PDF Data Sheet Rev. A

8-Channel, 24-Bit,
Simultaneous Sampling ADC
AD7770
Data Sheet
FEATURES
8-channel, 24-bit simultaneous sampling analog-to-digital
converter (ADC)
Single-ended or true differential inputs
Programmable gain amplifier (PGA) per channel (gains of
1, 2, 4, and 8)
Low dc input current: ±8 nA
Up to 32 kSPS output data rate (ODR) per channel
Programmable ODRs and bandwidth
Sample rate converter (SRC) for coherent sampling
Sampling rate resolution up to 15.2 × 10−6 SPS
Low latency sinc3 filter path
Adjustable phase synchronization
Internal 2.5 V reference
Two power modes
High resolution mode
Low power mode
Optimizes power dissipation and performance
Low resolution successive approximation register (SAR) ADC
for system and chip diagnostics
Power supply
Bipolar (±1.65 V) or unipolar (3.3 V) supplies
Digital input/output (I/O) supply: 1.8 V to 3.6 V
Performance temperature range: −40°C to +105°C
Functional temperature range: −40°C to +125°C
Performance
Combined ac and dc performance
103 dB dynamic range at 32 kSPS in high resolution mode
−109 dB total harmonic distortion (THD)
±9 ppm of FSR integral nonlinearity (INL)
±15 µV offset error
±0.1% FS gain error
±10 ppm/°C typical temperature coefficient
APPLICATIONS
Protection relays
General-purpose data acquisition
Industrial process control
Each channel contains a PGA, an ADC modulator and a
sinc3, low latency digital filter. An SRC is provided to allow fine
resolution control over the AD7770 ODR. This control can be
used in applications where the ODR resolution is required to
maintain coherency with 0.01 Hz changes in the line frequency.
The SRC is programmable through the serial port interface (SPI).
The AD7770 implements two different interfaces: a data output
interface and SPI control interface. The ADC data output interface
is dedicated to transmitting the ADC conversion results from
the AD7770 to the processor. The SPI writes to and reads from
the AD7770 configuration registers and for the control and
reading of data from the SAR ADC. The SPI can also be
configured to output the Σ-Δ conversion data.
The AD7770 includes a 12-bit SAR ADC. This ADC can be
used for AD7770 diagnostics without having to decommission
one of the Σ-Δ ADC channels dedicated to system measurement
functions. With the use of an external multiplexer, which can be
controlled through the three general-purpose input/output pins
(GPIOs), and signal conditioning, the SAR ADC can validate
the Σ-Δ ADC measurements in applications where functional
safety is required. In addition, the AD7770 SAR ADC includes
an internal multiplexer to sense internal nodes.
The AD7770 contains a 2.5 V reference and reference buffer. The
reference has a typical temperature coefficient of 10 ppm/°C.
The AD7770 offers two modes of operation: high resolution mode
and low power mode. High resolution mode provides a higher
dynamic range while consuming 10.75 mW per channel; low
power mode consumes just 3.37 mW per channel at a reduced
dynamic range specification.
The specified operating temperature range is −40°C to +105°C,
although the device is operational up to +125°C.
GENERAL DESCRIPTION
The AD7770 is an 8-channel, simultaneous sampling ADC. Eight
full sigma-delta (Σ-Δ) ADCs are on chip. The AD7770 provides
a low input current to allow direct sensor connection. Each input
channel has a programmable gain stage allowing gains of 1, 2, 4,
and 8 to map lower amplitude sensor outputs into the full-scale
ADC input range, maximizing the dynamic range of the signal
chain. The AD7770 accepts a VREF voltage from 1 V up to 3.6 V.
Rev. A
The analog inputs accept unipolar (0 V to VREF) or true bipolar
(±VREF/2) analog input signals with 3.3 V or ±1.65 V analog
supply voltages, respectively for PGAGAIN = 1. The analog inputs
can accept true differential, pseudo differential, or single-ended
signals to match different sensor output configurations.
Note that throughout this data sheet, certain terms are used to
refer to either the multifunction pins or a range of pins. The multifunction pins, such as DCLK0/SDO, are referred to either by the
entire pin name or by a single function of the pin, for example,
DCLK0, when only that function is relevant. In the case of ranges
of pins, AVSSx refers to the following pins: AVSS1A, AVSS1B,
AVSS2A, AVSS2B, AVSS3, and AVSS4.
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
©2016 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
AD7770
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Σ-Δ Output Data............................................................................. 50
Applications ....................................................................................... 1
ADC Conversion Output—Header and Data ........................ 50
General Description ......................................................................... 1
SRC (SPI Control Mode) ........................................................... 51
Revision History ............................................................................... 3
Data Output Interface ................................................................ 52
Functional Block Diagram .............................................................. 4
Calculating the CRC Checksum .............................................. 57
Specifications..................................................................................... 5
Register Summary .......................................................................... 58
DOUTx Timing Characterististics ............................................. 9
Register Details ............................................................................... 62
SPI Timing Characterististics ................................................... 10
Channel 0 Configuration Register ........................................... 62
Synchronization Pins and Reset Timing Characteristics ...... 11
Channel 1 Configuration Register ........................................... 62
SAR ADC Timing Characterististics ....................................... 12
Channel 2 Configuration Register ........................................... 63
GPIO SRC Update Timing Characterististics......................... 12
Channel 3 Configuration Register ........................................... 63
Absolute Maximum Ratings .......................................................... 13
Channel 4 Configuration Register ........................................... 64
Thermal Resistance .................................................................... 13
Channel 5 Configuration Register ........................................... 64
ESD Caution ................................................................................ 13
Channel 6 Configuration Register ........................................... 65
Pin Configuration and Function Descriptions ........................... 14
Channel 7 Configuration Register ........................................... 65
Typical Performance Characteristics ........................................... 17
Disable Clocks to ADC Channel Register .............................. 66
Terminology .................................................................................... 30
Channel 0 Sync Offset Register ................................................ 66
Theory of Operation ...................................................................... 32
Channel 1 Sync Offset Register ................................................ 66
Analog Inputs .............................................................................. 32
Channel 2 Sync Offset Register ................................................ 66
Transfer Function ....................................................................... 33
Channel 3 Sync Offset Register ................................................ 67
Core Signal Chain....................................................................... 34
Channel 4 Sync Offset Register ................................................ 67
Capacitive PGA ........................................................................... 34
Channel 5 Sync Offset Register ................................................ 67
Internal Reference and Reference Buffers ............................... 34
Channel 6 Sync Offset Register ................................................ 67
Integrated LDOs ......................................................................... 35
Channel 7 Sync Offset Register ................................................ 67
Clocking and Sampling .............................................................. 35
General User Configuration 1 Register ................................... 68
Digital Reset and Synchronization Pins .................................. 35
General User Configuration 2 Register ................................... 68
Digital Filtering ........................................................................... 36
General User Configuration 3 Register ................................... 69
Shutdown Mode.......................................................................... 36
Data Output Format Register ................................................... 70
Controlling the AD7770 ............................................................ 37
Main ADC Meter and Reference Mux Control Register ...... 71
Pin Control Mode....................................................................... 37
Global Diagnostics Mux Register ............................................. 71
SPI Control .................................................................................. 39
GPIO Configuration Register ................................................... 72
Digital SPI .................................................................................... 42
GPIO Data Register.................................................................... 72
RMS Noise and Resolution............................................................ 45
Buffer Configuration 1 Register ............................................... 73
High Resolution Mode............................................................... 45
Buffer Configuration 2 Register ............................................... 73
Low Power Mode ........................................................................ 45
Channel 0 Offset Upper Byte Register..................................... 73
Diagnostics and Monitoring ......................................................... 46
Channel 0 Offset Middle Byte Register ................................... 73
Self Diagnostics Error ................................................................ 46
Channel 0 Offset Lower Byte Register..................................... 74
Monitoring Using the AD7770 SAR ADC (SPI Control
Mode) ........................................................................................... 47
Channel 0 Gain Upper Byte Register....................................... 74
Σ-Δ ADC Diagnostics (SPI Control Mode) ............................ 49
Channel 0 Gain Lower Byte Register ....................................... 74
Channel 0 Gain Middle Byte Register ..................................... 74
Rev. A | Page 2 of 94
Data Sheet
AD7770
Channel 1 Offset Upper Byte Register .....................................75 Channel 6 Gain Lower Byte Register ....................................... 82 Channel 1 Offset Middle Byte Register ....................................75 Channel 7 Offset Upper Byte Register ..................................... 82 Channel 1 Offset Lower Byte Register .....................................75 Channel 7 Offset Middle Byte Register .................................... 82 Channel 1 Gain Upper Byte Register........................................75 Channel 7 Offset Lower Byte Register ..................................... 82 Channel 1 Gain Middle Byte Register ......................................75 Channel 7 Gain Upper Byte Register ....................................... 82 Channel 1 Gain Lower Byte Register........................................76 Channel 7 Gain Middle Byte Register ...................................... 83 Channel 2 Offset Upper Byte Register .....................................76 Channel 7 Gain Lower Byte Register ....................................... 83 Channel 2 Offset Middle Byte Register ....................................76 Channel 0 Status Register .......................................................... 83 Channel 2 Offset Lower Byte Register .....................................76 Channel 1 Status Register .......................................................... 83 Channel 2 Gain Upper Byte Register........................................76 Channel 2 Status Register .......................................................... 84 Channel 2 Gain Middle Byte Register ......................................77 Channel 3 Status Register .......................................................... 84 Channel 2 Gain Lower Byte Register........................................77 Channel 4 Status Register .......................................................... 85 Channel 3 Offset Upper Byte Register .....................................77 Channel 5 Status Register .......................................................... 85 Channel 3 Offset Middle Byte Register ....................................77 Channel 6 Status Register .......................................................... 85 Channel 3 Offset Lower Byte Register .....................................77 Channel 7 Status Register .......................................................... 86 Channel 3 Gain Upper Byte Register........................................78 Channel 0/Channel 1 DSP Errors Register.............................. 86 Channel 3 Gain Middle Byte Register ......................................78 Channel 2/Channel 3 DSP Errors Register.............................. 87 Channel 3 Gain Lower Byte Register........................................78 Channel 4/Channel 5 DSP Errors Register.............................. 87 Channel 4 Offset Upper Byte Register .....................................78 Channel 6/Channel 7 DSP Errors Register.............................. 88 Channel 4 Offset Middle Byte Register ....................................78 Channel 0 to Channel 7 Error Register Enable Register........ 88 Channel 4 Offset Lower Byte Register .....................................79 General Errors Register 1 ........................................................... 89 Channel 4 Gain Upper Byte Register........................................79 General Errors Register 1 Enable .............................................. 89 Channel 4 Gain Middle Byte Register ......................................79 General Errors Register 2 ........................................................... 89 Channel 4 Gain Lower Byte Register........................................79 General Errors Register 2 Enable .............................................. 90 Channel 5 Offset Upper Byte Register .....................................79 Error Status Register 1 ................................................................ 90 Channel 5 Offset Middle Byte Register ....................................80 Error Status Register 2 ................................................................ 91 Channel 5 Offset Lower Byte Register .....................................80 Error Status Register 3 ................................................................ 91 Channel 5 Gain Upper Byte Register........................................80 Decimation Rate (N) MSB Register ......................................... 92 Channel 5 Gain Middle Byte Register ......................................80 Decimation Rate (N) LSB Register ........................................... 92 Channel 5 Gain Lower Byte Register........................................80 Decimation Rate (IF) MSB Register ......................................... 92 Channel 6 Offset Upper Byte Register .....................................81 Decimation Rate (IF) LSB Register .......................................... 92 Channel 6 Offset Middle Byte Register ....................................81 SRC Load Source and Load Update Register .......................... 93 Channel 6 Offset Lower Byte Register .....................................81 Outline Dimensions ........................................................................ 94 Channel 6 Gain Upper Byte Register........................................81 Ordering Guide ........................................................................... 94 Channel 6 Gain Middle Byte Register ......................................81 REVISION HISTORY
5/2016—Rev. 0 to Rev. A
Change to Features ............................................................................ 1
Changes to Table 1 ............................................................................ 6
Changes to Figure 33 and Figure 36 .............................................21
Change to Figure 78 ........................................................................28
4/2016—Revision 0: Initial Version
Rev. A | Page 3 of 94
AD7770
Data Sheet
FUNCTIONAL BLOCK DIAGRAM
AVDD1x
REFx+ REFx–
AVDD2
COMMONMODE
VOLTAGE
AREGxCAP
ANALOG
LDO
IOVDD
DREGCAP
DIGITAL
LDO
2.5V REF
AIN0+
AIN0–
280mV p-p
EXT_REF
Σ-Δ ADC
PGA
SINC3/
SRC
FILTER
XTAL1
CLOCK
MANAGER
AIN2+
AIN2–
AIN3+
AIN3–
AIN4+
AIN4–
AIN5+
AIN5–
AIN6+
AIN6–
AIN7+
AIN7–
SYNC_IN
SYNC_OUT
START
GAIN
OFFSET
DCLK
DRDY
INT_REF
AIN1+
AIN1–
XTAL2/MCLK
Σ-Δ ADC
SINC3/
SRC
FILTER
GAIN
OFFSET
PGA
Σ-Δ ADC
SINC3/
SRC
FILTER
GAIN
OFFSET
PGA
Σ-Δ ADC
SINC3/
SRC
FILTER
GAIN
OFFSET
PGA
Σ-Δ ADC
SINC3/
SRC
FILTER
GAIN
OFFSET
PGA
Σ-Δ ADC
SINC3/
SRC
FILTER
GAIN
OFFSET
PGA
REFERENCES
REFERENCES
REFERENCES
REFERENCES
REFERENCES
Σ-Δ ADC
SINC3/
SRC
FILTER
GAIN
OFFSET
PGA
Σ-Δ ADC
SINC3/
SRC
FILTER
GAIN
OFFSET
REFERENCES
AUXAIN+
AUXAIN–
DOUT3
DOUT2
DOUT1
DOUT0
REGISTER MAP
AND
LOGIC CONTROL
RESET
FORMAT1
FORMAT0
HARDWARE
MODE
CONFIGURATION
MODE3/ALERT
MODE2/GPIO2
MODE1/GPIO1
MODE0/GPIO0
ALERT/CS
SPI INTERFACE
PGA
REFERENCES
DATA OUTPUT
INTERFACE
DCLK2/SCLK
DCLK1/SDI
DCLK0/SDO
AD7770
SAR ADC
DIAGNOSTIC
INPUTS
AVSSx
AVDD4
CONVST_SAR
Figure 1.
Rev. A | Page 4 of 94
12538-001
VCM
REF_OUT
Data Sheet
AD7770
SPECIFICATIONS
AVDD1x = 1.65 V, AVSSx 1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = analog ground (AGND) (single-supply operation),
AVDD2x − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), master clock
(MCLK) = 8192 kHz for high resolution mode and 4096 kHz for low power mode, ODR = 32 kSPS for high resolution mode and 8 kSPS for
low power mode; all specifications at TMIN to TMAX, unless otherwise noted.
Table 1.
Parameter
ANALOG INPUTS
Differential Input Voltage Range
Single-Ended Input Voltage Range
AINx± Common-Mode Input
Range
Absolute AINx± Voltage Limits
DC Input Current
Single-Ended
Differential
Input Current Drift
AC Input Capacitance
PGA
Gain Settings, PGAGAIN
Bandwidth
REFERENCE
Internal
Initial Accuracy
Temperature Coefficient
Reference Load Current, IL
DC Power Supply Rejection
Load Regulation, ∆VOUT/∆IL
Voltage Noise, eN p-p
Voltage Noise Density, eN
Turn On Settling Time
External
Input Voltage
Buffer Headroom
REFx− Input Voltage
Average REFx± Input Current
Test Conditions/Comments
Min
Typ
VREF = (REFx+ − REFx−)
AVSSx + 0.10
(AVDD1x +
AVSSx)/2
AVSSx + 0.10
High resolution, MCLK = 8192 kHz
Low power mode, MCLK = 4096 kHz
High resolution, MCLK = 8192 kHz
Low power mode, MCLK = 4096 kHz
Max
Unit
±VREF/PGAGAIN
0 to VREF/PGAGAIN
AVDD1x − 0.10
V
V
V
AVDD1x − 0.10
V
8
2
4
1
50
8
nA
nA
nA
nA
pA/°C
pF
1, 2, 4, or 8
Small signal, high resolution mode
Small signal, low power mode
Large signal, high resolution mode
Large signal, low power mode
REF_OUT, TA = 25°C
2.495
2.5
±10
−10
Line regulation
2
512
5
1.5
MHz
kHz
kHz
kHz
2.505
±38
+10
V
ppm/°C
mA
dB
µV/mA
µV rms
nV/√Hz
ms
AVDD1x
AVDD1x − 0.1
AVDD1x − REFx+
V
V
V
95
100
6.8
273.5
1.5
0.1 Hz to 10 Hz
1 kHz, 2.5 V reference
100 nF
VREF = (REFx+ − REFx−)
1
AVSSx + 0.1
2.5
AVSSx
Current per channel
Reference buffer disabled, high
resolution mode
Reference buffer precharge mode
(pre-Q), high resolution mode
Reference buffer disabled, low
power mode
Reference buffer pre-Q, low power
mode
Reference buffer enabled, high
resolution mode
Reference buffer enabled, low
power mode
Rev. A | Page 5 of 94
18
µA/V
600
nA/V
4.5
µA/V
100
nA/V
12
nA/V
5
nA/V
AD7770
Parameter
TEMPERATURE RANGE
Specified Performance
Functional 2
TEMPERATURE SENSOR
Accuracy
DIGITAL FILTER RESPONSE (SINC3)
Group Delay
Settling Time
Pass Band
Decimation Rate
CLOCK SOURCE
Frequency
Duty Cycle
Σ-Δ ADC
Speed and Performance
Resolution
ODR
No Missing Codes
AC Accuracy
Dynamic Range
32 kSPS
8 kSPS
2 kSPS
THD
Signal-to-Noise-and-Distortion
Ratio (SINAD)
SFDR
Intermodulation Distortion
(IMD)
DC Power Supply Rejection
DC Common-Mode Rejection
Ratio
Crosstalk
DC ACCURACY
INL
High Resolution Mode
Low Power Mode
Data Sheet
Test Conditions/Comments
Min
TMIN to TMAX
TMIN to TMAX
−40
−40
Typ
Max
Unit
+105
+125
°C
°C
±2
−0.1 dB
−3 dB
64
High resolution mode
Low power mode
0.655
1.3
45:55
°C
See the SRC Group Delay section
See the Settling Time section
See the SRC Bandwidth section
See the SRC Bandwidth section
4095.99
50:50
8.192
4.096
55:45
MHz
MHz
%
32
8
Bits
kSPS
kSPS
Bits
24
High resolution mode
Low power mode
Up to 24 kSPS
24
Shorted inputs, PGAGAIN = 1
High resolution mode
High resolution mode
Low power mode
Low power mode
−0.5 dBFS, high resolution mode
−0.5 dBFS, low power mode
fIN = 60 Hz
High resolution mode, 16 kSPS,
PGAGAIN = 1
fA = 50 Hz, fB = 51 Hz, high
resolution mode
fA = 50 Hz, fB = 51 Hz, low power
mode
AVDD1x = 3.3 V
103
113
103
113
−109
−105
106
dB
dB
dB
dB
dB
dB
dB
132
dB
−125
dB
−105
dB
−90
dB
dB
−120
dB
80
Endpoint method, PGAGAIN = 1
Other PGA gains
Endpoint method, PGAGAIN = 1
Other PGA gains
Offset Error
Offset Error Drift
Over time
Rev. A | Page 6 of 94
±8
±4
±9
±6
±15
±0.25
−2
±15
±15
±17
±15
±90
ppm of FSR
ppm of FSR
ppm of FSR
ppm of FSR
µV
µV/°C
µV/
1000 hours
Data Sheet
Parameter
Offset Matching
Gain Error
Gain Drift vs. Temperature
Gain Matching
SAR ADC
Speed and Performance
Resolution
Analog Input Range
Analog Input Common-Mode
Range
Analog Input Dynamic Current
Throughput
DC Accuracy
INL
DNL
Offset
Gain
AC Performance
SNR
THD
VCM PIN
Output
Load Current, IL
Load Regulation, ∆VOUT/∆IL
Short-Circuit Current
LOGIC INPUTS
Input Voltage
High, VIH
Low, VIL
Hysteresis
Input Currents
LOGIC OUTPUTS 3
Output Voltage
High, VOH
Low, VOL
Leakage Current
Output Capacitance
Σ-Δ ADC Data Output Coding
SAR ADC Data Output Coding
AD7770
Test Conditions/Comments
Min
Typ
25
±0.1
±0.75
±0.1
Max
12
AVSS4 + 0.1
AVSS4 + 0.1
256 kSPS, 0 dBFS
(AVDD4 +
AVSS4)/2
±100
Unit
µV
% FS
ppm/°C
%
AVDD4 − 0.1
AVDD4 − 0.1
Bits
V
V
256
nA
kSPS
Differential mode
1.5
No missing codes (12-bit)
±1
12
LSB
LSB
LSB
LSB
66
−81
dB
dB
(AVDD1x +
AVSSx)/2
1
12
5
V
−0.99
1 kHz
1 kHz
+1
mA
mV/mA
mA
0.7 × IOVDD
0.4
0.1
−10
IOVDD ≥ 3 V, ISOURCE = 1 mA
2.3 V ≤ IOVDD < 3 V, ISOURCE =
500 μA
IOVDD < 2.3 V, ISOURCE = 200 μA
IOVDD ≥ 3 V, ISINK = 2 mA
2.3 V ≤ IOVDD < 3 V, ISINK = 1 mA
IOVDD < 2.3 V, ISINK = 100 μA
Floating state
Floating state
+10
0.8 × IOVDD
0.8 × IOVDD
V
V
0.8 × IOVDD
0.4
0.4
0.4
+10
−10
Rev. A | Page 7 of 94
V
V
V
µA
10
Twos complement
Binary
V
V
V
V
µA
pF
AD7770
Parameter
POWER SUPPLIES
AVDD1x − AVSSx
IAVDD1x 4, 5
AVDD2x − AVSSx
IAVDD2x
Data Sheet
Test Conditions/Comments
All Σ-Δ channels enabled
AVSSxv − DGND
IOVDD − DGND
IIOVDD
Power Dissipation 6
High Resolution Mode
Low Power Mode
Power-Down
Typ
Max
Unit
3.6
V
18.5
5
23.7
6.4
mA
mA
20.5
5.5
26.7
7.1
mA
mA
14.3
3.9
18.8
5.1
3.6
9.45
3.7
AVDD1x
mA
mA
V
mA
mA
V
2
10
0
3.6
11.3
4.4
mA
µA
V
V
mA
mA
136
44
mW
mW
μW
3.0
Reference buffer pre-Q, VCM
enabled, internal reference
enabled
High resolution mode
Low power mode
Reference buffer enabled, VCM
enabled, internal reference
enabled
High resolution mode
Low power mode
Reference buffer disabled, VCM
disabled, internal reference
disabled
High resolution mode
Low power mode
2.2
High resolution mode
Low power mode
9
3.5
AVDD4 − AVSSx
IAVDD4
Min
AVDD1x −
0.3
SAR enabled
SAR disabled
1.7
1
−1.8
1.8
High resolution mode
Low power mode
Internal buffers bypassed, internal
reference disabled, internal
oscillator disabled, SAR disabled
32 kSPS
8 kSPS
All ADCs disabled
8
3
117
38
530
AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4. This term is used throughout the data sheet.
At temperatures higher than 105°C, the device can be operated normally, though slight degradation on the maximum/minimum specifications is expected because
these specifications are only guaranteed up to 105°C. See the Typical Performance Characteristics section for plots showing the typical performance of the device at
high temperatures.
3
The SDO pin and the DOUTx pin are configured in the default mode of strength.
4
AVDD1x = 3.3 V, AVSSx = GND = ground, IOVDD = 1.8 V, CMOS clock.
5
Disabling either the VCM pin or the internal reference results in a 40 µA typical current consumption reduction.
6
Power dissipation is calculated using the maximum supply voltage, 3.6 V.
1
2
Rev. A | Page 8 of 94
Data Sheet
AD7770
DOUTx TIMING CHARACTERISTISTICS
AVDD1x = 1.65 V, AVSSx 1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND (single-supply operation), AVDD2 −
AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V internal/external, MCLK = 8192 kHz; all
specifications at TMIN to TMAX, unless otherwise noted.
Table 2.
Parameter
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11
2
Test Conditions/Comments
50:50
MCLK/2
MCLK/2
Min
0.655
60
60
121
121
Typ
Max
8.192
45
45
2
1
20
20
AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4. This term is used throughout the data sheet.
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.
t1
t2
t3
MCLK
DCLK
t4
t6
t5
t8
t7
t9
DRDY
DOUTx
LSB
MSB
MSB – 1
t10
t11
Figure 2. Data Interface Timing Diagram
Rev. A | Page 9 of 94
LSB + 1
LSB
12538-002
1
Description 2
MCLK frequency
MCLK low time
MCLK high time
DCLK high time
DCLK low time
MCLK falling edge to DCLK rising edge
MCLK falling edge to DCLK falling edge
DCLK rising edge to DRDY rising edge
DCLK rising edge to DRDY falling edge
DOUTx setup time
DOUTx hold time
Unit
MHz
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
AD7770
Data Sheet
SPI TIMING CHARACTERISTISTICS
AVDD1x = 1.65 V, AVSSx 1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V;
IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX,
unless otherwise noted.
Table 3.
Parameter
t12
t13
t14
t15
t16
t17
t18
t19
t20
t21
t22A
t22B
t23
t24
t25
2
Test Conditions/Comments
50:50
Min
7
7
10
10
10
10
10
5
5
30
49
10
10
30
AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4. This term is used throughout the data sheet.
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.
t19
CS
t15
t16
t17
t13
t14
t18
SCLK
t20
SDI
MSB
t22A
SDO
MSB – 1
t12
LSB + 1
LSB
t21
MSB
t22B
MSB – 1
LSB + 1
t24
t23
Figure 3. SPI Control Interface Timing Diagram
Rev. A | Page 10 of 94
LSB
t25
12538-003
1
Description 2
SCLK period
SCLK low time
SCLK high time
SCLK rising edge to CS falling edge
CS falling edge to SCLK rising edge
SCLK rising edge to CS rising edge
CS rising edge to SCLK rising edge
Minimum CS high time
SDI setup time
SDI hold time
CS falling edge to SDO enable (SPI = Mode 0)
SCLK falling edge to SDO enable (SPI = Mode 1)
SDO setup time
SDO hold time
CS rising edge to SDO disable
Typ
Max
30
Unit
MHz
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Data Sheet
AD7770
SYNCHRONIZATION PINS AND RESET TIMING CHARACTERISTICS
AVDD1x = 1.65 V, AVSSx 1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V;
IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX,
unless otherwise noted.
Table 4.
Parameter
t26
t27
t28
t29
t30
tINIT_SYNC_IN
tINIT_RESET
t31
tPOWER_UP
2
Test Conditions/Comments
16 kSPS, high resolution mode
16 kSPS, high resolution mode
Min
10
MCLK
MCLK
10
MCLK
145
225
2 × MCLK
Typ
tPOWER_UP is not shown in Figure 4
2
AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4. This term is used throughout the data sheet.
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.
MCLK
START
t26
t27
SYNC_OUT
t28
SYNC_IN
t29
t30
DRDY
tINIT_SYNC_IN
RESET
t31
tINIT_RESET
Figure 4. Synchronization Pins and Reset Control Interface Timing Diagram
Rev. A | Page 11 of 94
12538-004
1
Description 2
START setup time
START hold time
MCLK falling edge to SYNC_OUT falling edge
SYNC_IN setup time
SYNC_IN hold time
SYNC_IN rising edge to first DRDY
RESET rising edge to first DRDY
RESET hold time
Start time
Max
Unit
ns
ns
ns
ns
ns
µs
µs
ns
ms
AD7770
Data Sheet
SAR ADC TIMING CHARACTERISTISTICS
AVDD1x = 1.65 V, AVSSx 1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V;
IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX,
unless otherwise noted.
Table 5.
Parameter
t32
t33
t34
t35
1
2
3
Description 2
Conversion time
Acquisition time 3
Delay time
Throughput data rate
Min
1
500
50
Typ
Max
3.4
Unit
µs
ns
ns
kSPS
256
AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3 and AVSS4. This term is used throughout the data sheet.
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.
Direct mode enabled. If deglitch mode is enabled, add 1.5/MCLK as described in Table 29.
CS
t33
t32
t34
12538-005
CONVST_SAR
t35
Figure 5. SAR ADC Timing Diagram
GPIO SRC UPDATE TIMING CHARACTERISTISTICS
AVDD1x = 1.65 V, AVSSx 1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V;
IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications TMIN to TMAX,
unless otherwise noted.
Table 6.
Parameter
t36
t37
t37
t38
t39
t40
2
Min
10
Typ
MCLK
2 × MCLK
20
5
MCLK
AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3 and AVSS4. This term is used throughout the data sheet.
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.
MCLK
GPIO2
t36
t37
GPIO1
t38
GPIO0
t39
t40
Figure 6. GPIOs for SRC Update Timing Diagram
Rev. A | Page 12 of 94
12538-006
1
Description 2
GPIO2 setup time
GPIO2 hold time
High resolution mode
Low power mode
MCLK rising edge to GPIO1 rising edge time
GPIO0 setup time
GPIO0 hold time
Max
Unit
ns
ns
ns
ns
ns
Data Sheet
AD7770
ABSOLUTE MAXIMUM RATINGS
Table 7.
Parameter
Any Supply Pin to AVSSx
AVSSx to DGND
AREGxCAP to AVSSx
DREGCAP to DGND
IOVDD to DGND
IOVDD to AVSSx
AVDD4 to AVSSx
Analog Input Voltage
REFx± Input Voltage
AUXAIN±
Digital Input Voltage to
DGND
Digital Output Voltage to
DGND
XTAL1 to DGND
AINx±, AUXAIN±, and
Digital Input Current
Operating Temperature
Range
Junction Temperature,
TJ Maximum
Storage Temperature Range
Reflow Soldering
ESD
Field Induced Charged
Device Model (FICDM)
Rating
−0.3 V to +3.96 V
−1.98 V to +0.3 V
−0.3 V to +1.98 V
−0.3 V to +1.98 V
−0.3 V to +3.96 V
−0.3 V to +5.94 V
AVDD1x − 0.3 V to 3.96 V
AVSSx − 0.3 V to AVDD1x + 0.3 V or
3.96 V (whichever is less)
AVSSx − 0.3 V to AVDD1x + 0.3 V or
3.96 V (whichever is less)
AVSSx − 0.3 V to AVDD4 + 0.1 V or
3.96 V (whichever is less)
DGND − 0.3 V to IOVDD + 0.3 V or
3.96 V (whichever is less)
DGND − 0.3 V to IOVDD + 0.3 V or
3.96 V (whichever is less)
DGND − 0.3 V to DREGCAP + 0.3 V
or 1.98 V (whichever is less)
±10 mA
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL RESISTANCE
Thermal performance is directly linked to printed circuit board
(PCB) design and operating environment. Close attention to
PCB thermal design is required.
Table 8. Thermal Resistance
Package Type1
64-Lead LFCSP
No Thermal Vias
49 Thermal Vias
θJA
θJB
ΨJT
ΨJB
Unit
30.43
22.62
N/A2
3.17
0.13
0.09
6.59
3.19
°C/W
°C/W
Thermal impedance simulated values are based on a JEDEC 2S2P thermal
test board. See JEDEC JESD51.
2
N/A means not applicable.
1
ESD CAUTION
−40°C to +125°C
150°C
−65°C to +150°C
260°C
2 kV
500 V
Rev. A | Page 13 of 94
AD7770
Data Sheet
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
AUXAIN–
AUXAIN+
AVDD4
AVSS4
AVSS2A
AREG1CAP
AVDD2A
VCM
CLK_SEL
FORMAT0
FORMAT1
AVSS3
AVDD2B
AREG2CAP
AVSS2B
REF_OUT
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
AD7770
TOP VIEW
(Not to Scale)
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
AIN4–
AIN4+
AIN5–
AIN5+
AVSS1B
AVDD1B
REF2–
REF2+
AIN6–
AIN6+
AIN7–
AIN7+
RESET
SYNC_IN
SYNC_OUT
START
NOTES
1. EXPOSED PAD. CONNECT THE EXPOSED PAD TO AVSSx.
12538-007
CONVST_SAR
ALERT/CS
DCLK2/SCLK
DCLK1/SDI
DCLK0/SDO
DGND
DREGCAP
IOVDD
DOUT3
DOUT2
DOUT1
DOUT0
DCLK
DRDY
XTAL1
XTAL2/MCLK
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
AIN0–
AIN0+
AIN1–
AIN1+
AVSS1A
AVDD1A
REF1–
REF1+
AIN2–
AIN2+
AIN3–
AIN3+
MODE0/GPIO0
MODE1/GPIO1
MODE2/GPIO2
MODE3/ALERT
Figure 7. Pin Configuration
Table 9. Pin Function Descriptions
Pin No.
1
2
3
4
5
Mnemonic
AIN0−
AIN0+
AIN1−
AIN1+
AVSS1A
Type
Analog input
Analog input
Analog input
Analog input
Supply
Direction
Input
Input
Input
Input
Supply
6
AVDD1A
Supply
Supply
7
REF1−
Reference
Input
8
9
10
11
12
13
REF1+
AIN2−
AIN2+
AIN3−
AIN3+
MODE0/GPIO0
Reference
Analog input
Analog input
Analog input
Analog input
Digital I/O
Input
Input
Input
Input
Input
I/O
14
MODE1/GPIO1
Digital I/O
I/O
Description
Analog Input Channel 0, Negative.
