Power Dissipation for 16-Bit Transceiver Family (3/11)

Aeroflex Colorado Springs Application Note
AN-LOG-002-001
Calculating Power Dissipation for the 16-Bit Transceiver Family
Table 1: Cross Reference of Applicable Products
Manufacturer Part
SMD #
Number
MultiPurpose Transceiver with
UT54ACS164245S/SE
5962-98580
Cold Spare I/O
Product Name:
MultiPurpose Transceiver with
Cold/Warm Spare I/O
MultiPurpose Registered
Transceiver with Cold/Warm
Spare I/O
MultiPurpose 3-Volt Transceiver
with Cold/Warm Spare I/O
UT54ACS164245SEI
5962-98580
Device
Type
01, 02,
03, 04,
05
06, 07
Internal PIC
UT54ACS164646S
5962-06234
01
KE01
UT54ACS162245SLV
5962-02543
01
WA04,WA05
JM01,JM03,
JM04
JM06
1.0 Overview
The Aeroflex 16-bit Logic family contains products such as the UT54ACS164245S/SE,
UT54ACS164245SEI, UT54ACS164646S, and the UT54ACS162245SLV. These
products perform functions such as: asynchronous two-way communication, Schmitt
input buffering, voltage translation, multiplexed real-time and stored data, as well as cold
and warm sparing.
This application note walks the designer through the calculations needed to determine
power dissipation capacitance (CPD) and power dissipation (PD) for the 16-bit Logic
Family with user specific capacitive loads (CL).
2.0 Technical Figures and Data
Accurate power calculations are necessary to determine system power supply and thermal
management requirements. The two primary components that determine the power
consumption in a CMOS circuit are static and dynamic power. Static power is the power
dissipated under DC conditions. Dynamic power consumption occurs when the device is
switching capacitive loads.
Power consumption can be decreased by lowering supply voltage, reducing the capacitive
load that the device has to drive, or lowering the devices operating frequency. Usually
none of these reductions can be made without compromising system performance. It then
becomes very important to be able to estimate the power requirements of the device.
From the device SMDs, power dissipation per switching output is offered as
Ptota1 = X mW/MHz with a tester load CL = Y pF. SMD values enable the user to
determine worst case power dissipation for the system. A power dissipation analysis can
also determine the maximum reliable operating frequency of the device.
Creation Date: 03/01/11
Page 1 of 24
Modification Date:
2.1 Characterization Data UT54ACS164245SEI
The following plots show active current, or AIDD, measurements versus frequency, over
temperature and are used as input current for calculating power dissipation and power
dissipation capacitance(CPD). The AIDD values are from maximum measurements taken
during characterization of numerous devices under the following conditions.
Temperature: TC = 125°C, 25°C,-55°C
VDD1 = VDD2 = 3.0V
VDD1 = VDD2 = 3.6V
VDD1 = VDD2 = 5.5V
VDD1 =5.5V VDD2 = 3.6V
Voltage:
Frequency:
f =10MHz, 25MHz, 50MHz
UT54ACS164245SEI AIDD vs. Frequency
TC =125°C CL=40pF
VDD1=VDD2=3.0V
VDD1=VDD2=3.6V
VDD1=VDD2=5.5V
AIDD (mA)
VDD1=5.5V VDD2=3.6V
180
160
140
120
100
80
60
40
20
0
10
15
20
25
30
35
Frequency (MHz)
40
45
50
Figure 1.
AIDD Values for 125°C with all 16 outputs switching
Creation Date: 03/01/11
Page 2 of 24
Modification Date:
VDD1=VDD2=3.0V
UT54ACS164245SEI AIDD vs. Frequency
TC =25°C CL=40pF
VDD1=VDD2=3.6V
VDD1=VDD2=5.5V
AIDD (mA)
VDD1=5.5V VDD2=3.6V
180
160
140
120
100
80
60
40
20
0
10
15
20
25
30
35
40
45
50
Frequency (MHz)
Figure 2.
