HDSP2000LP YELLOW HDSP2001LP HIGH EFFICIENCY RED HDSP2002LP GREEN HDSP2003LP RED 0.150" 4-Character 5 x 7 Dot Matrix Serial Input Alphanumeric Display Dimensions in inches (mm) .083 (2.11) .200 (5.08) .175 (4.44) ±.005 (.13) .350 (8.89) .146 (3.71) Part No. HDSP2000LP YYWW OSRAM .200 (5.08) EIA Date Code Luminous Intensity Code or Color Code for Yellow Z .170 (4.32) Pin 1 Indicator • Four 0.150" Dot Matrix Characters • Four Colors: Red, Yellow, High Efficiency Red, Green • Wide Viewing Angle: X Axis +50°, Y Axis +75° • Built-in CMOS Shift Registers with Constant Current LED Row Drivers • Custom Fonts from Shift Registers • Easily Cascaded for Multiple Displays • TTL Compatible • End Stackable • Extended Operating Temperature Range: –40°C to + 85°C • Categorized for Luminous Intensity • All Displays Color Matched • Compact Plastic Package • 100% Burned-in and Tested .100 (2.54) ±.005 (.13) non-cum.10 pl. See Appnote 44 at www.infineon.com/opto. .020 (.51) ±.003 (.08) 12 pl. 1 2 3 12 11 10 4 9 5 6 8 7 Tolerance: ±.015 (.38) .300 (7.62) ±.010 (.25) .150 (3.81) .699 (17.75) max. FEATURES .012 (.3) ±.002 (.05) Pin 1 2 3 4 5 6 7 8 9 10 11 12 Function Column 1 Column 2 Column 3 Column 4 Column 5 No Connection Data Out VB VCC Clock Ground Data In DESCRIPTION The HDSP200XLP are four digit 5 x 7 dot matrix serial input alphanumeric displays. The displays are available in red, yellow, high efficiency red, or bright green. The package is a standard twelve-pin DIP with a flat plastic lens. The display can be stacked horizontally or vertically to form messages of any length. The HDSP200XLP has two fourteen-bit CMOS shift registers with built-in row drivers. These shift registers drive twenty-eight rows and enable the design of customized fonts. Cascading multiple displays is possible because of the Data In and Data Out pins. Data In and Out are easily input with the clock signal and displayed in parallel on the row drivers. Data Out represents the output of the 7th bit of digit number four shift register The shift register is level triggered. The like columns of each character in a display cluster are tied to a single pin (see Block Diagram). High true data in the shift register enables the output current mirror driver stage associated with each row of LEDs in the 5 x 7 diode array. 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA www.infineon.com/opto • 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany www.osram-os.com • +49-941-202-7178 1 April 4, 2000-11 DESCRIPTION (continued) Figure 2. Maximum Allowable Power Dissipation vs. Temperature The TTL compatible VB input may either be tied to VCC for maximum display intensity or pulse width modulated to achieve intensity control and reduce power consumption. 1.0 PD - Max. Allowable Power Dissipation - W In the normal mode of operation, input data for digit four, column one is loaded into the seven on-board shift register locations one through seven. Column one data for digits 3, 2, and 1 is shifted into the display shift register locations. Then column one input is enabled for an appropriate period of time, T. A similar process is repeated for columns 2, 3, 4, and 5. If the decode time and load data time into the shift register is t, then with five columns, each column of the display is operating at a duty factor of: T DF = -------------------5 (T + t ) 0.8 0.6 Socket Thermal Resistance 0°C/W 