path (tZH, tZL, tHZ, tLZ) – 2k – Cent Capacitive loading for enable path (tZH, tZL, tHZ, tLZ) – 5 – pF Revision 2 50 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.8.2.2. AC Switching Characteristics AC Switching Characteristics for Receiver (Input Buffers) Table 91 • B-LVDS AC Switching Characteristics for Receiver (Input Buffers) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 2.375 V Speed Grade –1 On-Die Termination (ODT) in tPY Units None 3.011 ns 100 3.006 ns None 2.722 ns 100 2.725 ns Bus-LVDS (for MSIO I/O Bank) Bus-LVDS (for MSIOD I/O Bank) AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Table 92 • B-LVDS AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 2.375 V Speed Grade –1 Bus-LVDS (for MSIO I/O Bank) tDP tZL tZH tHZ tLZ Units 2.78 2.632 2.617 2.448 2.436 ns 8.8.3 M-LVDS M-LVDS specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. 8.8.3.1 Minimum and Maximum Input and Output Levels Table 93 • M-LVDS DC Voltage Specification Symbols Parameters Conditions Min Typ Max Units – M-LVDS Recommended DC Operating Conditions VDDI Notes Supply voltage 2.375 2.5 2.625 V * – M-LVDS DC Input Voltage Specification VI DC input voltage 0 – 2.925 V – IIH (DC) Input current High – – 10 µA – IIL (DC) Input current Low – – 10 µA – – M-LVDS DC Output Voltage Specification (for MSIO I/O Bank Only) VOH DC output logic High 1.25 1.425 1.6 V – VOL DC output logic Low 0.9 1.075 1.25 V – – M-LVDS Differential Voltage Specification VOD Differential output voltage Swing (for MSIO I/O Bank only) 300 – 650 mV – VOCM Output common mode voltage (for MSIO I/O Bank only) 0.3 – 2.1 V – VICM Input common mode voltage 0.3 – 1.2 V – VID Input differential voltage 50 – 2400 mV – Note: *Only M-LVDS TYPE I is supported Revision 2 51 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 94 • M-LVDS AC Specifications Symbols Parameters Conditions Min Typ Max Units – – 450 Mbps – 50 – M-LVDS Maximum AC Switching Speeds Dmax Maximum data rate (for MSIO I/O Bank) 2 pF / 100 AC loading: differential load M-LVDS Impedance Specification Rt Termination resistance – M-LVDS AC Test Parameters Specifications VTrip Measuring/trip point for data path – Cross point – V Rent Resistance for enable path (tZH, tZL, tHZ, tLZ) – 2k – Cent Capacitive loading for enable path (tZH, tZL, tHZ, tLZ) – 5 – pF 8.8.3.2 AC Switching Characteristics AC Switching Characteristics for Receiver (Input Buffers) Table 95 • M-LVDS AC Switching Characteristics for Receiver (Input Buffers) Worst-case Automotive Grade 2 conditions: TJ = 125°C, VDD = 1.14 V, VDDI= 2.375 V Speed Grade –1 On-Die Termination (ODT) in tPY Units None 3.011 ns 100 3.006 ns None 2.722 ns 100 2.725 ns M-LVDS (for MSIO I/O Bank) M-LVDS (for MSIOD I/O Bank) AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Table 96 • M-LVDS AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-case Automotive Grade 2 conditions: TJ = 125°C, VDD = 1.14 V, VDDI= 2.375 V Speed Grade –1 M-LVDS (for MSIO I/O Bank) tDP tZL tZH tHZ tLZ Units 2.78 2.632 2.616 2.447 2.436 ns Revision 2 52 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.8.4 Mini-LVDS Mini-LVDS is an unidirectional interface from the timing controller to the column drivers and is designed to the Texas Instruments Standard SLDA007A. 8.8.4.1 Mini-LVDS Minimum and Maximum Input and Output Levels Table 97 • Mini-LVDS DC Voltage Specification Symbols Parameters Conditions Min Typ Max Units 2.375 2.5 2.625 V 0 – 2.925 V Recommended DC Operating Conditions VDDI Supply voltage Mini-LVDS DC Input Voltage Specification VI DC Input voltage Mini-LVDS DC Output Voltage Specification VOH DC output logic High 1.25 1.425 1.6 V VOL DC output logic Low 0.9 1.075 1.25 V 300 – 600 mV 1 – 1.4 V Mini-LVDS Differential Voltage Specification VOD Differential output voltage swing VOCM Output common mode voltage VICM Input common mode voltage 0.3 – 1.2 V VID Input differential voltage 100 – 600 mV Min Typ Max Units – – 460 Mbps – – 480 Mbps – 100 – Table 98 • Mini-LVDS AC Specifications Symbols Parameters Conditions Mini-LVDS Maximum AC Switching Speed AC loading: differential load 2 pF / 100 Dmax Maximum data rate (MSIO I/O Bank) Dmax Maximum data rate (MSIOD I/O AC loading: 10 pF / 100 Bank) differential load Mini-LVDS Impedance Specification Rt Termination resistance Mini-LVDS AC Test Parameters Specifications VTrip Measuring/trip point for data path – Cross point – V Rent Resistance for enable path (tZH, tZL, tHZ, tLZ) – 2k – Cent Capacitive loading for enable path (tZH, tZL, tHZ, tLZ) – 5 – pF Revision 2 53 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.8.4.2. AC Switching Characteristics AC Switching Characteristics for Receiver (Input Buffers) Table 99 • Mini-LVDS AC Switching Characteristics for Receiver (Input Buffers) Worst-case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI= 2.375 V Speed Grade –1 On-Die Termination (ODT) in tPY Units None 3.112 ns 100 2.995 ns None 2.612 ns 100 2.612 ns Mini-LVDS (for MSIO I/O Bank) Mini-LVDS (for MSIOD I/O Bank) AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Table 100 • Mini-LVDS AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI= 2.375 V Speed Grade –1 tDP tZL tZH tHZ tLZ Units 2.3 2.602 2.59 2.306 2.32 ns No pre-emphasis 1.652 1.84 1.833 1.988 1.965 ns Min pre-emphasis 1.652 1.84 1.833 1.988 1.965 ns Med pre-emphasis 1.577 1.868 1.86 2.02 1.994 ns Max pre-emphasis 1.555 1.894 1.883 2.048 2.019 ns Mini-LVDS (for MSIO I/O Bank) Mini-LVDS (for MSIOD I/O Bank) 8.8.5 RSDS Reduced Swing Differential Signaling (RSDS) is similar to an LVDS high-speed interface using differential signaling. RSDS has a similar implementation to LVDS devices and is only intended for point-to-point applications. 8.8.5.1 Minimum and Maximum Input and Output Levels Table 101 • RSDS DC Voltage Specification Symbols Parameters Conditions Min Typ Max Units 2.375 2.5 2.625 V 0 – 2.925 V Recommended DC Operating Conditions VDDI Supply voltage RSDS DC Input Voltage Specification VI DC input voltage RSDS DC Output Voltage Specification VOH DC output logic High 1.25 1.425 1.6 V VOL DC output logic Low 0.9 1.075 1.25 V RSDS Differential Voltage Specification VOD Differential output voltage swing 100 – 600 mV VOCM Output common mode voltage 0.5 – 1.5 V Revision 2 54 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 101 • RSDS DC Voltage Specification (continued) Symbols Parameters Conditions Min Typ Max Units VICM Input common mode voltage 0.3 – 1.5 V VID Input differential voltage 100 – 600 mV Min Typ Max Units – – 460 Mbps – – 480 Mbps – 100 – Table 102 • RSDS AC Specifications Symbols Parameters Conditions RSDS Maximum AC Switching Speed Dmax Maximum data rate (for MSIO I/O Bank) AC loading: differential load 2 pF / 100 Dmax Maximum data rate (for MSIOD I/O Bank) AC loading: differential load 10 pF / 100 RSDS Impedance Specification Rt Termination resistance RSDS AC Test Parameters Specifications VTrip Measuring/trip point for data path – Cross point – V Rent Resistance for enable path (tZH, tZL, tHZ, tLZ) – 2k – Cent Capacitive loading for enable path (tZH, tZL, tHZ, tLZ) – 5 – pF 8.8.5.2 AC Switching Characteristics AC Switching Characteristics for Receiver (Input Buffers) Table 103 • RSDS AC Switching Characteristics for Receiver (Input Buffers) Worst-case Automotive Grade 2 conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 2.375 V Speed Grade –1 RSDS (for MSIO I/O Bank) RSDS (for MSIOD I/O Bank) On-Die Termination (ODT) in tPY Units None 3.112 ns 100 3.108 ns None 2.832 ns 100 2.821 ns Revision 2 55 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Table 104 • RSDS AC Switching Characteristics for Transmitter (Output and Tristate Buffers) Worst-case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 2.375 V Units Speed Grade –1 tDP tZL tZH tHZ tLZ 2.256 2.484 2.472 2.111 2.096 ns No pre-emphasis 1.661 1.648 1.645 1.675 1.665 ns Min pre-emphasis 1.651 1.84 1.833 1.988 1.964 ns Med pre-emphasis 1.577 1.868 1.859 2.019 1.993 ns Max pre-emphasis 1.555 1.894 1.883 2.047 2.018 ns RSDS (for MSIO I/O Bank) RSDS (for MSIOD I/O Bank) 8.8.6 LVPECL Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Similar to LVDS, two pins are needed. It also requires external resistor termination. IGLOO2 and SmartFusion2 SoC FPGAs support only LVPECL receivers and do not support LVPECL transmitters. 8.8.6.1 Minimum and Maximum Input and Output Levels Table 105 • LVPECL DC Voltage Specification (Applicable to MSIO I/O Banks Only) Symbols Parameters Conditions Min Typ Max Units 3.15 3.3 3.45 V 0 – 3.45 V 2.8 V 1,000 mV Recommended DC Operating Conditions VDDI Supply voltage LVPECL DC Input Voltage Specification VI DC input voltage LVPECL Differential Voltage Specification VICM Input common mode voltage 0.3 VIDIFF Input differential voltage 100 300 Table 106 • LVPECL Maximum AC Switching Speeds (Applicable to MSIO I/O Banks Only) Symbols Parameters Conditions Min Typ Max Units – – 810 Mbps LVPECL AC Specifications Fmax Maximum data rate (for MSIO I/O Bank) 8.8.6.2 AC Switching Characteristics AC Switching Characteristics for Receiver (Input Buffers) Table 107 • LVPECL Receiver Characteristics Worst-case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 3.15 V tPY LVPECL (for MSIO I/O Bank) On-Die Termination (ODT) in Speed Grade –1 Units None 2.71 ns 100 2.71 ns Revision 2 56 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.9 I/O Register Specifications 8.9.1 Input Register F D EN Input I/O Buffer D B EN C ALn G A ALn ADn ADn D SLn Q Q SLn SLE SD SD LAT LAT E CLK CLK Figure 5 • Timing Model for Input Register W,&.03:/ W,&.03:+ &/. W,68' ' W,+' $'Q 6' W,686/Q W,+6/Q 6/Q W,5(0$/Q W,:$/Q $/Q W,68( W,5(&$/Q W,+( (1 W,$/Q4 4 W,&/.4 Figure 6 • I/O Register Input Timing Diagram Revision 2 57 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 108 • Input Data Register Propagation Delays Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter Description Measuring Nodes (from, to)* Speed