AIDD Values for 25°C with all 16 outputs switching
VDD1=VDD2=3.0V
UT54ACS164245SEI AIDD vs. Frequency
TC =-55°C CL=40pF
VDD1=VDD2=3.6V
VDD1=VDD2=5.5V
VDD1=5.5V VDD2=3.6V
180
AIDD (mA)
160
140
120
100
80
60
40
20
0
10
15
20
25
30
35
40
45
50
Frequency (MHz)
Figure 3
AIDD Values for -55°C with all 16 outputs switching
Creation Date: 03/01/11
Page 3 of 24
Modification Date:
Using the AIDD graphs above (figures 1-3), or the data in tables 2 through 5 below, an
estimate of the power supply current can be calculated by taking the slope of the line
between two adjacent frequencies at a given temperature and multiplying by the
designer’s operating frequency. The values in the “Slope (mA/MHz)” column are the
values for the power supply input current that will be used in determining the power
dissipation and dynamic current consumption later in this application note
Power dissipation capacitance or (CPD) for the 16-Bit Logic Transceivers is calculated
using equation 1 as follows. Since the outputs switch rail to rail VDD = 3.3V or 5.0V, the
capacitive load per switching output added by the automated tester (CLT) must be accounted
for. Calculations for CPD are found in sections 3.0 and 4.0 of this application note.
Table 2.
AIDD over frequency and temperature with VDD1 = VDD2 = 3.0V
AIDD is listed for all 16 outputs switching, CPD and CLT are listed per switching output.
TC
(°C)
VDD1=VDD2=3.0V
CLT=40pF
CPD=15.0pF
Creation Date: 03/01/11
25
25
25
25
Frequency
(MHz)
SIDD 0
10
25
50
-55
-55
-55
-55
SIDD
125
125
125
125
SIDD
AIDD
(mA)
12.62
14.41
36.08
80.71
Slope
(mA/MHz)
1.45
1.79
0
10
25
50
12.71
14.50
36.45
81.29
1.46
1.79
0
10
25
50
13.21
14.89
37.11
79.07
1.48
1.68
Page 4 of 24
Modification Date:
Table 3.
AIDD over frequency and temperature with VDD1 = VDD2 = 3.6V
AIDD is listed for all 16 outputs switching, CPD and CLT are listed per switching output.
TC
(°C)
25
25
25
25
VDD1=VDD2=3.6V
CLT=40pF
CPD=15.0pF
Frequency
(MHz)
SIDD 0
10
25
50
-55
-55
-55
-55
SIDD
125
125
125
125
SIDD
AIDD
(mA)
15.33
17.50
44.26
98.55
Slope
(mA/MHz)
1.78
2.17
0
10
25
50
15.59
17.71
45.07
98.15
1.82
2.12
0
10
25
50
15.87
17.99
45.01
97.99
1.80
2.12
Table 4.
AIDD over frequency and temperature with VDD1 = 5.5V VDD2 = 3.6V
AIDD is listed for all 16 outputs switching, CPD and CLT are listed per switching output.
TC
(°C)
VDD1=5.5V
VDD2=3.6V
25
25
25
25
Frequency
(MHz)
SIDD 0
10
25
50
AIDD
(mA)
20.49
23.29
59.12
129.12
Slope
(mA/MHz)
2.39
2.80
CLT=40pF
CPD=15.0pF
Creation Date: 03/01/11
-55
-55
-55
-55
SIDD
125
125
125
125
SIDD
0
10
25
50
21.04
23.71
60.97
127.58
2.48
2.66
0
10
25
50
20.92
23.71
58.95
128.72
2.35
2.79
Page 5 of 24
Modification Date:
Table 5.
AIDD over frequency and temperature with VDD1 = VDD2 = 5.5V
AIDD is listed for all 16 outputs switching, CPD and CLT are listed per switching output.
TC
(°C)
VDD1=VDD2=5.5V
CLT=40pF
CPD=15.0pF
Creation Date: 03/01/11
25
25
25
25
Frequency
(MHz)
SIDD 0
10
25
50
-55
-55
-55
-55
SIDD
125
125
125
125
SIDD
AIDD
(mA)
25.18
28.43
72.74
154.03
Slope
(mA/MHz)
2.95
3.25
0
10
25
50
26.06
29.08
75.42
150.94
3.09
3.02
0
10
25
50
25.36
28.74
71.78
156.26
2.87
3.38
Page 6 of 24
Modification Date:
2.2 Characterization Data UT54ACS164245S/SE
Temperature:
TC = 125°C, 25°C,-55°C
Voltage:
VDD1 = VDD2 = 3.0V
VDD1 = VDD2 = 3.6V
VDD1 = VDD2 = 5.5V
VDD1 =5.5V VDD2 = 3.6V
Frequency:
f =10MHz, 25MHz, 50MHz
VDD1=VDD2=3.0V
UT54ACS164245S AIDD vs. Frequency
TC =125°C CL=40pF
VDD1=VDD2=3.6V
VDD1=VDD2=5.5V
VDD1=5.5V VDD2=3.6V
160
140
AIDD (mA)
120
100
80
60
40
20
0
10
15
20
25
30
35
Frequency (MHz)
40
45
50
Figure 4.
