INFINEON HDSP2003LP

HDSP2000LP
YELLOW HDSP2001LP
HIGH EFFICIENCY RED HDSP2002LP
GREEN HDSP2003LP
RED
0.150" 4-Character 5 x 7 Dot Matrix
Serial Input Alphanumeric Display
Dimensions in inches (mm)
.083
(2.11)
.200
(5.08)
.175 (4.44)
±.005 (.13)
.350
(8.89)
.146
(3.71)
Part No.
HDSP2000LP
YYWW
OSRAM
.200
(5.08)
EIA Date Code
Luminous Intensity Code
or Color Code for Yellow
Z
.170
(4.32)
Pin 1
Indicator
• Four 0.150" Dot Matrix Characters
• Four Colors: Red, Yellow, High Efficiency
Red, Green
• Wide Viewing Angle: X Axis +50°, Y Axis +75°
• Built-in CMOS Shift Registers with Constant
Current LED Row Drivers
• Custom Fonts from Shift Registers
• Easily Cascaded for Multiple Displays
• TTL Compatible
• End Stackable
• Extended Operating Temperature Range:
–40°C to + 85°C
• Categorized for Luminous Intensity
• All Displays Color Matched
• Compact Plastic Package
• 100% Burned-in and Tested
.100 (2.54)
±.005 (.13)
non-cum.10 pl.
See Appnote 44 at www.infineon.com/opto.
.020 (.51)
±.003 (.08)
12 pl.
1
2
3
12
11
10
4
9
5
6
8
7
Tolerance: ±.015 (.38)
.300 (7.62)
±.010 (.25)
.150
(3.81)
.699 (17.75) max.
FEATURES
.012 (.3)
±.002 (.05)
Pin
1
2
3
4
5
6
7
8
9
10
11
12
Function
Column 1
Column 2
Column 3
Column 4
Column 5
No Connection
Data Out
VB
VCC
Clock
Ground
Data In
DESCRIPTION
The HDSP200XLP are four digit 5 x 7 dot matrix serial input alphanumeric displays. The displays are available in red, yellow, high efficiency
red, or bright green. The package is a standard twelve-pin DIP with a
flat plastic lens. The display can be stacked horizontally or vertically to
form messages of any length.
The HDSP200XLP has two fourteen-bit CMOS shift registers with
built-in row drivers. These shift registers drive twenty-eight rows and
enable the design of customized fonts. Cascading multiple displays is
possible because of the Data In and Data Out pins. Data In and Out
are easily input with the clock signal and displayed in parallel on the
row drivers. Data Out represents the output of the 7th bit of digit
number four shift register The shift register is level triggered. The like
columns of each character in a display cluster are tied to a single pin
(see Block Diagram). High true data in the shift register enables the
output current mirror driver stage associated with each row of LEDs
in the 5 x 7 diode array.
 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA
www.infineon.com/opto • 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany
www.osram-os.com • +49-941-202-7178
1
April 4, 2000-11
DESCRIPTION (continued)
Figure 2. Maximum Allowable Power Dissipation
vs. Temperature
The TTL compatible VB input may either be tied to VCC for maximum display intensity or pulse width modulated to achieve
intensity control and reduce power consumption.
1.0
PD - Max. Allowable
Power Dissipation - W
In the normal mode of operation, input data for digit four, column
one is loaded into the seven on-board shift register locations one
through seven. Column one data for digits 3, 2, and 1 is shifted
into the display shift register locations. Then column one input is
enabled for an appropriate period of time, T. A similar process is
repeated for columns 2, 3, 4, and 5. If the decode time and load
data time into the shift register is t, then with five columns, each
column of the display is operating at a duty factor of:
T
DF = -------------------5 (T + t )
0.8
0.6
Socket Thermal
Resistance
0°C/W
10°C/W
20°C/W
40°C/W
0.4
0.2
Tj(Max) = 100°C
0.0
-60
T+t, allotted to each display column, is generally chosen to
provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display.
For most strobed display systems, each column of the display
should be refreshed (turned on) at a minimum rate of 100
times per second.
With columns to be addressed, this refresh rate then gives a value
for the time T+t of: 1⁄ [5 x (100)] =2.0 msec. If the device is operated at 5.0 MHz clock rate maximum, it is possible to maintain t<T.