10°C/W 20°C/W 40°C/W 0.4 0.2 Tj(Max) = 100°C 0.0 -60 T+t, allotted to each display column, is generally chosen to provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display. For most strobed display systems, each column of the display should be refreshed (turned on) at a minimum rate of 100 times per second. With columns to be addressed, this refresh rate then gives a value for the time T+t of: 1⁄ [5 x (100)] =2.0 msec. If the device is operated at 5.0 MHz clock rate maximum, it is possible to maintain t<T. For short display strings, the duty factor will then approach 20%. Maximum Ratings -40 -20 0 20 40 60 80 100 120 Tamb - Ambient Temperature - °C AC Electrical Characteristics (VCC=4.75 to 5.25 V, TA=–40°C to 85°C) Supply Voltage VCC to GND .............................. –0.5 V to +7.0 V Inputs, Data Out and VB .............................–0.5 V to VCC +0.5 V Column Input Voltage, VCOL ............................. –0.5 V to +6.0 V Operating Temperature Range .......................... –40°C to +85°C Storage Temperature Range............................ –40°C to +100°C Maximum Solder Temperature 0.063" (1.59 mm) below Seating Plane, t<5.0 s......................................... 260°C Maximum Allowable Power Dissipation at TA=25°C (1) ...............................................................0.86 W Note: 1) Maximum allowable dissipation is derived from V =5.25 V, CC VB=2.4 V, VCOL=3.5 V, 20 LEDs on per character, 20% DF. Symbol Description Min. Max.(1) Units Fig. TSETUP Setup Time 50 — ns 1 THOLD Hold Time 25 — ns 1 TWL Clock Width Low 75 — ns 1 TWH Clock Width High 75 — ns 1 F(CLK) Clock Frequency 0 5.0 MHz 1 TTHL, TTLH Clock Transition Time — 200 ns 1 TPHL, TPLH Propagation Delay Clock to Data Out — 125 ns 1 Note: 1) V Pulse Width Modulation Frequency—50 kHz (max). B Figure 1. Timing Characteristics l/fCLOCK TWH CLOCK VIH VIL IMPORTANT—Do not use cleaning agents containing alcohol of any type with this display. The least offensive cleaning solution is hot D.l. water (60°C) for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents. 2.0 V 0.8 V THOLD TSETUP VIH DATA IN Cleaning the Displays TTHL TWL 2.0 V VIL 0.8 V For post solder cleaning use water or non-alcohol mixtures formulated for vapor cleaning processing or non-alcohol mixtures formulated for room temperature cleaning. Nonalcohol vapor cleaning processing for up to two minutes in vapors at boiling is permissible. For suggested solvents refer to Appnote 19 at www.infineon.com/opto. TPLH, TPHL V 2.4 V OH 0.4 V V OL DATA OUT VIH VB 2.0 V VIL 0.8 V TOFF ON (illuminated) DISPLAY OFF (not illuminated) TON 90% 10% 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA www.infineon.com/opto • 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany www.osram-os.com • +49-941-202-7178 HDSP200LP/1LP/2LP/3LP 2 April 4, 2000-11 Recommended Operating Conditions Parameter Symbol Min. Typ. Max. Units Supply Voltage VCC 4.75 5.0 5.25 V Data Out Current, Low State IOL — — 1.6 mA Data Out Current, High State IOH –0.5 — — mA VCOL 2.4 — 3.5 V Column Input Voltage, Column On HDSP2000LP (1) Column Input Voltage, Column On, HDSP2001LP/2002LP/2003LP (1) VCOL 2.75 — 3.5 V — — ns Setup Time TSETUP 70 Hold Time THOLD 30 — — ns Width of Clock TW(CLK) 75 — — ns Clock Frequency TCLK — — 5.0 MHz Clock Transition Time TTHL — — 200 ns Note: 1) See Figure 3: Peak column current versus column