Analog Input Channel 0, Positive.
Analog Input Channel 1, Negative.
Analog Input Channel 1, Positive.
Negative Front-End Analog Supply for Channel 0 to Channel 3, Typical at −1.65 V
(Dual Supply) or AGND (Single Supply). Connect all the AVSSx pins to the
same potential.
Positive Front-End Analog Supply for Channel 0 to Channel 3, Typical at AVSSx +
3.3 V. Connect this pin to AVDD1B.
Negative Reference Input 1 for Channel 0 to Channel 3, Typical at AVSSx.
Connect all the REFx− pins to the same potential.
Positive Reference Input 1 for Channel 0 to Channel 3, Typical at REF1− + 2.5 V.
Analog Input Channel 2, Negative.
Analog Input Channel 2, Positive.
Analog Input Channel 3, Negative.
Analog Input Channel 3, Positive.
Mode 0 Input in Pin Control Mode (MODE0). See Table 14 for more details.
Configurable General-Purpose Input/Output 0 in SPI Control Mode (GPIO0). If
not in use, connect this pin to DGND or IOVDD.
Mode 1 Input in Pin Control Mode (MODE1). See Table 14 for more details.
Configurable General-Purpose Input/Output 1 in SPI Control Mode (GPIO1). If
not in use, connect this pin to DGND or IOVDD.
Rev. A | Page 14 of 94
Data Sheet
AD7770
Pin No.
15
Mnemonic
MODE2/GPIO2
Type
Digital I/O
Direction
I/O
16
MODE3/ALERT
Digital I/O
I/O
17
CONVST_SAR
Digital input
Input
18
ALERT/CS
Digital input
Input
19
DCLK2/SCLK
Digital input
Input
20
DCLK1/SDI
Digital input
Input
21
DCLK0/SDO
Digital output
Output
22
23
DGND
DREGCAP
Supply
Supply
Supply
Output
24
IOVDD
Supply
Supply
25
DOUT3
Digital output
I/O
26
DOUT2
Digital output
I/O
27
28
29
30
31
DOUT1
DOUT0
DCLK
DRDY
XTAL1
Digital output
Digital output
Digital output
Digital output
Clock
Output
Output
Output
Output
Input
32
XTAL2/MCLK
Clock
Input
33
START
Digital input
Input
34
SYNC_OUT
Digital output
Input
35
SYNC_IN
Digital input
Input
36
RESET
Digital input
Input
37
38
39
40
41
AIN7+
AIN7−
AIN6+
AIN6−
REF2+
Analog input
Analog input
Analog input
Analog input
Reference
Input
Input
Input
Input
Input
Description
Mode 2 Input in Pin Control Mode (MODE2). See Table 14 for more details.
Configurable General-Purpose Input/Output 2 in SPI Control Mode (GPIO2). If
not in use, connect this pin to DGND or IOVDD.
Mode 3 Input in Pin Control Mode (MODE3). See Table 14 for more details.
Alert Output in SPI Control Mode (ALERT).
Σ-Δ Output Interface Selection Pin in Pin Control Mode. See Table 13 for more
details. This pin also functions as the start for the SAR conversion in SPI control
mode.
Alert Output in Pin Control Mode (ALERT).
Chip Select in SPI Control Mode (CS).
DCLK Frequency Selection Pin 2 in Pin Control Mode (DCLK2). See Table 15 for
more details.
SPI Clock in SPI Control Mode (SCLK).
DCLK Frequency Selection Pin 1 in Pin Control Mode (DCLK1). See Table 15 for
more details.
SPI Data Input in SPI Control Mode (SDI). Connect this pin to DGND if the
device is configured in pin control mode with the SPI as the data output interface.
DCLK Frequency Selection Pin 0 in Pin Control Mode (DCLK0). See Table 15 for
more details.
SPI Data Output in SPI Control Mode (SDO).
Digital Ground.
Digital Low Dropout (LDO) Output. Decouple this pin to DGND with a 1 µF
capacitor.
Digital Levels Input/Output and Digital LDO (DLDO) Supply from 1.8 V to 3.6 V.
IOVDD must not be lower than DREGCAP.
Data Output Pin 3. If the device is configured in daisy-chain mode, this pin
acts as an input pin. See the Daisy-Chain Mode section for more details.
Data Output Pin 2. If the device is configured in daisy-chain mode, this pin
acts as an input pin. See the Daisy-Chain Mode section for more details.
Data Output Pin 1.
Data Output Pin 0.
Data Output Clock.
Data Output Ready Pin.
Crystal 1 Input Connection. If CMOS is used as a clock source, tie this pin to
DGND. See Table 12 for more details.
Crystal 2 Input Connection (XTAL2). See Table 12 for more details.
CMOS Clock (MCLK). See Table 12 for more details.
Synchronization Pulse. This pin internally synchronizes an external START
asynchronous pulse with MCLK. The synchronize signal is shifted out by
the SYNC_OUT pin. If not in use, tie this pin to DGND. See the Phase Adjustment
section and the Digital Reset and Synchronization Pins section for more details.
Synchronization Signal. This pin generates a synchronous pulse generated and
driven by hardware (via the START pin) or by software (GENERAL_USER_
CONFIG_2, Bit 0). If this pin is in use, it must be wired to the SYNC_IN pin. See
the Phase Adjustment section and the Digital Reset and Synchronization Pins
section for more details.
Reset for the Internal Digital Block and Synchronize for Multiple Devices. See
the Digital Reset and Synchronization Pins section for more details.
Asynchronous Reset Pin. This pin resets all registers to their default value. It is
recommended to generate a pulse on this pin after the device is powered up
because a slow slew rate in the supplies may generate an incorrect
initialization in the digital block.
Analog Input Channel 7, Positive.
Analog Input Channel 7, Negative.
Analog Input Channel 6, Positive.
Analog Input Channel 6, Negative.
Positive Reference Input 2 for Channel 4 to Channel 7, Typical at REF2− + 2.5 V.
Rev. A | Page 15 of 94
AD7770
Data Sheet
Pin No.
42
Mnemonic
REF2−
Type
Reference
Direction
Input
43
AVDD1B
Supply
Supply
44
AVSS1B
Supply
Supply
45
46
47
48
49
AIN5+
AIN5−
AIN4+
AIN4−
REF_OUT
Analog input
Analog input
Analog input
Analog input
Reference
Input
Input
Input
Input
Output
50
51
52
53
54
55
56
57
58
AVSS2B
AREG2CAP
AVDD2B
AVSS3
FORMAT1
FORMAT0
CLK_SEL
VCM
AVDD2A
Supply
Supply
Supply
Supply
Digital input
Digital input
Digital input
Analog output
Supply
Supply
Output
Supply
Supply
Input
Input
Input
Output
Input
59
60
61
AREG1CAP
AVSS2A
AVSS4
Supply
Supply
Supply
Output
Input
Supply
62
63
64
AVDD4
AUXAIN+
AUXAIN−
EPAD
Supply
Analog input
Analog input
Supply
Supply
Input
Input
Input
Description
Negative Reference Input 2 for Channel 4 to Channel 7, Typical at AVSSx.
Connect all the REFx− pins to the same potential.
Positive Front-End Analog Supply for Channel 4 to Channel 7. Connect this pin
to AVDD1A.
Negative Front-End Analog Supply for Channel 4 to Channel 7, typical at −1.65 V
(Dual Supply) or AGND (Single Supply). Connect all the AVSSx pins to the
same potential.
Analog Input Channel 5, Positive.
Analog Input Channel 5, Negative.
Analog Input Channel 4, Positive.
Analog Input Channel 4, Negative.
2.5 V Reference Output. Connect a 100 nF capacitor on this pin if using the
internal reference.
Negative Analog Supply. Connect all the AVSSx pins to the same potential.
Analog LDO Output 2. Decouple this pin to AVSS2B with a 1 µF capacitor.
Positive Analog Supply. Connect this pin to AVDD2A.
Negative Analog Ground. Connect all the AVSSx pins to the same potential.
Output Data Frame 1. See Table 13 for more details.
Output Data Frame 0. See Table 13 for more details.
Select Clock Source. See Table 12 for more details.
Common-Mode Voltage Output, Typical at (AVDD1 + AVSSx)/2.
Analog Supply from 2.2 V to 3.6 V. AVSS2x must not be lower than AREGxCAP.
Connect this pin to AVDD2B.
Analog LDO Output 1. Decouple this pin to AVSSx with a 1 µF capacitor.
Negative Analog supply. Connect all the AVSSx pins to the same potential.
Negative SAR Analog Supply and Reference. Connect all AVSSx pins to the same
potential.
Positive SAR Analog Supply and Reference Source.
Positive SAR Analog Input Channel.
Negative SAR Analog Input Channel.
Exposed Pad. Connect the exposed pad to AVSSx.
Rev. A | Page 16 of 94
Data Sheet
AD7770
TYPICAL PERFORMANCE CHARACTERISTICS
5
INPUT VOLTAGE (V)
Figure 8. INL vs. Input Voltage and Channel at 16 kSPS, High Resolution Mode
10
8
6
2.48
1.77
1.41
1.06
0.70
0
0.35
–0.35
–15
–0.70
–10
–1.06
1.77
1.41
1.06
0.70
0
0.35
–0.35
–0.70
–1.06
–1.41
–1.77
–2.48
–10
–2.12
–8
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
–5
12538-208
–6
2.48
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
–4
–1.41
–2
0
INPUT VOLTAGE (V)
12538-211
0
2.12
INL (ppm)
2
2.12
INL (ppm)
4
10
–1.77
6
TEMPERATURE = 25°C
GAIN = 1
DIFFERENTIAL INPUT SIGNAL
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
–2.12
8
15
TEMPERATURE = 25°C
GAIN = 1
DIFFERENTIAL INPUT SIGNAL
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
–2.48
10
Figure 11. INL vs. Input Voltage and Channel at 4 kSPS, Low Power Mode
10
TEMPERATURE = 25°C
VREF = 2.5V
DIFFERENTIAL VIN × GAIN
VCM = (AVDD1x + AVSSx) ÷ 2
5
TEMPERATURE = 25°C
VREF = 2.5V
DIFFERENTIAL VIN × GAIN
VCM = (AVDD1x + AVSSx) ÷ 2
2
INL (ppm)
INL (ppm)
4
0
–2
0
–5
–4
Figure 9. INL vs. Input Voltage and PGA Gain at 16 kSPS, High Resolution Mode
10
8
6
2.48
2.12
1.77
1.41
1.06
0.70
0.35
0
–0.35
–0.70
–1.06
–1.41
–1.77
–2.12
–2.48
–15
INPUT VOLTAGE (V)
12538-212
INPUT VOLTAGE (V)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
–10
12538-209
2.48
2.12
1.41
1.06
0.70
0
0.35
–0.35
–0.70
–1.06
–1.41
–1.77
–2.48
–10
–2.12
–8
1.77
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
–6
Figure 12. INL vs. Input Voltage and PGA Gain at 4 kSPS, Low Power Mode
15
GAIN = 1
DIFFERENTIAL INPUT SIGNAL
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
10
GAIN = 1
DIFFERENTIAL INPUT SIGNAL
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
4
5
INL (ppm)
0
–2
–4
2.48
2.12
1.77
1.41
1.06
0.70
0.35
0
–0.35
–0.70
–1.06
–1.41
–1.77
–2.12
–2.48
–15
INPUT VOLTAGE (V)
Figure 13. INL vs. Input Voltage and Temperature at 4 kSPS,
Low Power Mode
Figure 10. INL vs. Input Voltage and Temperature at 16 kSPS,
High Resolution Mode
Rev. A | Page 17 of 94
12538-213
INPUT VOLTAGE (V)
TA = –40°C
TA = +25C
TA = +105°C
TA = +125°C
–10
12538-210
2.48
2.12
–40°C
+25C
+105°C
+125°C
1.77
1.06
0.70
0
0.35
–0.35
–0.70
–1.06
–1.41
–1.77
–2.12
–10
1.41
TA =
TA =
TA =
TA =
–8
–12
0
–5
–6
–2.48
INL (ppm)
2
AD7770
20
20
TEMPERATURE = 25°C
GAIN = 1
DIFFERENTIAL INPUT SIGNAL
VCM = (AVDD1x + AVSSx) ÷ 2
15
10
10
5
0
–5
–3
–2
–1
1
0
–15
4
3
2
–20
6
–3
–2
–1
0
1
2
3
4
Figure 17. INL vs. Input Voltage and VREF at 4 kSPS, Low Power Mode
15
TEMPERATURE = 25°C
VREF = 2.5V
DIFFERENTIAL INPUT SIGNAL
GAIN = 1
8
–4
= 1V
= 1.5V
= 2V
= 2.5V
= 3V
= 3.3V
INPUT VOLTAGE (V)
Figure 14. INL vs. Input Voltage and Reference Voltage (VREF)
at 16 kSPS, High Resolution Mode
10
VREF
VREF
VREF
VREF
VREF
VREF
–10
INPUT VOLTAGE (V)
TEMPERATURE = 25°C
VREF = 2.5V
DIFFERENTIAL INPUT SIGNAL
GAIN =1
10
4
5
2
INL (ppm)
0
–2
0
–5
–10
1000
Figure 16. Noise Histogram at 16 kSPS, High Resolution Mode
2.48
12538-218
2.12
1.77
1.06
0.70
0
–0.35
–0.70
–1.06
0.35
ADC CODE
Figure 19. Noise Histogram at 4 kSPS, Low Power Mode
Rev. A | Page 18 of 94
12538-219
8388644
8388604
8388564
8388524
8388484
8388444
8388404
8388364
12538-216
8388652
8388608
8388564
8388520
8388476
8388432
0
8388388
0
8388344
200
8388300
200
8388256
400
8388212
400
ADC CODE
–1.41
600
8388324
600
800
8388284
800
8388244
1000
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
TEMPERATURE = 25°C
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
1200
SAMPLE COUNT
1200
Figure 18. INL vs. Input Voltage and VCM at 4 kSPS, Low Power Mode
1400
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
TEMPERATURE = 25°C
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
–1.77
INPUT VOLTAGE (V)
Figure 15. INL vs. Input Voltage and VCM at 16 kSPS, High Resolution Mode
1400
–2.12
–2.48
2.48
INPUT VOLTAGE (V)
VCM = 1.35V
VCM = 1.65V
VCM = 1.95V
–15
12538-215
2.12
1.41
1.06
0.70
0
0.35
–0.35
–0.70
–1.06
–1.41
–1.77
–2.12
–2.48
–10
1.77
VCM = 1.35V
VCM = 1.65V
VCM = 1.95V
–8
8388204
–6
1.41
–4
8388164
INL (ppm)
0
12538-217
–4
= 1V
= 1.5V
= 2V
= 2.5V
= 3V
= 3.3V
12538-214
–15
SAMPLE COUNT
5
–5
VREF
VREF
VREF
VREF
VREF
VREF
–10
–20
TEMPERATURE = 25°C
GAIN = 1
DIFFERENTIAL INPUT SIGNAL
VCM = (AVDD1x + AVSSx) ÷ 2
15
INL (ppm)
INL (ppm)
Data Sheet
Data Sheet
8
AD7770
8
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
7
6
NOISE (µV rms)
5
4
3
2
4
3
2
105
25
TEMPERATURE (°C)
0
–40
12538-220
0
–40
125
Figure 20. Noise vs. Temperature at 16 kSPS, High Resolution Mode
105
25
TEMPERATURE (°C)
125
Figure 23. Noise vs. Temperature at 4 kSPS, Low Power Mode
7
7
6
6
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
TEMPERATURE = 25°C
DECIMATION = 256
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
TEMPERATURE = 25°C
DECIMATION = 256
5
NOISE (µV rms)
5
4
3
4
3
2
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
CLOCK FREQUENCY (Hz)
0
CLOCK FREQUENCY (Hz)
Figure 21. Noise vs. Clock Frequency, High Resolution Mode
120
Figure 24. Noise vs. Clock Frequency, Low Power Mode
300
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
250
NOISE (nV/√Hz)
100
80
60
40
200
150
100
50
2000
4000
8000
16000
32000
ODR (SPS)
12538-222
20
0
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
Figure 22. Noise vs. ODR, High Resolution Mode
0
500
1000
2000
4000
ODR (SPS)
Figure 25. Noise vs. ODR, Low Power Mode
Rev. A | Page 19 of 94
8000
12538-225
140
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
1
12538-221
335360
652800
970240
1287680
1605120
1922560
2240000
2557440
2874880
3192320
3509760
3827200
4144640
4462080
4779520
5096960
5414400
5731840
6049280
6366720
6684160
7001600
7319040
7636480
7953920
1
12538-224
2
0
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
1
12538-223
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
1
NOISE (µV rms)
5
294400
448000
601600
755200
908800
1062400
1216000
1369600
1523200
1676800
1830400
1984000
2137600
2291200
2444800
2598400
2752000
2905600
3059200
3212800
3366400
3520000
3673600
3827200
3980800
NOISE (µV rms)
6
NOISE (nV/√Hz)
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
7
Data Sheet
FREQUENCY (Hz)
3925.78125
12538-229
3664.06250
3402.34375
3140.62500
2878.90625
2617.18750
2355.46875
2093.75000
1832.03125
1570.31250
1308.59375
12538-230
3828.1250
3554.6875
3281.2500
3007.8125
2734.3750
2460.9375
2187.5000
1914.0625
1640.6250
1367.1875
1093.7500
–100
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
–105
–110
THD (dB)
–115
–120
–115
–120
–125
INPUT FREQUENCY (Hz)
Figure 28. THD vs. Input Frequency at 16 kSPS, High Resolution Mode
Rev. A | Page 20 of 94
Figure 31. THD vs. Input Frequency at 4 kSPS, Low Power Mode
12538-231
1870.0
1660.0
1440.0
1220.0
1010.0
811.9
604.0
INPUT FREQUENCY (Hz)
–130
VIN = –0.5dBFS
VREF = 2.5V
TEMPERATURE = 25°C
406.0
12538-228
7860
7160
6320
5620
4710
3870
3170
2400
1700
1000
901
802
703
604
505
406
307
208
10
109
VIN = –0.5dBFS
VREF = 2.5V
TEMPERATURE = 25°C
208.0
–125
10.0
THD (dB)
820.3125
Figure 30. FFT at 8 kSPS, Low Power Mode,
Input Frequency (fIN) = 1 kHz
–110
–130
546.8750
FREQUENCY (Hz)
Figure 27. FFT at 32 kSPS, High Resolution Mode,
Input Frequency (fIN) = 1 kHz
–105
VREF = 2.5V
TEMPERATURE = 25°C
DIFFERENTIAL INPUT = –0.5dBFS
VCM = (AVDD1x + AVSSx) ÷ 2
INPUT FREQUENCY = 1kHz
8192 SAMPLES
8kSPS
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
12538-227
0
10
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
–130
–140
–150
–160
–170
–180
273.4375
AMPLITUDE (dB)
14984.375000
13914.062500
12843.750000
FREQUENCY (Hz)
–100
785.15625
Figure 29. FFT at 8 kSPS, Low Power Mode,
Input Frequency (fIN) = 50 Hz
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
11773.437500
9632.812500
10703.125000
7648.437500
8562.500000
6533.203125
5462.890625
4388.671875
3304.687500
2234.375000
1103.515625
0
AMPLITUDE (dB)
VREF = 2.5V
TEMPERATURE = 25°C
DIFFERENTIAL INPUT = –0.5dBFS
VCM = (AVDD1x + AVSSx) ÷ 2
INPUT FREQUENCY = 1kHz
16384 SAMPLES
32kSPS
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
FREQUENCY (Hz)
Figure 26. FFT at 32 kSPS, High Resolution Mode,
Input Frequency (fIN) = 50 Hz
10
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
–130
–140
–150
–160
–170
–180
1046.87500
VREF = 2.5V
TEMPERATURE = 25°C
DIFFERENTIAL INPUT = –0.5dBFS
VCM = (AVDD1x + AVSSx) ÷ 2
INPUT FREQUENCY = 50Hz
8192 SAMPLES
8kSPS
523.43750
0
10
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
–130
–140
–150
–160
–170
–180
261.71875
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
AMPLITUDE (dB)
VREF = 2.5V
TEMPERATURE = 25°C
DIFFERENTIAL INPUT = –0.5dBFS
VCM = (AVDD1x + AVSSx) ÷ 2
INPUT FREQUENCY = 50Hz
16384 SAMPLES
32kSPS
12538-226
10
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
–130
–140
–150
–160
–170
–180
0
656.250000
1296.875000
1986.328125
2617.187500
3250.000000
3884.765625
4156.250000
4789.062500
5427.734375
6066.406250
6703.125000
7312.500000
7921.875000
8531.250000
9140.625000
9750.000000
10359.375000
10968.750000
11578.125000
12187.500000
12796.875000
13406.250000
14015.625000
14625.000000
15234.375000
15843.750000
AMPLITUDE (dB)
AD7770
Data Sheet
AD7770
–105
–110
–115
–115
THD (dB)
–110
–120
–125
–130
–130
INPUT FREQUENCY = 50Hz
VREF = 2.5V
TEMPERATURE = 25°C
INPUT VOLTAGE (V)
–90
INPUT VOLTAGE (V)
Figure 35. THD vs. Input Voltage at 4 kSPS, Low Power Mode
–90
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
–95
–105
–105
THD (dB)
–100
–110
–110
–115
–120
INPUT FREQUENCY = 50Hz
INPUT VOLTAGE = –0.5dBFS
TEMPERATURE = 25°C
REFERENCE VOLTAGE (V)
–125
12538-233
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
–105
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
REFERENCE VOLTAGE (V)
Figure 36. THD vs. Reference Voltage at 4 kSPS, Low Power Mode
Figure 33. THD vs. Reference Voltage at 16 kSPS, High Resolution Mode
–100
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
INPUT FREQUENCY = 50Hz
VREF = 2.5V
INPUT VOLTAGE = –0.5dBFS
TEMPERATURE = 25°C
DECIMATION = 256
INPUT FREQUENCY = 50Hz
INPUT VOLTAGE = –0.5dBFS
TEMPERATURE = 25°C
12538-236
–115
–100
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
–95
–100
–125
0.172
0.344
0.516
0.688
0.860
1.032
1.204
1.376
1.548
1.720
1.892
2.064
2.236
2.408
2.580
2.752
2.924
3.096
3.268
3.440
3.612
3.784
3.956
4.128
4.300
4.472
4.644
–140
Figure 32. THD vs. Input Voltage at 16 kSPS, High Resolution Mode
–120
INPUT FREQUENCY = 50Hz
VREF = 2.5V
TEMPERATURE = 25°C
–135
12538-232
–140
THD (dB)
–120
–125
–135
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
–105
0.172
0.344
0.516
0.688
0.860
1.032
1.204
1.376
1.548
1.720
1.892
2.064
2.236
2.408
2.580
2.752
2.924
3.096
3.268
3.440
3.612
3.784
3.956
4.128
4.300
4.472
4.644
THD (dB)
–100
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
12538-235
–100
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
INPUT FREQUENCY = 50Hz
VREF = 2.5V
INPUT VOLTAGE = –0.5dBFS
TEMPERATURE = 25°C
DECIMATION = 256
–105
THD (dB)
–115
–115
–120
–120
Rev. A | Page 21 of 94
3976960
3659520
3342080
3024640
2707200
2389760
2072320
1754880
1437440
1120000
802560
485120
167680
MCLK FREQUENCY (Hz)
Figure 37. THD vs. MCLK Frequency, Low Power Mode
Figure 34. THD vs. MCLK Frequency, High Resolution Mode
12538-237
MCLK FREQUENCY (Hz)
–130
12538-234
7953920
7319040
6684160
6049280
5414400
4144640
4779520
3509760
2874880
2240000
1605120
970240
–125
–125
335360
THD (dB)
–110
–110
AD7770
Data Sheet
GAIN =
GAIN =
GAIN =
GAIN =
115
110
110
SNR (dB)
115
105
105
100
100
95
95
VIN = 0dBFS
VREF = 2.5V
TEMPERATURE = 25°C
90
1
2
VIN = 0dBFS
VREF = 2.5V
TEMPERATURE = 25°C
90
4
8
16
32
85
0.5
ODR (kHz)
120
TEMPERATURE = 25°C
ODR = 16kSPS
DYNAMIC RANGE (dB)
TEMPERATURE = 25°C
ODR = 4kSPS
110
105
110
105
100
1
2
4
95
12538-239
95
8
PGA GAIN
1
8
Figure 42. Dynamic Range vs. PGA Gain, Low Power Mode
5
TEMPERATURE = 25°C
VIN = 0V
VREF = 2.5V
AVDD1x = 3.3V
–5
4
PGA GAIN
Figure 39. Dynamic Range vs. PGA Gain, High Resolution Mode
0
2
12538-242
DYNAMIC RANGE (dB)
8
115
100
TEMPERATURE = 25°C
VIN = 0V
VREF = 2.5V
AVDD1x = 3.3V
0
–5
OFFSET ERROR (µV)
–10
–15
–20
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
–25
–30
1
2
4
PGA GAIN
–10
–15
–20
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
–25
–30
8
12538-240
OFFSET ERROR (µV)
4
Figure 41. SNR vs. ODR at 4 kSPS, Low Power Mode
115
–35
2
ODR (kHz)
Figure 38. SNR vs. ODR at 16 kSPS, High Resolution Mode
120
1
Figure 40. Offset Error vs. PGA Gain, High Resolution Mode
–35
1
2
4
PGA GAIN
Figure 43. Offset Error vs. PGA Gain, Low Power Mode
Rev. A | Page 22 of 94
8
12538-243
85
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
120
12538-238
SNR (dB)
120
125
1
2
4
8
12538-241
125
Data Sheet
0
2
0
–2
OFFSET ERROR (µV)
–4
4
TEMPERATURE = 25°C
VIN = 0V
VREF = 2.5V
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
–2
–6
–8
–10
–12
–4
–6
–8
–14
–12
–16
–16
3.0
3.6
POWER SUPPLY SETTING
Figure 44. Offset Error vs. Power Supply Setting, High Resolution Mode
Figure 47. Offset Error vs. Power Supply Setting, Low Power Mode
35
AVDD1x = 3.3V
VREF = 2.5V
VIN = 0dBFS
30
30
25
GAIN ERROR DRIFT (ppm)
20
10
0
–10
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
–30
–40
–50
–60
–40
–20
0
20
40
60
80
100
120
20
15
10
5
0
–5
–10
140
TEMPERATURE (°C)
–15
0
0
0.017
TEMPERATURE = 25°C
GAIN = 1
VREF = 2.5V
VIN = 0dBFS
0.008
0
GAIN ERROR (%)
0.008
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
–0.008
–0.017
–0.035
3.6
AVDD1x SUPPLY (V)
12538-246
–0.035
3.3
Figure 46. Gain Error vs. AVDD1x Supply, High Resolution Mode
TEMPERATURE = 25°C
GAIN = 1
VREF = 2.5V
VIN = 0dBFS
–0.017
–0.026
3.0
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
–0.008
–0.026
–0.043
1000
Figure 48. Gain Error Drift vs. Time
Figure 45. Offset Drift vs. Temperature
0.017
500
TIME (Hours)
12538-248
–20
12538-245
OFFSET DRIFT (µV)
3.3
12538-247
3.6
12538-244
3.3
POWER SUPPLY SETTING
GAIN ERROR (%)
TEMPERATURE = 25°C
VIN = 0V
VREF = 2.5V
–14
–18
3.0
40
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
–10
–0.043
3.0
3.3
AVDD1x SUPPLY (V)
Figure 49. Gain Error vs. AVDD1x Supply, Low Power Mode
Rev. A | Page 23 of 94
3.6
12538-249
OFFSET ERROR (µV)
AD7770
AD7770
–0.011
–0.017
0
–0.005
–0.011
–0.017
–0.023
–0.023
–0.029
–0.029
–0.035
–0.035
–0.400
–40
25
105
125
TEMPERATURE (°C)
–0.400
–40
HIGH RESOLUTION
LOW POWER
0.05
0.04
0.03
0.02
0.01
2
1
0
–1
–2
–3
–4
–5
2
4
8
–6
–40
12538-251
1
PGA GAIN
0.010
0
0.005
TUE (% OF INPUT)
–0.005
–0.010
–0.015
–0.025
–0.030
–40
25
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
105
TEMPERATURE (°C)
Figure 52. Total Unadjusted Error (TUE) vs. Temperature,
High Resolution Mode
125
TEMPERATURE = 25°C
VIN = –0.5dBFS
VREF = 2.5V
AVDD1x = 3.3V
GAIN = 1
0
–0.005
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
–0.010
–0.015
–40
12538-252
TEMPERATURE = 25°C
VIN = –0.5dBFS
VREF = 2.5V
AVDD1x = 3.3V
GAIN = 1
105
Figure 54. Internal Reference Voltage Drift
0.005
–0.020
25
TEMPERATURE (°C)
Figure 51. Channel Gain Mismatch, High Resolution Mode
TUE (% OF INPUT)
125
3
0.06
0
125
4
REFERENCE VOLTAGE DRIFT (mV)
GAIN ERROR (%)
0.07
125
Figure 53. Gain Error vs. Temperature, Low Power Mode
TEMPERATURE = 25°C
AVDD1x = 3.3V
VREF = 2.5V
VIN = 0dBFS
0.08
105
TEMPERATURE (°C)
Figure 50. Gain Error vs. Temperature, High Resolution Mode
0.09
25
12538-253
–0.005
12538-254
0
0.005
12538-250
GAIN ERROR (%)
0.005
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
AVDD1x = 3.3V
VREF = 2.5V
VIN = 0dBFS
0.011
12538-255
0.011
0.017
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
AVDD1x = 3.3V
VREF = 2.5V
VIN = 0dBFS
GAIN ERROR (%)
0.017
Data Sheet
25
105
TEMPERATURE (°C)
Figure 55. Total Unadjusted Error (TUE) vs. Temperature, Low Power Mode
Rev. A | Page 24 of 94
Data Sheet
4
AD7770
10
AINx+; VCM = 1.95V
AINx–; VCM = 1.95V
AINx+; VCM = 1.35V
AINx–; VCM = 1.35V
3
6
INPUT CURRENT (nA)
1
0
–1
–2
–4
–1.0
–0.5
0
0.5
1.0
1.5
2.0
2.5
Figure 56. Input Current vs. Differential Input Voltage, High Resolution Mode
6
ABSOLUTE INPUT CURRENT (nA)
–2
–4
–6
–10
–12
–40
AIN0+
AIN0–
AIN2+
AIN2–
105
125
TEMPERATURE (°C)
Figure 57. Absolute Input Current vs. Temperature, High Resolution Mode
2
1
0
–1
–2
–3
–4
2.0
2.5
–3
–4
–6
–40
AIN0+
AIN0–
AIN2+
AIN2–
25
105
125
TEMPERATURE (°C)
Figure 60. Absolute Input Current vs. Temperature, Low Power Mode
VREF = 2.5V
AVDD1x = 3.3V
AINx+ – AINx–; V CM = 1.95V
AINx+ – AINx–; V CM = 1.35V
8
6
4
2
0
–2
–4
–6
–8
0
0.5
1.0
1.5
2.0
–2.0 –1.5 –1.0 –0.5
DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–))
2.5
12538-258
–5
–2.5
1.5
–2
10
3
1.0
–1
12
AINx+ – AINx–; V CM = 1.95V
AINx+ – AINx–; V CM = 1.35V
0.5
0
DIFFERENTIAL INPUT CURRENT (nA)
VREF = 2.5V
AVDD1x = 3.3V
0
1
–5
25
–0.5
2
12538-257
–8
–1.0
VREF = 2.5V
VIN = 2.5V
AVDD1x = 3.3V
3
0
–1.5
Figure 59. Input Current vs. Differential Input Voltage, Low Power Mode
4
2
–2.0
DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–))
VREF = 2.5V
VIN = 2.5V
AVDD1x = 3.3V
4
VREF = 2.5V
AVDD1x = 3.3V
12538-259
–1.5
–10
–2.5
12538-260
–2.0
DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–))
ABSOLUTE INPUT CURRENT (nA)
0
–2
–8
VREF = 2.5V
AVDD1x = 3.3V
12538-256
–4
–2.5
DIFFERENTIAL INPUT CURRENT (nA)
2
–6
–3
4
4
Figure 58. Differential Input Current vs. Differential Input Voltage,
High Resolution Mode
–10
–2.5
–2.0 –1.5 –1.0 –0.5
0
0.5
1.0
1.5
2.0
DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–))
2.5
Figure 61. Differential Input Current vs. Differential Input Voltage,
Low Power Mode
Rev. A | Page 25 of 94
12538-261
INPUT CURRENT (nA)
2
5
AINx+; VCM = 1.95V
AINx–; VCM = 1.95V
AINx+; VCM = 1.35V
AINx–; VCM = 1.35V
8
AD7770
Data Sheet
8
105
125
TEMPERATURE (°C)
Figure 62. Differential Input Current vs. Temperature, High Resolution Mode
0
5
4
3
2
1
0
–40
125
Figure 65. Differential Input Current vs. Temperature, Low Power Mode
0
–20
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
AVDD1x = 3.3V
VCM = 1.65V + 100mV p-p
–40
Figure 64. AC Power Supply Rejection Ratio (PSRR) vs. Input Frequency at
16 kSPS, High Resolution Mode
Rev. A | Page 26 of 94
12538-266
175653.757
188933.526
162215.895
148461.848
135023.987
121586.125
94552.309
107990.171
81114.447
67360.401
9460001.00
8900002.00
8360002.00
7780003.00
12538-267
INPUT FREQUENCY (Hz)
7240004.00
6680005.00
6140006.00
5580007.00
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
5040007.00
4500008.00
3880009.00
3320010.00
2780011.00
2220012.00
0
–10 AVDD1x = 3.3V + 100mV p-p
TEMPERATURE = 25°C
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
–130
–140
–150
–160
20014.97
AC PSRR (dB)
12538-264
9460001.00
8900002.00
8360002.00
7780003.00
7240004.00
6680005.00
6140006.00
5580007.00
5040007.00
4500008.00
3880009.00
3320010.00
2780011.00
2220012.00
1140013.00
1680012.00
20014.97
580014.13
Figure 66. CMRR vs. Input Frequency at 4 kSPS, Low Power Mode
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
INPUT FREQUENCY (Hz)
40642.77
INPUT FREQUENCY (Hz)
Figure 63. Common-Mode Rejection Ratio (CMRR) vs. Input Frequency at
16 kSPS, High Resolution Mode
0
–10 AVDD1x = 3.3V + 100mV p-p
TEMPERATURE = 25°C
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
–130
–140
–150
–160
53922.539
171.09249
198023.844000
12538-263
184506.936000
171543.352000
158105.490000
INPUT FREQUENCY (Hz)
145141.906000
132178.322000
118661.414000
92101.875000
105697.830000
79138.291000
66174.707000
–140
52578.753000
–140
39615.169000
–120
26177.307000
–120
250.138735
–100
13213.723000
–100
26888.723
–80
1680012.00
–80
–60
1140013.00
–60
13450.862
CMRR (dB)
CMRR (dB)
105
TEMPERATURE (°C)
–40
AC PSRR (dB)
25
580014.13
–20
6
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
AVDD1x = 3.3V
VCM = 1.65V + 100mV p-p
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
12538-265
25
VREF = 2.5V
VIN = 2.5V
AVDD1x = 3.3V
7
DIFFERENTIAL INPUT CURRENT (nA)
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
12538-262
DIFFERENTIAL INPUT CURRENT (nA)
VREF = 2.5V
VIN = 2.5V
AVDD1x = 3.3V
Figure 67. AC PSRR vs. Input Frequency at 4 kSPS, Low Power Mode
Data Sheet
AD7770
0
0
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
–10
–20
–20
–30
–70
Figure 68. Filter Profiles at 16 kSPS, High Resolution Mode
SUPPLY CURRENT (mA)
16
14
7681.0
7202.5
6724.0
6245.5
5767.0
5288.5
4810.0
4331.5
Figure 71. Filter Profiles at 4 kSPS, Low Power Mode
60
AVDD1x
AVDD2x
AVDD4
IOVDD
50
ALL CHANNELS ENABLED
SUPPLY CURRENT (mA)
18
3853.0
25.0
FREQUENCY (Hz)
12538-271
FREQUENCY (Hz)
12538-268
30721.0
28802.5
26884.0
24965.5
23047.0
21128.5
19210.0
17291.5
15373.0
13454.5
9617.5
11536.0
7699.0
–120
5780.5
–110
–120
3862.0
–110
25.0
–100
1943.5
–90
–100
3374.5
–80
–90
2896.0
–80
–60
2417.5
–70
–50
1939.0
–60
–40
982.0
–50
1460.5
–40
503.5
ATTENUATION (dB)
ATTENUATION (dB)
–30
20
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
–10
12
10
8
6
4
AVDD1x
AVDD2x
AVDD4
IOVDD
ALL CHANNELS ENABLED
40
30
20
10
2.4
2.6
2.8
3.0
3.2
3.4
3.6
SUPPLY VOLTAGE (V)
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
SUPPLY VOLTAGE (V)
Figure 69. Supply Current vs. Supply Voltage, High Resolution Mode
Figure 72. Supply Current vs. Supply Voltage, Low Power Mode
25
70
AVDD1x
AVDD2x
AVDD4
IOVDD
ALL CHANNELS ENABLED
60
SUPPLY CURRENT (mA)
20
SUPPLY CURRENT (mA)
0
2.0
15
10
5
40
30
20
10
25
105
125
TEMPERATURE (°C)
12538-270
0
–40
50
AVDD1x
AVDD2x
AVDD4
IOVDD
ALL CHANNELS ENABLED
Figure 70. Supply Current vs. Temperature, High Resolution Mode
0
–40
25
105
125
TEMPERATURE (°C)
Figure 73. Supply Current vs. Temperature, Low Power Mode
Rev. A | Page 27 of 94
12538-273
2.2
12538-269
0
2.0
12538-272
2
AD7770
Data Sheet
300
REF1–
REF1+
REF2–
REF2+
200
200
0
–200
–400
–600
100
0
–100
–200
–300
–400
–800
TEMPERATURE (°C)
–35.263
–29.594
–22.185
–15.223
–7.366
–0.405
7.006
14.429
22.067
29.170
36.646
44.122
52.009
58.557
66.064
74.427
81.446
89.252
96.238
105.348
112.092
119.542
123.075
12538-274
–35.263
–29.594
–22.185
–15.223
–7.366
–0.405
7.006
14.429
22.067
29.170
36.646
44.122
52.009
58.557
66.064
74.427
81.446
89.252
96.238
105.348
112.092
119.542
123.075
–600
Figure 74. Reference Input Current vs. Temperature, High Resolution Mode
TEMPERATURE (°C)
Figure 77. Reference Input Current vs. Temperature, Low Power Mode
60
SHUTDOWN SUPPLY CURRENT (µA)
70
60
50
40
30
20
0
1.8
AVDD1x
AVDD2x
AVDD4
IOVDD
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
SUPPLY VOLTAGE (V)
40
30
20
10
0
–40
14
ONLY ONE CHANNEL ENABLED
AVDD1x
AVDD2x
AVDD4
IOVDD
POWER CONSUMPTION (mW)
12
25
20
15
10
40
60
80
100
120
10
ONLY ONE CHANNEL ENABLED
AVDD1x
AVDD2x
AVDD4
IOVDD
8
6
4
2
5
0
1.8
20
Figure 78. Shutdown Supply Current vs. Temperature
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
SUPPLY VOLTAGE (V)
12538-276
POWER CONSUMPTION (mW)
30
0
TEMPERATURE (°C)
Figure 75. Shutdown Supply Current vs. Supply Voltage
35
–20
Figure 76. Power Consumption per Channel vs. Supply Voltage,
High Resolution Mode
0
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
SUPPLY VOLTAGE (V)
Figure 79. Power Consumption per Channel vs. Supply Voltage,
Low Power Mode
Rev. A | Page 28 of 94
12538-279
10
AVDD1x
AVDD2x
AVDD4
IOVDD
50
12538-275
SHUTDOWN SUPPLY CURRENT (µA)
80
40
REF1–
REF1+
REF2–
REF2+
–500
12538-277
400
12538-278
600
REFERENCE INPUT CURRENT (nA)
REFERENCE INPUT CURRENT (nA)
800
Data Sheet
POWER DISSIPATION (mW)
80
70
25
AVDD1x
AVDD2x
AVDD4
IOVDD
POWER DISSIPATION (mW)
90
AD7770
60
50
40
30
20
20
AVDD1x
AVDD2x
AVDD4
IOVDD
15
10
5
–20
0
20
40
60
TEMPERATURE (°C)
80
100
120
0
–40
12538-280
0
–40
–20
0
20
40
60
TEMPERATURE (°C)
Figure 80. Power Dissipation vs. Temperature, High Resolution Mode
80
100
120
12538-281
10
Figure 81. Power Dissipation vs. Temperature, Low Power Mode
Rev. A | Page 29 of 94
AD7770
Data Sheet
TERMINOLOGY
Common-Mode Rejection Ratio (CMRR)
CMRR is the ratio of the power in the ADC output at full-scale
frequency, f, to the power of a 100 mV p-p sine wave applied to
the common-mode voltage of AINx+ and AINx− at frequency, fS.