For short display strings, the duty factor will then approach 20%.
Maximum Ratings
-40
-20
0
20
40
60
80
100
120
Tamb - Ambient Temperature - °C
AC Electrical Characteristics
(VCC=4.75 to 5.25 V, TA=–40°C to 85°C)
Supply Voltage VCC to GND .............................. –0.5 V to +7.0 V
Inputs, Data Out and VB .............................–0.5 V to VCC +0.5 V
Column Input Voltage, VCOL ............................. –0.5 V to +6.0 V
Operating Temperature Range .......................... –40°C to +85°C
Storage Temperature Range............................ –40°C to +100°C
Maximum Solder Temperature 0.063" (1.59 mm)
below Seating Plane, t<5.0 s......................................... 260°C
Maximum Allowable Power Dissipation
at TA=25°C (1) ...............................................................0.86 W
Note:
1) Maximum allowable dissipation is derived from V =5.25 V,
CC
VB=2.4 V, VCOL=3.5 V, 20 LEDs on per character, 20% DF.
Symbol
Description
Min.
Max.(1)
Units
Fig.
TSETUP
Setup Time
50
—
ns
1
THOLD
Hold Time
25
—
ns
1
TWL
Clock Width
Low
75
—
ns
1
TWH
Clock Width
High
75
—
ns
1
F(CLK)
Clock
Frequency
0
5.0
MHz
1
TTHL, TTLH
Clock Transition Time
—
200
ns
1
TPHL, TPLH
Propagation
Delay Clock to
Data Out
—
125
ns
1
Note:
1) V Pulse Width Modulation Frequency—50 kHz (max).
B
Figure 1. Timing Characteristics
l/fCLOCK
TWH
CLOCK
VIH
VIL
IMPORTANT—Do not use cleaning agents containing alcohol
of any type with this display. The least offensive cleaning solution is hot D.l. water (60°C) for less than 15 minutes. Addition
of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.
2.0 V
0.8 V
THOLD
TSETUP
VIH
DATA IN
Cleaning the Displays
TTHL
TWL
2.0 V
VIL 0.8 V
For post solder cleaning use water or non-alcohol mixtures
formulated for vapor cleaning processing or non-alcohol mixtures formulated for room temperature cleaning. Nonalcohol
vapor cleaning processing for up to two minutes in vapors at
boiling is permissible. For suggested solvents refer to Appnote 19 at www.infineon.com/opto.
TPLH, TPHL
V
2.4 V OH
0.4 V V
OL
DATA OUT
VIH
VB
2.0 V
VIL 0.8 V
TOFF
ON (illuminated)
DISPLAY
OFF (not illuminated)
TON
90%
10%
 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA
www.infineon.com/opto • 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany
www.osram-os.com • +49-941-202-7178
HDSP200LP/1LP/2LP/3LP
2
April 4, 2000-11
Recommended Operating Conditions
Parameter
Symbol
Min.
Typ.
Max.
Units
Supply Voltage
VCC
4.75
5.0
5.25
V
Data Out Current, Low State
IOL
—
—
1.6
mA
Data Out Current, High State
IOH
–0.5
—
—
mA
VCOL
2.4
—
3.5
V
Column Input Voltage, Column On HDSP2000LP (1)
Column Input Voltage, Column On, HDSP2001LP/2002LP/2003LP
(1)
VCOL
2.75
—
3.5
V
—
—
ns
Setup Time
TSETUP
70
Hold Time
THOLD
30
—
—
ns
Width of Clock
TW(CLK)
75
—
—
ns
Clock Frequency
TCLK
—
—
5.0
MHz
Clock Transition Time
TTHL
—
—
200
ns
Note:
1) See Figure 3: Peak column current versus column voltage
Optical Characteristics
Red HDSP2000LP
Description
Symbol
Min.
Typ. (4)
Units
Test Conditions
Peak Luminous Intensity per LED (1,3)
(Character Average)
IVpeak
105
200
µcd
VCC=5.0 V, VCOL=3.5 V
TA=25°C, VB=2.4 V
Peak Wavelength
Dominant Wavelength
(2)
λVpeak
—
655
nm
—
λdom
—
639
nm
—
Symbol
Min.