Grade –1 Units tIBYP Bypass Delay of the Input Register F,G 0.364 ns tICLKQ Clock-to-Q of the Input Register E,G 0.165 ns tISUD Data Setup Time for the Input Register A,E 0.369 ns tIHD Data Hold Time for the Input Register A,E 0 ns tISUE Enable Setup Time for the Input Register B,E 0.475 ns tIHE Enable Hold Time for the Input Register B,E 0 ns tISUSL Synchronous Load Setup Time for the Input Register D,E 0.475 ns tIHSL Synchronous Load Hold Time for the Input Register D,E 0 ns Asynchronous Clear-to-Q of the Input Register (ADn=1) C,G 0.648 ns Asynchronous Preset-to-Q of the Input Register (ADn=0) C,G 0.606 ns C,E 0 ns tIALn2Q tIREMALn Asynchronous Load Removal Time for the Input Register tIRECALn Asynchronous Load Recovery Time for the Input Register C,E 0.076 ns tIWALn Asynchronous Load Minimum Pulse Width for the Input Register C,C 0.313 ns tICKMPWH Clock Minimum Pulse Width High for the Input Register E,E 0.078 ns tICKMPWL Clock Minimum Pulse Width Low for the Input Register E,E 0.164 ns Revision 2 58 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.9.2 Output/Enable Register A D EN ALn F D B EN C ADn D SLn LAT LAT D2 SLE SD SD CLK Q ALn ADn SLn G E J CLK H I D Q EN ALn ADn SLn Output I/O Buffer with Enable Control SLE SD LAT CLK Output/Enable Registers Figure 7 • Timing Model for Output/Enable Register Revision 2 59 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 W2&.03:/ W2&.03:+ W2+'( &ON W268( W2+' W268' ' $'Q 6' W2686/Q W2+'6/Q 6/Q (1 W25(0$/Q $/Q W25(&$/Q W2$/Q4 2XW C W2&/.4 Figure 8 • I/O Register Output Timing Diagram Table 109 • Output/Enable Data Register Propagation Delays Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter Description Measuring Nodes (from, to)* Speed Grade –1 Units tOBYP Bypass Delay of the Output/Enable Register F,G or H,I 0.364 ns tOCLKQ Clock-to-Q of the Output/Enable Register E,G or E,I 0.272 ns tOSUD Data Setup Time for the Output/Enable Register A,E or J,E 0.196 ns tOHD Data Hold Time for the Output/Enable Register A,E or J,E 0 ns tOSUE Enable Setup Time for the Output/Enable Register B,E 0.433 ns tOHE Enable Hold Time for the Output/Enable Register B,E 0 ns tOSUSL Synchronous Load Setup Time for the Output/Enable Register D,E 0.203 ns tOHSL Synchronous Load Hold Time for the Output/Enable Register D,E 0 ns Asynchronous Clear-to-Q of the Output/Enable Register (ADn=1) C,G or C,I 0.523 ns Asynchronous Preset-to-Q of the Output/Enable Register (ADn=0) C,G or C,I 0.545 ns tOREMALn Asynchronous Load Removal Time for the Output/Enable Register C,E 0 ns tORECALn Asynchronous Load Recovery Time for the Output/Enable Register C,E 0.035 ns tOALn2Q Revision 2 60 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 109 • Output/Enable Data Register Propagation Delays Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) Parameter Description Measuring Nodes (from, to)* Speed Grade –1 Units tOWALn Asynchronous Load Minimum Pulse Width for the Output/Enable Register C,C 0.266 ns tOCKMPWH Clock Minimum Pulse Width High for the Output/Enable Register E,E 0.065 ns tOCKMPWL Clock Minimum Pulse Width Low for the Output/Enable Register E,E 0.139 ns 8.10 DDR Module Specification 8.10.1 Input DDR Module D EN ALn A D E EN F ADn G SLn SLE SD SD LAT LAT CLK QR ALn ADn SLn C Q B CLK D ALn ADn Q D D Q EN Latch QF ALn ADn SLn CLK SLE SD LAT CLK DDR_IN Figure 9 • Input DDR Module Revision 2 61 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.10.2 Input DDR Timing Diagram W''5,&.03:/ W''5,&.03:+ &/. W''5,68' ' W''5,+' $'Q 6' W''5,686/Q W''5,+6/Q 6/Q W''5,:$/ W''5,+( $/Q W''5,5(0$/ W''5,5(&$/ W''5,68( (1 W''5,$/4 45 W''5,&/.4 W''5,$/4 W''5,&/.4 4) Figure 10 • Input DDR Timing Diagram Revision 2 62 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.10.3 Timing Characteristics Table 110 • Input DDR Propagation Delays Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD=1.14 V Parameter Description Measuring Nodes (from, to) Speed Grade –1 Units tDDRICLKQ1 Clock-to-Out Out_QR for Input DDR B,C 0.165 ns tDDRICLKQ2 Clock-to-Out Out_QF for Input DDR B,D 0.172 ns tDDRISUD Data Setup for Input DDR A,B 0.372 ns tDDRIHD Data Hold for Input DDR A,B 0 ns tDDRISUE Enable Setup for Input DDR E,B 0.475 ns tDDRIHE Enable Hold for Input DDR E,B 0 ns tDDRISUSLn Synchronous Load Setup for Input DDR G,B 0.475 ns tDDRIHSLn Synchronous Load Hold for Input DDR G,B 0 ns tDDRIAL2Q1 Asynchronous Load-to-Out QR for Input DDR F,C 0.606 ns tDDRIAL2Q2 Asynchronous Load-to-Out QF for Input DDR F,D 0.558 ns tDDRIREMAL Asynchronous Load Removal time for Input DDR F,B 0 ns tDDRIRECAL Asynchronous Load Recovery time for Input DDR F,B 0.076 ns tDDRIWAL Asynchronous Load Minimum Pulse Width for Input DDR F,F 0.313 ns tDDRICKMPWH Clock Minimum Pulse Width High for Input DDR B,B 0.078 ns tDDRICKMPWL Clock Minimum Pulse Width Low for Input DDR B,B 0.164 ns Revision 2 63 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.10.4 Output DDR Module A DR EN ALn D B C ADn D SLn SD SD LAT LAT CLK DF QR ALn ADn SLn Q EN E SLE 1 G Q CLK F D Q EN QF ALn ADn SLn SLE SD 0 LAT CLK DDR_ OUT Figure 11 • Output DDR Module Revision 2 64 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 W''5268( W''52&.03:/ W''52&.03:+ &ON W''52+'( W''52+'5 W''5268'5 '5 W''5268') W''52+') ') $'Q 6' W''52686/Q W''52+'6/Q 6/Q (1 W''52:$/ W''525(0$/ $/Q W''525(&$/ C W''52&/.4 W''52$/4 2XW Figure 12 • Output DDR Timing Diagram Revision 2 65 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 8.10.5 Timing Characteristics Table 111 • Output DDR Propagation Delays Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter Measuring Nodes (from, to) Description Speed Grade –1 Units tDDROCLKQ Clock-to-Out of DDR for Output DDR E,G 0.272 ns tDDROSUDF DF Data Setup for Output DDR F,E 0.148 ns tDDROSUDR DR Data Setup for Output DDR A,E 0.196 ns tDDROHDF DF Data Hold for Output DDR F,E 0 ns tDDROHDR DR Data Hold for Output DDR A,E 0 ns tDDROSUE Enable Setup for Output DDR B,E 0.433 ns tDDROHE Enable Hold for Output DDR B,E 0 ns tDDROSUSLn Synchronous Load Setup for Output DDR D,E 0.203 ns tDDROHSLn Synchronous Load Hold for Output DDR D,E 0 ns tDDROAL2Q Asynchronous Load-to-Out for Output DDR C,G 0.545 ns tDDROREMAL Asynchronous Load Removal time for Output DDR C,E 0 ns tDDRORECAL Asynchronous Load Recovery time for Output DDR C,E 0.035 ns tDDROWAL Asynchronous Load Minimum Pulse Width for Output DDR C,C 0.266 ns tDDROCKMPWH Clock Minimum Pulse Width High for the Output DDR E,E 0.065 ns tDDROCKMPWL Clock Minimum Pulse Width Low for the Output DDR E,E 0.139 ns Revision 2 66 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 9. Logic Element Specifications 9.1 4-input LUT (LUT-4) The IGLOO2 and SmartFusion2 SoC FPGAs offer a fully permutable 4-input LUT. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the SmartFusion2 and IGLOO2 Macro Library Guide. tPD A PAD B PAD AND4 OR Any Combinational Logic C PAD PAD D/S (where applicable) PAD VDD A, B, C, D, S Y 50% tPD = Max(tPD(RR), tPD(RF), tPD(FF), tPD(FR)) 50% where edges are applicable for the particular combinatorial cell GND VDD 50% 50% OUT tPD tPD (RR) (FF) GND VDD tPD OUT 50% tPD (RF) (FR) 50% GND Figure 13 • LUT-4 9.1.1 Timing Characteristics Table 112 • Combinatorial Cell Propagation Delays Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Combinatorial Cell Equation Parameter Speed Grade –1 Units INV Y = !A tPD 0.106 ns AND2 Y=A·B tPD 0.17 ns NAND2 Y = !(A · B) tPD 0.157 ns OR2 Y=A+B tPD 0.17 ns NOR2 Y = !(A + B) tPD 0.157 ns XOR2 Y=AB tPD 0.17 ns XOR3 Y=ABC tPD 0.236 ns AND3 Y=A·B·C tPD 0.217 ns AND4 Y=A·B·C·D tPD 0.384 ns Revision 2 67 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 9.2 Sequential Module IGLOO2 and SmartFusion2 SoC FPGAs offer a separate flip-flop which can be used independently from the LUT. The flip-flop can be configured as a register or a latch and has a data input and optional enable, synchronous load (clear or preset), and asynchronous load (clear or preset). D Q EN ALn ADn SLn SLE SD LAT CLK Figure 14 • Sequential Module Figure 15 shows a configuration with SD = 0 (synchronous clear) and ADn = 1 (asynchronous clear) for a flip-flop (LAT = 0). W&.03:+ &/. W68' ' W&.03:/ W+' 6' $'Q ( W+6/ W686/ W68( W+( 6/ W5(0$/Q W:$/Q $/Q W5(&$/Q W$/Q4 4 W&/.4 Figure 15 • Sequential Module Timing Diagram Revision 2 68 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 9.2.1 Timing Characteristics Table 113 • Register Delays Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter Description Speed Grade –1 Units tCLKQ Clock-to-Q of the Core Register 0.112 ns tSUD Data Setup Time for the Core Register 0.262 ns tHD Data Hold Time for the Core Register 0 ns tSUE Enable Setup Time for the Core Register 0.346 ns tHE Enable Hold Time for the Core Register 0 ns tSUSL Synchronous Load Setup Time for the Core Register 0.346 ns tHSL Synchronous Load Hold Time for the Core Register 0 ns Asynchronous Clear-to-Q of the Core Register (ADn=1) 0.49 ns Asynchronous Preset-to-Q of the Core Register (ADn=0) 0.466 ns tREMALn Asynchronous Load Removal Time for the Core Register 0 ns tRECALn Asynchronous Load Recovery Time for the Core Register 0.364 ns tWALn Asynchronous Load Minimum Pulse Width for the Core Register 0.266 ns tCKMPWH Clock Minimum Pulse Width High for the Core Register 0.065 ns tCKMPWL Clock Minimum Pulse Width Low for the Core Register 0.139 ns tALn2Q 10. Global Resource Characteristics The IGLOO2 and SmartFusion2 SoC FPGA devices offer a powerful, low skew global routing network which provides an effective clock distribution throughout the FPGA fabric. Refer to the UG0445: IGLOO2 FPGA and SmartFusion2 SoC FPGA Fabric User Guide for the positions of various global routing resources. Table 114 • M2S090T Device Global Resource Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Description Min Max Units tRCKL Input Low Delay for Global Clock 0.793 0.847 ns tRCKH Input High Delay for Global Clock 1.412 1.498 ns tRCKSW Maximum Skew for Global Clock – 0.086 ns Table 115 • M2S025T Device Global Resource Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Description Min Max Units tRCKL Input Low Delay for Global Clock 0.713 0.762 ns tRCKH Input High Delay for Global Clock 1.306 1.391 ns tRCKSW Maximum Skew for Global Clock – 0.085 ns Revision 2 69 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 116 • M2S010T Device Global Resource Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Description Min Max Units tRCKL Input Low Delay for Global Clock 0.598 0.639 ns tRCKH Input High Delay for Global Clock 1.116 1.192 ns tRCKSW Maximum Skew for Global Clock – 0.076 ns Table 117 • M2S005T Device Global Resource Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Description Min Max Units tRCKL Input Low Delay for Global Clock 0.736 0.789 ns tRCKH Input High Delay for Global Clock 0.927 0.995 ns tRCKSW Maximum Skew for Global Clock – 0.068 ns Revision 2 70 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 11. FPGA Fabric SRAM Refer to the UG0445: IGLOO2 FPGA and SmartFusion2 SoC FPGA Fabric User Guide for more information. 