AIDD Values for 125°C with all 16 outputs switching
Creation Date: 03/01/11
Page 7 of 24
Modification Date:
VDD1=VDD2=3.0V
UT54ACS164245S AIDD vs. Frequency
TC =25°C CL=40pF
VDD1=VDD2=3.6V
VDD1=VDD2=5.5V
VDD1=5.5V VDD2=3.6V
160
140
AIDD (mA)
120
100
80
60
40
20
0
10
15
20
25
30
35
Frequency (MHz)
40
45
50
Figure 5.
AIDD Values for 25°C with all 16 outputs switching
VDD1=VDD2=3.0V
UT54ACS164245S AIDD vs. Frequency
TC =-55°C CL=40pF
VDD1=VDD2=3.6V
VDD1=VDD2=5.5V
VDD1=5.5V VDD2=3.6V
160
140
AIDD (mA)
120
100
80
60
40
20
0
10
15
20
25
30
35
Frequency (MHz)
40
45
50
Figure 6.
AIDD Values for -55°C with all 16 outputs switching
Creation Date: 03/01/11
Page 8 of 24
Modification Date:
Table 5.
AIDD over frequency and temperature with VDD1 = VDD2 = 3.0V
AIDD is listed for all 16 outputs switching, CPD and CLT are listed per switching output.
TC
(°C)
VDD1=VDD2=3.0V
CLT=40pF
CPD=15.0pF
25
25
25
25
Frequency
(MHz)
SIDD 0
10
25
50
-55
-55
-55
-55
SIDD
125
125
125
125
SIDD
AIDD
(mA)
12.83
14.24
34.92
70.29
Slope
(mA/MHz)
1.38
1.41
0
10
25
50
10.18
11.36
27.88
57.48
1.10
1.18
0
10
25
50
13.19
14.49
35.63
67.95
1.41
1.29
Table 6.
AIDD over frequency and temperature with VDD1 = VDD2 = 3.6V
AIDD is listed for all 16 outputs switching, CPD and CLT are listed per switching output.
TC
(°C)
VDD1=VDD2=3.6V
CLT=40pF
CPD=15.0pF
Creation Date: 03/01/11
25
25
25
25
Frequency
(MHz)
SIDD 0
10
25
50
25
-55
-55
-55
SIDD
125
125
125
125
SIDD
AIDD
(mA)
15.52
17.30
42.48
86.96
Slope
(mA/MHz)
1.67
1.77
0
10
25
50
15.46
17.24
42.41
86.86
1.67
1.77
0
10
25
50
15.81
17.53
43.08
86.11
1.70
1.72
Page 9 of 24
Modification Date:
Table 7.
AIDD over frequency and temperature with VDD1 = 5.5V VDD2 = 3.6V
AIDD is listed for all 16 outputs switching, CPD and CLT are listed per switching output.
TC
(°C)
VDD1=5.5V
VDD2=3.6V
25
25
25
25
Frequency
(MHz)
SIDD 0
10
25
50
AIDD
(mA)
19.38
21.56
52.96
107.38
Slope
(mA/MHz)
2.09
2.17
CLT=40pF
CPD=15.0pF
-55
-55
-55
-55
SIDD
25
125
125
125
SIDD
0
10
25
50
20.32
22.55
55.52
111.36
2.19
2.23
0
10
25
50
20.25
22.54
55.31
112.58
2.18
2.29
Table 8.
AIDD over frequency and temperature with VDD1 = VDD2 = 3.0V
AIDD is listed for all 16 outputs switching, CPD and CLT are listed per switching output.