Typ. (4)
Units
Test Conditions
IVpeak
400
1140
µcd
VCC=5.0 V, VCOL=3.5 V
TA=25°C, VB=2.4 V
Yellow HDSP2001LP
Description
Peak Luminous Intensity per LED
(Character Average)
(1,3)
Peak Wavelength
λVpeak
—
583
nm
—
Dominant Wavelength (2)
λdom
—
585
nm
—
Symbol
Min.
Typ. (4)
Units
Test Conditions
IVpeak
400
1430
µcd
VCC=5.0 V, VCOL=3.5 V
TA=25°C, VB=2.4 V
λVpeak
—
635
nm
—
λdom
—
626
nm
—
Symbol
Min.
Typ. (4)
Units
Test Conditions
IVpeak
650
1550
µcd
VCC=5.0 V, VCOL=3.5 V
TA=25°C, VB=2.4 V
λVpeak
—
565
nm
—
High Efficiency Red HDSP2002LP
Description
Peak Luminous Intensity per LED
(Character Average)
(1,3)
Peak Wavelength
Dominant Wavelength
(2)
Green HDSP2003LP
Description
Peak Luminous Intensity per LED
(Character Average)
Peak Wavelength
(1,3)
λdom
—
569
nm
—
Dominant Wavelength
Notes:
1) The displays are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package.
2) Dominant wavelength (λ
dom) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color
of the device.
3) The luminous sterance of the LED may be calculated using the following relationships:
LV (cd/m2)=IV (Candela)/A (Meter)2
LV (Footlamberts)=π IV (Candela)/A (Foot)2
HDSP2000LP, A=5 58 x 10-8 m2=6 x 10-7 ft.2
HDSP2001/2/3LP, A=7.8 x 10-8m2=8.4 x 10-7ft.2
4) All typical values specified at V =5.0 V and T =25°C unless otherwise noted.
CC
A
(2)
 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA
www.infineon.com/opto • 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany
www.osram-os.com • +49-941-202-7178
HDSP200LP/1LP/2LP/3LP
3
April 4, 2000-11
Electrical characteristics (–40°C to +85°C, unless otherwise specified)
Description
Symbol
Min.
Typ.(1)
Max.
Units
Test Conditions
Supply Current (quiescent)
VCC
—
1
5
mA
VB=0.4 V
—
1
5
mA
VB=2.4 V
VCC=5.25 V
VCLK=VDATA=2.4 V
All SR Stages=Logical 1
Supply Current (operating)
VCC
—
1.5
10.0
mA
FCLK=5.0 MHz
Column Current at any Column Input (2)
iCOL (All)
—
—
10
µA
VB=0.4 V
ICOL
—
335
410
mA
VB=2.4 V
VB, Clock or Data Input, Threshold Low
VB, Clock or Data Input, Threshold High
VIL
VIH
—
0.8
V
V
VCC= 4.75 V–5.25 V
2.0
Data Out Voltage
VOH
2.4
—
—
V
IOH=–0.5 mA
VOL
—
—
0.4
V
IOL=1.6 mA
Input Current Logical 0, VB only
IIL
–30
–110
–300
µA
VCC=4.75 V–5.25 V, VIL=0.8 V
Input Current Logical 0 Data, Clock
IIL
—
–1
–10
µA
Power Dissipation per Package (2)
PD
—
0.4
—
W
Thermal Resistance IC
Junction-to-Ambient
RθJ-A
—
85
—
°C/W/
Device
VCC=5.25 V
VCOL=3.5 V
All SR Stages=Logical 1
VCC=4.75 V
ICOL=0 mA
VCC=5.0, VCOL=3.5 V, 17.5% DF
15 LEDs on per character, VB=2.4 V
Notes:
1) All typical values specified at V =5.0 V and T =25°C unless otherwise noted.
CC
A
2) See Figure 3: Peak column current versus column voltage.