CMRR (dB) = 10 log(Pf/PfS)
where:
Pf is the power at frequency, f, in the ADC output.
PfS is the power at frequency, fS, in the ADC output.
Differential Nonlinearity (DNL) Error
In an ideal ADC, code transitions are 1 LSB apart. Differential
nonlinearity is the maximum deviation from this ideal value.
DNL error is often specified in terms of resolution for which no
missing codes are guaranteed.
Integral Nonlinearity (INL) Error
Integral nonlinearity error refers to the deviation of each individual
code from a line drawn from negative full scale through positive
full scale. The point used as negative full scale occurs ½ LSB before
the first code transition. Positive full scale is a level 1½ LSB beyond
the last code transition. The deviation is measured from the middle
of each code to the true straight line.
Dynamic Range
Dynamic range is the ratio of the rms value of the full-scale
input signal to the rms noise measured for an input. The value
for dynamic range is expressed in decibels.
Channel to Channel Isolation
Channel to channel isolation is a measure of the level of crosstalk
between channels. It is measured by applying a full-scale frequency
sweep sine wave signal to all seven unselected input channels and
determining how much that signal is attenuated in the selected
channel. The value is given for worst case scenarios across all
eight channels of the AD7770.
Gain Error
The first transition (from 100 … 000 to 100 … 001) occurs at a
level ½ LSB above nominal negative full scale (−2.49999 V for the
±2.5 V range). The last transition (from 011 … 110 to 011 …
111) occurs for an analog voltage 1½ LSB below the nominal
full scale (2.49999 V for the ±2.5 V range). The gain error is the
deviation of the difference between the actual level of the last
transition and the actual level of the first transition from the
difference between the ideal levels.
Gain Error Drift
Gain error drift is the ratio of the gain error change due to a
temperature change of 1°C and the full-scale range (2N). It is
expressed in parts per million.
Least Significant Bit (LSB)
The least significant bit, or LSB, is the smallest increment that
can be represented by a converter. For a fully differential input
ADC with N bits of resolution, the LSB expressed in volts is
LSB (V) = 2 × VNREF
2
The LSB referred to the input is
LSB (VIN) =
2× VREF
PGAGAIN
2N
Power Supply Rejection Ratio (PSRR)
Variations in power supply affect the full-scale transition but not
the linearity of the converter. PSRR is the maximum change in the
full-scale transition point due to a change in the power supply
voltage from the nominal value.
Signal-to-Noise Ratio (SNR)
SNR is the ratio of the rms value of the actual input signal to the
rms sum of all other spectral components below the Nyquist
frequency, excluding harmonics and dc. The value for SNR is
expressed in decibels.
Intermodulation Distortion
With inputs consisting of sine waves at two frequencies, fA
and fB, any active device with nonlinearities creates distortion
products at sum and difference frequencies of mfA and nfB,
where m, n = 0,1, 2, 3, and so on. Intermodulation distortion
terms are those for which neither m nor n is equal to 0. For
example, the second-order terms include (fA + fB) and (fA − fb fB
and the third-order terms include (2fA + fB), (2fA − fb), (fA + 2fB),
and (fA − 2fB). The AD7770 is tested using the CCIF standard,
where two input frequencies near the top end of the input
bandwidth are used. In this case, the second-order terms are
usually distanced in frequency from the original sine waves, and
the third-order terms are usually at a frequency close to the input
frequencies. As a result, the second-order and third-order terms
are specified separately.
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of the first five harmonic
components to the rms value of a full-scale input signal and
is expressed in decibels.
The calculation of the intermodulation distortion is per the
THD specification, where it is the ratio of the rms sum of the
individual distortion products to the rms amplitude of the sum of
the fundamentals, expressed in decibels.
Offset Error
Offset error is the difference between the ideal midscale input
voltage (0 V) and the actual voltage producing the midscale
output code.
Signal-to-(Noise + Distortion) Ratio (SINAD)
SINAD is the ratio of the rms value of the actual input signal to
the rms sum of all other spectral components below the Nyquist
frequency, including harmonics but excluding dc. The value for
SINAD is expressed in decibels.
Spurious-Free Dynamic Range (SFDR)
SFDR is the difference, in decibels, between the rms amplitude of
the input signal and the peak spurious signal (including
harmonics).
Rev. A | Page 30 of 94
Data Sheet
AD7770
Offset Error Drift
Offset error drift is the ratio of the offset error change due to a
temperature change of 1°C and the full-scale code range (2N). It
is expressed in μV/°C.
Rev. A | Page 31 of 94
AD7770
Data Sheet
THEORY OF OPERATION
The AD7770 is an 8-channel, simultaneously sampling, low
noise, 24-bit Σ-Δ ADC with integrated digital filtering per
channel and SRC.
Due to the high oversampling rate, this technique spreads the
quantization noise from 0 Hz to fCLKIN/2 (in the case of the AD7770,
fCLKIN relates to the external clock); therefore, the noise energy
contained in the band of interest is reduced (see Figure 82). To
further reduce the quantization noise, a high order modulator is
employed to shape the noise spectrum so that most of the noise
energy is shifted out of the band of interest (see Figure 83). The
digital filter that follows the modulator removes the large out of
band quantization noise (see Figure 84).
For more information on basic and advanced concepts of Σ-Δ
ADCs, see the MT-022 Tutorial and MT-023 Tutorial.
Digital filtering has certain advantages over analog filtering.
Because digital filtering occurs after the analog-to-digital
conversion process, it can remove noise injected during the
conversion. Analog filtering cannot remove noise injected
during conversion.
fCLKIN/2
Figure 82. Σ-Δ ADC Operation, Reduction of Noise Energy Contained in the
Band of Interest (Linear Scale X-Axis)
NOISE SHAPING
BAND OF INTEREST
fCLKIN/2
Figure 83. Σ-Δ ADC Operation, Majority of Noise Energy Shifted Out of the
Band of Interest (Linear Scale X-Axis)
DIGITAL FILTER CUTOFF FREQUENCY
BAND OF INTEREST
fCLKIN/2
Figure 84. Σ-Δ ADC Operation, Removal of Noise Energy from the Band of
Interest (Linear Scale X-Axis)
The Σ-Δ ADC starts the conversions of the input signal after the
supplies generated by the internal LDOs become stable. An
external signal is not required to generate the conversions.
ANALOG INPUTS
The AD7770 can be operated in bipolar or unipolar modes and
accepts true differential, pseudo differential, and single-ended
input signals, as shown in Figure 85 through Figure 88.
Table 10 summarizes the maximum differential input signal and
dynamic range for the different input modes.
Table 10. Input Signal Modes
Input Signal Mode
True differential
Pseudo differential
Single-ended
PGA Gain
All gains
All gains
All gains
12538-101
The AD7770 employs a Σ-Δ conversion technique to convert the
analog input signal into an equivalent digital word. The
overview of the Σ-Δ technique is that the modulator samples
the input waveform and outputs an equivalent digital word at
the input clock frequency, fCLKIN.
BAND OF INTEREST
12538-102
The AD7770 offers two operation modes: high resolution mode,
which offers up to 32 kSPS, and low power mode, which offers
up to 8 kSPS.
12538-100
QUANTIZATION NOISE
Maximum Differential Signal
±(VREF/PGAGAIN)
±(VREF/PGAGAIN)
VREF/PGAGAIN
Rev. A | Page 32 of 94
Maximum Peak-to-Peak Signal
2 × VREF/PGAGAIN
2 × VREF/PGAGAIN
VREF/PGAGAIN
Data Sheet
AD7770
BIPOLAR OR UNIPOLAR
TRUE DIFFERENTIAL
AVDD1x – 0.1V
AVSSx + 0.1V
Figure 85. Σ-Δ ADC Input Signal Configuration, True Differential
(AVDD1x + AVSSx)/2
–0.4125
–0.8250
VREF = 2.5V
AVDD1x = 1.65V
AVSSx = –1.65V
–1.6500
1
2
4
PGA GAIN
–1.2375
8
The AD7770 provides a common-mode voltage pin (AVDD1x +
AVSSx)/2), VCM, for the single-supply, pseudo differential, or true
differential input configurations.
AVDD1x – 0.1V
VREF /PGAGAIN
TRANSFER FUNCTION
AINx+
AINx+
The AD7770 can operate with up to a 3.6 V reference, typical at
2.5 V, and converts the differential voltage between the analog
inputs (AINx+ and AINx−) into a digital output. The ADC
converts the voltage difference between the analog input pins
(AINx+ − AINx−) into a digital code on the output. The 24-bit
conversion result is in MSB first, twos complement format, as
shown in Table 11 and Figure 90.
12538-104
PSEUDO DIFFERENTIAL
0.4125
Figure 89. Maximum Common-Mode Voltage Range for a Maximum
Differential Input Signal
BIPOLAR OR UNIPOLAR
VCM
TRUE DIFFERENTIAL
PSEUDO DIFFERENTIAL
0.8250
12538-103
AINx+
VCM
AINx+
VREF /PGAGAIN
1.2375
12538-107
COMMON-MODE VOLTAGE (V)
1.6500
AVSSx + 0.1V
Figure 86. Σ-Δ ADC Input Signal Configuration, Pseudo Differential
BIPOLAR
SINGLE-ENDED
Table 11. Output Codes and Ideal Input Voltages for PGA = 1×
VREF /PGAGAIN
AINx+
AINx+
12538-105
AVSSx + 0.1V
Figure 87. Σ-Δ ADC Input Signal Configuration, Single-Ended Bipolar
Condition
FS − 1 LSB
Midscale + 1 LSB
Midscale
Midscale − 1 LSB
−FS + 1 LSB
−FS
Analog Input
((AINx+) − (AINx−)),
VREF = 2.5 V
+2.499999702 V
+298 nV
0V
−298 nV
−2.499999702 V
−2.5 V
Digital Output Code,
Twos Complement
(Hex)
0x7FFFFF
0x000001
0x000000
0xFFFFFF
0x800001
0x800000
AINx+
AINx+
+ 0.1V
Figure 88. Σ-Δ ADC Input Signal Configuration, Single-Ended Unipolar
The common-mode input signal is not limited, but keep the
absolute input signal voltage on any AINx± pin between AVSSx +
100 mV and AVDD1x − 100 mV; otherwise, the input signal
linearity degrades and, if the signal voltage exceeds the absolute
maximum signal rating, damages the device.
Figure 89 shows the maximum and minimum voltage commonmode range at different PGA gains for a maximum differential
input voltage.
Rev. A | Page 33 of 94
011 ... 111
011 ... 110
011 ... 101
100 ... 010
100 ... 001
100 ... 000
–FSR
–FSR + 1LSB
–FSR + 0.5LSB
+FSR – 1LSB
+FSR – 1.5LSB
ANALOG INPUT
Figure 90. Transfer Function
12538-108
ADC CODE (TWOS COMPLEMENT)
VREF /PGAGAIN
12538-106
SINGLE-ENDED
UNIPOLAR
AD7770
Data Sheet
MCLK
START
SYNC_OUT
SYNC_IN
RESET
PGA
GAIN 1, 2, 4, 8
AINx+
Σ-∆
MODULATOR
AINx–
DIGITAL
FILTER
SINC3
SRC
ESD
PROTECTION
GAIN
SCALING
AND
OFFSET
CORRECTION
DRDY
CONVERSION
DATA INTERFACE
DOUTx
SCLK
SIGNAL CHAIN FOR CHANNEL x
CONTROL BLOCK
FORMAT0
AND
FORMAT1
CONTROL
OPTION
PIN OR SPI
MODE0 TO MODE3
SPI CONTROL
12538-109
PIN CONTROL
CS SCLK SDO SDI
Figure 91. Top Level Core Signal Chain
CORE SIGNAL CHAIN
Each Σ-Δ ADC channel on the AD7770 has an identical signal path
from the analog input pins to the digital output pins. Figure 91
shows a top level implementation of this signal chain. Prior to
each Σ-Δ ADC, a PGA maps sensor outputs into the ADC inputs,
providing low input current in dc (±8 nA in high resolution
mode) single-ended input current, and ±4 nA differential input
current in high resolution mode), an 8 pF input capacitance in
ac, and configurable gains of 1, 2, 4, and 8. See the AN-1392
Application Note for more information. Each ADC channel has its
own Σ-Δ modulator, which oversamples the analog input and
passes the digital representation to the digital filter block. The
data is filtered, scaled for gain and offset, and is then output on
the data interface.
To minimize power consumption, the channels can be
individually disabled.
for the maximum common-mode voltage at maximum
differential input signals.
INTERNAL REFERENCE AND REFERENCE BUFFERS
The AD7770 integrates a 2.5 V, ±10 ppm/°C typical, voltage
reference that is disabled at power-up. The buffered reference is
available at Pin 49 and offers up to 10 mA of continuous current. A
100 nF capacitor is required if the reference is enabled.
In applications where a low noise reference is required, it is
recommended to add a low-pass filter (LPF) with a cutoff
frequency (fCUTOFF) below 10 Hz to the REF_OUT pin. Connect
the output of this filter to REFx+, and connect AVSSx to REFx−.
In this scenario, configure the Σ-Δ reference to be external by
configuring the reference buffers in enable or precharge mode. An
example of performance with and without the output filter is
shown in Figure 92.
115
CAPACITIVE PGA
105
SNR (dB)
The AD7770 uses chopping of the PGA to minimize offset and
offset drift in the input amplifier, reducing the 1/f noise as well.
For the AD7770, the chopping frequency is set to 128 kHz for
high resolution mode, and 32 kHz for low power mode (see the
AN-1392 Application Note for more information). The chopping
tone is rejected by the sinc3 filter.
To minimize intermodulation effects that may cause image in
the band of interest, it is recommended to limit the input signal
bandwidth to 2/3 of the chop frequency.
The capacitive PGA common-mode voltage does not depend on
the gain, and can be any value as long as the input signal voltage
is within AVSSx + 100 mV to AVDD1x − 100 mV. See Figure 89
95
85
75
0.05
0.50
1.00
2.00
DIFFERENTIAL INPUT VOLTAGE (V)
2.50
12538-110
Each Σ-Δ ADC has a dedicated PGA, offering gain ranges of 1,
2, 4, and 8. This PGA reduces the need for an external input buffer
and allows the user to amplify small sensor signals to use the
full dynamic range of the AD7770. The PGA maximize the
signal chain dynamic range for small sensor output signals.
VREF = INTERNAL REFERENCE
fCUTOFF < 10Hz
Figure 92. SNR Adding External LPF with VREF = Internal Reference and
fCUTOFF < 10 Hz
The AD7770 can be used with an external reference connected
between the REFx+ and REFx− pins. Recommended reference
voltage sources for the AD7770 include the ADR441 and ADR4525
family of low noise, high accuracy voltage references.
Rev. A | Page 34 of 94
Data Sheet
AD7770
DCLK DIVIDER
1, 2, 4, 8, 16, 32, 64, 128
MCLK
MCLK DIVIDER
HIGH RESOLUTION MODE: MCLK/4
LOW POWER MODE: MCLK/8
MOD_MCLK
DCLKx
PGA
ADC
MODULATOR
DATA
INTERFACE
CONTROL
SINC
FILTER
AINx–
DRDY
DOUT3
TO
DOUT0
DEC RATES = FROM ×64 TO ×4095.99
12538-111
AINx+
Figure 93. Clock Generation on the AD7770
The reference buffers can be operated in three different modes:
buffer enabled mode, buffer bypassed mode, and buffer pre-Q
mode.
In buffer enabled mode, the buffer is fully enabled, minimizing
the current requirements from the external references. Note that
the buffer output voltage headroom is ±100 mV from the rails.
In buffer bypassed mode, the external reference is directly
connected to the ADC reference capacitors; the reference must
provide enough current to correctly charge the internal ADC
reference capacitors. In this mode of operation, a slight
degradation in crosstalk is expected because the ADC channels
are not isolated from each other.
Pre-Q mode is the default operation mode. It is a hybrid mode
where the internal reference buffers are connected during the initial
acquisition time to precharge the internal ADC reference
capacitors. During the final phase of the acquisition, the reference
is connected directly to the ADC capacitors. This mode has
some benefits compared to the buffer enabled and buffer
bypassed modes. In buffer pre-Q mode, the reference current
requirements are minimized compared to buffer bypassed
mode and the noise contribution from the internal reference
buffers is removed (compared to buffer enabled mode).
In buffer pre-Q mode, the headroom/footroom of the buffer
reference is not applicable because the reference sets the final
voltage in the ADC reference capacitors.
INTEGRATED LDOs
CLOCKING AND SAMPLING
The AD7770 includes eight Σ-Δ ADC cores. Each ADC receives
the same master clock signal. The AD7770 requires a maximum
external MCLK frequency of 8192 kHz for high resolution mode
and 4096 kHz for low power mode. The MCLK is internally
divided by 4 in high performance mode and by 8 in low power
mode to produce the modulator MCLK (MOD_MCLK) signal
used as the modulator sampling clock for the ADCs. The MCLK
can be decreased to accommodate lower ODRs if the minimum
ODR selected by the sinc3 filter is not low enough. If the external
clock is lower than 256 kHz, set the CLK_QUAL_DIS bit (in
SPI control mode only).
The AD7770 integrates an internal oscillator clock that initializes
the internal registers at power-up. The CLK_SEL pin defines the
external clock used after initialization (see Table 12).
Table 12. Clock Sources
CLK_SEL State
0
Clock Source
CMOS
1
Crystal
Connection
Input to XTAL2/MCLK, IOVDD
logic level. XTAL1 must be
tied to DGND.
Connected between XTAL1
and XTAL2/MCLK.
The MCLK signal generates the DCLK output signal, which in
turn clocks the Σ-Δ conversion data from the AD7770, as shown
in Figure 93.
DIGITAL RESET AND SYNCHRONIZATION PINS
The AD7770 has three internal LDOs to regulate the internal
supplies: two LDOs for the analog block and one LDO for the
digital core. The internal LDOs requires an external 1 μF
decoupling capacitor on the DREGCAP, AREG1CAP, and
the AREG2CAP pins. The LDO slew rate may be low because
it depends on the main supply slew rate; therefore, a hardware
reset generated by pulsing the RESET pin at power-up is required
to guarantee that the digital block initializes correctly.
An external pulse in the SYNC_IN pin generates the internal
reset of the digital block; this pulse does not affect the data
programmed in the internal registers. A pulse in this pin is
required in two cases as follows:


After updating one or more registers directly related to the
sinc3 filter. These are power mode, offset, gain, and phase
compensation.
To synchronize multiple devices.
The pulse in the SYNC_IN pin must be synchronous with MCLK.
Rev. A | Page 35 of 94
AD7770
Data Sheet
There are two different ways to achieve a synchronous pulse if
the controller/processor cannot generate it, as follows:
The SYNC_IN and SYNC_OUT pins must be externally
connected if internal synchronization is used.
The digital filter implements three main notches, one at the
maximum ODR (32 kHz or 8 kHz, depending on the power
mode) and another two at the ODR frequency selected to stop
noise aliasing into the pass band.
Figure 95 shows the typical filter transfer function for the high
resolution and low power modes using a decimation rate of 128.
0
–20
–30
If the START pin is not used, tie it to DGND.
ASYNCHRONOUS
PULSE
–40
–50
–60
–70
AD7770
START
MCLK
LOW POWER MODE DECIMATION = 128
HIGH RESOLUTION MODE DECIMATION = 128
–10
GAIN (dB)
If multiple AD7770 devices must be synchronized, the
SYNC_OUT pin of one device can be connected to multiple
devices. This synchronization method requires the use of a
common MCLK signal for all the AD7770 devices connected,
as shown in Figure 94.
The AD7770 offers a low latency sinc3 filter. Most precision
Σ-Δ ADCs use sinc3 filters because the sinc3 filter offers a low
latency path for applications requiring low bandwidth signals,
for example, in control loops or where application specific
postprocessing is required. The digital filter adds notches at
multiples of the sampling frequency.
SYNCHRONIZATION
LOGIC
–80
SYNC_OUT
–90
–100
DIGITAL FILTER
0
10
20
30
40
50
60
FREQUENCY (kHz)
SYNC_IN
12538-113

Applying an asynchronous pulse on the START pin, which
is then internally synchronized with the external MCLK
clock, and the resulting synchronous signal is output on
the SYNC_OUT pin.
Triggering the SYNC_OUT internally. When the AD7770
is configured in SPI control mode, toggling Bit 0 in the
GENERAL_USER_CONFIG_2 register generates a
synchronous pulse that is output on the SYNC_OUT pin.
Figure 95. Sinc3 Frequency Response
The sample rate converter featured allows fine tuning of the
decimation rate, even for noninteger multiples of the decimation
rate. See the SRC section for more information on filter profiles
for noninteger decimation rates.
AD7770
START
MCLK
MCLK
SYNCHRONIZATION
LOGIC
SYNC_OUT
NC
SHUTDOWN MODE
DIGITAL FILTER
The AD7770 can be placed in shutdown mode by pulling AVDD2
to ground and connecting 1 MΩ resistance, pulled low, to
XTAL2. In this mode, the average current consumption is
reduced below 1 mA, as shown in Figure 96.
SYNC_IN
1.0
AD7770
IAVDD1x
IAVDD2x
IAVDD4x
IIOVDD
START
SYNCHRONIZATION
LOGIC
SYNC_OUT
NC
SYNC_IN
NOTES
1. NC = NO CONNECT.
Figure 94. Multiple AD7770 Devices Synchronization
12538-112
DIGITAL FILTER
SUPPLY CURRENT (mA)
MCLK
AVDDx = 3.3V
IOVDD = 3.3V
0.5
0
–0.5
–40
10
60
TEMPERATURE (°C)
Figure 96. Shutdown Current
Rev. A | Page 36 of 94
125
12538-114

DIGITAL FILTERING
Data Sheet
AD7770
CONTROLLING THE AD7770
The AD7770 can be controlled using either pin control mode or
SPI control mode.
Pin control mode allows the AD7770 to be hardwired to predefined
settings that offer a subset of the overall functionality of the
AD7770. In this mode, the SRC and diagnostic features or
extended errors source are not available.
Controlling the AD7770 over the SPI allows the user access to
the full monitoring, diagnostic, and Σ-Δ control functionality.
SPI control offers additional functionality such
as offset, gain, and phase correction per channel, in addition to
access to the flexible SRC to achieve a coherent sampling.
See Table 13 for more details about these different configurations.
PIN CONTROL MODE
In pin control mode, the AD7770 is configured at power-up
based on the level of the mode pins, MODE0, MODE1, MODE2,
and MODE3. These four pins set the following functions on the
AD7770: the mode of operation, the decimation rate/ODR, the
PGA gain, and the reference source, as shown in Table 14.
Due to the limited number of mode pins and the number of
options available, the PGA gain control is grouped into blocks
of 4, and the ODR is selected for the maximum value defined by
the decimation rate; ODR (kHz) = 2048/decimation for high
resolution mode, and ODR (kHz) = 512/decimation for low
power mode.
Depending on the mode selected, the device is configured to
use an external or an internal reference.
The conversion data can be read back using the SPI or the data
output interface, as shown in Table 13. If the data output interface
is used to read back the data from the conversions, the number of
DOUTx lines enabled and the number of clocks required for
the Σ-Δ data transfer are determined by the logic level of the
CONVST_SAR, FORMAT0, and FORMAT1 pins. In this case,
the DCLK2, DCLK1, and DCLK0 pins select the Σ-Δ output
interface and control the DCLKx divide function, which is a
submultiple of MCLK, as shown in Table 15. The DCLKx divide
function sets the frequency of the data output interface DCLKx
signal. The DCLK minimum frequency depends on the decimation rate and operation mode. See the Data Output Interface
section for more details about the minimum DCLKx frequency.
All the pins that define the AD7770 configuration mode are
reevaluated each time the SYNC_IN pin is pulsed. The typical
connection diagram for pin control mode is shown in Figure 97.