11.1 FPGA Fabric Large SRAM (LSRAM) Table 118 • RAM1K18 – Dual-Port Mode for Depth × Width Configuration 1Kx18 Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Description Min Max Units 3.333 – ns tCY Clock Period tCLKMPWH Clock Minimum Pulse Width High 1.5 – ns tCLKMPWL Clock Minimum pulse Width Low 1.5 – ns tPLCY Pipelined Clock Period 3.333 – ns tPLCLKMPWH Pipelined Clock Minimum Pulse Width High 1.5 – ns tPLCLKMPWL Pipelined Clock Minimum pulse Width Low 1.5 – ns Read Access Time with Pipeline Register – 0.346 ns Read Access Time without Pipeline Register – 2.346 ns Access Time with Feed-Through Write Timing – 1.578 ns tCLK2Q tADDRSU Address Setup Time 0.455 – ns tADDRHD Address Hold Time 0.282 – ns tDSU Data Setup Time 0.352 – ns tDHD Data Hold Time 0.11 – ns tBLKSU Block Select Setup Time 0.214 – ns tBLKHD Block Select Hold Time 0.223 – ns tBLK2Q Block Select to Out Disable Time (when Pipe-Lined Registered is Disabled) – 1.578 ns tBLKMPW Block Select Minimum Pulse Width 0.218 – ns tRDESU Read Enable Setup Time 0.463 – ns tRDEHD Read Enable Hold Time 0.173 – ns tRDPLESU Pipelined Read Enable Setup Time (A_DOUT_EN, B_DOUT_EN) 0.256 – ns tRDPLEHD Pipelined Read Enable Hold Time (A_DOUT_EN, B_DOUT_EN) 0.106 – ns tR2Q Asynchronous Reset to Output Propagation Delay – 1.561 ns tRSTREM Asynchronous Reset Removal Time 0.522 – ns tRSTREC Asynchronous Reset Recovery Time 0.005 – ns tRSTMPW Asynchronous Reset Minimum Pulse Width 0.352 – ns tPLRSTREM Pipelined Register Asynchronous Reset Removal Time -0.288 – ns tPLRSTREC Pipelined Register Asynchronous Reset Recovery Time 0.338 – ns tPLRSTMPW Pipelined Register Asynchronous Reset Minimum Pulse Width 0.33 – ns tSRSTSU Synchronous Reset Setup Time 0.233 – ns Revision 2 71 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 118 • RAM1K18 – Dual-Port Mode for Depth × Width Configuration 1Kx18 Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) Speed Grade –1 Parameter Description Min Max Units tSRSTHD Synchronous Reset Hold Time 0.037 – ns tWESU Write Enable Setup Time 0.402 – ns tWEHD Write Enable Hold Time 0.25 – ns Fmax Maximum Frequency – 300 MHz Table 119 • RAM1K18 – Dual-Port Mode for Depth × Width Configuration 2Kx9 Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Description Min Max Units 3.333 – ns tCY Clock Period tCLKMPWH Clock Minimum Pulse Width High 1.5 – ns tCLKMPWL Clock Minimum pulse Width Low 1.5 – ns tPLCY Pipelined Clock Period 3.333 – ns tPLCLKMPWH Pipelined Clock Minimum Pulse Width High 1.5 – ns tPLCLKMPWL Pipelined Clock Minimum pulse Width Low 1.5 – ns Read Access Time with Pipeline Register – 0.346 ns Read Access Time without Pipeline Register – 2.346 ns Access Time with Feed-Through Write Timing – 1.578 ns tCLK2Q tADDRSU Address Setup Time 0.49 – ns tADDRHD Address Hold Time 0.282 – ns tDSU Data Setup Time 0.346 – ns tDHD Data Hold Time 0.084 – ns tBLKSU Block Select Setup Time 0.214 – ns tBLKHD Block Select Hold Time 0.223 – ns tBLK2Q Block Select to Out Disable Time (when Pipe-Lined Registered is Disabled) – 1.578 ns tBLKMPW Block Select Minimum Pulse Width 0.218 – ns tRDESU Read Enable Setup Time 0.5 – ns tRDEHD Read Enable Hold Time 0.073 – ns tRDPLESU Pipelined Read Enable Setup Time (A_DOUT_EN, B_DOUT_EN) 0.256 – ns tRDPLEHD Pipelined Read Enable Hold Time (A_DOUT_EN, B_DOUT_EN) 0.106 – ns tR2Q Asynchronous Reset to Output Propagation Delay – 1.569 ns tRSTREM Asynchronous Reset Removal Time 0.522 – ns Revision 2 72 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 119 • RAM1K18 – Dual-Port Mode for Depth × Width Configuration 2Kx9 Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) Speed Grade –1 Parameter Description Min Max Units tRSTREC Asynchronous Reset Recovery Time 0.005 – ns tRSTMPW Asynchronous Reset Minimum Pulse Width 0.352 – ns tPLRSTREM Pipelined Register Asynchronous Reset Removal Time -0.288 – ns tPLRSTREC Pipelined Register Asynchronous Reset Recovery Time 0.338 – ns tPLRSTMPW Pipelined Register Asynchronous Reset Minimum Pulse Width 0.33 – ns tSRSTSU Synchronous Reset Setup Time 0.233 – ns tSRSTHD Synchronous Reset Hold Time 0.037 – ns tWESU Write Enable Setup Time 0.428 – ns tWEHD Write Enable Hold Time 0.05 – ns Fmax Maximum Frequency – 300 MHz Table 120 • RAM1K18 – Dual-Port Mode for Depth × Width Configuration 4Kx4 Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Description Min Max Units 3.333 – ns tCY Clock Period tCLKMPWH Clock Minimum Pulse Width High 1.5 – ns tCLKMPWL Clock Minimum pulse Width Low 1.5 – ns tPLCY Pipelined Clock Period 3.333 – ns tPLCLKMPWH Pipelined Clock Minimum Pulse Width High 1.5 – ns tPLCLKMPWL Pipelined Clock Minimum pulse Width Low 1.5 – ns 0.334 ns Read Access Time with Pipeline Register tCLK2Q Read Access Time without Pipeline Register – 2.346 ns Access Time with Feed-Through Write Timing – 1.56 ns tADDRSU Address Setup Time 0.56 – ns tADDRHD Address Hold Time 0.282 – ns tDSU Data Setup Time 0.345 – ns tDHD Data Hold Time 0.084 – ns tBLKSU Block Select Setup Time 0.214 – ns tBLKHD Block Select Hold Time 0.223 – ns tBLK2Q Block Select to Out Disable Time (when Pipe-Lined Registered is Disabled) – 1.56 ns tBLKMPW Block Select Minimum Pulse Width 0.218 – ns tRDESU Read Enable Setup Time 0.532 – ns tRDEHD Read Enable Hold Time 0.073 – ns Revision 2 73 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 120 • RAM1K18 – Dual-Port Mode for Depth × Width Configuration 4Kx4 Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) Speed Grade –1 Parameter Description Min Max Units tRDPLESU Pipelined Read Enable Setup Time (A_DOUT_EN, B_DOUT_EN) 0.256 – ns tRDPLEHD Pipelined Read Enable Hold Time (A_DOUT_EN, B_DOUT_EN) 0.106 – ns tR2Q Asynchronous Reset to Output Propagation Delay – 1.562 ns tRSTREM Asynchronous Reset Removal Time 0.522 – ns tRSTREC Asynchronous Reset Recovery Time 0.005 – ns tRSTMPW Asynchronous Reset Minimum Pulse Width 0.352 – ns tPLRSTREM Pipelined Register Asynchronous Reset Removal Time -0.288 – ns tPLRSTREC Pipelined Register Asynchronous Reset Recovery Time 0.338 – ns tPLRSTMPW Pipelined Register Asynchronous Reset Minimum Pulse Width 0.33 – ns tSRSTSU Synchronous Reset Setup Time 0.233 – ns tSRSTHD Synchronous Reset Hold Time 0.037 – ns tWESU Write Enable Setup Time 0.473 – ns tWEHD Write Enable Hold Time 0.05 – ns Fmax Maximum Frequency – 300 MHz Table 121 • RAM1K18 – Dual-Port Mode for Depth × Width Configuration 8Kx2 Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Description Min Max Units 3.333 – ns tCY Clock Period tCLKMPWH Clock Minimum Pulse Width High 1.5 – ns tCLKMPWL Clock Minimum pulse Width Low 1.5 – ns tPLCY Pipelined Clock Period 3.333 – ns tPLCLKMPWH Pipelined Clock Minimum Pulse Width High 1.5 – ns tPLCLKMPWL Pipelined Clock Minimum pulse Width Low 1.5 – ns Read Access Time with Pipeline Register – 0.332 ns Read Access Time without Pipeline Register – 2.346 ns Access Time with Feed-Through Write Timing – 1.56 ns tCLK2Q tADDRSU Address Setup Time 0.631 – ns tADDRHD Address Hold Time 0.282 – ns tDSU Data Setup Time 0.34 – ns tDHD Data Hold Time 0.084 – ns tBLKSU Block Select Setup Time 0.214 – ns Revision 2 74 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 121 • RAM1K18 – Dual-Port Mode for Depth × Width Configuration 8Kx2 Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) Speed Grade –1 Parameter Description Min Max Units 0.223 – ns – 1.56 ns tBLKHD Block Select Hold Time tBLK2Q Block Select to Out Disable Time (when Pipe-Lined Registered is Disabled) tBLKMPW Block Select Minimum Pulse Width 0.218 – ns tRDESU Read Enable Setup Time 0.546 – ns tRDEHD Read Enable Hold Time 0.073 – ns tRDPLESU Pipelined Read Enable Setup Time (A_DOUT_EN, B_DOUT_EN) 0.256 – ns tRDPLEHD Pipelined Read Enable Hold Time (A_DOUT_EN, B_DOUT_EN) 0.106 – ns tR2Q Asynchronous Reset to Output Propagation Delay – 1.583 ns tRSTREM Asynchronous Reset Removal Time 0.522 – ns tRSTREC Asynchronous Reset Recovery Time 0.005 – ns tRSTMPW Asynchronous Reset Minimum Pulse Width 0.352 – ns tPLRSTREM Pipelined Register Asynchronous Reset Removal Time -0.288 – ns tPLRSTREC Pipelined Register Asynchronous Reset Recovery Time 0.338 – ns tPLRSTMPW Pipelined Register Asynchronous Reset Minimum Pulse Width 0.33 – ns tSRSTSU Synchronous Reset Setup Time 0.233 – ns tSRSTHD Synchronous Reset Hold Time 0.037 – ns tWESU Write Enable Setup Time 0.504 – ns tWEHD Write Enable Hold Time 0.05 – ns Fmax Maximum Frequency – 300 MHz Table 122 • RAM1K18 – Dual-Port Mode for Depth × Width Configuration 16Kx1 Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Description Min Max Units 3.333 – ns tCY Clock Period tCLKMPWH Clock Minimum Pulse Width High 1.5 – ns tCLKMPWL Clock Minimum pulse Width Low 1.5 – ns tPLCY Pipelined Clock Period 3.333 – ns tPLCLKMPWH Pipelined Clock Minimum Pulse Width High 1.5 – ns tPLCLKMPWL Pipelined Clock Minimum pulse Width Low 1.5 – ns Revision 2 75 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 122 • RAM1K18 – Dual-Port Mode for Depth × Width Configuration 16Kx1 Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) Speed Grade –1 Parameter tCLK2Q Description Min Max Units Read Access Time with Pipeline Register – 0.332 ns Read Access Time without Pipeline Register – 2.342 ns Access Time with Feed-Through Write Timing – 1.559 ns tADDRSU Address Setup Time 0.646 – ns tADDRHD Address Hold Time 0.282 – ns tDSU Data Setup Time 0.332 – ns tDHD Data Hold Time 0.084 – ns tBLKSU Block Select Setup Time 0.214 – ns tBLKHD Block Select Hold Time 0.223 – ns tBLK2Q Block Select to Out Disable Time (when Pipe-Lined Registered is Disabled) – 1.559 ns tBLKMPW Block Select Minimum Pulse Width 0.218 – ns tRDESU Read Enable Setup Time 0.547 – ns tRDEHD Read Enable Hold Time 0.073 – ns tRDPLESU Pipelined Read Enable Setup Time (A_DOUT_EN, B_DOUT_EN) 0.256 – ns tRDPLEHD Pipelined Read Enable Hold Time (A_DOUT_EN, B_DOUT_EN) 0.106 – ns tR2Q Asynchronous Reset to Output Propagation Delay 1.603 ns tRSTREM Asynchronous Reset Removal Time 0.522 – ns tRSTREC Asynchronous Reset Recovery Time 0.005 – ns tRSTMPW Asynchronous Reset Minimum Pulse Width 0.352 – ns tPLRSTREM Pipelined Register Asynchronous Reset Removal Time -0.288 – ns tPLRSTREC Pipelined Register Asynchronous Reset Recovery Time 0.338 – ns tPLRSTMPW Pipelined Register Asynchronous Reset Minimum Pulse Width 0.33 – ns tSRSTSU Synchronous Reset Setup Time 0.233 – ns tSRSTHD Synchronous Reset Hold Time 0.037 – ns tWESU Write Enable Setup Time 0.468 – ns tWEHD Write Enable Hold Time 0.05 – ns Fmax Maximum Frequency – 300 MHz Revision 2 76 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 123 • RAM1K18 – Two-Port Mode for Depth × Width Configuration 512x36 Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Description Units Min Max 3.333 – ns tCY Clock Period tCLKMPWH Clock Minimum Pulse Width High 1.5 – ns tCLKMPWL Clock Minimum pulse Width Low 1.5 – ns tPLCY Pipelined Clock Period 3.333 – ns tPLCLKMPWH Pipelined Clock Minimum Pulse Width High 1.5 – ns tPLCLKMPWL Pipelined Clock Minimum pulse Width Low 1.5 – ns Read Access Time with Pipeline Register – 0.346 ns Read Access Time without Pipeline Register – 2.322 ns tCLK2Q tADDRSU Address Setup Time 0.323 – ns tADDRHD Address Hold Time 0.282 – ns tDSU Data Setup Time 0.348 – ns tDHD Data Hold Time 0.114 – ns tBLKSU Block Select Setup Time 0.214 – ns tBLKHD Block Select Hold Time 0.208 – ns tBLK2Q Block Select to Out Disable Time (when Pipe-Lined Registered is Disabled) – 2.322 ns tBLKMPW Block Select Minimum Pulse Width 0.218 – ns tRDESU Read Enable Setup Time 0.463 – ns tRDEHD Read Enable Hold Time 0.173 – ns tRDPLESU Pipelined Read Enable Setup Time (A_DOUT_EN, B_DOUT_EN) 0.256 – ns tRDPLEHD Pipelined Read Enable Hold Time (A_DOUT_EN, B_DOUT_EN) 0.106 – ns tR2Q Asynchronous Reset to Output Propagation Delay – 1.561 ns tRSTREM Asynchronous Reset Removal Time 0.522 – ns tRSTREC Asynchronous Reset Recovery Time 0.005 – ns tRSTMPW Asynchronous Reset Minimum Pulse Width 0.352 – ns tPLRSTREM Pipelined Register Asynchronous Reset Removal Time -0.288 – ns tPLRSTREC Pipelined Register Asynchronous Reset Recovery Time 0.338 – ns tPLRSTMPW Pipelined Register Asynchronous Reset Minimum Pulse Width 0.33 – ns tSRSTSU Synchronous Reset Setup Time 0.233 – ns tSRSTHD Synchronous Reset Hold Time 0.037 – ns tWESU Write Enable Setup Time 0.402 – ns tWEHD Write Enable Hold Time 0.25 – ns Fmax Maximum Frequency – 300 MHz Revision 2 77 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 11.2 FPGA Fabric Micro SRAM (uSRAM) Table 124 • uSRAM (RAM64x18) in 64x18 Mode Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Description Min Max Units 4 – ns tCY Read Clock Period tCLKMPWH Read Clock Minimum Pulse Width High 1.8 – ns tCLKMPWL Read Clock Minimum pulse Width Low 1.8 – ns tPLCY Read Pipe-line clock period 4 – ns tPLCLKMPWH Read Pipe-line clock Minimum Pulse Width High 1.8 – ns tPLCLKMPWL Read Pipe-line clock Minimum Pulse Width Low 1.8 – ns Read Access Time with Pipeline Register – 0.276 ns Read Access Time without Pipeline Register – 1.738 ns Read Address Setup Time in Synchronous Mode 0.311 – ns Read Address Setup Time in Asynchronous Mode 1.916 – ns Read Address Hold Time in Synchronous Mode 0.094 – ns Read Address Hold Time in Asynchronous Mode -0.803 – ns tRDENSU Read Enable Setup Time 0.287 – ns tRDENHD Read Enable Hold Time 0.059 – ns tBLKSU Read Block Select Setup Time 1.898 – ns tBLKHD Read Block Select Hold Time -0.671 – ns tBLK2Q Read Block Select to Out Disable Time (when Pipe-Lined Registered is Disabled) – 2.102 ns -0.15 – ns Read Asynchronous Reset Removal Time (Non-Pipelined 0.047 Clock) – ns Read Asynchronous Reset Recovery Time (Pipelined Clock) 0.524 – ns Read Asynchronous Reset Recovery Time (Non-Pipelined Clock) 0.244 – ns – 0.869 ns tCLK2Q tADDRSU tADDRHD Read Asynchronous Reset Removal Time (Pipelined Clock) tRSTREM tRSTREC tR2Q Read Asynchronous Reset to Output Propagation Delay (with Pipe-Line Register Enabled) tSRSTSU Read Synchronous Reset Setup Time 0.279 – ns tSRSTHD Read Synchronous Reset Hold Time 0.062 – ns tCCY Write Clock Period 4 – ns tCCLKMPWH Write Clock Minimum Pulse Width High 1.8 – ns tCCLKMPWL Write Clock Minimum Pulse Width Low 1.8 – ns tBLKCSU Write Block Setup Time 0.417 – ns tBLKCHD Write Block Hold Time 0.007 – ns tDINCSU Write Input Data setup Time 0.119 – ns Revision 2 78 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 124 • uSRAM (RAM64x18) in 64x18 Mode Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) Speed Grade –1 Parameter Description Min Max Units tDINCHD Write Input Data hold Time 0.155 – ns tADDRCSU Write Address Setup Time 0.091 – ns tADDRCHD Write Address Hold Time 0.132 – ns tWECSU Write Enable Setup Time 0.41 – ns tWECHD Write Enable Hold Time -0.027 – ns Fmax Maximum Frequency – 250 MHz Table 125 • uSRAM (RAM64x16) in 64x16 Mode Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Description Min Max Units 4 – ns tCY Read Clock Period tCLKMPWH Read Clock Minimum Pulse Width High 1.8 – ns tCLKMPWL Read Clock Minimum pulse Width Low 1.8 – ns tPLCY Read Pipe-line clock period 4 – ns tPLCLKMPWH Read Pipe-line clock Minimum Pulse Width High 1.8 – ns tPLCLKMPWL Read Pipe-line clock Minimum Pulse Width Low 1.8 – ns Read Access Time with Pipeline Register – 0.276 ns Read Access Time without Pipeline Register – 1.738 ns Read Address Setup Time in Synchronous Mode 0.311 – ns Read Address Setup Time in Asynchronous Mode 1.916 – ns Read Address Hold Time in Synchronous Mode 0.094 – ns Read Address Hold Time in Asynchronous Mode -0.803 – ns tRDENSU Read Enable Setup Time 0.287 – ns tRDENHD Read Enable Hold Time 0.059 – ns tBLKSU Read Block Select Setup Time 1.898 – ns tBLKHD Read Block Select Hold Time -0.671 – ns tBLK2Q Read Block Select to Out Disable Time (when Pipe-Lined Registered is Disabled) – 2.102 ns Read Asynchronous Reset Removal Time (Pipelined Clock) -0.15 – ns Read Asynchronous Reset Removal Time (Non-Pipelined Clock) 0.047 – ns Read Asynchronous Reset Recovery Time (Pipelined Clock) 0.524 – ns Read Asynchronous Reset Recovery Time (Non-Pipelined Clock) 0.244 – ns tCLK2Q tADDRSU tADDRHD tRSTREM tRSTREC Revision 2 79 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 125 • uSRAM (RAM64x16) in 64x16 Mode Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) Speed Grade –1 Parameter Description Min Max Units tR2Q Read Asynchronous Reset to Output Propagation Delay (With Pipe-Line Register Enabled) – 0.866 ns tSRSTSU Read Synchronous Reset Setup Time 0.279 – ns tSRSTHD Read Synchronous Reset Hold Time 0.062 tCCY Write Clock Period tCCLKMPWH ns 4 – ns Write Clock Minimum Pulse Width High 1.8 – ns tCCLKMPWL Write Clock Minimum Pulse Width Low 1.8 – ns tBLKCSU Write Block Setup Time 0.417 – ns tBLKCHD Write Block Hold Time 0.007 – ns tDINCSU Write Input Data setup Time 0.119 – ns tDINCHD Write Input Data hold Time 0.155 – ns tADDRCSU Write Address Setup Time 0.091 – ns tADDRCHD Write Address Hold Time 0.132 – ns tWECSU Write Enable Setup Time 0.41 – ns tWECHD Write Enable Hold Time -0.027 – ns Fmax Maximum Frequency – 250 MHz Table 126 • uSRAM (RAM128x9) in 128x9 Mode Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Description Min Max Units 4 – ns tCY Read Clock Period tCLKMPWH Read Clock Minimum Pulse Width High 1.8 – ns tCLKMPWL Read Clock Minimum pulse Width Low 1.8 – ns tPLCY Read Pipe-line clock period 4 – ns tPLCLKMPWH Read Pipe-line clock Minimum Pulse Width High 1.8 – ns tPLCLKMPWL Read Pipe-line clock Minimum Pulse Width Low 1.8 – ns Read Access Time with Pipeline Register – 0.276 ns Read Access Time without Pipeline Register – 1.776 ns Read Address Setup Time in Synchronous Mode 0.311 – ns Read Address Setup Time in Asynchronous Mode 1.959 – ns Read Address Hold Time in Synchronous Mode 0.125 – ns Read Address Hold Time in Asynchronous Mode -0.704 – ns tRDENSU Read Enable Setup Time 0.287 – ns tRDENHD Read Enable Hold Time 0.059 – ns tCLK2Q tADDRSU tADDRHD Revision 2 80 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 126 • uSRAM (RAM128x9) in 128x9 Mode Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) Speed Grade –1 Parameter Description Min Max Units tBLKSU Read Block Select Setup Time 1.898 – ns tBLKHD Read Block Select Hold Time -0.671 – ns tBLK2Q Read Block Select to Out Disable Time (when Pipe-Lined Registered is Disabled) – 2.14 ns -0.15 – ns Read Asynchronous Reset Removal Time (Non-Pipelined 0.047 Clock) – ns Read Asynchronous Reset Recovery Time (Pipelined Clock) 0.524 – ns Read Asynchronous Reset Recovery Time (Non-Pipelined 0.244 Clock) – ns – 0.865 ns Read Asynchronous Reset Removal Time (Pipelined Clock) tRSTREM tRSTREC tR2Q Read Asynchronous Reset to Output Propagation Delay (with Pipe-Line Register Enabled) tSRSTSU Read Synchronous Reset Setup Time 0.279 – ns tSRSTHD Read Synchronous Reset Hold Time 0.062 – ns