Figure 3. Peak Column Current vs. Column Voltage
ICOL– Peak Column Current – mA
600
500
400
300
HDSP2000
HDSP2001/2/3
200
Tamb = 25°C, VCC = 5.25V
All SR Stages = Logical 1
100
0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
VCOL – Column Voltage – Volts
 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA
www.infineon.com/opto • 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany
www.osram-os.com • +49-941-202-7178
HDSP200LP/1LP/2LP/3LP
4
April 4, 2000-11
Figure 4. Block Diagram
Column Drive Inputs
Column
1 2 34 5
LED
Matrix
2
Blanking
Control, VB
Serial
Data
Input
1 2 3 4 5 6 7
Rows
Rows 1-7
LED
Matrix
3
Rows 1-7
LED
Matrix
4
Rows 1-7
Constant Current Sinking LED Drivers
1 2 3 4 5 6 7
Rows 8-14
Rows 15-21
Rows 22-28
28-Bit SIPO Shift Register
Serial
Data
Output
Clock
Contrast Enhancement Filters
Display Color
Ambient Lighting
Dim
Moderate
Polaroid HNCP37
3M Light Control Film
Panelgraphic Gray 10
Chequers Gray 105
Bright
—
Red
HDSP2000LP
Panelgraphic Dark Red 63
Panelgraphic Ruby Red 60
Chequers Red 118
Plexiglass 2423
Yellow
HDSP2001LP
Panelgraphic Yellow 27
Polaroid HNCP 10-Glass*
Marks Polarized MPC 30-25C**
HER
HDSP2002LP
Panelgraphic Ruby Red 60
Chequers Red 112
Note 1
Polaroid HNCP 10-Glass*
Marks Polarized MPC 20-15C**
Green
HDSP20013P
Panelgraphic Green 48
Chequers Green 107
Polaroid HNCP 10-Glass*
Marks Polarized MPC 50-12C**
Note:
1. Optically coated circular polarized filters, such as Polaroid HNCP10.
*Polaroid Corp.
**Marks Polarized Corp.
1 Upland Rd., Bldg. #2
25-B Jefryn Blvd. W
Norwood, MA 02062
Deer Park, NY 11729
800/225-2770
516/242-1300
FAX 516/242-1347
Marks Polarized Corp. manufactures
to MIL-1-45208 inspection system.
General Quality Assurance Levels
Generic data available.
 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA
www.infineon.com/opto • 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany
www.osram-os.com • +49-941-202-7178
HDSP200LP/1LP/2LP/3LP
5
April 4, 2000-11
Thermal Considerations
For ease of calculations the maximum allowable electrical operating condition is dependent upon the aggregate thermal resistance of the LED matrixes and the two driver ICs. All of the
thermal management calculations are based upon the parallel
combination of these two networks which is 15°C/W. Maximum allowable power dissipation is given in Equation 3.
The small alphanumeric displays are hybrid LED and CMOS
assemblies that are designed for reliable operation in commercial, industrial, and military environments. Optimum reliability
and optical performance will result when the junction temperature of the LEDs and CMOS ICs are kept as low as possible.
Thermal Modeling
Equation 3.
HDSP200XLP displays consist of two driver ICs and four 5 x 7
LED matrixes. A thermal model of the display is shown in Figure 5. It illustrates that the junction temperature of the semiconductor = junction self heating + the case temperature rise +
the ambient temperature. Equation 1 shows this relationship.
T J ( MAX ) – T A
P DISPLAY = --------------------------------R θJC + R θCA
P DISPLAY = 5V COL I COL ( n ⁄ 35 ) DF + V CC I CC
For further reference see Figures 2, 7, 8, 9, 10 and 11.
Figure 5. Thermal model
Key to equation symbols
LED T1
IC T2
LED T1
LED T1
IC T2
LED T1
Rθ1
Rθ2
Rθ1
Rθ1
Rθ2
Rθ1
LED Power IC Power
LED Power
LED Power IC Power
DF
ICC
ICOL
n
PCASE
LED Power
Duty factor
Quiescent IC current
Column current
Number of LEDs on in a 5 x 7 array
Package power dissipation excluding LED
under consideration
Power dissipation of a column
Power dissipation of the display
Power dissipation of a LED
Thermal resistance case to ambient
Thermal resistance junction to case
Ambient temperature
Junction temperature of an IC
Junction temperature of a LED
Maximum junction temperature
IC voltage
Column voltage
Forward voltage of LED
Thermal impedance junction to case
Min.
Typ.
Max.
PCOL
PDISPLAY
PLED
RθCA
RθJC
TA
TJ(IC)
TJ(LED)
TJ(MAX)
VCC
VCOL
VF(LED)
ZθJC
HDSP2000LP
1.6
1.7
2.0
Optical Considerations
HDSP2001/2/3LP
1.9
2.2
3.0
The light output of the LEDs is inversely related to the LED
diode’s junction temperature as shown in Figure 6. For optimum light output, keep the thermal resistance of the socket or
PC board as low as possible.