Table 13. Format of the Data Interface
CONVST_SAR State
1
0
FORMAT1
0
0
1
1
0
FORMAT0
0
1
1
1
0
Control Mode
Pin
Pin
Pin
SPI
Pin
0
1
Pin
1
1
0
1
Pin
SPI
Data Output Mode
SPI output
SPI output
SPI output
Defined in Register 0x014
DOUT0, Channel 0 and Channel 1
DOUT1, Channel 2 and Channel 3
DOUT2, Channel 4 and Channel 5
DOUT3, Channel 6 to Channel 7
DOUT0, Channel 0 to Channel 3
DOUT1, Channel 4 to Channel 7
DOUT0, Channel 0 to Channel 7
Defined in Register 0x014
Table 14. Pin Mode Options
Pin State
MODE3
0
0
0
0
0
0
0
0
1
MODE2
0
0
0
0
1
1
1
1
0
MODE1
0
0
1
1
0
0
1
1
0
MODE0
0
1
0
1
0
1
0
1
0
Decimation
Rate
1024
512
256
128
64
512
256
128
64
Power Mode
High resolution
High resolution
High resolution
High resolution
High resolution
High resolution
High resolution
High resolution
High resolution
Rev. A | Page 37 of 94
PGA Gain Channel
Channel 0 to
Channel 4 to
Channel 3
Channel 7
1
1
1
1
1
1
1
1
1
1
1
4
1
4
1
4
1
4
Reference
Source
External
External
External
External
External
External
External
External
External
AD7770
Data Sheet
Pin State
MODE3
1
1
1
1
1
1
1
MODE2
0
0
0
1
1
1
1
MODE1
0
1
1
0
0
1
1
Decimation
Rate
512
256
128
512
256
128
64
MODE0
1
0
1
0
1
0
1
Power Mode
High resolution
High resolution
High resolution
Low power
Low power
Low power
Low power
PGA Gain Channel
Channel 0 to
Channel 4 to
Channel 3
Channel 7
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Reference
Source
Internal
Internal
Internal
External
External
External
External
Table 15. DCLKx Selection for Pin Control Mode State
DCLK2/SCLK
0
0
0
0
1
1
1
1
DCLK1/SDI
0
0
1
1
0
0
1
1
DCLK0/SDO
0
1
0
1
0
1
0
1
MCLK Divider
1
2
4
8
16
32
64
128
EXTERNAL
REFERENCE
AVDD 3.3V
AVDD 3.3V
AVSSx
AVDD1x
REFx+
VCM
VCM
AVDD 3.3V
AVSSx
AVSSx
AVSSx
REFx–
AVDD4
REF_OUT AVDD2x AREGxCAP
BUFFER
AVSSx
IOVDD 1.8V TO 3.6V
AVSSx
IOVDD
AD7770
BUFFER
DREGCAP SYNC_IN
SYNC_OUT
START
RESET
DRDY
AIN0+
PGA
AIN7+
24-BIT
Σ-∆
ADC
PGA
AIN7–
DCLK
DOUT0
DOUT1
DOUT2
DOUT3
ADC
DATA
SERIAL
INTERFACE
AIN0–
SINC3/SRC
CS
SCLK
SDO
SPI
CONTROL
INTERFACE
SDI
SPI/SPORT
SLAVE
INTERFACE
FPGA
OR
DSP
SPI
MASTER
INTERFACE
CLK_SEL
XTAL1
XTAL2
MODE3
TO
MODE0
CONVST_SAR
DCLK2
TO
DCLK0
FORMAT1
AND
FORMAT0
12538-115
AVSSx
CLOCK
SOURCE
Figure 97. Pin Mode Connection Diagram with External Reference
Rev. A | Page 38 of 94
Data Sheet
AD7770
AVDD 3.3V
AVDD 3.3V
AVSSx
AVDD1x
AVSSx
REFx+
VCM
VCM
BUFFER
BUFFER
AVDD4
AVSSx
AVSSx
AVSSx
REF_OUT
REFx–
IOVDD 1.8V TO 3.6V
AVDD2x AREGxCAP
AD7770
IOVDD
DREGCAP SYNC_IN
SYNC_OUT
START
RESET
DRDY
PGA
ADC
DATA
SERIAL
INTERFACE
AIN0–
AIN7+
24-BIT
Σ-Δ
ADC
PGA
AIN7–
SINC3/SRC
SPI
CONTROL
INTERFACE
DIAGNOSTIC
INPUTS
DCLK
DOUT0
DOUT1
DOUT2
DOUT3
CS
SCLK
SDO
SDI
FULL BUFFER
AUXAIN+
12-BIT
SAR ADC
MUX
AUXAIN–
AVSSx
GPIO2
TO
GPIO0
CONVST_SAR
XTAL1
SPI/SPORT
SLAVE
INTERFACE
FPGA
OR
DSP
SPI
MASTER
INTERFACE
CLK_SEL
XTAL2
FORMAT1
IOVDD
FORMAT0
IOVDD
CLOCK
SOURCE
12538-116
AIN0+
Figure 98. SPI Control Mode Connection Diagram with Internal Reference
SPI CONTROL
The second option for control and monitoring the AD7770 is via
the SPI. This option allows access to the full functionality on the
AD7770, including access to the SAR converter, phase
synchronization, offset and gain adjustment, diagnostics and
the SRC. To use the SPI control, set the FORMAT0 and
FORMAT1 pins to logic high.
In this mode, the SPI can also read the Σ-Δ conversation data by
setting the SPI_SLAVE_MODE_EN bit.
The typical connection diagram for SPI control mode is shown
in Figure 98.
Functionality Available in SPI Mode
SPI control of the AD7770 offers the super set of the functions
and diagnostics. The SPI Control Functionality section describes
the functionality and diagnostics offered when in SPI control mode.
Offset and Gain Correction
Offset and gain registers are available for system calibration.
The gain register is preprogrammed during final production for
a PGA gain of 1, but can be overwritten with a new value if
required.
The gain register is 24 bits long and is split across three registers,
CHx_GAIN_UPPER_BYTE, CHx_GAIN_MID_BYTE, and
CHx_GAIN_LOWER_BYTE, which set the gain on a per
channel basis. The gain value is relative to 0x555555, which
represents a gain of 1.
The offset register is 24 bits long and is spread across three byte
registers, CHx_OFFSET_UPPER_BYTE, CHx_OFFSET_MID_
BYTE, and CHx_OFFSET_LOWER_BYTE. The default value is
0x000000 at power-up. Program the offset as a twos complement,
signed 24-bit number. If the channel gain is set to its nominal
value of 0x555555, an LSB of offset register adjustment changes
the digital output by −4/3 LSBs.
As an example of calibration, the offset measured is −200 LSB
(with both AINx± pins connected to the same potential).
An offset adjustment of −150 LSB changes the digital output by
−150 × (−4/3) = 200 LSBs (gain value = 0x555555), representing
this number as two complement, 0xFFFFFF − 0x96 + 1 =
0xFFFF70. Program the offset register as follows:
•
•
•
CHx_OFFSET_UPPER_BYTE = 0xFF
CHx_OFFSET_MID_BYTE = 0xFF
CHx_OFFSET_LOWER_BYTE = 0x70
Note that the offset compensation is performed before the gain
compensation. The gain is programmed during final testing for
PGAGAIN = 1. The gain register values can be overwritten; however,
after a reset or power cycle, the gain register values revert to the
hard coded programmed factory setting.
If the gain required is 0.75 of the nominal value (0x555555), the
value that must be programmed is
0x555555 × 0.75 = 0x400000
Then, an LSB of the offset register adjustment changes the
digital output by −4/3 × 0.75 = 1 LSB. Program the gain register
as follows:
•
•
•
Rev. A | Page 39 of 94
CHx_GAIN_UPPER_BYTE = 0x40
CHx_GAIN_MID_BYTE = 0x00
CHx_GAIN_LOWER_BYTE = 0x00
AD7770
Data Sheet
SPI Control Functionality
Global Control Functions
Table 16. Phase Adjustment vs. Decimation Rate
The following list details the global control functions of the
AD7770:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
High resolution and low power modes of operation
ODR: SRC
VCM buffer power-down
Internal/external reference selection
Enable, precharged, or bypassed reference buffer modes
Internal reference power-down
SAR diagnostic mux
SAR power-down
GPIO write/read
SPI SAR conversion readback
SPI slave mode—read Σ-Δ results
SDO and DOUTx drive strength
DOUTx mode
DCLK division
Internal LDO bypassed
CRC protection: enabled or disabled
Per Channel Functions
The following list details the per channel functions of the
AD7770:
•
•
•
•
•
•
•
•
Phase Adjustment Compensation
×1
×2
×4
×8
×16
Decimation Rate
≤255
≤511
≤1023
≤2047
≤4095
The maximum phase delay cannot be equal to or greater than
the decimation rate. If this is the case, the value changes
internally to the decimation rate value minus 1.
As an example, the phase mismatch between Channel 0 and
Channel 1 is 5°, and the ODR is 5 kSPS in high resolution mode. In
this case, the decimation rate is 2048 kHz/5 kHz = 409.6, which
means that the offset register value is multiplied internally by 2.
Assuming an input signal of 50 Hz, the number of MOD_
MCLK pulses required to sample a full period is 2048 kHz/
50 Hz = 40960 > 360°/40960 = 0.00878°.
If a 5° delay is required, the number of MOD_MCLK delays
must be 569 (5°/0.00878°) because the offset register is multiplied
by 2; the final offset register value is 409.6/2 − 569/2, which
gives a negative value. In this case, if the offset value programmed
to the register is higher than 204 (for example, 210 × 2 = 420),
the value is internally changed to 408, resulting in a phase
compensation of 408 × 0.00878° = 3.58°.
PGA Gain
PGA gain
Σ-Δ channel power-down
Phase delay: synchronization phase offset per channel
Calibration of offset
Calibration of gain
Σ-Δ input signal mux
Channel error register
PGA gain
The PGA gain can be selected individually by appropriately
selecting Bits[7:6] in the CHx_CONFIG register, as shown in
Table 17.
Table 17. PGA Gain Settings via CHx_CONFIG
Phase Adjustment
The AD7770 phase delay can be adjusted to compensate for phase
mismatches between channels due to sensors or signal channel
phase errors connected to the AD7770. Achieve phase adjustment
by programming the CHx_SYNC_OFFSET register. This
programming delays the synchronization signal by a certain
number of modulator clocks (MOD_CLK) to individually initiate
the digital filter for each Σ-Δ ADC. In others words, program
the channel with a higher phase with Phase 0, whereas for the
channel with lower phase, delay to compensate the phase
mismatch.
The phase adjustment register is read after a pulse on
the SYNC_IN pin; consequently, any further changes on the
register have no effect unless a pulse is generated (see the Digital
Reset and Synchronization Pins section for more information
on how to generate a pulse in the pin).
CHx_CONFIG, Bits[7:6] Setting
00
01
10
11
PGA Gain Setting
1
2
4
8
If the Σ-Δ reference is updated, it is recommended to apply a
pulse on the SYNC_IN pin to remove invalid samples during
the transition of the reference
Decimation
The decimation defines the sampling frequency as follows:
•
•
In high resolution mode, the sampling frequency = MCLK/
(4 × decimation)
In low power mode, the sampling frequency = MCLK/
(8 × decimation)
Refer to the SRC section for more information.
The phase offset register is multiplied internally by a factor that
depends on the decimation rate, as shown in Table 16.
Rev. A | Page 40 of 94
Data Sheet
AD7770
GPIOx Pins
Σ-Δ Reference Configuration
If the AD7770 operates in SPI control mode, the mode pins
operate as GPIOx pins, as shown in Figure 99. The GPIOx pins
can be configured as inputs or outputs in any order.
The AD7770 can operate with internal or external references. In
addition, for diagnostic purposes, the analog supply can be used
as a reference, as shown in Table 18. REFx−/REFx+ allows the
selection of a voltage reference where the REFx+ is lower
voltage than REFx− pin.
GPIO0
Table 18. Σ-Δ References
GPIO1
Setting for
ADC_MUX_CONFIG,
Bits[7:6]
00
01
10
11
REGISTER
MAP
12538-117
GPIO2
Figure 99. GPIOx Pin Functionality
Configuration control and readback of the GPIOx pins are set
via Bits[2:0] in the GPIO_CONFIG register (0 = input, 1 = output)
and the GPIO_DATA register. Among other uses, the GPIOs
can control an external mux connected to the auxiliary inputs of
the SAR ADC. Use this mux to verify the results on the Σ-Δ ADCs.
In addition, the GPIOx pins can be used to externally trigger a
new decimation rate. Refer to the SRC section for more
information about this functionality.
Channel 0 to
Channel 3
REF1+/REF1−
Internal reference
AVDD1A/AVSS1A
REF1−/REF1+
Channel 4 to
Channel 7
REF2+/REF2−
Internal reference
AVDD1B/AVSS1B
REF2−/REF2+
Reference buffer operation is described in Table 19. The
selected reference and buffer operation mode affect all
channels.
If the Σ-Δ reference is updated, it is recommended to apply a
pulse on the SYNC_IN pin to remove invalid samples during
the transition of the reference.
Table 19. Reference Buffer Operation Modes
Reference Buffer
Operation Mode
Enabled
Precharged
Disabled
REFx+
BUFFER_CONFIG_1, Bit 4 = 1; BUFFER_CONFIG_2, Bit 7 = 0
BUFFER_CONFIG_1, Bit 4 = 1; BUFFER_CONFIG_2, Bit 7 = 1
BUFFER_CONFIG_1, Bit 4 = 0
Rev. A | Page 41 of 94
REFx−
BUFFER_CONFIG_1, Bit 3 = 1; BUFFER_CONFIG_2, Bit 6 = 0
BUFFER_CONFIG_1, Bit 3 = 1; BUFFER_CONFIG_2, Bit 6 = 1
BUFFER_CONFIG_1, Bit 3 = 0
AD7770
Data Sheet
Table 20. Additional Disable Power-Down Blocks
Block
VCM
Reference Buffer
Internal Reference Buffer
Σ-Δ Channel
SAR
Internal Oscillator
Register
GENERAL_USER_CONFIG_1, Bit 5
BUFFER_CONFIG_1, Bits[4:3]
GENERAL_USER_CONFIG_1, Bit 4
CH_DISABLE, Bits[7:0]
GENERAL_USER_CONFIG_1, Bit 3
GENERAL_USER_CONFIG_1, Bit 2
Power Modes
The AD7770 offers different power modes to improve the power
efficiency, high resolution and low power mode, which can be
controlled via GENERAL_USER_CONFIG_1, Bit 6. To further
reduce the power, additional blocks can be disabled independently,
as described in Table 20.
If the power mode changes, a pulse on the SYNC_IN pin is
required.
LDO Bypassing
The internal LDOs can be individually bypassed and an external
supply can be applied directly to the AREG1CAP, AREG2CAP,
or DREGCAP pin. Table 21 shows the absolute minimum and
maximum supplies for these pins, as well as the associated
register used to bypass the regulator.
Table 21. LDO Bypassing
LDO
AREG1CAP
AREG2CAP
DREGCAP
1
BUFFER_CONFIG_2,
Bits[2:0]1
1XX
X1X
XX1
Supply
Max (V)
Min (V)
1.9
1.85
1.9
1.85
1.98
1.65
X means don’t care.
Notes
Enable by default
Precharged mode by default
Disable by default
All channels enable
Disable by default
Enable by default
In pin control mode, the SDI can read back the Σ-Δ results,
depending on the level of the CONVST_SAR pin, as described in
Table 13.
In SPI control mode, the SPI transfers data into the on-chip
registers while the SDO pin reads back data from the on-chip
registers or reads the SAR or the Σ-Δ conversions results,
depending on the selected operation mode.
The SDO data source in SPI control mode is defined by the
GENERAL_USER_CONFIG_2 and GENERAL_USER_
CONFIG_3 registers, as described in Table 22.
Table 22. SPI Operation Mode in SPI Control Mode
GENERAL_USER_
CONFIG_2, Bit 5
Setting
0
0
1
1
GENERAL_USER_
CONFIG_3, Bit 4
Setting1
0
1
X
Mode
Internal register
Σ-Δ data conversion
SAR conversion
X means don’t care.
In SPI control mode, there are four different levels of I/O strength
on the SDO pin that can be selected in GENERAL_USER_
CONFIG_2, Bits[4:3], as described in Table 23.
Table 23. SDO Strength
DIGITAL SPI
The SPI serial interface on the AD7770 consists of four
signals: CS, SDI, SCLK, and SDO. A typical connection diagram
of the SPI is shown in Figure 100.
AD7770
DSP/FPGA
GENERAL_USER_CONFIG_2, Bits[4:3] Setting
00
01
10
11
Mode
Nominal
Strong
Weak
Extra strong
SCLK is the serial clock input for the device. All data transfers
(on either SDO or SDI) occur with respect to this SCLK signal.
CS
SCLK
SDI
12538-118
SDO
Figure 100. SPI Control Interface—AD7770 is the SPI Slave, Digital Signal
Processor (DSP)/Field Programmable Gate Array (FPGA) is the Master
The SPI operates in Mode 0 and Mode 3: CPOL = 0, CPHA = 0
(Mode 0) or CPOL = 1, CPHA = 1 (Mode 3).
Rev. A | Page 42 of 94
Data Sheet
AD7770
To ensure that the register write is successful, it is recommended to
read back the register and verify the checksum.
The SPI can operate in multiples of eight bits. For example, in
SPI control mode, if the SDO pin is used to read back the data
from the internal register or the SAR ADC, the data frame is 16 bits
wide (CRC disabled), as shown in Figure 101, or 24 bits wide (CRC
enabled), as shown in Figure 102. In this case, the controller can
generate one frame of 16 bits or 24 bits (with and without the
CRC enabled), or 2 or 3 frames of 8 bits (with and without the
CRC enabled). When the SDO pin reads back the data from the
Σ-Δ channels, 64 bits must be read back from the controller (in
this case, the controller can generate a frame of 64 bits—either
2 × 32 bits, 4 × 16 bits, or 8 × 8 bits).
For CRC checksum calculations, the following polynomial is
always used: x8 + x2 + x + 1. See the SPI Control Mode
Checksum section for more information.
SPI Read/Write Register Mode (SPI Control Mode)
The AD7770 has on-board registers to configure and control the
device.
The registers have 7-bit addresses—the 7-bit register address on
the SDI line selects the register for the read/write function. The
7-bit register address follows the R/W bit in the SDI data. The
8 bits on the SDI line following the 7-bit register address are the
data to be written to the selected register if the SPI is a write
transfer. Data on the SDI line is clocked into the AD7770 on
the rising edge of SCLK, as shown in Figure 3.
SPI CRC—Checksum Protection (SPI Control Mode)
The AD7770 has a checksum mode that improves SPI
robustness in SPI control mode. Using the checksum ensures
that only valid data is written to a register and allows data read
from the device to be validated. The SPI CRC can be enabled by
setting the SPI_CRC_TEST_EN bit. If an error occurs during a
register write, the SPI_CRC_ERR is set in the error register.
The data on the SDO line during the SPI transfer contains the
8-bit 0010 0000 header: 8 bits of register data in the case of a read
(R) operation, or 8 zeros in the case of a write (W) operation.
Enabling the SPI_CRC_TEST_EN bit results in a CRC checksum
being performed on all the R/W operations. When SPI_
CRC_TEST_EN is enabled, an 8-bit CRC word is appended
to every SPI transaction for SAR and register map operations.
For more information on Σ-Δ readback operations, see the
CRC Header section.
With the CRC disabled, the basic data frame on the SDI line
during the transfer is 16 bits long, as shown in Figure 101.
When the CRC is enabled, a minimum frame length of 24 SCLK
periods are required on SPI transfers. The 24 bits of data on the
SDO line consist of an 8-bit header (0010 0000), 8 bits of data, and
an 8-bit CRC (see Figure 102).
CS
SDI
R/W
A6
A5
A4
A3
A2
A1
A0
D7
D6
D5
D4
D3
D2
D1
D0
SDO
0
0
1
0
0
0
0
0
R7
R6
R5
R4
R3
R2
R1
R0
12538-119
SCLK
Figure 101. 16-Bit SPI Transfer—CRC Disabled
CS
SDI
R/W
A6
A5
A4
A3
A2
A1
A0
D7
D6
D5
D4
D3
D2
D1
D0
ICRC7 ICRC6 ICRC5 ICRC4 ICRC3 ICRC2 ICRC1 ICRC0
SDO
0
0
1
0
0
0
0
0
R7
R6
R5
R4
R3
R2
R1
R0
ICRC7 ICRC6 ICRC5 ICRC4 ICRC3 ICRC2 ICRC1 ICRC0
Figure 102. 24-Bit SPI Transfer—CRC Enabled
Rev. A | Page 43 of 94
12538-120
SCLK
AD7770
Data Sheet
SPI SAR Diagnostic Mode (SPI Control Mode)
If consecutive conversions are performed in the SAR ADC, read
back the result from the previous conversion before a new
conversion is generated. Otherwise, the results are corrupted.
Setting Bit 5 in the GENERAL_USER_CONFIG_2 register
configures the SDO line to shift out data from the SAR ADC
conversions, as described in Table 22.
Σ-Δ Data, ADC Mode
In pin control mode, the SPI can be used to read back the Σ-Δ
conversions as described in Table 13. In SPI control mode, the SPI
reads back the Σ-Δ conversions by setting GENERAL_USER_
CONFIG_3, Bit 4, as described in Table 22; in this mode, the
AD7770 internal register can be written to, but any readback
command is ignored because the SDO data frame is dedicated to
shifting out the conversion results from the Σ-Δ ADCs. To
avoid unwanted writes to the internal register, it is recommended
to send a readback command, for example, 0x8000, to the device,
which is ignored because the SDO pin shifts out the content of
the Σ-Δ ADC.
In SAR mode, the AD7770 internal registers can be written to,
but any readback command is ignored because the SDO data
frame is dedicated to shift out the conversion results from the
SAR ADC.
To exit this mode of operation, reset Bit 5 in the GENERAL_
USER_CONFIG_2 register.
The data on the SDO line during the SPI transfer contains a
4-bit 0010 header and the 12-bit SAR conversion result if the
CRC is disabled.
When the CRC is enabled, a minimum frame length of 24 SCLK
periods are required on SPI transfers. The 24 bits of data on the
SDO line consist of a 4-bit header (0010), the 12-bit data, and
an 8-bit CRC, as shown in Figure 103.
The SDO pin data can be read back in any multiple of 8 bits, for
example, as 64 bits, 2 × 32 bits, 4 × 16 bits, or 8 × 8 bits.
SPI Software Reset
Per the SPI read/write register mode (see the SPI Read/Write
Register Mode section), the SDI line contains the R/W bit, a 7-bit
register address, the 8-bit data, and an 8-bit CRC (if enabled).
To avoid unwanted writes to the internal register while the SAR
conversions are read back through the SDO line, it is recommended to send a readback command, for example, 0x8000,
to the device, which is ignored because the SDO pin shifts out
the content of the SAR ADC.
Keeping the SDI pin high during 64 consecutives clocks
generates a software reset.
CS
SCLK
R/W
A6
A5
A4
SDO
0
0
1
0
A3
A2
A1
A0
D7
D6
D5
D4
D3
D2
D1
D0
ICRC7 ICRC6 ICRC5 ICRC4 ICRC3 ICRC2 ICRC1 ICRC0
SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR I
CRC7 ICRC6 ICRC5 ICRC4 ICRC3 ICRC2 ICRC1 ICRC0
11
10
9
8
7
6
5
4
3
2
1
0
Figure 103. SAR ADC/Diagnostic Mode—CRC Enabled
Rev. A | Page 44 of 94
12538-121
SDI
Data Sheet
AD7770
RMS NOISE AND RESOLUTION
Table 24 through Table 26 show the dynamic range (DR), rms
noise referred to input (RTI), effective number of bits (ENOB),
and effective resolution (ER) of the AD7770 for various output
data rates and gain settings. The numbers given are for the bipolar
input range with an external 2.5 V reference. These numbers are
typical and are generated with a differential input voltage of 0 V
when the ADC is continuously converting on a single channel.
It is important to note that the effective resolution is calculated
using the rms noise; 16,384 consecutives samples were used to
calculate the rms noise.
Effective Resolution = log2(Input Range/RMS Noise)
ENOB = (DR − 1.78)/6
HIGH RESOLUTION MODE
Table 24. DR and RTI for High Resolution Mode
Decimation
Rate
64
128
256
512
1024
2048
Output Data
Rate (SPS)
32,000
16,000
8000
4000
2000
1000
f−3 dB (Hz)
8369
4818.8
2511
1269
636.3
318.5
Gain = 1
DR (dB) RTI (μV rms)
103.20
12.10
109.43
6.00
112.97
4.00
116.00
2.80
119.00
1.98
123.00
1.38
Gain = 2
DR (dB) RTI (μV rms)
101.96
6.97
108.30
3.39
112.38
2.13
115.86
1.45
119.19
1.01
121.98
0.72
Gain = 4
DR (dB) RTI (μV rms)
99.20
4.71
105.07
2.38
110.23
1.39
113.68
0.92
116.75
0.65
119.79
0.46
Gain = 8
DR (dB) RTI (μV rms)
95.30
3.82
100.71
1.94
105.98
1.13
109.81
7.27
113.12
0.51
115.88
0.35
Gain = 2
ENOB (Bits) ER (Bits)
16.94
18.45
17.99
19.49
18.67
20.16
19.24
20.72
19.8
21.24
20.26
21.73
Gain = 4
ENOB (Bits) ER (Bits)
16.48
18.02
17.45
19.00
18.31
19.78
18.88
20.38
19.39
20.89
19.9
21.39
Gain = 8
ENOB (Bits) ER (Bits)
15.83
17.32
16.73
18.30
17.6
19.08
18.24
16.39
18.79
20.23
19.25
20.76
Gain = 2
DR (dB) RTI (μV rms)
101.63
7.19
108.38
3.51
112.01
2.24
115
1.51
118.72
1.05
Gain = 4
DR (dB) RTI (μV rms)
99.35
4.84
104.7
2.47
109.4
1.49
112.95
0.99
116.43
0.67
Gain = 8
DR (dB) RTI (μV rms)
93.96
4.15
100.25
2.12
105.18
1.18
109.14
0.77
112.47
0.54
Gain = 2
ENOB (Bits) ER (Bits)
16.88
18.41
18.00
19.44
18.60
20.09
19.10
20.66
19.72
21.18
Gain = 4
ENOB (Bits) ER (Bits)
16.5
17.98
17.39
18.95
18.17
19.68
18.76
20.27
19.34
20.84
Gain = 8
ENOB (Bits) ER (Bits)
15.61
17.2
16.65
18.17
17.47
19.01
18.13
19.62
18.68
20.15
Table 25. ENOB and ER for High Resolution Mode
Decimation
Rate
64
128
256
512
1024
2048
Output Data
Rate (SPS)
32,000
16,000
8000
4000
2000
1000
f−3 dB (Hz)
8369
4818.8
2511
1269
636.3
318.5
Gain = 1
ENOB (Bits) ER (Bits)
17.14
18.66
18.18
19.67
18.76
20.25
19.27
20.77
19.77
21.27
20.43
21.79
LOW POWER MODE
Table 26. DR and RTI for Low Power Mode
Decimation
Rate
64
128
256
512
1024
Output Data
Rate (SPS)
8000
4000
2000
1000
500
f−3 dB (Hz)
2092.2
1204.8
627.75
317.25
159.25
Gain = 1
DR (dB) RTI (μV rms)
102.8
12.5
108.94
6.45
112.7
4.23
115.83
2.94
118.97
2.04
Table 27. ENOB and ER for Low Power Mode
Decimation
Rate
64
128
256
512
1024
Output Data
Rate (SPS)
8000
4000
2000
1000
500
f−3 dB (Hz)
2092.2
1204.8
627.75
317.25
159.25
Gain = 1
ENOB (Bits) ER (Bits)
17.07
18.61
18.09
19.56
18.72
20.17
19.24
20.70
19.76
21.22
Rev. A | Page 45 of 94
AD7770
Data Sheet
DIAGNOSTICS AND MONITORING
SELF DIAGNOSTICS ERROR
The AD7770 includes self diagnostic features to guarantee the
correct operation. If an error is detected, the ALERT pin is
pulled high to generate an external interruption to the controller.
In addition, the header of the Σ-Δ output data contains an alert
bit that informs the controller of a chip error (see the ADC
Conversion Output—Header and Data section).
the EXT_MCLK_SWITCH_ERR bit is set in the general error
register, GEN_ERR_REG_2.
If EXT_MCLK_SWITCH_ERR is set, the device is operating off
the internal oscillator, and is waiting for an appropriate external
clock.
To use a slow external clock (<265 kHz), set the CLK_QUAL_
DIS bit. Setting this bit also clears the error bit.
Both the ALERT pin and bit (status header) are automatically
cleared if the error is no longer present. The errors related to
the SPI do not recover automatically; read back the appropriate
register to clear the error. The ALERT pin and bit reset in the
next SPI access after the bit is read back.
If the external clock is between 132 kHz and 265 kHz, depending
on the internal synchronization between the internal oscillator
and the external clock, the error may not trigger. However, it is
still recommended to set the CLK_QUAL_DIS bit.
If an error detector is manually disabled, it does not generate an
internal error and, consequently, the register map or the
ALERT pin and bit are not triggered.
Reset Detection
There are different sources of errors, as described in Table 28.
In pin control code, it is not possible to check the error source,
and some sources of error are not enabled. In SPI control mode,
check the source of an error by reading the appropriate register bit.
The STATUS_REG_x register bits identify the register that
generates an error, as summarized in Table 28.
Table 28. Register Error Source
Bit Name
ERR_LOC_GEN2
ERR_LOC_GEN1
ERR_LOC_CH7
ERR_LOC_CH6
ERR_LOC_CH5
ERR_LOC_CH4
ERR_LOC_CH3
ERR_LOC_CH2
ERR_LOC_CH1
ERR_LOC_CH0
ERR_LOC_SAT_CH6_7
ERR_LOC_SAT_CH4_5
ERR_LOC_SAT_CH2_3
ERR_LOC_SAT_CH0_1
Register Source
GEN_ERR_REG_2
GEN_ERR_REG_1
CH7_ERR_REG
CH6_ERR_REG
CH5_ERR_REG
CH4_ERR_REG
CH3_ERR_REG
CH2_ERR_REG
CH1_ERR_REG
CH0_ERR_REG
CH6_7_SAT_ERR
CH4_5_SAT_ERR
CH2_3_SAT_ERR
CH0_1_SAT_ERR
If a slow clock is not in use and the error triggers, a reset is required.
The AD7770 general error register contains a RESET_DETECTED
bit. This bit is asserted if a reset pulse is applied to the AD7770
and is cleared by reading the general error register. This bit
indicates that the power-on reset (POR) initialized correctly on the
device. In addition, this bit can detect an unexpected device reset
or glitch on the RESET pin. To reset this error signal in SPI control
mode, toggle the SYNC_IN pin or read from the general error
register, GEN_ERR_REG_2. To reset this error signal in pin
control mode, toggle the SYNC_IN pin.
Internal LDO Status
The AD7770 has three internal LDOs to regulate the internal
analog and digital supply rails. The LDOs have internal power
supply monitors. Internal comparators monitor and flag errors
with these supplies after they pass a predetermined limit.
The ALDO1_PSM_ERR, ALDO2_PSM_ERR, and DLDO_PSM_
ERR bits indicate either an LDO malfunction, or, if the LDOs
are bypassed, an incorrect external supply.
The internal analog and digital voltage monitors can be disabled
by appropriately selecting the LDO_PSM_TEST_EN bits.
Use the SAR ADC to verify the error.
In addition, the STATUS_REG_x registers have a bit that
indicates if any internal error bit is set, ERROR. This bit clears
if the error is no longer present and the register is read back.
The INIT_COMPLETE bit in the STATUS_REG_3 indicates
that the device is initialized correctly. This bit is not an error bit
but an indicator.
General Errors
MCLK Switch Error (SPI Control Mode)
After power-up, the AD7770 initiates a clocking handover
sequence to pass clocking control to the external oscillator, or
the CMOS clock. In SPI mode, if an error occurs in the handover,
Additionally, the levels of the internal monitors can be manually
triggered to check if the detector works correctly by appropriately
setting the LDO_PSM_TRIP_TEST_EN bits. These bits increase
the comparator window threshold above the LDO outputs,
forcing the comparator to trigger.
ROM and Memory Map CRC
If an error is found at power-up during the ROM verification,
or if the internal memory map is corrupted, the AD7770
generates an error and sets MEMMAP_CRC_ERR or ROM_
CRC_ERR, depending on the source of the error.
The checker can be disabled by clearing the MEMMAP_
CRC_TEST_EN and ROM_CRC_TEST_EN bits. The device
must be reset if any of these errors trigger.
Rev. A | Page 46 of 94
Data Sheet
AD7770
Σ-Δ ADC Errors
Reference Detect (SPI Control Mode)
Output Saturation
In SPI control mode, the AD7770 includes on-chip circuitry to
detect if there is a valid reference for conversions or calibrations. If
the voltage between the selected REFx+ and REFx− pins goes
below 0.7 V, the AD7770 detects that it no longer has a valid
reference. CHx_ERR_REF_DET can be interrogated to identify
the affected channel, which clears the bit register if the error is
no longer present. The voltage detector can be disabled by
clearing the REF_DET_TEST_EN bit.
Use the Σ-Δ ADC diagnostic or the SAR ADC to verify the error.
Overvoltage and Undervoltage Events
The AD7770 includes on-chip overvoltage/undervoltage
circuitry on each analog input pin. When the voltage on an
analog input pin goes above AVDD1x + 40 mV, the CHx_
ERR_AINx_OV bit is set. The error disappears if the input
voltage falls below AVDD1x − 40 mV.
An output saturation event can occur when gain and offset
calibration causes the output from the digital filter to clip at
either positive or negative full scale. The output does not wrap.
Reading the CHx_ERR_OUTPUT_SAT bit clears the bit if the
error corrects itself.
The detection can be disabled by clearing OUTPUT_SAT_
TEST_EN bit.
SPI Transmission Errors (SPI Control Mode)
All SPI errors clear after reading GEN_ERR_REG_1, which
contains the SPI errors. These errors are not recovered automatically and, consequently, the ALERT pin and bit remain set
until the error register is read back.
CRC Checksum Error
If an undervoltage event occurs (AVSSx − 40 mV), the CHx_
ERR_AINx_UV bit is set. The error disappears if the input
voltage increases to AVSSx + 40 mV.
The CHx_ERR_AINM_UV, CHx_ERR_AINM_OV, CHx_ERR_
AINP_UV, and CHx_ERR_AINP_OV bits can be read back to
verify the affected channel input, which clears the bits if the
error is no longer present. The overvoltage and undervoltage
detection can be disabled independently by clearing the AINM_
UV_TEST_EN, AINM_OV_TEST_EN, AINP_UV_TEST_EN,
or AINP_OV_TEST_EN bits.
If the CRC checksum is enabled by setting the SPI_CRC_
TEST_EN bit, an error bit, SPI_CRC_ERR, is raised if the CRC
message does not match the message computed by the AD7770
internal CRC block. If the CRC message does not match the
internally computed message, the register is not updated.