tCCY Write Clock Period 4 – ns tCCLKMPWH Write Clock Minimum Pulse Width High 1.8 – ns tCCLKMPWL Write Clock Minimum Pulse Width Low 1.8 – ns tBLKCSU Write Block Setup Time 0.417 – ns tBLKCHD Write Block Hold Time 0.007 – ns tDINCSU Write Input Data setup Time 0.104 – ns tDINCHD Write Input Data hold Time 0.142 – ns tADDRCSU Write Address Setup Time 0.091 – ns tADDRCHD Write Address Hold Time 0.24 – ns tWECSU Write Enable Setup Time 0.41 – ns tWECHD Write Enable Hold Time -0.027 – ns Fmax Maximum Frequency – 250 MHz Revision 2 81 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 127 • uSRAM (RAM128x8) in 128x8 Mode Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Description Min Max Units 4 – ns tCY Read Clock Period tCLKMPWH Read Clock Minimum Pulse Width High 1.8 – ns tCLKMPWL Read Clock Minimum pulse Width Low 1.8 – ns tPLCY Read Pipe-line clock period 4 – ns tPLCLKMPWH Read Pipe-line clock Minimum Pulse Width High 1.8 – ns tPLCLKMPWL Read Pipe-line clock Minimum Pulse Width Low 1.8 – ns Read Access Time with Pipeline Register – 0.276 ns Read Access Time without Pipeline Register – 1.776 ns Read Address Setup Time in Synchronous Mode 0.311 – ns Read Address Setup Time in Asynchronous Mode 1.959 – ns Read Address Hold Time in Synchronous Mode 0.125 – ns Read Address Hold Time in Asynchronous Mode -0.704 – ns tRDENSU Read Enable Setup Time 0.287 – ns tRDENHD Read Enable Hold Time 0.059 – ns tBLKSU Read Block Select Setup Time 1.898 – ns tBLKHD Read Block Select Hold Time -0.671 – ns tBLK2Q Read Block Select to Out Disable Time (when Pipe-Lined Registered is Disabled) – 2.14 ns -0.15 – ns Read Asynchronous Reset Removal Time (Non-Pipelined 0.047 Clock) – ns Read Asynchronous Reset Recovery Time (Pipelined Clock) 0.524 – ns Read Asynchronous Reset Recovery Time (Non-Pipelined 0.244 Clock) – ns – 0.865 ns tCLK2Q tADDRSU tADDRHD Read Asynchronous Reset Removal Time (Pipelined Clock) tRSTREM tRSTREC tR2Q Read Asynchronous Reset to Output Propagation Delay (With Pipe-Line Register Enabled) tSRSTSU Read Synchronous Reset Setup Time 0.279 – ns tSRSTHD Read Synchronous Reset Hold Time 0.062 – ns tCCY Write Clock Period 4 – ns tCCLKMPWH Write Clock Minimum Pulse Width High 1.8 – ns tCCLKMPWL Write Clock Minimum Pulse Width Low 1.8 – ns tBLKCSU Write Block Setup Time 0.417 – ns tBLKCHD Write Block Hold Time 0.007 – ns tDINCSU Write Input Data setup Time 0.104 – ns tDINCHD Write Input Data hold Time 0.142 – ns Revision 2 82 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 127 • uSRAM (RAM128x8) in 128x8 Mode Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) Speed Grade –1 Parameter Description Min Max Units tADDRCSU Write Address Setup Time 0.091 – ns tADDRCHD Write Address Hold Time 0.24 – ns tWECSU Write Enable Setup Time 0.41 – ns tWECHD Write Enable Hold Time -0.027 – ns Fmax Maximum Frequency – 250 MHz Table 128 • uSRAM (RAM256x4) in 256x4 Mode Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Description Min Max 4 – ns Units tCY Read Clock Period tCLKMPWH Read Clock Minimum Pulse Width High 1.8 – ns tCLKMPWL Read Clock Minimum pulse Width Low 1.8 – ns tPLCY Read Pipe-line clock period 4 – ns tPLCLKMPWH Read Pipe-line clock Minimum Pulse Width High 1.8 – ns tPLCLKMPWL Read Pipe-line clock Minimum Pulse Width Low 1.8 – ns Read Access Time with Pipeline Register – 0.276 ns Read Access Time without Pipeline Register – 1.812 ns Read Address Setup Time in Synchronous Mode 0.311 – ns Read Address Setup Time in Asynchronous Mode 1.993 – ns Read Address Hold Time in Synchronous Mode 0.125 – ns Read Address Hold Time in Asynchronous Mode -0.669 – ns tRDENSU Read Enable Setup Time 0.287 – ns tRDENHD Read Enable Hold Time 0.059 – ns tBLKSU Read Block Select Setup Time 1.898 – ns tBLKHD Read Block Select Hold Time -0.671 – ns tBLK2Q Read Block Select to Out Disable Time (when Pipe-Lined Registered is Disabled) – 2.166 ns -0.15 – ns Read Asynchronous Reset Removal Time (Non-Pipelined 0.047 Clock) – ns Read Asynchronous Reset Recovery Time (Pipelined Clock) 0.524 – ns Read Asynchronous Reset Recovery Time (Non-Pipelined 0.244 Clock) – ns 0.863 ns tCLK2Q tADDRSU tADDRHD Read Asynchronous Reset Removal Time (Pipelined Clock) tRSTREM tRSTREC tR2Q Read Asynchronous Reset to Output Propagation Delay (With Pipe-Line Register Enabled) Revision 2 – 83 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 128 • uSRAM (RAM256x4) in 256x4 Mode Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) Speed Grade –1 Parameter Description Min Max Units tSRSTSU Read Synchronous Reset Setup Time 0.279 – ns tSRSTHD Read Synchronous Reset Hold Time 0.062 – ns tCCY Write Clock Period 4 – ns tCCLKMPWH Write Clock Minimum Pulse Width High 1.8 – ns tCCLKMPWL Write Clock Minimum Pulse Width Low 1.8 – ns tBLKCSU Write Block Setup Time 0.417 – ns tBLKCHD Write Block Hold Time 0.007 – ns tDINCSU Write Input Data setup Time 0.104 – ns tDINCHD Write Input Data hold Time 0.142 – ns tADDRCSU Write Address Setup Time 0.091 – ns tADDRCHD Write Address Hold Time 0.253 – ns tWECSU Write Enable Setup Time 0.41 – ns tWECHD Write Enable Hold Time -0.027 – ns Fmax Maximum Frequency – 250 MHz Table 129 • uSRAM (RAM512x2) in 512x2 Mode Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Description Min Max Units 4 – ns tCY Read Clock Period tCLKMPWH Read Clock Minimum Pulse Width High 1.8 tCLKMPWL Read Clock Minimum pulse Width Low 1.8 – ns tPLCY Read Pipe-line clock period 4 – ns tPLCLKMPWH Read Pipe-line clock Minimum Pulse Width High 1.8 – ns tPLCLKMPWL Read Pipe-line clock Minimum Pulse Width Low 1.8 – ns Read Access Time with Pipeline Register – 0.276 ns Read Access Time without Pipeline Register – 1.824 ns Read Address Setup Time in Synchronous Mode 0.311 – ns Read Address Setup Time in Asynchronous Mode 2.023 – ns Read Address Hold Time in Synchronous Mode 0.141 – ns Read Address Hold Time in Asynchronous Mode -0.599 – ns tRDENSU Read Enable Setup Time 0.287 – ns tRDENHD Read Enable Hold Time 0.059 – ns tBLKSU Read Block Select Setup Time 1.898 – ns tCLK2Q tADDRSU tADDRHD Revision 2 ns 84 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 129 • uSRAM (RAM512x2) in 512x2 Mode Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) Speed Grade –1 Parameter Description Min Max Units -0.671 – ns – 2.219 ns Read Asynchronous Reset Removal Time (Pipelined Clock) -0.15 – ns Read Asynchronous Reset Removal Time (Non-Pipelined Clock) 0.047 – ns Read Asynchronous Reset Recovery Time (Pipelined Clock) 0.524 – ns Read Asynchronous Reset Recovery Time (Non-Pipelined Clock) 0.244 – ns tR2Q Read Asynchronous Reset to Output Propagation Delay (With Pipe-Line Register Enabled) – 0.862 ns tSRSTSU Read Synchronous Reset Setup Time 0.279 – ns tSRSTHD Read Synchronous Reset Hold Time 0.062 – ns tCCY Write Clock Period 4 – ns tCCLKMPWH Write Clock Minimum Pulse Width High 1.8 – ns tCCLKMPWL Write Clock Minimum Pulse Width Low 1.8 – ns tBLKCSU Write Block Setup Time 0.417 – ns tBLKCHD Write Block Hold Time 0.007 – ns tDINCSU Write Input Data setup Time 0.104 – ns tDINCHD Write Input Data hold Time 0.142 – ns tADDRCSU Write Address Setup Time 0.091 – ns tADDRCHD Write Address Hold Time 0.255 – ns tWECSU Write Enable Setup Time 0.41 – ns tWECHD Write Enable Hold Time -0.027 – ns Fmax Maximum Frequency – 250 MHz Speed Grade –1 Units tBLKHD Read Block Select Hold Time tBLK2Q Read Block Select to Out Disable Time (when Pipe-Lined Registered is Disabled) tRSTREM tRSTREC Table 130 • uSRAM (RAM1024x1) in 1024x1 Mode Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter Description Min Max 4 – tCY Read Clock Period tCLKMPWH Read Clock Minimum Pulse Width High 1.8 tCLKMPWL Read Clock Minimum pulse Width Low 1.8 – ns tPLCY Read Pipe-line clock period 4 – ns tPLCLKMPWH Read Pipe-line clock Minimum Pulse Width High 1.8 – ns tPLCLKMPWL Read Pipe-line clock Minimum Pulse Width Low 1.8 – ns Revision 2 ns ns 85 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 130 • uSRAM (RAM1024x1) in 1024x1 Mode Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) Speed Grade –1 Parameter Description Units Min Max Read Access Time with Pipeline Register – 0.274 ns Read Access Time without Pipeline Register – 1.839 ns Read Address Setup Time in Synchronous Mode 0.311 – ns Read Address Setup Time in Asynchronous Mode 2.041 – ns Read Address Hold Time in Synchronous Mode 0.141 – ns Read Address Hold Time in Asynchronous Mode -0.623 – ns tRDENSU Read Enable Setup Time 0.287 – ns tRDENHD Read Enable Hold Time 0.059 – ns tBLKSU Read Block Select Setup Time 1.898 – ns tBLKHD Read Block Select Hold Time -0.671 – ns tBLK2Q Read Block Select to Out Disable Time (when Pipe-Lined Registered is Disabled) – 2.236 ns Read Asynchronous Reset Removal Time (Pipelined Clock) -0.15 – ns Read Asynchronous Reset Removal Time (Non-Pipelined Clock) 0.047 – ns Read Asynchronous Reset Recovery Time (Pipelined Clock) 0.524 – ns Read Asynchronous Reset Recovery Time (Non-Pipelined Clock) 0.244 – ns tR2Q Read Asynchronous Reset to Output Propagation Delay (With Pipe-Line Register Enabled) – 0.862 ns tSRSTSU Read Synchronous Reset Setup Time 0.279 – ns tSRSTHD Read Synchronous Reset Hold Time 0.062 – ns tCCY Write Clock Period 4 – ns tCCLKMPWH Write Clock Minimum Pulse Width High 1.8 – ns tCCLKMPWL Write Clock Minimum Pulse Width Low 1.8 – ns tBLKCSU Write Block Setup Time 0.417 – ns tBLKCHD Write Block Hold Time 0.007 – ns tDINCSU Write Input Data setup Time 0.003 – ns tDINCHD Write Input Data hold Time 0.142 – ns tADDRCSU Write Address Setup Time 0.091 – ns tADDRCHD Write Address Hold Time 0.255 – ns tWECSU Write Enable Setup Time 0.41 – ns tWECHD Write Enable Hold Time -0.027 – ns Fmax Maximum Frequency – 250 MHz tCLK2Q tADDRSU tADDRHD tRSTREM tRSTREC Revision 2 86 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 12. Embedded NVM (eNVM) Characteristics Table 131 • eNVM Read Performance Worst-Case Conditions: VDD = 1.14 V, VPPNVM = VPP = 2.375 V Symbol TJ Description Junction