TC
(°C)
VDD1=VDD2=5.5V
CLT=40pF
CPD=15.0pF
Creation Date: 03/01/11
25
25
25
25
Frequency
(MHz)
SIDD 0
10
25
50
-55
-55
-55
-55
SIDD
25
125
125
125
SIDD
AIDD
(mA)
24.72
27.49
67.79
136.92
Slope
(mA/MHz)
2.68
2.76
0
10
25
50
25.12
27.74
68.78
134.33
2.73
2.62
0
10
25
50
24.65
27.52
67.84
139.5
2.68
2.86
Page 10 of 24
Modification Date:
2.1 Characterization Data UT54ACS164646S
Temperature:
TC = 125°C, 25°C,-55°C
Voltage:
VDD1 = VDD2 = 3.0V
VDD1 = VDD2 = 3.6V
VDD1 = VDD2 = 5.5V
VDD1 =5.5V VDD2 = 3.6V
f =10MHz, 25MHz, 50MHz
Frequency:
VDD1=VDD2=3.0V
UT54ACS164646S AIDD vs. Frequency
TC =125°C CL=40pF
VDD1=VDD2=3.6V
VDD1=VDD2=5.5V
VDD1=5.5V VDD2=3.6V
200.000
180.000
160.000
AIDD (mA)
140.000
120.000
100.000
80.000
60.000
40.000
20.000
0.000
10
15
20
25
30
35
Frequency (MHz)
40
45
50
Figure 7.
AIDD Values for 125°C with all 16 outputs switching
Creation Date: 03/01/11
Page 11 of 24
Modification Date:
VDD1=VDD2=3.0V
UT54ACS164646S AIDD vs. Frequency
TC =25°C CL=40pF
VDD1=VDD2=3.6V
VDD1=VDD2=5.5V
VDD1=5.5V VDD2=3.6V
200.000
180.000
160.000
AIDD (mA)
140.000
120.000
100.000
80.000
60.000
40.000
20.000
0.000
10
15
20
25
30
35
Frequency (MHz)
40
45
50
Figure 8.
AIDD Values for 25°C with all 16 outputs switching
VDD1=VDD2=3.0V
UT54ACS164646S AIDD vs. Frequency
TC =-55°C CL=40pF
VDD1=VDD2=3.6V
VDD1=VDD2=5.5V
VDD1=5.5V VDD2=3.6V
200.000
180.000
160.000
AIDD (mA)
140.000
120.000
100.000
80.000
60.000
40.000
20.000
0.000
10
15
20
25
30
35
Frequency (MHz)
40
45
50
Figure 9.
AIDD Values for -55°C with all 16 outputs switching
Creation Date: 03/01/11
Page 12 of 24
Modification Date:
Table 9.
AIDD over frequency and temperature with VDD1 = VDD2 = 3.0V
AIDD is listed for all 16 outputs switching, CPD and CLT are listed per switching output.
TC
(°C)
25
25
25
25
VDD1=VDD2=3.0V
CLT=40pF
CPD=15.0pF
Frequency
(MHz)
SIDD 0
10
25
50
-55
-55
-55
-55
SIDD
125
125
125
125
SIDD
AIDD
(mA)
16.29
18.34
45.76
97.10
Slope
(mA/MHz)
1.82
2.05
0
10
25
50
16.07
18.13
45.86
97.21
1.84
2.05
0
10
25
50
16.82
18.75
46.54
94.73
1.85
1.92
Table 10.
AIDD over frequency and temperature with VDD1 = VDD2 = 3.6V
AIDD is listed for all 16 outputs switching, CPD and CLT are listed per switching output.
TC
(°C)
VDD1=VDD2=3.6V
CLT=40pF
CPD=15.0pF
Creation Date: 03/01/11
25
25
25
25
Frequency
(MHz)
SIDD 0
10
25
50
-55
-55
-55
-55
SIDD
125
125
125
125
SIDD
AIDD
(mA)
19.80
22.29
55.86
118.14
Slope
(mA/MHz)
2.23
2.49
0
10
25
50
19.62
22.01
55.95
115.62
2.26
2.38
0
10
25
50
20.26
22.73
56.50
118.41
2.25
2.47
Page 13 of 24
Modification Date:
Table 11.
AIDD over frequency and temperature with VDD1 = 5.5V VDD2 = 3.6V
AIDD is listed for all 16 outputs switching, CPD and CLT are listed per switching output.