SCLK Counter
If the number of clocks generated by the controller is not a
multiple of 8 after CS is pulled high, an error bit, SPI_CLK_
COUNT_ERR is raised. The last command multiple of 8 is
executed; however, the SCLK counter can be disabled by setting
the SPI_CLK_COUNT_TEST_EN bit.
Invalid Read
The input voltage can be checked independently with the SAR
ADC.
When attempting to read back an invalid register address, the
SPI_INVALID_READ_ERR bit is set.
Modulator Saturation
The invalid readback address detection can be disabled by
setting the SPI_INVALID_READ_TEST_EN bit.
The AD7770 includes modulator saturation detection on each of
the Σ-Δ ADCs. If 20 consecutive codes for the modulator are
either all 1s or 0s, this condition is flagged as a modulator
saturation event. Reading the CHx_ERR_MOD_SAT register
clears the bit if the error corrects itself.
Modulator saturation detection can be disabled by clearing the
MOD_SAT_TEST_EN bit.
Note that the modulator input voltage is attenuated internally,
which means that a modulator output of all 1s or 0s represents a
modulator that is out of bounds and that a RESET pulse is required.
Filter Saturation
TheAD7770 includes digital filter saturation detection on each
Σ-Δ ADC channel. This detection indicates that the filter output is
out of bounds, which represents an output code approximately 20%
higher than positive or negative full scale. Reading the CHx_ERR_
FILTER_SAT bit clears the bit if the error corrects itself.
The detection can be disabled by clearing FILTER_SAT_TEST_
EN bit.
Invalid Write
When attempting to write to an invalid register address or a read
only register, the SPI_INVALID_WRITE_ERR bit is set.
The invalid write address detection can be disabled by setting
the SPI_INVALID_WRITE_TEST_EN bit.
MONITORING USING THE AD7770 SAR ADC
(SPI CONTROL MODE)
The AD7770 contains an on-chip SAR ADC for chip diagnostics,
system diagnostics, or measurement verification. The SAR ADC
has a 12-bit resolution. The AVDD4 and AVSS4 pins operate in
complete independence of the Σ-Δ ADC supplies and, therefore,
can be used for chip diagnostics in systems where functional
safety is important. The reference for the SAR conversion
process is taken from the SAR ADC supply voltage (AVDD4/
AVSS4) and, therefore, the SAR analog input range is from AVSS4
to AVDD4.
Rev. A | Page 47 of 94
AD7770
Data Sheet
The SAR ADC has a maximum throughput rate of 256 kSPS.
The CONVST_SAR pin initiates a conversion on the SAR ADC.
The maximum allowable frequency of the CONVST_SAR pin is
256 kHz. If consecutive conversions are performed in the SAR
ADC, read back the result from the previous conversion before
a new conversion is generated. Otherwise, the results are
corrupted.
The SAR ADC is only available in SPI control mode. To read
conversion results from the SAR ADC, set the SAR_DIAG_
MODE_EN bit. After this bit is set, all data shifted out from the
SDO pin originates from the SAR ADC conversion, as shown in
Figure 104.
The CONVST_SAR signal can be internally deglitched to avoid
false triggers.
Use the auxiliary inputs, AUXAIN+ and AUXAIN−, to validate
the Σ-Δ measurements. While operating in SPI control mode,
the AD7770 has three available GPIOx ports controlled via the
SPI. The GPIOx pins can be used to control an external, dual
8:1 multiplexer, which, in turn, samples the eight Σ-Δ channels.
Use this diagnostic in applications where functional safety is
required. This diagnostic aids in removing the need for a
secondary external ADC to validate primary measurements
on the Σ-Δ channels.
Temperature Sensor
The internal die temperature can be measured with an accuracy
of ±2°C. The differential voltage base emitter (DVBE) is
proportional to the temperature measured referred to 25°C.
Temperature (°C) =
Table 29. SAR Synchronization and Deglitching
CONVST_DEGLITCH_DIS
(Register 0x013, Bits[7:6])
11
10
Effect on CONVST_SAR
CONVST_SAR goes directly to the SAR
CONVST_SAR reaches the SAR when
it is 1.5/MCLK cycles wide
Increase the acquisition time by 1.5/MCLK when the deglitch
circuitry is enabled.
Prior to the SAR ADC, the AD7770 contains an internal
multiplexer. This multiplexer can be configured over the SPI to
set the inputs to the SAR ADC to be either internal circuit
nodes (in the case of diagnostics) or to select the external
AUXAIN+ and AUXAIN− pins.
Along with converting external voltages, the SAR ADC can monitor
the internal nodes on the AVDD, IOVDD, and DGND pins and
the DLDO and analog LDO (ALDO) outputs. Some voltages
are internally attenuated by 6, and the resulting voltage is
applied to the SAR ADC, as shown in Table 30. This
attenuation is useful because variations in the power supply
voltage can be monitored.
The input multiplexer of the SAR is controlled by the GLOBAL_
MUX_CONFIG register, and the different inputs available are
described in Table 30.
The SAR ADC also contains an SAR driver amplifier, as shown
in Figure 105. This amplifier settles the SAR input to 12-bit
accuracy within the t33 time. This driver amplifier helps
minimize the kickback from the SAR converter to the global
diagnostic mux input circuit nodes.
DVBE − 0.6 V
2 mV
Table 30. SAR Mux Inputs
SAR
Input
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Positive
Signal
AUXAIN+
DVBE
REF1+
REF2+
REF_OUT
VCM
AREG1CAP
AREG2CAP
DREGCAP
AVDD1A
AVDD1B
AVDD2A
AVDD2B
IOVDD
AVDD4
DGND
DGND
DGND
AVDD4
REF1+
REF2+
AVSSx
Negative
Signal
AUXAIN−
AVSSx
REF1−
REF2−
AVSSx
AVSSx
AVSSx
AVSSx
DGND
AVSSx
AVSSx
AVSSx
AVSSx
DGND
AVSSx
AVSSx
AVSSx
AVSSx
AVSSx
AVSSx
AVSSx
AVDD4
Attenuation ÷ 6
No
No
No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
No
No
Yes
SDI
SDO
SET BIT 5
GENERAL_USER_CONFIG_2 REG
WRITE TO ADC MUX REGISTER
WRITE TO ADC MUX REGISTER
ADC CONVERSION RESULT REG
ADC CONVERSION RESULT REG
Figure 104. Configuring the AD7770 to Operate the SPI to Read from the SAR ADC
Rev. A | Page 48 of 94
12538-123
CS
Data Sheet
AD7770
AVDD4
AVSS4
DEGLITCH
CONVST_SAR
AUXAIN+
REF
AUXAIN–
MUX
SAR ADC
FIFO
CONTROL LOGIC
SPI
ON-CHIP
DIAGNOSTICS
12538-122
SAR DRIVER
Figure 105. SAR ADC Configuration and Control
Table 31. Σ-Δ Diagnostic
Input
0
1
2
3
4
5
6
7
8
9
Voltage
Floating
Floating
280 mV differential signal
External reference, positive/negative
External reference, negative/positive
External reference, negative/negative
Internal reference, positive/negative
Internal reference, negative/positive
Internal reference, positive/positive
External reference, positive/positive
Recommended Voltage Reference
Not applicable
Not applicable
Internal/external
External
External
External
Internal
Internal
Internal
External
Σ-Δ ADC DIAGNOSTICS (SPI CONTROL MODE)
The AD7770 Σ-Δ ADC diagnostic functions are accessible
through the SPI. The internal mux placed before the PGA has
different inputs, allowing the user to select a zero-scale, positive
full-scale, or negative full-scale input to the Σ-Δ ADC, which
can be converted to verify the correct operation of the
Σ-Δ ADC channel.
The diagnostic mux control signals are shared across all the Σ-Δ
channels. Depending on the diagnostic selected, connect the
Σ-Δ ADC reference to a different reference source to guarantee
that the conversion is within the measurable range.
Notes/Result
Not applicable
Not applicable
PGA gain calibration
Positive full scale
Negative full scale
Zero scale
Positive full scale
Negative full scale
Zero scale
Zero scale
There are two different ways to enable the diagnostic mux, as
follows:


Setting the CHx_RX bit. This bit enables the input Σ-Δ
mux. The multiplexer inputs are described in Table 31. The
reference used during the conversions are controlled by the
REF_MUX_CTRL bits.
Setting CHx_REF_MONITOR. This bit has the same effect
as enabling the CHx_RX bit and selects the VDD1x/AVSSx
supplies as the main reference.
If the AINx± pin is connected to AVSSx, the input range is
outside the range of AVSSx + 100 mV; therefore, results may
differ slightly from the expected value.
Alternatively, the inputs can be used to calibrate gain and offset
errors.
Rev. A | Page 49 of 94
AD7770
Data Sheet
ADC CONVERSION OUTPUT—HEADER AND DATA
ALERT
The AD7770 Σ-Δ conversion results are output on the DOUT0
to DOUT3 pins or over the SPI, depending on the selected
interface. If the DOUTx interface is selected, the AD7770 acts as
the master in the transmission. If the SPI is selected, the
controller is the master.
Channel
0
1
2
3
4
5
6
7
DRDY
8-BITS
ADC DATA N
12538-124
HEADER N
24-BITS
Figure 106. ADC Output—8-Bit Header Plus 24-Bit Conversion Data
CRC Header
The CRC header is the header generated in pin control mode or
in SPI mode if DOUT_HEADER_FORMAT is set.
As shown in Figure 107, the header consists of an alert bit,
three bits for the ADC channel ID, as shown in Table 32, and
four bits for the CRC.
The chip error bit is set high if an error is detected in any channel,
as explained in the General Errors section. The alert bit remains
1 until the error disappears.
CRC
CRC
CRC
CRC
CH_ID_2
0
0
0
0
1
1
1
1
CH_ID_1
0
0
1
1
0
0
1
1
CH_ID_0
0
1
0
1
0
1
0
1
The CRC generated is eight bits long; the 4 MSBs are placed on the
header for the first channel in the pairing and the 4 LSBs on the
header of the second channel in the pairing, as shown in Table 33.
If a channel is disabled, the 24-bit output data for this channel is
0x000000.
Table 33. 8-Bit CRC, Header Configuration (Channel 2)
CE
In pin control mode, the header is fixed to the CRC while in SPI
mode, and can be selected between CRC and error headers.
CH_ID_0
Table 32. Channel ID
For each channel, the width is 32 bits long: 8 bits for the header
and 24 bits for the Σ-Δ conversion, as shown in Figure 106.
N–1
CH_ID_1
Figure 107. CRC Header
The DRDY signal indicates the end of conversion independent
of the interface selected to read back the Σ-Δ conversion. When
the SPI reads back the Σ-Δ conversion, if a new conversion is
completed (DRDY falling edge) before the previous conversion is
read back, the results from previous conversion are overwritten
and, consequently, the previous conversion data is corrupted.
DOUTx
CH_ID_2
12538-200
Σ-∆ OUTPUT DATA
0
1
0
CRC7
CRC6
CRC5
CRC4
Table 34. 8-Bit CRC, Header Configuration (Channel 3)
CE
0
1
1
CRC3
CRC2
CRC1
CRC0
ERROR Header (SPI Control Mode)
In SPI control mode, the default header can be replaced by an error
header. If the Σ-Δ conversion is read back through the SPI, disable
the CRC by clearing the SPI_CRC_TEST_EN bit. If the DOUTx
interface is used, clear the DOUT_HEADER_
FORMAT bit.
The error header provides information of common error sources
specific for each channel, as shown in Table 35. Modulator and
filter errors are indicated even if the checker for these errors are
specifically disabled, as described in the Σ-Δ ADC Errors section.
Table 35. Status Header Output
Bits
7
Name
Alert
[6:4]
3
2
CH_ID_[2:0]
RESET_DETECTED
MODULATOR_SATURATE
1
FILTER_SATURATE
0
AIN_OV_UVERROR
Description
This bit is set high if any of the enabled diagnostic functions have detected an error, including an
external clock not detected, a memory map bit flip, or an internal CRC error. This bit is not channel specific.
The bit clears if the error is no longer present.
These bits indicate which ADC channel the following conversion data came from (see Table 32).
This bit indicates if a reset condition occurs. This bit is not channel specific.
This bit indicates that the modulator output is 20 consecutive 0s or 1s. The bit resets automatically
after the error is no longer present.
This bit indicates that the filter output is out of bounds. The bit resets automatically after the error is
no longer present.
This bit indicates that there is an AINx± overvoltage/undervoltage condition on the inputs. This bit is
set until the appropriate register is read back and the error is no longer present.
Rev. A | Page 50 of 94
Data Sheet
AD7770
SRC (SPI CONTROL MODE)
The AD7770 implements a feature called the SRC on each Σ-Δ
channel that allows the user to configure the output data rate or
sampling frequency to any desired value, including noninteger
values. The SRC achieves fine resolution control over the Σ-Δ
ADC ODR. In applications where the ODR must change based
on changes in the input signal to maintain sampling coherency,
the SRC provides fine control over the ODR. For example, to
achieve the highest classification standard, Class A, in power
quality applications, coherency must be maintained for 0.01 Hz
changes in the input power line. Use the SRC to achieve this
sampling frequency accuracy.
In pin control mode, the decimation rate is fixed per the
predefined pin control options. Consequently, a noninteger
number cannot be selected, as shown in Table 13.
To set the ODR, the user must program up to four registers,
depending on the decimation value: two registers to program the
integer value, N (the effective decimation rate), and two registers
to program the decimal value, the interpolation factor (IF).
The integer value registers are SRC_N_MSB, Bits[3:0] and
SRC_N_LSB, Bits[7:0]. The decimal part value registers are
SRC_IF_MSB, Bits[7:0] and SRC_IF_LSB, Bits[7:0].
The ODR can be updated on-the-fly, but a new ODR is effective
in three conversion cycles of the Σ-Δ ADCs. This condition
guarantees a smooth transition with no conversion results out
of range.
There are two different ways to change the ODR after a new
value is written in the SRC registers: via software or via
hardware, depending on SRC_LOAD_SOURCE
(SRC_UPDATE register, Bit 7).
If the SRC_LOAD_SOURCE bit is clear, the new ODR value is
updated by setting the SRC_LOAD_UPDATE bit to 1. This bit
must be held high for at least two MLCK periods; return the bit
to 0 before attempting another update.
If SRC_LOAD_SOURCE is set, the GPIO0 pin controls the ODR
update externally. Apply a pulse in the GPIO2 pin, which is then
internally synchronized with the external MCLK clock, and the
resultant synchronous signal is output on the GPIO1 pin.
The GPIO1 and GPIO0 pins must be externally connected.
If multiple AD7770 devices must be synchronized, the GPIO1 pin
of one device can be connected to multiple devices. This synchronization method requires the use of a common MCLK signal for
all the AD7770 devices connected, as shown in Figure 108.
PULSE
As an example, if an output data rate of 2.8 kHz is required, the
decimation rate equates to
GPIO2
High resolution mode = 2048/2.8 = 731.428
Low power mode = 512/2.8 = 182.857
MCLK
731 (decimal) = 0x2DB
SRC_N_MSB, Bits[3:0] = 0x02
SRC_N_LSB, Bits[7:0] = 0xDB
0.428 (decimal) = 0.428 × 216 = 28049 (decimal) = 0x6D91
SRC_IF_MSB, Bits[7:0] = 0x6D
SRC_IF_LSB, Bits[7:0] = 0x91
GPIO0
AD7770
GPIO2
MCLK
MCLK
The SRC resolution depends on the decimal number used in the
decimation, as well as the modulator clock (MOD_CLK), as
follows:
Resolution =
MOD MCLK
216 × DEC 2 + 3 × DEC + 2 ×
1
216
1
216
GPIO1
NC
DIGITAL FILTER
GPIO0
MCLK
GPIO2
SYNCHRONIZATION
LOGIC
GPIO1
NC
DIGITAL FILTER
In high resolution mode, for a decimal decimation of 450, the
resolution is defined as
216 × 450 2 + 3 × 450 2 ×
SYNCHRONIZATION
LOGIC
AD7770
where:
MODMCLK is the modulator frequency.
DEC is the decimal portion of the decimation rate.
2048
GPIO1
DIGITAL FILTER
The register values for high resolution mode are as follows:
•
•
•
•
•
•
SYNCHRONIZATION
LOGIC
= 15.4 × 10 –6 SPS
Rev. A | Page 51 of 94
GPIO0
NOTES
1. NC = NO CONNECT.
Figure 108. Hardware ODR Update
12538-125
•
•
AD7770
AD7770
Data Sheet
SRC Bandwidth
SRC Group Delay
The sinc3 filter architecture allows the user to select a noninteger
value as the decimation range This versatility means that the
filter notches must be adjusted dynamically: two notches at the
variable frequency, and one fixed notch to remove the PGA
chopping tone. Consequently, the traditional formula for −0.1 dB
and −3 dB bandwidth must be adjusted depending on the
selected decimation rate.
The SRC group delay depends on the selected ODR and the
power mode, and is defined by the following equation:
The bandwidth transfer function is not linear but can be
approximated by using a linear function.
Figure 109 and Figure 110 show the correction factor for the
−0.1 dB and −3 dB bandwidth, respectively, in high resolution.
In low power mode, the offset must be divided by 4. For
example, when the ODR = 1000 SPS in low power mode, the
−0.1 dB point is
47.36
BW = 0.0481 × 1000 +
≈ 71 Hz
4
1600
–0.1dB FREQUENCY (Hz)
1200
1000
y = 0.0481x + 47.36
400
5.1
10.1
15.1
20.1
ODR (kHz)
25.1
12538-126
200
30.1
Figure 109. −0.1 dB Correction Factor
9
7
Settling Time
The settling time is defined by the contribution of all the
internal stages, the filter delay, and the block calibration.
The filter delay is defined as 3/ODR. In some extreme cases, such
as when an external pulse is applied, this value may increase to
4/ODR.
The Σ-Δ output data interface is defined by the CONVST_SAR,
FORMAT0, and FORMAT1 pins in pin control mode at power-up.
The FORMATx pins cannot be changed dynamically. Table 14
shows the available options for pin control mode. If the device
is configured in SPI control mode, the SPI_SLAVE_MODE_
EN bit enables the SPI to transmit the Σ-Δ ADC conversion
results, as shown in Table 22.
In standalone mode, the AD7770 interface acts as a master.
There are three different DOUTx configurations, configurable
through the FORMATx pins in pin control mode, as shown in
Figure 111 through Figure 113, or via the DOUT_FORMAT bits,
Bits[7:6], in SPI control mode, as described in Table 36.
6
y = 0.2608x + 248.64
5
4
3
Figure 114, Figure 115, and Figure 116 show the expected data
outputs for different DOUTx output modes.
2
1
5.1
10.1
15.1
20.1
ODR (kHz)
25.1
30.1
12538-127
–3dB FREQUENCY (kHz)
where:
PM is a value that depends on the power mode, either 64 for
high resolution mode or 32 for low power mode.
SRC_N is the integer value of the programmed ODR.
ODR is the programmed output data rate.
DOUT3 to DOUT0 Data Interface
Standalone Mode
8
0
0.1
SRC _ N × ODR
DATA OUTPUT INTERFACE
600
0
0.1
PM + SRC _ N
In high resolution mode, the calibration delay is defined as 62 ×
tMCLK, with a maximum error of 2 × tMCLK. In low power mode,
the calibration delay is defined as 121 × tMCLK, with a maximum
error of 4 × tMCLK. tMCLK is the external clock period and is 488 ns
in high resolution mode (8.192 MHz) and 1.9 µs in low power
mode (4.096 MHz)
1400
800
SRC Group Delay =
Figure 110. −3 dB Correction Factor
Rev. A | Page 52 of 94
Data Sheet
AD7770
Table 36. DOUTx Channels
DOUT_FORMAT Bits/FORMATx Pins
00
Number of DOUTx Lines Enabled
4
01
2
10 or 11
1
AD7770
Associated Channels
DOUT0—Channel 0 and Channel 1
DOUT1—Channel 2 and Channel 3
DOUT2—Channel 4 and Channel 5
DOUT3—Channel 6 and Channel 7
DOUT0—Channel 0, Channel 1, Channel 2, and Channel 3
DOUT1—Channel 4, Channel 5, Channel 6, and Channel 7
DOUT0—Channel 0, Channel 1, Channel 2, Channel 3,
Channel 4, Channel 5, Channel 6, and Channel 7
DRDY
DCLK
DOUT0
00
CH 1 0
CH 3 0
CH 5
CH 7 DGND
FORMAT0
FORMAT1
DOUT1
DOUT2
DOUT3
DAISY-CHAINING IS
NOT POSSIBLE IN THIS FORMAT
12538-128
DOUT0: CH 0,
DOUT1: CH 2,
DOUT2: CH 4,
DOUT3: CH 6,
Figure 111. FORMATx Pin Configuration—FORMAT0 = 0, FORMAT1 = 0
AD7770
DCLK
CH 0, CH 1, CH 2, CH 3
OUTPUT ON DOUT0
CH 4, CH 5, CH 6, CH 7
OUTPUT ON DOUT1
FORMAT0
FORMAT1
1
0
DOUT0
DOUT1
DGND
DAISY-CHAINING IS
POSSIBLE IN THIS FORMAT
12538-129
IOVDD
01
DRDY
Figure 112. FORMATx Pin Configuration—FORMAT0 = 1, FORMAT1 = 0
AD7770
DRDY
DCLK
DGND
10
CH 0 TO CH 7
OUTPUT ON DOUT0
FORMAT0
FORMAT1
0
1
DOUT0
DAISY-CHAINING IS
POSSIBLE IN THIS FORMAT
Figure 113. FORMATx Pin Configuration—FORMAT0 = 0, FORMAT1 = 1
Rev. A | Page 53 of 94
12538-130
IOVDD
AD7770
Data Sheet
DCLK
SAMPLE N + 1
SAMPLE N
DOUT0
CH0-S0
CH1-S0
CH0-S1
CH1-S1
DOUT1
CH2-S0
CH3-S0
CH2-S1
CH3-S1
DOUT0
CH4-S0
CH5-S0
CH4-S1
CH5-S1
DOUT1
CH6-S0
CH7-S0
CH6-S1
CH7-S1
12538-131
DRDY
Figure 114. FORMAT0 = 0, FORMAT1 = 0—Each DOUTx Outputs Two ADC Conversions (S0 Means Sample 0 and S1 Means Sample 1)
DCLK
SAMPLE N + 1
SAMPLE N
DRDY
DOUT0
CH0-S0
CH1-S0
CH2-S0
CH3-S0
CH0-S1
CH1-S1
CH2-S1
CH3-S1
DOUT1
CH4-S0
CH5-S0
CH6-S0
CH7-S0
CH4-S1
CH5-S1
CH6-S1
CH7-S1
12538-132
DOUT2
DOUT3
Figure 115. FORMAT0 = 0, FORMAT1 = 1—Channel 0 to Channel 3 Share DOUT0, and Channel 4 to Channel 7 Share DOUT1 (S0 Means Sample 0 and S1 Means Sample 1)
DCLK
SAMPLE N
SAMPLE N + 1
SAMPLE N + 2
DRDY
DOUT0
CH0-S0 CH1-S0 CH2-S0 CH...-S0 CH6-S0 CH7-S0 CH0-S1 CH1-S1 CH2-S1 CH...-S1 CH6-S1 CH7-S2
CH0-S2 CH1-S2 CH2-S2 CH...-S2 CH6-S2 CH7-S2 CH0-S3
DOUT1
12538-133
DOUT2
DOUT3
Figure 116. FORMAT0 = 1, FORMAT1 = 0—Channel 0 to Channel 7 Output on DOUT0 Only (S0 Means Sample 0 and S1 Means Sample 1)
Rev. A | Page 54 of 94
Data Sheet
AD7770
Daisy-Chain Mode
This feature is especially useful for reducing the component count
and wiring connections in, for example, isolated multiconverter
applications or for systems with a limited interfacing capacity.
Daisy-chaining devices allows numerous devices to use the
same data interface lines by cascading the outputs of multiple
ADCs from separate AD7770 devices. In daisy-chain configuration, only one device has a direct connection between the DOUTx
interface and the digital host. For the AD7770, daisy-chain
capability is implemented by cascading DOUT0 and DOUT1
through a number of devices, or by just using DOUT0 (the
number of DOUTx pins available depends on the selected
DOUTx mode). The ability to daisy-chain devices and the limit
on the number of devices that can be handled by the chain is
dependent on the selected DOUTx mode and the decimation
rate employed.
For daisy-chain operation, there are two different configurations
possible, as described in Table 37.
Using the FORMATx = 10 mode, DOUT2 acts as an input pin, as
shown in Figure 117. In this case, the DOUT0 pin of the AD7770
devices is cascaded to the DOUT2 pin of the next device in the
chain. Data readback is analogous to clocking a shift register
where data is clocked on the rising edge of DCLK.
When operating in daisy-chain mode, it is required that all
AD7770 devices in the chain are correctly synchronized. See
the Digital Reset and Synchronization Pins section for more
information.
Table 37. DOUTx Modes in Daisy-Chain Operation
DOUT_FORMAT Bits/
FORMATx Pins
01
Number of DOUTx Lines Enabled
2
10
1
Associated Channels
DOUT0—Channel 0 to Channel 3 and DOUT2
DOUT1—Channel 4 to Channel 7 and DOUT3
DOUT2—input channel
DOUT3—input channel
DOUT0—Channel 0 to Channel 7 and DOUT2
DOUT2—input channel
U2
DOUT2/DIN0
U2
DOUT0
DOUT2/DIN0
DOUT0
DCLK
DRDY
U2 DOUT0
U1 DOUT2/DIN0
U1 DOUT0
0
0
0
0
0
U2 S0 CH0 TO CH7
0
U2 S1 CH0 TO CH7
0
U2 S0 CH0 TO CH7
U2 S0 CH0 TO CH7 U2 S0 CH0 TO CH7 U2 S1 CH0 TO CH7 U2 S1 CH0 TO CH7 U2 S0 CH0 TO CH7
U1 S0 CH0 TO CH7 U1 S0 CH0 TO CH7
U1 S1 CH0 TO CH7 U2 S3 CH0 TO CH7 U1 S1 CH0 TO CH7
12538-134
U2 DOUT2/DIN0
Figure 117. Daisy-Chain Connection Mode, FORMAT0 = 1, FORMAT1 = 0 (S0 Means Sample 0 and S1 Means Sample 1); When Connected in Daisy-Chain Mode,
DOUT2 Acts as an Input Pin, Represented by DIN0
Rev. A | Page 55 of 94
AD7770
Data Sheet
Minimum DCLKx Frequency
Select the DCLKx frequency ratio in such a way that the data is
completely shifted out before a new conversion is completed;
otherwise the previous conversion is overwritten and the transmission becomes corrupt. The minimum DCLKx frequency ratio is
defined by the decimation rate, the operation mode, and the
lines enabled on the DOUT3 to DOUT0 data interfaces as
described in the following equations.
In standalone mode and high resolution mode,
DCLKMIN_RATIO < Decimation/(8 × CHANNELS_PER_DOUT)
In standalone mode and low power mode,
DCLKMIN_RATIO < Decimation/(4 × CHANNELS_PER_DOUT)
In daisy-chain mode and high resolution mode,
DCLKMIN_RATIO < Decimation/(8 × Devices × DOUTx Channels)
In daisy-chain mode and low power mode,
DCLKMIN_RATIO < Decimation/(4 × Devices × DOUTx Channels)
As an example, when operating in master interface mode,
FORMATx = 01, the DOUT0 and DOUT1 pins shift out four
Σ-Δ channels each and, assuming a maximum output rate in
high resolution mode, the decimation = 128.
DCLKMIN < 128/(8 × 4) = 4
If the DCLKMIN_RATIO is selected above the necessary minimum, a
Logic 0 is continuously transmitted until a new sample is available.
An example in daisy-chain mode, assuming FORMATx = 01,
and with three devices connected and a decimation rate of 256
in high resolution mode, is as follows:
DCLKMIN_RATIO < 256/(8 × 3 × 4) = 2.66 = 2
The different ratios are summarized in Table 38.
Table 38. Available DCLK Ratios
DCLK_CLK_DIV (SPI Control Mode),
DCLKx (Pin Control Mode)
000
001
010
011
100
101
110
111
DCLKx Ratio
1
2
4
8
16
32
64
128
There are maximum achievable ODRs and minimum DCLKx
frequencies required for a given DOUTx pin configuration, as
shown in Table 39 and Table 40.
Table 39. Maximum ODRs and Minimum DCLKx Frequencies
in High Resolution Mode
Decimation
Rate
4095
2048
1024
512
256
128
ODR
(kSPS)
0.500122
1
2
4
8
16
Minimum DCLKx (kHz)
1 × DOUTx 2 × DOUTx
4 × DOUTx
128
64
32
256
128
64
512
256
128
1024
512
256
2048
1024
512
4096
2048
1024
Table 40. Maximum ODRs and Minimum DCLKx Frequencies
in Low Power Mode
Decimation
Rate
2048
1024
512
256
128
ODR
(kSPS)
0.25
0.5
1
2
4
Minimum DCLKx (kHz)
1 × DOUTx 2 × DOUTx 4 × DOUTx
64
32
16
128
64
32
256
128
64
512
256
128
1024
512
256
If the AD7770 operates in SPI control mode, it is possible to
adjust the DOUTx strength, which can be selected in the
DOUT_DRIVE_STR bits, as described in Table 41.
Table 41. DOUTx Strength
DOUT_DRIVE_STR
00
01
10
11
Mode
Nominal
Strong
Weak
Extra strong
SPI
The SPI gives the user flexibility to read the conversion from the ΣΔ ADC where the processor or microcontroller is the master.
When a new conversion is completed, the DRDY signal is
toggled to indicate that data can be accessed. When DRDY
toggles, the internal channel counter is reset and the next SPI
read originates from Channel 0 again. Conversely, after the last
channel data is read, all successive reads before the next DRDY
signal originate from Channel 7 (LSB).
Rev. A | Page 56 of 94
Data Sheet
AD7770
12538-135
CS
SDO
Figure 118. SPI Readback, 16 Bits per Frame
12538-136
CS
SDO
Figure 119. SPI Readback, 24 Bits per Frame
The SPI operates in multiples of 8 bits per frame; Figure 118 shows
a readback example in 16 bits per frames, and Figure 119 shows a
readback in 24 bits per frame.
Note that if the device is configured in SPI control mode, the
AD7770 generates a software reset if the SDI pin is sampled
high for 64 consecutive clocks. To avoid a reset or unwanted
register writes, it is recommended to transfer a 0x8000 command,
which generates a readback command that is ignored by the
device, as explained in the Σ-Δ Data, ADC Mode section.
CALCULATING THE CRC CHECKSUM
The AD7770 implements two different CRC checksum
generators, one for the Σ-Δ results and another for the SPI
control mode.
The AD7770 uses a CRC polynomial to calculate the CRC
checksum value. The 8-bit CRC polynomial used is x8 + x2 + x + 1.
The polynomial is aligned so that its MSB is adjacent to the
leftmost Logic 1 of the data. An exclusive OR (XOR) function is
applied to the data to produce a new, shorter number. The polynomial is again aligned so that its MSB is adjacent to the leftmost
Logic 1 of the new result, and the procedure is repeated. This
process is repeated until the original data is reduced to a value
less than the polynomial, the 8-bit checksum.
An example of the CRC calculation for 12-bit data is shown in
Table 42.
Table 42. Example CRC Calculation for 12-Bit Data1
Data
Polynomial
CRC
1
0
1
1
1
0
1
1
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
0
0
0
0
0
1
1
0
1
1
1
0
1
1
1
1
0
1
1
1
1
0
1
0
This table represents the division of the data; blank cells are for formatting
purposes.
Σ-Δ CRC Checksum
The CRC message is calculated internally by the AD7770 on
ADC pairs. The CRC is calculated using the ADC output data
from two ADCs and Bits[7:4] from the header. Therefore, 56 bits
are used to calculate the 8-bit CRC. This CRC is split between
the two channel headers. The CRC data covers channel pairings
as follows: Channel 0 and Channel 1, Channel 2 and Channel 3,
Channel 4 and Channel 5, Channel 6, and Channel 7.
To generate the checksum, the data is left shifted by eight bits to
create a number ending in eight Logic 1s.
The CRC is calculated from 56 bits across two consecutive/
channel pairings (Channel 0 and Channel 1, Channel 2 and
Channel 3, Channel 4 and Channel 5, Channel 6, and Channel 7).
The 56 bits consist of the alert bit, the 3 bits for the first ADC
pairing channel, and the 24 bits of data of each pairing channel.
For example, for the second channel pairing, Channel 2 and
Channel 3,
56 bits = alert bit + 3 ADC channel bits (010) + 24 data bits
(Channel 2) + alert bit + 3 ADC channel bits (011) +
24 data bits (Channel 3)
SPI Control Mode Checksum
The CRC message is calculated internally by the AD7770. The
data transferred to the AD7770 uses the R/W bit, a 7-bit address,
and 8 bits of data for the CRC calculation.
The CRC calculated and appended to the data that it is shifted
out uses the previous transmitted R/W bit, the 7-bit register
address, and the 8-bit data from the readback register. If the
previous command was a write command, the 8 bits of data are
0s.
If the SAR ADC is read back, the CRC algorithm uses a 0000b
header and the 12 bits of SAR conversion data.
Rev. A | Page 57 of 94
AD7770
Data Sheet
REGISTER SUMMARY
Table 43. Register Summary
Reg.