voltage Optical Characteristics Red HDSP2000LP Description Symbol Min. Typ. (4) Units Test Conditions Peak Luminous Intensity per LED (1,3) (Character Average) IVpeak 105 200 µcd VCC=5.0 V, VCOL=3.5 V TA=25°C, VB=2.4 V Peak Wavelength Dominant Wavelength (2) λVpeak — 655 nm — λdom — 639 nm — Symbol Min. Typ. (4) Units Test Conditions IVpeak 400 1140 µcd VCC=5.0 V, VCOL=3.5 V TA=25°C, VB=2.4 V Yellow HDSP2001LP Description Peak Luminous Intensity per LED (Character Average) (1,3) Peak Wavelength λVpeak — 583 nm — Dominant Wavelength (2) λdom — 585 nm — Symbol Min. Typ. (4) Units Test Conditions IVpeak 400 1430 µcd VCC=5.0 V, VCOL=3.5 V TA=25°C, VB=2.4 V λVpeak — 635 nm — λdom — 626 nm — Symbol Min. Typ. (4) Units Test Conditions IVpeak 650 1550 µcd VCC=5.0 V, VCOL=3.5 V TA=25°C, VB=2.4 V λVpeak — 565 nm — High Efficiency Red HDSP2002LP Description Peak Luminous Intensity per LED (Character Average) (1,3) Peak Wavelength Dominant Wavelength (2) Green HDSP2003LP Description Peak Luminous Intensity per LED (Character Average) Peak Wavelength (1,3) λdom — 569 nm — Dominant Wavelength Notes: 1) The displays are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package. 2) Dominant wavelength (λ dom) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. 3) The luminous sterance of the LED may be calculated using the following relationships: LV (cd/m2)=IV (Candela)/A (Meter)2 LV (Footlamberts)=π IV (Candela)/A (Foot)2 HDSP2000LP, A=5 58 x 10-8 m2=6 x 10-7 ft.2 HDSP2001/2/3LP, A=7.8 x 10-8m2=8.4 x 10-7ft.2 4) All typical values specified at V =5.0 V and T =25°C unless otherwise noted. CC A (2) 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA www.infineon.com/opto • 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany www.osram-os.com • +49-941-202-7178 HDSP200LP/1LP/2LP/3LP 3 April 4, 2000-11 Electrical characteristics (–40°C to +85°C, unless otherwise specified) Description Symbol Min. Typ.(1) Max. Units Test Conditions Supply Current (quiescent) VCC — 1 5 mA VB=0.4 V — 1 5 mA VB=2.4 V VCC=5.25 V VCLK=VDATA=2.4 V All SR Stages=Logical 1 Supply Current (operating) VCC — 1.5 10.0 mA FCLK=5.0 MHz Column Current at any Column Input (2) iCOL (All) — — 10 µA VB=0.4 V ICOL — 335 410 mA VB=2.4 V VB, Clock or Data Input, Threshold Low VB, Clock or Data Input, Threshold High VIL VIH — 0.8 V V VCC= 4.75 V–5.25 V 2.0 Data Out Voltage VOH 2.4 — — V IOH=–0.5 mA VOL — — 0.4 V IOL=1.6 mA Input Current Logical 0, VB only IIL –30 –110 –300 µA VCC=4.75 V–5.25 V, VIL=0.8 V Input Current Logical 0 Data, Clock IIL — –1 –10 µA Power Dissipation per Package (2) PD — 0.4 — W Thermal Resistance IC Junction-to-Ambient RθJ-A — 85 — °C/W/ Device VCC=5.25 V VCOL=3.5 V All SR Stages=Logical 1 VCC=4.75 V ICOL=0 mA VCC=5.0, VCOL=3.5 V, 17.5% DF 15 LEDs on per character, VB=2.4 V Notes: 1) All typical values specified at V =5.0 V and T =25°C unless otherwise noted. CC A 2) See Figure 3: Peak column current versus column voltage. Figure 3. Peak Column Current vs. Column Voltage ICOL– Peak Column Current – mA 600 500 400 300 HDSP2000 HDSP2001/2/3 200 Tamb = 25°C, VCC = 5.25V All SR Stages = Logical 1 100 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 VCOL – Column Voltage – Volts 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA www.infineon.com/opto • 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany www.osram-os.com • +49-941-202-7178 HDSP200LP/1LP/2LP/3LP 