Temperature Range Operating Temperature Range -55°C to 125°C Speed grade FMAXREAD eNVM Maximum Read Frequency -40°C to 100°C Unit 0°C to 85°C °C -1 Std -1 Std -1 Std – 25 25 25 25 25 25 MHz Table 132 • eNVM Page Programming Worst-Case Conditions: VDD = 1.14 V, VPPNVM = VPP = 2.375 V Symbol TJ Description Junction Temperature Range Operating Temperature Range -55°C to 125°C Speed grade tPAGEPGM eNVM Page Programming Time -40°C to 100°C Unit 0°C to 85°C °C -1 Std -1 Std -1 Std – 40 40 40 40 40 40 ms 13. Crystal Oscillator Table 133 describes the electrical characteristics of the crystal oscillator in the IGLOO2 FPGA and SmartFusion2 SoC FPGAs. Table 133 • Electrical Characteristics of the Crystal Oscillator – High Gain Mode (20 MHz) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter Description Min Typ Max Units FXTAL Operating frequency – 20 – MHz ACCXTAL Accuracy – – 0.006 % CYCXTAL Output duty cycle – 49-51 47-53 % JITPERXTAL Output Period Jitter (peak to peak) – 200 300 ps JITCYCXTAL Output Cycle to Cycle Jitter (peak to peak) – 200 550 ps IDYNXTAL Operating current – 1.5 – mA VIHXTAL Input logic level High 0.9 × VPP – – V VILXTAL Input logic level Low – – 0.1 × VPP V SUXTAL Startup time (with regard to oscillator output) – – 1 ms stable Revision 2 87 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 134 • Electrical Characteristics of the Crystal Oscillator – Medium Gain Mode (2 MHz) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter Description Min Typ Max Units FXTAL Operating frequency – 2 – MHz ACCXTAL Accuracy – – 0.003 % CYCXTAL Output duty cycle – 49–51 47–53 % JITPERXTAL Output Period Jitter (peak to peak) – 1 5 ns JITCYCXTAL Output Cycle to Cycle Jitter (peak to peak) – 1 5 ns IDYNXTAL Operating current – 0.3 – mA VIHXTAL Input logic level High 0.9 × VPP – – V VILXTAL Input logic level Low – – 0.1 × VPP V SUXTAL Startup time (with regard to stable oscillator output) – – 4.5 ms Table 135 • Electrical Characteristics of the Crystal Oscillator – Low Gain Mode (32 kHz) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter Description Min Typ Max Units FXTAL Operating frequency – 32 – kHz ACCXTAL Accuracy – – 0.006 % CYCXTAL Output duty cycle – 49–51 45.5–54.5 % JITPERXTAL Output Period Jitter (peak to peak) – 150 300 ns JITCYCXTAL Output Cycle to Cycle Jitter (peak to peak) – 150 300 ns IDYNXTAL Operating current – 0.044 – mA VIHXTAL Input logic level High 0.9 × VPP – – V VILXTAL Input logic level Low – – 0.1 × VPP V SUXTAL Startup time (with oscillator output) – – 120 ms regard to stable Revision 2 88 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 14. On-Chip Oscillator Table 136 and Table 137 describe the electrical characteristics of the available on-chip oscillators in the IGLOO2 FPGAs and SmartFusion2 SoC FPGAs. Table 136 • Electrical Characteristics of the 50 MHz RC Oscillator Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter F50RC Description Operating frequency Condition Min – – Typ 50 Max – Units MHz ACC50RC Accuracy – – 1 8 % CYC50RC Output duty cycle – – 49–51 46–54 % JIT50RC Output jitter (peak to peak) 200 500 ps 320 900 ps IDYN50RC Operating current 8.5 – mA Period Jitter Cycle-to-Cycle Jitter – – Table 137 • Electrical Characteristics of the 1 MHz RC Oscillator Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter Description Condition Min Typ Max Units F1RC Operating frequency – – 1 – MHz ACC1RC Accuracy – – 1 6 % CYC1RC Output duty cycle – – 49–51 46.5–53.5 % JIT1RC Output jitter (peak to peak) Period Jitter – 10 36 ps Cycle-to-Cycle Jitter – 10 50 ps IDYN1RC Operating current – – 0.1 – mA SU1RC Startup time – – – 20 µs 15. Clock Conditioning Circuits (CCC) Table 138 • IGLOO2 and SmartFusion2 SoC FPGAs CCC/PLL Specification Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter Conditions Min Typ Max Units Notes All CCC 1 – 200 MHz – 32 kHz Capable CCC 0.032 – 200 MHz – Clock conditioning circuitry output frequency fOUT_CCC – 0.078 – 400 MHz 1 PLL VCO frequency – 500 – 1000 MHz 2 Delay increments in programmable delay blocks – – 75 100 ps – Number of programmable values in each programmable delay block – – – 64 – – Acquisition time – – 70 100 µs – Clock conditioning circuitry input frequency fIN_CCC Revision 2 89 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 138 • IGLOO2 and SmartFusion2 SoC FPGAs CCC/PLL Specification (continued) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Internal Feedback 1 MHz ≤ fIN_CCC ≤ 25 MHz 10 – 90 % – 25 MHz ≤ fIN_CCC ≤ 100 MHz 25 – 75 % – – 65 % – – 55 % – 100 MHz ≤ fIN_CCC ≤ 150 MHz 35 Input Duty Cycle (Reference 45 150 MHz ≤ fIN_CCC ≤ 200 MHz Clock) External Feedback (CCC, FPGA, Off-chip) 1 MHz ≤ fIN_CCC ≤ 25 MHz 25 – 75 % – 25 MHz ≤ fIN_CCC ≤ 35 MHz 35 – 65 % – 35 MHz ≤ fIN_CCC ≤ 50 MHz 45 – 55 % – 005, 010, and 025 Devices 46 – 52 % – 090 Devices 44 – 52 % – Modulation frequency range – 25 35 50 kHz – Modulation depth range – 0 – 1.5 % – Modulation depth control – – 0.5 – % – Output duty cycle Spread Spectrum Characteristics Notes: 1. The minimum output clock frequency is limited by the PLL. For more information refer to the UG0449: SmartFusion2 and IGLOO2 Clocking Resources User Guide. 2. The PLL is used in conjunction with the Clock Conditioning Circuitry. Performance will be limited by the CCC output frequency. Table 139 • IGLOO2 and SmartFusion2 SoC FPGAs CCC/PLL Jitter Specifications Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter Conditions/Package Combinations CCC Output Peak-to-Peak Period Jitter fOUT_CCC 010 FGG484 Packages – – – – – – – SSO = 0 0 < SSO <= 2 SSO <= 4 SSO <= 8 SSO <= 16 – * Max(150, ± 1% x (1/fOUT_CCC)) ps – ps – 20 MHz to 100 MHz Max(110, ± 1% x (1/fOUT_CCC)) 100 MHz to 400 MHz 120 025 FGG484 Package Units Notes 150 170 0 < SSO <=16 * 20 MHz to 74 MHz ± 1% x (1/fOUT_CCC) ps – 74 MHz to 400 MHz 210 ps – 005 FGG484 Package 0 < SSO <=16 * 20 MHz to 53 MHz ± 1% x (1/fOUT_CCC) ps – 53 MHz to 400 MHz 270 ps – 090 FGG484 FGG676 and 20 MHz to 100 MHz 0 < SSO <=16 ± 1% x (1/fOUT_CCC) Revision 2 * ps – 90 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 139 • IGLOO2 and SmartFusion2 SoC FPGAs CCC/PLL Jitter Specifications Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) Parameter Conditions/Package Combinations 100 MHz to 400 MHz Units Notes 150 ps – Note: *SSO Data is based on LVCMOS 2.5 V MSIO and/or MSIOD Bank I/Os. 16. JTAG Table 140 • JTAG 1532 Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V -1 Speed Grade Parameter Description 005 010 025 090 Units tTCK2Q Clock to Q (data out) 7.71 7.91 7.95 9.21 ns tRSTB2Q Reset to Q (data out) 7.91 6.54 6.27 7.94 ns tDISU Test Data Input Setup Time -1.07 -0.70 -0.70 -1.33 ns tDIHD Test Data Input Hold Time 2.43 2.38 2.47 2.71 ns tTMSSU Test Mode Select Setup Time -0.75 -0.86 -1.13 -1.03 ns tTMDHD Test Mode Select Hold Time 1.41 1.48 1.98 1.69 ns tTRSTREM ResetB Removal Time -0.81 -1.1 -1.38 -0.8 ns tTRSTREC ResetB Recovery Time -0.81 -1.1 -1.38 -0.8 ns FTCKMAX TCK Maximum frequency 25 25 25 25 MHz 17. DEVRST_N Characteristics Table 141 • DEVRST_N Characteristics Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V All Devices/Speed Grades Symbol TRAMPDEVRSTN Description Min Typ Max Units Notes – – 10 ns * DEVRST_N ramp rate Note: * Slower ramp rates are susceptible to board level noise. Revision 2 91 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 18. System Controller SPI Characteristics Table 142 • System Controller SPI Characteristics Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V All Devices/Speed Grades Symbol Description Conditions Min Typ Max Units Notes – sp1 SC_SPI_SCK minimum period – 20 – – ns – sp2 SC_SPI_SCK minimum pulse width high – 10 – – ns – sp3 SC_SPI_SCK minimum pulse width low – 10 – – ns – – 1.239 – ns * – 1.245 – ns * sp4 sp5 SC_SPI_SCK, SC_SPI_SDO, SC_SPI_SS rise time (10%-90%) 1 SC_SPI_SCK, SC_SPI_SDO, SC_SPI_SS fall time (10%-90%) 1 I/O Configuration: LVTTL 3.3V- 20mA AC Loading: 35pF Test Conditions: Voltage, 25C Typical I/O Configuration: LVTTL 3.3V- 20mA AC Loading: 35pF Test Conditions: Voltage, 25C Typical sp6 Data from master (SC_SPI_SDO) setup time – 160 – – ns – sp7 Data from master (SC_SPI_SDO) hold – time 160 – – ns – sp8 SC_SPI_SDI setup time – 20 – – ns – sp9 SC_SPI_SDI hold time – 20 – – ns – Note: *For specific Rise/Fall Times, board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/products/fpga-soc/design-resources/ibis-models. Use the supported I/O Configurations for the System Controller SPI in Table 143. Table 143 • Supported I/O Configurations for System Controller SPI (for MSIO Bank Only) Voltage Supply I/O Drive Configuration Units 3.3 V 20 mA 2.5 V 16 mA 1.8 V 12 mA 1.5 V 8 mA 1.2 V 4 mA Revision 2 92 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 19. Mathblock Timing Characteristics The fundamental building block in any digital signal processing algorithm is the multiply-accumulate function. Each IGLOO2 and SmartFusion2 SoC mathblock supports 18x18 signed multiplication, dot product, and built-in addition, subtraction, and accumulation units to combine multiplication results efficiently. Table 144 • Mathblocks With All Registers Used Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Mathblock With All Registers Used Parameter Description Min Max Units tMISU Input, Control Register Setup time 0.149 – ns tMIHD Input, Control Register Hold time 0.08 – ns tMOCDINSU CDIN Input Setup time 1.68 – ns tMOCDINHD CDIN Input Hold time -0.419 – ns tMSRSTENSU Synchronous Reset/Enable Setup time 0.185 – ns tMSRSTENHD Synchronous Reset/Enable Hold time 0.011 – ns tMARSTREM Asynchronous Reset Removal time 0 – ns tMARSTREC Asynchronous Reset Recovery time 0.088 – ns tMOCQ Output Register Clock to Out delay – 0.232 ns tMCLKMP CLK Minimum period 2.245 – ns Table 145 • Mathblock With Input Bypassed and Output Registers Used Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Mathblock With Input Bypassed and Output Registers Used