0x000
Name
CH0_CONFIG
Bits
[7:0]
0x001
CH1_CONFIG
[7:0]
CH1_GAIN
0x002
CH2_CONFIG
[7:0]
CH2_GAIN
0x003
CH3_CONFIG
[7:0]
CH3_GAIN
0x004
CH4_CONFIG
[7:0]
CH4_GAIN
0x005
CH5_CONFIG
[7:0]
CH5_GAIN
0x006
CH6_CONFIG
[7:0]
CH6_GAIN
0x007
CH7_CONFIG
[7:0]
CH7_GAIN
0x008
CH_DISABLE
[7:0]
0x009
CH0_SYNC_
OFFSET
CH1_SYNC_
OFFSET
CH2_SYNC_
OFFSET
CH3_SYNC_
OFFSET
CH4_SYNC_
OFFSET
CH5_SYNC_
OFFSET
CH6_SYNC_
OFFSET
CH7_SYNC_
OFFSET
GENERAL_
USER_CONFIG_1
[7:0]
CH3_
DISABLE
CH0_SYNC_OFFSET
[7:0]
0x00A
0x00B
0x00C
0x00D
0x00E
0x00F
0x010
0x011
0x012
0x013
0x014
0x015
0x016
0x017
0x018
0x019
GENERAL_
USER_CONFIG_2
GENERAL_
USER_CONFIG_3
DOUT_
FORMAT
ADC_MUX_
CONFIG
GLOBAL_MUX_
CONFIG
GPIO_CONFIG
GPIO_DATA
BUFFER_
CONFIG_1
Bit 7
Bit 6
CH0_GAIN
Bit 5
CH0_REF_
MONITOR
CH1_REF_
MONITOR
CH2_REF_
MONITOR
CH3_REF_
MONITOR
CH4_REF_
MONITOR
CH5_REF_
MONITOR
CH6_REF_
MONITOR
CH7_REF_
MONITOR
CH5_DISABLE
Bit 4
CH0_RX
Bit 3
Bit 2
Bit 1
RESERVED
Bit 0
Reset
0x00
R/W
R/W
CH1_RX
RESERVED
0x00
R/W
CH2_RX
RESERVED
0x00
R/W
CH3_RX
RESERVED
0x00
R/W
CH4_RX
RESERVED
0x00
R/W
CH5_RX
RESERVED
0x00
R/W
CH6_RX
RESERVED
0x00
R/W
CH7_RX
RESERVED
0x00
R/W
0x00
R/W
0x00
R/W
CH1_SYNC_OFFSET
0x00
R/W
[7:0]
CH2_SYNC_OFFSET
0x00
R/W
[7:0]
CH3_SYNC_OFFSET
0x00
R/W
[7:0]
CH4_SYNC_OFFSET
0x00
R/W
[7:0]
CH5_SYNC_OFFSET
0x00
R/W
[7:0]
CH6_SYNC_OFFSET
0x00
R/W
[7:0]
CH7_SYNC_OFFSET
0x00
R/W
0x24
R/W
SPI_SYNC
0x09
R/W
CLK_QUAL_
DIS
RESERVED
0x80
R/W
0x20
R/W
0x00
R/W
RESERVED
0x00
R/W
GPIO_OP_EN
GPIO_WRITE_DATA
RESERVED
0x00
0x00
0x38
R/W
R/W
R/W
0xC0
R/W
[7:0]
[7:0]
[7:0]
CH7_
DISABLE
CH6_
DISABLE
ALL_
POWERMO
CH_DIS_
DE
MCLK_EN
RESERVED
[7:0]
CONVST_
DEGLITCH_DIS
DOUT_FORMAT
[7:0]
REF_MUX_CTRL
[7:0]
[7:0]
[7:0]
[7:0]
PDB_VCM
SAR_DIAG_
MODE_EN
RESERVED
DOUT_
HEADER_
FORMAT
CH4_DISABLE
PDB_
REFOUT_BUF
PDB_
SAR
SDO_DRIVE_STR
SPI_SLAVE_
MODE_EN
RESERVED
CH2_
DISABLE
PDB_
RC_OSC
RESERVED
DCLK_CLK_DIV
RESERVED
BUFFER_
CONFIG_2
[7:0]
0x01C
CH0_OFFSET_
UPPER_BYTE
CH0_OFFSET_
MID_BYTE
CH0_OFFSET_
LOWER_BYTE
[7:0]
CH0_OFFSET_ALL[23:16]
0x00
R/W
[7:0]
CH0_OFFSET_ALL[15:8]
0x00
R/W
[7:0]
CH0_OFFSET_ALL[7:0]
0x00
R/W
0x01E
REF-BUFN_
PREQ
REF_
BUF_
NEG_EN
0x01A
0x01D
REF-BUFP_
PREQ
SOFT_RESET
MTR_MUX_CTRL
RESERVED
GPIO_READ_DATA
REF_BUF_
POS_EN
CH0_
DISABLE
DOUT_DRIVE_STR
GLOBAL_MUX_CTRL
RESERVED
RESERVED
CH1_
DISABLE
RESERVED
Rev. A | Page 58 of 94
PDB_
ALDO1_
OVRDRV
PDB_
ALDO2_
OVRDRV
PDB_
DLDO_
OVRDRV
Data Sheet
Reg.
0x01F
0x020
0x021
0x022
0x023
0x024
0x025
0x026
0x027
0x028
0x029
0x02A
0x02B
0x02C
0x02D
0x02E
0x02F
0x030
0x031
0x032
0x033
0x034
0x035
0x036
0x037
0x038
0x039
0x03A
0x03B
0x03C
0x03D
0x03E
0x03F
Name
CH0_GAIN_
UPPER_BYTE
CH0_GAIN_
MID_BYTE
CH0_GAIN_
LOWER_BYTE
CH1_OFFSET_
UPPER_BYTE
CH1_OFFSET_
MID_BYTE
CH1_OFFSET_
LOWER_BYTE
CH1_GAIN_
UPPER_BYTE
CH1_GAIN_
MID_BYTE
CH1_GAIN_
LOWER_BYTE
CH2_OFFSET_
UPPER_BYTE
CH2_OFFSET_
MID_BYTE
CH2_OFFSET_
LOWER_BYTE
CH2_GAIN_
UPPER_BYTE
CH2_GAIN_
MID_BYTE
CH2_GAIN_
LOWER_BYTE
CH3_OFFSET_
UPPER_BYTE
CH3_OFFSET_
MID_BYTE
CH3_OFFSET_
LOWER_BYTE
CH3_GAIN_
UPPER_BYTE
CH3_GAIN_
MID_BYTE
CH3_GAIN_
LOWER_BYTE
CH4_OFFSET_
UPPER_BYTE
CH4_OFFSET_
MID_BYTE
CH4_OFFSET_
LOWER_BYTE
CH4_GAIN_
UPPER_BYTE
CH4_GAIN_
MID_BYTE
CH4_GAIN_
LOWER_BYTE
CH5_OFFSET_
UPPER_BYTE
CH5_OFFSET_
MID_BYTE
CH5_OFFSET_
LOWER_BYTE
CH5_GAIN_
UPPER_BYTE
CH5_GAIN_
MID_BYTE
CH5_GAIN_
LOWER_BYTE
AD7770
Bits
[7:0]
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
CH0_GAIN_ALL[23:16]
Bit 2
Bit 1
Bit 0
Reset
0x00
R/W
R/W
[7:0]
CH0_GAIN_ALL[15:8]
0x00
R/W
[7:0]
CH0_GAIN_ALL[7:0]
0x00
R/W
[7:0]
CH1_OFFSET_ALL[23:16]
0x00
R/W
[7:0]
CH1_OFFSET_ALL[15:8]
0x00
R/W
[7:0]
CH1_OFFSET_ALL[7:0]
0x00
R/W
[7:0]
CH1_GAIN_ALL[23:16]
0x00
R/W
[7:0]
CH1_GAIN_ALL[15:8]
0x00
R/W
[7:0]
CH1_GAIN_ALL[7:0]
0x00
R/W
[7:0]
CH2_OFFSET_ALL[23:16]
0x00
R/W
[7:0]
CH2_OFFSET_ALL[15:8]
0x00
R/W
[7:0]
CH2_OFFSET_ALL[7:0]
0x00
R/W
[7:0]
CH2_GAIN_ALL[23:16]
0x00
R/W
[7:0]
CH2_GAIN_ALL[15:8]
0x00
R/W
[7:0]
CH2_GAIN_ALL[7:0]
0x00
R/W
[7:0]
CH3_OFFSET_ALL[23:16]
0x00
R/W
[7:0]
CH3_OFFSET_ALL[15:8]
0x00
R/W
[7:0]
CH3_OFFSET_ALL[7:0]
0x00
R/W
[7:0]
CH3_GAIN_ALL[23:16]
0x00
R/W
[7:0]
CH3_GAIN_ALL[15:8]
0x00
R/W
[7:0]
CH3_GAIN_ALL[7:0]
0x00
R/W
[7:0]
CH4_OFFSET_ALL[23:16]
0x00
R/W
[7:0]
CH4_OFFSET_ALL[15:8]
0x00
R/W
[7:0]
CH4_OFFSET_ALL[7:0]
0x00
R/W
[7:0]
CH4_GAIN_ALL[23:16]
0x00
R/W
[7:0]
CH4_GAIN_ALL[15:8]
0x00
R/W
[7:0]
CH4_GAIN_ALL[7:0]
0x00
R/W
[7:0]
CH5_OFFSET_ALL[23:16]
0x00
R/W
[7:0]
CH5_OFFSET_ALL[15:8]
0x00
R/W
[7:0]
CH5_OFFSET_ALL[7:0]
0x00
R/W
[7:0]
CH5_GAIN_ALL[23:16]
0x00
R/W
[7:0]
CH5_GAIN_ALL[15:8]
0x00
R/W
[7:0]
CH5_GAIN_ALL[7:0]
0x00
R/W
Rev. A | Page 59 of 94
AD7770
Reg.
0x040
0x04C
Name
CH6_OFFSET_
UPPER_BYTE
CH6_OFFSET_
MID_BYTE
CH6_OFFSET_
LOWER_BYTE
CH6_GAIN_
UPPER_BYTE
CH6_GAIN_
MID_BYTE
CH6_GAIN_
LOWER_BYTE
CH7_OFFSET_
UPPER_BYTE
CH7_OFFSET_
MID_BYTE
CH7_OFFSET_
LOWER_BYTE
CH7_GAIN_
UPPER_BYTE
CH7_GAIN_
MID_BYTE
CH7_GAIN_
LOWER_BYTE
CH0_ERR_REG
0x04D
0x041
0x042
0x043
0x044
0x045
0x046
0x047
0x048
0x049
0x04A
0x04B
Data Sheet
Bits
[7:0]
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
CH6_OFFSET_ALL[23:16]
Bit 0
Reset
0x00
R/W
R/W
CH6_OFFSET_ALL[15:8]
0x00
R/W
[7:0]
CH6_OFFSET_ALL[7:0]
0x00
R/W
[7:0]
CH6_GAIN_ALL[23:16]
0x00
R/W
[7:0]
CH6_GAIN_ALL[15:8]
0x00
R/W
[7:0]
CH6_GAIN_ALL[7:0]
0x00
R/W
[7:0]
CH7_OFFSET_ALL[23:16]
0x00
R/W
[7:0]
CH7_OFFSET_ALL[15:8]
0x00
R/W
[7:0]
CH7_OFFSET_ALL[7:0]
0x00
R/W
[7:0]
CH7_GAIN_ALL[23:16]
0x00
R/W
[7:0]
CH7_GAIN_ALL[15:8]
0x00
R/W
[7:0]
CH7_GAIN_ALL[7:0]
0x00
R/W
0x00
R
0x00
R
0x00
R
0x00
R
0x00
R
0x00
R
0x00
R
0x00
R
0x00
R
0x00
R
0x00
R
0x00
R
0xFE
R/W
0x00
R
0x3E
R/W
0x00
R
0x3C
R/W
0x00
R
RESERVED
CH1_ERR_REG
[7:0]
RESERVED
0x04E
CH2_ERR_REG
[7:0]
RESERVED
0x04F
CH3_ERR_REG
[7:0]
RESERVED
0x050
CH4_ERR_REG
[7:0]
RESERVED
0x051
CH5_ERR_REG
[7:0]
RESERVED
0x052
CH6_ERR_REG
[7:0]
RESERVED
0x053
CH7_ERR_REG
[7:0]
RESERVED
0x054
CH0_1_SAT_
ERR
[7:0]
RESERVED
CH1_ERR_
MOD_SAT
CH0_ERR_
AINM_UV
CH1_ERR_
AINM_UV
CH2_ERR_
AINM_UV
CH3_ERR_
AINM_UV
CH4_ERR_
AINM_UV
CH5_ERR_
AINM_UV
CH6_ERR_
AINM_UV
CH7_ERR_
AINM_UV
CH1_ERR_
FILTER_SAT
0x055
CH2_3_SAT_
ERR
[7:0]
RESERVED
CH3_ERR_
MOD_SAT
CH3_ERR_
FILTER_SAT
0x056
CH4_5_SAT_
ERR
[7:0]
RESERVED
CH5_ERR_
MOD_SAT
CH5_ERR_
FILTER_SAT
0x057
CH6_7_SAT_
ERR
[7:0]
RESERVED
CH7_ERR_
MOD_SAT
CH7_ERR_
FILTER_SAT
0x058
CHX_ERR_
REG_EN
[7:0]
MOD_SAT_
TEST_EN
AINM_UV_
TEST_EN
0x059
GEN_ERR_
REG_1
[7:0]
OUTPUT_
FILTER_
SAT_TEST_ SAT_TEST_
EN
EN
RESERVED
MEMMAP_
CRC_ERR
ROM_CRC_
ERR
0x05A
GEN_ERR_
REG_1_EN
[7:0]
RESERVED
MEMMAP_
CRC_TEST_EN
ROM_CRC_
TEST_EN
0x05B
GEN_ERR_
REG_2
GEN_ERR_
REG_2_EN
STATUS_REG_1
[7:0]
RESERVED
[7:0]
RESERVED
EXT_MCLK_
SWITCH_ERR
RESERVED
[7:0]
RESERVED
RESET_
DETECTED
RESET_
DETECT_EN
CHIP_ERROR
0x05D
Bit 1
[7:0]
[7:0]
0x05C
Bit 2
ERR_LOC_CH4
Rev. A | Page 60 of 94
CH0_ERR_
AINM_OV
CH1_ERR_
AINM_OV
CH2_ERR_
AINM_OV
CH3_ERR_
AINM_OV
CH4_ERR_
AINM_OV
CH5_ERR_
AINM_OV
CH6_ERR_
AINM_OV
CH7_ERR_
AINM_OV
CH1_ERR_
OUTPUT_
SAT
CH3_ERR_
OUTPUT_
SAT
CH5_ERR_
OUTPUT_
SAT
CH7_ERR_
OUTPUT_
SAT
AINM_OV_
TEST_EN
CH0_ERR_
AINP_UV
CH1_ERR_
AINP_UV
CH2_ERR_
AINP_UV
CH3_ERR_
AINP_UV
CH4_ERR_
AINP_UV
CH5_ERR_
AINP_UV
CH6_ERR_
AINP_UV
CH7_ERR_
AINP_UV
CH0_ERR_
MOD_SAT
CH0_ERR_
AINP_OV
CH1_ERR_
AINP_OV
CH2_ERR_
AINP_OV
CH3_ERR_
AINP_OV
CH4_ERR_
AINP_OV
CH5_ERR_
AINP_OV
CH6_ERR_
AINP_OV
CH7_ERR_
AINP_OV
CH0_ERR_
FILTER_SAT
CH2_ERR_
MOD_SAT
CH2_ERR_
FILTER_SAT
CH4_ERR_
MOD_SAT
CH4_ERR_
FILTER_SAT
CH6_ERR_
MOD_SAT
CH6_ERR_
FILTER_SAT
AINP_UV_
TEST_EN
AINP_OV_
TEST_EN
SPI_CLK_
COUNT_
ERR
SPI_CLK_
COUNT_
TEST_EN
CH0_ERR_
REF_DET
CH1_ERR_
REF_DET
CH2_ERR_
REF_DET
CH3_ERR_
REF_DET
CH4_ERR_
REF_DET
CH5_ERR_
REF_DET
CH6_ERR_
REF_DET
CH7_ERR_
REF_DET
CH0_ERR_
OUTPUT_
SAT
CH2_ERR_
OUTPUT_
SAT
CH4_ERR_
OUTPUT_
SAT
CH6_ERR_
OUTPUT_
SAT
REF_DET_
TEST_EN
SPI_
INVALID_
READ_ERR
SPI_
INVALID_
READ_
TEST_EN
RE-SERVED ALDO1_
PSM_ERR
LDO_PSM_TEST_EN
SPI_
SPI_CRC_
INVALID_
ERR
WRITE_ERR
SPI_
SPI_CRC_
INVALID_
TEST_EN
WRITE_
TEST_EN
ALDO2_
DLDO_
PSM_ERR
PSM_ERR
LDO_PSM_TRIP_TEST_EN
ERR_LOC_
CH3
ERR_LOC_
CH1
ERR_LOC_
CH2
ERR_LOC_
CH0
Data Sheet
AD7770
Reg.
0x05E
Name
STATUS_REG_2
Bits
[7:0]
0x05F
STATUS_REG_3
[7:0]
0x060
0x061
0x062
0x063
0x064
SRC_N_MSB
SRC_N_LSB
SRC_IF_MSB
SRC_IF_LSB
SRC_UPDATE
[7:0]
[7:0]
[7:0]
[7:0]
[7:0]
Bit 7
Bit 6
RESERVED
Bit 5
CHIP_ERROR
RESERVED
CHIP_ERROR
Bit 4
ERR_LOC_
GEN2
INIT_
COMPLETE
Bit 3
ERR_LOC_
GEN1
ERR_LOC_
SAT_CH6_7
RESERVED
SRC_
LOAD_
SOURCE
SRC_N_ALL[7:0]
SRC_IF_ALL[15:8]
SRC_IF_ALL[7:0]
RESERVED
Rev. A | Page 61 of 94
Bit 2
Bit 1
ERR_
ERR_LOC_
LOC_CH7
CH6
ERR_LOC_S ERR_LOC_
AT_CH4_5
SAT_CH2_3
SRC_N_ALL[11:8]
Bit 0
ERR_LOC_
CH5
ERR_LOC_
SAT_CH0_1
SRC_LOAD_
UPDATE
Reset
0x00
R/W
R
0x00
R
0x00
0x80
0x00
0x00
0x00
R/W
R/W
R/W
R/W
R/W
AD7770
Data Sheet
REGISTER DETAILS
CHANNEL 0 CONFIGURATION REGISTER
Address: 0x000, Reset: 0x00, Name: CH0_CONFIG
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[2:0] RESERVED
[7:6] CH0_GAIN (R/W)
AFE Gain
00: Gain 1.
01: Gain 2.
10: Gain 4.
11: Gain 8.
[3] RESERVED
[5] CH0_REF_MONITOR (R/W)
Channel used as Reference m onitor
[4] CH0_RX (R/W)
Channel Meter Mux RX Mode
Table 44. Bit Descriptions for CH0_CONFIG
Bits
[7:6]
Bit Name
CH0_GAIN
Settings
00
01
10
11
5
4
[3:0]
CH0_REF_MONITOR
CH0_RX
RESERVED
Description
AFE Gain
Gain = 1
Gain = 2
Gain = 4
Gain = 8
Channel Used as Reference Monitor
Channel Meter Mux Rx Mode
Reserved
Reset
0x0
Access
R/W
0x0
0x0
0x0
R/W
R/W
R/W
Reset
0x0
Access
R/W
0x0
0x0
0x0
R/W
R/W
R/W
CHANNEL 1 CONFIGURATION REGISTER
Address: 0x001, Reset: 0x00, Name: CH1_CONFIG
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] CH1_GAIN (R/W)
AFE Gain
00: Gain = 1.
01: Gain = 2.
10: Gain = 4.
11: Gain = 8.
[2:0] RESERVED
[3] RESERVED
[5] CH1_REF_MONITOR (R/W)
Channel used as Reference m onitor
[4] CH1_RX (R/W)
Channel Meter Mux RX Mode
Table 45. Bit Descriptions for CH1_CONFIG
Bits
[7:6]
Bit Name
CH1_GAIN
Settings
00
01
10
11
5
4
[3:0]
CH1_REF_MONITOR
CH1_RX
RESERVED
Description
AFE Gain
Gain = 1
Gain = 2
Gain = 4
Gain = 8
Channel Used as Reference Monitor
Channel Meter Mux Rx Mode
Reserved
Rev. A | Page 62 of 94
Data Sheet
AD7770
CHANNEL 2 CONFIGURATION REGISTER
Address: 0x002, Reset: 0x00, Name: CH2_CONFIG
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] CH2_GAIN (R/W)
AFE Gain
00: Gain 1.
01: Gain 2.
10: Gain 4.
11: Gain 8.
[2:0] RESERVED
[3] RESERVED
[5] CH2_REF_MONITOR (R/W)
Channel used as Reference m onitor
[4] CH2_RX (R/W)
Channel Meter Mux RX Mode
Table 46. Bit Descriptions for CH2_CONFIG
Bits
[7:6]
Bit Name
CH2_GAIN
Settings
00
01
10
11
5
4
[3:0]
CH2_REF_MONITOR
CH2_RX
RESERVED
Description
AFE Gain
Gain = 1
Gain = 2
Gain = 4
Gain = 8
Channel Used as Reference Monitor
Channel Meter Mux Rx Mode
Reserved
Reset
0x0
Access
R/W
0x0
0x0
0x0
R/W
R/W
R/W
Reset
0x0
Access
R/W
0x0
0x0
0x0
R/W
R/W
R/W
CHANNEL 3 CONFIGURATION REGISTER
Address: 0x003, Reset: 0x00, Name: CH3_CONFIG
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] CH3_GAIN (R/W)
AFE Gain
00: Gain 1.
01: Gain 2.
10: Gain 4.
11: Gain 8.
[2:0] RESERVED
[3] RESERVED
[5] CH3_REF_MONITOR (R/W)
Channel used as Reference m onitor
[4] CH3_RX (R/W)
Channel Meter Mux RX Mode
Table 47. Bit Descriptions for CH3_CONFIG
Bits
[7:6]
Bit Name
CH3_GAIN
Settings
00
01
10
11
5
4
[3:0]
CH3_REF_MONITOR
CH3_RX
RESERVED
Description
AFE Gain
Gain = 1
Gain = 2
Gain = 4
Gain = 8
Channel Used as Reference Monitor
Channel Meter Mux Rx Mode
Reserved
Rev. A | Page 63 of 94
AD7770
Data Sheet
CHANNEL 4 CONFIGURATION REGISTER
Address: 0x004, Reset: 0x00, Name: CH4_CONFIG
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] CH4_GAIN (R/W)
AFE Gain
00: Gain 1.
01: Gain 2.
10: Gain 4.
11: Gain 8.
[2:0] RESERVED
[3] RESERVED
[5] CH4_REF_MONITOR (R/W)
Channel used as Reference m onitor
[4] CH4_RX (R/W)
Channel Meter Mux RX Mode
Table 48. Bit Descriptions for CH4_CONFIG
Bits
[7:6]
Bit Name
CH4_GAIN
Settings
00
01
10
11
5
4
[3:0]
CH4_REF_MONITOR
CH4_RX
RESERVED
Description
AFE Gain
Gain = 1
Gain = 2
Gain = 4
Gain = 8
Channel Used as Reference Monitor
Channel Meter Mux Rx Mode
Reserved
Reset
0x0
Access
R/W
0x0
0x0
0x0
R/W
R/W
R/W
Reset
0x0
Access
R/W
0x0
0x0
0x0
R/W
R/W
R/W
CHANNEL 5 CONFIGURATION REGISTER
Address: 0x005, Reset: 0x00, Name: CH5_CONFIG
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] CH5_GAIN (R/W)
AFE Gain
00: Gain 1.
01: Gain 2.
10: Gain 4.
11: Gain 8.
[2:0] RESERVED
[3] RESERVED
[5] CH5_REF_MONITOR (R/W)
Channel used as Reference m onitor
[4] CH5_RX (R/W)
Channel Meter Mux RX Mode
Table 49. Bit Descriptions for CH5_CONFIG
Bits
[7:6]
Bit Name
CH5_GAIN
Settings
00
01
10
11
5
4
[3:0]
CH5_REF_MONITOR
CH5_RX
RESERVED
Description
AFE Gain
Gain = 1
Gain = 2
Gain = 4
Gain = 8
Channel Used as Reference Monitor
Channel Meter Mux Rx Mode
Reserved
Rev. A | Page 64 of 94
Data Sheet
AD7770
CHANNEL 6 CONFIGURATION REGISTER
Address: 0x006, Reset: 0x00, Name: CH6_CONFIG
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] CH6_GAIN (R/W)
AFE Gain
00: Gain 1.
01: Gain 2.
10: Gain 4.
11: Gain 8.
[2:0] RESERVED
[3] RESERVED
[5] CH6_REF_MONITOR (R/W)
Channel used as Reference m onitor
[4] CH6_RX (R/W)
Channel Meter Mux RX Mode
Table 50. Bit Descriptions for CH6_CONFIG
Bits
[7:6]
Bit Name
CH6_GAIN
Settings
00
01
10
11
5
4
[3:0]
CH6_REF_MONITOR
CH6_RX
RESERVED
Description
AFE Gain
Gain = 1
Gain = 2
Gain = 4
Gain = 8
Channel Used as Reference Monitor
Channel Meter Mux Rx Mode
Reserved
Reset
0x0
Access
R/W
0x0
0x0
0x0
R/W
R/W
R/W
Reset
0x0
Access
R/W
0x0
0x0
0x0
R/W
R/W
R/W
CHANNEL 7 CONFIGURATION REGISTER
Address: 0x007, Reset: 0x00, Name: CH7_CONFIG
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] CH7_GAIN (R/W)
AFE Gain
00: Gain 1.
01: Gain 2.
10: Gain 4.
11: Gain 8.
[2:0] RESERVED
[3] RESERVED
[5] CH7_REF_MONITOR (R/W)
Channel used as Reference m onitor
[4] CH7_RX (R/W)
Channel Meter Mux RX Mode
Table 51. Bit Descriptions for CH7_CONFIG
Bits
[7:6]
Bit Name
CH7_GAIN
Settings
00
01
10
11
5
4
[3:0]
CH7_REF_MONITOR
CH7_RX
RESERVED
Description
AFE Gain
Gain = 1
Gain = 2
Gain = 4
Gain = 8
Channel Used as Reference Monitor
Channel Meter Mux Rx Mode
Reserved
Rev. A | Page 65 of 94
AD7770
Data Sheet
DISABLE CLOCKS TO ADC CHANNEL REGISTER
Address: 0x008, Reset: 0x00, Name: CH_DISABLE
7
6
5
4
0
1
2
3
0 0 0 0 0 0 0 0
[7] CH7_DISABLE (R/W)
Channel 7 Disable
[0] CH0_DISABLE (R/W)
Channel 0 Disable
[6] CH6_DISABLE (R/W)
Channel 6 Disable
[1] CH1_DISABLE (R/W)
Channel 1 Disable
[5] CH5_DISABLE (R/W)
Channel 5 Disable
[2] CH2_DISABLE (R/W)
Channel 2 Disable
[4] CH4_DISABLE (R/W)
Channel 4 Disable
[3] CH3_DISABLE (R/W)
Channel 3 Disable
Table 52. Bit Descriptions for CH_DISABLE
Bits
7
6
5
4
3
2
1
0
Bit Name
CH7_DISABLE
CH6_DISABLE
CH5_DISABLE
CH4_DISABLE
CH3_DISABLE
CH2_DISABLE
CH1_DISABLE
CH0_DISABLE
Settings
Description
Channel 7 Disable
Channel 6 Disable
Channel 5 Disable
Channel 4 Disable
Channel 3 Disable
Channel 2 Disable
Channel 1 Disable
Channel 0 Disable
Reset
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
Access
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
CHANNEL 0 SYNC OFFSET REGISTER
Address: 0x009, Reset: 0x00, Name: CH0_SYNC_OFFSET
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH0_SYNC_OFFSET (R/W)
Channel Sync Offset
Table 53. Bit Descriptions for CH0_SYNC_OFFSET
Bits
[7:0]
Bit Name
CH0_SYNC_OFFSET
Settings
Description
Channel Sync Offset
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
CHANNEL 1 SYNC OFFSET REGISTER
Address: 0x00A, Reset: 0x00, Name: CH1_SYNC_OFFSET
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH1_SYNC_OFFSET (R/W)
Channel Sync Offset
Table 54. Bit Descriptions for CH1_SYNC_OFFSET
Bits
[7:0]
Bit Name
CH1_SYNC_OFFSET
Settings
Description
Channel Sync Offset
CHANNEL 2 SYNC OFFSET REGISTER
Address: 0x00B, Reset: 0x00, Name: CH2_SYNC_OFFSET
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH2_SYNC_OFFSET (R/W)
Channel Sync Offset
Table 55. Bit Descriptions for CH2_SYNC_OFFSET
Bits
[7:0]
Bit Name
CH2_SYNC_OFFSET
Settings
Description
Channel Sync Offset
Rev. A | Page 66 of 94
Data Sheet
AD7770
CHANNEL 3 SYNC OFFSET REGISTER
Address: 0x00C, Reset: 0x00, Name: CH3_SYNC_OFFSET
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH3_SYNC_OFFSET (R/W)
Channel Sync Offset
Table 56. Bit Descriptions for CH3_SYNC_OFFSET
Bits
[7:0]
Bit Name
CH3_SYNC_OFFSET
Settings
Description
Channel Sync Offset
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
CHANNEL 4 SYNC OFFSET REGISTER
Address: 0x00D, Reset: 0x00, Name: CH4_SYNC_OFFSET
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH4_SYNC_OFFSET (R/W)
Channel Sync Offset
Table 57. Bit Descriptions for CH4_SYNC_OFFSET
Bits
[7:0]
Bit Name
CH4_SYNC_OFFSET
Settings
Description
Channel Sync Offset
CHANNEL 5 SYNC OFFSET REGISTER
Address: 0x00E, Reset: 0x00, Name: CH5_SYNC_OFFSET
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH5_SYNC_OFFSET (R/W)
Channel Sync Offset
Table 58. Bit Descriptions for CH5_SYNC_OFFSET
Bits
[7:0]
Bit Name
CH5_SYNC_OFFSET
Settings
Description
Channel Sync Offset
CHANNEL 6 SYNC OFFSET REGISTER
Address: 0x00F, Reset: 0x00, Name: CH6_SYNC_OFFSET
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH6_SYNC_OFFSET (R/W)
Channel Sync Offset
Table 59. Bit Descriptions for CH6_SYNC_OFFSET
Bits
[7:0]
Bit Name
CH6_SYNC_OFFSET
Settings
Description
Channel Sync Offset
CHANNEL 7 SYNC OFFSET REGISTER
Address: 0x010, Reset: 0x00, Name: CH7_SYNC_OFFSET
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH7_SYNC_OFFSET (R/W)
Channel Sync Offset
Table 60. Bit Descriptions for CH7_SYNC_OFFSET
Bits
[7:0]
Bit Name
CH7_SYNC_OFFSET
Settings
Description
Channel Sync Offset
Rev. A | Page 67 of 94
AD7770
Data Sheet
GENERAL USER CONFIGURATION 1 REGISTER
Address: 0x011, Reset: 0x24, Name: GENERAL_USER_CONFIG_1
7
6
5
4
3
2
1
0
0 0 1 0 0 1 0 0
[7] ALL_CH_DIS__MCLK_EN (R/W)
If all SD channels are disabled, setting
this bit high allows DCLK to continue
toggling
[1:0] SOFT_RESET (R/W)
Soft Reset
00: No Effect.
01: No Effect.
10: 2nd write.
11: 1st write.
[6] POWERMODE (R/W)
Power Mode
0: Low Power (1/4)
1: High Resolution.
[2] PDB_RC_OSC (R/W)
PowerDown signal for internal oscillator.
Active Low
[5] PDB_VCM (R/W)
PowerDown VCM Buffer. Active Low
[3] PDB_SAR (R/W)
PowerDown SA. Active Low
[4] PDB_REFOUT_BUF (R/W)
PowerDown Internal Reference Output
Buffer. Active Low
Table 61. Bit Descriptions for GENERAL_USER_CONFIG_1
Bits
7
Bit Name
ALL_CH_DIS_MCLK_EN
6
POWERMODE
Settings
0
1
5
4
3
2
[1:0]
PDB_VCM
PDB_REFOUT_BUF
PDB_SAR
PDB_RC_OSC
SOFT_RESET
00
01
10
11
Description
If all Σ-Δ channels are disabled, setting this bit high allows DCLK to
continue toggling.
Power Mode.
Low power (1/4).
High resolution.
Power Down VCM Buffer. Active low.
Power Down Internal Reference Output Buffer. Active low.
Power Down SAR. Active low.
Power Down Signal for Internal Oscillator. Active low.
Soft Reset.
No effect.
No effect.
2nd write.
1st write.
GENERAL USER CONFIGURATION 2 REGISTER
Address: 0x012, Reset: 0x09, Name: GENERAL_USER_CONFIG_2
7
6
5
4
3
2
1
0
0 0 0 0 1 0 0 1
[7] RESERVED
[6] RESERVED
[5] SAR_DIAG_MODE_EN (R/W)
Sets SPI interface to read back SAR
result on SDO
[0] SPI_SYNC (R/W)
SYNC pulse generated thru SPI
0: This signal is ANDed with the value
on STARTb pin in the control m odule,
generate a pulse in /SYNC_IN pin.
1: This bit is ANDed with the value on
STARTb pin in the control m odule.