TC
(°C)
VDD1=5.5V
VDD2=3.6V
25
25
25
25
Frequency
(MHz)
SIDD 0
10
25
50
AIDD
(mA)
29.54
33.15
83.88
174.21
Slope
(mA/MHz)
3.38
3.61
CLT=40pF
CPD=15.0pF
-55
-55
-55
-55
SIDD
125
125
125
125
SIDD
0
10
25
50
27.83
30.92
78.69
155.83
3.18
3.08
0
10
25
50
32.60
36.77
91.75
195.92
3.66
4.16
Table 12.
AIDD over frequency and temperature with VDD1 = VDD2 = 5.5V
AIDD is listed for all 16 outputs switching, CPD and CLT are listed per switching output.
TC
(°C)
VDD1=VDD2=5.5V
CLT=40pF
CPD=15.0pF
Creation Date: 03/01/11
25
25
25
25
Frequency
(MHz)
SIDD 0
10
25
50
-55
-55
-55
-55
SIDD
125
125
125
125
SIDD
AIDD
(mA)
31.80
35.59
90.03
184.77
Slope
(mA/MHz)
3.62
3.79
0
10
25
50
31.74
34.97
88.15
168.99
3.54
3.23
0
10
25
50
31.85
35.72
88.98
185.59
3.55
3.86
Page 14 of 24
Modification Date:
2.1 Characterization Data UT54ACS162245SLV
Temperature:
TC = 125°C, 25°C,-55°C
Voltage:
VDD1 = VDD2 = 3.0V
VDD1 = VDD2 = 3.6V
VDD1 = VDD2 = 2.3V
VDD1 =3.6V VDD2 = 2.7V
f =10MHz, 25MHz, 50MHz
Frequency:
VDD=3.0V
UT54ACS162245SLV AIDD vs. Frequency
TC =125°C CL=40pF
VDD=3.6V
VDD=2.3V
VDD1=3.6V VDD2=2.7V
100.000
90.000
80.000
AIDD (mA)
70.000
60.000
50.000
40.000
30.000
20.000
10.000
0.000
10
15
20
25
30
Frequency (MHz)
35
40
45
50
Figure 10.
AIDD Values for 125°C with all 16 outputs switching
Creation Date: 03/01/11
Page 15 of 24
Modification Date:
VDD=3.0V
UT54ACS162245SLV AIDD vs. Frequency
TC =25°C CL=40pF
VDD=3.6V
VDD=2.3V
VDD1=3.6V VDD2=2.7V
100.000
90.000
80.000
AIDD (mA)
70.000
60.000
50.000
40.000
30.000
20.000
10.000
0.000
10
15
20
25
30
Frequency (MHz)
35
40
45
50
Figure 11.
AIDD Values for 25°C with all 16 outputs switching
UT54ACS162245SLV AIDD vs. Frequency
TC =-55°C CL=40pF
VDD=3.0V
VDD=3.6V
VDD=2.3V
VDD1=3.6V VDD2=2.7V
100.000
90.000
80.000
AIDD (mA)
70.000
60.000
50.000
40.000
30.000
20.000
10.000
0.000
10
15
20
25
30
35
Frequency (MHz)
40
45
50
Figure 12.
AIDD Values for -55°C with all 16 outputs switching
Creation Date: 03/01/11
Page 16 of 24
Modification Date:
Table 13.
AIDD over frequency and temperature with VDD1 = VDD2 = 3.0V
AIDD is listed for all 16 outputs switching, CPD and CLT are listed per switching output.
TC
(°C)
25
25
25
25
VDD1=VDD2=3.0V
CLT=40pF
CPD=15.0pF
Frequency
(MHz)
SIDD 0
10
25
50
-55
-55
-55
-55
SIDD
125
125
125
125
SIDD
AIDD
(mA)
14.14
15.61
38.34
74.97
Slope
(mA/MHz)
1.51
1.46
0
10
25
50
14.16
15.53
38.01
72.34
1.49
1.37
0
10
25
50
14.40
15.94
38.94
77.29
1.53
1.53
Table 14.
AIDD over frequency and temperature with VDD1 = VDD2 = 3.6V
AIDD is listed for all 16 outputs switching, CPD and CLT are listed per switching output.