4 April 4, 2000-11 Figure 4. Block Diagram Column Drive Inputs Column 1 2 34 5 LED Matrix 2 Blanking Control, VB Serial Data Input 1 2 3 4 5 6 7 Rows Rows 1-7 LED Matrix 3 Rows 1-7 LED Matrix 4 Rows 1-7 Constant Current Sinking LED Drivers 1 2 3 4 5 6 7 Rows 8-14 Rows 15-21 Rows 22-28 28-Bit SIPO Shift Register Serial Data Output Clock Contrast Enhancement Filters Display Color Ambient Lighting Dim Moderate Polaroid HNCP37 3M Light Control Film Panelgraphic Gray 10 Chequers Gray 105 Bright — Red HDSP2000LP Panelgraphic Dark Red 63 Panelgraphic Ruby Red 60 Chequers Red 118 Plexiglass 2423 Yellow HDSP2001LP Panelgraphic Yellow 27 Polaroid HNCP 10-Glass* Marks Polarized MPC 30-25C** HER HDSP2002LP Panelgraphic Ruby Red 60 Chequers Red 112 Note 1 Polaroid HNCP 10-Glass* Marks Polarized MPC 20-15C** Green HDSP20013P Panelgraphic Green 48 Chequers Green 107 Polaroid HNCP 10-Glass* Marks Polarized MPC 50-12C** Note: 1. Optically coated circular polarized filters, such as Polaroid HNCP10. *Polaroid Corp. **Marks Polarized Corp. 1 Upland Rd., Bldg. #2 25-B Jefryn Blvd. W Norwood, MA 02062 Deer Park, NY 11729 800/225-2770 516/242-1300 FAX 516/242-1347 Marks Polarized Corp. manufactures to MIL-1-45208 inspection system. General Quality Assurance Levels Generic data available. 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA www.infineon.com/opto • 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany www.osram-os.com • +49-941-202-7178 HDSP200LP/1LP/2LP/3LP 5 April 4, 2000-11 Thermal Considerations For ease of calculations the maximum allowable electrical operating condition is dependent upon the aggregate thermal resistance of the LED matrixes and the two driver ICs. All of the thermal management calculations are based upon the parallel combination of these two networks which is 15°C/W. Maximum allowable power dissipation is given in Equation 3. The small alphanumeric displays are hybrid LED and CMOS assemblies that are designed for reliable operation in commercial, industrial, and military environments. Optimum reliability and optical performance will result when the junction temperature of the LEDs and CMOS ICs are kept as low as possible. Thermal Modeling Equation 3. HDSP200XLP displays consist of two driver ICs and four 5 x 7 LED matrixes. A thermal model of the display is shown in Figure 5. It illustrates that the junction temperature of the semiconductor = junction self heating + the case temperature rise + the ambient temperature. Equation 1 shows this relationship. T J ( MAX ) – T A P DISPLAY = --------------------------------R θJC + R θCA P DISPLAY = 5V COL I COL ( n ⁄ 35 ) DF + V CC I CC For further reference see Figures 2, 7, 8, 9, 10 and 11. Figure 5. Thermal model Key to equation symbols LED T1 IC T2 LED T1 LED T1 IC T2 LED T1 Rθ1 Rθ2 Rθ1 Rθ1 Rθ2 Rθ1 LED Power IC Power LED Power LED Power IC Power DF ICC ICOL n PCASE LED Power Duty factor Quiescent IC current Column current Number of LEDs on in a 5 x 7 array Package power dissipation excluding LED under consideration Power dissipation of a column Power dissipation of the display Power dissipation of a LED Thermal resistance case to ambient Thermal resistance junction to case Ambient temperature Junction temperature of an IC Junction temperature of a LED Maximum junction temperature IC voltage Column voltage Forward voltage of LED Thermal impedance junction to case