[2:1] DOUT_DRIVE_STR (R/W)
DOUT Drive Strength
00: Nom inal.
01: Strong.
10: Weak.
11: Extra Strong.
[4:3] SDO_DRIVE_STR (R/W)
SDO Drive Strength
00: Nom inal.
01: Strong.
10: Weak.
11: Extra Strong.
Rev. A | Page 68 of 94
Reset
0x0
Access
R/W
0x0
R/W
0x1
0x0
0x0
0x1
0x0
R/W
R/W
R/W
R/W
R/W
Data Sheet
AD7770
Table 62. Bit Descriptions for GENERAL_USER_CONFIG_2
Bits
[7:6]
5
[4:3]
Bit Name
RESERVED
SAR_DIAG_MODE_EN
SDO_DRIVE_STR
Settings
00
01
10
11
[2:1]
DOUT_DRIVE_STR
00
01
10
11
0
SPI_SYNC
0
1
Description
Reserved.
Sets SPI to Read Back SAR Result on SDO.
SDO Drive Strength.
Nominal.
Strong.
Weak.
Extra strong.
DOUTx Drive Strength.
Nominal.
Strong.
Weak.
Extra strong.
SYNC Pulse Generated Through SPI.
This signal is AND’ed with the value on the START pin in the control module
and generates a pulse in the SYNC_IN pin.
This bit is AND’ed with the value on START pin in the control module.
Reset
0x0
0x0
0x1
Access
R/W
R/W
R/W
0x0
R/W
0x1
R/W
Reset
0x2
Access
R/W
0x0
0x0
0x0
0x0
0x0
R/W
R/W
R/W
R/W
R/W
GENERAL USER CONFIGURATION 3 REGISTER
Address: 0x013, Reset: 0x80, Name: GENERAL_USER_CONFIG_3
7
6
5
4
3
2
1
0
1 0 0 0 0 0 0 0
[7:6] CONVST_DEGLITCH_DIS (R/W)
Disable deglitching of CONVST pin
00: Reserved.
01: Reserved.
10: CONVST_SAR Deglitch 1.5 MCLK.
11: No deglitch circuit.
[0] CLK_QUAL_DIS (R/W)
Disables the clock qualifier check
if the user requires to use an MCLK
signal < 265kHz.
[5] RESERVED
[3:2] RESERVED
[1] RESERVED
[4] SPI_SLAVE_MODE_EN (R/W)
Enable to SPI slave m ode to read
back ADC on SDO
Table 63. Bit Descriptions for GENERAL_USER_CONFIG_3
Bits
[7:6]
Bit Name
CONVST_DEGLITCH_DIS
Settings
00
01
10
11
5
4
[3:2]
1
0
RESERVED
SPI_SLAVE_MODE_EN
RESERVED
RESERVED
CLK_QUAL_DIS
Description
Disable deglitching of CONVST_SAR pin.
Reserved.
Reserved.
CONVST_SAR deglitch 1.5/MCLK.
No deglitch circuit.
Reserved.
Enable to SPI slave mode to read back ADC on SDO.
Reserved.
Reserved.
Disables the clock qualifier check if the user requires to use an MCLK
signal <265 kHz.
Rev. A | Page 69 of 94
AD7770
Data Sheet
DATA OUTPUT FORMAT REGISTER
Address: 0x014, Reset: 0x20, Name: DOUT_FORMAT
7
6
5
4
3
2
1
0
0 0 1 0 0 0 0 0
[7:6] DOUT_FORMAT (R/W)
Data out form at
00: 4 DOUT Lines.
01: 2 DOUT Lines.
10: 1 DOUT Lines.
11: 1 DOUT Lines.
[0] RESERVED
[5] DOUT_HEADER_FORMAT (R/W)
Dout header form at
0: Status Header.
1: CRC Header.
[4] RESERVED
[3:1] DCLK_CLK_DIV (R/W)
Divide MCLK
000: Divide by 1.
001: Divide by 2.
010: Divide by 4.
011: Divide by 8.
100: Divide by 16.
101: Divide by 32.
110: Divide by 64.
111: Divide by 128.
Table 64. Bit Descriptions for DOUT_FORMAT
Bits
[7:6]
Bit Name
DOUT_FORMAT
Settings
00
01
10
11
5
DOUT_HEADER_FORMAT
0
1
4
[3:1]
RESERVED
DCLK_CLK_DIV
000
001
010
011
100
101
110
111
0
RESERVED
Description
Data Out Format
4 DOUTx lines
2 DOUTx lines
1 DOUTx lines
1 DOUTx lines
DOUTx Header Format
Status header
CRC header
Reserved
Divide MCLK
Divide by 1
Divide by 2
Divide by 4
Divide by 8
Divide by 16
Divide by 32
Divide by 64
Divide by 128
Reserved
Rev. A | Page 70 of 94
Reset
0x0
Access
R/W
0x1
R/W
0x0
0x0
R/W
R/W
0x0
R/W
Data Sheet
AD7770
MAIN ADC METER AND REFERENCE MUX CONTROL REGISTER
Address: 0x015, Reset: 0x00, Name: ADC_MUX_CONFIG
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:6] REF_MUX_CTRL (R/W)
SD ADC Reference Mux
00: External Reference REFx+/REFx01: Internal Reference.
10: External Supply AVDD1x/AVSSx.
11: External Reference REFx-/REFx+.
[1:0] RESERVED
[5:2] MTR_MUX_CTRL (R/W)
SD ADC Meter Mux
0010: 280m V.
0011: External Reference REFx+/REFx0100: External Reference REFx-/REFx+.
0101: External Reference REFx-/REFx0110: Internal Reference +/0111: Internal Reference -/+.
1000: Internal Reference +/+.
1001: External Reference REFx+/REFx+.
Table 65. Bit Descriptions for ADC_MUX_CONFIG
Bits
[7:6]
Bit Name
REF_MUX_CTRL
Settings
00
01
10
11
[5:2]
MTR_MUX_CTRL
0010
0011
0100
0101
0110
0111
1000
1001
[1:0]
RESERVED
Description
Σ-Δ ADC Reference Mux
External reference REFx+/REFx−
Internal reference.
External supply AVDD1x/AVSSx
External reference REFx−/REFx+
Σ-Δ ADC Meter Mux
280 mV
External reference REFx+/REFx−
External reference REFx−/REFx+
External reference REFx−/REFx−
Internal reference +/−
Internal reference −/+
Internal reference +/+
External reference REFx+/REFx+
Reserved
GLOBAL DIAGNOSTICS MUX REGISTER
Address: 0x016, Reset: 0x00, Name: GLOBAL_MUX_CONFIG
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:3] GLOBAL_MUX_CTRL (R/W)
Global SAR diagnostics m ux control
00000: AUXAin+ AUXAin00001: DVBE AVSSx.
00010: REF1P REF1N.
...
10011: REF1+ AVSSx.
10100: REF2+ AVSSx.
10101: AVSSx AVDD4. Attenuated.
Rev. A | Page 71 of 94
[2:0] RESERVED
Reset
0x0
Access
R/W
0x0
R/W
0x0
R/W
AD7770
Data Sheet
Table 66. Bit Descriptions for GLOBAL_MUX_CONFIG
Bits
[7:3]
Bit Name
GLOBAL_MUX_CTRL
Settings
Description
Global SAR Diagnostics Mux Control.
AUXAIN+/AUXAIN−.
DVBE/AVSSx.
REF1+/REF1−.
REF2+/REF2−.
REF_OUT/AVSSx.
VCM/AVSSx.
AREG1CAP/AVSSx.
AREG2CAP/AVSSx.
DREGCAP/DGND.
AVDD1A/AVSSx.
AVDD1B/AVSSx.
AVDD2A/AVSSx.
AVDD2B/AVSSx.
IOVDD/DGND.
AVDD4/AVSSx.
DGND/AVSSx.
DGND/AVSSx.
DGND/AVSSx.
AVDD4/AVSSx.
REF1+/AVSSx.
REF2+/AVSSx.
AVSSx/AVDD4. Attenuated.
Reserved.
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
[2:0]
RESERVED
Reset
0x0
Access
R/W
0x0
R/W
GPIO CONFIGURATION REGISTER
Address: 0x017, Reset: 0x00, Name: GPIO_CONFIG
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:3] RESERVED
[2:0] GPIO_OP_EN (R/W)
GPIO input/output
Table 67. Bit Descriptions for GPIO_CONFIG
Bits
[7:3]
[2:0]
Bit Name
RESERVED
GPIO_OP_EN
Settings
Description
Reserved
GPIO Input/Output
Reset
0x0
0x0
Access
R/W
R/W
Reset
0x0
0x0
0x0
Access
R/W
R
R/W
GPIO DATA REGISTER
Address: 0x018, Reset: 0x00, Name: GPIO_DATA
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED
[5:3] GPIO_READ_DATA (R)
Data read from GPIO pins
[2:0] GPIO_WRITE_DATA (R/W)
Value sent to GPIO pins
Table 68. Bit Descriptions for GPIO_DATA
Bits
[7:6]
[5:3]
[2:0]
Bit Name
RESERVED
GPIO_READ_DATA
GPIO_WRITE_DATA
Settings
Description
Reserved
Data Read from the GPIO Pins
Value Sent to the GPIO Pins
Rev. A | Page 72 of 94
Data Sheet
AD7770
BUFFER CONFIGURATION 1 REGISTER
Address: 0x019, Reset: 0x38, Name: BUFFER_CONFIG_1
7
6
5
4
3
2
1
0
0
0
0
1
1
0
0
0
[7] RESERVED
[0] RESERVED
[6] RESERVED
[1] RESERVED
[5] RESERVED
[2] RESERVED
[4] REF_BUF_POS_EN (R/W)
Reference buffer positive enable
[3] REF_BUF_NEG_EN (R/W)
Reference buffer negative enable
Table 69. Bit Descriptions for BUFFER_CONFIG_1
Bits
[7:5]
4
3
[2:0]
Bit Name
RESERVED
REF_BUF_POS_EN
REF_BUF_NEG_EN
RESERVED
Settings
Description
Reserved
Reference Buffer Positive Enable
Reference Buffer Negative Enable
Reserved
Reset
0x0
0x1
0x1
0x0
Access
R/W
R/W
R/W
R/W
Reset
0x1
0x1
0x0
0x0
0x0
0x0
Access
R/W
R/W
R/W
R/W
R/W
R/W
Reset
0x0
Access
R/W
BUFFER CONFIGURATION 2 REGISTER
Address: 0x01A, Reset: 0xC0, Name: BUFFER_CONFIG_2
7
6
5
4
3
2
1
0
1 1 0 0 0 0 0 0
[7] REFBUFP_PREQ (R/W)
Reference buffer positive precharge
enable
[0] PDB_DLDO_OVRDRV (R/W)
DRegCap Overdrive Enable.
[1] PDB_ALDO2_OVRDRV (R/W)
AReg2Cap Overdrive Enable
[6] REFBUFN_PREQ (R/W)
Reference buffer negative precharge
enable
[2] PDB_ALDO1_OVRDRV (R/W)
AReg1Cap Overdrive Enable
[5:3] RESERVED
Table 70. Bit Descriptions for BUFFER_CONFIG_2
Bits
7
6
[5:3]
2
1
0
Bit Name
REFBUFP_PREQ
REFBUFN_PREQ
RESERVED
PDB_ALDO1_OVRDRV
PDB_ALDO2_OVRDRV
PDB_DLDO_OVRDRV
Settings
Description
Reference Buffer Positive Precharge Enable
Reference Buffer Negative Precharge Enable
Reserved
AREG1CAP Overdrive Enable
AREG2CAP Overdrive Enable
DREGCAP Overdrive Enable
CHANNEL 0 OFFSET UPPER BYTE REGISTER
Address: 0x01C, Reset: 0x00, Name: CH0_OFFSET_UPPER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH0_OFFSET_ALL[23:16] (R/W)
Com bined Offs et regis ter Channel 0
Table 71. Bit Descriptions for CH0_OFFSET_UPPER_BYTE
Bits
[7:0]
Bit Name
CH0_OFFSET_ALL[23:16]
Settings
Description
Combined Offset Register Channel 0
CHANNEL 0 OFFSET MIDDLE BYTE REGISTER
Address: 0x01D, Reset: 0x00, Name: CH0_OFFSET_MID_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH0_OFFSET_ALL[15:8] (R/W)
Com bined Offs et regis ter Channel 0
Rev. A | Page 73 of 94
AD7770
Data Sheet
Table 72. Bit Descriptions for CH0_OFFSET_MID_BYTE
Bits
[7:0]
Bit Name
CH0_OFFSET_ALL[15:8]
Settings
Description
Combined Offset Register Channel 0
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
CHANNEL 0 OFFSET LOWER BYTE REGISTER
Address: 0x01E, Reset: 0x00, Name: CH0_OFFSET_LOWER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH0_OFFSET_ALL[7:0] (R/W)
Com bined Offs et regis ter Channel 0
Table 73. Bit Descriptions for CH0_OFFSET_LOWER_BYTE
Bits
[7:0]
Bit Name
CH0_OFFSET_ALL[7:0]
Settings
Description
Combined Offset Register Channel 0
CHANNEL 0 GAIN UPPER BYTE REGISTER
Address: 0x01F, Reset: 0x00, Name: CH0_GAIN_UPPER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH0_GAIN_ALL[23:16] (R/W)
Com bined gain regis ter Channel 0
Table 74. Bit Descriptions for CH0_GAIN_UPPER_BYTE
Bits
[7:0]
Bit Name
CH0_GAIN_ALL[23:16]
Settings
Description
Combined Gain Register Channel 0
CHANNEL 0 GAIN MIDDLE BYTE REGISTER
Address: 0x020, Reset: 0x00, Name: CH0_GAIN_MID_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH0_GAIN_ALL[15:8] (R/W)
Com bined gain regis ter Channel 0
Table 75. Bit Descriptions for CH0_GAIN_MID_BYTE
Bits
[7:0]
Bit Name
CH0_GAIN_ALL[15:8]
Settings
Description
Combined Gain Register Channel 0
CHANNEL 0 GAIN LOWER BYTE REGISTER
Address: 0x021, Reset: 0x00, Name: CH0_GAIN_LOWER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH0_GAIN_ALL[7:0] (R/W)
Com bined gain regis ter Channel 0
Table 76. Bit Descriptions for CH0_GAIN_LOWER_BYTE
Bits
[7:0]
Bit Name
CH0_GAIN_ALL[7:0]
Settings
Description
Combined Gain Register Channel 0
Rev. A | Page 74 of 94
Data Sheet
AD7770
CHANNEL 1 OFFSET UPPER BYTE REGISTER
Address: 0x022, Reset: 0x00, Name: CH1_OFFSET_UPPER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH1_OFFSET_ALL[23:16] (R/W)
Com bined offs et regis ter Channel 1
Table 77. Bit Descriptions for CH1_OFFSET_UPPER_BYTE
Bits
[7:0]
Bit Name
CH1_OFFSET_ALL[23:16]
Settings
Description
Combined Offset Register Channel 1
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
CHANNEL 1 OFFSET MIDDLE BYTE REGISTER
Address: 0x023, Reset: 0x00, Name: CH1_OFFSET_MID_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH1_OFFSET_ALL[15:8] (R/W)
Com bined offs et regis ter Channel 1
Table 78. Bit Descriptions for CH1_OFFSET_MID_BYTE
Bits
[7:0]
Bit Name
CH1_OFFSET_ALL[15:8]
Settings
Description
Combined Offset Register Channel 1
CHANNEL 1 OFFSET LOWER BYTE REGISTER
Address: 0x024, Reset: 0x00, Name: CH1_OFFSET_LOWER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH1_OFFSET_ALL[7:0] (R/W)
Com bined offs et regis ter Channel 1
Table 79. Bit Descriptions for CH1_OFFSET_LOWER_BYTE
Bits
[7:0]
Bit Name
CH1_OFFSET_ALL[7:0]
Settings
Description
Combined Offset Register Channel 1
CHANNEL 1 GAIN UPPER BYTE REGISTER
Address: 0x025, Reset: 0x00, Name: CH1_GAIN_UPPER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH1_GAIN_ALL[23:16] (R/W)
Com bined gain regis ter Channel 1
Table 80. Bit Descriptions for CH1_GAIN_UPPER_BYTE
Bits
[7:0]
Bit Name
CH1_GAIN_ALL[23:16]
Settings
Description
Combined Gain Register Channel 1
CHANNEL 1 GAIN MIDDLE BYTE REGISTER
Address: 0x026, Reset: 0x00, Name: CH1_GAIN_MID_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH1_GAIN_ALL[15:8] (R/W)
Com bined gain regis ter Channel 1
Table 81. Bit Descriptions for CH1_GAIN_MID_BYTE
Bits
[7:0]
Bit Name
CH1_GAIN_ALL[15:8]
Settings
Description
Combined Gain Register Channel 1
Rev. A | Page 75 of 94
AD7770
Data Sheet
CHANNEL 1 GAIN LOWER BYTE REGISTER
Address: 0x027, Reset: 0x00, Name: CH1_GAIN_LOWER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH1_GAIN_ALL[7:0] (R/W)
Com bined gain regis ter Channel 1
Table 82. Bit Descriptions for CH1_GAIN_LOWER_BYTE
Bits
[7:0]
Bit Name
CH1_GAIN_ALL[7:0]
Settings
Description
Combined Gain Register Channel 1
Reset
0x0
Access
R/W
CHANNEL 2 OFFSET UPPER BYTE REGISTER
Address: 0x028, Reset: 0x00, Name: CH2_OFFSET_UPPER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH2_OFFSET_ALL[23:16] (R/W)
Com bined offs et regis ter Channel 2
Table 83. Bit Descriptions for CH2_OFFSET_UPPER_BYTE
Bits
[7:0]
Bit Name
CH2_OFFSET_ALL[23:16]
Settings
Description
Combined Offset Register Channel 2
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
CHANNEL 2 OFFSET MIDDLE BYTE REGISTER
Address: 0x029, Reset: 0x00, Name: CH2_OFFSET_MID_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH2_OFFSET_ALL[15:8] (R/W)
Com bined offs et regis ter Channel 2
Table 84. Bit Descriptions for CH2_OFFSET_MID_BYTE
Bits
[7:0]
Bit Name
CH2_OFFSET_ALL[15:8]
Settings
Description
Combined Offset Register Channel 2
CHANNEL 2 OFFSET LOWER BYTE REGISTER
Address: 0x02A, Reset: 0x00, Name: CH2_OFFSET_LOWER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH2_OFFSET_ALL[7:0] (R/W)
Com bined offs et regis ter Channel 2
Table 85. Bit Descriptions for CH2_OFFSET_LOWER_BYTE
Bits
[7:0]
Bit Name
CH2_OFFSET_ALL[7:0]
Settings
Description
Combined Offset Register Channel 2
CHANNEL 2 GAIN UPPER BYTE REGISTER
Address: 0x02B, Reset: 0x00, Name: CH2_GAIN_UPPER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH2_GAIN_ALL[23:16] (R/W)
Com bined gain regis ter Channel 2
Table 86. Bit Descriptions for CH2_GAIN_UPPER_BYTE
Bits
[7:0]
Bit Name
CH2_GAIN_ALL[23:16]
Settings
Description
Combined Gain Register Channel 2
Rev. A | Page 76 of 94
Data Sheet
AD7770
CHANNEL 2 GAIN MIDDLE BYTE REGISTER
Address: 0x02C, Reset: 0x00, Name: CH2_GAIN_MID_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH2_GAIN_ALL[15:8] (R/W)
Com bined gain regis ter Channel 2
Table 87. Bit Descriptions for CH2_GAIN_MID_BYTE
Bits
[7:0]
Bit Name
CH2_GAIN_ALL[15:8]
Settings
Description
Combined Gain Register Channel 2
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
CHANNEL 2 GAIN LOWER BYTE REGISTER
Address: 0x02D, Reset: 0x00, Name: CH2_GAIN_LOWER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH2_GAIN_ALL[7:0] (R/W)
Com bined gain regis ter Channel 2
Table 88. Bit Descriptions for CH2_GAIN_LOWER_BYTE
Bits
[7:0]
Bit Name
CH2_GAIN_ALL[7:0]
Settings
Description
Combined Gain Register Channel 2
CHANNEL 3 OFFSET UPPER BYTE REGISTER
Address: 0x02E, Reset: 0x00, Name: CH3_OFFSET_UPPER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH3_OFFSET_ALL[23:16] (R/W)
Com bined offs et regis ter Channel 3
Table 89. Bit descriptions for CH3_OFFSET_UPPER_BYTE
Bits
[7:0]
Bit Name
CH3_OFFSET_ALL[23:16]
Settings
Description
Combined Offset Register Channel 3
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
CHANNEL 3 OFFSET MIDDLE BYTE REGISTER
Address: 0x02F, Reset: 0x00, Name: CH3_OFFSET_MID_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH3_OFFSET_ALL[15:8] (R/W)
Com bined offs et regis ter Channel 3
Table 90. Bit Descriptions for CH3_OFFSET_MID_BYTE
Bits
[7:0]
Bit Name
CH3_OFFSET_ALL[15:8]
Settings
Description
Combined Offset Register Channel 3
CHANNEL 3 OFFSET LOWER BYTE REGISTER
Address: 0x030, Reset: 0x00, Name: CH3_OFFSET_LOWER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH3_OFFSET_ALL[7:0] (R/W)
Com bined offs et regis ter Channel 3
Table 91. Bit Descriptions for CH3_OFFSET_LOWER_BYTE
Bits
[7:0]
Bit Name
CH3_OFFSET_ALL[7:0]
Settings
Description
Combined Offset Register Channel 3
Rev. A | Page 77 of 94
AD7770
Data Sheet
CHANNEL 3 GAIN UPPER BYTE REGISTER
Address: 0x031, Reset: 0x00, Name: CH3_GAIN_UPPER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH3_GAIN_ALL[23:16] (R/W)
Com bined gain regis ter Channel 3
Table 92. Bit Descriptions for CH3_GAIN_UPPER_BYTE
Bits
[7:0]
Bit Name
CH3_GAIN_ALL[23:16]
Settings
Description
Combined Gain Register Channel 3
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
CHANNEL 3 GAIN MIDDLE BYTE REGISTER
Address: 0x032, Reset: 0x00, Name: CH3_GAIN_MID_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH3_GAIN_ALL[15:8] (R/W)
Com bined gain regis ter Channel 3
Table 93. Bit Descriptions for CH3_GAIN_MID_BYTE
Bits
[7:0]
Bit Name
CH3_GAIN_ALL[15:8]
Settings
Description
Combined Gain Register Channel 3
CHANNEL 3 GAIN LOWER BYTE REGISTER
Address: 0x033, Reset: 0x00, Name: CH3_GAIN_LOWER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH3_GAIN_ALL[7:0] (R/W)
Com bined gain regis ter Channel 3
Table 94. Bit Descriptions for CH3_GAIN_LOWER_BYTE
Bits
[7:0]
Bit Name
CH3_GAIN_ALL[7:0]
Settings
Description
Combined Gain Register Channel 3
CHANNEL 4 OFFSET UPPER BYTE REGISTER
Address: 0x034, Reset: 0x00, Name: CH4_OFFSET_UPPER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH4_OFFSET_ALL[23:16] (R/W)
Com bined offs et regis ter Channel 4
Table 95. Bit Descriptions for CH4_OFFSET_UPPER_BYTE
Bits
[7:0]
Bit Name
CH4_OFFSET_ALL[23:16]
Settings
Description
Combined Offset Register Channel 4
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
CHANNEL 4 OFFSET MIDDLE BYTE REGISTER
Address: 0x035, Reset: 0x00, Name: CH4_OFFSET_MID_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH4_OFFSET_ALL[15:8] (R/W)
Com bined offs et regis ter Channel 4
Table 96. Bit Descriptions for CH4_OFFSET_MID_BYTE
Bits
[7:0]
Bit Name
CH4_OFFSET_ALL[15:8]
Settings
Description
Combined Offset Register Channel 4
Rev. A | Page 78 of 94
Data Sheet
AD7770
CHANNEL 4 OFFSET LOWER BYTE REGISTER
Address: 0x036, Reset: 0x00, Name: CH4_OFFSET_LOWER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH4_OFFSET_ALL[7:0] (R/W)
Com bined offs et regis ter Channel 4
Table 97. Bit Descriptions for CH4_OFFSET_LOWER_BYTE
Bits
[7:0]
Bit Name
CH4_OFFSET_ALL[7:0]
Settings
Description
Combined Offset Register Channel 4
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
CHANNEL 4 GAIN UPPER BYTE REGISTER
Address: 0x037, Reset: 0x00, Name: CH4_GAIN_UPPER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH4_GAIN_ALL[23:16] (R/W)
Com bined gain regis ter Channel 4
Table 98. Bit Descriptions for CH4_GAIN_UPPER_BYTE
Bits
[7:0]
Bit Name
CH4_GAIN_ALL[23:16]
Settings
Description
Combined Gain Register Channel 4
CHANNEL 4 GAIN MIDDLE BYTE REGISTER
Address: 0x038, Reset: 0x00, Name: CH4_GAIN_MID_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH4_GAIN_ALL[15:8] (R/W)
Com bined gain regis ter Channel 4
Table 99. Bit Descriptions for CH4_GAIN_MID_BYTE
Bits
[7:0]
Bit Name
CH4_GAIN_ALL[15:8]
Settings
Description
Combined Gain Register Channel 4
CHANNEL 4 GAIN LOWER BYTE REGISTER
Address: 0x039, Reset: 0x00, Name: CH4_GAIN_LOWER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH4_GAIN_ALL[7:0] (R/W)
Com bined gain regis ter Channel 4
Table 100. Bit Descriptions for CH4_GAIN_LOWER_BYTE
Bits
[7:0]
Bit Name
CH4_GAIN_ALL[7:0]
Settings
Description
Combined Gain Register Channel 4
CHANNEL 5 OFFSET UPPER BYTE REGISTER
Address: 0x03A, Reset: 0x00, Name: CH5_OFFSET_UPPER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH5_OFFSET_ALL[23:16] (R/W)
Com bined offs et regis ter Channel 5
Table 101. Bit Descriptions for CH5_OFFSET_UPPER_BYTE
Bits
[7:0]
Bit Name
CH5_OFFSET_ALL[23:16]
Settings
Description
Combined Offset Register Channel 5
Rev. A | Page 79 of 94
Reset
0x0
Access
R/W
AD7770
Data Sheet
CHANNEL 5 OFFSET MIDDLE BYTE REGISTER
Address: 0x03B, Reset: 0x00, Name: CH5_OFFSET_MID_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH5_OFFSET_ALL[15:8] (R/W)
Com bined offs et regis ter Channel 5
Table 102. Bit Descriptions for CH5_OFFSET_MID_BYTE
Bits
[7:0]
Bit Name
CH5_OFFSET_ALL[15:8]
Settings
Description
Combined Offset Register Channel 5
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
CHANNEL 5 OFFSET LOWER BYTE REGISTER
Address: 0x03C, Reset: 0x00, Name: CH5_OFFSET_LOWER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH5_OFFSET_ALL[7:0] (R/W)
Com bined offs et regis ter Channel 5
Table 103. Bit Descriptions for CH5_OFFSET_LOWER_BYTE
Bits
[7:0]
Bit Name
CH5_OFFSET_ALL[7:0]
Settings
Description
Combined Offset Register Channel 5
CHANNEL 5 GAIN UPPER BYTE REGISTER
Address: 0x03D, Reset: 0x00, Name: CH5_GAIN_UPPER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH5_GAIN_ALL[23:16] (R/W)
Com bined gain regis ter Channel 5
Table 104. Bit Descriptions for CH5_GAIN_UPPER_BYTE
Bits
[7:0]
Bit Name
CH5_GAIN_ALL[23:16]
Settings
Description
Combined Gain Register Channel 5
CHANNEL 5 GAIN MIDDLE BYTE REGISTER
Address: 0x03E, Reset: 0x00, Name: CH5_GAIN_MID_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH5_GAIN_ALL[15:8] (R/W)
Com bined gain regis ter Channel 5
Table 105. Bit Descriptions for CH5_GAIN_MID_BYTE
Bits
[7:0]
Bit Name
CH5_GAIN_ALL[15:8]
Settings
Description
Combined Gain Register Channel 5
CHANNEL 5 GAIN LOWER BYTE REGISTER
Address: 0x03F, Reset: 0x00, Name: CH5_GAIN_LOWER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH5_GAIN_ALL[7:0] (R/W)
Com bined gain regis ter Channel 5
Table 106. Bit Descriptions for CH5_GAIN_LOWER_BYTE
Bits
[7:0]
Bit Name
CH5_GAIN_ALL[7:0]
Settings
Description
Combined Gain Register Channel 5
Rev. A | Page 80 of 94
Data Sheet
AD7770
CHANNEL 6 OFFSET UPPER BYTE REGISTER
Address: 0x040, Reset: 0x00, Name: CH6_OFFSET_UPPER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH6_OFFSET_ALL[23:16] (R/W)
Com bined offs et regis ter Channel 6
Table 107. Bit Descriptions for CH6_OFFSET_UPPER_BYTE
Bits
[7:0]
Bit Name
CH6_OFFSET_ALL[23:16]
Settings
Description
Combined Offset Register Channel 6
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
CHANNEL 6 OFFSET MIDDLE BYTE REGISTER
Address: 0x041, Reset: 0x00, Name: CH6_OFFSET_MID_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH6_OFFSET_ALL[15:8] (R/W)
Com bined offs et regis ter Channel 6
Table 108. Bit Descriptions for CH6_OFFSET_MID_BYTE
Bits
[7:0]
Bit Name
CH6_OFFSET_ALL[15:8]
Settings
Description
Combined Offset Register Channel 6
CHANNEL 6 OFFSET LOWER BYTE REGISTER
Address: 0x042, Reset: 0x00, Name: CH6_OFFSET_LOWER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH6_OFFSET_ALL[7:0] (R/W)
Com bined offs et regis ter Channel 6
Table 109. Bit Descriptions for CH6_OFFSET_LOWER_BYTE
Bits
[7:0]
Bit Name
CH6_OFFSET_ALL[7:0]
Settings
Description
Combined Offset Register Channel 6
CHANNEL 6 GAIN UPPER BYTE REGISTER
Address: 0x043, Reset: 0x00, Name: CH6_GAIN_UPPER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH6_GAIN_ALL[23:16] (R/W)
Com bined gain regis ter Channel 6
Table 110. Bit Descriptions for CH6_GAIN_UPPER_BYTE
Bits
[7:0]
Bit Name
CH6_GAIN_ALL[23:16]
Settings
Description
Combined Gain Register Channel 6
CHANNEL 6 GAIN MIDDLE BYTE REGISTER
Address: 0x044, Reset: 0x00, Name: CH6_GAIN_MID_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH6_GAIN_ALL[15:8] (R/W)
Com bined gain regis ter Channel 6
Table 111. Bit Descriptions for CH6_GAIN_MID_BYTE
Bits
[7:0]
Bit Name
CH6_GAIN_ALL[15:8]
Settings
Description
Combined Gain Register Channel 6
Rev. A | Page 81 of 94
AD7770
Data Sheet
CHANNEL 6 GAIN LOWER BYTE REGISTER
Address: 0x045, Reset: 0x00, Name: CH6_GAIN_LOWER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH6_GAIN_ALL[7:0] (R/W)
Com bined gain regis ter Channel 6
Table 112. Bit Descriptions for CH6_GAIN_LOWER_BYTE
Bits
[7:0]
Bit Name
CH6_GAIN_ALL[7:0]
Settings
Description
Combined Gain Register Channel 6
Reset
0x0
Access
R/W
CHANNEL 7 OFFSET UPPER BYTE REGISTER
Address: 0x046, Reset: 0x00, Name: CH7_OFFSET_UPPER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH7_OFFSET_ALL[23:16] (R/W)
Com bined offs et regis ter Channel 7
Table 113. Bit Descriptions for CH7_OFFSET_UPPER_BYTE
Bits
[7:0]
Bit Name
CH7_OFFSET_ALL[23:16]
Settings
Description
Combined Offset Register Channel 7
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
CHANNEL 7 OFFSET MIDDLE BYTE REGISTER
Address: 0x047, Reset: 0x00, Name: CH7_OFFSET_MID_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH7_OFFSET_ALL[15:8] (R/W)
Com bined offs et regis ter Channel 7
Table 114. Bit Descriptions for CH7_OFFSET_MID_BYTE
Bits
[7:0]
Bit Name
CH7_OFFSET_ALL[15:8]
Settings
Description
Combined Offset Register Channel 7
CHANNEL 7 OFFSET LOWER BYTE REGISTER
Address: 0x048, Reset: 0x00, Name: CH7_OFFSET_LOWER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH7_OFFSET_ALL[7:0] (R/W)
Com bined offs et regis ter Channel 7
Table 115. Bit Descriptions for CH7_OFFSET_LOWER_BYTE
Bits
[7:0]
Bit Name
CH7_OFFSET_ALL[7:0]
Settings
Description
Combined Offset Register Channel 7
CHANNEL 7 GAIN UPPER BYTE REGISTER