TC
(°C)
VDD1=VDD2=3.6V
CLT=40pF
CPD=15.0pF
Creation Date: 03/01/11
25
25
25
25
Frequency
(MHz)
SIDD 0
10
25
50
-55
-55
-55
-55
SIDD
125
125
125
125
SIDD
AIDD
(mA)
17.82
19.54
47.72
90.95
Slope
(mA/MHz)
1.87
1.72
0
10
25
50
17.64
19.26
46.98
87.46
1.84
1.61
0
10
25
50
18.15
19.99
48.52
94.64
1.90
1.84
Page 17 of 24
Modification Date:
Table 15.
AIDD over frequency and temperature with VDD1 = 3.6 VDD2 = 2.7V
AIDD is listed for all 16 outputs switching, CPD and CLT are listed per switching output.
TC
(°C)
VDD1=3.6V
VDD2=2.7V
25
25
25
25
Frequency
(MHz)
SIDD 0
10
25
50
AIDD
(mA)
14.97
16.56
40.48
80.20
Slope
(mA/MHz)
1.59
1.58
CLT=40pF
CPD=15.0pF
-55
-55
-55
-55
SIDD
125
125
125
125
SIDD
0
10
25
50
14.89
16.42
40.08
78.23
1.57
1.52
0
10
25
50
15.34
17.00
41.17
82.82
1.61
1.66
Table 16.
AIDD over frequency and temperature with VDD1 = VDD2 = 2.3V
AIDD is listed for all 16 outputs switching, CPD and CLT are listed per switching output.
Frequency
(MHz)
SIDD 0
10
25
50
AIDD
(mA)
10.45
11.58
28.49
56.86
-55 SIDD 0
-55
10
-55
25
-55
50
10.34
11.45
28.21
55.43
1.11
1.08
125 SIDD 0
125
10
125
25
125
50
10.53
11.76
28.82
59.38
1.13
1.22
TC
(°C)
VDD1=VDD2=2.3V
CLT=40pF
CPD=15.0pF
Creation Date: 03/01/11
25
25
25
25
Page 18 of 24
Slope
(mA/MHz)
1.12
1.13
Modification Date:
3.0 Calculating of Power with Variable Load Capacitance
The following equations and examples are provided as a guide for estimating power dissipation,
power dissipation capacitance, and dynamic current consumption using various capacitive loads.
Definition of Terms:
VDD11
VDD21
VOL
VOL(actual)
VOH
VOH(actual)
Port B Power Supply Voltage (V)
Port A Power Supply Voltage (V)
Low-level output voltage (V)
Load Dependant Low-level output voltage (V)
High-level output voltage (V)
Load Dependant High-level output voltage (V)
AIDD
AIDD(slope)
AIDD(frequency)
SIDD
IOL
IOH
ISD
Active Supply Current with all 16 Outputs Switching (mA)
Slope of AIDD (mA/MHz)
Active current at given frequency (mA)
Standby Current Device Enabled f=0MHz (mA)
Low level output current (mA)
High level output current (mA)
Dynamic Current Consumption (A)
PDCL
PDCH
Percent Duty Cycle Driving Logic Low (%)
Percent Duty Cycle Driving Logic High (%)
CPD
CL
CLT
Power Dissipation Capacitance (F)
Users Load Capacitance (F)
Capacitive per switching output Tester Load (F)
f
Input Frequency (Hz)
PSWO
PST
PDYN
PRLOAD
PTOTAL
Power per Switching Output (W/MHz per output)
Static Power Dissipation (W)
Dynamic Power Dissipation (W)
Resistive Load Output Power (W)
Total Power Dissipation (W)
NO
N16
Number of switching outputs
Number of outputs on the 16-bit Device
Notes:
1. The 16-bit transceiver devices are running at different supply voltages use the supply voltage that
corresponds to the bidirect pins configured as outputs when using the equations provided in section 3.0.
 Meaning if a calculation is being performed on the UT54ACS162245SLV device and VDD1=3.6V,
VDD2 = 2.7V, and DIR1 = DIR2 = HIGH (meaning the device is in A data to B Bus), VDD1 = 3.6V
would need to be used as the VDD terms in the section 3.0 equations
 Another example if a calculation is being performed on the UT54ACS164245SEI device and
VDD1=5.5V, VDD2 = 3.6V, and DIR1 = DIR2 = LOW (meaning the device is in B data to A Bus),
VDD2 = 3.6V would need to be used as the VDD terms in the section 3.0 equations
Creation Date: 03/01/11
Page 19 of 24
Modification Date:
Two methods are offered to calculate Power/MHz. The first method simply employs Joule’s law
(P=IV), the power supply current, and voltage measured under a specific test condition.