RθCA
See Equation 1 below.
The junction rise within the LED is the product of the thermal
impedance of an individual LED (37°C/W, DF=20%, F=200 Hz),
times the forward voltage, VF(LED), and forward current IF(LED),
of 13–14.5 mA. This rise averages TJ(LED)=1°C. The table below
shows the VF(LED) for the respective displays.
Model Number
VF
The junction rise within the LED driver IC is the combination of
the power dissipated by the IC quiescent current and the 28
row driver current sinks. The IC junction rise is given in
Equation 2.
A thermal resistance of 28°C/W results in a typical junction
rise of 6°C.
See Equation 2 below.
Equation 1.
T J ( LED ) = P LED Z θJ C + P CASE ( R θJC + R θCA ) + T A
T J ( LED ) = [( I COL ⁄ 28 )V F ( LED ) Z θJC ] + [ ( n ⁄ 35 )I COL DF ( 5V COL ) + V CC I CC ] ⋅ [ R θJC + R θCA ] + T A
Equation 2.
T J ( IC ) = P COL ( R θJC + R θCA ) + T A
T J ( IC ) = [ 5 ( V COL – V F ( LED ) ) ⋅ ( I COL ⁄ 2 ) ⋅ ( n ⁄ 35 )DF + V CC ⋅ I CC ] ⋅ [ R θJC + R θCA ] + T A
 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA
www.infineon.com/opto • 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany
www.osram-os.com • +49-941-202-7178
HDSP200LP/1LP/2LP/3LP
6
April 4, 2000-11
Figure 6. Normalized Luminous Intensity vs.
Junction Temperature
Figure 9. Package Power Dissipation
1.5
Max. Package Power Dissipation - W
Normalized
Luminous Intensity
10
Normalized to:
Ta = 25°C
1
.1
-60
0.5
0.0
0
5
10
Max. Package Power Dissipation - W
45
40
35
30
Vcc =5.25V, Icc = 10mA
n = 20 LEDs, DF= 20%
10
DF = 20%, Ta = 25°C
1.0
0.5
0.0
0
5
10
35
40
2.00
P = 0.87W
Character Power Dissipation - W
0
5
15
20
25
30
LEDs on per Character
Figure 11. Character Power Dissipation
5
0
40
Vcol = 3.5, Icol = 410mA
Vcol = 3.5V, Icol = 410mA
15
35
Vcc = 5.25V, Icc = 10mA
25
20
15
20
25
30
LEDs on per Character
1.5
50
Temperature - °C
DF = 20%, Ta = 25°C
1.0
Figure 10. Maximum Character Power Dissipation
Figure 7. Maximum LED Junction Temperature vs.
Socket Thermal Resistance
∆Tj - Delta LED Junction
Vcol = 3.5, Icol = 410mA
-40 -20 0
20 40 60 80 100 120 140
Tj - LED Junction Temperature - °C
When mounted in a 10°C/W socket and operated at Absolute
Maximum Electrical conditions, the HDSP200XLP will show an
LED junction rise of 17°C. lf TA=40°C, then the LED’s TJ will be
57°C. Under these conditions Figure 7 shows that the I V will be
75% of its 25°C value.
10 15 20 25 30 35 40
Socket Thermal Resistance - °C/W
45
50
Figure 8. Maximum Package Power Dissipation
1.5
Max. Package Power Dissipation - W
Vcc = 5.25V, Icc = 10mA
Vcc = 5.25V, Icc = 10mA
Vcol = 3.5, Icol = 410mA
DF = 20%, Ta = 25°C
1.0
Vcc = 5V, Icc = 5mA
Vcol = 3.5V, Icol = 335mA
Duty Factor
1.50
20%
17%
10%
5%
1.00
0.50
0.00
0
5
10
15
20
25
30
LEDs on per Character
35
40
0.5
0.0
0
5
10
15
20
25
30
LEDs on per Character
35
40
 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA
www.infineon.com/opto • 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany
www.osram-os.com • +49-941-202-7178
HDSP200LP/1LP/2LP/3LP
7
April 4, 2000-11