Address: 0x049, Reset: 0x00, Name: CH7_GAIN_UPPER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH7_GAIN ALL[23:16] (R/W)
Com bined gain regis ter Channel 7
Table 116. Bit Descriptions for CH7_GAIN_UPPER_BYTE
Bits
[7:0]
Bit Name
CH7_GAIN ALL[23:16]
Settings
Description
Combined Gain Register Channel 7
Rev. A | Page 82 of 94
Data Sheet
AD7770
CHANNEL 7 GAIN MIDDLE BYTE REGISTER
Address: 0x04A, Reset: 0x00, Name: CH7_GAIN_MID_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH7_GAIN ALL[15:8] (R/W)
Com bined gain regis ter Channel 7
Table 117. Bit Descriptions for CH7_GAIN_MID_BYTE
Bits
[7:0]
Bit Name
CH7_GAIN ALL[15:8]
Settings
Description
Combined Gain Register Channel 7
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
0x0
0x0
0x0
0x0
0x0
Access
R/W
R
R
R
R
R
CHANNEL 7 GAIN LOWER BYTE REGISTER
Address: 0x04B, Reset: 0x00, Name: CH7_GAIN_LOWER_BYTE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH7_GAIN ALL[7:0] (R/W)
Com bined gain regis ter Channel 7
Table 118. Bit Descriptions for CH7_GAIN_LOWER_BYTE
Bits
[7:0]
Bit Name
CH7_GAIN ALL[7:0]
Settings
Description
Combined Gain Register Channel 7
CHANNEL 0 STATUS REGISTER
Address: 0x04C, Reset: 0x00, Name: CH0_ERR_REG
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:5] RESERVED
[0] CH0_ERR_REF_DET (R)
Channel 0 - Reference detect error
[4] CH0_ERR_AINM_UV (R)
AIN0- undervoltage error
[1] CH0_ERR_AINP_OV (R)
AIN0+ overvoltage error
[3] CH0_ERR_AINM_OV (R)
AIN0- overvoltage error
[2] CH0_ERR_AINP_UV (R)
AIN0+ undervoltage error
Table 119. Bit Descriptions for CH0_ERR_REG
Bits
[7:5]
4
3
2
1
0
Bit Name
RESERVED
CH0_ERR_AINM_UV
CH0_ERR_AINM_OV
CH0_ERR_AINP_UV
CH0_ERR_AINP_OV
CH0_ERR_REF_DET
Settings
Description
Reserved
Channel 0—AIN0− Undervoltage Error
Channel 0—AIN0− Overvoltage Error
Channel 0—AIN0+ Undervoltage Error
Channel 0—AIN0+ Overvoltage Error
Channel 0—Reference Detect Error
CHANNEL 1 STATUS REGISTER
Address: 0x04D, Reset: 0x00, Name: CH1_ERR_REG
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:5] RESERVED
[4] CH1_ERR_AINM_UV (R)
AIN1- undervoltage error
[3] CH1_ERR_AINM_OV (R)
AIN1- overvoltage error
[0] CH1_ERR_REF_DET (R)
Channel 1 - Reference detect error
[1] CH1_ERR_AINP_OV (R)
AIN1+ overvoltage error
[2] CH1_ERR_AINP_UV (R)
AIN1+ undervoltage error
Rev. A | Page 83 of 94
AD7770
Data Sheet
Table 120. Bit Descriptions for CH1_ERR_REG
Bits
[7:5]
4
3
2
1
0
Bit Name
RESERVED
CH1_ERR_AINM_UV
CH1_ERR_AINM_OV
CH1_ERR_AINP_UV
CH1_ERR_AINP_OV
CH1_ERR_REF_DET
Settings
Description
Reserved
Channel 1—AIN1− Undervoltage Error
Channel 1—AIN1− Overvoltage Error
Channel 1—AIN1+ Undervoltage Error
Channel 1—AIN1+ Overvoltage Error
Channel 1—Reference Detect Error
Reset
0x0
0x0
0x0
0x0
0x0
0x0
Access
R/W
R
R
R
R
R
Reset
0x0
0x0
0x0
0x0
0x0
0x0
Access
R/W
R
R
R
R
R
Reset
0x0
0x0
0x0
0x0
0x0
0x0
Access
R/W
R
R
R
R
R
CHANNEL 2 STATUS REGISTER
Address: 0x04E, Reset: 0x00, Name: CH2_ERR_REG
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[0] CH2_ERR_REF_DET (R)
Channel 2 - Reference detect error
[7:5] RESERVED
[4] CH2_ERR_AINM_UV (R)
AIN2- undervoltage error
[1] CH2_ERR_AINP_OV (R)
AIN2+ overvoltage error
[3] CH2_ERR_AINM_OV (R)
AIN2- overvoltage error
[2] CH2_ERR_AINP_UV (R)
AIN2+ undervoltage error
Table 121. Bit Descriptions for CH2_ERR_REG
Bits
[7:5]
4
3
2
1
0
Bit Name
RESERVED
CH2_ERR_AINM_UV
CH2_ERR_AINM_OV
CH2_ERR_AINP_UV
CH2_ERR_AINP_OV
CH2_ERR_REF_DET
Settings
Description
Reserved
Channel 2—AIN2− Undervoltage Error
Channel 2—AIN2− Overvoltage Error
Channel 2—AIN2+ Undervoltage Error
Channel 2—AIN2+ Overvoltage Error
Channel 2—Reference Detect Error
CHANNEL 3 STATUS REGISTER
Address: 0x04F, Reset: 0x00, Name: CH3_ERR_REG
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:5] RESERVED
[4] CH3_ERR_AINM_UV (R)
AIN3- undervoltage error
[3] CH3_ERR_AINM_OV (R)
AIN3- overvoltage error
[0] CH3_ERR_REF_DET (R)
Channel 3 - Reference detect error
[1] CH3_ERR_AINP_OV (R)
AIN3+ overvoltage error
[2] CH3_ERR_AINP_UV (R)
AIN3+ undervoltage error
Table 122. Bit Descriptions for CH3_ERR_REG
Bits
[7:5]
4
3
2
1
0
Bit Name
RESERVED
CH3_ERR_AINM_UV
CH3_ERR_AINM_OV
CH3_ERR_AINP_UV
CH3_ERR_AINP_OV
CH3_ERR_REF_DET
Settings
Description
Reserved
Channel 3—AIN3− Undervoltage Error
Channel 3—AIN3− Overvoltage Error
Channel 3—AIN3+ Undervoltage Error
Channel 3—AIN3+ Overvoltage Error
Channel 3—Reference Detect Error
Rev. A | Page 84 of 94
Data Sheet
AD7770
CHANNEL 4 STATUS REGISTER
Address: 0x050, Reset: 0x00, Name: CH4_ERR_REG
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:5] RESERVED
[0] CH4_ERR_REF_DET (R)
Channel 4 - Reference detect error
[4] CH4_ERR_AINM_UV (R)
AIN4- undervoltage error
[1] CH4_ERR_AINP_OV (R)
AIN4+ overvoltage error
[3] CH4_ERR_AINM_OV (R)
AIN4- overvoltage error
[2] CH4_ERR_AINP_UV (R)
AIN4+ undervoltage error
Table 123. Bit Descriptions for CH4_ERR_REG
Bits
[7:5]
4
3
2
1
0
Bit Name
RESERVED
CH4_ERR_AINM_UV
CH4_ERR_AINM_OV
CH4_ERR_AINP_UV
CH4_ERR_AINP_OV
CH4_ERR_REF_DET
Settings
Description
Reserved
Channel 4—AIN4− Undervoltage Error
Channel 4—AIN4− Overvoltage Error
Channel 4—AIN4+ Undervoltage Error
Channel 4—AIN4+ Overvoltage Error
Channel 4—Reference Detect Error
Reset
0x0
0x0
0x0
0x0
0x0
0x0
Access
R/W
R
R
R
R
R
Reset
0x0
0x0
0x0
0x0
0x0
0x0
Access
R/W
R
R
R
R
R
CHANNEL 5 STATUS REGISTER
Address: 0x051, Reset: 0x00, Name: CH5_ERR_REG
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:5] RESERVED
[0] CH5_ERR_REF_DET (R)
Channel 5 - Reference detect error
[4] CH5_ERR_AINM_UV (R)
AIN5- undervoltage error
[1] CH5_ERR_AINP_OV (R)
AIN5+ overvoltage error
[3] CH5_ERR_AINM_OV (R)
AIN5- overvoltage error
[2] CH5_ERR_AINP_UV (R)
AIN5+ undervoltage error
Table 124. Bit Descriptions for CH5_ERR_REG
Bits
[7:5]
4
3
2
1
0
Bit Name
RESERVED
CH5_ERR_AINM_UV
CH5_ERR_AINM_OV
CH5_ERR_AINP_UV
CH5_ERR_AINP_OV
CH5_ERR_REF_DET
Settings
Description
Reserved
Channel 5—AIN5− Undervoltage Error
Channel 5—AIN5− Overvoltage Error
Channel 5—AIN5+ Undervoltage Error
Channel 5—AIN5+ Overvoltage Error
Channel 5—Reference Detect Error
CHANNEL 6 STATUS REGISTER
Address: 0x052, Reset: 0x00, Name: CH6_ERR_REG
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:5] RESERVED
[4] CH6_ERR_AINM_UV (R)
AIN6- undervoltage error
[3] CH6_ERR_AINM_OV (R)
AIN6- overvoltage error
[0] CH6_ERR_REF_DET (R)
Channel 6 - Reference detect error
[1] CH6_ERR_AINP_OV (R)
AIN6+ overvoltage error
[2] CH6_ERR_AINP_UV (R)
AIN6+ undervoltage error
Rev. A | Page 85 of 94
AD7770
Data Sheet
Table 125. Bit Descriptions for CH6_ERR_REG
Bits
[7:5]
4
3
2
1
0
Bit Name
RESERVED
CH6_ERR_AINM_UV
CH6_ERR_AINM_OV
CH6_ERR_AINP_UV
CH6_ERR_AINP_OV
CH6_ERR_REF_DET
Settings
Description
Reserved
Channel 6—AIN6− Undervoltage Error
Channel 6—AIN6− Overvoltage Error
Channel 6—AIN6+ Undervoltage Error
Channel 6—AIN6+ Overvoltage Error
Channel 6—Reference Detect Error
Reset
0x0
0x0
0x0
0x0
0x0
0x0
Access
R/W
R
R
R
R
R
Reset
0x0
0x0
0x0
0x0
0x0
0x0
Access
R
R
R
R
R
R
CHANNEL 7 STATUS REGISTER
Address: 0x053, Reset: 0x00, Name: CH7_ERR_REG
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:5] RESERVED
[0] CH7_ERR_REF_DET (R)
Channel 7 - Reference detect error
[4] CH7_ERR_AINM_UV (R)
AIN7- undervoltage error
[1] CH7_ERR_AINP_OV (R)
AIN7+ overvoltage error
[3] CH7_ERR_AINM_OV (R)
AIN7- overvoltage error
[2] CH7_ERR_AINP_UV (R)
AIN7+ undervoltage error
Table 126. Bit Descriptions for CH7_ERR_REG
Bits
[7:5]
4
3
2
1
0
Bit Name
RESERVED
CH7_ERR_AINM_UV
CH7_ERR_AINM_OV
CH7_ERR_AINP_UV
CH7_ERR_AINP_OV
CH7_ERR_REF_DET
Settings
Description
Reserved
Channel 7—AIN7− Undervoltage Error
Channel 7—AIN7− Overvoltage Error
Channel 7—AIN7+ Undervoltage Error
Channel 7—AIN7+ Overvoltage Error
Channel 7—Reference Detect Error
CHANNEL 0/CHANNEL 1 DSP ERRORS REGISTER
Address: 0x054, Reset: 0x00, Name: CH0_1_SAT_ERR
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:6] RESERVED
[5] CH1_ERR_MOD_SAT (R)
Channel 1 - Modulator output saturation
error
[4] CH1_ERR_FILTER_SAT (R)
Channel 1 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
[3] CH1_ERR_OUTPUT_SAT (R)
Channel 1 - ADC conversion has
exceeded lim its and has been clam ped
[0] CH0_ERR_OUTPUT_SAT (R)
Channel 0 - ADC conversion has
exceeded lim its and has been clam ped
[1] CH0_ERR_FILTER_SAT (R)
Channel 0 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
[2] CH0_ERR_MOD_SAT (R)
Channel 0 - Modulator output saturation
error
Table 127. Bit Descriptions for CH0_1_SAT_ERR
Bits
[7:6]
5
4
Bit Name
RESERVED
CH1_ERR_MOD_SAT
CH1_ERR_FILTER_SAT
3
2
1
CH1_ERR_OUTPUT_SAT
CH0_ERR_MOD_SAT
CH0_ERR_FILTER_SAT
0
CH0_ERR_OUTPUT_SAT
Settings
Description
Reserved
Channel 1—Modulator output saturation error
Channel 1—Filter result has exceeded a reasonable level, before offset and
gain calibration are applied
Channel 1—ADC conversion has exceeded limits and is clamped
Channel 0—Modulator output saturation error
Channel 0—Filter result has exceeded a reasonable level, before offset and
gain calibration are applied
Channel 0—ADC conversion has exceeded limits and is clamped
Rev. A | Page 86 of 94
Reset
0x0
0x0
0x0
Access
R
R
R
0x0
0x0
0x0
R
R
R
0x0
R
Data Sheet
AD7770
CHANNEL 2/CHANNEL 3 DSP ERRORS REGISTER
Address: 0x055, Reset: 0x00, Name: CH2_3_SAT_ERR
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:6] RESERVED
[0] CH2_ERR_OUTPUT_SAT (R)
Channel 2 - ADC conversion has
exceeded lim its and has been clam ped
[5] CH3_ERR_MOD_SAT (R)
Channel 3 - Modulator output saturation
error
[1] CH2_ERR_FILTER_SAT (R)
Channel 2 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
[4] CH3_ERR_FILTER_SAT (R)
Channel 3 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
[2] CH2_ERR_MOD_SAT (R)
Channel 2 - Modulator output saturation
error
[3] CH3_ERR_OUTPUT_SAT (R)
Channel 3 - ADC conversion has
exceeded lim its and has been clam ped
Table 128. Bit Descriptions for CH2_3_SAT_ERR
Bits
[7:6]
5
4
Bit Name
RESERVED
CH3_ERR_MOD_SAT
CH3_ERR_FILTER_SAT
3
2
1
CH3_ERR_OUTPUT_SAT
CH2_ERR_MOD_SAT
CH2_ERR_FILTER_SAT
0
CH2_ERR_OUTPUT_SAT
Settings
Description
Reserved
Channel 3—Modulator output saturation error
Channel 3—Filter result has exceeded a reasonable level, before offset and
gain calibration are applied
Channel 3—ADC conversion has exceeded limits and is clamped
Channel 2—Modulator output saturation error
Channel 2—Filter result has exceeded a reasonable level, before offset and
gain calibration are applied
Channel 2—ADC conversion has exceeded limits andis clamped
Reset
0x0
0x0
0x0
Access
R
R
R
0x0
0x0
0x0
R
R
R
0x0
R
Reset
0x0
0x0
0x0
Access
R
R
R
0x0
0x0
0x0
R
R
R
0x0
R
CHANNEL 4/CHANNEL 5 DSP ERRORS REGISTER
Address: 0x056, Reset: 0x00, Name: CH4_5_SAT_ERR
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:6] RESERVED
[5] CH5_ERR_MOD_SAT (R)
Channel 5 - Modulator output saturation
error
[4] CH5_ERR_FILTER_SAT (R)
Channel 5 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
[3] CH5_ERR_OUTPUT_SAT (R)
Channel 5 - ADC conversion has
exceeded lim its and has been clam ped
[0] CH4_ERR_OUTPUT_SAT (R)
Channel 4 - ADC conversion has
exceeded lim its and has been clam ped
[1] CH4_ERR_FILTER_SAT (R)
Channel 4 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
[2] CH4_ERR_MOD_SAT (R)
Channel 4 - Modulator output saturation
error
Table 129. Bit Descriptions for CH4_5_SAT_ERR
Bits
[7:6]
5
4
Bit Name
RESERVED
CH5_ERR_MOD_SAT
CH5_ERR_FILTER_SAT
3
2
1
CH5_ERR_OUTPUT_SAT
CH4_ERR_MOD_SAT
CH4_ERR_FILTER_SAT
0
CH4_ERR_OUTPUT_SAT
Settings
Description
Reserved
Channel 5—Modulator output saturation error
Channel 5—Filter result has exceeded a reasonable level, before offset and
gain calibration are applied
Channel 5—ADC conversion has exceeded limits and is clamped
Channel 4—Modulator output saturation error
Channel 4—Filter result has exceeded a reasonable level, before offset and
gain calibration are applied
Channel 4—ADC conversion has exceeded limits and is clamped
Rev. A | Page 87 of 94
AD7770
Data Sheet
CHANNEL 6/CHANNEL 7 DSP ERRORS REGISTER
Address: 0x057, Reset: 0x00, Name: CH6_7_SAT_ERR
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:6] RESERVED
[0] CH6_ERR_OUTPUT_SAT (R)
Channel 6 - ADC conversion has
exceeded lim its and has been clam ped
[5] CH7_ERR_MOD_SAT (R)
Channel 7 - Modulator output saturation
error
[1] CH6_ERR_FILTER_SAT (R)
Channel 6 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
[4] CH7_ERR_FILTER_SAT (R)
Channel 7 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
[2] CH6_ERR_MOD_SAT (R)
Channel 6 - Modulator output saturation
error
[3] CH7_ERR_OUTPUT_SAT (R)
Channel 7 - ADC conversion has
exceeded lim its and has been clam ped
Table 130. Bit descriptions for CH6_7_SAT_ERR
Bits
[7:6]
5
4
Bit Name
RESERVED
CH7_ERR_MOD_SAT
CH7_ERR_FILTER_SAT
3
2
1
CH7_ERR_OUTPUT_SAT
CH6_ERR_MOD_SAT
CH6_ERR_FILTER_SAT
0
CH6_ERR_OUTPUT_SAT
Settings
Description
Reserved
Channel 7—Modulator output saturation error
Channel 7—Filter result has exceeded a reasonable level, before offset and
gain calibration are applied
Channel 7—ADC conversion has exceeded limits and is clamped
Channel 6—Modulator output saturation error
Channel 6—Filter result has exceeded a reasonable level, before offset and
gain calibration are applied
Channel 6—ADC conversion has exceeded limits and is clamped
Reset
0x0
0x0
0x0
Access
R
R
R
0x0
0x0
0x0
R
R
R
0x0
R
CHANNEL 0 TO CHANNEL 7 ERROR REGISTER ENABLE REGISTER
Address: 0x058, Reset: 0xFE, Name: CHX_ERR_REG_EN
7
6
5
4
3
2
1
0
1 1 1 1 1 1 1 0
[7] OUTPUT_SAT_TEST_EN (R/W)
ADC conversion error test enable
[0] REF_DET_TEST_EN (R/W)
Reference detect test enable
[6] FILTER_SAT_TEST_EN (R/W)
Filter saturation error test enable
[1] AINP_OV_TEST_EN (R/W)
AINx+ overvoltage test enable
[5] MOD_SAT_TEST_EN (R/W)
Enable error flag for Modulator saturation
[2] AINP_UV_TEST_EN (R/W)
AINx+ undervoltage test enable
[4] AINM_UV_TEST_EN (R/W)
AINx- undervoltage test enable
[3] AINM_OV_TEST_EN (R/W)
AINx- overvoltage test enable
Table 131. Bit Descriptions for CHX_ERR_REG_EN
Bits
7
6
5
4
3
2
1
0
Bit Name
OUTPUT_SAT_TEST_EN
FILTER_SAT_TEST_EN
MOD_SAT_TEST_EN
AINM_UV_TEST_EN
AINM_OV_TEST_EN
AINP_UV_TEST_EN
AINP_OV_TEST_EN
REF_DET_TEST_EN
Settings
Description
ADC Conversion Error Test Enable
Filter Saturation Test Enable
Enable Error Flag for Modulator Saturation
AINx− Undervoltage Test Enable
AINx− Overvoltage Test Enable
AINx+ Undervoltage Test Enable
AINx+ Overvoltage Test Enable
Reference Detect Test Enable
Rev. A | Page 88 of 94
Reset
0x1
0x1
0x1
0x1
0x1
0x1
0x1
0x0
Access
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Data Sheet
AD7770
GENERAL ERRORS REGISTER 1
Address: 0x059, Reset: 0x00, Name: GEN_ERR_REG_1
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:6] RESERVED
[0] SPI_CRC_ERR (R)
SPI CRC error
[5] MEMMAP_CRC_ERR (R)
A CRC of the m em ory m ap contents
is run periodically to check for errors
[1] SPI_INVALID_WRITE_ERR (R)
SPI invalid write address
[4] ROM_CRC_ERR (R)
A CRC of the fuse contents is run
periodically to check for errors in
the fuses
[2] SPI_INVALID_READ_ERR (R)
SPI invalid read address
[3] SPI_CLK_COUNT_ERR (R)
SPI clock counter error
Table 132. Bit Descriptions for GEN_ERR_REG_1
Bits
[7:6]
5
4
3
2
1
0
Bit Name
RESERVED
MEMMAP_CRC_ERR
ROM_CRC_ERR
SPI_CLK_COUNT_ERR
SPI_INVALID_READ_ERR
SPI_INVALID_WRITE_ERR
SPI_CRC_ERR
Settings
Description
Reserved
A CRC of the memory map contents is run periodically to check for errors
A CRC of the fuse contents is run periodically to check for errors in the fuses
SPI clock counter error
SPI invalid read address
SPI invalid write address
SPI CRC error
Reset
0x0
0x0
0x0
0x0
0x0
0x0
0x0
Access
R
R
R
R
R
R
R
GENERAL ERRORS REGISTER 1 ENABLE
Address: 0x05A, Reset: 0x3E, Name: GEN_ERR_REG_1_EN
Table 133. Bit Descriptions for GEN_ERR_REG_1_EN
Bits
[7:6]
5
4
3
2
1
0
Bit Name
RESERVED
MEMMAP_CRC_TEST_EN
ROM_CRC_TEST_EN
SPI_CLK_COUNT_TEST_EN
SPI_INVALID_READ_TEST_EN
SPI_INVALID_WRITE_TEST_EN
SPI_CRC_TEST_EN
Settings
Description
Reserved
Memory Map CRC Test (Error?) Enable
Fuse CRC Test Enable
SPI Clock Counter Test Enable
SPI Invalid Read Address Test Enable
SPI Invalid Write Address Test Enable
SPI CRC Error Test Enable
GENERAL ERRORS REGISTER 2
Address: 0x05B, Reset: 0x00, Name: GEN_ERR_REG_2
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED
[0] DLDO_PSM_ERR (R)
DRegCap power supply error
[5] RESET_DETECTED (R)
Reset detected
[4] EXT_MCLK_SWITCH_ERR (R)
Clock not switched over
[3] RESERVED
[1] ALDO2_PSM_ERR (R)
AReg2Cap power supply error
[2] ALDO1_PSM_ERR (R)
AReg1Cap power supply error
Rev. A | Page 89 of 94
Reset
0x0
0x1
0x1
0x1
0x1
0x1
0x0
Access
R
R/W
R/W
R/W
R/W
R/W
R/W
AD7770
Data Sheet
Table 134. Bit Descriptions for GEN_ERR_REG_2
Bits
[7:6]
5
4
3
2
1
0
Bit Name
RESERVED
RESET_DETECTED
EXT_MCLK_SWITCH_ERR
RESERVED
ALDO1_PSM_ERR
ALDO2_PSM_ERR
DLDO_PSM_ERR
Settings
Description
Reserved
Reset Detected
Clock Not Switched Over
Reserved
AREG1CAP Power Supply Error
AREG2CAP Power Supply Error
DREGCAP Power Supply Error
Reset
0x0
0x0
0x0
0x0
0x0
0x0
0x0
Access
R
R
R
R
R
R
R
Reset
0x0
0x1
0x1
0x3
Access
R
R/W
R/W
R/W
0x0
R/W
GENERAL ERRORS REGISTER 2 ENABLE
Address: 0x05C, Reset: 0x3C, Name: GEN_ERR_REG_2_EN
7
6
5
4
2
3
0
1
0 0 1 0 1 1 0 0
[7:6] RESERVED
[1:0] LDO_PSM_TRIP_TEST_EN (R/W)
LDO PSM trip test enable
0: 00 - No trip detect test enabled.
1: 01 - Run trip detect test on AReg1Cap.
10: 10 - Run trip detect test on AReg2Cap.
11: 11 - Run trip detect test on DRegCap.
[5] RESET_DETECT_EN (R/W)
Reset detect enable
[4] RESERVED
[3:2] LDO_PSM_test_EN (R/W)
LDO PSM test EN
0: 00 - No power supply m onitor test
enabled.
1: 01 - Run power supply m onitor test
on ARegxCap.
10: 10 - Run power supply m onitor test
on DRegCap.
11: 11 - Run power supply m onitor test
on all LDOs.
Table 135. Bit Descriptions for GEN_ERR_REG_2_EN
Bits
[7:6]
5
4
[3:2]
Bit Name
RESERVED
RESET_DETECT_EN
RESERVED
LDO_PSM_TEST_EN
Settings
0
1
10
11
[1:0]
LDO_PSM_TRIP_TEST_EN
0
1
10
11
Description
Reserved
Reset Detect Enable
Reserved
LDO PSM Test EN
00—no power supply monitor test enabled
01—run power supply monitor test on AREGxCAP
10—run power supply monitor test on DREGCAP
11—run power supply monitor test on all LDOs
LDO PSM Trip Test Enable
00—no trip detect test enabled
01—run trip detect test on AREG1CAP
10—run trip detect test on AREG2CAP
11—run trip detect test on DREGCAP
ERROR STATUS REGISTER 1
Address: 0x05D, Reset: 0x00, Name: STATUS_REG_1
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:6] RESERVED
[0] ERR_LOC_CH0 (R)
An error specific to CH0_ERR_REG
is active
[5] CHIP_ERROR (R)
Set high if any error bit is high
[4] ERR_LOC_CH4 (R)
An error specific to CH4_ERR_REG
is active
[3] ERR_LOC_CH3 (R)
An error specific to CH3_ERR_REG
is active
[1] ERR_LOC_CH1 (R)
An error specific to CH1_ERR_REG
is active
[2] ERR_LOC_CH2 (R)
An error specific to CH2_ERR_REG
is active
Rev. A | Page 90 of 94
Data Sheet
AD7770
Table 136. Bit Descriptions for STATUS_REG_1
Bits
[7:6]
5
4
3
2
1
0
Bit Name
RESERVED
CHIP_ERROR
ERR_LOC_CH4
ERR_LOC_CH3
ERR_LOC_CH2
ERR_LOC_CH1
ERR_LOC_CH0
Settings
Description
Reserved
Set this bit high if any error bit is high
An error specific to CH4_ERR_REG is active
An error specific to CH3_ERR_REG is active
An error specific to CH2_ERR_REG is active
An error specific to CH1_ERR_REG is active
An error specific to CH0_ERR_REG is active
Reset
0x0
0x0
0x0
0x0
0x0
0x0
0x0
Access
R
R
R
R
R
R
R
ERROR STATUS REGISTER 2
Address: 0x05E, Reset: 0x00, Name: STATUS_REG_2
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:6] RESERVED
[0] ERR_LOC_CH5 (R)
An error specific to CH5_ERR_REG
is active
[5] CHIP_ERROR (R)
Set high if any error bit is high
[1] ERR_LOC_CH6 (R)
An error specific to CH6_ERR_REG
is active
[4] ERR_LOC_GEN2 (R)
An error specific to GEN_ERR_REG_2
is active
[2] ERR_LOC_CH7 (R)
An error specific to CH7_ERR_REG
is active
[3] ERR_LOC_GEN1 (R)
An error specific to GEN_ERR_REG_1
is active
Table 137. Bit Descriptions for STATUS_REG_2
Bits
[7:6]
5
4
3
2
1
0
Bit Name
RESERVED
CHIP_ERROR
ERR_LOC_GEN2
ERR_LOC_GEN1
ERR_LOC_CH7
ERR_LOC_CH6
ERR_LOC_CH5
Settings
Description
Reserved
Set high if any error bit is high
An error specific to GEN_ERR_REG_2 is active
An error specific to GEN_ERR_REG_1 is active
An error specific to CH7_ERR_REG is active
An error specific to CH6_ERR_REG is active
An error specific to CH5_ERR_REG is active
Reset
0x0
0x0
0x0
0x0
0x0
0x0
0x0
Access
R
R
R
R
R
R
R
ERROR STATUS REGISTER 3
Address: 0x05F, Reset: 0x00, Name: STATUS_REG_3
7
6
5
4
3
2
1
0
0 0 0 0 0 0 0 0
[7:6] RESERVED
[0] ERR_LOC_SAT_CH0_1 (R)
An error specific to CH0_1_SAT_ERR
reg is active
[5] CHIP_ERROR (R)
Set high if any error bit is high
[4] INIT_COMPLETE (R)
Fuse initialization is com plete. Device
is ready to receive com m ands
[3] ERR_LOC_SAT_CH6_7 (R)
An error specific to CH6_7_SAT_ERR
reg is active
[1] ERR_LOC_SAT_CH2_3 (R)
An error specific to CH2_3_SAT_ERR
reg is active
[2] ERR_LOC_SAT_CH4_5 (R)
An error specific to CH4_5_SAT_ERR
reg is active
Table 138. Bit Descriptions for STATUS_REG_3
Bits
[7:6]
5
4
3
2
1
0
Bit Name
RESERVED
CHIP_ERROR
INIT_COMPLETE
ERR_LOC_SAT_CH6_7
ERR_LOC_SAT_CH4_5
ERR_LOC_SAT_CH2_3
ERR_LOC_SAT_CH0_1
Settings
Description
Reserved
Set high if any error bit is high.
Fuse initialization is complete. Device is ready to receive commands.
An error specific to CH6_7_SAT_ERR register is active.
An error specific to CH4_5_SAT_ERR register is active.
An error specific to CH2_3_SAT_ERR register is active.
An error specific to CH0_1_SAT_ERR register is active.
Rev. A | Page 91 of 94
Reset
0x0
0x0
0x0
0x0
0x0
0x0
0x0
Access
R
R
R
R
R
R
R
AD7770
Data Sheet
DECIMATION RATE (N) MSB REGISTER
Address: 0x060, Reset: 0x00, Name: SRC_N_MSB
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:4] RESERVED
[3:0] SRC_N_ALL[11:8] (R/W)
SRC N Com bined
Table 139. Bit Descriptions for SRC_N_MSB
Bits
[7:4]
[3:0]
Bit Name
RESERVED
SRC_N_ALL[11:8]
Settings
Description
Reserved
SRC N Combined
Reset
0x0
0x0
Access
R
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
Reset
0x0
Access
R/W
DECIMATION RATE (N) LSB REGISTER
Address: 0x061, Reset: 0x80, Name: SRC_N_LSB
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] SRC_N_ALL[7:0] (R/W)
SRC N Com bined
Table 140. Bit Descriptions for SRC_N_LSB
Bits
[7:0]
Bit Name
SRC_N_ALL[7:0]
Settings
Description
SRC N Combined
DECIMATION RATE (IF) MSB REGISTER
Address: 0x062, Reset: 0x00, Name: SRC_IF_MSB
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] SRC_IF_ALL[15:8] (R/W)
SRC IF ALL
Table 141. Bit Descriptions for SRC_IF_MSB
Bits
[7:0]
Bit Name
SRC_IF_ALL[15:8]
Settings
Description
SRC IF All
DECIMATION RATE (IF) LSB REGISTER
Address: 0x063, Reset: 0x00, Name: SRC_IF_LSB
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] SRC_IF_ALL[7:0] (R/W)
SRC IF ALL
Table 142. Bit Descriptions for SRC_IF_LSB
Bits
[7:0]
Bit Name
SRC_IF_ALL[7:0]
Settings
Description
SRC IF All
Rev. A | Page 92 of 94
Data Sheet
AD7770
SRC LOAD SOURCE AND LOAD UPDATE REGISTER
Address: 0x064, Reset: 0x00, Name: SRC_UPDATE
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] SRC_LOAD_SOURCE (R/W)
Select which option to load an SRC
update
[0] SRC_LOAD_UPDATE (R/W)
Assert bit to load SRC registers into
SRC
[6:1] RESERVED
Table 143. Bit Descriptions for SRC_UPDATE
Bits
7
[6:1]
0
Bit Name
SRC_LOAD_SOURCE
RESERVED
SRC_LOAD_UPDATE
Settings
Description
Selects which option to load an SRC update
Reserved
Asserts bit to load SRC registers into SRC
Rev. A | Page 93 of 94
Reset
0x0
0x0
0x0
Access
R/W
R
R/W
AD7770
Data Sheet
OUTLINE DIMENSIONS
0.30
0.25
0.18
49
64
48
0.50
BSC
EXPOSED
PAD
0.80
0.75
0.70
0.45
0.40
0.35
16
32
17
BOTTOM VIEW
7.50 REF
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.203 REF
PKG-004396
SEATING
PLANE
PIN 1
INDICATOR
7.70
7.60 SQ
7.50
33
TOP VIEW
1
0.20 MIN
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-WMMD
02-12-2014-A
PIN 1
INDICATOR
9.10
9.00 SQ
8.90
Figure 120. 64-Lead Lead Frame Chip Scale Package [LFCSP]
9 mm × 9 mm Body and 0.75 mm Package Height
(CP-64-15)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
AD7770ACPZ
AD7770ACPZ-RL
1
Temperature Range
−40°C to +125°C
−40°C to +125°C
Package Description
64-Lead Lead Frame Chip Scale Package [LFCSP]
64-Lead Lead Frame Chip Scale Package [LFCSP]
Z = RoHs Compliant Part.
©2016 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D12538-0-5/16(A)
Rev. A | Page 94 of 94
Package Option
CP-64-15
CP-64-15