Method 1 offers a validation to the values that are then calculated using method 2. Method 2
contains terms like CPD, CL, f, and VDD, all of which can be varied by the designer in predicting
power for a specific application.
Power per Switching Output (PSWO):
PSWO 
VDD * AIDD( frequency)
N16
(1)
Static Device Power (PST):
PST  SIDD * VDD
(2)
Dynamic Device Power per Switching Output (PDYN):
 
 
PDYN  C PD VDD * f  C L VOH (actual )  VOL (actual )  * f
2
2
Resistive Output Load Power (PLOAD):
PLOAD  PDCL * VOL * I OL   PDCH * VDD  VOH  * I OH

(3)

(4)
Total Device Power (PTOTAL):
PTOTAL  PST  N O PDYN  PLOAD 
(5)
Active Current at frequency (AIDD(frequency)):
AIDD( frequency)   f  f @ known AIDD  * AIDD( slope)  AIDD @ known f
(6)
CPD 
Average AIDD( slope) 
  N16*CLT 
VDD
Creation Date: 03/01/11
Page 20 of 24
(7)
Modification Date:
4.0 Example Calculations
The following sections walk the designer through example calculations using data and equations
presented in sections 2.0 and 3.0.
4.1 Example 1
The CPD value in Table 2 calculates using equation (7).
CPD 
Average AIDD( slope) 
  N16*CLT 
VDD
Where:
VDD
AIDD(slope)
CPD
CLT
N16
CPD total  
Maximum Users Power Supply Voltage (V)
Slope of AIDD (mA/MHz)
Power Dissipation Capacitance (F)
Capacitive per switching output Tester Load (F)
Number of outputs on the 16-bit Device
Average AIDD( slope) 
  N16 * CLT  
VDD
Average1.44,1.785,1.463,1.793,1.481.1.679
 16 * 40 pF   103.9 pF
3.0
Total power dissipation capacitance is not useful for further calculations. For meaningful
calculations one must compute power dissipation capacitance per output.
CPD  per switching output  
Creation Date: 03/01/11
CPD total  103.9 pF

 6.49 pF Per Switching Output
16
N16
Page 21 of 24
Modification Date:
4.2 Example 2
The UT54ACS164245SEI analysis assumes the following: utilization of 8 outputs
switching at 20MHz with 80pF capacitive loads, VDD1=VDD2=3.0V, 512.5Ω pull up to
VDD on the output, at 25°C. A bias resistor is present on the output to pull up the outputs
are in Z state. In practice, the bias resistor will be defined by the system designer.
Referencing tables 1-4, power supply current is found by estimating the slope of the line
at various temperatures. The values in the “Slope (mA/MHz)” column are the values for
the power supply input current that will be used in determining the power dissipation and
dynamic current consumption.