Speed Grade –1 Parameter Min Max Units Description tMOSU Output Register Setup time 2.294 – ns tMOHD Output Register Hold time -0.444 – ns tMOCDINSU CDIN Input Setup time 1.68 – ns tMOCDINHD CDIN Input Hold time -0.419 – ns tMSRSTENSU Synchronous Reset/Enable Setup time 0.115 – ns tMSRSTENHD Synchronous Reset/Enable Hold time 0.011 – ns tMARSTREM Asynchronous Reset Removal time 0 – ns tMARSTREC Asynchronous Reset Recovery time 0.014 – ns tMOCQ Output Register Clock to Out delay – 0.232 ns tMCLKMP CLK Minimum period 2.179 – ns Revision 2 93 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 146 • Mathblock With Input Register Used and Output in Bypass Mode Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Mathblock With Input Register Used and Output in Bypass Mode Speed Grade –1 Parameter Min Max Units Description tMISU Input Register Setup time 0.149 – ns tMIHD Input Register Hold time 0.08 – ns tMSRSTENSU Synchronous Reset/Enable Setup time 0.185 – ns tMSRSTENHD Synchronous Reset/Enable Hold time -0.012 – ns tMARSTREM Asynchronous Reset Removal time -0.005 – ns tMARSTREC Asynchronous Reset Recovery time 0.088 – ns tMICQ Input Register Clock to Output delay – 2.52 ns tMCDIN2Q CDIN to Output delay – 1.951 ns Table 147 • Mathblock With Input and Output in Bypass Mode Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Mathblock With Input and Output in Bypass Mode Parameter Description Min Max Units tMIQ Input to Output delay – 2.568 ns tMCDIN2Q CDIN to Output delay – 1.951 ns Revision 2 94 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 20. Flash*Freeze Timing Characteristics Table 148 • Flash*Freeze Entry and Exit Times Worst-Case Automotive Grade 2 Conditions: TJ=125°C, VDD=1.14 V Symbols Entry/Exit Timing Units Notes eNVM and MSS/HPMS PLL = ON 160 μs 1 eNVM and MSS/HPMS PLL = OFF 215 μs 1 eNVM and MSS/HPMS PLL = ON during F*F 100 μs 1 136 μs 1 200 μs 1 200 μs 1 Exit Time with eNVM and MSS/HPMS PLL = ON during F*F respect to Fabric eNVM and MSS PLL = OFF during F*F and PLL Lock both are turned back on at exit 1.5 ms 1, 2 1.5 ms 1, 2 Exit Time with eNVM and MSS/HPMS PLL = ON during F*F respect to Fabric eNVM and MSS PLL =O FF during F*F and buffer output both are turned back on at exit 21 μs 1, 2 65 μs 1 Parameters TFF_ENTRY Entry time Conditions eNVM = ON and MSS/HPMS PLL =OFF during F*F and MSS/HPMS PLL turned back Exit Time with on at exit respect to MSS eNVM and MSS PLL = OFF during F*F and PLL Lock both are turned back on at exit TFF_EXIT eNVM = OFF and MSS PLL = ON during F*F and eNVM turned back on at exit Notes: 1. F*F entry and exit times were measured with FCLK = 100 MHz 2. PLL Lock Delay set to 1024 cycles (default) 21. DDR Memory Interface Characteristics Table 149 • DDR Memory Interface Characteristics Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Supported Data Rate Standard Min Typ Max Unit DDR3 667 Mbps DDR2 667 Mbps LPDDR 50 — Revision 2 400 Mbps 95 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 22. SFP Transceiver Characteristics IGLOO2 and SmartFusion2 SERDES complies with small form-factor pluggable (SFP) requirements as specified in SFP INF-80741. Table 150 provides the electrical characteristics. Table 150 • SFP Transceiver Electrical Characteristics Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Differential Peak-Peak Voltage Pin Direction Min Typ Max Unit Note RD+/- Output 1600 – 2400 mV 1 TD+/- Input 350 – 2400 mV 2 Notes: 1. Based on default SERDES transmitter settings for PCIe Gen1. Lower amplitudes are available through programming changes to TX_AMP setting. 2. Based on Input Voltage Common-Mode (VICM) = 0 V. Requires AC Coupling. 23. PCIe Electrical and Timing AC and DC Characteristics PCIe® is a high speed, packet-based, point-to-point, low pin count, serial interconnect bus. The IGLOO2 and SmartFusion2 SoC FPGAs has up to four hard high-speed serial interface blocks. Each SERDES block contains a PCIe system block. The PCIe system is connected to the SERDES block. Table 151 • Transmitter Parameters Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter Description Min Typ Max Units 0.8 – 1.2 V – – 20 mV 0.125 – – UI VTX-DIFF-PP Differential swing PCIe Gen1 VTX-CM-AC-P Output common mode voltage PCIe Gen1 VTX-RISE-FALL Rise and fall time (20% to 80%) PCIe Gen1 ZTX-DIFF-DC Output impedance – differential 80 – 120 LTX-SKEW Lane-to-lane TX skew within a SERDES block PCIe Gen1 – – 500 ps + 2 UI ps RLTX-DIFF Return loss differential mode PCIe Gen1 –10 – – dB RLTX-CM Return loss common mode PCIe Gen1 –6 – – dB TX-LOCK-RST Transmit PLL lock time from reset – – 10 µs Revision 2 96 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 152 • Receiver Parameters Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter Description VRX-DIFF-PP-CC Input levels PCIe Gen1 Input common mode range (DC coupled) VRX-CM-DC-P Note: PCIe standard mandates AC coupling Min Typ Max Units 0.175 – 1.2 V NA NA NA – – – 150 mV 0.175 – – mV VRX-CM-AC-P Input common mode range (AC coupled) VRX-DIFF-PP-CC Differential input sensitivity Gen1 ZRX-DIFF-DC Differential input termination 80 100 120 REXT External calibration resistor 1,188 1,200 1,212 CDR-LOCK-RST CDR relock time from reset – – 15 µs RLRX-DIFF Return loss differential mode PCIe Gen1 –10 – – dB RLRX-CM Return loss common mode PCIe Gen1 –6 – – dB CID limit (set by 8B/10B coding, not the receiver PLL) – – 4 UI Signal detect limit 65 – 175 mV VRX-IDLE-DET-DIFF-PP Table 153 • SERDES Reference Clock AC Specifications Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, Worst-Case VDD = 1.14V Symbols Min Typ Max Units FREFCLK Reference Clock Frequency Description 100 – 160 MHz TRISE Reference Clock Rise Time 0.6 – 4 V/ns TFALL Reference Clock Fall Time 0.6 – 4 V/ns TCYC Reference Clock Duty Cycle 40 – 60 % Mmrefclk Reference Clock Mismatch -300 – 300 ppm SSCref Reference Spread Spectrum Clock 0 – 5000 ppm Table 154 • HCSL Minimum and Maximum DC Input Levels (Applicable to SERDES REFCLK Only) Symbols Parameters Min Typ Max Units 2.375 2.5 2.625 V 0 – 2.625 V Input common mode voltage 0.05 – 2.4 V Input differential voltage 100 – 1100 mV Recommended DC Operating Conditions VDDI Supply Voltage HCSL DC Input Voltage Specification VI DC Input voltage HCSL Differential Voltage Specification VICM VIDIFF Revision 2 97 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 155 • HCSL Maximum AC Switching Speeds (Applicable to SERDES REFCLK Only) Symbols Parameters Conditions Min Typ Max Units – – – 350 Mbps – – 100 – HCSL AC Specifications Fmax Maximum Data Rate (for MSIO IO Bank) HCSL Impedance Specifications Rt Termination Resistance 24. SmartFusion2 Specifications 24.1 MSS Clock Frequency Table 156 • Maximum Frequency for MSS Main Clock Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Symbol M3_CLK Description Speed Grade –1 Units 133 MHz Maximum frequency for the MSS Main Clock (FCLK) 24.2 SmartFusion2 Inter-Integrated Circuit (I2C) Characteristics This section describes the DC and switching of the IC interface. Unless otherwise noted, all output characteristics given are for a 100 pF load on the pins. For timing parameter definitions, refer to Figure 16 on page 100. Table 157 • I2C Characteristics Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter Typ Max Input low voltage Refer to the "Single-Ended I/O Standards" section on page 17 for more information. I/O –0.3 standard used for illustration: MSIO bank– LVTTL 8 mA low drive. – 0.8 V – VIH Input high voltage Refer to the "Single-Ended I/O Standards" section on page 17 for more information. I/O standard used for illustration: MSIO bank – LVTTL 8 mA low drive. 2 – 3.45 V – VHYS Hysteresis of Schmitt Refer to Table 20 on page 17 for more triggered inputs for information. VDDI > 2 V 0.05 x VDDI – – V – IIL Input current high Refer to the "Single-Ended I/O Standards" section on page 17 for more information. – – 10 µA – IIH Input current low Refer to the "Single-Ended I/O Standards" section on page 17 for more information. – – 10 µA – Input rise time Standard Mode – – 1000 ns – Fast Mode – – 300 ns – Standard Mode – – 300 ns – Fast Mode – – 300 ns – VIL Tir Tif Definition Input fall time Conditions Revision 2 Min Units Notes 98 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 157 • I2C Characteristics Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) Parameter Definition Conditions Min Typ Max Units Notes VOL Maximum output voltage low (open drain) at 3 mA sink current for VDDI > 2 V Refer to the "Single-Ended I/O Standards" section on page 17 for more information. I/O standard used for illustration: MSIO bank – LVTTL 8 mA low drive. – – 0.4 V – Cin Pin capacitance VIN = 0, f = 1.0 MHz – – 10 pF – tOF Output fall time from VIHMin to VILMax VIHmin to VILMax, Cload = 400 pF – 21.04 – ns 1 VIHmin to VILMax, Cload = 100 pF – 5.556 – ns – tOR Output rise time from VILMax to VIHMin VILMax to VIHmin, Cload = 400pF – 19.887 – ns 1 VILMax to VIHmin, Cload = 100pF – 5.218 – ns – Rpull-up Output buffer maximum pull-down resistance – – – 50 2, 3 Rpulldown Output buffer maximum pull-up resistance – – – 131.25 2, 4 Dmax Maximum data rate Fast mode – – 400 Kbps – Standard mode – – 100 Kbps – tFILT Pulse width of spikes which must be suppressed by the input filter Fast mode – 50 – ns – Notes: 1. These values are provided for MSIO Bank - LVTTL 8 mA Low Drive at 25°C, typical conditions. For Board Design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the SoC Products Group website: http://www.microsemi.com/products/fpga-soc/design-resources/ibis-models. 2. These maximum values are provided for information only. Minimum output buffer resistance values depend on VDDIx, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the SoC Products Group website: http://www.microsemi.com/products/fpga-soc/design-resources/ibis-models. 3. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec 4. R(PULL-UP-MAX) = (VDDImax – VOHspec) / IOHspec Table 158 • I2C Switching Characteristics Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Speed Grade –1 Parameter Definition Conditions Min Max Units tLOW Low period of I2C_x_SCL – 1 – pclk cycles tHIGH High period of I2C_x_SCL – 1 – pclk cycles tHD;STA START hold time – 1 – pclk cycles tSU;STA START setup time – 1 – pclk cycles tHD;DAT DATA hold time – 1 – pclk cycles tSU;DAT DATA setup time – 1 – pclk cycles tSU;STO STOP setup time – 1 – pclk cycles Revision 2 99 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 SDA TRISE SCL tLOW tSU;STA S TFALL tHIGH tHD;STA tHD;DAT tSU;STO tSU;DAT P Figure 16 • I2C Timing Parameter Definition 24.3 Serial Peripheral Interface (SPI) Characteristics This section describes the DC and switching of the SPI interface. Unless otherwise noted, all output characteristics given are for a 35 pF load on the pins and all sequential timing characteristics are related to SPI_x_CLK. For timing parameter definitions, refer to Figure 17 on page 102. Table 159 • SPI Characteristics Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V All Devices/Speed Grades Symbol Description Min Typ Max Unit Notes SPI_[0|1]_CLK = PCLK/2 12 – – ns – SPI_[0|1]_CLK = PCLK/4 24.1 – – ns – SPI_[0|1]_CLK = PCLK/8 48.2 – – ns – SPI_[0|1]_CLK = PCLK/16 0.1 – – µs – SPI_[0|1]_CLK = PCLK/32 0.19 – – µs – SPI_[0|1]_CLK = PCLK/64 0.39 – – µs – SPI_[0|1]_CLK = PCLK/128 0.77 – – µs – SPI_[0|1]_CLK = PCLK/2 6 – – ns – SPI_[0|1]_CLK = PCLK/4 12.05 – – ns – SPI_[0|1]_CLK = PCLK/8 24.1 – – ns – SPI_[0|1]_CLK = PCLK/16 0.05 – – µs – SPI_[0|1]_CLK = PCLK/32 0.095 – – µs – SPI_[0|1]_CLK = PCLK/64 0.195 – – µs – SPI_[0|1]_CLK = PCLK/128 0.385 – – µs – SPI_[0|1]_CLK minimum period sp1 SPI_[0|1]_CLK minimum pulse width high sp2 Notes: 1. For specific Rise/Fall Times board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/products/fpga-soc/design-resources/ibis-models. 2. For allowable pclk configurations, refer to the Serial Peripheral Interface Controller section in the UG0331: SmartFusion2 Microcontroller Subsystem User Guide. Revision 2 100 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 159 • SPI Characteristics (continued) Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) All Devices/Speed Grades Symbol Description Min Typ Max Unit Notes SPI_[0|1]_CLK = PCLK/2 6 – – ns – SPI_[0|1]_CLK = PCLK/4 12.05 – – ns – SPI_[0|1]_CLK = PCLK/8 24.1 – – ns – SPI_[0|1]_CLK = PCLK/16 0.05 – – µs – SPI_[0|1]_CLK = PCLK/32 0.095 – – µs – SPI_[0|1]_CLK = PCLK/64 0.195 – – µs – SPI_[0|1]_CLK = PCLK/128 0.385 – – µs – SPI_[0|1]_CLK minimum pulse width low sp3 sp4 SPI_[0|1]_CLK, SPI_[0|1]_DO, SPI_[0|1]_SS rise time (10%90%) – 2.77 – ns 1 sp5 SPI_[0|1]_CLK, SPI_[0|1]_DO, SPI_[0|1]_SS fall time (10%-90%) – 2.906 – ns 1 SPI Master Configuration sp6m SPI_[0|1]_DO setup time (SPI_x_CLK_period/2) – 3.0 – – ns 2 sp7m SPI_[0|1]_DO hold time (SPI_x_CLK_period/2) – 2.5 – – ns 2 sp8m SPI_[0|1]_DI setup time 8 – – ns 2 sp9m SPI_[0|1]_DI hold time 2.5 – – ns 2 SPI Slave Configuration sp6s SPI_[0|1]_DO setup time (SPI_x_CLK_period/2) – 12.0 – – ns 2 sp7s SPI_[0|1]_DO hold time (SPI_x_CLK_period/2) + 3.0 – – ns 2 sp8s SPI_[0|1]_DI setup time 2 – – ns 2 sp9s SPI_[0|1]_DI hold time 3 – – ns 2 Notes: 1. For specific Rise/Fall Times board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/products/fpga-soc/design-resources/ibis-models. 2. For allowable pclk configurations, refer to the Serial Peripheral Interface Controller section in the UG0331: SmartFusion2 Microcontroller Subsystem User Guide. Revision 2 101 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 SP1 SP4 50% 50% SPI_0_CLK SPO = 0 SP5 SP3 SP2 90% 50% 10% 10% SPI_0_CLK SPO = 1 90% 90% SPI_0_SS 10% 1 0% SP4 SP5 SP6 SPI_0_DO 5 0% SP7 MSB 10% SP8 SPI_0_DI 90% 9 0% 5 0% 50% SP9 MSB 10% SP5 SP4 50% Figure 17 • SPI Timing for a Single Frame Transfer in Motorola Mode (SPH = 1) 25. CAN Controller Characteristics Table 160 • CAN Controller Characteristics Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter Description Min Typ Max Units Notes FCANREFCLK Internally Sourced CAN Reference Clock Frequency – – 128 MHz * BAUDCAN CAN Performance Baud Rate 0.05 – 1 Mbps – Min Typ Max Units FUSBREFCLK Internally Sourced USB Reference Clock Frequency – – 133 MHz TUSBCLK USB Clock Period – – 16.66 ns TUSBPD Clock to USB Data Propagation Delay – – 9.0 ns TUSBSU Setup Time for USB Data – – 6.0 ns TUSBHD Hold Time for USB Data 0 – – ns Note: PCLK to CAN controller must be a multiple of 8 MHz. 26. USB Characteristics Table 161 • USB Characteristics Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Parameter Description Revision 2 102 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 27. IGLOO2 Specifications 27.1 HPMS Clock Frequency Table 162 • Maximum Frequency for HPMS Main Clock Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V Symbol Description HPMS_CLK Speed Grade –1 Units 133 MHz Maximum Frequency for the HPMS Main Clock (FCLK) 27.2 IGLOO2 Serial Peripheral Interface (SPI) Characteristics This section describes the DC and switching of the SPI interface. Unless otherwise noted, all output characteristics given are for a 35 pF load on the pins and all sequential timing characteristics are related to SPI_0_CLK. For timing parameter definitions, refer to Figure 18 on page 105. Table 163 • SPI Characteristics Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V All Devices/Speed Grades Symbol Description Min Typ Max Unit Notes SPI_[0|1]_CLK = PCLK/2 12 – – ns – SPI_[0|1]_CLK = PCLK/4 24.1 – – ns – SPI_[0|1]_CLK = PCLK/8 48.2 – – ns – SPI_[0|1]_CLK = PCLK/16 0.1 – – µs – SPI_[0|1]_CLK = PCLK/32 0.19 – – µs – SPI_[0|1]_CLK = PCLK/64 0.39 – – µs – SPI_[0|1]_CLK = PCLK/128 0.77 – – µs – SPI_[0|1]_CLK = PCLK/2 6 – – ns – SPI_[0|1]_CLK = PCLK/4 12.05 – – ns – SPI_[0|1]_CLK = PCLK/8 24.1 – – ns – SPI_[0|1]_CLK = PCLK/16 0.05 – – µs – SPI_[0|1]_CLK = PCLK/32 0.095 – – µs – SPI_[0|1]_CLK = PCLK/64 0.195 – – µs – SPI_[0|1]_CLK = PCLK/128 0.385 – – µs – SPI_[0|1]_CLK minimum period sp1 SPI_[0|1]_CLK minimum pulse width high sp2 Revision 2 103 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Table 163 • SPI Characteristics Worst-Case Automotive Grade 2 Conditions: TJ = 125°C, VDD = 1.14 V (continued) All Devices/Speed Grades Symbol Description Min Typ Max Unit Notes SPI_[0|1]_CLK = PCLK/2 6 – – ns – SPI_[0|1]_CLK = PCLK/4 12.05 – – ns – SPI_[0|1]_CLK = PCLK/8 24.1 – – ns – SPI_[0|1]_CLK = PCLK/16 0.05 – – µs – SPI_[0|1]_CLK = PCLK/32 0.095 – – µs – SPI_[0|1]_CLK = PCLK/64 0.195 – – µs – SPI_[0|1]_CLK = PCLK/128 0.385 – – µs – SPI_[0|1]_CLK minimum pulse width low sp3 sp4 SPI_[0|1]_CLK, SPI_[0|1]_DO, SPI_[0|1]_SS rise time (10%90%) – 2.77 – ns 1 sp5 SPI_[0|1]_CLK, SPI_[0|1]_DO, SPI_[0|1]_SS fall time (10%90%) – 2.906 – ns 1 SPI Master Configuration sp6m SPI_[0|1]_DO setup time (SPI_x_CLK_period/2) – 3.0 – – ns 2 sp7m SPI_[0|1]_DO hold time (SPI_x_CLK_period/2) – 2.5 – – ns 2 sp8m SPI_[0|1]_DI setup time 8 – – ns 2 sp9m SPI_[0|1]_DI hold time 2.5 – – ns 2 – – ns 2 SPI Slave Configuration sp6s SPI_[0|1]_DO setup time (SPI_x_CLK_period/2) – 12.0 sp7s SPI_[0|1]_DO hold time (SPI_x_CLK_period/2) + 3.0 – – ns 2 sp8s SPI_[0|1]_DI setup time 2 – – ns 2 sp9s SPI_[0|1]_DI hold time 3 – – ns 2 Notes: 1. For specific Rise/Fall Times board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/products/fpga-soc/design-resources/ibis-models. 2. For allowable pclk configurations, refer to the Serial Peripheral Interface Controller section in the UG0331: SmartFusion2 Microcontroller Subsystem User Guide. Revision 2 104 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 SP1 SP4 SP2 50% 50% SPI_0_CLK SPO = 0 SP5 SP3 90% 50% 10% 10% SPI_0_CLK SPO = 1 90% 90% SPI_0_SS 10% 1 0% SP4 SP5 SP6 SPI_0_DO 5 0% MSB 90% 9 0% 5 0% 10% SP8 SPI_0_DI SP7 50% SP9 MSB SP5 10% SP4 50% Figure 18 • SPI Timing for a Single Frame Transfer in Motorola Mode (SPH = 1) Revision 2 105 Datasheet Information List of Changes The following table shows important changes made in this document for each revision. Revision Revision 2 (September 2015) Revision 1 (June 2015) Changes Page Updated Table 9: "SmartFusion2 and IGLOO2 Quiescent Supply Current – Typical Process" for typical process values (SAR 69218). 8 Updated Table 10: "SmartFusion2 and IGLOO2 Quiescent Supply Current – WorstCase Process" for worst-case process values (SAR 69218). 8 Updated Table 139: "IGLOO2 and SmartFusion2 SoC FPGAs CCC/PLL Jitter Specifications" for FGG (SAR 69806). 90 Initial release. NA Revision 2 106 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Datasheet Categories Categories In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in Table 1 on page 1 is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows: Product Brief The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information. Advance This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized. Preliminary The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible. Production This version contains information that is considered to be final. Export Administration Regulations (EAR) The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States. Revision 2 107 SmartFusion2 SoC and IGLOO2 FPGA Automotive Grade 2 Safety Critical, Life Support, and High-Reliability Applications Policy The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. For more information covering all of the SoC Products Group’s products refer to the Reliability Report. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local Sales office for additional reliability information. Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA. Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 [email protected] Revision 2 108 Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world’s standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com. Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 E-mail: [email protected] © 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice. 51700134-2/09.15