Min. Typ. Max. PCOL PDISPLAY PLED RθCA RθJC TA TJ(IC) TJ(LED) TJ(MAX) VCC VCOL VF(LED) ZθJC HDSP2000LP 1.6 1.7 2.0 Optical Considerations HDSP2001/2/3LP 1.9 2.2 3.0 The light output of the LEDs is inversely related to the LED diode’s junction temperature as shown in Figure 6. For optimum light output, keep the thermal resistance of the socket or PC board as low as possible. RθCA See Equation 1 below. The junction rise within the LED is the product of the thermal impedance of an individual LED (37°C/W, DF=20%, F=200 Hz), times the forward voltage, VF(LED), and forward current IF(LED), of 13–14.5 mA. This rise averages TJ(LED)=1°C. The table below shows the VF(LED) for the respective displays. Model Number VF The junction rise within the LED driver IC is the combination of the power dissipated by the IC quiescent current and the 28 row driver current sinks. The IC junction rise is given in Equation 2. A thermal resistance of 28°C/W results in a typical junction rise of 6°C. See Equation 2 below. Equation 1. T J ( LED ) = P LED Z θJ C + P CASE ( R θJC + R θCA ) + T A T J ( LED ) = [( I COL ⁄ 28 )V F ( LED ) Z θJC ] + [ ( n ⁄ 35 )I COL DF ( 5V COL ) + V CC I CC ] ⋅ [ R θJC + R θCA ] + T A Equation 2. T J ( IC ) = P COL ( R θJC + R θCA ) + T A T J ( IC ) = [ 5 ( V COL – V F ( LED ) ) ⋅ ( I COL ⁄ 2 ) ⋅ ( n ⁄ 35 )DF + V CC ⋅ I CC ] ⋅ [ R θJC + R θCA ] + T A 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA www.infineon.com/opto • 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany www.osram-os.com • +49-941-202-7178 HDSP200LP/1LP/2LP/3LP 6 April 4, 2000-11 Figure 6. Normalized Luminous Intensity vs. Junction Temperature Figure 9. Package Power Dissipation 1.5 Max. Package Power Dissipation - W Normalized Luminous Intensity 10 Normalized to: Ta = 25°C 1 .1 -60 0.5 0.0 0 5 10 Max. Package Power Dissipation - W 45 40 35 30 Vcc =5.25V, Icc = 10mA n = 20 LEDs, DF= 20% 10 DF = 20%, Ta = 25°C 1.0 0.5 0.0 0 5 10 35 40 2.00 P = 0.87W Character Power Dissipation - W 0 5 15 20 25 30 LEDs on per Character Figure 11. Character Power Dissipation 5 0 40 Vcol = 3.5, Icol = 410mA Vcol = 3.5V, Icol = 410mA 15 35 Vcc = 5.25V, Icc = 10mA 25 20 15 20 25 30 LEDs on per Character 1.5 50 Temperature - °C DF = 20%, Ta = 25°C 1.0 Figure 10. Maximum Character Power Dissipation Figure 7. Maximum LED Junction Temperature vs. Socket Thermal Resistance ∆Tj - Delta LED Junction Vcol = 3.5, Icol = 410mA -40 -20 0 20 40 60 80 100 120 140 Tj - LED Junction Temperature - °C When mounted in a 10°C/W socket and operated at Absolute Maximum Electrical conditions, the HDSP200XLP will show an LED junction rise of 17°C. lf TA=40°C, then the LED’s TJ will be 57°C. Under these conditions Figure 7 shows that the I V will be 75% of its 25°C value. 10 15 20 25 30 35 40 Socket Thermal Resistance - °C/W 45 50 Figure 8. Maximum Package Power Dissipation 1.5 Max. Package Power Dissipation - W Vcc = 5.25V, Icc = 10mA Vcc = 5.25V, Icc = 10mA Vcol = 3.5, Icol = 410mA DF = 20%, Ta = 25°C 1.0 Vcc = 5V, Icc = 5mA Vcol = 3.5V, Icol = 335mA Duty Factor 1.50 20% 17% 10% 5% 1.00 0.50 0.00 0 5 10 15 20 25 30 LEDs on per Character 35 40 0.5 0.0 0 5 10 15 20 25 30 LEDs on per Character 35 40 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA www.infineon.com/opto • 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany www.osram-os.com • +49-941-202-7178 HDSP200LP/1LP/2LP/3LP 7 April 4, 2000-11