VDD1  VDD 2  VDD  3.0V
TC  25C
CLT  40 pF / output
CPD  6.49 pF
CL  80 pF (users load )
AIDD( slope)  1.45mA / MHz (Table 2)
SIDD  12.62mA
N O  8 outputs
f  20MHz
PDCL  0.5
PDCH  0.5
VOH  VDD  0.2  3.0V  0.2V  2.8V at I OH  100A
VOH (actual )  3.0V Assume no bias resistors output swinging rail to rail
VOL  0.2V at I OL  100 A
VOL (actual )  VDD  512.5 * I OL   3.0V  2.5V  0.44V at I OL  5.0mA
4.2.1 Method 1:
For these conditions power per switching output (PSWO) calculates using equations (1)
and (6):
To calculate the active current at 20MHz using Joule’s law (P=IV):
See Table 2 TC=25°C
I
 AIDD( slope) * f   1.45mA / MHz * 20MHz   1.81mA / output
N16
16
PJoule ' s  N O I * V   SIDD * V   8outputs * 1.81mA * 3.0V   12.62 * 3.0V   81.36mW
for 8 outputs switching
Creation Date: 03/01/11
Page 22 of 24
Modification Date:
AIDD( frequency)   f  f @ known AIDD  * AIDD( slope)  AIDD @ known f 
20MHz  10MHz *1.45mA / MHz   14.41mA  14.45  14.41  28.91mA
PSWO 
VDD * AIDD( frequency) 3.0V * 28.91mA

 5.42mW / per output
N16
16
PTOTAL (method1)  SIDD * VDD   PSWO * N O  
12.62mA * 3.0V   5.42mW / output * 8 outputs   81.23mW
4.2.2 Method 2:
Using equation (2) for calculating Static Device Power (PST):
PST  SIDD * VDD  12.62mA * 3.0V  37.86mW
Dynamic Device Power per Switching Output (PDYN):
 
 

PDYN  CPD VDD * f  CL VOH (actual )  VOL (actual )  * f 
6.49 pF 3.0V
2
2
 
2


* 20MHz  80 pF 3.0V  0.44V  * 20MHz  11.65mW
2
Resistive Output Load Power (PLOAD):
PLOAD  PDCL * VOL * I OL   PDCH * VDD  VOH  * I OH
 
0.5 * 0.5V * 8.0mA  0.5 * 3.0V  3.0V  * 100A   2.0mW  0mW  2.0mW
Total Device Power (PTOTAL) for 8 switching outputs:
PTOTAL  PST   N O PDYN  PLOAD   37.86mW  811.65mW  2.0mW   147.06mW
5.0 Summary and Conclusion
This application note empowers the designer to more accurately determine the power
dissipation of the 16-bit logic products as implemented in the user’s application. The
calculations described in the above sections employ application specific variables such as
load capacitance, frequency, DC loading contributes to overall power dissipation. Using
accurate power dissipation calculations improved power supply selection and design of
proper thermal management schemes is achieved.
Creation Date: 03/01/11
Page 23 of 24
Modification Date:
SMD Ptotal Reference
Aeroflex Part Number
SMD Number
UT54ACS164245S
5962-98580
Power
Dissipation
Ptotal1
Test Conditions
A Port = 3.3V
VDD1 = 4.5V and 5.5V
VDD2 = 3.13V and 3.6V
-----------------------------------B Port = 3.3V
VDD1 = 3.13V and 3.6V
VDD2 = 3.13V and 3.6 V
Ptotal2
B Port = 5.0V
VDD1 = 4.5V and 5.5V
VDD2 = 3.13V and 3.6V
UT54ACS164245SEI
5962-98580
5962-98580
UT54ACS164646S
5962-06234
UT54ACS162245SLV
5962-02543
Creation Date: 03/01/11
Limits
(mW/MHz)
40
1.5
40
2.0
40
2.0
40
1.5
Ptotal1
Port B=5.0V
VDD1 = 4.5V and 5.5V
VDD2 = 4.5V and 5.5V
A Port = 3.3V
VDD1 = 4.5V and 5.5V
VDD2 = 3.0V and 3.6V
-----------------------------------B Port = 3.3V
VDD1 = 3.0V and 3.6V
VDD2 = 3.0V and 3.6V
Ptotal2
Port B = 5.0V
VDD1 = 4.5V and 5.5V
VDD2 = 3.0V and 3.6V
40
2.0
Ptotal3
Port B=5.5V
VDD1 = 4.5V and 5.5V
VDD2 = 4.5V and 5.5V
40
2.0
Ptotal1
A Port = 3.3V
VDD1 = 4.5V and 5.5V
VDD2 = 3.0V and 3.6V
-----------------------------------B Port = 3.3V
VDD1 = 3.0V and 3.6V
VDD2 = 3.0V and 3.6V
40
1.5
Ptotal2
Port B = 5.0V
VDD1 = 4.5V and 5.5V
VDD2 = 3.0V and 3.6V
40
2.0
Ptotal3
Ptotal1
Ptotal2
Ptotal1
Ptotal2
Port B=5.5V
VDD1 = 4.5V and 5.5V
VDD2 = 4.5V and 5.5V
VDDA = VDDB = 4.5V and 5.5V
VDDA = VDDB = 3.0V and 3.6V
VDD = 3.0V and 3.6V
VDD = 2.3V and 2.7V
40
20
20
40
40
2.0
2.0
1.5
6.2
3.0
Ptotal3
UT54ACS164245SE
CL
(pF)
Page 24 of 24
Modification Date: